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1. Introduction

Non-integer calculus, known as fractional calculus, deals with integrals and deriva-
tives with arbitrary real or complex orders [1,2]. It has developed in the past decades,
becoming an important tool in applied sciences and engineering. Nowadays, fractional
calculus is an important subject, e.g., in physics [3,4], robot trajectory controllers [5], heat
diffusion [6], signal and image processing [7], or biology [8,9].

A question that arises when dealing with fractional calculus is which fractional integral
or derivative should we choose? There are several definitions proposed, such as Riemann–
Liouville, Caputo, Hadamard, Erdélyi–Kober, Grünwald–Letnikov, Weyl, or Marchaud
fractional operators. However, there are ways to overcome this issue, considering a more
general class of operators. In [2], we find the concept of fractional derivative with respect
to another function. For particular choices of such function, we obtain some of the previous
ones. We denote the fractional order by α ∈ R+, and let ψ ∈ C1([a, b],R) be a function with
ψ′(t) > 0, for all t ∈ [a, b]. Given an integrable function x : [a, b] → R, the left-sided and
the right-sided Riemann–Liouville fractional integrals of x with kernel ψ are defined as

(Iα,ψ
a+ x)(t) :=

1
Γ(α)

∫ t

a
ψ′(τ)(ψ(t)− ψ(τ))α−1x(τ) dτ, t > a,

and

(Iα,ψ
b− x)(t) :=

1
Γ(α)

∫ b

t
ψ′(τ)(ψ(τ)− ψ(t))α−1x(τ) dτ, t < b,

respectively, where Γ represents the Gamma function, and α is the order of the fractional
integral. Moreover,

Iα,ψ
a+ x = Iα,ψ

b− x = x, as α→ 0+.
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We can recognize that the Riemann–Liouville, the Hadamard and the Erdélyi–Kober
fractional integrals are just particular cases of this more general definition. With respect to
fractional differentiation, the left- and right-sided Riemann–Liouville fractional derivatives
of x, with kernel ψ, are given by the formulas

(Dα,ψ
a+ x)(t) :=

(
1

ψ′(t)
d
dt

)n
(In−α,ψ

a+ x)(t), t > a,

and

(Dα,ψ
b− x)(t) :=

(
− 1

ψ′(t)
d
dt

)n
(In−α,ψ

b− x)(t), t < b,

where n = [α] + 1. For simplicity, we call the last operators as ψ-Riemann–Liouville
fractional derivatives of x of order α. It can be easily noticed that for certain choices of
function ψ, we recover some important fractional derivatives. We also remark that when
α = m ∈ N, we have

(Dα,ψ
a+ x)(t) =

(
1

ψ′(t)
d
dt

)m
x(t) and (Dα,ψ

b− x)(t) =
(
− 1

ψ′(t)
d
dt

)m
x(t).

It is worth mentioning that, opposite to the ordinary derivatives, fractional derivatives
are non-local and, in the case of left-sided derivatives, take into account the past. This is
particularly useful for problems in different areas, such as economics, epidemiology, and
optimal control problems [10–13].

Recently, in [14], motivated by the concept of Caputo fractional derivative and by
these generalized fractional operators, the following definition was presented. Let α > 0
and n ∈ N be defined by n = [α] + 1 if α /∈ N, and n = α if α ∈ N. Given two functions
x, ψ ∈ Cn([a, b],R), with ψ′(t) > 0, for all t ∈ [a, b], the left- and right-sided Caputo
fractional derivatives of x with kernel ψ (or simply, ψ-Caputo fractional derivatives of x),
are defined as

(CDα,ψ
a+ x)(t) :=

(
In−α,ψ
a+

(
1

ψ′(t)
d
dt

)n
x
)
(t), t > a,

and

(CDα,ψ
b− x)(t) :=

(
In−α,ψ
b−

(
− 1

ψ′(t)
d
dt

)n
x
)
(t), t < b,

respectively. Thus, if α = m ∈ N, then

(CDα,ψ
a+ x)(t) =

(
1

ψ′(t)
d
dt

)m
x(t) and (CDα,ψ

b− x)(t) =
(
− 1

ψ′(t)
d
dt

)m
x(t).

For α ∈ R+ \N, then

(CDα,ψ
a+ x)(t) =

1
Γ(n− α)

∫ t

a
ψ′(τ)(ψ(t)− ψ(τ))n−α−1

(
1

ψ′(τ)

d
dτ

)n
x(τ) dτ

and

(CDα,ψ
b− x)(t) =

1
Γ(n− α)

∫ b

t
ψ′(τ)(ψ(τ)− ψ(t))n−α−1

(
− 1

ψ′(τ)

d
dτ

)n
x(τ) dτ.

We now present the following formulas (see Lemma 1 in [14]) that are useful in
Section 3. If n < β ∈ R, then

CDα,ψ
a+ (ψ(t)− ψ(a))β−1 =

Γ(β)

Γ(β− α)
(ψ(t)− ψ(a))β−α−1
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and
CDα,ψ

b− (ψ(b)− ψ(t))β−1 =
Γ(β)

Γ(β− α)
(ψ(b)− ψ(t))β−α−1.

Next, we present the following fractional integration by parts formulas that are
fundamental for the proofs of our results. For a more detailed study of the ψ-Caputo
fractional derivatives, we refer to [14].

Theorem 1. [14] Let x ∈ C([a, b],R) and y, ψ ∈ Cn([a, b],R) be two functions. Then,

∫ b

a
x(t) · (CDα,ψ

a+ y)(t) dt =
∫ b

a
y(t) ·

(
Dα,ψ

b−
x
ψ′

)
(t)ψ′(t) dt

+

[
n−1

∑
k=0

(
− 1

ψ′(t)
d
dt

)k(
In−α,ψ
b−

x
ψ′

)
(t) ·

(
1

ψ′(t)
d
dt

)n−k−1
y(t)

]t=b

t=a

and ∫ b

a
x(t) · (CDα,ψ

b− y)(t) dt =
∫ b

a
y(t) ·

(
Dα,ψ

a+
x
ψ′

)
(t)ψ′(t) dt

+

[
n−1

∑
k=0

(−1)n−k
(

1
ψ′(t)

d
dt

)k(
In−α,ψ
a+

x
ψ′

)
(t) ·

(
1

ψ′(t)
d
dt

)n−k−1
y(t)

]t=b

t=a

.

In particular, when 0 < α < 1, Theorem 1 becomes

∫ b

a
x(t) · (CDα,ψ

a+ y)(t) dt =
∫ b

a
y(t) ·

(
Dα,ψ

b−
x
ψ′

)
(t)ψ′(t) dt +

[(
I1−α,ψ
b−

x
ψ′

)
(t) · y(t)

]t=b

t=a

and∫ b

a
x(t) · (CDα,ψ

b− y)(t) dt =
∫ b

a
y(t) ·

(
Dα,ψ

a+
x
ψ′

)
(t)ψ′(t) dt−

[(
I1−α,ψ
a+

x
ψ′

)
(t) · y(t)

]t=b

t=a
.

Fractional calculus of variations started with the pioneering works of Riewe [15,16].
Since then, numerous works have appeared for different types of fractional derivatives
and integrals. To mention a few in such vast literature, we can refer the reader to the
books [17–19]. The goal is to extremize (minimize or maximize) a given functional, de-
pending on some fractional operator. Due to the large number of fractional operators
to choose from, we found several works dealing with similar subjects (e.g., [20–26]). By
considering a more general form of fractional derivative, such as the one given in [14],
we can study different problems in a general form. In [27], some calculus of variation
problems were addressed, with dependence on this fractional derivative. Necessary and
sufficient conditions of optimality were proven, such as the Euler–Lagrange equation, and
the isoperimetric problem was studied, among others.

The main goal of this paper is to generalize the fractional variational problem studied
in [27], considering the case where the Lagrangian depends not only on the independent
variable, an unknown function and its left- and right-sided Caputo fractional derivatives
with respect to another function, but also on the endpoints conditions and a free param-
eter. This type of generalized fractional variational problems cannot be solved using the
classical theory. Our motivation for studying generalized variational problems where the
Lagrangian explicitly depends on state values and a free parameter comes from interesting
applications in economics [28] and in physics [29], respectively. It is worth mentioning
that, since these types of fractional derivatives are generalizations of several fractional
derivatives and our variational problem is a generalization of different types of fractional
variational problems, many results available in the literature are corollaries of the results
proven in this paper.
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The organization of the paper is as follows. We start Section 2.1 considering the
generalized fractional variational problem with fixed boundary conditions and proving
a necessary optimality condition of Euler–Lagrange type and also a necessary condition
which arises as a consequence of the Lagrangian dependence of the parameter. Then, we
prove the natural boundary conditions for variational problems with free boundary condi-
tions. In Section 2.2, we prove necessary optimality conditions for variational problems
with integral constraints, with and without fixed boundary conditions. The variational
problem with an holonomic constraint is studied in Section 2.3. In Section 2.4, we prove
sufficient optimality conditions for the variational problems considered in the previous
subsections. We conclude the paper with some illustrative examples and concluding re-
marks.

2. Main Results

In this work, we consider a functional depending on time, on the state function x, its
fractional derivatives CDα,ψ

a+ x and CDβ,ψ
b− x of orders α, β ∈]0, 1[, the values x(a) and x(b),

and a free parameter ζ. More specifically, we will study the following generalized fractional
variational problem.

Problem (P): Determine x ∈ C1([a, b],R) and ζ ∈ R such that

J (x, ζ) :=
∫ b

a
L[x, ζ](t) dt −→ extremize (1)

where L ∈ C1([a, b]×R6,R) and

[x, ζ](t) :=
(

t, x(t), (CDα,ψ
a+ x)(t), (CDβ,ψ

b− x)(t), x(a), x(b), ζ
)

.

We will consider problem (P) with fixed boundary conditions

x(a) = xa and x(b) = xb, (2)

for some xa, xb ∈ R, and when x(a) and x(b) are free. We will also consider problem (P)
subject to an isoperimetric constraint

I(x, ζ) :=
∫ b

a
F[x, ζ](t) dt = γ, (3)

for some γ ∈ R, and to an holonomic constraint

g(t, x(t), x(a), x(b), ζ) = 0,

for a given function g.

Remark 1. We remark that:

1. If the function ψ = Id, and the Lagrange function does not depend on a free parameter ζ, then
we get the fractional variational problem studied in [30];

2. Taking α → 1−, and if ψ is the identity, the operators CDα
a+ and CDα

b− can be replaced
by d

dt and − d
dt , respectively (see [1]). Hence, if α and β goes to 1, our functional J tends

to the generalized variational functional
∫ b

a
L̃(t, x(t), x′(t), x(a), x(b), ζ) dt of the classical

calculus of variations studied in [31];
3. If ψ = Id, α and β goes to 1, and the Lagrange function does not depend on the state values

and on a free parameter, functional J reduces to the functional
∫ b

a
L(t, x(t), x′(t)) dt from

Lemma 2.2.2 in [32].
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Next, we proceed with some basic definitions that are useful in what follows.

Definition 1. Let x ∈ C1([a, b],R) and ζ ∈ R. We say that (x, ζ) is an admissible pair to (P)
subject to (2), if x satisfies (2). Function η ∈ C1([a, b],R) is an admissible variation to (P) subject
to (2) if η(a) = η(b) = 0.

Definition 2. We say that (x?, ζ?) is a local minimizer (resp. local maximizer) for the functional
J if there exists some δ > 0, such that, for all (x, ζ) ∈ C1([a, b],R) × R with ‖(x?, ζ?) −
(x, ζ)‖ < δ, we have J (x?, ζ?) ≤ J (x, ζ) (resp. J (x?, ζ?) ≥ J (x, ζ)), where ‖(x, ζ)‖ :=
maxt∈[a,b] |x(t)|+ |ζ|. The pair (x?, ζ?) is called a local extremizer of J .

If J (x?, ζ?) ≤ J (x, ζ) (resp. J (x?, ζ?) ≥ J (x, ζ)) holds for all (x, ζ) ∈ C1([a, b],R)×R,
then we say that (x?, ζ?) is a global minimizer (resp. global maximizer). In these cases, we say that
(x?, ζ?) is a global extremizer of J .

2.1. Generalized Fractional Variational Principle

The following result provides necessary conditions for an admissible pair (x, ζ) to be a
local extremizer of functional J , where x satisfies the boundary conditions (2). The equation

∂2L[x, ζ](t) +
(

Dα,ψ
b−

∂3L[x, ζ]

ψ′

)
(t)ψ′(t) +

(
Dβ,ψ

a+
∂4L[x, ζ]

ψ′

)
(t)ψ′(t) = 0, t ∈ [a, b], (4)

is called the Euler–Lagrange equation. We will represent it by ELe{L[x, ζ]}. To simplify,
consider the two following conditions:

C+[H, i] : t 7→
(

Dβ,ψ
a+

∂i H[x, ζ]

ψ′

)
(t) is continuous for all t ∈ [a, b]

and

C−[H, i] : t 7→
(

Dα,ψ
b−

∂i H[x, ζ]

ψ′

)
(t) is continuous for all t ∈ [a, b],

where H is a function and i a positive integer.

Theorem 2 (Generalized fractional variational principle). Suppose that L satisfies C+[L, 4]
and C−[L, 3]. If (x, ζ) is a local extremizer of functional J , subject to the boundary conditions (2),
then Equation (4) holds. Additionally,

∫ b

a
∂7L[x, ζ](t) dt = 0 (5)

is verified.

Proof. Let (x, ζ) be a local extremizer for functional J subject to (2), η an admissible
variation and δ an arbitrary real number. Define the new function φ : R → R by φ(ε) =
J (x + εη, ζ + εδ). Since (x, ζ) is a local extremizer of J , then φ′(0) = 0. Therefore, the
following condition holds

∫ b

a

(
∂2L[x, ζ](t)η(t) + ∂3L[x, ζ](t)(CDα,ψ

a+ η)(t) + ∂4L[x, ζ](t)(CDβ,ψ
b− η)(t)

+∂5L[x, ζ](t)η(a) + ∂6L[x, ζ](t)η(b) + ∂7L[x, ζ](t)δ

)
dt = 0.
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Using the fractional integration by parts formulas stated in Theorem 1, we get

∫ b

a

(
∂2L[x, ζ](t) +

(
Dα,ψ

b−
∂3L[x, ζ]

ψ′

)
(t)ψ′(t) +

(
Dβ,ψ

a+
∂4L[x, ζ]

ψ′

)
(t)ψ′(t)

)
·η(t) dt

+

[(
I1−α,ψ
b−

∂3L[x, ζ]

ψ′

)
(t) · η(t)

]t=b

t=a
−
[(

I1−β,ψ
a+

∂4L[x, ζ]

ψ′

)
(t) · η(t)

]t=b

t=a
(6)

+
∫ b

a

(
∂5L[x, ζ](t)η(a) + ∂6L[x, ζ](t)η(b) + ∂7L[x, ζ](t)δ

)
dt = 0.

Since η(a) = η(b) = 0, then

∫ b

a

(
∂2L[x, ζ](t) +

(
Dα,ψ

b−
∂3L[x, ζ]

ψ′

)
(t)ψ′(t) +

(
Dβ,ψ

a+
∂4L[x, ζ]

ψ′

)
(t)ψ′(t)

)
·η(t) dt

+
∫ b

a
∂7L[x, ζ](t)δ dt = 0.

Taking δ = 0 and using the arbitrariness of η, by Lemma 2.2.2 in [32], we obtain (4).
Taking the admissible variation η to be null, we deduce from (6) that

∫ b

a
∂7L[x, ζ](t)δ dt = 0.

By the arbitrariness of δ, we conclude that

∫ b

a
∂7L[x, ζ](t) dt = 0,

proving (5).

Remark 2. In Theorem 2, since the state values x(a) and x(b) are fixed, the Lagrangian’s explicit
dependence on x(a) and x(b) is irrelevant. However, in Theorem 3, since the state values can be
free, this dependency is effective.

We remark that, although the functional J depends only on ψ-Caputo fractional
derivatives, the Euler–Lagrange equation involves ψ-Riemann–Liouville fractional deriva-
tives. Using the relations (see Theorem 3 in [14])

CDα,ψ
a+ x(t) = Dα,ψ

a+ (x(t)− x(a)) = Dα,ψ
a+ x(t)− x(a)

Γ(1− α)
(ψ(t)− ψ(a))−α

and
CDα,ψ

b− x(t) = Dα,ψ
b− (x(t)− x(b)) = Dα,ψ

b− x(t)− x(b)
Γ(1− α)

(ψ(b)− ψ(t))−α,

it is possible to write Equation (4) using only ψ-Caputo fractional derivatives.

Definition 3. We say that a pair (x, ζ) ∈ C1([a, b],R) × R is an extremal of functional J if
(x, ζ) satisfies the Euler-Lagrange Equation (4).

We now consider the case when the values x(a) and x(b) are not necessarily specified.
For each boundary condition missing, there is a corresponding natural boundary condition,
as given by Theorem 3.



Fractal Fract. 2021, 5, 24 7 of 20

Theorem 3 (Generalized fractional natural boundary conditions). Suppose that L satisfies
C+[L, 4] and C−[L, 3]. If (x, ζ) is a local extremizer of functional J , then (4) and (5) hold.
Moreover,

1. If x(a) is free, then

∫ b

a
∂5L[x, ζ](t) dt =

(
I1−α,ψ
b−

∂3L[x, ζ]

ψ′

)
(a)−

(
I1−β,ψ
a+

∂4L[x, ζ]

ψ′

)
(a); (7)

2. If x(b) is free, then

∫ b

a
∂6L[x, ζ](t) dt =

(
I1−β,ψ
a+

∂4L[x, ζ]

ψ′

)
(b)−

(
I1−α,ψ
b−

∂3L[x, ζ]

ψ′

)
(b). (8)

Proof. Suppose that (x, ζ) is a local extremizer of functional J . Let η ∈ C1([a, b],R) and δ
be an arbitrary real number. Let φ(ε) = J (x + εη, ζ + εδ). Since no boundary conditions
are imposed, η do not need to be null at the endpoints. However, since Equation (6) must
be satisfied for all η, it is also satisfied for those functions that vanish at the endpoints.
Using the same arguments used in the proof of Theorem 2, one can conclude that (x, ζ)
satisfies the necessary conditions (4) and (5).

1. Suppose that x(a) is free. Restricting η to be null at t = b, and substituting the
necessary conditions (4) and (5) into (6) it follows that((

I1−β,ψ
a+

∂4L[x, ζ]

ψ′

)
(a)−

(
I1−α,ψ
b−

∂3L[x, ζ]

ψ′

)
(a) +

∫ b

a
∂5L[x, ζ](t) dt

)
·η(a) = 0.

From the arbitrariness of η(a), we get

∫ b

a
∂5L[x, ζ](t) dt =

(
I1−α,ψ
b−

∂3L[x, ζ]

ψ′

)
(a)−

(
I1−β,ψ
a+

∂4L[x, ζ]

ψ′

)
(a).

2. Suppose now that x(b) is not fixed. Restricting η to be null at t = a, and using similar
arguments as previously, we get Equation (8).

From Theorem 3, we can obtain the following corollaries. Note that if L does not
depend on the parameter ζ, then condition (5) is trivially satisfied and we get the follow-
ing results.

Corollary 1. If x is a local extremizer of

∫ b

a
L
(

t, x(t), (CDα,ψ
a+ x)(t), (CDβ,ψ

b− x)(t), x(a), x(b)
)

dt,

then x satisfies the generalized fractional equation ELe{L[x]}, where

[x] :=
(

t, x(t), (CDα,ψ
a+ x)(t), (CDβ,ψ

b− x)(t), x(a), x(b)
)

.

Moreover,

1. If x(a) is free, then x satisfies the following condition

∫ b

a
∂5L[x](t) dt =

(
I1−α,ψ
b−

∂3L[x]
ψ′

)
(a)−

(
I1−β,ψ
a+

∂4L[x]
ψ′

)
(a); (9)
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2. If x(b) is free, then x satisfies

∫ b

a
∂6L[x](t) dt =

(
I1−β,ψ
a+

∂4L[x]
ψ′

)
(b)−

(
I1−α,ψ
b−

∂3L[x]
ψ′

)
(b). (10)

If the Lagrangian function does not depend on the state values x(a) and x(b), and on
a real parameter ζ, then we get the following result.

Corollary 2. If x is a local extremizer of functional

∫ b

a
L
(

t, x(t), (CDα,ψ
a+ x)(t), (CDβ,ψ

b− x)(t)
)

dt,

then x satisfies ELe{L〈x〉} where 〈x〉 :=
(

t, x(t), (CDα,ψ
a+ x)(t), (CDβ,ψ

b− x)(t)
)

. Moreover,

1. If x(a) is free, then x satisfies the following condition(
I1−α,ψ
b−

∂3L〈x〉
ψ′

)
(a) =

(
I1−β,ψ
a+

∂4L〈x〉
ψ′

)
(a); (11)

2. If x(b) is free, then x satisfies(
I1−β,ψ
a+

∂4L〈x〉
ψ′

)
(b) =

(
I1−α,ψ
b−

∂3L〈x〉
ψ′

)
(b). (12)

Remark 3. Note that

1. If we consider ψ(t) = t, for all t ∈ [a, b], in Corollary 1 and Corollary 2, we obtain Theorem
3.1 from [30] and Theorem 1 from [33], respectively;

2. The comparision of the natural boundary conditions (9) and (10) with (11) and (12) shows
that the fractional problems of the calculus of variations, where the functional to extremize
explicitly depends on x(a) and/or x(b), are of a different nature when compared with the case
where the Lagrangian does not depend on the endpoint conditions.

2.2. Generalized Fractional Isoperimetric Problems

In this section, we deal with variational problems with integral constraints. Besides
some possible boundary conditions, we impose on the set of admissible functions an
integral restriction of type (3) (see, e.g., [34]). Such kinds of problems are known in the
literature as isoperimetric problems. An example of this type of problem is Queen Dido’s
problem, probably the oldest problem in the calculus of variations, which consists of
finding, among all the closed curves of the plane of a given perimeter, the curve that
encloses the maximum area (see, e.g., [32]).

Before presenting necessary optimality conditions for such kind of variational prob-
lems, we first present the following definition.

Definition 4. We say that (x, ζ) ∈ C1([a, b],R)×R is a normal extremizer of the isoperimetric
problem (1) and (3) if (x, ζ) is a local extremizer of functional J and not an extremal of functional
I ; if (x, ζ) ∈ C1([a, b],R)×R is a local extremizer of functional J and an extremal of functional
I , we say that (x, ζ) is an abnormal extremizer.

In the next two results, we prove necessary optimality conditions for generalized frac-
tional isoperimetric problems, with and without fixed boundary conditions, respectively,
for the particular case of normal extremizers.

Theorem 4 (Necessary optimality conditions for normal extremizers to fractional isoperi-
metric problems I). Suppose that C+[L, 4], C−[L, 3], C+[F, 4], and C−[F, 3] are verified. Let
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(x, ζ) be a normal extremizer of problem (1) and (3), subject to the boundary conditions (2). Then
there exists λ ∈ R, such that defining M ≡ L + λF, (x, ζ) satisfies the Euler–Lagrange equation

ELe{M[x, ζ]} (13)

and the necessary condition ∫ b

a
∂7M[x, ζ](t) dt = 0. (14)

Proof. Consider variations (x + ε1η1 + ε2η2, ζ + ε1δ), where ηi are admissible variations,
with ηi(a) = 0 = ηi(b), and εi, δ are arbitrary real numbers, for i = 1, 2. Let φ, ϕ : R2 → R
be the functions defined by

φ(ε1, ε2) = J (x + ε1η1 + ε2η2, ζ + ε1δ)

and
ϕ(ε1, ε2) = I(x + ε1η1 + ε2η2, ζ + ε1δ)− γ.

Note that

∂2 ϕ(0, 0)

=
∫ b

a

(
∂2F[x, ζ](t) +

(
Dα,ψ

b−
∂3F[x, ζ]

ψ′

)
(t)ψ′(t) +

(
Dβ,ψ

a+
∂4F[x, ζ]

ψ′

)
(t)ψ′(t)

)
·η2(t) dt

+

[(
I1−α,ψ
b−

∂3F[x, ζ]

ψ′

)
(t) · η2(t)

]t=b

t=a
−
[(

I1−β,ψ
a+

∂4F[x, ζ]

ψ′

)
(t) · η2(t)

]t=b

t=a

+
∫ b

a

(
∂5F[x, ζ](t)η2(a) + ∂6F[x, ζ](t)η2(b)

)
dt.

Since η2(a) = η2(b) = 0, we conclude that

∂2 ϕ(0, 0) =
∫ b

a

(
∂2F[x, ζ](t) +

(
Dα,ψ

b−
∂3F[x, ζ]

ψ′

)
(t)ψ′(t)

+

(
Dβ,ψ

a+
∂4F[x, ζ]

ψ′

)
(t)ψ′(t)

)
·η2(t) dt.

Observing that (x, ζ) is not an extremal of functional I , one concludes that

∂2F[x, ζ](t) +
(

Dα,ψ
b−

∂3F[x, ζ]

ψ′

)
(t)ψ′(t) +

(
Dβ,ψ

a+
∂4F[x, ζ]

ψ′

)
(t)ψ′(t) 6= 0, (15)

for some t ∈ [a, b]. Then we can choose η2, such that ∂2 ϕ(0, 0) 6= 0. Since ϕ(0, 0) = 0, there
exists an open set U ⊆ R, such that 0 ∈ U and there exists h ∈ C1(U,R) such that h(0) = 0
and ϕ(ε1, h(ε1)) = 0, for all ε1 ∈ U. This means that there exists an infinite family of pairs
(x∗, ζ∗) where x∗ = x + ε1η1 + h(ε1)η2 and ζ∗ = ζ + ε1δ1, which satisfies the isoperimetric
constraint (3). Now, we proceed proving the necessary conditions. Observe that (0, 0) is
a local extremizer of function φ, subject to the constraint ϕ ≡ 0, and we just proved that
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∇ϕ(0, 0) 6= (0, 0). Then, by the Lagrange Multiplier Rule, there exists a real number λ such
that ∇(φ(0, 0) + λϕ(0, 0)) = (0, 0). Observe that

∂1φ(0, 0)

=
∫ b

a

(
∂2L[x, ζ](t) +

(
Dα,ψ

b−
∂3L[x, ζ]

ψ′

)
(t)ψ′(t) +

(
Dβ,ψ

a+
∂4L[x, ζ]

ψ′

)
(t)ψ′(t)

)
·η1(t) dt

+
∫ b

a
∂7L[x, ζ](t) · δ dt

and

∂1 ϕ(0, 0)

=
∫ b

a

(
∂2F[x, ζ](t) +

(
Dα,ψ

b−
∂3F[x, ζ]

ψ′

)
(t)ψ′(t) +

(
Dβ,ψ

a+
∂4F[x, ζ]

ψ′

)
(t)ψ′(t)

)
·η1(t) dt

+
∫ b

a
∂7F[x, ζ](t) · δ dt.

Denoting M := L + λF, we get

∫ b

a

(
∂2 M[x, ζ](t) +

(
Dα,ψ

b−
∂3 M[x, ζ]

ψ′

)
(t)ψ′(t) +

(
Dβ,ψ

a+
∂4 M[x, ζ]

ψ′

)
(t)ψ′(t)

)
·η1(t) dt (16)

+
∫ b

a
∂7 M[x, ζ](t) · δ dt = 0.

Since the last equation must hold for any δ ∈ R, then, in particular, we can conclude that

∫ b

a

(
∂2M[x, ζ](t) +

(
Dα,ψ

b−
∂3M[x, ζ]

ψ′

)
(t)ψ′(t) +

(
Dβ,ψ

a+
∂4M[x, ζ]

ψ′

)
(t)ψ′(t)

)
·η1(t) dt = 0.

From Lemma 2.2.2 in [32], we obtain

∂2M[x, ζ](t) +
(

Dα,ψ
b−

∂3M[x, ζ]

ψ′

)
(t)ψ′(t) +

(
Dβ,ψ

a+
∂4M[x, ζ]

ψ′

)
(t)ψ′(t) = 0, t ∈ [a, b],

proving Equation (13). Introducing the Euler–Lagrange Equation (13) into (16), one gets

∫ b

a
∂7M[x, ζ](t) · δ dt = 0.

From the arbitrariness of δ, we get

∫ b

a
∂7M[x, ζ](t) dt = 0

proving (14).

Theorem 5 (Necessary optimality conditions for normal extremizers to fractional isoperi-
metric problems II). Suppose that C+[L, 4], C−[L, 3], C+[F, 4], and C−[F, 3] hold. Let (x, ζ) be
a normal extremizer of functional J , subject to (3). Then, there exists λ ∈ R, such that defining
M ≡ L + λF, (x, ζ) satisfies Equations (13) and (14). Moreover,

1. If x(a) is not fixed then

∫ b

a
∂5M[x, ζ](t) dt =

(
I1−α,ψ
b−

∂3M[x, ζ]

ψ′

)
(a)−

(
I1−β,ψ
a+

∂4M[x, ζ]

ψ′

)
(a); (17)
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2. If x(b) is not fixed then

∫ b

a
∂6M[x, ζ](t) dt =

(
I1−β,ψ
a+

∂4M[x, ζ]

ψ′

)
(b)−

(
I1−α,ψ
b−

∂3M[x, ζ]

ψ′

)
(b). (18)

Proof. The idea of the proof is to combine the methods presented in the proofs of Theorem 3
and Theorem 4.

Theorem 6 (Necessary optimality conditions for normal and abnormal extremizers to
fractional isoperimetric problems). Suppose that C+[L, 4], C−[L, 3], C+[F, 4], and C−[F, 3]
hold. Let (x, ζ) be a local extremizer of functional J , subject to the integral constraint (3).
Then, there exists a vector (λ0, λ) ∈ R2 \ {(0, 0)}, such that, defining the Lagrangian function
M ≡ λ0L + λF, then Equations (13) and (14) hold, as well the natural boundary conditions (17)
and (18).

Proof. First, suppose that (x, ζ) is a normal extremizer. Then, the results follow from
Theorem 5 fixing λ0 = 1. Otherwise, we consider (λ0, λ) = (0, 1).

2.3. Generalized Fractional Holonomic Constrained Problems

We now turn our attention to what is called in the literature as holonomic constrained
problems. Suppose that the state variable x is a two-dimensional vector x = (x1, x2). Thus,
functional J is defined as

J (x, ζ) :=
∫ b

a
L
(

t, x(t), (CDα,ψ
a+ x)(t), (CDβ,ψ

b− x)(t), x(a), x(b), ζ
)

dt, (19)

where

1. α, β ∈]0, 1[, ζ ∈ R, and x ∈ C1([a, b],R)× C1([a, b],R);
2. CDα,ψ

a+ x = (CDα,ψ
a+ x1, CDα,ψ

a+ x2) and CDβ,ψ
b− x = (CDβ,ψ

b− x1, CDβ,ψ
b− x2);

3. L ∈ C1([a, b]×R11,R).
Boundary conditions are

x(a) = xa and x(b) = xb (20)

for some xa, xb ∈ R2 and the holonomic constraint is

g{x, ζ}(t) = 0, where {x, ζ}(t) := (t, x(t), x(a), x(b), ζ), (21)

where g is a given C1 function.

Theorem 7 (Generalized fractional variational principle with holonomic constraint). As-
sume C+[L, 6], C+[L, 7], C−[L, 4], and C−[L, 5] hold. Let (x, ζ) be an extremizer of functional J ,
as in (19), subject to (20) and to the holonomic constraint (21). If

∂3g{x, ζ}(t) 6= 0, for all t ∈ [a, b], (22)

then there exists λ ∈ C([a, b],R) satisfying

∂iL[x, ζ](t) +
(

Dα,ψ
b−

∂i+2L[x, ζ]

ψ′

)
(t)ψ′(t) +

(
Dβ,ψ

a+
∂i+4L[x, ζ]

ψ′

)
(t)ψ′(t)

+ λ(t)∂ig{x, ζ}(t) = 0, t ∈ [a, b], (23)

for i = 2, 3, and ∫ b

a

(
∂12L[x, ζ](t) + λ(t)∂8g{x, ζ}(t)

)
dt = 0. (24)
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Proof. Consider variations of (x, ζ) of type (x + εη, ζ + εδ), where η = (η1, η2) is a differ-
entiable function with η(a) = (0, 0) = η(b). Since variations must fulfill the holonomic
constraint, we have that

g{x + εη, ζ + εδ}(t) = 0, (25)

for all t ∈ [a, b]. Differentiating Equation (25) with respect to ε and taking ε = 0, we get that

∂2g{x, ζ}(t)η1(t) + ∂3g{x, ζ}(t)η2(t) + ∂4g{x, ζ}(t)η1(a) + ∂5g{x, ζ}(t)η2(a)

+ ∂6g{x, ζ}(t)η1(b) + ∂7g{x, ζ}(t)η2(b) + ∂8g{x, ζ}(t)δ = 0, ∀t ∈ [a, b]. (26)

Using the boundary conditions of η, Equation (26) becomes

∂2g{x, ζ}(t)η1(t) + ∂3g{x, ζ}(t)η2(t) + ∂8g{x, ζ}(t)δ = 0, ∀t ∈ [a, b]. (27)

Define function λ : [a, b]→ R as

λ(t) := −
∂3L[x, ζ](t) +

(
Dα,ψ

b−
∂5L[x,ζ]

ψ′

)
(t)ψ′(t) +

(
Dβ,ψ

a+
∂7L[x,ζ]

ψ′

)
(t)ψ′(t)

∂3g{x, ζ}(t) . (28)

Hence, Equation (23) is proven for the case i = 3. Now, we prove the remaining
conditions. Since (x, ζ) is an extremizer of functional J , its first variation must vanish
when evaluated at (x, ζ), that is,

∫ b

a

(
∂2L[x, ζ](t)η1(t) + ∂3L[x, ζ](t)η2(t) + ∂4L[x, ζ](t)(CDα,ψ

a+ η1)(t)

+ ∂5L[x, ζ](t)(CDα,ψ
a+ η2)(t) + ∂6L[x, ζ](t)(CDβ,ψ

b− η1)(t) + ∂7L[x, ζ](t)(CDβ,ψ
b− η2)(t)

+ ∂8L[x, ζ](t)η1(a) + ∂9L[x, ζ](t)η2(a) + ∂10L[x, ζ](t)η1(b)

+ ∂11L[x, ζ](t)η2(b) + ∂12L[x, ζ](t)δ

)
dt = 0.

By Theorem 1, we obtain

∫ b

a

((
∂2L[x, ζ](t) +

(
Dα,ψ

b−
∂4L[x, ζ]

ψ′

)
(t)ψ′(t) +

(
Dβ,ψ

a+
∂6L[x, ζ]

ψ′

)
(t)ψ′(t)

)
·η1(t)

+

(
∂3L[x, ζ](t) +

(
Dα,ψ

b−
∂5L[x, ζ]

ψ′

)
(t)ψ′(t) +

(
Dβ,ψ

a+
∂7L[x, ζ]

ψ′

)
(t)ψ′(t)

)
·η2(t)

)
dt

+

[((
I1−α,ψ
b−

∂4L[x, ζ]

ψ′

)
(t)−

(
I1−β,ψ
a+

∂6L[x, ζ]

ψ′

)
(t)
)
· η1(t)

]t=b

t=a

+

[((
I1−α,ψ
b−

∂5L[x, ζ]

ψ′

)
(t)−

(
I1−β,ψ
a+

∂7L[x, ζ]

ψ′

)
(t)
)
· η2(t)

]t=b

t=a

+
∫ b

a

(
∂8L[x, ζ](t)η1(a) + ∂9L[x, ζ](t)η2(a)

+ ∂10L[x, ζ](t)η1(b) + ∂11L[x, ζ](t)η2(b) + ∂12L[x, ζ](t)δ

)
dt = 0. (29)
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By relations (27) and (28), we obtain(
∂3L[x, ζ](t) +

(
Dα,ψ

b−
∂5L[x, ζ]

ψ′

)
(t)ψ′(t) +

(
Dβ,ψ

a+
∂7L[x, ζ]

ψ′

)
(t)ψ′(t)

)
· η2(t)

= λ(t)
(

∂2g{x, ζ}(t)η1(t) + ∂8g{x, ζ}(t)δ
)

.

Therefore,

∫ b

a

((
∂2L[x, ζ](t) +

(
Dα,ψ

b−
∂4L[x, ζ]

ψ′

)
(t)ψ′(t) +

(
Dβ,ψ

a+
∂6L[x, ζ]

ψ′

)
(t)ψ′(t)

+ λ(t)∂2g{x, ζ}(t)
)
×η1(t) dt +

∫ b

a

(
∂12L[x, ζ](t) + λ(t)∂8g{x, ζ}(t)

)
δ dt

+

[((
I1−α,ψ
b−

∂4L[x, ζ]

ψ′

)
(t)−

(
I1−β,ψ
a+

∂6L[x, ζ]

ψ′

)
(t)
)
· η1(t)

]t=b

t=a

+

[((
I1−α,ψ
b−

∂5L[x, ζ]

ψ′

)
(t)−

(
I1−β,ψ
a+

∂7L[x, ζ]

ψ′

)
(t)
)
· η2(t)

]t=b

t=a

+
∫ b

a

(
∂8L[x, ζ](t)η1(a) + ∂9L[x, ζ](t)η2(a)

+ ∂10L[x, ζ](t)η1(b) + ∂11L[x, ζ](t)η2(b)

)
dt = 0. (30)

Taking into account the boundary conditions of η, and since η1 is arbitrary on ]a, b[,
and parameter δ is free, we prove Equation (22) for the case i = 2 and Equation (24), ending
the proof.

Now, we deduce the natural boundary conditions, for the case where x(a) and x(b)
are free.

Theorem 8 (Natural boundary conditions with an holonomic constraint). Let (x, ζ) be
an extremizer of functional J , as in (19), subject to the holonomic constraint (21) such that
Equation (22) holds, and to the remaining assumptions of Theorem 7. Then, there exists λ ∈
C([a, b],R) satisfying (23) and (24). Moreover,

1. If x(a) is not fixed, then, for i = 4, 5,

∫ b

a

(
∂i+4L[x, ζ](t) + λ(t)∂ig{x, ζ}(t)

)
dt

=

(
I1−α,ψ
b−

∂iL[x, ζ]

ψ′
− I1−β,ψ

a+
∂i+2L[x, ζ]

ψ′

)
(a); (31)

2. If x(b) is not fixed, then, for i = 6, 7,

∫ b

a

(
∂i+4L[x, ζ](t) + λ(t)∂ig{x, ζ}(t)

)
dt

=

(
I1−β,ψ
a+

∂iL[x, ζ]

ψ′
− I1−α,ψ

b−
∂i−2L[x, ζ]

ψ′

)
(b). (32)
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Proof. Consider an arbitrary variation (x + εη, ζ + εδ) of the optimal solution. Assuming
that η(a) = (0, 0) = η(b), following the proof of Theorem 7, we deduce Equations (23) and
(24). Introducing Equations (23) and (24) and (26)–(28) into (29), we obtain

[((
I1−α,ψ
b−

∂4L[x, ζ]

ψ′

)
(t)−

(
I1−β,ψ
a+

∂6L[x, ζ]

ψ′

)
(t)
)
· η1(t)

]t=b

t=a

+

[((
I1−α,ψ
b−

∂5L[x, ζ]

ψ′

)
(t)−

(
I1−β,ψ
a+

∂7L[x, ζ]

ψ′

)
(t)
)
· η2(t)

]t=b

t=a

+
∫ b

a

((
∂8L[x, ζ](t) + λ(t)∂4g{x, ζ}(t)

)
η1(a) +

(
∂9L[x, ζ](t) + λ(t)∂5g{x, ζ}(t)

)
η2(a)

+
(

∂10L[x, ζ](t) + λ(t)∂6g{x, ζ}(t)
)

η1(b)

+
(

∂11L[x, ζ](t) + λ(t)∂7g{x, ζ}(t)
)

η2(b)

)
dt = 0. (33)

First, suppose that x(a) is free. Assuming that η(b) = (0, 0), we get that[∫ b

a

(
∂8L[x, ζ](t) + λ(t)∂4g{x, ζ}(t)

)
dt

−
(

I1−α,ψ
b−

∂4L[x, ζ]

ψ′

)
(a) +

(
I1−β,ψ
a+

∂6L[x, ζ]

ψ′

)
(a)
]
·η1(a)

+
[∫ b

a

(
∂9L[x, ζ](t) + λ(t)∂5g{x, ζ}(t)

)
dt

−
(

I1−α,ψ
b−

∂5L[x, ζ]

ψ′

)
(a) +

(
I1−β,ψ
a+

∂7L[x, ζ]

ψ′

)
(a)
]
·η2(a) = 0.

Since η1(a) and η2(a) are arbitrary real numbers, we obtain conditions (31). Conditions
(32) are proven in a similar way.

2.4. Sufficient Optimality Conditions

Now, we focus on sufficient conditions that guarantee the existence of extremizers of
functional J . We consider fractional variational problems with or without an isoperimetric
and holonomic restrictions. Our results are presented in the general case where the state
values are not fixed.

Definition 5. We say that L(t, x1, . . . , xn) is jointly convex (resp. jointly concave) in S ⊆
[a, b]×Rn if, for all i = 2, 3, . . . , n + 1, ∂iL exist and are continuous and verify

L(t, x1 + ∆x1, . . . , xn + ∆xn)− L(t, x1, . . . , xn) ≥ (resp. ≤)∂2L(?)∆x1 + . . . + ∂n+1L(?)∆xn,

for all (t, x + ∆x1, . . . , xn + ∆xn), (t, x1, . . . , xn) ∈ S and where (?) := (t, x1, . . . , xn).

Theorem 9. Suppose that L is jointly convex (resp. jointly concave) in [a, b] × R6. If (x, ζ)
satisfies the necessary conditions (4) and (5) and (7) and (8), then (x, ζ) is a global minimizer (resp.
global maximizer) of functional J .
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Proof. We shall give the proof only for the case where L is jointly convex; the other case is
similar. Let η ∈ C1([a, b],R) and δ ∈ R be arbitrary. Since L is jointly convex in [a, b]×R6,
we get

J (x + η, ζ + δ)−J (x, ζ)

≥
∫ b

a

(
∂2L[x, ζ](t) +

(
Dα,ψ

b−
∂3L[x, ζ]

ψ′

)
(t)ψ′(t) +

(
Dβ,ψ

a+
∂4L[x, ζ]

ψ′

)
(t)ψ′(t)

)
·η(t) dt

+ η(a)

(∫ b

a
∂5L[x, ζ](t) dt−

(
I1−α,ψ
b−

∂3L[x, ζ]

ψ′

)
(a) +

(
I1−β,ψ
a+

∂4L[x, ζ]

ψ′

)
(a)

)

+ η(b)

(∫ b

a
∂6L[x, ζ](t) dt−

(
I1−β,ψ
a+

∂4L[x, ζ]

ψ′

)
(b) +

(
I1−α,ψ
b−

∂3L[x, ζ]

ψ′

)
(b)

)

+ δ
∫ b

a
∂7L[x, ζ](t) dt.

Introducing (4) and (5) and (7) and (8) into the last inequality, we conclude that

J (x + η, ζ + δ)−J (x, ζ) ≥ 0,

proving the desired result.

A similar result can be proved for isoperimetric problems.

Theorem 10. Suppose L is jointly convex (resp. jointly concave) in [a, b]×R6, and also that there
exists a real number λ such that λF is jointly convex (resp. jointly concave) in [a, b]×R6. Let
M ≡ L + λF. If (x, ζ) satisfies the necessary conditions (13) and (14) and (17) and (18), then
(x, ζ) is a global minimizer (resp. global maximizer) of functional J subject to the isoperimetric
constraint (3).

Proof. We shall give the proof only for the case where L and λF are jointly convex; the
proof of the other case is analogous. Since M is jointly convex then, by Theorem 9, (x, ζ) is
a global minimizer of functionalM defined by

M(x, ζ) =
∫ b

a
M
(

t, x(t), (CDα,ψ
a+ x)(t), (CDβ,ψ

b− x)(t), x(a), x(b), ζ
)

dt.

Hence, for any η ∈ C1([a, b],R) and δ ∈ R, one has

M(x + η, ζ + δ) ≥M(x, ζ)

and, therefore,

J (x + η, ζ + δ) + λI(x + η, ζ + δ) ≥ J (x, ζ) + λI(x, ζ).

If we restrict to the integral constraint (3), we can conclude that

J (x + η, ζ + δ) ≥ J (x, ζ),

proving the desired result.

Finally, a sufficient condition of optimality is proven when in the presence of an
holonomic constraint.

Theorem 11. Suppose L is jointly convex (resp. jointly concave) in [a, b]×R11. Let function λ be
defined by (28), where g is a C1 function, such that ∂3g{x, ζ}(t) 6= 0, for all t ∈ [a, b]. If (x, ζ)
satisfies the necessary conditions (23) and (24) and the natural boundary conditions (31) and (32),
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then (x, ζ) is a global minimizer (resp. global maximizer) of functional J as in (19), subject to the
holonomic constraint (21).

Proof. Again, we only consider the case when L is jointly convex. In such situation,

J (x + η, ζ + δ)−J (x, ζ)

≥
∫ b

a

(
∂2L[x, ζ](t) +

(
Dα,ψ

b−
∂4L[x, ζ]

ψ′

)
(t)ψ′(t) +

(
Dβ,ψ

a+
∂6L[x, ζ]

ψ′

)
(t)ψ′(t)

)
·η1(t) dt

+
∫ b

a

(
∂3L[x, ζ](t) +

(
Dα,ψ

b−
∂5L[x, ζ]

ψ′

)
(t)ψ′(t) +

(
Dβ,ψ

a+
∂7L[x, ζ]

ψ′

)
(t)ψ′(t)

)
·η2(t) dt

+ η1(a)

(∫ b

a
∂8L[x, ζ](t) dt−

(
I1−α,ψ
b−

∂4L[x, ζ]

ψ′

)
(a) +

(
I1−β,ψ
a+

∂6L[x, ζ]

ψ′

)
(a)

)

+ η2(a)

(∫ b

a
∂9L[x, ζ](t) dt−

(
I1−α,ψ
b−

∂5L[x, ζ]

ψ′

)
(a) +

(
I1−β,ψ
a+

∂7L[x, ζ]

ψ′

)
(a)

)

+ η1(b)

(∫ b

a
∂10L[x, ζ](t) dt−

(
I1−β,ψ
a+

∂6L[x, ζ]

ψ′

)
(b) +

(
I1−α,ψ
b−

∂4L[x, ζ]

ψ′

)
(b)

)

+ η2(b)

(∫ b

a
∂11L[x, ζ](t) dt−

(
I1−β,ψ
a+

∂7L[x, ζ]

ψ′

)
(b) +

(
I1−α,ψ
b−

∂5L[x, ζ]

ψ′

)
(b)

)

+ δ
∫ b

a
∂12L[x, ζ](t) dt. (34)

From Equations (26) and (28), we get, for all t ∈ [a, b],

− ∂3g{x, ζ}(t)η2(t) = ∂2g{x, ζ}(t)η1(t) + ∂4g{x, ζ}(t)η1(a) + ∂5g{x, ζ}(t)η2(a)

+ ∂6g{x, ζ}(t)η1(b) + ∂7g{x, ζ}(t)η2(b) + ∂8g{x, ζ}(t)δ,

and

∂3L[x, ζ](t) +
(

Dα,ψ
b−

∂5L[x, ζ]

ψ′

)
(t)ψ′(t) +

(
Dβ,ψ

a+
∂7L[x, ζ]

ψ′

)
(t)ψ′(t) = −λ(t)∂3g{x, ζ}(t).

Thus,

∫ b

a

(
∂3L[x, ζ](t) +

(
Dα,ψ

b−
∂5L[x, ζ]

ψ′

)
(t)ψ′(t) +

(
Dβ,ψ

a+
∂7L[x, ζ]

ψ′

)
(t)ψ′(t)

)
·η2(t) dt

=
∫ b

a
λ(t)

(
∂2g{x, ζ}(t)η1(t) + ∂4g{x, ζ}(t)η1(a) + ∂5g{x, ζ}(t)η2(a)

+ ∂6g{x, ζ}(t)η1(b) + ∂7g{x, ζ}(t)η2(b) + ∂8g{x, ζ}(t)δ
)

dt.

Replacing the last formula into (34) and using conditions (23) and (24) and (31) and
(32), we prove the desired result.

3. Examples

In this section we present three examples in order to illustrate some results developed
in the previous section. In all the examples, we suppose that functions L and ψ satisfy the
needed assumptions.

Example 1. Suppose we intend to minimize

J (x, ζ) =
1
2

∫ 1

0

(
2x(t) + (CDα,ψ

0+ x)2(t) + (x(1)− 6)2 + (ζ − 1)2
)

dt
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in the class of functions C1([0, 1],R), subject to the restriction x(0) = 0 (x(1) is free). From
Theorem 3, every local extremizer of functional J satisfies the following necessary conditions:

1. 1 +

(
Dα,ψ

1−

CDα,ψ
0+ x

ψ′

)
(t)ψ′(t) = 0, t ∈ [0, 1];

2.
∫ 1

0
(ζ − 1) dt = 0;

3.
∫ 1

0
(x(1)− 6) dt = −

(
I1−α,ψ
1−

CDα,ψ
0+ x

ψ′

)
(1).

Since the Lagrangian function is jointly convex, by Theorem 9, the solution of this system is
actually a minimizer of J . Observe that, when α→ 1 and ψ(t) = t, t ∈ [0, 1], our problem tends
to

J̃ (x, ζ) =
1
2

∫ 1

0

(
2x(t) + (x′)2(t) + (x(1)− 6)2 + (ζ − 1)2

)
dt −→ minimize

with x(0) = 0, and the necessary conditions are

1. x′′(t) = 1, t ∈ [0, 1];
2. ζ = 1;

3.
∫ 1

0
(x(1)− 6) dt = −x′(1).

From x′′(t) = 1, we get x(t) =
t2

2
+ ct + d, for some c, d ∈ R. Since x(0) = 0, then

x(t) = t2

2 + ct. Since
x′(1) = 6− x(1)

we can conclude that c = 9
4 . Hence,

(x̃, ζ̃) =

(
t2

2
+

9t
4

, 1
)

is the only candidate to be a local extremizer of functional J̃ , and, since J̃ is jointly convex, (x̃, ζ̃)
is the global minimizer. Solving the fractional problem analytically is very difficult, and thus a
numerical technique is applied. In Figure 1, we show the results. Four different fractional orders are
considered, and, as can be observed, the solution converges to (x̃, 1) as α goes to one.

Figure 1. Numerical solutions for Example 1.

Example 2. Suppose we intend to minimize

J (x, ζ) =

1
2

∫ 1

0

((
(CDβ,ψ

1− x)(t)− (ψ(1)− ψ(t))1−β

Γ(2− β)

)2
+t2 − 3 + (x(0)− 1)2 + (ζ − 2)2

)
dt
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in the class of functions C1([0, 1],R), subject to the restriction x(1) = 0 (x(0) is free). From
Theorem 3 every local extremizer of functional J satisfies the following necessary conditions:

1.

(
Dβ,ψ

0+

C Dβ,ψ
1− x− (ψ(1)−ψ)1−β

Γ(2−β)

ψ′

)
(t)ψ′(t) = 0, t ∈ [0, 1];

2.
∫ 1

0
(ζ − 2) dt = 0;

3.
∫ 1

0
(x(0)− 1) dt = −

I1−β,ψ
0+

CDβ,ψ
1− x− (ψ(1)−ψ)1−β

Γ(2−β)

ψ′

(0).

Observe that the function x : [0, 1]→ R defined by

x(t) = ψ(1)− ψ(t)

is such that

CDβ,ψ
1− x(t) = CDβ,ψ

1− (ψ(1)− ψ(t)) =
1

Γ(2− β)
(ψ(1)− ψ(t))1−β,

hence, x satisfies the Euler–Lagrange equation given in 1. Moreover, x satisfies the natural boundary
condition given by 3 if x(0) = 1, that is,

ψ(1) = 1 + ψ(0). (35)

We remark that if ψ = Id, then we are dealing with the Caputo derivative and the identity
(35) holds. Hence,

(x?, ζ?) = (ψ(1)− ψ(t), 2)

is a possible local minimizer of functional J . Observing that, for every function C1([0, 1],R),
we have

J (x, ζ) ≥ 1
2

∫ 1

0
(t2 − 3) dt = −4

3

and since J (x?, ζ?) = − 4
3 , then (x?, ζ?) is indeed a global minimizer of J .

Example 3. The goal is to minimize

J (x, ζ) =
∫ 1

0

(
(ψ(t)− ψ(0))α

2Γ(2 + α)
(CDα,ψ

0+ x)2(t)− (CDα,ψ
0+ x)(t)(ψ(t)− ψ(0))α+1

)
dt

in the class of functions C1([0, 1],R), subject to the restriction x(0) = 0 (x(1) is free) and to the
integral constraint

I(x, ζ) =
∫ 1

0

(
(x(1)− 2)2 + (ζ − 1)2

)
dt = 0. (36)

We assume that the kernel fulfills the condition ψ(1) = ψ(0) + 2
1

α+1 . Fix (λ0, λ) ∈ R2 \
{(0, 0)} and define

M := λ0

( (ψ(t)− ψ(0))α

2Γ(2 + α)
(CDα,ψ

0+ x)2(t)− (CDα,ψ
0+ x)(t)(ψ(t)− ψ(0))α+1

)
+ λ

(
(x(1)− 2)2 + (ζ − 1)2

)
.

From Theorem 6, every local extremizer of functional J subject to the integral constraint (36)
satisfies the following conditions:

1. λ0

(
Dα,ψ

1−

(ψ−ψ(0))α

Γ(2+α)
(C Dα,ψ

0+
x)−(ψ−ψ(0))α+1

ψ′

)
(t)ψ′(t) = 0, t ∈ [0, 1];
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2. λ
∫ 1

0
2(ζ − 1) dt = 0;

3. λ
∫ 1

0
2(x(1)− 2) dt = −λ0

I1−α,ψ
1−

(ψ−ψ(0))α

Γ(2+α)
(CDα,ψ

0+ x)− (ψ− ψ(0))α+1

ψ′

(1).

Define (λ0, λ) = (1, 1) and x? : [0, 1]→ R by x?(t) = (ψ(t)− ψ(0))α+1. In this case,

(CDα,ψ
0+ x?)(t) = Γ(2 + α)(ψ(t)− ψ(0))

and, therefore,
(ψ(t)− ψ(0))α

Γ(2 + α)
(CDα,ψ

0+ x?)(t)− (ψ(t)− ψ(0))α+1 = 0.

Hence, (x?, 1) satisfies the integral constraint (36) and the necessary conditions 1–3.

4. Conclusions and Future Work

In this work, we proved necessary and sufficient conditions of optimality, where the
Lagrangian function depends on a general form of fractional derivative, a free parameter,
and the state values. The Euler–Lagrange equation was deduced, for the fundamental
problem, as well when in presence of constraints. With some examples, we show the
applicability of the procedure.

For future, direct methods can be studied to deal with such generalized fractional
variational problems. One possible direction is to study discretizations of the fractional
derivative and then convert the problem as a finite dimensional case. In addition, other
optimization conditions could be obtained, e.g., with arbitrary fractional orders α, β ∈ R+,
or optimal control problems where the state equation involves the ψ-Caputo fractional
derivative.
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20. Atanacković, T.M.; Konjik, S.; Pilipović, Ṡ. Variational problems with fractional derivatives: Euler-Lagrange equations. J. Phys. A

2008, 41, 095201. [CrossRef]
21. Baleanu, D.; Muslih, S.I.; Rabei, E.M. On fractional Euler–Lagrange and Hamilton equations and the fractional generalization of

total time derivative. Nonlinear Dynam. 2008, 53, 67–74. [CrossRef]
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