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Abstract 

A hydrogel is a 3-D network of polymer chains in which water is the dispersion medium. 

Hydrogels have found extensive applications in the biomedical field due to their resemblance to 

living tissues. Furthermore, hydrogels can be endowed with exceptional properties by addition of 

synthetic materials. For example, magnetic field-sensitive gels, called ferrogels, are obtained by 

embedding magnetic particles in the polymer network. Novel living tissues with unique magnetic 

field-sensitive properties were recently prepared by 3-D cell culture in biocompatible ferrogels. 

This talk critically reviews the most recent progress and perspectives in their synthesis, 

characterization and biocompatibility evaluation. Optimization of ferrogels for this novel 

application requires low-density, strongly magnetic, multi-domain particles. Interestingly, the 

rheological properties of the resulting ferrogels in the absence of field were largely enhanced with 

respect to nonmagnetic tissues, which can only be explained by the additional cross-linking 

imparted by the embedded magnetic particles. Remarkably, rheological measurements under an 

applied magnetic field demonstrated that magnetic tissues presented reversibly tunable mechanical 

properties, which constitutes a unique advantage with respect to nonmagnetic tissues. In vivo 

evaluation of ferrogels showed good biocompatibility, with only some local inflammatory 

response, and no particle migration or damage to distant organs. 

1. Introduction 

 Hydrogels are 3-D networks of hydrophilic polymer chains in which water is the dispersion 

medium. Hydrogels are called physical gels if the polymer network is maintained by physical 

interactions, whereas they are called chemical gels if chemical crosslinking has been created 

between polymer chains [1]. Depending on the nature of the interactions (either physical or 

chemical) that create and maintain the polymer network, hydrogels have different consistence –for 

example, physical gels often can be injected without breakage, whereas chemical gels cannot. 

However, no matter the kind of interaction behind the polymeric network, all hydrogels share some 

properties such as high water content, elevate porosity and soft consistency. These properties are 

very valuable from the point of view of biomedical applications, since they make hydrogels to 

resemble to living tissue. As a consequence, hydrogels are currently used for manufacturing contact 

lenses, tissue engineering scaffolds, drug delivery systems and wound dressings [1]. 

 Hydrogels can be endowed with exceptional properties that do not possess living tissues by 

introducing synthetic materials. For example, hydrogels with ferromagnetic properties, called 

ferrogels, can be prepared by embedding magnetic particles in the polymer network [2-7]. Different 

approaches can be used for embedding magnetic particles in a polymer network. The simplest is 

soaking a hydrogel in a magnetic fluid [5]. However, in this case the magnetic particles are washed 

away when water is changed or when the hydrogel is plunged in water-based medium. Another 

possibility is to create the gel in the presence of magnetic particles and to ensure attraction between 

some groups of the polymer chain and proper functional groups on the surface of the particles, 

previously functionalized for this aim [2-4]. In such a way the particles remain trapped within the 

polymer network and stay even when the hydrogel is washed with water. Many advantages are 

reported for ferrogels in biomedical applications as compared with conventional (nonmagnetic) 
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hydrogels. For example, ferrogels can be visualized and in-vivo followed-up by magnetic 

resonance imaging [8], and their magnetic moment under an applied magnetic field can be used to 

attract functionalized magnetic particles injected close to them in in-vivo applications [5,8,9]. 

Furthermore, when the embedded magnetic particles are micron-sized, the mechanical properties of 

the resulting magnetic hydrogels can be controlled by noncontact magnetic forces [10,11]. This 

smart property might be used, for example, to match the mechanical properties of the magnetic 

scaffolds to those of potential target tissues in tissue engineering applications [10]. 

In this paper we critically review our recent progress in the field of ferrogels as tissue-like 

models. First we will discuss on the protocol for the generation of the ferrogels. Then, we will 

present results on the rheological properties of the ferrogels. Finally we will analyze their 

biocompatibility in vivo. 

2. Preparation of magnetic field-sensitive hydrogels 

Magnetic hydrogels should at least contain magnetic particles, a polymer network and a 

water-based liquid as dispersion medium. As polymer material for the preparation of polymer 

network we used a mixture of human fibrin, resulting from the polymerization of human plasma 

(provided by the Granada Biobank of the Andalusian Regional Government, Spain), and type VII 

agarose (Sigma Aldrich, USA). This choice was motivated by its biocompatibility and proved use 

in tissue engineering applications [10]. The magnetic phase (magnetic particles) is the essential 

constituent that makes possible the control of the resulting hydrogel by magnetic forces. Two 

physical aspects of magnetic particles are key factors for this aim. Particles should be 

ferromagnetic with a strong enough saturation magnetization –magnetite is a good choice. Size of 

the particles is another key factor. Firstly, the size of the particles determines the clearance time 

and biodistribution of the particles in in vivo applications [12]. Second, particles of a size smaller 

than approximately 50 nm are too small so that magnetic interaction between them is always 

dominated by thermal motion, preventing from controllability of the mechanical properties by 

applied magnetic fields. On the contrary, as particle size increases the dispersion of the particles in 

the carrier is compromised due to the progressive loss of relevance of the thermal motion that gives 

rise to fast settling, avoiding obtaining homogeneous hydrogels. Based on the previous discussion 

we used commercial magnetite particles of an average diameter of 110 nm (MagP-OH, Nanomyp, 

Spain). These particles were provided with a biocompatible polymer coating, with OH- 

functionalization, and have a saturation magnetization of 160 kA/m and negligible remnant 

magnetization [10]. Alternatively, we synthesized larger particles of 800-900 nm in diameter, a 

saturation magnetization of 150 kA/m and negligible remnant magnetization. In order to hinder 

phase separation by particle settling, we synthesized these magnetic particles by coating polymeric 

cores of an average diameter of 700 nm with a magnetite layer and an outer layer of PEG polymer 

[11] –we will refer to these particles as Poly@Mag@PEG. As we proved in a previous work, this 

configuration of nonmagnetic-core/magnetic-layer allows reducing mass density at the time that 

enhances the magnetic response at low and medium applied magnetic fields [13]. 

The magnetic hydrogels were generated by modification of a previously reported protocol 

for nonmagnetic hydrogels [14]. Briefly, for a final mixture volume of 5 mL, we placed 3.8 mL of 

human plasma in culture disks and, afterwards, we added 625 μL of a suspension of magnetic 

particles in PBS (with the adequate concentration of particles to fit the desired final concentration), 

75 μL of the solution of tranexamic acid, 0.25 mL of a mixture of agarose in PBS (0.02 g/mL) and 

250 μL of the solution of calcium chloride. Afterwards, the mixtures were placed for about 10 

hours in an incubator, at 37ºC and with a flow of air enriched with CO2 at a concentration of 5%. 

For the first 5 minutes of gelation we applied a vertical magnetic field of 36 kA/m, with the help of 

a coil. Approximately 120 min after placing the samples in the incubator, we added 5 mL of PBS to 

the already jellified mixture. This bath of PBS prevented dehydration of the formed hydrogels 

caused by incubation temperature. For comparison we also prepared nonmagnetic hydrogels by 

following the same protocol without particle addition. 

After preparation we extracted and characterized the jellified sample (approximately 1/3 of 

the total volume). The magnetic gels were homogeneous in color and particles were not washed 
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away even when the hydrogels were plunged in large amounts of water under the presence of a 

magnetic field. This proved that the particles were attached to polymer fibers. 

3. Physical characterization of the hydrogels  

We characterized the microstructure of the hydrogels by scanning electron microscopy 

(SEM). For the nonmagnetic hydrogel we observed an isotropic polymer network consisting of 

long fibrin fibers with some links (Figure 1a). In the case of the ferrogel prepared with MagP-OH 

particles (110 nm of mean diameter), we observed an anisotropic structure consisting of some thick 

braids of polymer fibers, approximately aligned in a given direction, separated by some regions 

with a lighter concentration of polymer fibers (Figure 1b). The presence of particles was not 

observed and, thus, we may induce that particles were embedded within the thick braids, which in 

fact should consist of a central core of particles and peripheral polymer fibers. Note that because of 

the magnetization of the particles, some alignment of the particle-fibrin composites might have 

took place during the first 5 min of gelling (magnetic field on), which can explain the observed 

alignment of the polymer braid. Finally, for ferrogels prepared with Poly@Mag@PEG particles 

(800-900 nm in diameter), we observed an isotropic structure of polymer fibers disrupted by the 

presence of the particles, homogeneously distributed within the polymer network (Figure 1c). 

 

 
Figure 1. Scanning electron microscopy (SEM) picture of hydrogels. (a) nonmagnetic hydrogel; 

(b) ferrogel prepared with MagP-OH particles; (c) ferrogel prepared with Poly@Mag@PEG 

particles. Bar length: 10 microns. 

We characterized the magnetic properties of the ferrogels by VSM and SQUID 

magnetometry. The obtained magnetization curves (not shown here for brevity) showed soft 

ferromagnetic features, with values of saturation magnetization of approx. 2.67 kA/m and 1.5 kA/m 

for ferrogels prepared with MagP-OH particles and Poly@Mag@PEG particles, respectively. From 

these values of saturation magnetization we obtained the actual concentration of magnetic particles 

within the ferrogels on the basis of the mixing law [15], which turned out to be approx. 1.7 vol.% 

for the ferrogel prepared with MagP-OH particles and 1.0 vol.% for the ferrogel prepared with 

Poly@Mag@PEG particles.  

 

 
Figure 2. (a) Shear stress as a function of shear strain for hydrogels in stationary state. (b) Storage 

modulus as a function of shear strain amplitude for hydrogels under oscillatory shear of 1 Hz of 

frequency. ◼: Nonmagnetic hydrogel; : ferrogel prepared with Poly@Mag@PEG particles (1.0 

vol.% particle content); : ferrogel prepared with MagP-OH particles (1.7 vol.% particle content). 

Concerning the rheological properties, we characterized the steady state and dynamic 

behavior of hydrogels. For the steady state characterization we imposed a value of the shear strain 

and measured the corresponding value of the shear stress. Then, the value of the shear strain was 

increased stepwise and curves of the shear stress as a function of the imposed shear strain were 
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obtained (Figure 2a). For the characterization of the dynamic regime we imposed oscillatory shear 

strain of fixed frequency (1 Hz) and increasing amplitude and measured the corresponding shear 

stress. From these measurements we obtained the values of the viscoelastic moduli as a function of 

the amplitude of the shear strain (Figure 2b). In all cases (results of G’’ not shown here for brevity), 

the storage modulus (G’) was considerably higher than the loss modulus (G’’), indicating that our 

hydrogels were more elastic than viscous, as expected for a cross-linked polymer systems. 

In the stationary state, for a given value of the shear strain the corresponding shear stress 

was considerably higher for ferrogels than for the nonmagnetic hydrogel (Figure 2a). Results for 

the storage modulus (G’) show that this quantity was also considerably enhanced for ferrogels with 

respect to nonmagnetic hydrogels (Figure 2b) –note that similar results were obtained for G’’, not 

shown here. This enhancement of the mechanical properties of hydrogels when magnetic particles 

were included in the formulation correlated well with changes in the microstructure observed in 

Figure 1. In fact, this enhancement can only be explained by the additional cross-linking between 

polymer fibers imparted by the particles. We can suppose that particles attach strongly to different 

polymer fibers increasing the strength of the polymer network, in agreement with discussion of 

[16]. These authors reported that nanoparticle solutions can be used as adhesives for gels and 

biological tissues due to the nanoparticles’ ability to adsorb onto polymer gels and to act as 

connectors between polymer chains. In fact, if particles are correctly functionalized, the linkage 

between particles and polymer is much stronger than the hydrogel itself. This is due to the ability of 

polymer chains to reorganize and dissipate energy under stress when adsorbed onto nanoparticles 

[16]. Concerning differences between values for ferrogels prepared with Poly@Mag@PEG 

particles and ferrogels prepared with MagP-OH, the latter presenting larger values of all 

rheological parameters, it should be noticed that the concentration of particles in MagP-OH 

ferrogels was higher (1.7 vol.%) than in Poly@Pag@PEG ferrogels (1.0 vol.%). In addition, other 

factors could play a role, like the different functionalization of particle surface or the particle size. 

A comprehensive analysis of the role of these factors will be the subject of future works. 

 
Figure 3. (a) Storage modulus as a function of the shear strain amplitude for hydrogel prepared 

with MagP-OH nanoparticles (1.7 vol.%) under oscillatory shear of 1 Hz of frequency under the 

application of a magnetic field, H.   ◼: H = 0 kA/m; : H = 9 kA/m; : H = 26 kA/m. Adapted 

from [10]. (b) Normalization of the relative increment of G’ with the field, [G’(H) − G’(0)]/G’(0), 

by the saturation magnetization of the particles, Ms, for ferrogels prepared with MagP-OH particles 

() and ferrogels prepared with Poly@Mag@PEG particles (). Adapted from [11]. 

Finally, we investigated the rheological response of our ferrogels under the application of a 

magnetic field. As observed, the storage modulus of ferrogels prepared with MagP-OH 

nanoparticles increased with the intensity of the magnetic field (Figure 3a). Similar results were 

obtained for other rheological parameters and for ferrogels prepared with Poly@Mag@PEG 

particles, not shown here for brevity. Thus, we can conclude that our ferrogels showed a typical 

magnetorheological (MR) effect. As discussed in Ref. [13], for a same amount of magnetic 

material in dispersion, the magnetic response, and thus the MR effect, can be enhanced at low and 

medium applied field by distribution of the magnetic material around a nonmagnetic core. This can 

be checked for our ferrogels by plotting a normalization of the field-induced increase of G’ by the 

magnetic content (Figure 3b). As observed, the ferrogels prepared with Poly@Mag@PEG 

nanoparticles presented higher values of this normalization, from which we can conclude that the 

MR effect is comparatively stronger for these ferrogels. 
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4. In vivo evaluation of the ferrogels 

In vitro analysis with human fibroblast demonstrated that the presence of MagP-OH or 

Poly@Mag@PEG nanoparticles did not affect cell viability and proliferation in ferrogels [10,11]. 

In addition, we performed in vivo analyses with animal models (mice and rats) to evaluate the 

biocompatibility of the ferrogels. We surgically implanted ferrogels in the subcutaneous connective 

tissue of the interscapular region of mice and rats. After surgery, all the animals were housed in a 

temperature-controlled room (21 ± 1 °C), provided with a 12 h light/dark cycle and ad libitum 

access to tap water and standard mice/rat chow. Animals were maintained under these conditions 

for up to 5 weeks and were euthanized afterwards. Control animals (without ferrogel implantation) 

were also monitored for comparison. During the whole duration of the experiments, animals did not 

show any signs of side effects and the changes of body weight were similar to those of the control 

animals. The host response to the ferrogel implantation was a moderate acute local inflammatory 

reaction that progressively disappeared after the first week of implantation. Potential migration of 

particles to distant organs (kidney, liver, spleen, lung) was investigated before euthanasia by 

magnetic resonance imaging and after by VSM of organs’ tissues, without appreciable migration 

within the limit of sensibility.  

 
Figure 4. In vivo histological analyses. (a-d) Results for ferrogels prepared with Poly@Mag@PEG 

nanoparticles after 3 weeks of implantation in the connective tissue of the interscapular region of 

mince. (e-f) Results for ferrogels prepared with MagP-OH nanoparticles after 5 weeks of 

implantation in the subcutaneous tissue of the forelegs of rats. (a), (c) and (e) images show the 

Prussian blue histochemical reaction for the nanoparticles (Perl’s method). (d) Show picrosirius 

staining. Note the presence of cells in the implanted ferrogels. Circles indicate macrophages, and 

(*) show small blood vessels. (f) Histological analysis of spleen shows normal pattern –all organs 

were histological normal. (a-d) were adapted from [11]. 

Histological analyses showed that host cells were able to invade the implanted constructs 

(Figure 4). In addition, as observed, the particles appeared homogeneously distributed over the 

ferrogels after several weeks of implantation (Figure 4). Histological analysis also confirmed that 

distant organs presented normal pattern, without appreciable damage for the duration of the 

experiments (Figure 4f).  

5. Conclusions 

 We have reported the preparation of two kinds of water-based ferrogels consisting of 

magnetic nanoparticles of two types embedded within a fibrin polymer network. Scanning electron 

microscopy revealed that the presence of particles modified the microstructure of the ferrogels with 

respect to nonmagnetic hydrogels. Changes in the internal microstructure correlated with 

differences in the rheological properties. In particular, ferrogels presented superior mechanical 

properties as compared with nonmagnetic hydrogels –all rheological parameters were considerably 

enhanced with respect to nonmagnetic hydrogels, very likely as a consequence of additional 

crosslinking provided by the magnetic nanoparticles. What is more, the rheological properties of 

our ferrogels showed reversible controllability by noncontact magnetic forces. Finally, we 

evaluated the biocompatibility of the ferrogels in vivo by chirurgical implantation in mince and 

rats. Interestingly, the implantation only resulted in a localized and transitory acute inflammatory 
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reaction, without affecting distal organs, which demonstrates the potential of ferrogels as tissue-like 

models for in vivo applications. 
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