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Highlights 

 A total of 128 pyrolysis compounds were detected in the soil organic 

matter (SOM) 

 Polysaccharides in Bhs and BC under pine may indicate migration of 

complexed forms 

 Natural beech forest alkane series point to higher SOM stabilization 

 Biomarkers in pine show permanence of beech-derived SOM 100 yrs 

after afforestation 

 

 

 



Abstract 

The introduction of coniferous species in former deciduous forests may exert changes in 

soil organic matter, particularly in its molecular composition. In this work, pyrolysis-gas 

chromatography-mass spectrometry was used to study changes in SOM quality related 

to the centennial afforestation of Scots pine in an area formerly covered by European 

beech forest in the NE-flank of the Moncayo Natural Park (NE-Spain). For each soil 

profile three organic layers (fresh litter, fragmented litter and humified litter) and mineral 

soil horizons (Ah, E, Bhs and C) were studied. A total of 128 compounds were identified 

in the pyrograms, and composition differences were detected among the organic and 

mineral soil layers as well as between soils under beech and pine, for the main 

compound classes: nitrogen compounds, aromatics, lignin methoxyphenols, polycyclic 

aromatic hydrocarbons, lipids and polysaccharide-derived moieties. Such chemical 

differences were found to be derived from the biomass composition of the predominant 

vegetation type that was incorporated into the soil and from its progression into the soil 

profile. The analysis of the distribution of alkanes indicated higher SOM stabilization in 

the native beech forest soil. The signal of beech biomarkers (long chain n-alkanes C31-

C33) found in the pine E horizon indicates the permanence of SOM derived from the 

natural forest ca. 100 years after the afforestation. 
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1. Introduction 

Forest soils play an important role in biogeochemical cycles since they store large 

amounts of C and N (IPCC, 2014; Marty et al., 2011). The stocks of C and N can be 

affected not only by climate change but also by shifts in land use such as the replacement 

of tree species (Leuschner et al., 2013). The processes involved in the soil-vegetation 

interaction are complex; vegetation influences the soil, among other factors, by the 

diverse composition of the produced litter, which together will influence the chemical 

composition of the soil organic matter (SOM) (Binkley, 1995). For this reason, it is 



expected that changes in the vegetation cover will result in SOM contributions of different 

nature and therefore, contrasted chemical composition. 

In the late 19th century, as a consequence of uncontrolled logging for charcoal 

production, the population of native European beech (Fagus sylvatica) in the Moncayo 

Natural Park (NE-Spain) was reduced to near disappearance. This also increased soil 

erosion (García Manrique, 1960) and in order to stop this phenomenon in the areas 

where the beech forests were decimated, afforestation of Scots pine (Pinus sylvestris) 

was conducted in the first decades of the 20th century. Consequently, shifts in vegetation 

such as those that were undertaken in that area ca. 100 years ago may exert remarkable 

changes in SOM composition. Such changes have been previously detected in the 

Moncayo Natural Park in a study by Girona-García et al. (2018a), which found 

differences in SOM C and N stable isotope composition between the natural beech and 

the afforested pine forests.  

Organic matter is considered to be the most essential constituent of soils because it 

virtually influences all physical, chemical and biological properties of soil (Weil & Brady, 

2017). Litter deposition is usually the main source of SOM, so changes in the amount 

and composition of litter will influence the complexity and stability of the SOM once 

incorporated into the soil (Kögel-Knabner et al., 2008). For this reason, it important to 

study how forest management activities, such as afforestation, can influence the 

composition of SOM, especially when broad-leaved forests are replaced by coniferous 

species, whose litter is more difficult to decompose, resulting in litter accumulation on 

the topsoil (Labaz et al., 2014; Badía-Villas & Girona-García, 2018; Girona-García et al., 

2018a, 2018b). 

Pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) analysis is a technique 

widely used for the structural characterization of SOM (González-Pérez et al., 2012; 

Rumpel et al., 2012; Derenne and Quénéa, 2015). It is a powerful tool that allows the 

separation and identification of the SOM constituents without prior chemical treatment 

(Moldoveanu, 1998; González-Pérez et al., 2007). Py-GC/MS generates a fingerprint 

that allows the quantification of the relative abundance of the different chemical 



compounds that constitute the SOM (White et al., 2004; González-Pérez et al., 2007; 

Almendros et al., 2018). The main compounds produced by pyrolysis are of known 

biogenic origin; for example, by pyrolysis, polysaccharides produce anhydrosugars, 

lignin originates methoxyphenols, proteins result in certain nitrogen compounds, and 

lipids produce alkanes, alkenes, waxes, terpenes, and steranes (González-Vila et al., 

2009; De la Rosa et al., 2012). The detailed study of the results obtained by Py-GC/MS 

allows to determine the sources and contributions of SOM in the soil, evaluate the 

preservation of certain biogenic materials and the selective decomposition of others that 

come from vegetation or that are transformed into the soil (González-Vila et al., 1999; 

González-Pérez et al., 2003; Almendros et al., 2018). Among the compounds originating 

from pyrolysis, molecular markers such as aliphatic, aromatic and heteroaromatic 

compounds can be found, which are related to shifts in land use and/or vegetation cover 

as well as perturbances such as wildfires or pollutant discharges (Buco et al., 2004; Faria 

et al., 2015; Miralles et al., 2015; Santana et al., 2015; Jiménez-Morillo et al., 2016). 

The aim of this study was to analyze by Py-GC/MS the qualitative changes in SOM 

related to the afforestation of Scots pine in areas formerly populated by native European 

beech forests, ca. 100 years after the afforestation was conducted. We hypothesized 

that the different nature of the litter produced by both species will result in different 

decomposition paths of SOM and will allow the depth to which the SOM of the introduced 

species has been incorporated into the soil to be traced. 

 

2. Materials and methods 

2.1. Area of study 

The study site was located in the NE flank of the Moncayo Massif (Iberian Range, NE-

Spain) at an elevation between 1360 and 1475 m a.s.l., where natural European beech 

(Fagus sylvatica) and afforested Scots pine (Pinus sylvestris) forests can be found. The 

understory of the beech forest mainly consists of Vaccinum myrtillus L. and Erica arborea 

L. whereas in the pine forest, Ilex aquifolium L. and Deschampsia flexuosa L. can also 



be observed. The mean annual rainfall is 1060 mm and the mean annual temperature is 

9.2 ºC (Ibarra & Echeverría, 2004; Martínez del Castillo et al., 2012). Soils were 

developed over Lower Triassic quartzitic sandstones and showed a series of common 

properties such as high stoniness, extreme to strong acidity, low base content, high SOM 

content, and sandy loam or loamy textures (Badía et al., 2016; Girona-García et al., 

2018b). The general physical and chemical properties of the soil profiles are provided in 

Table 1. The studied soil profiles were classified as Skeletic Umbric Albic Podzol 

(Loamic) (IUSS WRB, 2014) and Typic Haplorthod (SSS, 2014). 

Table 1. General chemical and physical properties of the studied soil profiles 

Soil Profile  European beech  Scots pine 

Horizon  Ah E Bhs BC  Ah E Bhs BC 

Depth (cm)  0-25 25-55 55-75 75-100  0-30 30-60 60-90 90-120 

pH (H2O, 1:2.5)  4.0 4.2 4.9 4.9  4.7 4.6 5.0 5.3 

pH (KCl, 1:2.5)  2.9 3.2 4.2 4.3  3.7 3.3 3.9 4.3 

CEC (cmol+ kg-1)  10.6 3.7 8.9 6.1  20.7 7.7 9.8 7.6 

Total Organic C (g kg-1)  61.1 27 40.9 40.5  92 35 42 38 

Total N (g kg-1)  5.6 4.7 5.00 4.9  7.6 4.9 5.5 4.9 

C/N  11 5.7 8.2 8.3  12.1 7.0 7.6 7.8 

Clay (g kg-1)  117 71 159 113  215 170 234 81.2 

Silt (g kg-1)  276 309 291 328  329 406 314 447 

Sand (g kg-1)  607 620 550 559  456 424 452 471 

Textural class  Sandy loam  Loam 

WHC (g kg-1)  175 141 242 218  217 160 190 n.d. 

Coarse fraction (g kg-1)  809 831 725 951  642 852 732 568 

n.d.: not determined 

 

2.2. Sampling and sample preparation 

Sampling was conducted in September, 2014. Two sampling sites (Figure 1), one in the 

natural beech forest (41º 47’ 32.15” N; 1º 48’ 24.89” W) and one in the afforested pine 

forest (41º 47’ 01.85” N; 1º 48’ 16.66” W) were selected based on the similarity of the 

soil horizon distribution, elevation, and geomorphological characteristics. In each of the 

sampling sites , one soil profile in each forest type was selected and a substantial and 

representative amount of the organic layers and the mineral horizons was sampled. The 

organic layers were separated in fresh litter (OL), fragmented litter (OF) and humified 

litter (OH) and the mineral horizons were classified as Ah, E, Bhs and BC (Figure 2).  



All samples were air-dried until constant weight and the mineral samples were sieved 

through a 2 mm mesh. Prior to analysis, all samples were ground to fine powder and 

homogenized using an agate mortar aided with liquid nitrogen. 

 

Figure 1. Location of the sampling sites in the Moncayo Natural Park 
 



 

Figure 2. Sampled soil profiles in the native beech (left) and afforested pine (right) forests 

 

2.3. Pyrolysis-gas chromatography-mass spectrometry analysis 

Pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) analysis was performed 

for SOM characterization on both organic and mineral horizons using a double-shot 

pyrolyzer (Frontier Laboratories, 2020i) attached to a GC/MS system (Agilent 6890N). 

The samples were capsuled and introduced in the micro furnace previously heated to 

500 ºC for 1 min. Then the pyrolysis products were automatically injected into the GC/MS 

for analysis. The gas chromatograph was equipped with a low polar capillary column 

(Agilent J&W HP-5ms UI; 30 m × 250 μm × 0.25 μm). The oven temperature was held 

at 50 °C for 1 min and then increased to 100 °C at 30 °C min-1, from 100 °C to 300 °C at 

10 °C min-1, and stabilized at 300 °C for 10 min. Helium was used as the carrier gas, at 

a constant rate of 1 mL min-1 and the total analysis time was 32 min. The detector 



consisted of a mass selective detector (Agilent 5973 Technologies 5973N) and mass 

spectra were acquired at ionization energy of 70 eV. 

2.4. Data analysis 

The collection and processing of data was performed using the Agilent ChemStation 

Data Analysis software. Compound assignment was achieved by single-ion monitoring 

(SIM) for the major homologous series and by comparison with published data reported 

in the literature or stored in the digital NIST 14 (Maryland, USA) and Wiley 7 (Weinheim, 

Germany) libraries. This procedure allowed the identification of the main organic 

compounds in the samples as well as a semi-quantitative assessment in terms of relative 

abundances of compounds in the pyrolysates..The relative abundance of the pyrolysis 

products was calculated by normalizing the peak areas of each individual compound to 

the total area for all the peaks of the detected products. The identified compounds were 

grouped according to their probable origin in the following families: nitrogen compounds, 

aromatic compounds, polysaccharides, lignin-derived products, polycyclic aromatic 

hydrocarbons and lipids. In this way, the summation of the normalized peak areas of the 

individual compounds for each family allowed their relative abundances to be calculated. 

 

3. Results and discussion 

3.1. Soil organic matter composition revealed by Py-GC/MS 

Well-resolved chromatograms were obtained for both organic and mineral soil layers with 

a grand total of 128 different compounds detected; including 96 under beech and 89 

under pine (Supplementary Material). 

In the soils developed under both forest types, the N-derived compounds showed a 

similar distribution pattern with depth (Figure 3), increasing from the OL to Ah horizons 

(6.47 to 13.3 % and 5.68 to 19.0 % in beech and pine, respectively) and decreasing in 

the E horizons down to 8.12 and 11.6 % for beech and pine, respectively. The increase 

in N-derived compounds in the Ah horizon could be explained by a higher SOM 

degradation once incorporated into the mineral soil (Vancampenhout et al., 2009). On 



the other hand, the decrease detected in the E mineral horizon could be a consequence 

of the migration of N compounds towards deeper soil layers. This is a probable 

explanation for the pine profile, since a higher relative abundance of N-compounds was 

observed in the Bhs and BC horizons compared to the E. However, this effect was not 

detected in the beech profile, as no N compounds were identified in the Bhs and BC 

horizons. 

 

Figure 3. Relative abundance of the main families of compounds released by Py-GC/MS 

for each horizon and soil profile: nitrogen compounds (N), aromatic compounds (AROM), 

polysaccharides (PS), lignin-derived products (LIG), polycyclic aromatic hydrocarbons 

(PAH), and lipids (LIP). 

 

The relative abundance of lipids (Figure 3) in the organic horizons released by pyrolysis 

was higher in the pine profile (8.40-14.9 %) than in the beech profile (1.80-2.31 %). Lipid 

preservation in the organic layers of the pine profile may indicate differences in its 

biomass composition compared to the organic layers of the beech profile. It has been 

previously observed that this type of compound is present and abundant in the litter and 

in the suberin of the barks of coniferous trees (Derenne & Quénéa, 2015). Another 

probable explanation for this process could be the delay in microbial degradation related 

to low-quality (high C/N ratio) SOM contributions (Vancampenhout et al., 2009). On the 

other hand, no differences were detected between forest types for the mineral horizons 



except for the BC horizons, where the relative abundance of lipids was notably higher in 

the beech profile (30.7 %) than in the pine profile (2.02 %). This can be associated with 

root contributions at that depth. 

The relative abundance of aromatic compounds in the organic layers showed an 

opposing trend in both soil profiles (Figure 3). In the beech profile, the OL layer was 

enriched in aromatic compounds (22.9 %), which decreased to 7.47 % in the OH layer. 

These results contrast the values obtained for the pine profile, where the OH layer was 

enriched (12.8 %) in aromatic compounds compared to the OL layer (5.83 %). The 

concentration of aromatic compounds in the OH layer of the pine profile may be related 

to a decrease in the lignin content, since some compounds that come from the 

degradation of lignin could be categorized as aromatic compounds (Ferro, 2010). Mineral 

Ah and E horizons showed similar relative abundances in both, the beech (26.6 and 19.9 

%) and pine (25.6 and 19.8 %) profiles. The enrichment in aromatic compounds detected 

in the Bhs and BC horizons compared to the overlying horizons in both profiles could be 

a consequence of alkylphenol illuviation rather than in situ lignin degradation (Ferro, 

2010), which is remarkably higher in the beech profile than in the pine profile. 

Polycyclic aromatic hydrocarbons (PAH) were only detected in the mineral horizons, with 

a relative abundance ranging from 1.21 to 10.7 % in the beech profile and from 1.90 to 

4.93 % in the pine profile (Figure 3). The appearance of PAH has traditionally been 

identified as a product of the analytical pyrolysis of charred materials (González-Pérez 

et al., 2007; De la Rosa et al., 2008), which  may be related to the occurrence of wildfires 

and/or charcoal production in the area. The higher PAH content detected in the Bhs 

horizons is probably related to the translocation from the uppermost horizons and later 

accumulation in the spodic horizon. 

The differences in the relative abundance of the lignin-derived pyrolysis products 

(methoxyphenols) were mainly detected in the organic layers, whereas their content 

remained similar in the mineral horizons (Figure 3). The relative abundance of lignin 

compounds was higher in the OH layer of the beech profile (57.9 %) compared to the 

pine profile (32.8 %), whereas their values for the OL and OF layers were similar in both 



cases (ca. 50 % of the total pyrolysis products). This higher lignin content in the beech 

organic layers compared to pine was previously observed in temperate forests 

(Vancampenhout et al. 2009). In the organic layers of the pine profile, a dominance of 

lignin compounds related to guaiacol was observed, which is a characteristic trait of 

gymnosperm softwood that was also detected in the Ah mineral horizon. On the other 

hand, in the beech profile, syringol-derived compounds were also detected, which is 

characteristic of angiosperm vegetation (Amelung et al., 2008). 

The polysaccharide-derived fraction in the soil under beech increased progressively with 

depth from 18.0 % in the OL layer to 59.0 % in the E horizon, followed by a remarkable 

decrease in the Bhs (7.86 %) and BC (16.2 %) horizons (Figure 3). In the pine soil profile, 

the relative abundance of polysaccharides showed a similar trend as observed in the 

beech profile, increasing from the OL (31.9 %) to the E (60.8 %) horizon, although no 

decrease was detected in the Bhs and BC horizons, where the abundance was still 

relatively high (43.4 and 48.3 %, respectively). The higher relative abundance of 

polysaccharide-derived fractions in the pine organic layer compared to those of the 

beech could be explained by the higher presence of microbial biomass observed in the 

pine profile. Fungal walls are composed of glycoproteins and polysaccharides, mainly 

glucan and chitin, which may explain the concomitant increase in the relative abundance 

of N and polysaccharide-derived compounds that were observed in deeper soil layers 

(Bhs and BC) of the pine profile and are known products derived from the pyrolysis of 

chitin (Moldoveanu, 1998). Furthermore, the more abundant fraction of the 

polysaccharide-derived pyrolytic compounds for all horizons of both profiles 

corresponded to low molecular mass compounds such as furfural. This is related to the 

presence of small decomposed polysaccharides such as those of chitin biopolymers 

(Bowman & Free, 2006). 

3.2. Differences in the n-alkane series between forest types 

The study of the n-alkane (CnH2n+2) series allowed the detection of different vegetation 

markers in the soil related to each forest type (Figure 4). Plants are known to 

preferentially produce odd-numbered carbon long chain alkanes (Eglinton et al., 1962), 



with the more prominent peaks detected in the pyrograms of samples from the organic 

layers. Since the distribution of long chain alkanes is a characteristic trait of the 

vegetation type, it can be used as a biomarker or molecular tracer for each of the forest 

species. However, as SOM undergoes transformations in the soil, this trend shifts, and 

usually, the proportion of short chain even-numbered carbon alkanes increases 

concomitantly with depth, as has been observed in previous works (González-Pérez et 

al., 2007; Amelung et al., 2008; Santana et al., 2015).Throughout the beech soil profile, 

the influence of vegetation was mainly reflected in the organic layers. As was previously 

observed using conventional biomarker approaches based on the study of soil lipid 

extracts, the n-alkane distribution in the organic layers under beech vegetation was 

dominated by the C27 hydrocarbon, accompanied by variable amounts of C25 that were 

substituted by shorter chain homologues (C20-C25) in the mineral horizons (Marseille et 

al., 1999; Griepentrog et al., 2016). Additionally, a high proportion of long chain odd-

numbered n-alkanes (C31-C33) was found in the mineral soil samples. On the other hand, 

in the pine soil profile short-chained molecules (<C20) prevailed with no carbon number 

preference, which has been traditionally associated with products of microbial 

biosynthesis (Dinel et al., 1990; González-Pérez et al., 2012) and may indicate a higher 

degree of SOM degradation with contributions of organic compounds from the microbial 

biomass (Assis et al., 2011). 



 

Figure 4. Normalized pyrograms obtained by Py-GC/MS for the n-alkane homologous 

series (m/z 85) for each horizon of the beech and pine soil profiles. The purple circle 

indicates beech biomarkers found in the pine profile. 

 

 



As stated above, the pyrograms of both the pine and beech profiles were clearly 

differentiated from the OL to Ah horizons. However, in the pine E horizon an increase in 

the C31 and C33 peaks was detected, which was not observed in the overlying horizons. 

These C31 and C33 peaks were, although, detected in the Ah and E horizons of the beech 

profile, which suggested that these were biomarkers from the previous natural beech 

vegetation, which remained in the SOM for more than 100 years after the pine 

afforestation. Regarding the Bhs and BC mineral horizons of both forest types, a clear 

predominance of short chain n-alkanes and the disappearance of the C31 and C33 peaks 

was observed, suggesting the presence of a more evolved SOM at that depth. 

These results match the findings of a previous study conducted in the same soil profiles 

that analyzed the SOM stable isotope composition, which indicated that SOM derived 

from the natural vegetation was still detectable in the E horizon of the afforested pine 

(Girona-García et al., 2018b). 

 

4. Conclusions 

Well-resolved chromatograms using Py-GC/MS were obtained for organic and mineral 

soil layers, and a total of 128 pyrolysis compounds were detected. The pyrograms 

showed the chemical variability of the SOM derived from the predominant vegetation 

type as well as its distribution down in the soil for each forest type. The SOM in organic 

soil layers (OL, OF and OH) consisted mainly of lignocellulosic biomass with abundant 

lignin and polysaccharide derived compounds. The mineral horizons Ah and E were 

found to be particularly enriched in polysaccharides. The Bhs and BC horizons showed 

an increase in aromatic compounds, PAH and lipids, the latter being steeper in the beech 

soil, possibly due to microbial activity. An unexpectedly higher polysaccharide content 

was observed in the Bhs and BC horizons under pine, most likely related to the migration 

of complexed forms. The analytical pyrolysis results of selected ion traces for the n-

alkane series (m/z 85) showed a higher abundance of odd-numbered carbon long chain 

alkanes in the beech compared to the pine profile indicating a greater stabilization of 



SOM. The appearance of probable beech biomarkers (C31 and C33) in the pine E horizon 

indicated the permanence of beech-derived SOM ca. 100 years after the afforestation. 
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