
mathematics

Article

Estimating General Parameters from Non-Probability
Surveys Using Propensity Score Adjustment

Luis Castro-Martín , María del Mar Rueda * and Ramón Ferri-García

Department of Statistics and Operational Research, University of Granada, 18071 Granada, Spain;
luiscastro193@ugr.es (L.C.-M.); rferri@ugr.es (R.F.-G.)
* Correspondence: mrueda@ugr.es

Received: 20 October 2020; Accepted: 21 November 2020; Published: 23 November 2020 ����������
�������

Abstract: This study introduces a general framework on inference for a general parameter using
nonprobability survey data when a probability sample with auxiliary variables, common to both
samples, is available. The proposed framework covers parameters from inequality measures and
distribution function estimates but the scope of the paper is broader. We develop a rigorous
framework for general parameter estimation by solving survey weighted estimating equations
which involve propensity score estimation for units in the non-probability sample. This development
includes the expression of the variance estimator, as well as some alternatives which are discussed
under the proposed framework. We carried a simulation study using data from a real-world survey,
on which the application of the estimation methods showed the effectiveness of the proposed
design-based inference on several general parameters.
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1. Introduction

Nonprobability samples are increasingly common in empirical sciences. The rise of online and
smartphone surveys, along with the decrease of response rates in traditional survey modes, have
contributed to the popularization of volunteer surveys where sampling is non-probabilistic. Moreover,
the development of Big Data involves the analysis of large scale datasets whose obtention is conditioned
by data availability and not by a probabilistic selection, and therefore they can be considered large
nonprobability samples of a population [1].

The lack of a probability sampling scheme can be responsible for selection bias. Following the
description from [1,2], we can distinguish the target population, UT , the subpopulation that a given
selection method can potentially cover, Upc, and the fraction of the subpopulation that is finally
covered, U f c, and whose individuals might participate in the survey. Selection bias occurs when the
characteristics of the individuals in U f c differ significantly from those in UT in a way that could affect
final estimates. Typically, differences between individuals in UT and individuals in Upc are caused by
a lack of coverage induced by the survey administration mode (for example, an online questionnaire
cannot be administered to the population without internet access), while differences between Upc and
U f c are caused by the variability in the propensities to participate between social-demographic groups
(for example, an online questionnaire accesible in a thematic website might only be fulfilled by visitors
of the website who have a specific interests that could influence the results).

Following the rise of nonprobability samples, a class of methods for reducing selection bias
have been proposed in the last decades. These methods were developed from different perspectives
according to the availability of auxiliary information. We can mention calibration, Propensity Score
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Adjustment (PSA), Statistical Matching and superpopulation modelling as the most relevant techniques
to mitigate selection bias produced by coverage and self-selection errors.

Calibration weighting was originally developed by [3] as a method to correct representation
issues in samples with coverage or non-response errors. It only requires a vector of auxiliary variables
available for each individual of the sample and the population totals of those variables. Calibration is
able to remove selection bias in nonprobability samples if the selection mechanism is ignorable [4],
and despite being originally developed for parametric estimation, further work [5–7] has extended
calibration to distribution function, quantile and poverty measures estimation.

Propensity Score Adjustment (PSA) and Statistical Matching require, apart from the nonprobability
sample, a probability sample to do the adjustments. PSA was originally developed for balancing
groups in non-randomized clinical trials [8] and it was adapted for non-response adjustments shortly
after [9,10]. The application of PSA for removing bias in nonprobability surveys was theoretically
developed in [11,12]. Statistical Matching was firstly proposed in [13] and extended in [14] for
non-response adjustments. The difference between both methods is the sample used in the estimators:
PSA estimates the propensity of each individual of the nonprobability sample to participate in the
survey and then this propensity is used to construct the weights of the estimators, while Statistical
Matching adjusts a prediction model using data from the nonprobability sample, applies it in the
probability sample to predict their values for the target variable y and uses them in the parametric
estimators. To the best of our knowledge, PSA and Statistical Matching has not been developed for
nonparametric estimation.

Superpopulation modelling requires data from the complete census of the target population for the
covariates used in the adjustment, which is assumed to be a realization (sample) of a superpopulation
where the (unknown) target values follow a model. It is based on the works by [15,16], where the main idea
is to fit a regression model on the target variable with data from the nonprobability sample, and use the
model to predict the values of the target variable for each individual in the population. The prediction can
be used for estimation using a model-based approach or some alternative versions such as model-assisted
and model-calibrated. LASSO models [17] and Machine Learning predictors [18,19] have been studied as
alternatives to ordinary least squares regression in superpopulation modelling.

The interest of society on poverty and inequality has increased in the last decades given the
successive economic cycles and crisis. In such a context, official poverty rates and the percentage of
people in poverty (or under a poverty threshold) are some important measures of a country’s wealth.
The common characteristic of many poverty measures is their complexity. The literature on survey
sampling is usually focused on the goal of estimating linear parameters. However, it is usual that
the variable of interest in poverty studies is a measure of wages or income, where the distribution
function becomes a relevant tool because it is required to calculate the proportion of people with low
income, the poverty gap and other measures. Estimators for the cumulative distribution function,
quantiles [20,21] and poverty measures [22] can be found in literature regarding probability samples,
but there is hardly any work on the estimation of these parameters when the samples are obtained
from volunteers.

In this paper, we aim to develop a framework for statistical inference on a general parameter with
non probability survey samples when a reference probability sample is available. After introducing
the problem of the mean estimation for volunteer samples in Section 2, in Section 3, we consider the
problem of the estimation for a general parameter through general estimating equations. Section 4
presents a new estimator for a general parameter through the use of PSA to estimate the propensity
score of each individual in the survey weighted estimating equation and major theoretical results
are presented. Results from simulation studies are reported in Sections 5 and 6 presents the
concluding remarks.
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2. Approaches to Estimation of a Mean for Volunteer Online Samples

Let UT be the target population with N elements and sv a nonprobability sample drawn from
a subset of UT , Uv, with a size of nv ≤ N. Let y be the target variable of the survey, whose
mean in the population UT is denoted as Y. The sample estimation of Y, Ŷ, is done using the
Horvitz-Thompson estimator:

ŶHT =
∑i∈sv wiyi

∑i∈sv wi
(1)

where w is a vector of weights that accounts for the lack of representativity of sv caused by selection
bias. If no auxiliary information is given, the weight would be the same for every unit, wi = N/nv,
which requires to assume that the sample was drawn under a simple random sampling scheme. This is
a naïve assumption given that sv is not probabilistic, this is, the probability of being in the sample is
unknown and/or null for any of the units in UT .

Let x be a matrix of covariates measured in sv along with y. If the population totals of the
covariates, X, are available, it is possible to estimate the mean using a vector of weights obtained with
calibration, wCAL. The calibration weights aim to minimize the distance between the original and the
new weights

min
wCAL

i

E

[
∑
i∈sv

G(wi, wCAL
i )

]
(2)

while respecting the calibration equations

∑
i∈sv

wCAL
i xi = X. (3)

Some choices for the distance G(., .) were listed in [3], along with the resulting estimators.
Calibration weighting for selection bias treatment was studied in [4], where post-stratification, which is
a special case of calibration [23], was used to mitigate the bias caused by different selection mechanisms,
showing its efficacy when the selection of the units of sv is Missing At Random (MAR).

If a reference sample, sr, drawn from the population UT is available and a number of covariates x
have been measured both in sv and sr, two procedures can be done to reduce selection bias present in
sv. Let Iv be an indicator variable of an element being in sv, this is

Ivi =

{
1 i ∈ sv

0 i /∈ sv
(4)

Propensity Score Adjustment (PSA) assumes that each element of UT has a probability (propensity)
of being selected for sv which can be formulated as

πv
i = Pr(Ivi = 1|xi, yi) (5)

where πv
i is the propensity of the i-th individual to participate in sv. The random mechanism behind

this probability is the selection mechanism that governs the nonprobability sample. If the selection is
Missing Completely At Random (MCAR), then πv

i = Pr(Ivi = 1) and the selection bias is null, while if
the selection is MAR then πv

i = Pr(Ivi = 1|xi) and the selection mechanism is considered ignorable.
This does not mean that the selection bias should be ignored but rather it can be treated with the right
techniques.

In PSA, we consider the situation where true propensities are not known and therefore have to be
estimated; we do it by combining sv and sr into a sample. The probability that Iv = 1 is then estimated
using a prediction model, traditionally a logistic regression one:

π̂v
i =

1
1 + exp{−βxi}

(6)
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Alternative models, such as non-linear regression and Machine Learning classification algorithms,
have been studied in literature as a substitute of logistic regression (see [24] for a review). The resulting
propensities can be used to adjust new weights, wPSA, with different alternatives:

• A simple inverse probability weighting is proposed by [25]

wPSA1
i =

wi
π̂v

i
(7)

which is a similar approach to the formula used in [26]

wPSA2
i =

1− π̂v
i

π̂v
i

(8)

• Alternatively, individuals of the combined sample (sv ∪ sr) can be grouped in g equally-sized
strata of similar propensity scores from which an average propensity is calculated for each group.
Let πg be the mean propensities of the g-th strata. [2] use the means as in (7) to calculate the
new weights:

wPSA3
i =

wi
πgi

(9)

where gi refers to the strata to which the i-th individual of sv belongs.
• A similar approach can be found in [12], but instead of using the means, a factor is calculated for

each strata:

fg =
∑k∈srg

w̃k/ ∑k∈sr w̃k

∑i∈svg
wi/ ∑i∈sv wi

(10)

where srg and svg are respectively the individuals from the probability and nonprobability sample
that belong to the g-th strata, and w̃ is the vector of design weigths of the reference sample.
The final weights are obtained by multiplying the original weights and the correction factor:

wPSA4
i = wi · fgi (11)

PSA has been proven to successfully remove selection bias when prognostic covariates are
chosen [11] and further adjustments, such as calibration, are applied in the estimations [2,12,27].
A recent paper [28] shows a real application of PSA in web panel surveys where the reductions in bias,
although present, were not large enough to consider the estimates as unbiased.

As an alternative to PSA, Statistical Matching is another method to mitigate selection bias when
a reference sample is available. For the matter, a prediction model for y using x as the dependent
variables is built using data from sv. The model is subsequently applied on the reference sample to
obtain the estimates from the predicted values of y in sr, ŷ:

Ŷ = ∑
k∈sr

wk ŷk (12)

The choice of prediction models has been studied in literature; the usual method is linear
regression but other approaches such as donor imputation [13] or Machine Learning algorithms [19,29]
have been listed as alternatives. Under certain conditions, Statistical Matching can reduce bias and
mean square error to a greater extent than PSA [29].

When a complete census of the entire target population is available, with information on the
covariates present in sv, superpopulation modelling can be applied to remove selection bias [19].
In this paper we consider the case when auxiliary information is available only from a reference
probability survey.
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3. Estimation of a General Parameter by Using PSA

Let y be the variable of interest in a survey and yi be the value of the i-th unit in that variable,
i = 1, . . . , N. Suppose we want to estimate a finite population parameter θN of dimension p ≥ 1
defined as the solution of the census estimating equations:

U(θN) =
1
N ∑

U
ui(yi, θN) = 0 (13)

where ui(yi, θN) is be a function of θN . Some unidimensional parameters of interest can be:

• the population total Ty for ui = (yi − θN/N),
• the population mean Ȳ for ui = (yi − θN),
• the population distribution function Fy(t) for ui = (1(yi ≤ t)− θN) with 1(·) being the indicator

function,
• the finite population quantile of order j, Qj for ui = (1(yi ≤ θN)− j, where 0 < j < 1,

We denote by θ̂ the solution of the equation:

Û(θN) = ∑
U

Iviui(yi, θN)/πv
i = ∑

sv

ui(yi, θN)/πv
i = 0. (14)

It is clear the Er(Û(θN)) = U(θN) where r stands for the model of the selection mechanism for
the sample sv, this is, the true model that fits propensity scores. If πv

i are known we can get the
consistent estimator of θN by solving the equation above. For the study of the properties of this
estimator we consider a quasi-probability approach or pseudo-design-based inference ([19]) and we
treat the volunteer sample as a realization of a Poisson sampling with probabilities πv

i .
For any sample design that verifies certain regularity conditions, the solution to Û(θ) = 0 provides

a consistent estimator for the parameter θN (see [30]). Poisson sampling verifies these conditions, so
that the consistency of the estimator is obtained immediately from the result of [30]. The normality of
the estimator is demonstrated by [31], who also obtains the asymptotic variance of the estimator. From
said expression and taking into account that in Poisson sampling the extractions are independent and
therefore the probability of second order is given by πv

ij = πv
i πv

j we can obtain the variance of θ̂:

V(θ̂) = J(θ̂)−1var(Û(θ))J′(θ̂)−1 (15)

being J(θ) = 1
N ∑U ∂ui/∂θ and var(Û(θ)) = ∑U(1− πv

i )u
2
i /(πv

i )
2

4. Estimation of a General Parameter with Estimated Propensities

The propensity scores πv
i are not known are impossible to estimate using the nonprobability

sample sv alone, so additional information must be included. Let sr be a reference probability
sample, of size nr, selected from UT under a sampling design (sd, pd) where the first order inclusion
probabilities, π

p
i = ∑sr3i pd(sr), i = 1, . . . , nr, are known and non-null.

The covariates of the propensity model x have been measured both in sv and sr, while the variable
of interest y is only available for those individuals in sv.

Suppose that the propensity scores can be modelled parametrically as

πv
i = P(Ivi = 1/xi) = m(λo, xi) i = 1, . . . , N (16)

for some known function m(·) with second continuous derivatives with respect to an unknown
parameter λo.

We estimate the propensity scores by using data of both the volunteer and the probability sample.
The maximum likelihood estimator (MLE) of πv

i is m(λ̂, xi) where λ̂ corresponds to the value of lambda
that maximizes the log-likelihood function:
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l(λ) = ∑
U
(Ivilog(m(λ, xi)) + (1− Ivi)log(1−m(λ, xi)) =

∑
sv

log
m(λ, xi)

1−m(λ, xi)
+ ∑

U
log(1−m(λ, xi)). (17)

As it is usual in survey sampling, we consider the pseudo-likelihood given that some units of the
population have not been sampled:

l̃(λ) = ∑
sv

log
m(λ, xi)

1−m(λ, xi)
+ ∑

sp

1
π

p
i

log(1−m(λ, xi)). (18)

We propose thus a two phase procedure in this manner:

Step 1: Calculate λ̂pl by solving the score equations:

∂l̃(xi, λ)/∂λ = 0

Step 2: Calculate θ̂v as the solution of the estimating function:

ÛV(θ) = ∑
U

Iviui(yi, θ)
1

m(λ̂pl , xi)
= 0 (19)

We consider the following asymptotic framework for theoretical development, which is equivalent
to the framework in [32]. Let UTν be a sequence of finite populations of size Nν. Each UTν has an
associated non-probability sample svν of size nvν and an associated probability sample spν of size
npν. We consider that the population size Nν → ∞, the nonprobability sample size nvν → ∞ and the
probability sample size npν → ∞ as ν → ∞. For notational simplicity the index ν is suppressed for
the rest of the paper. The properties of the estimator θ̂v are developed under both the model for the
propensity scores and the survey design for the probability sample.

We make the following assumptions:

• A.1. The estimating function ui(yi, θ, λ) is twice differentiable with respect to θ and λ.
• A.2. The propensities and the sampling design ensure that ÛV(θ)−U(θ) = Op(n−1/2) for any

θ ∈ Θ.
• A.3. The propensities and the sampling design ensure that ÛV(θ) is asymptotically Normal with

mean U(θ) and entries of the variance at the order O(n−1) for any fixed θ ∈ Θ.

Theorem 1. Under the conditions A.1, A.2 and A.3, θ̂v is a consistent and asymptotically normal estimator for θ.

Proof. Under assumed conditions,
ÛV(θ) = U(θ) + Op(n−1/2), thus by using the mean value theorem, θ̂v has the same asymptotic

behaviour that θ̂ which is consistent for θ and asymptotically normal distributed (see Section 3).

Variance estimation for θ̂v can be handled by combining the two estimating equations, l̃ and Ûv,
into a single system as it is done in [33].

The MLE of λ, λ̂pl is the solution to the equations:

U2(λ) = ∑
sv

∂log
m(λ, xi)

1−m(λ, xi)
/∂λ + ∑

sp

∂
1

π
p
i

log(1−m(λ, xi))/∂λ = 0



Mathematics 2020, 8, 2096 7 of 14

and the PSA estimator of θN is the solution to the estimating equations

U1(θ, λ) = ∑
sv

ui(yi, θ)
1

m(λpl , xi)
= ∑

sv

g1(yi, xi, θ, λ) = 0.

Let U(θ, λ) = (U′1(θ, λ), U′2(λ))
′. Let ψ = (θ′N , λo)′ be the true parameter values defined through

the census estimating equations and ψ̂ = (θ̂′N , λ̂o
′
)′ the solutions to U(θ, λ) = 0.

We need an additional assumption:

• A.4. The propensities, the sampling design and the estimating function satisfy ∂Û/∂ψ = Op(1)
and ∂2Û/∂ψ∂ψ′ = Op(1).

Theorem 2. Under the conditions A.1, A.2, A.3 and A.4, the asymptotic variance-covariance matrix of ψ̂ is
given by the expression:

V(ψ̂) = H−1V(Û(θ, λ))H′−1 (20)

with H =

(
H11 H12

0 H22

)
H11 = E{ ∂

∂θ
U1(θN , λ)}

H21 = E{ ∂

∂λ
U1(θN , λ)}

H22 = E{ ∂

∂λ
U2(λ)}

Proof. Since θ̂v and λ̂ are consistent estimator of respective parameters, we can write ψ̂ = ψ + Op(1)
and the Taylor series expansion gives:

ψ̂ = ψ−H−1Û(θ, λ) + Op(‖ψ̂−ψ‖2),

Thus the asymptotic variance of ψ̂ is given by:

V(ψ̂) = H−1V(Û(θ, λ))H′−1.

Taking into account the two random mechanisms, and the probabilities of the conditional
expectation, we have V(Û(θ, λ)) = VpEr(Û(θ, λ)) + EpVr(Û(θ, λ)) where r stands for the model
of the selection mechanism for the sample sv and p refers to the probability sampling design for sp.

The asymptotic variance of ψ̂ depends on the probability of selecting the sample sp under the
given sampling design and the selection mechanism described by the propensity model. Plug-in
estimators can be used to construct variance estimators for all the required components but it is not a
simple issue.

In practice, and as described in [7], the use of jackknife [34] and bootstrap techniques [35] in the
variance estimation for nonlinear parameters should be more advantageous because of their wide
applicability for different cases and conditions. Direct applications of bootstrap methods for estimating
the variance-covariance matrix of ψ̂ involve solving the equation U(θ, λ) = 0 repeatedly for each
bootstrap sample. Multiplier Bootstrap with Estimating Functions was proposed by [36].

5. Simulation Study

5.1. Data

Data for the simulation study come from a wave of the Spanish Living Conditions Survey collected
between 2011 and 2012 [37], which contains an annual thematic module that, in 2012, was dedicated to
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household conditions. The survey sampling follows a two-phase cluster sampling, where the primary
units are the households and the secondary units are their members. In 2012, the final sample included
33,573 individuals. For this study, the dataset was filtered to rule out individuals and variables with
high quantities of missing data. After this procedure, the dataset employed as pseudopopulation of
the study had a size of N = 28,210 individuals and p = 60 available variables.

From this pseudopopulation, two probability samples of size nr were drawn according to the
following sampling strategies:

• The first sample, sr1, was drawn with a stratified cluster sampling, where the strata were defined
by the Autonomous Communities (NUTS2 regions) and the clusters were the households, which
were drawn with probabilities proportional to the household size. The number of households to
be selected, m, was estimated dividing nr by the medium household size in order to reach the
aforementioned size of nr = 2000, resulting in m = 902 households. The final sample size of sr1

was nr1 = 2003.
• The second sample, sr2, was drawn with an unequal probability sampling, where probabilities

were proportional to the minimum income of the individual’s household to make ends meet
(variable HS130 in [37]).

The extraction of the nonprobability sample, sv, was done with unequal probability sampling
from the full pseudopopulation, where the probability of selection for the i-th individual, pi, was given
by the formula:

pi =
1

1 + exp(−2x1
i + 0.2x2

i + 0.01x3
i + 0.2x41

i + 0.4x42
i )

(21)

where

• x1
i = 1 when the i-th sampled individual has a computer at home, and x1

i = 0 otherwise.
• x2

i = 1 when the i-th sampled individual is a man, and x2
i = 0 otherwise.

• x3
i is the age (in years) of the i-th sampled individual.

• x41
i = 1 when the i-th sampled individual lives in a medium population density area, and

x41
i = 0 otherwise.

• x42
i = 1 when the i-th sampled individual lives in a low population density area, and x42

i =

0 otherwise.

The reasoning behind this sampling procedure is to take into account more similar mechanisms
to self-selection procedures that take place in real nonprobability surveys.

We have considered three different sample sizes, nv = 2000, 4000, 6000. 1000 simulation runs were
performed for each procedure and sample size, drawing a sample in each run.

5.2. Simulation

In each simulation, the parameters to be estimated were the following:

• The Gini coefficient [38], which measures the income inequality, estimated as

Ĝy =
∑k∈sv

1
πk
(2F̂y(yk)− 1)yk

∑k∈sv yk/πk

• The proportion of individuals with a disposable income below the at-risk-at-poverty threshold.
This measure can be referred to as poverty incidence, poverty proportion, poverty risk or HCI ([39]
and is estimated as

ˆHCI =
1
N ∑

k∈sv

1
πk

I(y < 0.6Q0.5)

• The interquartile range, estimated as

ÎQR =
Q̂0.75

Q̂0.25
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• The interdecile range, estimated as

ÎDR =
Q̂0.9

Q̂0.1
.

Every parameter was estimated with and without applying PSA so we could evaluate its
performance. In order to estimate the propensities, a logistic regression model was chosen:

m(λ̂, xi) =
exp(λ̂Txi)

1 + exp(λ̂Txi)

1000 simulations were executed for each context. The resulting mean bias, standard deviation
and Root Mean Square Error were measured in relative numbers to make them comparable across
different scenarios. The formulas used for their calculation can be found below:

RBias (%) =

∣∣∣∣∣∑1000
i=1 θ̂(i)

1000
− θN

∣∣∣∣∣ · 100
θN

(22)

RStandard deviation (%) =

√
∑1000

i=1 (θ̂(i) − ˆ̄θ)2

999
· 100

θN
(23)

RMSE (%) =
√

RBias2 + RSD2 (24)

with θ̂(i) the estimation in the i-th simulation and ˆ̄θ the mean of the 1000 estimations.

5.3. Results

The relative mean bias of the estimations can be observed in Tables 1–3. We can observe that PSA
reduces the bias in all situations, specially in the estimation of HCI. PSA using the reference sample
drawn with probabilities proportional to the income, sr2, provided much less biased estimates overall.

Table 1. Relative mean bias (%) of each parameter without applying PSA.

Size Gini HCI IQR IDR

6000 6.7 80.4 7.9 9.4
2000 3.2 93 3.8 3.1
4000 3.1 86 3.7 3
6000 3 79 3.5 3

Table 2. Relative mean bias (%) of each parameter applying PSA with the stratified reference sample.

Size Gini HCI IQR IDR

2000 1.7 3 2.5 1
4000 2.1 3.3 2.7 1
6000 2.2 3.1 2.7 0.9

Table 3. Relative mean bias (%) of each parameter applying PSA with the proportional reference sample.

Size Gini HCI IQR IDR

2000 0.3 1.1 0 0.2
4000 0.1 1.3 0.1 0.3
6000 0 1.1 0.1 0.5

The relative standard deviation of the estimations can be observed in Tables 4–6. The standard
deviation remained stable across estimates of Gini coefficient, IQR and IDR, even with small gains for
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the latter when using the reference sample with probabilities proportional to the minimum income to
make ends meet, sr2, but increased after applying PSA in the estimation of HCI.

Table 4. Relative standard deviation (%) of each parameter without applying PSA.

Size Gini HCI IQR IDR

2000 1.6 0.2 2.2 4.2
4000 1.1 0.3 1.5 2.9
6000 0.8 0.4 1.2 2.2

Table 5. Relative standard deviation (%) of each parameter applying PSA with the stratified reference sample.

Size Gini HCI IQR IDR

2000 1.7 4.1 2.7 4
4000 1.1 2.8 1.8 2.6
6000 0.9 2.2 1.4 2

Table 6. Relative standard deviation (%) of each parameter applying PSA with the proportional reference sample.

Size Gini HCI IQR IDR

2000 1.3 3.9 2.1 3.2
4000 0.9 2.8 1.5 2.2
6000 0.8 2.3 1.2 2.3

The relative Root Mean Square Error of the estimations can be observed in Tables 7–9. As a result
of the stability of standard deviation and the reduction in bias, the RMSE of the estimates of the four
parameters has a similar pattern than the observed for bias. Although RMSE is reduced after applying
PSA in all cases, PSA was more efficient when the reference sample was drawn with probabilities
proportional to the minimum income to make ends meet, sr2.

Table 7. Relative RMSE (%) of each parameter without applying PSA.

Size Gini HCI IQR IDR

2000 3.6 93 4.4 5.2
4000 3.3 86 4 4.2
6000 3.1 79 3.7 3.7

Table 8. Relative RMSE (%) of each parameter applying PSA with the stratified reference sample.

Size Gini HCI IQR IDR

2000 2.4 5.1 3.7 4.2
4000 2.4 4.3 3.2 2.8
6000 2.4 3.8 3 2.2

Table 9. Relative RMSE (%) of each parameter applying PSA with the proportional reference sample.

Size Gini HCI IQR IDR

2000 1.4 4.1 2.1 3.2
4000 0.9 3.1 1.5 2.2
6000 0.8 2.5 1.2 2.4
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PSA performance could be deeply affected by the selection mechanisms, which could lead to
model misspecifications in propensity estimations. To test limitation and robustness of the proposed
approach we have repeated the simulation with different patterns of non-response. The selection
procedures can be described as follows:

NP1 Simple Random Sampling Without Replacement (SRSWOR) from the population fraction of
individuals with a computer at home, Uv.

NP2 The probability of selection for the i-th individual, is given by

pi =
1

1 + exp(−2x1
i + 0.2x2

i + 0.01x3
i + 0.2x41

i + 0.4x42
i )

(25)

NP3 The probability of selection for the i-th individual, is given by

pi = (x3
i − 1925)3/(1995− 1925)3 (26)

NP4 The probability of selection for the i-th individual, is given by

pi = 0.35 + 0.1 ∗ x1
i − cos((2012− x3

i )/5)/3 (27)

The procedure 1 is a typical case of coverage error (which is a type of selection bias itself [1]).
The third scheme represents a cubic relationship between age and the probability of selection, with
young people being the individuals with the highest probabilities and decreasing as age increases.
The last scheme has two components: one dichotomous and the other cosine-shaped.

Tables 10 and 11 show the results of bias and relative ecm for the HCI parameter, where the
selection bias of the unweighted estimator is large.

Table 10. Relative mean bias (%) for estimating HCI without and with applying PSA.

Unadjusted PSA with Stratified Sample PSA with Proportional Sample

NP1 2000 93.5 1.7 4.5
NP1 4000 86.9 1.8 4.5
NP1 6000 80.4 1.9 4.5
NP2 2000 93 3 1.1
NP2 4000 86 3.3 1.3
NP2 6000 79 3.1 1.1
NP3 2000 92.9 1.3 1.3
NP3 4000 85.8 0.1 0.2
NP3 6000 78.7 0.5 0.5
NP4 2000 92.8 3 1.4
NP4 4000 85.5 3.2 1.5
NP4 6000 78.3 3.2 1.4

The results show a large decrease in bias and MSE for all response patterns for both PSA methods,
which shows the robustness of the adjustment method. The reduction in bias and MSE is different
across them. Using PSA with the reference sample drawn under a stratified design, sr1, provided
less RMSE when the convenience sample was drawn using NP1. On the other hand, PSA using the
reference sample drawn with probabilities proportional to the income, sr2 provided much less biased
estimates overall when the selection mechanism depended on NP2, NP3 or NP4.
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Table 11. Relative RMSE(%) for estimating HCI without and with applying PSA.

Unadjusted PSA with Stratified Sample PSA with Proportional Sample

NP1 2000 93.5 3.6 5.3
NP1 4000 86.9 2.8 4.9
NP1 6000 80.4 2.5 4.7
NP2 2000 93 5.1 4.1
NP2 4000 86 4.3 3.1
NP2 6000 79 3.8 2.5
NP3 2000 92.9 9.6 8.6
NP3 4000 85.8 6.4 5.6
NP3 6000 78.7 5 4.3
NP4 2000 92.8 4.7 4
NP4 4000 85.5 4.1 3.1
NP4 6000 78.3 3.6 2.4

6. Conclusions

Technological development has made large amounts of inexpensive data (commonly known as
Big Data) available for researchers to be used for inference. New survey administration methods
have also favoured the rise of data from nonprobability samples. Inferences from Big Data and
nonprobability surveys have important sources of error ([4,24,28], . . . ). Given the characteristics of
these data collection procedures, selection bias is particularly relevant.

Despite the growing interest raised by nonprobability data (both coming from Big Data or
nonprobability surveys), there is still a lack of rigorous theory to make statistical inferences for general
parameters through estimating equations. The current paper aims to fill this gap by establishing a
theoretical framework for estimation of general parameters with nonprobability samples.

Results observed in our simulation study provide strong evidence on the efficiency of methods
based in estimating equations with estimated propensities. However, it must be noted that the efficiency
depends on the selection mechanisms of nonprobability samples and the availability of covariates for
propensity estimation. In our simulations, results showed that Propensity Score Adjustment is more
efficient when the propensity of being in the nonprobability sample is less related to the variable of
interest. This behavior has been observed in literature regarding PSA for parametric estimation [11,24].

We used parametric methods to obtain the estimated propensities but we could use machine
learning techniques as regression trees, spline regression, random forests etc. Recently [24,29] presented
simulation studies where decision trees, k-nearest neighbors, Naive Bayes, Random Forest, Gradient
Boosting Machine and Model Averaged Neural Networks are used for propensity score estimation.
These studies compare the empirical efficiency of the use of linear models and Machine Learning
prediction algorithms in estimation of linear parameters, but the theory is more complex and has
not yet been developed. Other way to reduce the bias of the PSA estimates is to combine the PSA
technique with other techniques as Statistical Matching or calibration. [27] apply a combination of
propensity score adjustment and calibration on auxiliary variables in a real volunteer survey aimed to
a population for which a complete census was available. [32] propose a doubly robust estimator for
population mean estimation by incorporating the model-based estimator framework to PSA methods,
improving their efficiency and making it robust to model misspecifications. Further research should
focus on extensions of those methods for general parameter estimation.
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