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Abstract: Functional Principal Component Analysis (FPCA) is an important dimension reduction
technique to interpret the main modes of functional data variation in terms of a small set of uncorrelated
variables. The principal components can not always be simply interpreted and rotation is one of the main
solutions to improve the interpretation. In this paper, two new functional Varimax rotation approaches
are introduced. They are based on the equivalence between FPCA of basis expansion of the sample
curves and Principal Component Analysis (PCA) of a transformation of the matrix of basis coefficients.
The first approach consists of a rotation of the eigenvectors that preserves the orthogonality between the
eigenfunctions but the rotated principal component scores are not uncorrelated. The second approach is
based on rotation of the loadings of the standardized principal component scores that provides uncorrelated
rotated scores but non-orthogonal eigenfunctions. A simulation study and an application with data from
the curves of infections by COVID-19 pandemic in Spain are developed to study the performance of these
methods by comparing the results with other existing approaches.

Keywords: functional data analysis; functional principal components; varimax rotation;
B-splines; COVID-19

1. Introduction

Nowadays, the great advancement of technology makes it common to have high-dimensional
data associated with a large number of highly correlated variables. Functional data is a type of
high-dimensional data in which a large number of observations of one or more variables are available
at a continuous argument, usually time, on a sample of individuals. Therefore, a sample of functional
data is a set of functions (curves, surfaces, etc.) that vary in a continuous argument such as time.
Examples of data of this type are given in very diverse areas such as life sciences, environment,
economics, chemometrics and electronic, among others. Functional Data Analysis (FDA) deals with
the statistical modeling of this type of data. A detailed study of the main FDA methodologies as well
as relevant applications and computational aspects are described in the books by [1–5].

The most common FDA technique is Functional Principal Component Analysis (FPCA) introduced
by [6] as a generalization of the reduction dimension multivariate technique PCA to the case in which
the data are functions instead of vectors. The first papers on this topic were framed in the theory
of second order stochastic processes with the Karhunen–Loève (KL) expansion being the main tool.
Thanks to this probabilistic result, the sample functions are reconstructed in terms of a small set of
uncorrelated variables called principal components, whose interpretation allows to explain the main
modes of variation in the functional data set. The theoretical aspects related with the properties,
asymptotic theory and inference results of FPCA in the general framework of Hilbertian random
functions were deeply studied in [7–9].
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Most of the functional data can not be observed directly so that the latent stochastic process of
interest must be reconstructed from discrete observations of each sample curve on a fixed or random
time grid, which can be dense or sparse and different for the sample individuals. One usual form of
reconstructing the functional form of sample curves is by an expansion in terms of basis functions
such as Fourier, B-splines or wavelets [10–15]. The equivalence between FPCA of basis expansion
of functional data and certain multivariate PCA in terms of the basis coefficients data matrix was
studied in [8]. On the other hand, different Bayesian approaches to FPCA were considered in [16,17].
In addition, nonparametric methods to perform functional principal components analysis for the case
of irregularly spaced longitudinal data (sparse) were developed [18,19].

The problem inherent to many applications is that interpreting the components is not always
straightforward. It is known that the greatest contribution in the structure of a functional principal
component is given by the process variables associated with the greatest values of the corresponding
weight curve at certain time points [20]. In some cases the principal components are difficult to interpret
because the estimated weight functions have a lot of variability and lack of smoothness. One way to
solve this problem is based on penalizing the roughness of the weight functions. Several penalized
FPCA approaches were developed to improve the estimation of the principal weight functions in
the case of smooth curves observed with error [21–23]. In other cases, the first principal component
explains a very high percentage of the total variance and is a straightforward average or size effect.
These problems are usually solved by a rotation of the weight functions that simplifies the component
structure and therefore makes the interpretation easier. The main drawback of rotation is that it is not
able to retain the two crucial properties of FPCA: uncorrelatedness of the components and orthogonality
of the weight functions. The most popular rotation method is Varimax [24]. This criterion has been
extended to FPCA in two different way: the first one is based on Varimax rotation of the matrix of
basis coefficients of the weight functions, and the other one is based on Varimax rotation of the matrix
of values of the weight functions in a grid of equally spaced time points [1]. Varimax criterion could
be unhelpful when data have a strong seasonal behaviour leading to a periodic structure as well as
trends and isolated features in the weight curves. This is because Varimax rotation does not take
into account the dependence structure in functional data at nearby time points. In order to solve this
problem, a functional factor rotation based on canonical correlation was introduced in [25] as a means
of extracting nearly-periodic directions in the data (principal periodic components). In this paper,
two new approaches for rotation of FPCA are introduced. Both are based on the equivalence between
FPCA and multivariate PCA of certain transformation of the matrix of basis coefficients of the sample
curves [26]. On the one hand, Varimax rotation of the eigenvectors provides orthonormal rotated
eigenfunctions but the associated principal components are not uncorrelated anymore. On the other
hand, Varimax rotation of the loadings associated with the standardized principal components yields
uncorrelated components with non-orthogonal eigenfunctions.

After this introduction, theoretical aspects related with the Varimax functional rotation are
developed in Section 2. The behaviour of the proposed rotation methodologies is tested on a simulation
study in Section 3, where the results are compared with other functional Varimax approaches previously
developed in the literature. An application on COVID-19 infection curves is developed in Section 4.
Finally, a detailed discussion of the results is given in Section 5.

2. Rotation in Functional Principal Component Analysis

Let us begin by a brief summary on Varimax rotation of multivariate PCA before introducing the
functional Varimax rotation approaches.

2.1. Rotation in PCA

The rotation of principal components has its origin in the Factor Analysis (FA) whose goal is to
find out the dependence structure among several variables by expressing them in terms of a small
number of non-observable latent variables called factors. The aim of rotation of the matrix of factor
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loadings (multiplication by an orthogonal matrix R) is to facilitate the interpretation so that each factor
is associated with a small block of observed variables. That means that the columns of the rotated
loading matrix have high values for several variables and low for the remainder (the most elements
either close to zero or far from zero, and with as few as possible values taking intermediate values).
This approach gives raise to different criteria for defining the type of rotation which is designed to
simplify the structure of loadings. Varimax, quartimax and promax are the most usual orthogonal
methods meanwhile oblimax provides oblique factors by allowing R to be not necessarily orthogonal.
The contributions of this paper are based on Varimax criterion which is the most applied in practice
thanks to its good interpretation results. This type of rotation can be extended to PCA in order to
simplify the structure of the problem and to facilitate the interpretation.

Formally, let X be a data matrix associated with a sample of size n of p random variables
(X1, . . . , Xp). Let us suppose without loss of generality that the variables are centered. PCA can be
applied by means of Singular Value Decomposition (SVD), that is, X = UDVT where U is a (n× p)
unitary matrix, D is a (p× p) diagonal matrix whose principal diagonal is formed by the singular
values and V is a (p× p) orthogonal matrix whose columns are the eigenvectors of the covariance
matrix of X given by Σp×p = XTX/(n− 1) = VΛVT , with Λ being a diagonal matrix whose elements
are the eigenvalues of Σ. Then, the following principal component representation is obtained:

X = UD×VT = ZVT ,

where Z = UD are the principal components (PCs) scores and the columns of matrix V are also
called principal directions or axes of the PCA. It is well known that the eigenvectors associated with
different PCs are orthogonal (VTV = I) and that all the p unrotated components are uncorrelated
ZTZ/(n − 1) = Λ. On the other hand, the standardized PC scores (uncorrelated scores with unit
variance) denoted by Z̃ are given by Z̃ = ZΛ−1/2 = ZD−1

√
n− 1 = U

√
n− 1, so that the data matrix

is expressed as X = Z̃∆T , with ∆ = VD/
√

n− 1 being the loadings associated with the standardized
PCs which are eigenvectors scaled by the corresponding singular values.

There are two different ways to perform the rotation that provide different interpretation results.
Thus, by considering the first q < p p.c’s, X can be approximated by means of SVD as Xq = UqDqVT

q
and the orthogonal rotation matrix R can be inserted through the following two possibilities:

1. Xq = (UqDqR)(RTVT
q ) = ZR

q VT R
q .

2. Xq = (UqR)(RT DqVT
q ) = Z̃R

q ∆T R
q .

One is based on rotating the loadings of PCs (eigenvectors) and the other in rotating the loadings
of the standardized PCs (eigenvectors scaled by the singular values). In the first option the new
scores provided by the rotation will not be uncorrelated anymore although the axes do will remain
orthogonal. This is not how PCA is usually understood and applied. For that reason, it is quite
common not to call them anymore rotated PCs but only rotated components. By contrast, in the second
option the rotated loadings are not orthogonal axes but the rotated scores continue to be uncorrelated.
Any of these approaches can be considered but in order to interpret the results it is important to take
these properties into account. In fact, and according to our research, even the experts in this field do
not reach an agreement about what method is better or what approach must be considered more often
in practice. Therefore, it seems reasonable to conclude that there is not an ideal method for rotating
the PCs and any of them can be employed. Another important aspect has to do with the amount of
variance explained by the rotated components. After applying the Varimax rotation, the variance
explained by the first q components remains unchanged and gets redistributed among the rotated
components so that the quantities are not arranged in descending order.

Let us remember that in Varimax rotation the matrix R is computed by maximizing the variance of
the coefficients that define the effect of each factor on the observed variables. Then, in PCA R is chosen
to maximize the variability of the squares elements of the rotated matrix of eigenvectors/loadings.
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In any case, the amount of explained variance by each rotated component is determined by the
following formula:

VTR
k =

δk

∑
q
k=1 δk

×VTq,

where δk is the kth value of the diagonal of ZRTZR and VTq is the proportion of total variance
captured by the first q PCs. Let us observe that the criterion of rotating the loadings provides the same
proportion of variance explains by each one of the rotated standardized components. This fact is due
to the properties of the matrix U from the SVD analysis.

2.2. Rotation in Functional PCA

For many reasons, FPCA is the basic tool in FDA. It is an extension of PCA which is crucial
to reduce the infinite dimension of functional data and to explain the variability and dependence
structure of functional variables in terms of a reduce set of uncorrelated variables called functional
PCs [6].

Let {xi(t) : t ∈ T, i = 1, . . . , n} be a size n sample of curves associated with a second order and
quadratic mean functional variable X defined on a probabilistic space (Ω,A, P), whose sample curves
belong to the space L2(T) of square integrable functions on a real interval T, with the natural inner
product defined as

〈 f , g〉 =
∫

T
f (t)g(t) dt , ∀ f , g ∈ L2[T].

Let us also assume without loss of generality that the functional variable X is centered.
The principal components are uncorrelated generalized linear combinations with maximum

variance (Var). In general, the j-th principal component score is given by

zij =
∫

T
xi (t) f j (t) dt, i = 1, . . . , n,

where the weight function (loading) f j is obtained by maximizing the variance{
Max f Var

[∫
T xi (t) f (t) dt

]
r.t. ‖ f ‖2 = 1 and

∫
f` (t) f (t) dt = 0, ` = 1, . . . , j− 1.

This problem is solved in term of the eigenanalysis of the sample covariance operator C. That is,
the solutions to the second order integral equation

C( f j)(t) =
∫

c (t, s) f j (s) ds = λj f j(t),

where c (t, s) is the sample covariance function and λj = Var[zj]. Then, the following principal
component decomposition of the sample curves is obtained: xi (t) = ∑n−1

i=1 zij f j (t) , that can be
truncated in the qth term providing the best least squares linear approximation of the sample curves
xq

i (t) = ∑
q
i=1 zij f j (t) , with explained variance given by ∑

q
i=1 λi. The most usual criterion for choosing

the number of PCs consist of selecting the first q components whose proportion of explained variance
is close to one (at least 0.75–0.8 in most cases).

In order to estimate the eigenvalues and eigenvectors, it is usual to assume that sample paths
belong to a finite-dimension space generated by a basis {φ1(t), ..., φp(t)}, so they can be expressed as

xi(t) =
p

∑
j=1

aijφj(t) = a′iΦ(t), i = 1, ..., n,

where p must be sufficiently large to get an accurate representation of the curves. The selection of
the type and dimension of the basis is a crucial problem that must be solved by keeping in mind the
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characteristics of the curves. Normally, Fourier basis is used when the curves are periodic, B-spline
basis is employed for non-periodic smooth paths and wavelet basis for data with a strong local
behaviour. Once the basis is selected, the basis coefficients are commonly approximated by least
squares from noisy discrete time observations of each sample curve.

In this context, FPCA is equivalent to multivariate PCA of matrix AΨ1/2, with A = (aij)n×p being
the matrix of basis coefficients and Ψ1/2 being the squared root of the matrix of inner products between
basis functions Ψ = (Ψij)p×p =

∫
T φi(t)φj(t)dt, i, j = 1, ..., p [26]. Then, the PC weight functions admit

the following basis expansion:

f j(t) =
p

∑
k=1

bjkφk(t),

where the vector bj of basis coefficients is given bj = Ψ−1/2vj where the vj are computed as the
eigenvectors of the sample covariance matrix of AΨ1/2. Then, Z = (zij)n×p = (AΨ1/2)V is the matrix
whose columns are the PC scores of AΨ1/2 and V the one whose columns are its associated eigenvectors.
In matrix form, the basis expansion of weight functions would be f = BTΦ, with f = ( f1, . . . , fp)T

being the vector with the eigenfunctions, B the matrix of basis coefficients Bp×p = (bij) = Ψ−1/2
p×p Vp×p, V

the matrix with columns the eigenvectors of the covariace matrix of An×pΨ1/2
p×p, and Φ = (φ1, . . . , φp)T ,

the vector of basis functions.

2.2.1. Functional Varimax Rotation

Two different ways of functional varimax rotation were proposed so far [1]. One is based on
rotating the matrix of basic coefficients of the eigenfunctions and the other, coarser, on rotating the
matrix of values of the eigenfunctions in a grid of equally spaced time points. In both cases the rotated
component scores are no longer uncorrelated although the weight functions (axes) after rotation are
still orthonormal. At this point, the new methodology that we propose for rotating the functional
PCs consists of rotating PCA of the matrix AΨ1/2, based on the statement that FPCA is equivalent
to multivariate PCA of this matrix. This is the main contribution of the current study in addition to
doing an exhaustive revision about different ways of functional Varimax rotation and a comparison
study among them. As a natural extension of the multivariate case, our proposal considers two
different possibilities depending whether the rotation is done on the eigenvectors or on the loadings
of the standardized principal component scores. This way, the rotation of the functional principal
components is inspired by the theory of rotation of factor analysis presented in previous subsection by
considering the multivariate viewpoint in the FDA context.

More formally, FPCA rotation would consists of rotating the first q PC weight functions as
f RT
q = f T

q R. This way, the vector n× 1 with the sample functions is approximated in terms of the first
q PCs as

Xq = Zq fq = (ZqR)(RT fq) = ZR
q f R

q ,

where the vector of rotated eigenfunctions is expressed as f RT
q = ΦT BqR = ΦT(Ψ−1/2Vq)R with Bq

being the matrix of basic coefficients associated with the first q eigenfunctions and Vq the matrix whose
columns are the first q eigenvectors. This expression was our inspiration to propose a methodology
based on directly rotating the eigenvectors instead of the methodology based on rotating the basic
coefficients proposed by [1].

Thus, the chances in order to rotate functional PCA are the following:

R1 Applying the VARIMAX rotation criterion to weight function values.

In this case, the purpose would be to find a matrix R that maximizes the variance of the squares
of the elements of the matrix

FRT

q = FT
q R,
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where Fq is the q×m matrix whose elements are the values of the first q eigenfunctions evaluated
at a grid of time points t1, ..., tm, given by FT

q = ΓTΨ−1/2Vq, with Γ being the p×m matrix that
contains as rows the values of each basis function at the time points.

R2 Applying the VARIMAX rotation criterion to weight function coefficients.

In this occasion, the goal is to calculate a matrix R that maximizes the variability of the squares
elements of BR = BR = Ψ−1/2VR. Then, the rotated principal factors are given by

f RT

q = φT BR.

R3 Applying the VARIMAX rotation criterion to PCs by rotating the matrix of eigenvectors.

Here, the objective is to determine a matrix R that maximizes the variability of the squares
elements of the rotated matrix of eigenvectors VR

q = VqR. Then, the rotated principal factors are
given by

f RT

q = φT(Ψ−1/2VR).

R4 Applying the VARIMAX rotation criterion to the standardized PCs by rotating the matrix
of loadings

Hence, this method consists of computing a matrix R that maximizes the variance of the squares
elements of the matrix ∆R

q = ∆qR = VqΛ1/2
q R. Then, the rotated principal factors are given by

f RT

q = φT
(

Ψ−1/2∆R
q Λ−1/2

q

)
.

The two last functional Varimax approaches (R3 and R4) are the main contribution of this paper
based on Varimax rotation of the multivariate PCA of AΨ1/2 matrix, which is equivalent to functional
PCA of X. On the other hand, methods R1 and R2 are not new and are considered in this paper only
for comparison purpose in the simulation study. Let us observe that in the case of orthonormal basis
functions, approaches R2 and R3 match. Moreover, with the first three methods the rotated factors
are ortonormal but the rotated components are not uncorrelated, meanwhile with the last one the
opposite happens.

3. Simulation Study

The good performance of the two functional Varimax approaches introduced in this paper (R3 and
R4) is tested on simulated data. The results will be compared with the ones provided by approaches
R1 and R2 discussed in the book by [1].

The data are simulated from the approximation of the Wiener process (Brownian motion) given
by its Karhunen–Loève (KL) expansion truncated in the qth term. This is a Gaussian process with
covariance function given by C(t, s) = σ2min(t, s). The KL expansion of this process is given as follows
in terms of the eigenvalues and eigenfunctions of the covariance operator:

X(t) =
∞

∑
k=1

√
λkξk fk(t), (1)

where the PCs ξk are independent Gaussian random variables with mean zero and variance one,
the eigenvalues are given by λk = σ2

(k−0.5)2π2 and the eigenfunctions by fk(t) =
√

2sin((k− 0.5)πt).
In this study, the cut-off q = 8 and a dispersion parameter σ = 0.2 were considered. Then, 500 samples
of 150 sample curves of the process X(t) given by Equation (1) were simulated at different number
of equally spaced knots in the observed domain [0, 1]. Three different scenarios were considered by
defining the time points as tk = k/m, k = 0, 1, . . . , m; m = 25, 50, 100. Different sample sizes were also
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considered but the results are not included in the paper because they were quite similar for sample
sizes large enough.

First, least squares approximation of each sample curve was performed in terms of a basis of
cubic B-splines of dimension 8. The sample curves of one of the simulated samples are displayed in
Figure 1. Then, functional PCA and the four considered functional Varimax approaches for rotating
the first four components were performed. Table 1 shows an example of the amount of variance
explained by the first four PCs and the redistribution of the variances after applying the three type of
rotation of the eigenfunctions aforementioned. Let us observe that the criterion of rotating the loadings
(R4) is not included in this table because the same proportion of variance is distributed among the
rotated standardized components (24.48%). This fact is due to the properties of the matrix U from the
SVD analysis.

0.0 0.2 0.4 0.6 0.8 1.0

−
0
.4

−
0
.2

0
.0

0
.2

0
.4

 

F
−

D
a
ta

Figure 1. Sample of 150 simulated sample curves of the KL expansion of the Wiener process truncated
in the fourth term.

Table 1. Percentages of variance explained by the first four PCs and their redistribution after the three
types of Varimax rotation of the eigenfunctions.

PC FPCA R1 R2 R3

1 80.4 23.2 22.0 23.5
2 10.8 11.6 49.5 9.3
3 4.5 24.9 7.6 44.2
4 2.2 38.2 18.8 20.9

In Figure 2, the estimated eigenfunctions (FPCA) and their functional Varimax rotations by the
four considered approaches (R1, R2, R3 and R4) are displayed for one of the simulated samples next to
the original rotation of the theoretic values for the first four eigenfunctions. Theoretically, the rotated
eigenfunctions with the first three approaches should resemble their corresponding original rotation.
In order to draw general conclusions, the integrated mean squares error (MSE) of each rotated
eigenfunction with respect to the original rotation is computed as the squared root of

‖ f R
i − f̂ R

i ‖2 =
∫

T

[
f R
i (t)− f̂ R

i (t)
]2

dt =
∫

T

[
p

∑
j=1

dijφj (t)

]2

dt = d′iΨdi,

where di =
(
di1, . . . , dip

)′ is the vector with the differences between the basis coefficients of each
original rotated eigenfunction and the ones of its estimation by using the different type of functional
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rotations. The boxplots of the MSEs for the rotated eigenfunctions estimated by using R1, R2 and
R3 with 26, 51 and 101 observed time points for 500 simulations of the Wiener process were plotted
in Figure 3. Rotation R4 is included in these boxplots although the estimated eigenfunctions are not
orthogonal and the comparison with the other approaches makes no sense. Let us observe that the new
Varimax rotation of the eigenfunctions introduced in this paper (R3) provides the most accurate results,
which are also more robust with respect to the number of observation nodes of the sample curves.
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Figure 2. Eigenfunctions after applying FPCA analysis and the four type of rotation explained.
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Figure 3. Box plots for the integrated MSEs of the rotated eigenfunctions estimated by using R1, R2, R3
and R4 rotation approaches with 26, 51 and 101 basis knots on 500 simulations of the Wiener process.

4. COVID-19 Data

In order to show up the usefulness of rotation to facilitate the interpretation of the principal
components, an application with data from COVID-19 pandemic has been developed. The functional
data are the number of daily cumulative informed cases of COVID-19 for seventeen autonomous
communities (ACs) in Spain from 20/02/2020 to 27/04/2020 (first wave of COVID-19). Data source:
https://cnecovid.isciii.es/covid19/#documentación-y-datos. The sample curves, denoted by
x1(t), . . . , x17(t), are daily observed starting the day that at least one case is reported. Therefore,
the period of observation and the number of observations are different for each AC. In order to
homogenize the data, the number of cases per 10,000 inhabitants is considered and the first observation
for each curve corresponds to the day that exceeds by first time the maximum of the first reported
values. Then, all the curves were registered in the common interval [0, 1]. A detailed description of
basis approaches for functional data registration can be seen in [1].

The first step for estimating FPCA is to approximate the sample curves in terms of an appropriate
functional basis by using least squares smoothing. A B-spline basis of dimension 10 with equally
spaced knots in the interval [0, 1] was chosen in this paper for the functional representation of each
curve. Figure 4 shows all the smoothed sample curves.

https://cnecovid.isciii.es/covid19/#documentaci�n-y-datos
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Figure 4. B-spline smoothing of the number of daily cumulative informed cases by COVID-19 per
10,000 inhabitants for seventeen autonomous communities in Spain.

Second, FPCA was performed in order to reduce the dimension of the problem and to explain
the different modes of variability in the data. As the first principal component explains more than
99% of the total variability the results are not easy to interpret (Table 2). The estimated first four weight
functions are displayed in Figure 5 (black line). Let us observe that the first eigenfunction is positive
and strictly increasing through the entire observation period, and in addition, the weight placed on the
cases at the end is about two times higher than at the beginning. This could lead to interpret that the
most important mode of variation between ACs represents a quick increase in cases as time passed
with the infection curve out of control. The rest of the components are difficult to interpret since they
account for much smaller and insignificant proportions of the total variation.

Table 2. Percentages of variance explained by the first four PCs of COVID-19 data per 10,000 inhabitants
for seventeen autonomous communities in Spain.

PC FPCA Rotation R3

1 99.32 44.36
2 0.52 38.14
3 0.12 0.67
4 0.03 14.82

Third, in order to obtain weight functions and PC scores much easier to interpret, the two Varimax
rotation approaches introduced in this paper (R3 and R4) are carried out on the first four PCs. This way,
the variability explained by the first four rotated components is divided in different proportions,
which can be seen in Table 2. Let us now observe that the first two rotated components explain more
than a 82% of the total variability with the main mode of variation accounting a 44% and the second a
38% approximately. The first four rotated eigenfuntions are shown in Figure 5. Taking into account
their explained variances, only the first two rotated components will be interpreted. The first two
eigenfunctions plotted as positive and negative perturbations of the mean function are shown in
Figure 6 with the first row corresponding to the rotation of eigenvectors (R3) and the second one
to the rotation of loadings (R4 approach). The scores of the seventeen Spanish ACs on the first two
rotated principal components of COVID-19 cases are displayed in Figure 7 for R3 (left) and R4 (right)
rotation approaches, where the location of each AC is shown by the abbreviation of its name assigned
in Table 3.
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Figure 5. The first four principal component weight curves for COVID-19 data (eigenfunctions in solid
black line) and the rotated eigenfunctions after applying the Varimax rotation criterion to the matrix of
eigenvectors (R3 approach in dotted green line) and to the loadings (R4 approach in dashed cyan line).

Let us begin by interpreting the results given by R3 approach (rotation of eigenvectors).
Now, the first eigenfunction is easier to interpret and represents those ACs that had an increase
more or less constant until the 70% of the observed period where the number of cases shot up leaving
the curve out of control. The three highest scores are assigned to La Rioja (RI), Madrid (MD) and
Castilla la Mancha (CM), which were the communities with more problems controlling the infections
and the largest negative scores to Canarias (CN), Murcia (MC) and Andalucía (AN), which were
the communities that better controlled the infection curve. On the other hand, the behaviour of the
second eigefunction represents those ACs which suffered an increase relatively rapid between the
40% and 70% of the period but they managed to have the curve under control from that moment.

Regarding R4 approach (rotation of loadings), the behaviour of the first and second eigenfunctions
is very similar to the unrotated ones. That is, the first is associated with those ACs that did not control
the curve because as the days passed, the number of cases increased very quickly. On the other
hand, the second eigenfunction could be influenced by the ACs which controlled the number of cases
since the time representing the 60% of the observed period. These conclusions are corroborated by
Figures 5 and 6. Les us observe from Figure 7 (left) the high correlation between the first two rotated
PCs scores provided by approach R3 that establishes two clearly differentiated groups between the
autonomous communities: those ACs which managed to control moderately the curve of number
of cases (third quadrant) and the ones that lost control of the cases by reaching numbers really
concerning (first quadrant). On the other hand, thanks to the uncorrelation between the rotated PCs
scores, approach R4 provides a much better clustering of AC. This can be seen in the biplot on the
right in Figure 7 where each of these two groups is divided in other two so that four groups can be
clearly distinguished.
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Figure 6. The mean curve of COVID-19 cases and the effects of adding (+) and subtracting (−) a
suitable multiple of each PC weight curve (eigenfunction). The first row corresponds to the rotation of
eigenvectors (R3) and the second one to the rotation of loadings (R4 approach).
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Figure 7. The scores of the seventeen Spanish autonomous communities on the first two rotated
principal components of COVID-19 cases. The location of each AC is shown by the abbreviation of its
name assigned in Table 3.

Table 3. Abbreviation of the seventeen Spanish autonomous communities.

Andalucía, AN Castilla-La Mancha, CM Madrid, MD
Aragón, AR Castilla-León, CL Murcia, MC
Asturias, AS Cataluña, CT Navarra, NC
Islas Baleares, IB Comunidad Valenciana, VC País Vasco, PV
Canarias, CN Extremadura, EX Rioja, RI
Cantabria, CB Galicia, GA
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In fact, these conclusions agree with the results obtained after applying functional data
clustering [27]. In particular, it has been considered the approach based on performing clustering using
the basis expansion coefficients in terms of the basis of cubic B-splines aforementioned. Due to the fact
that La Rioja (RI) could be an outlier, the K-medoids method, which is more robust than K-means, is
applied next to Manhattan distance as similitude measure. Moreover, as the dataset is not too large,
the algorithm called Partitioning Around Medoids is considered. In order to identify the optimum
number of clusters, the reduction of intra-cluster total variance was evaluated for a range of values
K (elbow method). It can be seen in the left panel of Figure 8 that the reduction seems to stabilize by
starting at 4 cluster. Finally, the clustering results appear in the right panel of Figure 8 which is very
similar to the biplot in the right panel of Figure 7. This is in accordance with multiple studies about
the infections by COVID-19 pandemic in Spain [28–31], what corroborate the good interpretation and
classification results provided by the new rotation approaches introduced in this paper.
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Figure 8. Scores of the number of cumulative informed cases by COVID-19 per 10,000 inhaibtans of
seventeen autonomous community of Spain.

5. Discussion

FDA try to solve problems where the involved sample data are functions that vary over some
continuum, usually time. One of the most important techniques in the field of FDA is Functional
Principal Component Analysis, whose main purpose is to reduce the dimension of the problem and
to explain the dependence structure of data in terms of a reduce set of uncorrelated variables called
functional principal components. The interpretation of these components helps to understand the
main characteristics and modes of variation of the underline stochastic process. Nevertheless, there are
many situations in which this task is not easy. One is the case when the first PC represents a size effect
that explains a very high percent of the total variability. The most common tool to solve this problem
in PCA is Varimax rotation that redistributes the explained variance among all rotated components to
make easier the interpretation. So far, there were only two approaches available in the literature to
apply Varimax rotation in the FDA context, but neither of them is a direct rotation of eigenfunctions.
The first one consists of rotating the values of the weight functions evaluated at the time points (R1),
while the second one is based on rotating the weight function coefficients (R2). Both methods retain the
orthogonality of the axis but the new scores will not be uncorrelated anymore. In this paper, two new
approaches based on the equivalence between FPCA of basis expansion of the sample curves and
PCA of a transformation of the matrix of basis coefficients are proposed: one is based on applying the
Varimax criterion to principal components by rotating the matrix of eigenvectors (R3), and the other
makes use of the Varimax criterion on the standardized principal components by rotating the matrix of
loadings (R4). The first one guarantees the orthogonality of the rotated eigenfunctions and in the second
one the rotated scores are still uncorrelated. Moreover, all of them are compared in an exhaustive
simulation study. From this study it can be concluded that R3 provides the most accurate rotated
eigenfunctions and is also more robust with respect to the number of discrete time observations of the
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sample curves. Finally, an application with the curves of infections by COVID-19 pandemic in Spain
has been developed. Through the combination of these two new varimax approaches (R3 and R4),
it has been possible to distinguish different behaviors in the evolution of infections in the Spanish
autonomous communities during the first wave of the pandemic. These results are in agreement with
other studies done in the country about this matter [28–31]. These Varimax FPCA approaches are
expected to be welcomed and highly employed in future researches in different areas of science thanks
to their ability to facilitate the interpretation of the main patterns of variation in the data.
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