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palavras-chave 
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resumo 
 

 

Este trabalho teve como objetivo a conceção e otimização de um procedimento 
para aplicação de um algoritmo de Machine Learning, o classificador BIANCA 
(Brain Intensity AbNormalities Classification Algorithm), para deteção de lesões 
caracterizadas por hiperintensidade em T2 da matéria branca em estudos 
clínicos de Esclerose Múltipla por Ressonância Magnética. 
O procedimento concebido inclui pré-processamento, identificação das lesões 
e otimização dos parâmetros do algoritmo BIANCA. 
O classificador foi treinado e afinado utilizando os 15 casos clínicos que 
constituíam o conjunto de treino do desafio MICCAI 2016 (Medical Image 
Computing and Computer Assisted Interventions) e posteriormente testado em 
30 casos clínicos de uma base de dados pública (Lesjak et al.). 
Os resultados obtidos são em concordância com os alcançados pelas 13 
equipas que concluíram o desafio MICCAI 2016, confirmando que este 
algoritmo pode ser uma ferramenta válida para a deteção e classificação de 
lesões de Esclerose Múltipla em estudos de Ressonância Magnética. 
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abstract 

 
The aim of this work was to design and optimize a workflow to apply the 
Machine Learning classifier BIANCA (Brain Intensity AbNormalities 
Classification Algorithm) to detect lesions characterized by white matter T2 
hyperintensity in clinical Magnetic Resonance Multiple Sclerosis datasets.  
The designed pipeline includes pre-processing, lesion identification and 
optimization of BIANCA options.  
The classifier has been trained and tuned on 15 cases making up the training 
dataset of the MICCAI 2016 (Medical Image Computing and Computer 
Assisted Interventions) challenge and then tested on 30 cases from the Lesjak 
et al. public dataset.  
The results obtained are in good agreement with those reported by the 13 
teams concluding the MICCAI 2016 challenge, thus confirming that this 
algorithm can be a reliable tool to detect and classify Multiple Sclerosis lesions 
in Magnetic Resonance studies. 
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 Acronyms 

 

ACC: Accuracy 

AD: Average Distance 

BBB: Brain Blood Barrier 

BET: Brain Extraction Tool 

BIANCA: Brain Intensity AbNormalities Classification Algorithm 

CAD: Computer Aided Diagnosis 

CDR: Correct Detection Rate 

COG: Centre Of Gravity 

DER: Detection Error Rate 

DICOM: Digital Imaging and COmmunications in Medicine 

DIR: Double Inversion Recovery 

EF: Extra Fraction 

FALL: Fallout 

FAST: FSL Automated Segmentation Tool 

FDR: False Detection Rate 

FLAIR: Fluid Attenuated Inversion Recovery 

FLIRT: FMRIB's Linear Image Registration Tool  

FMRIB: Functional Magnetic Resonance Imaging of the Brain 

FN: False Negative 

FOV: Field of View 

FP: False Positive 

FSL:  FMRIB Software Library 

Gd: Gadolinium 

GM: Grey Matter 

HD: Hausdorf Distance 

ICC: Intra Class Correlation 

JI: Jacard Index 
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k-NN: k-Nearest Neighbour  

LOCATE: LOCally Adaptive Thresholds Estimation 

MICCAI: Medical Image Computing and Computer Assisted Interventions 

ML: Machine Learning 

MNI: Montreal Neuroimaging Institute 

MPRAGE: Magnetisation PRepared RApid Gradient Echo 

MRI: Magnetic Resonance Imaging 

MS: Multiple Sclerosis 

NAWM: normal appearing white matter 

NIfTI: Neuroimaging Informatics Technology Initiative 

OER: Outline Error Rate 

PD: Proton Density 

POF: Probabilistic Overlap Fraction 

PPMS: primary-progressive Multiple  Sclerosis 

PPV: Positive Predictive Value 

PrC: Pearson’s Coefficient 

PSI: Probabilistic Similarity Index 

RAE: Relative Area Error 

RRMS: relapsing-remitting Multiple Sclerosis 

SEN: Sensitivity 

SI: Similarity Index 

SPE: Specificity 

SPMS: secondary-progressive Multiple Sclerosis 

sw: spatial weighting 

TN: True Negative 

TP: True Positive 

VD: Volume Difference 

WM: White Matter 

WMH: White Matter Hyperintensities 
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1. Introduction  

 

Multiple Sclerosis (MS) is a chronic disease that affects the central nervous system and 

changes its morphology and structure. Its pathological hallmarks include demyelination, 

inflammation, gliosis, axonal damage and brain atrophy (1,2). Lesions can affect all the 

tissue that contains myelin, so it can occur in the spinal cord, mainly in the cervical 

segment and usually on the posterior and lateral regions, in nerves, most commonly in the 

optic nerve, and in the brain, both in the Grey Matter (GM) and in the White Matter (WM).  

In the brain, lesions are located mostly in the periventricular and in the juxtacortical WM 

regions, in the corpus callosum and in infratentorial areas, mainly pons and cerebellum, 

and usually have oval or elliptical shapes (3).  

The loss of myelin interrupts the transmission of the signals through the axons of the 

nervous system, resulting in a disruption of the body functions connected to this damage.  

Moreover, MS causes multiple inflammations that are reversible. Given the reversibility of 

the inflammation process, the axonal losses are considered the appropriate markers for the 

progression of the disease (2). 

The MS patients can be divided in three clinical groups: relapsing–remitting MS (RRMS), 

secondary-progressive MS (SPMS), and primary-progressive MS (PPMS). The RRMS 

consists of stable periods interspersed by relapses followed by partial or whole recovery. 

In SPMS, the steady progression stage, which differs from the previous one by the degree 

of disability, there is a lack of basic recovery after subsequent relapses. The PPMS patients 

are affected by progressive disease with occasional stability and temporary improvements 

(2). 

The diagnosis can be achieved with Magnetic Resonance Imaging (MRI) because the loss 

of myelin creates a more hydrophilic environment and increases the water content in the 

lesions. Therefore, there is an increase of proton density and a prolongation of T1 and T2 

relaxation times, which results in an increased MR signal intensity of lesions on PD/T2 

weighted and decreased intensity in T1 weighted sequences (4).  

Thanks to that, MRI is highly sensitive in detecting MS plaques and can also provide 

quantitative assessment of inflammatory activity and lesion load (5). Moreover, it can give 

quantitative estimation of the brain atrophy due to MS.  

For these reasons, MRI is considered the most important modality to study the progression 

of this disease.  

Despite their high sensitivity in the detection of MS lesions, conventional MRI sequences 

have difficulties to disclose the actual burden of GM and mixed GM-WM lesions because 

of their reduced dimensions and the low difference in their relaxation times versus the 

normal-appearing GM than that between WM lesions and normal-appearing WM 

(NAWM) (3). 

 

 



6 

 

The MS lesions can be divided into three groups based on their characteristics in different 

MRI sequences: 

 T2w lesions: they are hyperintense when compared to the surrounding WM in T2w, 

PDw and T2 FLAIR sequences. They may be iso- or hypointense in T1w images. 

T2w lesions are not pathologically specific and can result from inflammation, 

edema, demyelination, or axonal loss. These lesions are shown in green in figure 1. 

 Gadolinium (Gd)-enhanced lesions: these lesions show an increased signal intensity 

on T1w images after injection with Gd, and are usually associated with 

hyperintensity in T2w, PDw, and T2 FLAIR images. Some lesions that appear 

hypointense compared to normal-appearing WM (NAWM) on T1w images before 

Gd injection may only become isointense with NAWM after its administration. 

These lesions can often be missed if a pre-injection T1w image is not acquired for 

comparison. Gd enhancement is associated with active inflammatory activity and 

breakdown of the blood–brain barrier (BBB). These types of lesion are shown in 

blue in figure 1. 

 Black holes: This term is used to refer to chronic T1w hypointense lesions. These 

lesions usually appear hyperintense on T2w, PDw, and T2 FLAIR images. Since 

transient inflammation may be associated with hypointensity in T1w images, some 

hypointensities in T1w images may disappear after a month or two. Thus, to qualify 

as a “black hole”, a T1w lesion should not change its signal intensity upon Gd 

injection and should generally have been present for at least several months. Such 

lesions are usually associated with relatively more severe tissue injury and axonal 

loss (6). The black holes are shown in red in figure 1. 

 

Nowadays, the study and the detection of the lesions are performed manually by experts 

that use their high level of anatomical knowledge to identify the lesions’ evolution. Since 

this process is time consuming and prone to intra-observer and inter-observer variability 

(7), an automated lesion detection technique could reduce both the disagreement and the 

time involved in the process.  

Resorting to modern Machine Learning (ML) algorithms, many automated procedures 

have been proposed for the detection and analysis of MS lesions, but there is no one 

commonly accepted in the clinical practice (5). 

The aim of this work is to test an automated identification of the MS lesions in the brain 

white matter using the new algorithm, Brain Intensity AbNormality Classification 

Algorithm (BIANCA), developed for the Functional Magnetic Resonance Imaging of the 

Brain (FMRIB) Software Library (FSL, Oxford, UK) package, to segment the hyperintense 

abnormalities in brain MRI.  

In chapter two we introduce the state of the art of MS lesion segmentation with ML 

algorithms, with a particular attention to the k-Nearest Neighbour (k-NN) classifier 

method. In chapter three BIANCA is presented, and the pipeline of pre-processing 

described. Moreover, in chapter three and four the optimization of BIANCA options and of 

the results are explained.  

In chapter five the results and some considerations about the work done are presented.
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Figure 1: Example of MS lesions on MRI: FLAIR, T2w, Gd-enhanced T1w and T1w images. Lesion types 

that can be observed: in blue, enhancing lesions, in green, lesions visible only on T2w, in red, black holes (6). 
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2. State of the art 

Since MRI is highly sensitive in detecting MS plaques and MS correlated problems in the 

central nervous system, many different automated algorithms have been presented in the 

last years. To the best of our knowledge, six reviews have been published about the topic: 

Mortazavi et al. (2012) (2), two reviews of Lladó et al. (2012) (7,8), García-Lorenzo et al. 

(2013) (6) Danelakis et al. (2018) (5) and Balakrishnan et al. (2021) (9). They present all 

the methods of lesion detection and segmentation used until 2021. Moreover, they give 

information about the image preparation and the evaluation metrics of the algorithms. 

A Computed Aided Diagnosis (CAD) require some common steps (2): 

• Image acquisition: the most common MRI protocols used for MS patients include 

T1-weighted (T1w), T2-weighted (T2w), PD-weighted (PDw) and fluid attenuated 

inversion recovery T2 (FLAIR) sequences. Usually also T1w sequences after the 

injection of Gadolinium are acquired (5); 

• Pre-processing: In case of automated detection and segmentation of MS lesions, the 

most common steps include: 

 Registration: the multi-modality images used need to be co-registered to correct 

patient motion and to obtain a unique map of the brain. 

 Brain extraction: the non-brain tissues are removed from the image. 

 Inhomogeneity correction and noise reduction: it is necessary to remove the 

inhomogeneity due to the random noise, which can bring to misclassifications. 

 Intensity normalization. 

• Feature extraction and transformation: since the features have different ranges, a 

normalization is needed to obtain meaningful distances in feature space for 

selecting the k “nearest” neighbours. 

• Classification with the chosen model. 

• Post-processing to reduce the misclassified elements. 

Due to the high variety of MS lesions, most of the approaches for automated segmentation 

combine different characteristics of the lesions in the images obtained with different 

sequences (8). 

The aforementioned reviews point out the difficulty of comparing the existing techniques 

which aren’t tested on the same dataset and with the same measures. Therefore, the authors 

propose some common evaluation measures that should be used for the future works. 

These metrics are divided in:  

 deterministic metrics, in which each voxel is assigned to only one tissue type (table 

1).  

 area and volume measures (table 2). 

 probabilistic measures, that use probability maps which attribute to each voxel the 

probability to belong to a class (table 3). 

 distance measures, which evaluate border distances between the segmentation and 

the ground truth (table 3). 
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The deterministic metrics are based on the confusion matrix (figure 2), which is the result 

of the machine learning classifiers. From a clinical point of view, they can be explained as: 

• True positive (TP): Refers to correctly segmented MS lesions areas. 

• True negative (TN): Refers to correctly rejected MS lesions areas.  

• False positive (FP): Refers to incorrectly segmented MS lesions areas. 

• False negative (FN): Refers to incorrectly rejected MS lesions areas. 

The evaluation measurements presented in table 1, 2 and 3 are taken from Danelakis  

review (5). 

 

Table 1: Deterministic evaluation measurements for automated segmentation (5,10). 

 

DETERMINISTIC MEASURMENTS 

MEASURE CALCULATION DESCRIPTION 

Sensitivity (SEN) 

Also called: Overlap 

Fraction (OF), True 

Positive Rate (TPR), 

Recall 

 

TP: True Positive 

FN: False Negative 

Specificity (SPE) 

Also called: True Negative 

Rate (TNR) 
 

TN: True Negative 

FP: False Positive 

Accuracy (ACC) 
 

 

Similarity Index (SI) 

Also called: F1 Score, 

Dice Similarity 

Coefficient (DSC) 

 
 

Positive Predictive Value 

(PPV) 

Also called: Precision, 

Reliability 

 
 

Fallout (FALL) 

Also called: False Positive 

Rate (FPR), False Alarm 

Ratio 

FALL= 1- SPE =  

 

 

Extra Fraction (EF) 
 

 

Jacard Index (JI) 
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Figure 2: Visual representation of the confusion matrix. 

 

 

Table 2: Area and volume evaluation measurements for automated segmentation (5,10). 

 

AREA AND VOLUMES MEASUREMENTS 

MEASURE CALCULATION DESCRIPTION 

Detection Error Rate 

(DER)  

DE: Detection Error 

MTA: Mean Total Area 

Outline Error Rate 

(OER)  
OE: Outline Error 

Correct Detection Ratio 

(CDR)  
MS: Manually Segmented Area 

False Detection Ratio 

(FDR)  
AS: Automatically Segmented Area 

Relative Area Error 

(RAE)  
 

Volume Difference 

(VD)  
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Table 3: Probabilistic and distance evaluation measurements for automated segmentation (5,10). 

 

PROBABILISTIC AND DISTANCE MEASUREMENTS 

MEASURE CALCULATION DESCRIPTION 

Intra-Class Correlation 

(ICC)  

: differential variance between 

the segmentations 

: differential variance between the 

points in the segmentations 

Pearson’s r Coefficient 

(PrC) 
 

xi , yi: volumes of the ground truth and 

the automatic segmentation, 

 : respective means of the absolute 

volumes 

N: number of time points. 

Probabilistic Similarity 

Index (PSI)  

: sum over all voxel 

probabilities, where in the manual 

segmentation (gold standard, gs) the 

voxel value=1; 

: sum over all the voxel of in 

the gold standard; 

: sum over all the probabilities in 

the probability map. 

Probabilistic Overlap 

Fraction (POF)  
 

Probabilistic Extra 

Fraction (POF)  

: sum over all voxel 

probabilities where in the gold 

standard the intensity value=0 

Hausdorf Distance 

(HD) 
HD(A, B) = max(h(A, B), h(B, A)) 

h(A, B) = maxa ∈ A minb ∈ B ||a − b||  

||a − b||: Euclidean distance  

A, B: two finite sets 

Average Distance (AD) AD(A, B) = max(d(A, B), d(B, A)) 

 
||a − b||: the Euclidean distance; 

A, B: two finite sets; 

N: number of elements of the finite 

sets; 

 

 

 

The ML algorithms used to segment the MS lesions can be divided in supervised and 

unsupervised methods. The former “learn” the definition of lesions from example images 

that have been previously segmented by another method, usually manual segmentation. 

The latter do not require labelled training data to perform the segmentation (6).  

According to Danelakis et al. (5), the supervised methods have a wide list of classifiers that 

can be used, and they have a strong accuracy due to the training process. On the other 

hand, manual segmentation and the training process are time consuming. 
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The unsupervised methods are faster to set up because no training process is needed, but 

it’s more difficult for them to achieve high accuracy. Moreover, the vast majority of them 

are built on parametric distributions of signal intensities in structural neuroimaging data.  

A recent systematic review on automatic segmentation of WMH (9), shows that at the 

moment there is no evidence to favour the application of one method rather than other.  

BIANCA, explained in detail in the next paragraph, uses the k-Nearest Neighbour (k-NN) 

classifier, which is a nonparametric procedure for estimation of local class conditional 

probability density functions from sample patterns (11).  

In this method each voxel is treated as a separate sample, and it is associated to a feature 

space. A list of voxels and therefore features is collected during the training phase. 

In the testing phase, the voxel is located in the feature space considering its features, and 

then is classified according to the k closest training examples in the feature space (10). 

The output of the classification is the probability of a voxel being part of a lesion, 

calculated as the proportion of k neighbours. The algorithm is a supervised method, so a 

pre-classified dataset is required as training data. The k-NN method requires both high 

memory capacity for storing the model parameters and long training time.  

The k-NN classifier has been already used to segment the MS lesions: Vinitski at al. (12), 

Mohamed et al. (13) and Wu et al. (14) have used this method only with MRI features; 

Mohamed et al. and Vinitski et al. used T1w, T2w and PDw images, while Wu et al. used 

T2w, PDw and T1w post-Gd sequences.  

Most recently, Steenwijk at al. (15) and Fartaria et al. (16) added spatial information as an 

additional feature of the k-NN.  

Steenwijk et al., after the pre-processing (consisting in brain extraction, RF 

inhomogeneities correction and linear registration of the sequences), used as features the 

T1w, the T2 FLAIR, the spatial coordinates in the MNI (Montreal Neuroimaging Institute) 

space obtained through the registration, and the tissue type probability obtained with 

FMRIB Automated Segmentation Tool (FAST) of the FSL software. The dataset consisted 

in 20 MS patients  (15). 

Fartaria et al. uses the voxel intensity of the MRI sequences MPRAGE (Magnetization 

Prepared RApid Gradient Echo), T2 FLAIR, MP2RAGE and DIR (Double Inversion 

Recovery) as features, together with the spatial location in MNI space, obtained from the 

pre-processing, and the tissue type probability map. The dataset consisted in 39 early-stage 

MS patients (16). 

The k-NN classifier returns the probability about the classification of the element, based on 

the label of the nearest neighbours. For this reason, the chosen k number affects the final 

result. In literature, the k number of brain lesion segmentation algorithm is settled between 

15 and 100 (10,16). To obtain deterministic measures the probability maps are thresholded 

and transformed binary maps. The chosen threshold value is of critical importance, since it 

can affect the final classification. Many values can be found in different articles, threshold 

values between 0.26 and 0.7 are commonly accepted (2,10,16). 
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3. Materials and methods 

3.1   BIANCA 

BIANCA is an algorithm included in the FSL package (FMRIB Software Library, Oxford, 

UK) to classify white matter hyperintensities. It’s a fully automated, supervised method 

that uses the k-Nearest Neighbour (k-NN) classifier (17). 

The already segmented training dataset is divided in White Matter Hyperintensities 

(WMH) and non-WMH. 

BIANCA automatically applies the leave-one-out cross-validation method: a reduced 

training set is used for the segmentation of a subject from the training dataset, where the 

reduced training set excludes this subject and is built from the voxels of the remaining 

training subjects (17). 

The main options available in the algorithm are (figure 3): 

• Multiple MRI modalities – it is possible to work with many of them, both 2D and 

3D. The images need to be registered to a consistent reference MRI modality to 

allow the algorithm to work in the subject’s space. 

Intensity normalization using variance scaling (subtraction of the mean from the 

feature values and division of the outcome by standard deviation (10)) is 

automatically applied to all the images.  

• Spatial weighting (sw) – can be applied to the spatial coordinates obtained after the 

registration. The spatial information increases the accuracy of the segmentation, 

since some regions are more likely to be affected by the MS lesions than others. 

Weighting allows to emphasize or de-emphasize the role of the coordinates, with 

higher value for spatial weighting leading to the neighbouring feature vectors being 

more likely to come from similar spatial locations.  

If sw=1 the data is simply variance normalised, if sw=0 the spatial coordinates will 

be ignored, if sw is large the spatial features have a prior role to define the 

probability map and the intensity is ignored. To use this option the standard MNI 

space is needed. 

• Patch – it’s possible to add an intensity feature containing the local average 

intensity. It’s possible to select one or more patch size, by setting their edge size in 

voxels (D), and they can be 2D or 3D. 

• Number and location of training points – It is possible to select the number of 

training points belonging to the manual segmented lesion and to the non-segmented 

image. There are three different option for that: 

 Fixed + Equal (FE), in which a fixed value N is set, and the algorithm uses both 

for the WMH and the non-WMH; 

 All WMH + Equal (AE), in which all the points classified as WMH are used 

and an equal number of points is used in the non-WMH; 
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 Fixed + Unbalanced (FU), in which it’s possible to specify different numbers of 

training points for WMH and non-WMH. 

BIANCA allows also to restrict the selection of the location of the points in the non-WMH 

so that points close to the borders between the two labelled areas are preferentially selected 

as non-WMH points (“surround” option) or excluded from the training set (“no border” 

option). The default option considers all the training points inside the brain that are not 

classified as WMH (“all” option).  

When the probability map is obtained, it is possible to threshold it to obtain a binary map. 

To obtain the proper thresholding it is necessary to try several values and check the 

consequences on the confusion matrix to see how the False Positive (FP) and False 

Negative (FN) change.  

It is possible to use an exclusion mask to the BIANCA’s output, to reduce the FP. These 

masks can be obtained by the class segmentation of FSL-FAST (17). 

At the current date, the algorithm it’s still in beta version as part of FSL. In its presenting 

article (17) it has been tested on a neurodegenerative cohort and a vascular cohort.  

3.2   Datasets 

The dataset used throughout the training and optimization process comes from the Medical 

Image Computing and Computer Assisted Interventions (MICCAI) 2016 challenge. It is 

composed of 15 MR studies of MS patients, acquired in three different scanners (5 Philips 

Ingenia 3T, 5 Siemens Aera 1,5T, 5 Siemens Verio 3T). For each patient five sequences 

are provided: a 3D T2w, a 3D FLAIR, a 3D T1w, a 3D T1w post Gadolinium injection and 

a 2D DP/T2w, all given as raw data in NIfTI (Neuroimaging Informatics Technology 

Initiative) format. Moreover, for each patient seven manual segmentations and a consensus 

segmentation made from the manual segmentations are available. 

It is possible to also access pre-processed images (18), but it has been chosen to work with 

the raw dataset, in order to develop and optimize the ideal pipeline to work with BIANCA. 

In order to test the optimized algorithm, the public dataset of Lesjak et al. was used (19). It 

consists of 30 MR studies of MS patients acquired on 3T Siemens scanners using 2D T1w, 

2D T1w post Gd injection, 2D T2w, 3D FLAIR sequences. Moreover, the consensus white 

matter segmentations are given. Also, in this dataset it is possible to access pre-processed 

images, but we choose to apply the pipeline used for the previous dataset.  
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BIANCA 
OPTION 

DESCRIPTION 
OPTION 
TESTED 

SCHEMATIC REPRESENTATION 

MRI 
Modality 

Intensity 
features 

T1+FLAIR 

 

Spatial 
Weighting 

Spatial 
coordinates 

0 – 5 

 

Patch 
Local Intensity 

Averages 
2D and 3D, 

1 - 10 

 

Lesion 
Load 

Subject 
included in 
the training 
dataset in 
terms of 
WMHs 

High, Low, 
balanced, 
Leave one 

out 

 

Location of 
training 
points 

Where to 
select the non 

lesion area 

Any, 
noborder, 
surround 

 

Number of 
training 
points 

Maximum 
number of 

training points 
to use 

Even  
10k-100k, 
Uneven 
2k/10k-

10k/50k - 
equal 

 
 Figure 3: BIANCA options (17). 
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3.3   Pre-processing 

The first step of the pre-processing requires a DICOM (Digital Imaging and 

COmmunications in Medicine) to NIfTI conversion to make the data compliant with the 

FSL suite. After that, two additional steps are required: the brain extraction, needed in at 

least one MR modality, and the linear registration between modalities and with a reference, 

to be able to use spatial information (figure 5). 

The computer used for this work is a personal computer (Intel i7 2.20GHz x 8 core CPU, 

operating system Ubuntu 18.04.5 LTS, RAM 8GB). 

3.3.1 Brain Extraction Tool 

Removal of the non-brain structures is performed using the Brain Extraction Tool (BET) 

(20) included in the FSL package.  

This method estimates the lower and upper threshold between brain and background on a 

histogram-based heuristic. From the pixels pre-classified as brain, a rough Centre of 

Gravity (COG) is estimated. A tessellated sphere is then generated centred in the COG 

with a radius set half of the estimated brain radius. The final shape is obtained by 

iteratively subdividing each triangle in smaller ones and adjusting each vertex. 

Since some of the data available include also neck in the field of view, to have a better 

estimation of the centre of the head, an automatic cropping of the Field Of View (FOV) 

was done using the FSL tool robustfov (20). 

3.3.2 Linear Registration 

The chosen algorithm is FMRIB's Linear Image Registration Tool (FLIRT) (21,22), 

included in the FSL package, which is a fully automated method for linear inter and intra-

modal brain image registration. The algorithm is based on the optimization of a cost 

function to maximize the similarities between the floating image and the reference image. 

To do so it uses a multiresolution local registration called repeatedly, preceded by an initial 

search that is focused on the rotational part of the transformation space (21,22). 

To ensure a consistent localization of the spatial features in BIANCA, all the images were 

transformed to a standard MNI space, using a 1mm resolution template provided with FSL. 

For the registration, the default settings were used, as suggested in the FLIRT User Guide 

(23). 

It was decided first to work at a coarse resolution to reduce the number of voxels to 

classify and thus the running time. Once the pipeline was optimized on the MICCAI 

dataset at 2mm resolution, it was applied to the higher resolution dataset (1mm isotropic 

voxel size) to improve both resolution and accuracy of the classification. 

With MNI1mm registration the processing time is about doubled when compared with the 

MNI2mm registration. 
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3.4  BIANCA optimization, training and test 

The input data used for the algorithm are the brain extracted 3DT1w images, the binary 

brain masks obtained with BET, the 3D FLAIR images and the consensus lesion masks. 

BIANCA default options are sw =1, no patch, location of training points = any, number of 

training points = fixed + equal (2000 lesion and non-lesion points). 

The features to be optimized are: lesion load distribution, thresholds, spatial weighting, use 

of patches, location and number of training points.  

These parameters were tested independently starting from the default options, and then the 

combination of the best option was applied. 

To test the different features, except for lesion load, all the subjects have been used as part 

of the training dataset thanks to the leave-one-out characteristic of the algorithm that 

automatically excludes the voxels of the testing subject from the classifier. 

3.4.1 Thresholding 

The thresholds have been tested with values ranging from 0,1 to 1 in steps of 0,1. The next 

measures have been carried out using the threshold with the best evaluation measuments. 

On the probability maps obtained with the optimized options, a spatially optimized 

thresholding was tested, LOCally Adaptive Threshold Estimation (LOCATE, algorithm 

explained in more detail in the post processing paragraph 3.5) to obtain the best results.  

3.4.2 Spatial weighting 

The spatial coordinates feature weight was tested from 0 to 5 with a step of 0,5, using the 

best threshold and all the other features set to default. 

3.4.3 Patches 

The intensity local average was tested from 1 to 10, both 2D and 3D. 

3.4.4 Location of training points 

The available option considered for location of the non-lesion points are: any, without the 

borders of the lesions, and only the surroundings of them.  

3.4.5 Number of lesion and non-lesion points 

The default option is an equal number of lesion and non-lesion points, and this option was 

tested with values from 1000 to 20000 with a step of 1000 and then from 25000 to 100000 

with a step of 5000. This was done because in the first optimization, with the linear 

registration to MNI2mm, the best result was obtained with 4000 lesion and non-lesion 

points. The optimization with the improved resolution required higher values, so the step 

was moved from 1000 to 5000. 
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Moreover, the option that considers all the lesion areas and an equal number of non-lesion 

areas (equal points option) was tested. 

As a final step, the unbalanced option was tested with value of lesion points from 2000 

until 10000 with a step of 2000 and non-lesion points from 10000 until 50000 with a step 

of 10000. 

3.4.6 Lesion load 

The lesion load in MS patients is highly variable. In our dataset, the load spans a range of 

[4 x103, 167x103] voxels, with a mean lesion load of 58x103 voxels (figure 4). It is known 

that the load influences the reliability of the results, giving higher performances with 

higher lesion load (17) so the training dataset was divided in three different groups, in 

order to obtain a high, low and balanced lesion load with respect to the average value. This 

was carried out with the default option of the algorithm and the optimal threshold, with 

images co-registered to MNI2mm. 

 

Figure 4: Different lesion load of dataset cases: a) minimum load, b) intermediate load, c) maximum lesion 

load. In red it is shown the brain outline of the MNI template and in white the WMH binary manual mask. 
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Figure 5: Pipeline of this work: the pre-processing consists in brain extraction and linear registration, 

performed with BET and FLIRT. Then the classifier, BIANCA, is trained and its options optimized. The 

probability maps obtained are thresholded, using hard thresholds and LOCATE, a spatially optimized 

threshold, and the binary maps are evaluated through ICC and SI. 

3D 

3D 
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3.5 Post-processing and performance evaluation 

The probability maps obtained by BIANCA need to be thresholded to obtain binary maps 

to be compared to the manual lesion masks. 

To do so, FSL offers an automatic tool, BIANCA_overlap_measures, that returns a number 

of metrics described as follows:  

• Dice Similarity Index (SI):  

 

• Voxel-level false detection rate (FDR):  

 

 

• Voxel-level false detection rate (FNR): 

 

 

• Cluster-level FDR:  

 

 

• Cluster-level FNR:  

 

 

• Mean Total Area (MTA):  

 

 

• Detection error rate (DER):  

 

 

• Outline error rate (OER):  

 

• Volume of BIANCA segmentation (after applying the specified threshold) 

• Volume of manual mask 
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For the thresholding, BIANCA User Guide (24) suggests an alternative algorithm based on 

MATLAB, named LOCATE.  

This method estimates local thresholds in BIANCA’s lesion probability map by 

segmentation with Voronoi tessellation, extraction of local features and estimation of the 

optimal local threshold using a supervised learning method. 

The processing starts by identifying local maxima on Gaussian filtered probability map to 

avoid spurious fluctuation due to isolated voxels. Then the map is tessellated into Voronoi 

polygons and different thresholds are applied considering the mean intensity value in the 

corresponding area of the base image, the distance between ventricles (optional) and the 

volume of the thresholded region. The optimal local threshold for each area is obtained 

using a random forest regression model (25). This method was applied to the probability 

maps obtained with the best combination of all the parameters (figure 6). 

 

 
Figure 6:  Application of LOCATE to improve BIANCA  performance (25). 
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4. Results 

Each option was evaluated considering both the Similarity Index (SI) obtained with 

BIANCA Post-Processing and the Intra-Class Correlation coefficient (ICC), obtained using 

MATLAB (release R2020a) and estimated with 95% confidence intervals based on 2-way 

mixed effects model, considering the consistency and single rater (ICC (3,1)) (26),  

between the total lesion volume from BIANCA output and the one from the manual masks. 

The best combination was selected mostly considering the ICC value (17). In fact, higher 

ICC values indicate a better correlation and concordance between the two measures, which 

are the number of voxels labelled as lesion by BIANCA and of those obtained from the 

manual masks.  

The trained and optimized classifier was then tested with Lesjak et al. dataset. Before the 

application of BIANCA, the pipeline of pre-processing described in paragraph 3.3 was 

applied. 

4.1   Threshold 

The best resulting threshold (figure 7) is 0.9, with an ICC=0.70 and a SI=0.43. All the 

other optimizations used this value to binarize the probability mask obtained by BIANCA. 

The running time of this optimization was about 10 hours. 

  

 

 
 

Figure 7: Distribution of the SI and ICC with the application of different thresholds. The “*” indicates the 

option selected for the optimization. ICC and SI values are rounded to the second decimal place. 

* 
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4.2   Spatial weighting 

For the weighting of the spatial features (figure 8), similar results were obtained with 1 and 

1.5, however, 1.5 was chosen given the comparable absolute values of SI and ICC. This 

optimization took about 12 hours. 

 

 

 
 Figure 8: Distribution of the SI and ICC with the application of different values of spatial weighting. The 

“*” indicates the option selected for the optimization. ICC and SI values are rounded to the second decimal 

place. 

 

 

4.3   Patches 

In the patches optimization (figure 9), the mean SI obtained with 2D and 3D patches were 

similar. The best result was obtained with 3D patch=4. This optimization took about 16 

hours. 

 

4.4   Location of training points 

Similar results were obtained using all the non-lesion points and without the area 

surrounding the lesions (figure 10). The option considered the best one was “no border”, 

with a mean SI=0.44 and an ICC=0.72. This optimization took about 6 hours. 

 

* 
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Figure 9: Distribution of the SI and ICC with the application of different patches, 2D and 3D. The “*” 

indicates the option selected for the optimization. ICC and SI values are rounded to the second decimal place. 

 

 

 
Figure 10: Distribution of the SI and ICC with the application of different option regarding the location of 

non-lesion points. The “*” indicates the option selected for the optimization. ICC and SI values are rounded 

to the second decimal place. 

 

* 

* 
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4.5   Number of lesion and non-lesion points 

An equal number of lesion and non-lesion points to train the classifier gives better 

correlation and better mean SI (figure 11).  

The option chosen is 60000 because the absolute value of both SI and ICC are the highest. 

The option with an unbalanced number of lesion and non-lesion points returned lower 

correlation. All the optimization of this option took about 48 hours. 

4.6   Lesion load 

The use of a training set with lesion load lower than the test set (mean training 

load=64x103, mean test load=205x103), yield higher mean SI (0.53) but lower ICC (0.2) 

(figure 12). 

The use of a higher load in the training set than the test one (mean training load=111 x103, 

mean test load=20 x103), results in high ICC (0.74) and a low mean SI (0.16). 

Balancing the loads in the training and test sets (mean training load=93 x103, mean test 

load=92 x103) return a mean SI=0.37 and ICC=0.72. 

The best combination of ICC and SI was considered to be the latter. Even if this option was 

tested, the division of the training subject in three groups wasn’t used for the final 

optimization. Instead, the leave one out option was used, as it allows for a higher number 

of subjects included in the training set that ultimately lead to a more robust classifier. 

 

 

 

Figure 11: Distribution of the SI and ICC with the application of different number of lesion and non lesion 

points. The “*” indicates the option selected for the optimization. ICC and SI values are rounded to the 

second decimal place. 

 

* 
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Figure 12: Distribution of the SI and ICC with different lesion load. The “*” indicates the option selected for 

the optimization. ICC and SI values are rounded to the second decimal place. 

 

4.7   Optimization 

The options used (table 4) in the final optimization are sw = 1.5, 3D patch = 4, location of 

training points = no border, number of training points = fixed + equal (60000 lesion and 

non-lesion points). The comparison has been done (figure 13) considering the SI and ICC 

in three different cases: the default options with default threshold = 0.9, the optimized 

probability map thresholded with the optimized threshold = 0.9, and finally the optimized 

probability map thresholded using LOCATE. 

The best results were obtained using LOCATE, with an improvement of ICC from 0.85 to 

0.92 when comparing the probability map thresholded with a hard threshold and with 

LOCATE. 

In figure 14 there are three examples of the binary maps obtained with this optimization. 

 

OPTIONS CHOICES 

Spatial weighting 1,5 

Patch 3D – 4 

Location of non-lesion points No border 

Number of training points Fixed + equal – 60000 

Threshold LOCATE 

Table 4: Optimization choices for BIANCA options.  

* 
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Figure 13: Distribution of the SI and ICC of the optimized dataset with the application of threshold=0.9 (first 

column) and using LOCATE (second column). The third column are the ICC and SI of the dataset with the 

application of default BIANCA options and a threshold of 0.9. ICC and SI values are rounded to the second 

decimal place. 

 

 

4.8   BIANCA test results 

The 30 patients of the test dataset were evaluated using the optimized classifiers trained 

with the MICCAI dataset. The options used are sw=1.5, 3D patch=4, location of training 

points = no border, number of lesion and non-lesion points = Fixed + Equal with 60000 

points, LOCATE to create the binary map. 

The results on the test dataset are ICC=0.27 and SI=0.26 (table 5). 

 

 

 

Table 5: Comparison between SI and ICC of the training and testing dataset using the optimized options.  

 SI ICC 

Training dataset 0.57 0.92 

Testing dataset 0.26 0.27 
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Figure 14: Three different examples on BIANCA results over FLAIR images: a) low lesion load, b) 

intermediate load, c) high lesion load. In red are shown the manual masks, in blue the LOCATE thresholded 

binary maps. The pink area is the overlap of the manual mask and BIANCA result.  
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5. Discussion 

In this work, an algorithm developed to perform automatic segmentation of white matter 

hyperintensities using a k-NN classifier, BIANCA, was tested in an open MS dataset. 

The dataset used for the optimization and training was taken from the MICCAI 2016 

challenge and consists of 15 patients acquired with three different MRI scanners, both at 

1.5 T and 3T. For each patient, only the 3DT1 and FLAIR images were considered, 

starting from the raw files to create a pipeline of pre-processing that could be considered 

for clinical application. To do so, FSL tools (BET, FLIRT) were used. With the pre-

processed images, the tuning of BIANCA consisted in an iterative optimization of five 

main parameters: spatial weighting, uses of intensity patches, number and location of 

training points, optimization of the threshold and the effect of lesion load on BIANCA 

output. Moreover, the robustness of the manual thresholding was compared against a data-

driven local-thresholding algorithm, LOCATE. 

After the optimization, the Lesjak et al. public dataset, consisting of 30 subjects acquired at 

3T, was used to test the classifier. 

It was decided to not use exclusion masks for the variable distribution of MS lesions (3). 

To evaluate the output, two indices were considered: SI and ICC. Both the metrics evaluate 

the correspondence between WMH-maps found by BIANCA and the manual masks, from 

a spatial and quantitative point of view, respectively. The joint evaluation of the two 

indices is necessary to explain the performance of the segmentation.  

The best combination was obtained with a spatial weighting of 1.5, 3D intensity patches 

with D=4 and with a fixed number of 60x103 training points in the lesion area and an equal 

number of the non-lesion one, avoiding the edges of the latter. The probability map 

obtained with the previous parameters and LOCATE for spatially optimized thresholding, 

proved to return the best results, with a SI=0.57 and an ICC=0.92. 

BIANCA is based on k-NN classifier, that builds a voxel-wise feature space. This 

characteristic allows the leave-one-out option, that automatically excludes all the voxels 

belonging to the testing subject from the training set, so that the optimization and the test 

can be done with the same dataset not influencing the final result. The optimization process 

of this work has been done using this option. 

With the optimized probability maps and spatially optimized thresholding, it is possible to 

obtain the plot of mean SI as a function of lesion load, reported in figure 15. In the plot, it 

is possible to notice how the SI increases with the increase of the lesion load, with a 

logarithm as the best fitting curve, as it is for the MICCAI challenge results. A possible 

hypothesis for this could be a threshold-dependent performance of the ML methods, where 

sparse lesion distributions lead to a suboptimal classification. This confirms that the lesion 

load of the dataset has an influence of the final result of the classification (17). 

The dataset used in this work is the training dataset used in the MICCAI 2016 Challenge 

whose results are publicly available. In table 6 are summarized the results of all the teams 

that successfully concluded the challenge (18,27,28). 
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Figure 15: Distribution of mean SI, obtained with the optimized BIANCA options, as function of the lesion 

load. 

 

Table 6: Participants to the MICCAI 2016 Challenge, their segmentation approach, the sequences they used 

and the average SI they obtained (18,27,28). 

Authors Segmentation Approach Sequences used Average 
SI 

R. McKinley 

T. Gundersen 

Ensemble of three 2D fully Convolutional Neural 

Networks with skip connections 

FLAIR (pre-processed) 0.591 

E. Roura 

X. Lladó 

Outlier segmentation based on brain tissue labelling 

and post-processing rules 

T1-w, FLAIR (raw) 0.572 

S. Valverde 

M. Cabezas 

Cascade of two 7-layer convolutional neural 

networks of 3D patches 

T1-w, T2-w, PD, FLAIR 

(pre-processed) 

0.541 

F.J. Vera-

Olmos 

N. Malpica 

Grey matter filter as input to a RF classifier 

corrected with Markov Random Field processing 

T1-w, T2-w, PD, FLAIR 

(pre-processed) 

0.521 

J. Knight 

A. Khademi 

Segmentation by edge-based model of partial 

volume/pure tissue grey levels 

FLAIR (raw) 0.490 

J. Beaumont 

O. 

Commowick 

Multi-modal abnormalities detection from 

normalized images on an atlas 

T1-w, T2-w, FLAIR (pre-

processed) 

0.485 

S. Doyle 

F. Forbes 

HMRF segmentation framework with a weighted 

data model 

T1-w, FLAIR (raw) 0.489 

J. Beaumont 

O. Commowic 

Graph cut segmentation initialized by a robust EM T1-w, T2-w, FLAIR (pre-

processed) 

0.453 

A. Mahbod 

C. Wang 

Supervised artificial neural network with intensity 

and spatial based features 

FLAIR (pre-processed) 0.430 

H. Urien 

I. Bloch 

Hierarchical segmentation using max-tree, spatial 

context and anatomical constraints 

T1-w, T1-w Gd, T2-w, 

PD, FLAIR (raw, pre-

processed) 

0.347 

M. Santos 

A. Silva-Filho 

Multilayer perceptron with cost functions oriented 

to competition evaluation metrics 

T1-w, T2-w, FLAIR (pre-

processed) 

0.340 

J. Muschelli 

E. Sweeney 

Random Forest (RF) on normalized multi-modal 

features 

T1-w, T2-w, PD, FLAIR 

(raw) 

0.341 

X. Tomas-

Fernandez 

S.K. Warfield 

Lesions and brain tissue segmentation through 

simultaneous estimation of spatially and population 

varying intensity distributions 

T1-w, T2-w, FLAIR 

(raw) 

0.228 
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The MICCAI 2016 training dataset was composed of 15 training subjects, considered also 

in this work, and n=38 cases to test the algorithm. 

Although it would be important to test our optimized BIANCA pipeline on the MICCAI 

testing dataset, it wasn’t possible (since it is not publicly available). Anyway, the results 

obtained are in good agreement with the results reported by the 13 teams that successfully 

concluded the challenge (figure 16). 

 

 
Figure 16: Distribution of SI obtained with the MICCAI challenge dataset by BIANCA and the challenge 

participants. 

 

It’s worth to notice that those results share with ours the same dataset however the test set 

is different. Therefore, our results are not strictly comparable with the challenge ones. 

Different conditions were tested in the definition of the training set, trying to balance the 

lesion load between training and test subjects. All these combinations lead to sub optimal 

results, thus corroborating the hypothesis that a larger sample with leave-one-out could be 

an effective way to produce a robust training procedure. 

On the other side, the test of the optimized classifier carried out on the Lesjak et al. public 

dataset returned SI=0.26 and an ICC=0.27.  

The highly different results obtained with Lesjak et al. testing dataset can be due to a 

number of reasons.  

First, in the testing dataset the sequences acquired for each patient consist of 2D T1w and 

3D FLAIR, while in the training dataset the sequences are 3D T1w and 3D FLAIR. In our 

classifier the spatial feature and the intensity features are taken both from T1w and FLAIR 

images. Even if the images are all co-registered to MNI1mm, the spatial resolution of the 

testing dataset is lower than the training dataset, and this may influence the precision of the 

results. 

The training dataset is heterogeneous, in terms of scanner properties: 5 patients acquired 

with a 1.5T Siemens Aera, 5 patients acquired with a 3T Siemens Verio and 5 patients 

acquired with a 3T Philips Ingenia. On the other hand, the testing dataset (n=30) was 

entirely acquired on a 3T Siemens Magnetom Trio. In figure 17 are reported the SI results 

of the MICCAI dataset, distributed for lesion load and scanner type. It is possible to 

observe that the 1.5T acquisition provides slightly better results compared to 3T scanners, 
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given the same lesion load. This could be explained by the expected higher sensitivity of 

the 3T MR in detecting smaller lesions, that could possibly result in a baseline shift 

between the two field strengths. 

Moreover, there is a difference in the results obtained with the two high field scanners.  

The two groups have a different image resolution: in the 3T Siemens T1 voxel size is 

1x1x1 mm, while in the FLAIR is 1.1x0.5x0.5 mm, in the 3T Philips T1 voxel size is 

0.85x0.74x0.74 mm, while in the FLAIR images is 0.7x0.74x0.74 mm. 

 

 
Figure 17: SI MICCAI challenge dataset results as function of the lesion load (in logarithmic scale) divided 

per acquisition scanners.   

 

The distribution of lesion load in the two dataset is shown in the box plot in figure 18. The 

MICCAI dataset has a mean lesion load higher than the Lesjak et al. dataset. Even if the 

second quartile is similar, the third quartile is higher in the MICCAI dataset, meaning that 

the distribution of the lesion load of the Lesjak dataset is skewed towards lower values. 

Since the lesion load influences the final result of the classifier, the different distribution of 

lesion load also contributes to the different results obtained with the two datasets. 

Publicly available MS datasets are rare, so it wasn’t possible to obtain a wide number of 

cases to train and test BIANCA without the differences we had between our sets. Future 

works could be focused on studying the impact of different sequences, different fields and 

different scanners on the training and test of this classifier. 

Even with differences between the training and testing datasets, the results obtained with 

Lesjak et al. dataset are included in the range of results obtained in the MICCAI challenge, 

where the testing dataset is composed of images acquired with the same scanners and the 

same protocols used in the training set. 
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Figure 18: Boxplot of the lesion load of the two dataset used: in blue the MICCAI challenge dataset, used for 

the training of the classifier, and in orange the Lesjak et al. dataset, used for the test of the classifier. 

 

The processing time required by the optimization and training of the classifier is highly 

influenced by the computational power available, also considering that only few steps of 

the FSL pipeline could benefit from advanced computational platforms such as parallel or 

GPU accelerated systems. 

Anyhow, the optimized pipeline itself showed interesting results that suggest a possible 

application on different datasets. 
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6. Conclusion 

The aim of this work was to design and optimize a workflow to automate WMH lesion 

detection with a ML approach. 

The optimization was conducted on 15 cases from the MICCAI 2016 Challenge, pre-

processed using FSL tools BET and FLIRT. 

The results obtained with the optimized classifier are SI=0.57 and ICC=0.92, indicating a 

good correlation between the results and the ground truth, available as a subject-specific 

manual labelling of the lesions. 

After the optimization, the test of the classifier has been carried out on 30 cases of the 

Lesjak public dataset, obtaining an SI=0.26 and an ICC=0.27. 

The results were probably influenced by the differences between the datasets in the 

acquisition and in the lesion load distribution. 

The small number of subjects for training and test is the main limitation of this study. A 

higher number of training subjects would increase the reliability of the features collected 

by the classifier and would improve the performance of the algorithm. 

A limited availability of public MS neuroimaging data and the pandemic of the last year 

represented the main obstacles in finding a bigger and homogeneous dataset to use for the 

present work. 

Future developments may include the use of a more extended training set, to increase the 

feature space, and a more homogeneous test set with clinically relevant features to 

evaluate. 

Other improvements may be achieved with the inclusion of different MR modalities, such 

as T2w and T1w sequences after injection of Gadolinium. 

A robust identification of MS lesions is crucial, since it could help the radiologist in the 

longitudinal assessment of MS disease progression as a function of time. 

A highly desirable evolution of this method is the extraction of a wider set of features from 

the segmented WMH to exploit a radiomics approach to ultimately define the imaging 

fingerprint of the disease, thus pushing forward the knowledge in this field. 
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