Luís Carlos
Lopes Gaspar

Utilização de assinaturas lipídicas do músculo de polvo comum (Octopus vulgaris) para rastrear a sua origem geográfica

Using lipidomic fingerprints of common octopus' (Octopus vulgaris) muscle to trace its geographic origin

Luís Carlos
 Lopes Gaspar

Utilização de assinaturas lipídicas do músculo de polvo comum (Octopus vulgaris) para rastrear a sua origem geográfica

Using lipidomic fingerprints of common octopus' (Octopus vulgaris) muscle to trace its geographic origin

Dissertação apresentada à Universidade de Aveiro para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Biologia Marinha Aplicada, realizada sob a orientação científica da Doutora Felisa Rey Eiras, Investigadora Júnior do Departamento de Química da Universidade de Aveiro e coorientação científica do Doutor Ricardo Calado, Investigador Principal com Agregação do Departamento de Biologia da Universidade de Aveiro.

Marine Biotechnology \& Aquaculture (MBA)

Thanks are due to FCT/MCTES (Portugal) for the financial support to CESAM (UIDB/50017/2020+UIDP/50017/2020), QOPNA/LAQV (UID/QUI/00062/2019) and RNEM (LISBOA-01-0145-FEDER-402022125), through national funds, and the cofunding by the FEDER, within the PT2020 Partnership Agreement and Compete 2020.
This work was financially supported by the project TraSeafood (Tracing the geographic origin of seafood as a pathway towards the smart valorization of the endogenous marine resources) (PTDC/BIA-BMA/29491/2017), funded by FEDER, through PT2020 Partnership Agreement and Compete 2020 and by national funds (OE), through FCT/MCTES.

o júri

presidente
vogal

Prof. Doutora Maria Marina Pais Ribeiro da Cunha

Professora Auxiliar do Departamento de Biologia da Universidade de Aveiro

Doutora Narcisa Maria Mestre Bandarra
Investigadora Auxiliar no Instituto Português do Mar e da Atmosfera (IPMA)
Doutora Felisa Rey Eiras
Investigadora Júnior do Departamento de Química da Universidade de Aveiro

A realização da presente dissertação de mestrado contou com a ajuda de diversas pessoas a quem devo agradecer.

À minha orientadora, Doutora Felisa Rey Eiras, por toda a ajuda neste percurso que é uma tese, pela paciência e empenho na sua orientação. No meio de um ano tão turbulento, mostrou sempre disponibilidade para me ajudar a orientar o trabalho.

Ao meu co-orientador, Doutor Ricardo Calado, pela partilha do seu conhecimento científico.

À Professora Doutora Maria do Rosário Domingues por toda a ajuda ao longo desta dissertação.

A todo o laboratório de espetrometria de massa, pela ajuda e disponibilidade que mostraram a um rapaz que andava sempre a fazer perguntas.

A todos os meus amigos que ganhei em Aveiro e que tornaram os últimos 5 anos incríveis. Um especial agradecimento ao Rafael e à Francisca por me terem aturado e por todo o apoio e amizade que mostraram, nos bons e maus momentos.

Por fim, um agradecimento à minha família, pais, irmão e avós por todo o apoio incondicional, pois sem eles isto não seria possível.

palavras-chave

resumo

Fosfolípidos, LC-MS, Lipidómica, Produtos de origem marinha, Rastreabilidade

Nas últimas décadas, o polvo comum (Octopus vulgaris) tem-se tornado um dos cefalópodes mais importantes nas pescarias internacionais devido ao seu elevado valor comercial e gastronómico. Na cultura Mediterrânica, o polvo é um símbolo da cozinha tradicional pelo seu requintado sabor e elevado valor nutricional, nomeadamente a sua riqueza em ácidos gordos ómega-3 polinsaturados de cadeia longa. A maioria dos consumidores considera que conhecer a proveniência dos produtos do mar é de extrema importância, encorajando ao desenvolvimento de métodos de confiança para permitir rastrear a origem geográfica destes produtos de elevado valor económico. Recentemente, o uso de ferramentas lipidómicas têm aberto novas oportunidades na rastreabilidade da origem geográfica de produtos de origem marinha. Os lípidos, como principais constituintes das membranas biológicas e das reservas energéticas, refletem a composição bioquímica dos organismos, que pela sua vez é influenciada diretamente pela sua dieta e pelas condições do habitat. Este estudo pretende determinar as impressões digitais lipidómicas no músculo de O. vulgaris capturado ao longo da costa Ibérica Atlântica e usar estes perfis para rastrear o seu local de origem.
As amostras biológicas de O. vulgaris analisadas foram adquiridas em portos comercialmente relevantes para a pesca de polvo comum na costa Atlântica da Península Ibérica (Ria de Arousa, Ria de Pontevedra, Peniche, Sesimbra e Santa Luzia). Os resultados obtidos revelaram que não existem diferenças significativas nos extratos totais de lípidos analisados. Contudo, no que diz respeito ao conteúdo de fosfolípidos, as amostras de Peniche exibiram valores significativamente inferiores. A análise do lipidoma do músculo de polvo permitiu a identificação de mais de 300 espécies moleculares lipídicas e de 13 classes diferentes destes compostos, mostrando ser uma fonte rica em fosfolípidos plasmalogénios, ceramidas e ácidos gordos de cadeia longa. As ferramentas estatísticas utilizadas permitiram discriminar com sucesso as cinco localidades de origem das amostras de polvo analisadas. A maior contribuição para esta discriminação está associada a espécies moleculares minoritárias, sendo algumas delas caracterizadas por um elevado grau de insaturação na sua composição molecular. Este estudo abre novas perspetivas para o uso das análises lipidómicas como ferramenta para a rastreabilidade de produtos de origem marinha.
keywords
abstract

LC-MS, Lipidomics, Phospholipids, Seafood, Traceability

In recent decades, the common octopus (Octopus vulgaris) has become one of the most important cephalopods in international fisheries due to its high commercial and gastronomic value. In Mediterranean culture, the octopus is a symbol of traditional cuisine for its exquisite flavor and high nutritional value, namely its richness in long-chain polyunsaturated omega- 3 fatty acids. Most consumers consider that knowing the origin of seafood is extremely important, encouraging the development of reliable methods to trace the geographical origin of these highly-value products. Recently, the use of lipidomic tools has opened new opportunities in the traceability of the geographic origin of seafood products. Lipids, as the main constituents of biological membranes and energy reserves, reflect organisms' biochemical composition, which in turn is influenced by their diet and habitat conditions. This study aimed to determine the lipidomic fingerprints in the muscle of O. vulgaris captured along the Iberian Atlantic coast and use these profiles to determine their origin place.
Samples of O. vulgaris were acquired in commercially relevant ports for fishing for common octopus on the Atlantic coast of the Iberian Peninsula (Ria de Arousa, Ria de Pontevedra, Peniche, Sesimbra and Santa Luzia). The recorded results allowed to determine that there are no significant differences in total lipid extracts. However, on what concerns phospholipid content, samples from Peniche exhibited significantly lower values. The analysis of the octopus lipidome allowed the identification of more than 300 molecular lipid species and 13 different lipid classes, evidencing that this cephalopod is a rich source of plasmalogens phospholipids, ceramides and long chain polyunsaturated fatty acids. The statistical tools employed allowed to successfully discriminate all five locations. The major contribution to this discrimination is associated to minority molecular lipid species, some of which are characterized by a high degree of unsaturation in their composition. This study opens new perspectives for the use of lipidomic analyses as a tool for the traceability of seafood products.
Index
Index i
Figure Index ii
Table Index iii
Abbreviations iv
Introduction 1
Materials and Methods 8
Results 13
Discussion 20
Conclusion 24
References 25
Supplementary data 42

Figure Index

Figure 1

Figure 2
Figure 3

Figure 4

Figure 5

Sampling areas of Octopus vulgaris specimens along the Atlantic coast of the Iberian Peninsula .8 Fourth arm of Octopus vulgaris sampled in the present study . 8 Principal component analyses (PCA) scores plot using normalized areas from 328 lipid molecular species identified in the muscle of Octopus vulgaris samples capture and landed in five different locations along the Iberian Atlantic coast .16 Hierarchical clustering heatmap of the top 25 lipid species sorted by analysis of variance test displaying the lowest p-values .17 Boxplots of the top 25 lipid species discriminating sampling sites sorted by analysis of variance test displaying the lowest pvalues 19

Table Index
Table 1

Table 2

Table 3

Table 4 Seafood fisheries and aquaculture, their utilization and value in the market. .. 1 Total lipid content and phospholipid amount in the muscle of Octopus vulgaris captured and landed in five different areas along the Iberian Atlantic coast13 Lipid classes, total molecular species and specific plasmanyl and/or plasmenyl molecular species identified in the muscle of Octopus vulgaris captured and landed in five different areas along the Iberian Atlantic coast 15 Top 25 lipid species sorted by analysis of variance test displaying th lowest p -values .18

Abbreviations	
AGC	Automatic gain control
ARA	Arachidonic acid
CAEP	Ceramides aminoethylphosphonates
Cer	Ceramides
CH2Cl 2	Dicloromethane
CPE	Ceramides phosphoethanolamine
DHA	Docosahexaenoic acid
DW	Dry weight
EFA	Essential fatty acids
EPA	Eicosapentaenoic acid
FA	Fatty acid
HexCer	Hexosylceramides
HILIC-ESI-	Hydrophilic interaction liquid chromatography in electrospray
MS/MS	ionization tandem mass spectrometry
HILIC-LC-MS	Hydrophilic interaction liquid chromatography mass spectrometry
IR	Infrared
IRMS	Isotope ratio mass spectrometry
LC-MS	Liquid chromatography - mass spectrometry
LPC	Lyso phosphatidylcholine
LPE	Lyso phosphatidylethanolamine
MeOH	Methanol
MS/MS	Tandem mass spectrometry
MUFA	Monounsaturated fatty acids
N-CH3-CAEP	N-methyl-ceramides aminoethylphosphonates
NIRS	Near infrared spectroscopy
PA	Phosphatidyl acid
PC	Phosphatidylcholine
PCA	Principal Component Analysis
Pe	Penidylethanolamine

PG	Phosphatidylglycerol
PI	Phosphatidylinositol
PS	Phosphatidylserine
PUFA	Polyunsaturated fatty acids
RAr	Ria de Arousa
RP	Ria de Pontevedra
Ses	Sesimbra
SFA	Saturated fatty acids
SL	Santa Luzia
SM	Sphingomyelin
SNP	Single-nucleotide polymorphism
TEF	Trace elements fingerprints
UHPLC	Ultra high-performance liquid chromatography
XIC	Extracted ion chromatogram

Introduction

In the last decades, a growing world population ${ }^{1}$ has contributed for an increase in the resources consumed by human population ${ }^{2}$. From 1961 to 2016, the annual average global food fish consumption almost doubled with population growth and, per capita, it has also increased in more than 220% (Table 1) ${ }^{3}$. Seafood is an important resource, being a source of quality nutrients, and its production has been trying to keep-up with the growth of human population ${ }^{3}$. Due to the increasing demand for seafood products, aquaculture has been growing and already accounted for 46% of the fish production in 2018, contributing almost as much as the main source of fish over the centuries, the catch of wild organisms ${ }^{3,4}$. However, seafood production is not homogeneous for all countries, with a small part of them being responsible for most of production. Moreover, a country that has large seafood production does not necessarily means it is also a big consumer, as many are large exporters ${ }^{3}$. The global seafood market has increased substantially over recent decades until the point that seafood currently leads as the main traded food in the world ${ }^{5,6}$.

Table 1. Seafood fisheries and aquaculture, their utilization and value in the market. Source: FAO 2020^{3}

	$\begin{aligned} & \hline 1986- \\ & 1995 \end{aligned}$	$\begin{aligned} & 1996- \\ & 2005 \end{aligned}$	$\begin{aligned} & 2006- \\ & 2015 \end{aligned}$	2016	2017	2018
	Average per year					
	(Million tones, live weight)					
Production						
Capture	86.9	91.4	89.8	89.6	93.1	96.4
Aquaculture	14.9	34.2	59.7	76.5	79.5	82.1
Total world fisheries and aquaculture	101.8	125.6	149.6	166.1	172.7	178.5
Utilization						
Human consumption	71.8	98.5	129.2	148.2	152.9	156.4
Population (billions)	5.4	6.2	7.0	7.5	7.5	7.6
Per capita apparent consumption (kg)	13.4	15.9	18.4	19.9	20.3	20.5
Trade						
Fish exports - in quantity	34.9	46.7	56.7	59.5	64.9	67.1
Fish exports - in value (USD billions)	37.0	59.6	117.1	142.6	156.0	164.1

The increased global demand for seafood has led to market globalization due to the divergence between production versus demand and its diversity for each country.

Continuous trades of seafood should be further controlled, and a higher investment in the development and improvement of traceability tools is needed to ensure and promote food security and safety standards ${ }^{7,8}$.

Over the years, the global seafood market has been evolving to respond to increased production, as well as consumer needs ${ }^{5}$. Due to some food safety scandals in the past ${ }^{7,9}$, consumers are more interested in seafood related questions like "what, where and how" 10 . Furthermore, seafood quality is associated with regulated trade, by control of seafood capture or production ${ }^{11}$. These concerns led to the implementation of national and international laws to control seafood trade and provide more information to consumers. The complexity of the seafood market has led to the need of improving multiple steps of the trade chain: transport and storage between producers and consumers, in order to maintain the food quality, has been safeguarded by evolution of preservation technologies; advances in logistics not only prevented information loss but also aimed to foster a more complex and informative labelling process ${ }^{4,7}$. These improvements were important to assure an increase in food security and product traceability in the seafood market.

Traceability is defined by the Codex Alimentarius Commission as "the ability to follow the movement of a food through specified stage(s) of production, processing, and distribution" ${ }^{12}$. Seafood traceability is not only a need to increase market credibility ${ }^{4}$, but also encompasses several indirect benefits to products in the eyes of consumer. Geographic origin is frequently associated with the quality of certain products by the consumers, which influences on the valorization of those same products ${ }^{13,14}$. Globalization of seafood market allowed a better distribution of products around the world, with local specific products to be available in the global market ${ }^{6}$. However, it has a cost by increasing the difficulty of tracking those products, which is a problem, especially when a product is contaminated or damaged ${ }^{15}$. An effective and validated traceability system is essential to address possible future food alerts and a breakthrough in the fight against seafood fraud due to misleading information provided by fishermen, producers and traders ${ }^{7}$. False reports modify species names, geographical origin, and production method ${ }^{16}$. Furthermore, due to the increase in consumers attention to environmental problems, more information regarding production method (wild or farmed) and how they are managed is required ${ }^{7,8}$. A system providing information at these levels, needs reliable traceability tools to obtain origin certification of seafood products.

Traceability tools have been in development to authenticate geographic origins from the diverse seafood products to increase food security, decrease fraud and resource sustainability ${ }^{17}$. These tools screen for intrinsic differences of seafood products that can be used to detect different productions method such as wild or farmed products, and differences between them ${ }^{17}$. Trace element fingerprints (TEF) is one of the methods that is being studied to allow the discrimination of geographical origins of seafood products ${ }^{7}$. Due to the influence of the surrounding environment in the growth of marine species, unique biogeochemical signatures can be associated with specific geographic origins, thus allowing to discriminate of samples from different locations ${ }^{18}$. Positive results have been already published using this method, with the discrimination of harvesting locations achieved by several authors with a high degree of accuracy ${ }^{15,18,19}$. In the blue mussel (Mytilus edulis), this method allowed to discriminate four harvesting locations, with two being only 6 km apart ${ }^{18}$. A successful discrimination of sampling locations was also been achieved for king scallops (Pecten maximus) using TEF ${ }^{19}$. In Ria de Aveiro, TEF analysis allowed to discriminate the origin of cockles (Cerastoderma edule) from 5 different locations within this ecosystem ${ }^{15}$. Another method employed for traceability of seafood origin is isotope ratio mass spectrometry (IRMS), which measures isotopic signatures to gain insights into samples origin ${ }^{20}$. As previously stated, environmental conditions and food availability influence marine species growth and then the isotope ratios present in their biomass ${ }^{21}$. Zhang et al. ${ }^{20}$ were able to discriminate the origin and species of three different scallops (Patinopecten yessoensis, Chlamys farreri and Argopecten irradians) along the coastal area of China using IRMS. Croaker (Micropogonias furnieri) caught in two distinct regions in the Brazilian coast were also successfully discriminated using this same method ${ }^{21}$. A study by Carrera \& Gallardo ${ }^{22}$ successfully discriminated the geographic origin of all commercial fish species within family Merlucciidae using IRMS. Genetic analyses are also a possible method to confirm the geographic origin of seafood products ${ }^{23,24}$, however it is more associated with species authentication rather than discriminating their origin ${ }^{16,25,26}$. A study using single-nucleotide polymorphism (SNP) markers was able to discriminate different European hake populations (Merluccius merluccius) between the Eastern Atlantic Ocean and the Mediterranean Sea ${ }^{24}$. Other studies have also provided positive results in the discrimination of geographic origins of marine species using SNP data ${ }^{23,27}$. Near infrared spectroscopy (NIRS) is a vibrational
spectroscopy technique and is capable to authenticate species and trace their local of origin ${ }^{28}$. This method has been growing in attention by being fast, easy, cheap, and nondestructive of major components of the products being screened ${ }^{28-30}$. The infrared (IR) spectra is the combination of several interactions between the IR and the molecules such as water, proteins, carbohydrate and fat, and its spectra is located between the $700-2500 \mathrm{~nm}^{28-}$ ${ }^{30}$. This method has been successfully used to discriminate European sea bass (Dicentrarchus labrax) originating from different locations within the Mediterranean Sea ${ }^{29}$, with Varrà et al. ${ }^{30}$ using NIRS to track the origin of salt ripened anchovies, whose raw product originated from four different harvesting locations.

Fatty acid (FA) and lipid analyses have been successfully used to discriminate the geographic origin of several seafood products in recent studies ${ }^{31-33}$. Lipids play diverse roles in cells and can be divided in two major sub-classes: neutral lipids and polar lipids ${ }^{34}$. Neutral lipids, mainly triacylglycerols and sterol, play a relevant role as energy source, to maintain the integrity and fluidity of cell membranes and as precursor for several biomolecules ${ }^{35,36}$. Main polar lipids include phospholipids, glycolipids and sphingolipids, with these being important components of cell membranes, safeguarding their fluidity through their composition and structure ${ }^{34}$. Furthermore, polar lipids are also key precursors in cell signaling pathways, play a role in immunological processes and display several other key functions in cells ${ }^{37}$. Lipids are increasingly being used for the discrimination of seafood geographic origin due to the adaptation that these biomolecules display to different environments experienced by marine organisms ${ }^{32,38,39}$. Indeed, the environmental conditions prevailing in different habitats influence cell membranes, as a consequence of physiological adaptations of organism to different environments ${ }^{40}$. As previously stated, polar lipids play an important structural role in cell membranes, so the composition and structure of these lipids will be modified according to the different environmental conditions that the organism is exposed to ${ }^{37}$. In addition, FA profiles and lipid composition will also be affected by the dietary regime, which can vary with habitat and ecosystem ${ }^{7,41}$. These characteristics of polar lipids make them a good choice as a tool to trace the geographic origin of seafood. Ricardo et al ${ }^{31}$ studied the FA profile of the adductor muscle of common cockles (Cerastoderma edule) to trace their local of origin. The study, which included organisms from eight different locations, showed that the FA profile was able to discriminate the sampling locations with 100% success. The work of Arechavala-Lopez et
al. ${ }^{33}$ with the common octopus (Octopus vulgaris) represents another success in the use of FA analysis to associate samples to their respective local of origin. Regarding lipidomic analysis, the pioneering works of da Costa et al. ${ }^{32}$ with sea lettuce (Ulva spp.) and Monteiro et al. ${ }^{38}$ with sugar kelp (Saccharina latissimi) are good examples on how lipidomic signatures can be successfully used in the discrimination of harvesting locations of seafood products.

To date, there are already a considerable number of techniques that have successfully traced the geographic origin of seafood products. With the continuous study to improve these techniques and the discover of new methodological approaches, the traceability of seafood products will likely experience additional breakthroughs. It is important to state that, due to the complexity of present day seafood trade chains, which involve several countries over the world targeting a single species, the development of international projects will improve traceability more rapidly than local approaches ${ }^{42}$.

The common octopus (O. vulgaris) is one of the most important cephalopod species worldwide due to its high commercial and gastronomic value ${ }^{33}$. This species occurs along the Mediterranean Sea and the Eastern Atlantic, mainly in the Iberian Peninsula and Northwest of Africa ${ }^{43}$. The main habitats of this species are located on the continental shelf, mainly within the first 100 m , occupying different types of ocean bottoms, such as rocks, sand, mud and seagrass ${ }^{44-46}$. Due to their palatability and richness in polyunsaturated $n-3$ FA, such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), the common octopus has become a highly halieutic resource, with increasing market value ${ }^{33}$. In the Iberian Peninsula, the common octopus is one of the most important fishing resources, with thousands of people involved in its fisheries ${ }^{47}$. In the last decades, there was an increase in the landings of cephalopods, with the common octopus being one of the main organisms captured in the coastal waters of Galicia (Spain) and mainland Portugal (namely in its southern coast) ${ }^{48}$. However, in recent years, the O. vulgaris has also become a more limited resource with lower catches each year, which could be due to the overfishing practiced during the last decades ${ }^{45}$. With an increasing demand for this seafood, but a lower availability of this valuable resource, this species currently holds an even higher economic value ${ }^{3}$. Following its market value and high demand, a huge investment has been made to develop the aquaculture of this cephalopod species ${ }^{45}$. Due to the biological features of the common octopus, such as short life cycle (12-18 months),
rapid development and great food conversions, it is considered a good candidate species for aquaculture ${ }^{45,49}$. In Galicia (NW Spain), there has already been some level of success in the aquaculture of O. vulgaris, although the dependence on natural foods, or ranching of wild juveniles, still hampers its economic viability ${ }^{50,51}$. One of the main difficult of the aquaculture of O. vulgaris is associated with the high paralarvae mortality due to possibly nutritional problems and inadequate environmental conditions ${ }^{52-54}$. Another problem is associated with the use of natural feeds, which may represent 60% of total production cost^{55}. Several studies have shown the importance of crustaceans in the diet of the common octopus, with either a mono-diet of or a mixed-diet mainly based on these marine invertebrates, being paramount to achieve suitable growth and survival rates ${ }^{56-58}$. However, when considering a natural diet, the fluctuation of market price and availability is a step back to make the aquaculture of this species commercially viable ${ }^{59}$. The development of an artificial feed which can fulfil the nutritional needs of the common octopus, holds great potential, along with the simultaneous use of discard fishery products to reduce feeding costs ${ }^{55,60,61}$. Further studies on these topics are crucial to develop a technically and commercially feasible aquacultures of O. vulgaris.

Octopus vulgaris is a highly versatile feeder and a generalist predator, whose diet is dependent on available preys. A wide range of species, from bivalves to crustaceans, have been identified in the diet of the common octopus, as well as finfish and polychaetes, with the occurrence of cannibalism and autophagy also being commonly recorded ${ }^{62}$. Factors such as seasonal and geographical differences are also influencers in its diet ${ }^{63}$. This versatility of common octopus' dietary regimes can be crucial to discriminate its geographic origin. In aquaculture, several diets have been administered to specimens of the common octopus and, given the fact that natural diets can change in different aquaculture stations, traceability tools might be able to discriminate wild specimens from those produced in aquaculture, as already performed for other domesticated seafood species ${ }^{64-67}$. The present study aimed to evaluate the potential use of lipidomic fingerprints as a biochemical tool to pinpoint the geographic origin of common octopus captured and landed along the Iberian Atlantic coast. In order to do so, the characterization of the polar lipidome of the muscle of O. vulgaris was performed for the first time. The development of this tool is extremely important to control the fisheries of the common octopus in the

Iberian Atlantic coast, and a further step towards the eradication of misleading information in the sale of these valuable seafood products to consumers.

Materials and Methods

Sampling

Samples of O. vulgaris were sourced from fishermen operating in five different areas along the Atlantic coast of Galicia (Spain) [Ria de Arousa (RAr) and Ria de Pontevedra (RP)] and Portugal [Sesimbra (Ses), Peniche (Pe) and Santa Luzia (SL)] (Figure 1), in the summer of 2018. A total of 10 common octopus were sourced per location, with specimens being transported in coolers to the laboratory immediately after being landed in the different fishing harbors. The fourth right arm counted from the sagittal plane, front to back, was cut (Figure 2) and stored at $-80^{\circ} \mathrm{C}$. Samples were subsequently freeze-dried and stored at $-80^{\circ} \mathrm{C}$ for further analysis.

Figure 1. Sampling areas of Octopus vulgaris specimens along the Atlantic coast of the Iberian Peninsula: Ria de Arousa, Ria de Pontevedra, Peniche, Sesimbra and Santa Luzia.

Figure 2. Fourth arm of Octopus vulgaris sampled in the present study. Source: FAO^{68}

Lipid extraction

Total lipids from O. vulgaris samples were extracted using the Bligh and Dyer protocol ${ }^{69}$. Freeze-dried samples were homogenized using a mortar grinder (RM 200,

Retsch, Hann, Germany) followed by another freeze-drying process. A biomass amount of approximately 50 mg of O. vulgaris was mixed with 2.5 mL of methanol (MeOH) and 1.25 mL of dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ in a glass centrifuge tube identified as tube 1 , followed by homogenization through vortex and sonication for 1 min and incubation on ice on a rocking platform shaker (Stuart Scientific STR6, Bibby, UK) for 30 min . Samples were centrifugated at 2000 rpm for 10 min at room temperature (UNIVERSAL 320 R). Organic (lower) phase (3 mL) containing lipids was collected in a tube, identified as tube 2 . The biomass residue (tube 1) was re-extracted with 2.5 mL of MeOH and 1.25 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ followed by homogenization through vortex for 1 min and centrifugation at 2000 rpm for 10 min . Organic phase (3.5 mL) was collected in a tube, identified as tube 3 . A volume of 1.25 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 1.25 mL of Mili Q water was added to the organic phases (tube 2 and tube 3) followed by vortex and centrifugation for 10 min at 2000 rpm , promoting phase separation. The organic phase containing lipids (3.5 mL) was collected in a new tube (tube 4). The aqueous (upper) phase of tube 2 was re-extracted with 1.88 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ followed by vortex and centrifugation by 10 min at 2000 rpm , and the organic phase (1.5 mL) was transferred to tube 4 . Total lipid extract (tube 4) was dried using a speed vacuum (UNIVAPO-100H coupled with UNIJET II refrigerated aspirator) and transferred to dark vials previously dried and weight by adding 0.3 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, repeating the process twice, to recover total lipid extract. Lipid extracts were stored at $-20^{\circ} \mathrm{C}$ prior to analysis by liquid chromatography - mass spectrometry (LC-MS). Total lipid content was estimated by gravimetry, with the amount of lipid by biomass dry weight ($\mu \mathrm{g} \mathrm{mg}^{-1} \mathrm{DW}$) also being calculated.

Phospholipid quantification

Quantification of phospholipids in total lipid extracts was performed through the phosphorus assay ${ }^{70}$. A total of $10 \mu \mathrm{~L}$ of each sample lipid extract was added to glass tubes and dried under a nitrogen stream. Then, $125 \mu \mathrm{~L}$ of 70% perchloric acid was added followed by incubation at $180^{\circ} \mathrm{C}$ for 60 min in a heating block (Block Heater SBH200D/3, Stuart, Bibby Scientific Ltd., Stone, UK). After cooling at room temperature, $825 \mu \mathrm{~L}$ of MiliQ water, $125 \mu \mathrm{~L}$ of 2.5% aqueous solution of ammonium molybdate $\left(\mathrm{NaMoO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}\right)$ and $125 \mu \mathrm{~L}$ of 10% ascorbic acid were added to the samples, with homogenization being performed using a vortex mixer between the addiction of each reagent. Standards were prepared using 0.1 to $2 \mu \mathrm{~g}$ of phosphate (standard solution of $\mathrm{NaH}_{2} \mathrm{PO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}[100 \mu \mathrm{~g} \mathrm{~mL}$
${ }^{1}$]) to prepare a standard curve of phosphate and followed the same treatment as the samples. Both samples and standards were incubated at $100^{\circ} \mathrm{C}$ in a water bath (Precisterm, JP Selecta S.A., Barcelona, Spain) for 10 min , followed by cooling in cold water. The absorbance of samples and standards was measured at 797 nm using a microplate ultraviolet-visible spectrophotometer (Multiskan GO, Thermo Scientific, Hudson, NH, USA).

Phospholipid amount was estimated by multiplying the phosphorus amount of each sample by 25 , the conversion factor between phosphorus and phospholipids.

Hydrophilic interaction liquid chromatography mass spectrometry

Lipid extracts were analyzed by hydrophilic interaction liquid chromatography mass spectrometry (HILIC-LC-MS) on an Ultimate 3000 Dionex ultra high-performance liquid chromatography (UHPLC) system (Thermo Fisher Scientific, Bremen, Germany) with an autosampler coupled online to a Q-Exactive mass spectrometer with Orbitrap © technology (Thermo Fisher, Scientific, Bremen, Germany). A two-mobile phase solvent system was used to perform the analysis: a mobile phase A consisting of a mix of water, acetonitrile, and methanol (25/50/25, by volume) and a mobile phase B consisting of acetonitrile and methanol (60/40, by volume), with both phases presenting 5 mM ammonium acetate. To perform the analysis of each sample by HILIC-LC-MS, $75 \mu \mathrm{~L}$ of the starting eluent (95/5 B/A, by volume), $4 \mu \mathrm{~L}$ of each phospholipid standard (Cer $-0.04 \mu \mathrm{~g}, \mathrm{PA}-0.08 \mu \mathrm{~g}, \mathrm{PG}-$ $0.012 \mu \mathrm{~g}, \mathrm{LPC}-0.02 \mu \mathrm{~g}, \mathrm{PE}-0.02 \mu \mathrm{~g}$), and $5 \mu \mathrm{~g}$ of phospholipids from each sample were diluted in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1 \mu \mathrm{~g} \mu \mathrm{~L}^{-1}\right)$ and introduced into an ACE HILIC-N microbore column $(100 \mathrm{~mm} \times 1.0 \mathrm{~mm} \times 3 \mu \mathrm{~m})$ at a flow rate of $50 \mu \mathrm{~L} \mathrm{~min}{ }^{-1}$ and a temperature of $35{ }^{\circ} \mathrm{C}$. Initially, 5% of mobile phase A was held isocratically for 2 min , followed by a linear increase to 70% of mobile phase A within 11 min and a new linear increase to 90% within 7 min , maintained for a period of 30 min , and returning to the initial conditions in 5 min , being held for an additional 5 min .

The mass spectrometer employed was operated using a positive/negative switching toggles between positive (electrospray voltage 3.0 kV) and negative (electrospray voltage 2.7 kV) ion modes with a capillary temperature of $250^{\circ} \mathrm{C}$ and a sheath gas flow of 15 U . In MS experiments, a high resolution of 70,000 was used, as well as an automatic gain control (AGC) target of 1×10^{6}. In tandem mass spectrometry (MS/MS) experiments, a resolution
of 17,500 and AGC target of 1×10^{5} were used and cycles consisted of one full-scan mass spectrum and 10 data-dependent MS/MS scans were repeated continuously throughout the experiments with the dynamic exclusion of 60 s and an intensity threshold of 2×10^{4}. Normalized collision energy ${ }^{\mathrm{TM}}$ (CE) ranged between 25,30 and 35 eV . Data acquisition was performed using the Xcalibur data system (V3.3, Thermo Fisher Scientific, USA). The molecular identification of lipid species was performed using LC-MS typical retention time and accurate mass measurements ($\leq 5 \mathrm{ppm}$) to confirm the elemental composition. The interpretation of liquid chromatography-tandem mass spectrometry spectra was used as a confirmation method by identifying the polar head group and the fatty acyl chains of the molecular species (see Supplementary Figures S1-S11 for fragmentation interpretation). The quantification of polar lipids molecular species was performed in the bioinformatic tool MZmine 2.53^{71}. The MS raw data were pre-processed by filtering and smoothing, peak detection, peak processing, and assignment against an in-house lipid database. The previous features assured the exclusion of peaks with raw intensity lower than 1.0^{4}, with a mass tolerance of 5 ppm also being used. Integrated peak area values from lipid species were exported using the comma separated values (.csv) format, with data being normalized by dividing the values of each molecular species of each lipid class with that of the internal standard selected for each class. The normalization of the lipid classes phosphatidylinositol (PI) and phosphatidylglycerol (PG) was performed with the internal standard PG; lipid classes lyso phosphatidylethanolamine (LPE), sphingomyelin (SM) and lyso phosphatidylcholine (LPC) with internal standard LPC; internal standard phosphatidylethanolamine (PE) was used to normalize the lipid classes phosphatidylserine (PS), phosphatidylcholine (PC) and PE; lipid classes Ceramides (Cer) and Hexosylceramides (HexCer) by the internal standard Cer.

Statistical Analysis

Normalized data was resampled independently by bootstrap, increasing the 10 original samples to 30 simulated samples, with the goal to enhance data robustness, at a 95% confidence interval. Resampling data were then processed using Metaboanalyst 4.0 ${ }^{72}$. Data filtering was performed to remove variables that evidenced a low repeatability by relative standard deviation ($\mathrm{RSD}=\mathrm{SD} /$ mean) followed by glog transformation and auto scaling. Hierarchical clustering dendrogram followed by principal component analysis (PCA) were performed to assess the clustering of the five sampling locations being studied.

Hierarchical clustering heatmap was performed using Euclidean distances and the Ward clustering algorithm to better understand the significance of the variables in the separation of different landing locations. The top 25 molecular species were ranked using p-values from ANOVA tests. ANOVA were performed to compare the normalized values of the top 25 molecular species that contributed the most for the separation of common octopus' geographic origins, as well as to assess significant differences in the content of lipids ($\mu \mathrm{g}$ $\mathrm{mg}^{-1} \mathrm{DW}$) and phospholipids (\% of total lipids) between landing sites. Shapiro-Wilks and Bartlett's tests were performed to evaluate ANOVA assumptions of normality and homogeneity of variance, respectively. Kruskal-Wallis test were performed when ANOVA assumptions were not met. All statistical analyses were performed using the GraphPad Prism 8.0.2 software.

Results

Total lipid content (Table 2) of O. vulgaris revealed that Pe and SL were the landing locations that presented the highest and the lowest lipid contents with 45.86 ± 7.47 and $40.40 \pm 7.53 \mu \mathrm{~g} \mathrm{mg}^{-1}$ DW, respectively. However, no significant differences were found between common octopus samples originating from different locations. Phospholipid quantification (Table 2), expressed as percentage of total lipids, showed significant differences between Pe and the other sites, with Pe recording the lowest value at $36.98 \% \pm$ 4.59 and Ses the highest at $57.17 \% \pm 12.21$.

Table 2. Total lipid content and phospholipid amount in the muscle of Octopus vulgaris captured and landed in five different locations along the Iberian Atlantic coast. Abbreviations: Pe, Peniche; RAr, Ria Arousa; RP, Ria Pontevedra; Ses, Sesimbra; SL, Santa Luzia.

Sampling sites	Lipid $\left(\mu \mathrm{g} \mathrm{mg}^{-\mathbf{1}}\right.$ DW)	Phospholipids (\% of total lipids)
Pe	45.86 ± 7.47	$36.98 \pm 4.59^{\mathrm{a}}$
RAr	41.53 ± 4.29	$50.61 \pm 10.79^{\mathrm{b}}$
RP	42.52 ± 5.64	$54.30 \pm 6.18^{\mathrm{b}}$
Ses	44.20 ± 6.57	$57.17 \pm 12.21^{\mathrm{b}}$
SL	40.40 ± 7.53	$53.46 \pm 5.34^{\mathrm{b}}$

The lipidomic profile of the muscle of O. vulgaris originating from five different locations analyzed by HILIC-LC-MS and MS/MS allowed to identify 13 polar lipid classes: PE, LPE, PC, LPC, ceramides aminoethylphosphonates (CAEP), PI, PS, Cer, SM, ceramides phosphoethanolamine (CPE), N-methyl ceramides aminoethylphosphonates (N -CH_{3}-CAEP), PG and HexCer. Supplementary Figure S1-11 show the hydrophilic interaction liquid chromatography in electrospray ionization tandem mass spectrometry (HILIC-ESI-MS/MS) spectra of each lipid class identified in the muscle of O. vulgaris. A total of 395 molecular species were identified (Supplementary Table S1), of which 105 corresponded to plasmanyl (O) and/or plasmenyl (P) species of the classes PE, LPE, PC, LPC, PI, PS and PG (Table 3.). The quantification of polar lipids was performed in 10
 species. Twenty-one molecular species (twelve PC, three PE, two PI, two PS and two LPE) were not considered for statistical analysis due to the presence of odd FA in their fatty acyl composition, likely associated with common octopus' microbiome and not its muscle. The mean relative abundance of each molecular species by sampling location is represented in supplementary Table S2.

PE and PC were the lipid classes with the highest number of identified molecular species, as represented in Table 3, with the highest relative abundance recorded by the molecular species PE (O-38:6) and/or PE (P-38:5), and PC (38:6), corresponding to $[\mathrm{M}+\mathrm{H}]^{+}$ions at $m / z 750.5$ and 806.7, respectively. LPE and LPC were also identified, although there was no dominant molecular species in LPE profile, but rather several with close relative abundances. Molecular species LPC (22:6) and LPC (20:5), corresponding to $[\mathrm{M}+\mathrm{H}]^{+}$ions at $m / z 568.3$ and 542.3 , respectively, showed the highest relative abundances. PI and PS showed the prevalence of the molecular species PI (38:5) and PS (38:5), corresponding to $[\mathrm{M}-\mathrm{H}]^{-}$ions at $\mathrm{m} / \mathrm{z} 883.5$ and 808.5 , respectively. Concerning PG, the molecular species PG (34:1) corresponding to $[\mathrm{M}-\mathrm{H}]^{-}$ion at $\mathrm{m} / \mathrm{z} 747.5$ displayed the highest abundance in common octopus originating from all locations. SM, Cer and HexCer were also identified, with SM (d32:1), Cer (d30:1) and Cer (d32:1), and HexCer (38:2) molecular species, corresponding to $[\mathrm{M}+\mathrm{H}]^{+}$ions at $m / z 675.5,482.5,510.5$ and 754.6 , respectively, presenting the highest relative abundances. In the lipid classes CAEP, CPE and N-methyl-CAEP, all presenting a sphingoid base, were identified a total of 46 molecular species, with CAEP being the most well-represented ceramide lipid class, with 33 molecular species.

Plasmanyl and/or plasmenyl molecular species corresponded to more than 25% of the total molecular species identified. PC and PE displayed the highest number of these molecular species, but ether phospholipids were also identified in the lyso forms of these phospholipid classes (i.e. LPC and LPE) as well as in PG, PI, PS (Table 3).

The analysis of MS/MS spectra allowed to confirm the identification of the polar head group of all lipid classes and, in most cases FA composition of the different molecular lipid species was elucidated (Supplementary Table S1). Saturated FA (SFA), monounsaturated FA (MUFA) and polyunsaturated FA (PUFA) were identified in the molecular species described above. Molecular species with the highest relative abundance in the lipid classes PE and PC were characterized by the presence of DHA (22:6n-3), EPA (20:5n-3) and arachidonic acid (20:4 n - 6 , ARA) in their fatty acyl composition, as well as in PS and PI. Palmitic acid (16:0), stearic acid (18:0) and oleic acid (18:1) were the main SFA and MUFA identified in the most abundant molecular species within each class. SFA and MUFA were the main FA classes in the fatty acyl composition of CAEP, CPE and N -methyl-CAEP. Additionally, odd FA were also identified in these lipid classes.

Table 3. Lipid classes, total molecular species and specific plasmanyl and/or plasmenyl molecular species identified in the muscle of Octopus vulgaris captured and landed in five different locations along the Iberian Atlantic coast.

Lipid classes	Total molecular species	Plasmanyl and/or Plasmenyl molecular species
PE	95	43
LPE	26	5
PC	102	36
LPC	27	8
CAEP	33	0
PI	33	7
PS	31	5
Cer	15	0
SM	14	0
CPE	8	0
\boldsymbol{N}-CH3-CAEP	5	0
PG	4	1
HexCer	2	0
Total	395	105

In this study, all chromatographic peaks corresponding to the 328 identified ions were integrated, in all samples, and their confirmation was performed manually. These quantitative data, normalized by the internal standard, were used for statistical analysis.

The PCA plot was performed using the normalized extracted ion chromatograms (XIC) areas of the 328 lipid species identified (Figure 3), with the clustering of samples originating from different locations being well evidenced. The eigenvalues of the two principal components represented 61.7%. The PC1 axis explained 49.9% of variability and allows a visual separation of the locations in three distinct groups: RAr, RP/Pe and Ses/SL. Concerning PC2 axis, it explained 11.8% of the variability recorded and it allowed a clearer dissociation between Ses and SL, along with some level of separation between Pe and RP. These results are supported by the hierarchical clustering dendrogram (Supplementary Figure 12) using the normalized areas of total lipid species, showing a first separation between the samples of RAr and the samples from other sampling sites. Additionally, it also allows a second separation between $\mathrm{Pe} / \mathrm{RP}$ and $\mathrm{Ses} / \mathrm{SL}$. Both groups were separated in a next level of separation. A heatmap was calculated using the top 25 lipid species that contributed the most for capture/landing site discrimination (Figure 4), identifying four PS, five PI, fourteen PC, one LPC and one PE. Table 4 displays the top 25 lipid species and their molecular composition (which was determined whenever possible), by interpretation of MS/MS spectra.

Figure 3. Principal component analyses (PCA) score plot using normalized areas from 328 lipid molecular species identified in the muscle of Octopus vulgaris samples captured and landed in five different locations along the Iberian Atlantic coast. Abbreviations: Pe, Peniche; RAr, Ria Arousa; RP, Ria Pontevedra; Ses, Sesimbra; SL, Santa Luzia.

Boxplots of the top 25 molecular species ranked by the lowest p-value using ANOVA test show that, in general, molecular species from RAr samples present a higher relative abundance than the other four locations, while Pe, RP, Ses and SL exhibited a closer relative abundance between them (Figure 5).

Figure 4. Hierarchical clustering heatmap of the top 25 lipid species sorted by analysis of variance test displaying the lowest p -values. The dendrogram at the top represents the clustering of the sample groups. Relative abundance levels are indicated on the colour scale, with numbers indicating fold differences from the mean. Abbreviations: Peniche (Pe), Ria de Arousa (RAr), Ria de Pontevedra (RP), Sesimbra (Ses), Santa Luzia (SL). Labels of lipid species are according to the notation: AAA (C:N), (AAA, lipid class; C , total carbon atoms; N , total double bonds of fatty acid substituents) and AAA (O-C:N)(P-C:N), correspond to O- plasmanyl and/or P- plasmenyl, respectively).

Table 4. Top 25 lipid species sorted by analysis of variance test displaying the lowest p-values. Labels of lipid species are according to the notation: AAA (C:N), (AAA, lipid class; C, total carbon atoms; N , total double bonds of fatty acid substituents) and AAA (O-C:N)(P-C:N), correspond to O- plasmanyl and/or P- plasmenyl, respectively). Molecular species identified by retention time, mass accuracy calculation and typical ion product are marked with (*) and molecular species identified only by retention time and mass accuracy calculation are marked with (${ }^{* *}$).

m / z observed	Ion	Lipid species (C:N)	Fatty acyl chain
796.62	$[\mathrm{M}+\mathrm{H}]^{+}$	PC(O-38:4)(P-38:3) *	
838.56	$[\mathrm{M}-\mathrm{H}]^{-}$	PS(40:4) **	
858.53	$[\mathrm{M}-\mathrm{H}]^{-}$	$\operatorname{PS}(42: 8) * *$	
770.61	$[\mathrm{M}+\mathrm{H}]^{+}$	$\mathrm{PC}(\mathrm{O}-36: 3)$	O-16:0/20:3
776.65	$[\mathrm{M}+\mathrm{H}]^{+}$	$\mathrm{PC}(\mathrm{O}-36: 0)$ *	
848.65	$[\mathrm{M}+\mathrm{H}]^{+}$	$\mathrm{PC}(\mathrm{O}-42: 6)(\mathrm{P}-42: 5)$ *	O-18:0/24:6; O-18:1/24:5; P-18:0/24:5
664.49	$[\mathrm{M}+\mathrm{H}]^{+}$	PE(30:0) *	
720.59	$[\mathrm{M}+\mathrm{H}]^{+}$	PC(O-32:0)	16:0/16:0
810.53	$[\mathrm{M}-\mathrm{H}]^{-}$	PS(38:4)	18:0/20:4; 16:0/22:4
822.63	$[\mathrm{M}+\mathrm{H}]^{+}$	$\mathrm{PC}(\mathrm{O}-40: 5)$	O-18:0/22:5
748.62	$[\mathrm{M}+\mathrm{H}]^{+}$	$\mathrm{PC}(\mathrm{O}-34: 0)^{*}$	
911.56	$[\mathrm{M}-\mathrm{H}]^{-}$	$\mathrm{PI}(40: 5)^{* *}$	
913.58	$[\mathrm{M}-\mathrm{H}]^{-}$	$\mathrm{PI}(40: 4)$	18:0/22:4
798.63	$[\mathrm{M}+\mathrm{H}]^{+}$	$\mathrm{PC}(\mathrm{O}-38: 3)(\mathrm{P}-38: 2)$	$\begin{aligned} & \mathrm{O}-18: 0 / 20: 3 ; \mathrm{O}-16: 1 / 22: 2 ; \text { P-16:0/22:2; } \\ & \text { P-18:0/20:2 } \end{aligned}$
606.45	$[\mathrm{M}+\mathrm{H}]^{+}$	LPC(24:1)*	
915.59	$[\mathrm{M}-\mathrm{H}]^{-}$	$\mathrm{PI}(40: 3)$	20:2/20:1
901.49	[M-H] ${ }^{-}$	$\operatorname{PI}(40: 10)$	20:5/20:5
891.60	[M-H] ${ }^{-}$	$\operatorname{PI}(38: 1)$	18:0/20:1
844.60	$[\mathrm{M}-\mathrm{H}]^{-}$	$\operatorname{PS}(40: 1)^{* *}$	
746.61	$[\mathrm{M}+\mathrm{H}]^{+}$	$\mathrm{PC}(\mathrm{O}-34: 1)(\mathrm{P}-34: 0)$	O-16:0/18:1; P-18:0/16:0
830.70	$[\mathrm{M}+\mathrm{H}]^{+}$	$\mathrm{PC}(\mathrm{O}-40: 1)$	O-18:0/22:1
800.65	$[\mathrm{M}+\mathrm{H}]^{+}$	$\mathrm{PC}(\mathrm{O}-38: 2)(\mathrm{P}-38: 1)$	O-16:0/22:2; O-18:1/20:1; P-18:0/20:1
802.67	$[\mathrm{M}+\mathrm{H}]^{+}$	$\mathrm{PC}(\mathrm{O}-38: 1)$	O-18:0/20:1
774.64	$[\mathrm{M}+\mathrm{H}]^{+}$	$\mathrm{PC}(\mathrm{O}-36: 1)(\mathrm{P}-36: 0)$	O-16:0/20:1; O-18:0/18:1; P-18:0/18:0
828.69	$[\mathrm{M}+\mathrm{H}]^{+}$	$\mathrm{PC}(\mathrm{O}-40: 2)$	O-18:0/22:2

PC (0-40:1)(P-40:0)

Figure 5. Boxplots of the top 25 lipid species discriminating sampling sites sorted by analysis of variance test displaying the lowest p-values. Significant differences between capture and landing locations are marked with different letters. Abbreviations: Peniche (Pe), Ria de Arousa (RAr), Ria de Pontevedra (RP), Sesimbra (Ses), Santa Luzia (SL). Labels of lipid species are according to the notation: AAA (C:N), (AAA, lipid class; C, total carbon atoms; N, total double bonds of fatty acid substituents) and AAA (O-C:N) (P$\mathrm{C}: \mathrm{N}$) correspond to O - plasmanyl and/or P - plasmenyl, respectively).

Discussion

In this work, it was possible to discriminate the origin of O. vulgaris samples from five different capture and landing sites using lipidomic analysis together with statistical and clustering analysis. The lipid characterization of the muscle of O. vulgaris was the first step to evaluate the potential use of lipidomic analysis as a tool to discriminate specimens from different capture and landing locations. Concerning total lipid content, our results are in accordance with previous studies addressing the muscle ${ }^{73}$ and mantle ${ }^{74}$ of O. vulgaris. Prato et al. ${ }^{56}$ studied the total lipid class composition of the common octopus, revealing that the amount of phospholipids in wild animals was $51.77 \% \pm 1.10$ of total lipids, which are in line with the values recorded in the present study. Differences in extrinsic factors (e.g. temperature, salinity, depth) between the five geographic locations addressed were not reflected in total lipid content in common octopus' muscle. Extrinsic factors might not have a significant influence in the total lipid content, but rather an effect on the lipid classes ${ }^{75}$. Differences in total lipid content are related to the abundance and/or lack of aliment, as well as other stressful conditions ${ }^{74,76}$.

Phospholipids play relevant roles in organism biology, such as structural functions, influence in regulation of metabolism, physiology and energy production ${ }^{77,78}$. The lipidome of O. vulgaris muscle allowed the identification of four major lipid classes PE, PC, PI and PS, as already indicated by previous studies addressing in this marine invertebrate and other marine animals ${ }^{77,79,80}$. A higher relative abundance was identified to plasmanyl and/or plasmenyl molecular species in the lipid class PE with fatty acyl chains 22:6 and 20:5. This finding was somehow expected due to the higher abundance of DHA, EPA and ARA in marine organisms ${ }^{81}$. In fact, these are essential fatty acids (EFA), playing relevant roles in physiological and metabolic processes ${ }^{82}$. The lipid class PC also presented a higher relative abundance of molecular species containing EFA in their structural composition, in the form of diacyl molecular species. Fitahia et al. ${ }^{83}$ studied the lipid compositions of Octopus cyanea and Loligo sp. byproducts, being PC (most abundant), LPC, PE, LPE the major lipid classes, and EPA, DHA and ARA as the major FA. Losito et al. ${ }^{84}$ presented the analysis of PE and PC lipid classes in the common octopus, with our results being supported by their findings. The prevalence of plasmanyl and/or plasmenyl molecular species in PE, as well as of diacyl molecular species in PC, was already reported in common octopus ${ }^{84}$ and other molluscs ${ }^{85,86}$. In this study, plasmanyl and plasmenyl
molecular species were considerably abundant, mainly in PE and PC lipid classes. Plasmalogens are ether phospholipids with slightly different ether bond linkages in the sn-1 position of the glycerol backbone found in animal cells. Plasmanyls have a 1-O-alkyl fatty chain linked to the $s n-1$ position while plasmenyls have a $1-\mathrm{O}-\mathrm{alk}-1$ '-enyl fatty chain ${ }^{87}$. The role of plasmalogens has been described as a structural component of cell membranes ${ }^{88}$, in the response against to oxidative stress ${ }^{89,90}$ and some studies have also suggested that these lipid molecules have an impact in signal transduction ${ }^{91,92}$.

Lipid classes LPE and LPC, lyso forms of the phospholipid classes PE and PC, were also found in the muscle lipidome of O. vulgaris. The presence of lyso forms in marine organisms has been previously reported ${ }^{60,79,80,84}$. Phospholipid lyso forms are associated with the synthesis of other phospholipids as precursors, contributing to the regulation of intracellular signaling pathways and to the shifting of the structure and fluidity of lipid rafts ${ }^{93}$. These biomolecules are generally less abundant compared to other lipid classes in cephalopods ${ }^{80,94}$.

The presence of sphingolipids in the common octopus lipidome has already been reported ${ }^{79,95}$, as well as in other cephalopods species ${ }^{83}$, with this lipid class being considered to play key structural and functional roles in nervous system cells ${ }^{96,97}$. Furthermore, our study identified CAEP as the third lipid class with more molecular species identified, followed by Cer, $\mathrm{SM}, \mathrm{CPE}, \mathrm{N}-\mathrm{CH}_{3}-\mathrm{CAEP}$ and HexCer. Although Cer and SM classes have been identified in previous works in the common octopus ${ }^{79}$, there is little knowledge about CAEP, CPE and N-methyl-CAEP classes in this organism. These lipid classes have a strong C-P bond and play a role in cell membrane protection due to their ability to provide resistance to hydrolytic enzymes and the participation in metabolic pathways ${ }^{98}$. The presence of these lipid classes have been described in the lipidome of other marine organisms ${ }^{96,98-100}$. These studies have suggested that CAEP represent the main source of sphingosine found in marine invertebrates and that they develop similar biochemical functions to SM, which is the main sphingosine found in vertebrates ${ }^{101,102}$. The most usual sphingoid base in O. vulgaris samples was $\mathrm{d} 16: 1$, followed by the odd sphingoid base d19:3. Similar results have been reported in the cephalopod species Loligo chinensis ${ }^{103}$ and in the jumbo flying squid (Dosidicus gigas) ${ }^{101}$. The study performed by Komatsu et al. ${ }^{101}$ showed that CAEP isolated from the jumbo flying squid can possibly have a bioactive effect against liver damage. The development of medicine or dietary
health supplements using this lipid class will contribute for the valorization of the jumbo flying squid. In this sense, the identification of CAEP in O. vulgaris samples will increase the value of this species in biomedicine, although further studies are needed to screen the biotechnological potential of this lipid class.

Our analysis allowed to clearly separate the five geographic capture and landing locations, with the most evident separation being that of RAr from the other four sampling sites. RAr is the northernmost sampling site and although it has a close proximity to RP, there are clear differences between them. RAr is the largest ria in the coast of Galicia (Spain) and it is highly influenced by upwelling events, raking it amount the most productive marine ecosystem of the world ${ }^{104,105}$. Furthermore, it is an area with a relevant mussel aquaculture production, representing 67% of the total Spanish mussel production and 15% of world production ${ }^{106}$. The practice of such level of aquaculture has an influence in the ecosystem, with negative and positive impacts ${ }^{107}$. An excessive biomass production can alter the local environmental, with an increase on organic loading which will increase the demand for oxygen. Furthermore, a reduction in phytoplankton biomass and an increase in nutrients can also occur ${ }^{107}$. Mussel aquaculture can have a relevant influence in the diet of common octopus occurring in this location, as mussel production rafts can attract possible octopus' prey, thus enhancing feeding opportunities. The influence of raft culture in the diet of other invertebrates (e.g. the harbor crab Liocarcinus depurator) has already been reported ${ }^{108}$. Feeding behavior, available food resources and environmental conditions shape the lipidome of marine organisms ${ }^{109,110}$. Different studies have shown that, under controlled conditions, different diets impact grow and food intake, which tune the lipid composition and the FA profile of marine organisms ${ }^{56,58}$. In natural habitats, dietary regimes are influenced by environment conditions, available resources, seasonal changes, and circadian rhythm ${ }^{62,111,112}$. Studies on the feeding behavior of O. vulgaris in the wild are scarce. However, studies carried out on the Portuguese coast have reported that common octopus preys a higher percentage of bivalves on southern coasts than on central and north coasts ${ }^{58,62}$. The differences of available preys present in the ecosystems of southern Portugal could explain the separation between SL samples from those of Pe and Ses. Outside the Iberian Atlantic coast, the diet of common octopus has been reported to be mainly derived from crustaceans (such as in the coast of Catalonia, Spain), or on multiple mollusk species (e.g., east coast of South Africa and in the Mediterranean coast of

France) ${ }^{113,114}$. These data support the idea of how the common octopus' diet can change according to its habitat, influencing its lipidome profile.

Environmental conditions are also an important factor when considering lipidomic analysis to discriminate samples from different geographic origins, as already shown in previous studies addressing traceability of seafood products ${ }^{31,115}$. The Iberian Peninsula presents a range of temperatures along its Atlantic coast, increasing from North to South ${ }^{62,116}$. Sea water temperature can influence marine organism lipidome in two ways. The first refers to the impact of temperature in membrane fluidity by shifting the level of FA saturation in lipid membranes ${ }^{117-119}$. On the other hand, differences in seawater temperature can impact the lipid composition of species by shaping their feeding behavior. These effects are registered in the diversity and abundance of the marine plankton communities, the basis for the production and the bottom of oceans food webs ${ }^{120-122}$. Overall, the diversity of marine plankton will influence the number and diversity of organisms from higher trophic levels ${ }^{120,123-125}$. Some of these effects are reflected in EFA that must be derived from dietary sources and, as such, are also mirrored in the lipidome ${ }^{120}$. Differences in temperature, strong upwelling events that occur in RAr and its effects on the O. vulgaris trophic regime might overall contribute to the discrimination recorded from the other four locations ${ }^{58,62,104}$. Furthermore, our results discriminated these four locations between themselves. The previous factors described above, which we use as important factors affecting the lipidome of the common octopus's muscle, are different between the geographical locations. In the south of Portugal, warmer waters ${ }^{62}$, weaker upwelling events compared to the western coast ${ }^{126}$ and a richer diet in bivalves ${ }^{58,62}$ influences the discrimination from the specimens capture and landed in Pe and Ses. Additionally, environmental and dietary factors must also contribute to the discrimination of RP from Pe and Ses, as this place has colder waters and stronger upwelling events.

Conclusion

The aims of this study were successfully achieved, with the characterization of the lipidome of the muscle of O. vulgaris and the discrimination of specimens from the five capture and landing sites surveyed. This work confirmed that lipidomic analysis is a powerful tool to discriminate O. vulgaris from different geographic origins, becoming a step in the right direction in the quest to identify analytical methodologies that can enhance seafood traceability. Furthermore, expanding the sampling locations, such as to Mediterranean and/or Moroccan coasts, and sampling over consecutive seasons and years, will allow to better understand how the environmental and trophic conditions of different ecosystems shape the polar lipidome and the biochemical phenotypes of the common octopus.

References

1. Leridon, H. World population outlook: Explosion or implosion? Popul. Soc. 573, 1-4 (2020). doi:10.3917/popsoc.573.0001
2. Uniyal, S., Paliwal, R., Saun, B. \& Sharma, R. Human overpopulation: Impact on environment. in Megacities and Rapid Urbanization: Breakthroughs in Research and Practice 20-30 (2020). doi:10.4018/978-1-5225-9276-1.ch002.
3. FAO. The State of World Fisheries and Aquaculture 2020. (2020). doi:10.4060/ca9229en.
4. El Sheikha, A. F. \& Xu, J. (JP). Traceability as a key of seafood safety: Reassessment and possible applications. Rev. Fish. Sci. Aquac. 25, 158-170 (2017). doi:10.1080/23308249.2016.1254158
5. Anderson, J. L., Asche, F. \& Garlock, T. Globalization and commoditization: The transformation of the seafood market. J. Commod. Mark. 12, 2-8 (2018). doi:10.1016/j.jcomm.2017.12.004
6. Asche, F., Bellemare, M. F., Roheim, C., Smith, M. D. \& Tveteras, S. Fair enough? Food security and the international trade of seafood. World Dev. 67, 151-160 (2015). doi:10.1016/j.worlddev.2014.10.013
7. Leal, M. C., Pimentel, T., Ricardo, F., Rosa, R. \& Calado, R. Seafood traceability: current needs, available tools, and biotechnological challenges for origin certification. Trends Biotechnol. 33, 331-336 (2015). doi:10.1016/j.tibtech.2015.03.003
8. Turchini, G. M., Quinn, G. P., Jones, P. L., Palmeri, G. \& Gooley, G. Traceability and discrimination among differently farmed fish: a case study on Australian Murray Cod. J. Agric. Food Chem. 57, 274-281 (2009). doi:10.1021/jf801962h
9. Zhao, X. Tracing the geographical origins of Yesso scallop (Patinopecten yessoensis) by using compound-specific isotope analysis: An approach for overcoming the seasonal effect. Food Control 102, 38-45 (2019). doi:10.1016/j.foodcont.2019.03.016
10. Chatterjee, N. S., Chevallier, O. P., Wielogorska, E., Black, C. \& Elliott, C. T. Simultaneous authentication of species identity and geographical origin of shrimps: Untargeted metabolomics to recurrent biomarker ions. J. Chromatogr. A 1599, 75-84 (2019). doi:10.1016/j.chroma.2019.04.001
11. Pieniak, Z., Vanhonacker, F. \& Verbeke, W. Consumer knowledge and use of information about fish and aquaculture. Food Policy 40, 25-30 (2013). doi:10.1016/j.foodpol.2013.01.005
12. CAC. Twenty-seventh Session, Centre International de Conférences de Genève, Geneva, Switzerland, 28 June - 3 July. http://www.fao.org/tempref/codex/Meetings/CAC/cac27/al2707ae.pdf (2004).
13. El Sheikha, A. F. \& Montet, D. How to determine the geographical origin of seafood? Crit. Rev. Food Sci. Nutr. 56, 306-317 (2016). doi:10.1080/10408398.2012.745478
14. D'Amico, P., Armani, A., Gianfaldoni, D. \& Guidi, A. New provisions for the labelling of fishery and aquaculture products: Difficulties in the implementation of Regulation (EU) n. 1379/2013. Mar. Policy 71, 147-156 (2016). doi:10.1016/j.marpol.2016.05.026
15. Ricardo, F. et al. Trace element fingerprinting of cockle (Cerastoderma edule) shells can reveal harvesting location in adjacent areas. Sci. Rep. 5, 11932 (2015). doi:10.1038/srep11932
16. Delpiani, G. et al. Are we sure we eat what we buy? Fish mislabelling in Buenos Aires province, the largest sea food market in Argentina. Fish. Res. 221, 105373 (2020). doi:10.1016/j.fishres.2019.105373
17. Luykx, D. M. A. M. \& van Ruth, S. M. An overview of analytical methods for determining the geographical origin of food products. Food Chem. 107, 897-911 (2008). doi:10.1016/j.foodchem.2007.09.038
18. Bennion, M. et al. Trace element fingerprinting of blue mussel (Mytilus edulis) shells and soft tissues successfully reveals harvesting locations. Sci. Total Environ. 685, 50-58 (2019). doi:10.1016/j.scitotenv.2019.05.233
19. Morrison, L., Bennion, M., Gill, S. \& Graham, C. T. Spatio-temporal trace element fingerprinting of king scallops (Pecten maximus) reveals harvesting period and location. Sci. Total Environ. 697, 134121 (2019). doi:10.1016/j.scitotenv.2019.134121
20. Zhang, X. et al. Geographical origin traceability and species identification of three scallops (Patinopecten yessoensis, Chlamys farreri, and Argopecten irradians) using stable isotope analysis. Food Chem. 299, 125107 (2019). doi:10.1016/j.foodchem.2019.125107
21. Chaguri, M. P. et al. Different tools to trace geographic origin and seasonality of croaker (Micropogonias furnieri). LWT - Food Sci. Technol. 61, 194-200 (2015). doi:10.1016/j.1wt.2014.11.006
22. Carrera, M. \& Gallardo, J. M. Determination of the geographical origin of all commercial hake species by stable isotope ratio (SIR) Analysis. J. Agric. Food Chem. 65, 1070-1077 (2017). doi:10.1021/acs.jafc.6b04972
23. Barria, A. et al. Population genomic structure and genome-wide linkage disequilibrium in farmed Atlantic salmon (Salmo salar L.) using dense SNP genotypes. Front. Genet. 9, 649 (2018). doi:10.3389/fgene.2018.00649
24. Milano, I. et al. Outlier SNP markers reveal fine-scale genetic structuring across European hake populations (Merluccius merluccius). Mol. Ecol. 23, 118-135 (2014). doi:10.1111/mec. 12568
25. Scarano, D. \& Rao, R. DNA markers for food products authentication. Diversity 6, 579-596 (2014). doi:10.3390/d6030579
26. Fernandes, T. J. R., Amaral, J. S. \& Mafra, I. DNA barcode markers applied to seafood authentication: an updated review. Crit. Rev. Food Sci. Nutr. (2020) doi:10.1080/10408398.2020.1811200.
27. Hosegood, J. et al. Phylogenomics and species delimitation for effective conservation of manta and devil rays. Mol. Ecol. 29, 4783-4796 (2020). doi:10.1111/mec. 15683
28. Power, A. \& Cozzolino, D. How fishy is your fish? Authentication, provenance and traceability in fish and seafood by means of vibrational spectroscopy. Appl. Sci. 10, 4150 (2020). doi:10.3390/app10124150
29. Ghidini, S. et al. Rapid authentication of European sea bass (Dicentrarchus labrax L.) according to production method, farming system, and geographical origin by near infrared spectroscopy coupled with chemometrics. Food Chem. 280, 321-327 (2019). doi:10.1016/j.foodchem.2018.12.075
30. Varrà, M. O., Ghidini, S., Ianieri, A. \& Zanardi, E. Near infrared spectral fingerprinting: A tool against origin-related fraud in the sector of processed anchovies. Food Control 107778 (2020). doi:10.1016/j.foodcont.2020.107778.
31. Ricardo, F., Maciel, E., Domingues, M. R. \& Calado, R. Spatio-temporal variability in the fatty acid profile of the adductor muscle of the common cockle Cerastoderma edule and its relevance for tracing geographic origin. Food Control 81, 173-180 (2017). doi:10.1016/j.foodcont.2017.06.005
32. da Costa, E. et al. Site-specific lipidomic signatures of sea lettuce (Ulva spp., Chlorophyta) hold the potential to trace their geographic origin. Biomolecules 10, 489 (2020). doi:10.3390/biom10030489
33. Arechavala-Lopez, P. et al. Fatty acids and elemental composition as biomarkers of Octopus vulgaris populations: does origin matter? Mar. Pollut. Bull. 139, 299-310 (2019). doi:10.1016/j.marpolbul.2018.12.048
34. Guschina, I. A. \& Harwood, J. L. Algal lipids and effect of the environment on their biochemistry. in Lipids in Aquatic Ecosystems (eds. Kainz, M., Brett, M. T. \& Arts, M. T.) 1-24 (Springer New York, 2009). doi:10.1007/978-0-387-89366-2_1.
35. Rod-in, W., Monmai, C., Shin, I., You, S. \& Park, W. J. Neutral lipids, glycolipids, and phospholipids, isolated from sandfish (Arctoscopus japonicus) eggs, exhibit antiinflammatory activity in LPS-stimulated RAW264.7 cells through NF-кB and MAPKs pathways. Mar. Drugs 18, 480 (2020). doi:10.3390/md18090480
36. Zampelas \& Magriplis. New insights into cholesterol functions: A friend or an enemy? Nutrients 11, 1645 (2019). doi:10.3390/nu11071645
37. Ronan Lordan, Alexandros Tsoupras \& Ioannis Zabetakis. Phospholipids of animal and marine origin: structure, function, and anti-inflammatory properties. Molecules 22, 1964 (2017). doi:10.3390/molecules22111964
38. Monteiro, J. P. et al. The unique lipidomic signatures of Saccharina latissima can be used to pinpoint their geographic origin. Biomolecules 10, 107 (2020). doi:10.3390/biom10010107
39. Sun, T., Wang, X., Cong, P., Xu, J. \& Xue, C. Mass spectrometry-based lipidomics in food science and nutritional health: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 19, 2530-2558 (2020). doi:10.1111/1541-4337.12603
40. Koelmel, J. P. et al. Environmental lipidomics: understanding the response of organisms and ecosystems to a changing world. Metabolomics 16, 56 (2020). doi:10.1007/s11306-020-01665-3
41. Kelly, J. \& Scheibling, R. Fatty acids as dietary tracers in benthic food webs. Mar Ecol Prog Ser 446, 1-22 (2012). doi:10.3354/meps09559
42. Qian, J. et al. Food traceability system from governmental, corporate, and consumer perspectives in the European Union and China: A comparative review. Trends Food Sci. Technol. 99, 402-412 (2020). doi:10.1016/j.tifs.2020.03.025
43. Hermosilla, C., Rocha, F. \& Valavanis, V. D. Assessing Octopus vulgaris distribution using presence-only model methods. Hydrobiologia 670, 35-47 (2011). doi:10.1007/s10750-011-0671-y
44. Belcari, P., Cuccu, D., González, M., Srairi, A. \& Vidoris, P. Distribution and abundance of Octopus vulgaris Cuvier, 1797 (Cephalopoda: Octopoda) in the Mediterranean Sea. Sci. Mar. 66, 157 (2002). doi:10.3989/scimar.2002.66s2157
45. Vaz-Pires, P., Seixas, P. \& Barbosa, A. Aquaculture potential of the common octopus (Octopus vulgaris Cuvier, 1797): a review. Aquaculture 238, 221-238 (2004). doi:10.1016/j.aquaculture.2004.05.018
46. Katsanevakis, S. \& Verriopoulos, G. Abundance of Octopus vulgaris on soft sediment. Sci. Mar. 68, 553-560 (2004). doi:10.3989/scimar.2004.68n4553
47. Sonderblohm, C. P. et al. Participatory assessment of management measures for Octopus vulgaris pot and trap fishery from southern Portugal. Mar. Policy 75, 133-142 (2017). doi:10.1016/j.marpol.2016.11.004
48. Bañón, R., Otero, J., Campelos-Álvarez, J. M., Garazo, A. \& Alonso-Fernández, A. The traditional small-scale octopus trap fishery off the Galician coast (Northeastern Atlantic): Historical notes and current fishery dynamics. Fish. Res. 206, 115-128 (2018). doi:10.1016/j.fishres.2018.05.005
49. Navarro, J. C. \& Villanueva, R. The fatty acid composition of Octopus vulgaris paralarvae reared with live and inert food: deviation from their natural fatty acid profile. Aquaculture 219, 613-631 (2003). doi:10.1016/S0044-8486(02)00311-3
50. Cephalopod Culture. (Springer Netherlands, 2014). doi:10.1007/978-94-017-86485.
51. Márquez, L., Larson, M. \& Almansa, E. Effects of temperature on the rate of embryonic development of cephalopods in the light of thermal time applied to aquaculture. Rev. Aquac. 13, 706-718 (2021). doi:10.1111/raq. 12495
52. Casalini, A. et al. Evaluation of reproductive performances of the common octopus (Octopus vulgaris) reared in water recirculation systems and fed different diets. Sci. Rep. 10, 15261 (2020). doi:10.1038/s41598-020-72151-y
53. Reis, D. B. et al. Effect of Artemia inherent fatty acid metabolism on the bioavailability of essential fatty acids for Octopus vulgaris paralarvae development. Aquaculture 500, 264-271 (2019). doi:10.1016/j.aquaculture.2018.10.021
54. Reis, D. B. et al. Effects of feeding with different live preys on the lipid composition, growth and survival of Octopus vulgaris paralarvae. Aquac. Res. are. 14873 (2020). doi:10.1111/are. 14873.
55. Domingues, P., Rosas, C., Sánchez, A., Chimal, M. E. \& Gallardo, P. Effect of the processing of four marine species on their in vitro digestibility of Octopus vulgaris adults. Aquac. Int. 28, 1269-1277 (2020). doi:10.1007/s10499-020-00524-1
56. Prato, E., Portacci, G. \& Biandolino, F. Effect of diet on growth performance, feed efficiency and nutritional composition of Octopus vulgaris. Aquaculture 309, 203-211 (2010). doi:10.1016/j.aquaculture.2010.09.036
57. Garcia Garcia, B. \& Cerezo Valverde, J. Optimal proportions of crabs and fish in diet for common octopus (Octopus vulgaris) ongrowing. Aquaculture 502-511 (2006). doi:10.1016/j.aquaculture.2005.04.055.
58. Giménez, F. A. \& García, B. G. Growth and food intake models in Octopus vulgaris Cuvier (1797): Influence of body weight, temperature, sex and diet. Aquac. Int. 10, 361-377 (2002). doi:10.1023/A:1023335024053
59. Cerezo Valverde, J., Hernández, M. D., Aguado-Giménez, F. \& García García, B. Development of low-lipid formulated feeds with different protein/energy ratios for Octopus vulgaris ongrowing. Aquac. Nutr. 23, 681-691 (2017). doi:10.1111/anu. 12435
60. Morillo-Velarde, P. S., Cerezo Valverde, J. \& García-García, B. Utilization of diets with different fish oil content in common octopus (Octopus vulgaris Cuvier, 1797) and resulting changes in its biochemical composition. Aquac. Res. 46, 2871-2884 (2015). doi:10.1111/are. 12439
61. Martínez, R. et al. Growth, survival and physiological condition of Octopus maya when fed a successful formulated diet. Aquaculture 426-427, 310-317 (2014). doi:10.1016/j.aquaculture.2014.02.005
62. Rosa, R., Marques, A. M., Nunes, M. L., Bandarra, N. \& Sousa Reis, C. Spatialtemporal changes in dimethyl acetal (octadecanal) levels of Octopus vulgaris (Mollusca, Cephalopoda): relation to feeding ecology. Sci. Mar. 68, 227-236 (2004). doi:10.3989/scimar.2004.68n2227
63. Rodríguez, C., Carrasco, J. F., Arronte, J. C. \& Rodríguez, M. Common octopus (Octopus vulgaris Cuvier, 1797) juvenile ongrowing in floating cages. Aquaculture 254, 293-300 (2006). doi:10.1016/j.aquaculture.2005.10.053
64. Busetto, M. L. et al. Authentication of farmed and wild turbot (Psetta maxima) by fatty acid and isotopic analyses combined with chemometrics. J. Agric. Food Chem. 56, 2742-2750 (2008). doi:10.1021/jf0734267
65. Li, L., Kokkuar, N., Han, C., Ren, W. \& Dong, S. Effects of dietary shifts on the stable isotope signature of Pacific white shrimp Litopenaeus vannamei and implications for traceability. Mar. Freshw. Res. 71, 1294 (2020). doi:10.1071/MF19214
66. Molkentin, J., Lehmann, I., Ostermeyer, U. \& Rehbein, H. Traceability of organic fish - Authenticating the production origin of salmonids by chemical and isotopic analyses. Food Control 53, 55-66 (2015). doi:10.1016/j.foodcont.2015.01.003
67. Axelson, D. E., Standal, I. B., Martinez, I. \& Aursand, M. Classification of wild and farmed salmon using bayesian belief networks and gas chromatography-derived fatty acid distributions. J. Agric. Food Chem. 57, 7634-7639 (2009). doi:10.1021/jf9013235
68. FAO Fisheries \& Aquaculture - Species Fact Sheets - Octopus vulgaris (Lamarck, 1798). http://www.fao.org/fishery/species/3571/en.
69. Bligh, E. G. \& Dyer, W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37, 911-917 (1959). doi:10.1139/o59-099
70. Bartlett, E. M. \& Lewis, D. H. Spectrophotometric determination of phosphate esters in the presence and absence of orthophosphate. Anal. Biochem. 36, 159-167 (1970). doi:10.1016/0003-2697(70)90343-X
71. Pluskal, T., Castillo, S., Villar-Briones, A. \& Orešič, M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11, 395 (2010). doi:10.1186/1471-2105-11395
72. Chong, J. et al. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 46, W486-W494 (2018). doi:10.1093/nar/gky310
73. Rosa, R., Pereira, J. \& Nunes, M. L. Biochemical composition of cephalopods with different life strategies, with special reference to a giant squid, Architeuthis sp. Mar. Biol. 146, 739-751 (2005). doi:10.1007/s00227-004-1477-5
74. García-Garrido, S., Hachero-Cruzado, I., Garrido, D., Rosas, C. \& Domingues, P. Lipid composition of the mantle and digestive gland of Octopus vulgaris juveniles (Cuvier, 1797) exposed to prolonged starvation. Aquac. Int. 18, 1223-1241 (2010). doi:10.1007/s10499-010-9335-6
75. Nemova, N. N., Fokina, N. N., Nefedova, Z. A., Ruokolainen, T. R. \& Bakhmet, I. N. Modifications of gill lipid composition in littoral and cultured blue mussels Mytilus
edulis L. under the influence of ambient salinity. Polar Rec. 49, 272-277 (2013). doi:10.1017/S0032247412000629
76. Ozogul, Y., Duysak, O., Ozogul, F., Özkütük, A. S. \& Türeli, C. Seasonal effects in the nutritional quality of the body structural tissue of cephalopods. Food Chem. 108, 847-852 (2008). doi:10.1016/j.foodchem.2007.11.048
77. Tocher, D. R., Bendiksen, E. Å., Campbell, P. J. \& Bell, J. G. The role of phospholipids in nutrition and metabolism of teleost fish. Aquaculture 280, 21-34 (2008). doi:10.1016/j.aquaculture.2008.04.034
78. Navarro, J. C. \& Villanueva, R. Lipid and fatty acid composition of early stages of cephalopods: an approach to their lipid requirements. Aquaculture 183, 161-177 (2000). doi:10.1016/S0044-8486(99)00290-2
79. Morillo-Velarde, P. S., Valverde, J. C., Serra Llinares, R. M. \& García, B. G. Changes in lipid composition of different tissues of common octopus (Octopus vulgaris) during short-term starvation. Aquac. Res. 44, 1177-1189 (2013). doi:10.1111/j.13652109.2012.03131.x
80. Valverde, J. C. et al. Lipid classes from marine species and meals intended for cephalopod feeding. Aquac. Int. 20, 71-89 (2012). doi:10.1007/s10499-011-9442-z
81. Zhukova, N. V. Fatty acids of marine mollusks: impact of diet, bacterial symbiosis and biosynthetic potential. Biomolecules 9, 857 (2019). doi:10.3390/biom9120857
82. Parrish, C. C. Essential fatty acids in aquatic food webs. in Lipids in Aquatic Ecosystems (eds. Kainz, M., Brett, M. T. \& Arts, M. T.) 309-326 (Springer New York, 2009). doi:10.1007/978-0-387-89366-2_13.
83. Fitahia, E. M., Croyal, M., Raheriniaina, C. E., Ferchaud-Roucher, V. \& Nazih, H. High-resolution mass spectrometry unravels a broad range of bioactive lipid species in

Octopus cyanea and Loligo sp. By-products from southwestern Madagascar. Waste Biomass Valorization 9, 1787-1793 (2018). doi:10.1007/s12649-017-9933-x
84. Losito, I. et al. Tracing the thermal history of seafood products through lysophospholipid analysis by hydrophilic interaction liquid chromatographyelectrospray ionization Fourier transform mass spectrometry. Molecules 23, 2212 (2018). doi:10.3390/molecules23092212
85. Facchini, L., Losito, I., Cataldi, T. R. I. \& Palmisano, F. Seasonal variations in the profile of main phospholipids in Mytilus galloprovincialis mussels: A study by hydrophilic interaction liquid chromatography-electrospray ionization Fourier transform mass spectrometry. J. Mass Spectrom. 53, 1-20 (2018). doi:10.1002/jms. 4029
86. Kraffe, E., Soudant, P. \& Marty, Y. Fatty acids of serine, ethanolamine, and choline plasmalogens in some marine bivalves. Lipids 39, 59-66 (2004). doi:10.1007/s11745-004-1202-x
87. Nagan, N. \& Zoeller, R. A. Plasmalogens: biosynthesis and functions. Prog. Lipid Res. 40, 199-229 (2001). doi:10.1016/S0163-7827(01)00003-0
88. Hanuš, L. O., Levitsky, D. O., Shkrob, I. \& Dembitsky, V. M. Plasmalogens, fatty acids and alkyl glyceryl ethers of marine and freshwater clams and mussels. Food Chem. 116, 491-498 (2009). doi:10.1016/j.foodchem.2009.03.004
89. Brosche, T., Brueckmann, M., Haase, K. K., Sieber, C. \& Bertsch, T. Decreased plasmalogen concentration as a surrogate marker of oxidative stress in patients presenting with acute coronary syndromes or supraventricular tachycardias. Clin. Chem. Lab. Med. 45, 689-691 (2007). doi:10.1515/CCLM.2007.111
90. Maeba, R., Sawada, Y., Shimasaki, H., Takahashi, I. \& Ueta, N. Ethanolamine plasmalogens protect cholesterol-rich liposomal membranes from oxidation caused by
free radicals. Chem. Phys. Lipids 120, 145-151 (2002). doi:10.1016/S0009-3084(02)00101-9
91. Latorre, E., Collado, M. P., Fernández, I., Aragonés, M. D. \& Catalán, R. E. Signaling events mediating activation of brain ethanolamine plasmalogen hydrolysis by ceramide: Activated plasmalogen hydrolysis by ceramide. Eur. J. Biochem. 270, 36-46 (2003). doi:10.1046/j.1432-1033.2003.03356.x
92. Braverman, N. E. \& Moser, A. B. Functions of plasmalogen lipids in health and disease. Biochim. Biophys. Acta BBA - Mol. Basis Dis. 1822, 1442-1452 (2012). doi:10.1016/j.bbadis.2012.05.008
93. Grzelczyk, A. \& Gendaszewska-Darmach, E. Novel bioactive glycerol-based lysophospholipids: New data - New insight into their function. Biochimie 95, 667-679 (2013). doi:10.1016/j.biochi.2012.10.009
94. Shen, Y. et al. Characterization of glycerophospholipid molecular species in muscles from three species of cephalopods by direct infusion-tandem mass spectrometry. Chem. Phys. Lipids 226, 104848 (2020). doi:10.1016/j.chemphyslip.2019.104848
95. Reis, D. B. et al. Composition and metabolism of phospholipids in Octopus vulgaris and Sepia officinalis hatchlings. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 200, 62-68 (2016). doi:10.1016/j.cbpb.2016.06.001
96. Facchini, L., Losito, I., Cataldi, T. R. I. \& Palmisano, F. Ceramide lipids in alive and thermally stressed mussels: An investigation by hydrophilic interaction liquid chromatography-electrospray ionization Fourier transform mass spectrometry. J. Mass Spectrom. 51, 768-781 (2016). doi:10.1002/jms. 3832
97. Colombaioni, L. \& Garcia-Gil, M. Sphingolipid metabolites in neural signalling and function. Brain Res. Rev. 46, 328-355 (2004). doi:10.1016/j.brainresrev.2004.07.014
98. Kariotoglou, D. M. \& Mastronicolis, S. K. Phosphonolipids in the mussel Mytilus galloprovincialis. Z. Für Naturforschung C 53, 888-896 (1998). doi:10.1515/znc-1998-9-1018
99. Sinanoglou, V. J. \& Miniadis-Meimaroglou, S. Structural analysis of ceramide-amino-ethyl-phosphonate in edible Mediterranean cephalopods. Acta Aliment. 33, 359370 (2004). doi:10.1556/AAlim.33.2004.4.6
100. de Souza, L. M. et al. Glyco- and sphingophosphonolipids from the medusa Phyllorhiza punctata: NMR and ESI-MS/MS fingerprints. Chem. Phys. Lipids 145, 8596 (2007). doi:10.1016/j.chemphyslip.2006.11.001
101. Komatsu, M. et al. Ceramide aminoethylphosphonate from jumbo flying squid Dosidicus gigas attenuates the toxicity of cyanotoxin microcystin-LR. Fish. Sci. 79, 313-320 (2013). doi:10.1007/s12562-012-0593-2
102. Bhat, H. B. et al. Evaluation of aegerolysins as novel tools to detect and visualize ceramide phosphoethanolamine, a major sphingolipid in invertebrates. FASEB J. 29, 3920-3934 (2015). doi:10.1096/fj.15-272112
103. Wang, R. Identification of ceramide 2-aminoethylphosphonate molecular species from different aquatic products by NPLC/Q-Exactive-MS. Food Chem. 304, 125425 (2020). doi:10.1016/j.foodchem.2019.125425
104. Outeiro, L., Byron, C. \& Angelini, R. Ecosystem maturity as a proxy of mussel aquaculture carrying capacity in Ria de Arousa (NW Spain): A food web modeling perspective. Aquaculture 496, 270-284 (2018). doi:10.1016/j.aquaculture.2018.06.043
105. Tenore, K. R. et al. Coastal upwelling in the Rías Bajas, NW Spain: Contrasting the benthic regimes of Rías de Arosa and de Muros. J. Mar. Res. 40, 701-772 (1982). ISSN:0022-2402
106. Fernández-Reiriz, M.-J. Bateeiros, mar, mejillón. Una perspectiva bioeconómica. (2004). ISBN:84-95491-69-9
107. Duarte, P., Labarta, U. \& Fernández-Reiriz, M. J. Modelling local food depletion effects in mussel rafts of Galician Rias. Aquaculture 274, 300-312 (2008). doi:10.1016/j.aquaculture.2007.11.025
108. Freire, J. Feeding ecology of Liocarcinus depurator (Decapoda: Portunidae) in the Ria de Arousa (Galicia, north-west Spain): effects of habitat, season and life history. Mar. Biol. 126, 297-311 (1996). doi:10.1007/BF00347454
109. Gilabert, A., Geraudie, P., Jaumot, J. \& Porte, C. Partial characterization of the lipidome of the cold-water scallop, Chlamys islandica. Environ. Sci. Pollut. Res. 27, 1475-1484 (2020). doi:10.1007/s11356-019-06751-1
110. Ezgeta-Balić, D., Najdek, M., Peharda, M. \& Blažina, M. Seasonal fatty acid profile analysis to trace origin of food sources of four commercially important bivalves. Aquaculture 334-337, 89-100 (2012). doi:10.1016/j.aquaculture.2011.12.041
111. Rosa, R. et al. Bioenergetics of small pelagic fishes in upwelling systems: relationship between fish condition, coastal ecosystem dynamics and fisheries. Mar. Ecol. Prog. Ser. 410, 205-218 (2010). doi:10.3354/meps08635
112. Cortez, T., Castro, B. G. \& Guerra, A. Feeding dynamics of Octopus mimus (Mollusca:Cephalopoda) in northern Chile waters. Mar. Biol. 123, 497-503 (1995). doi:10.1007/BF00349228
113. Smale, M. J. \& Buchan, P. R. Biology of Octopus vulgaris off the east coast of South Africa. Mar. Biol. 65, 1-12 (1981). doi:10.1007/BF00397061
114. Ambrose, R. F. \& Nelson, B. V. Predation by Octopus vulgaris in the Mediterranean. Mar. Ecol. 4, 251-261 (1983). doi:10.1111/j.1439-0485.1983.tb00299.x
115. Gong, Y., Li, Y., Chen, X. \& Chen, L. Potential use of stable isotope and fatty acid analyses for traceability of geographic origins of jumbo squid (Dosidicus gigas). Rapid Commun. Mass Spectrom. 32, 583-589 (2018). doi:10.1002/rcm. 8071
116. Santos, M. Characterizing phytoplankton biomass seasonal cycles in two NE Atlantic coastal bays. Cont. Shelf Res. 207, 104200 (2020). doi:10.1016/j.csr.2020.104200
117. Hall, J. M., Parrish, C. C. \& Thompson, R. J. Eicosapentaenoic Acid Regulates Scallop (Placopecten magellanicus) Membrane Fluidity in Response to Cold. Biol. Bull. 202, 201-203 (2002). doi: 10.2307/1543469
118. Velansky, P. V. \& Kostetsky, E. Ya. Lipids of marine cold-water fishes. Russ. J. Mar. Biol. 34, 51-56 (2008). doi:10.1134/S1063074008010070
119. Murzina, S. et al. Lipid status of the two high latitude fish species, Leptoclinus maculatus and Lumpenus fabricii. Int. J. Mol. Sci. 14, 7048-7060 (2013). doi:10.3390/ijms14047048
120. Helenius, L., Budge, S. M., Nadeau, H. \& Johnson, C. L. Ambient temperature and algal prey type affect essential fatty acid incorporation and trophic upgrading in a herbivorous marine copepod. Philos. Trans. R. Soc. B Biol. Sci. 375, 20200039 (2020). doi:10.1098/rstb.2020.0039
121. Parzanini, C. et al. Discrimination between freshwater and marine fish using fatty acids: ecological implications and future perspectives. Environ. Rev. 28, 546-559 (2020). doi:10.1139/er-2020-0031
122. Rodas, A. M. et al. Eukaryotic plankton communities across reef environments in Bocas del Toro Archipelago, Panamá. Coral Reefs 39, 1453-1467 (2020). doi:10.1007/s00338-020-01979-7
123. Bode, A., Alvarez-Ossorio, M. T., Cabanas, J. M., Miranda, A. \& Varela, M. Recent trends in plankton and upwelling intensity off Galicia (NW Spain). Prog. Oceanogr. 83, 342-350 (2009). doi:10.1016/j.pocean.2009.07.025
124. Benincà, E., Dakos, V., Van Nes, E. H., Huisman, J. \& Scheffer, M. Resonance of Plankton Communities with Temperature Fluctuations. Am. Nat. 178, E85-E95 (2011). doi:10.1086/661902
125. Huang, M. et al. Growth and lipidomic responses of juvenile pacific white shrimp Litopenaeus vannamei to low salinity. Front. Physiol. 10, 1087 (2019). doi:10.3389/fphys.2019.01087
126. Relvas, P. \& Barton, E. D. Mesoscale patterns in the Cape São Vicente (Iberian Peninsula) upwelling region. J. Geophys. Res. Oceans 107, 28-1-28-23 (2002). doi:10.1029/2000JC000456

Supplementary data

a)

b)

d)

Supplementary Figure S1 Phosphatidylethanolamine (PE) identification. a) HILIC-ESI-MS/MS spectrum of PE ($38: 6 ; 16: 0 / 22: 6$) corresponding to $[\mathrm{M}+\mathrm{H}]^{+}$ion at $\mathrm{m} / \mathrm{z} 764.5$. b) HILIC-ESI-MS/MS spectrum of PE $(38: 6 ; 16: 0 / 22: 6)$ as $[\mathrm{M}-\mathrm{H}]^{-}$ion at $m / z 762.5$. c) Phospholipid class was confirmed through the identification of phosphoethanolamine head group as the neutral loss of -141 Da , in the positive mode. d) Molecular species composition was confirmed by the identification of product ions corresponding to the fatty acyl chains as carboxylate anions [RCOO]' seen at $\mathrm{m} / \mathrm{z} 255.2$ (16:0) and m / z 327.2 (22:6). LysoPE (LPE) class was confirmed following the same identification process, but only one product ion corresponding to fatty acyl chain was identified.
a)

d) $m z 255$

Supplementary Figure S2 Phosphatidylcholine (PC) identification. a) HILIC-ESI-MS/MS spectrum of PC (38:6; 16:0/22:6) corresponding to $[\mathrm{M}+\mathrm{H}]^{+}$ion at $m / \mathrm{z} 806.5$. b) HILIC-ESI-MS/MS spectrum of PC ($38: 6 ; 16: 0 / 22: 6)$ as $\left[\mathrm{M}+\mathrm{CH}_{3} \mathrm{COO}\right]^{-}$ion at m / z 864.5. c) Phospholipid class was confirmed through the identification of phosphocholine cation, at $\mathrm{m} / \mathrm{z} 184$, typical product of the polar head, in the positive mode. d) Molecular species composition was confirmed by the identification of product ions corresponding to the fatty acyl chains as carboxylate anions [RCOO] seen at $\mathrm{m} / \mathrm{z} 255.2$ (16:0) and m / z 327.2 (22:6). In the negative mode, phospholipid class was confirmed through the identification the typical anion $\left[\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{O}_{4} \mathrm{NP}\right]^{-}$, at m / z 168. LysoPC (LPC) class was confirmed following the same identification process, but only one product ion corresponding to fatty acyl chain was identified.
a)

b)

c)

Supplementary Figure $\mathbf{S 3}$ ceramides aminoethylphosphonates (CAEP) identification. A) HILIC-ESI-MS/MS spectrum of CAEP (d32:1; d16:1/16:0) corresponding to $[\mathrm{M}+\mathrm{H}]^{+}$ion at $\mathrm{m} / \mathrm{z} 617.5$. B) HILIC-ESI-MS/MS spectrum of CAEP (d32:1; d16:1/16:0) ion as [M-H] at $m / z 615.5$. C) CAEP molecular species were confirmed through the identification of the headgroup aminoethylphosphonate as a neutral loss of -125 Da in positive mode. Molecular species composition was confirmed by the identification of the sphingoid base $\left[\mathrm{d} 16: 1+\mathrm{H}-2 \mathrm{H}_{2} \mathrm{O}\right]^{+}$seen at $\mathrm{m} / \mathrm{z} 236.2$ and the fatty acyl chain confirmed as a neutral loss between the ion $[\mathrm{M}+\mathrm{H}-125]^{+}$at $\mathrm{m} / \mathrm{z} 492.5$ and the sphingosine $[\mathrm{d} 16: 1+\mathrm{H}-$ $\left.2 \mathrm{H}_{2} \mathrm{O}\right]^{+}$. D) The aminoethylphosphonate anion, headgroup of CAEP, was confirmed in negative HILIC-ESI-MS/MS spectrum as $m / z 124$.

b)

Supplementary Figure S4 Phosphatidylinositol (PI) identification. A) HILIC-ESI-MS/MS spectrum of PI ($38: 5 ; 18: 0 / 20: 5$) corresponding to $[\mathrm{M}-\mathrm{H}]^{-}$ion at $m / \mathrm{z} 883.5$. B) Phospholipid class was confirmed through the identification of the inositol head group by the product ions at $\mathrm{m} / \mathrm{z} 223, \mathrm{~m} / \mathrm{z} 241, \mathrm{~m} / \mathrm{z} 297$ and m / z 315. Molecular species composition was confirmed by the identification of product ions corresponding to the fatty acyl chains as carboxylate anions [RCOO] seen at $m / z 283.2$ (18:0) and m / z 301.2 (20:5).

Supplementary Figure S5 Phosphatidylserine (PS) identification. A) HILIC-ESI-MS/MS spectrum of PS $(38: 4 ; 18: 0 / 20: 4)$ corresponding to $[\mathrm{M}-\mathrm{H}]^{-}$ion at $\mathrm{m} / \mathrm{z} 810.5$. B) Phospholipid class was confirmed through the identification of glycerol phosphate anion $-\mathrm{H}_{2} \mathrm{O}$, ion at $\mathrm{m} / \mathrm{z} 153$, and the loss of -87 Da , corresponding to the serine moiety. Molecular species composition was confirmed by the identification of product ions corresponding to the fatty acyl chains as carboxylate anions [RCOO] seen at m / z 283.3(18:0) and $m / z 303.2$ (20:4).

Supplementary Figure S6 Ceramide (Cer) identification. A) HILIC-ESI-MS/MS spectrum of Cer (d32:1; d16:1/16:0) corresponding to $[\mathrm{M}+\mathrm{H}]^{+}$ion at $\mathrm{m} / \mathrm{z} 510.5$. B) Molecular species composition was confirmed by the identification of the sphingoid base $\left[\mathrm{d} 16: 1+\mathrm{H}-2 \mathrm{H}_{2} \mathrm{O}\right]^{+}$seen at $\mathrm{m} / \mathrm{z} 236.2$ and the fatty acyl chain confirmed as neutral loss between the ion $[\mathrm{M}+\mathrm{H}]^{+}$at $\mathrm{m} / \mathrm{z} 510.5$ and the sphingosine base $\left[\mathrm{d} 16: 1+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$.
a)

b)
m/z
$m / z 184$

(-338 Da)
FA 22:1

Supplementary Figure S7 sphingomyelin (SM) identification. A) HILIC-ESI-MS/MS spectrum of SM (d38:2; d16:1/22:1) corresponding to $[\mathrm{M}+\mathrm{H}]^{+}$ion at $m / \mathrm{z} 757.6$. B) SM were confirmed through the identification of phosphocholine head group, at m / z 184.1. Molecular species composition was confirmed by the identification of the sphingoid base [d16:1-2 $\left.\mathrm{H}_{2} \mathrm{O}+\mathrm{H}\right]^{+}$seen at $\mathrm{m} / \mathrm{z} 236.2$ and the fatty acyl chain confirmed as a neutral loss between the ion $\left[\mathrm{M}+\mathrm{H}-\left(183-\mathrm{H}_{2} \mathrm{O}\right)\right]^{+}$at $\mathrm{m} / \mathrm{z} 556.6$ and the sphingosine $\left[\mathrm{d} 16: 1+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$.
a)
$\left[\mathrm{M}+\mathrm{H}-141-\mathrm{H}_{2} \mathrm{O}\right]^{+}$

b)

Supplementary Figure $\mathbf{S 8}$ ceramides phosphoethanolamines (CPE) identification. A) HILIC-ESIMS/MS spectrum of CPE ($\mathrm{d} 32: 1$; d16:1/16:0) corresponding to $[\mathrm{M}+\mathrm{H}]^{+}$ion at $m / \mathrm{z} 633.5$. B) HILIC-ESI-MS/MS spectrum of CPE ($\mathrm{d} 32: 1$; $\mathrm{d} 16: 1 / 16: 0$) ion as $[\mathrm{M}-\mathrm{H}]^{-}$at m / z 631.5. C) CPE molecular species were confirmed through the identification of the headgroup phosphoethanolamine as a neutral loss of -141 Da . Molecular species composition was confirmed by the identification of the sphingoid base $\left[\mathrm{d} 16: 1+\mathrm{H}-2 \mathrm{H}_{2} \mathrm{O}\right]^{+}$seen at $m / z 236.2$ and the fatty acyl chain confirmed as a neutral loss between the ion $[\mathrm{M}+\mathrm{H}-141]^{+}$at $\mathrm{m} / \mathrm{z} 492.5$ and the sphingosine $\left[\mathrm{d} 16: 1+\mathrm{H}-2 \mathrm{H}_{2} \mathrm{O}\right]^{+}$. D) The phosphoethanolamine anion, headgroup of CPE, was confirmed in negative HILIC-ESI-MS/MS spectrum as $m / z 140$.
a)

b)

d)

Supplementary Figure S 9 N -methyl ceramides aminoethylphosphonates (N - CH_{3}-CAEP) identification. A) HILIC-ESI-MS/MS spectrum of $\mathrm{N}^{-} \mathrm{CH}_{3}$-CAEP ($\mathrm{d} 38: 3$; d16:1/22:2) corresponding to $[\mathrm{M}+\mathrm{H}]^{+}$ion at $\mathrm{m} / \mathrm{z} 711.6$. B) HILIC-ESI-MS/MS spectrum of $N-\mathrm{CH}_{3}-\mathrm{CAEP}(\mathrm{d} 38: 3 ; \mathrm{d} 16: 1 / 22: 2)$ ion as $[\mathrm{M}-\mathrm{H}]^{-}$at m / z 709.6. C) $\mathrm{N}^{-\mathrm{CH}_{3}-\mathrm{CAEP}}$ molecular species were confirmed through the identification of the headgroup N-methyl aminoethylphosphonate as a neutral loss of -139 Da . Molecular species composition was confirmed by the identification of the sphingoid base [d16:1+H-2 $\left.\mathrm{H}_{2} \mathrm{O}\right]^{+}$seen at m / z 236.2 and the fatty acyl chain confirmed as a neutral loss between the ion $[\mathrm{M}+\mathrm{H}-139]^{+}$at $\mathrm{m} / \mathrm{z} 572.5$ and the sphingosine $\left[\mathrm{d} 16: 1+\mathrm{H}-2 \mathrm{H}_{2} \mathrm{O}\right]^{+}$. D) The N-methyl phosphonoethylamine anion, headgroup of N -CH_{3}-CAEP, was confirmed in negative HILIC-ESI-MS/MS spectrum as $m / z 138$.

b)

Supplementary Figure S10 Phosphatidylglycerol (PG) identification. A) HILIC-ESI-MS/MS spectrum of PG $(34: 1 ; 16: 0 / 18: 1)$ corresponding to $[\mathrm{M}-\mathrm{H}]^{-}$ion at $m / \mathrm{z} 747.5$. B) Phospholipid class was confirmed through the identification of the polar head ions at $m / z 153, \mathrm{~m} / \mathrm{z} 171$ and $\mathrm{m} / \mathrm{z} 227$, corresponding to glycerol phosphate anion $-\mathrm{H}_{2} \mathrm{O}$, glycerol phosphate anion and glycerolphosphate glycerol anion $-\mathrm{H}_{2} \mathrm{O}$, respectively. Molecular species composition was confirmed by the identification of product ions corresponding to the fatty acyl chains as carboxylate anions [RCOO] ${ }^{-}$seen at $m / z 255.2$ (16:0) and $m / z 281.2$ (18:1).

Supplementary Figure S11 HexosylCeramide (HexCer) identification. A) HILIC-ESI-MS/MS spectrum of HexCer (d38:2; d16:1/22:1) corresponding to $[\mathrm{M}+\mathrm{H}]^{+}$ion at $m / \mathrm{z} 754.6$. B) HexCer were confirmed through the identification of the neutral loss the hexose moiety (-180 Da). Molecular species composition was confirmed by the identification of the sphingoid base [$\left.\mathrm{d} 16: 1+\mathrm{H}-2 \mathrm{H}_{2} \mathrm{O}\right]^{+}$seen at m / z 236.2 and the fatty acyl chain confirmed as a neutral loss between the ion $[\mathrm{M}+\mathrm{H}-180]^{+}$and the sphingosine $\left[\mathrm{d} 16: 1+\mathrm{H}-2 \mathrm{H}_{2} \mathrm{O}\right]^{+}$.

Supplementary Figure S12. Hierarchical clustering using normalized areas from all lipid species identified in Octopus vulgaris samples. Abbreviations: Pe, Peniche; RAr, Ria Arousa; RP, Ria Pontevedra; Ses, Sesimbra; SL, Santa Luzia.

Table S1. Total molecular species of the different lipid classes identified by LC-MS and MS/MS in Octopus vulgaris specimens captured and landed along the Atlantic coast of the Iberian Peninsula. Labels of lipid species are according to the notation: AAA (C:N), (AAA, lipid class; C, total carbon atoms; N, total double bonds of fatty acid substituents) and AAA (O-C:N)(P-C:N) correspond to O- plasmanyl; Pplasmenyl, respectively). Molecular species identified by retention time, mass accuracy calculation and typical ion product are marked with $\left(^{*}\right.$) and molecular species identified only by retention time and mass accuracy calculation are marked with $(* *)$. Bold lipid species were not considered in the statistical analysis for discrimination between locations.

Lipid species $(\mathrm{C}: \mathrm{N})$	Library m / z	Observed m / z	Fatty acyl chains	Error (ppm)
$[\mathrm{M}-\mathrm{H}]^{-}$				
$\mathrm{PG}(\mathrm{O}-34: 4)(\mathrm{P}-$	727.4914	727.4932		2.474
$34: 3)^{* *}$				
$\mathrm{PG}(34: 1)$	747.5176	747.521	$16: 0 / 18: 1$	4.548
$\mathrm{PG}(36: 5)$	767.4863	767.489	$16: 0 / 20: 5$	3.518
$\mathrm{PG}(40: 6)^{* *}$	821.5333	821.5344		1.881
$[\mathbf{M - H}]^{-}$				
$\mathrm{PI}(34: 4)^{* *}$	829.4867	829.4858		-1.085
$\mathrm{PI}(34: 2)^{* *}$	833.518	833.5164		-1.920
$\mathrm{PI}(\mathrm{O}-36: 5)$	841.5231	841.5266	$\mathrm{O}-16: 0 / 20: 5$	4.159
$\mathrm{PI}(\mathrm{O}-36: 4)(\mathrm{P}-$	843.5388	843.5373		-1.778
$36: 3)^{* *}$				
$\mathrm{PI}(\mathrm{O}-36: 3)(\mathrm{P}-$	845.5544	845.5505		-4.612
$36: 2)^{*}$				
$\mathrm{PI}(36: 5)$	855.5024	855.5063	$16: 0 / 20: 5$	4.559
$\mathrm{PI}(36: 4)$	857.518	857.5157	$16: 0 / 20: 4 ; 18: 2 / 18: 2$	-2.682
$\mathrm{PI}(36: 3)$	859.5337	859.5326	$16: 0: 20: 3$	-1.280
$\mathrm{PI}(36: 2)$	861.5493	861.5507	$16: 0 / 20: 2$	1.625
$\mathrm{PI}(37: 5)$	869.5186	869.5196	$17: 0 / 20: 5$	1,150
$\mathrm{PI}(\mathrm{O}-38: 5)(\mathrm{P}-$	869.5544	869.5585	$\mathrm{O}-18: 0 / 20: 5 ; \mathrm{P}-18: 0 / 20: 4 ;$	4.715
$38: 4)$				
$\mathrm{PI}(\mathrm{O}-38: 4)$	871.5701	871.5707	$\mathrm{O}-18: 0 / 20: 4$	0.688
$\mathrm{PI}(\mathrm{O}-38: 3)$	873.5857	873.5822	$\mathrm{O}-18: 0 / 20: 3$	-4.006
$\mathrm{PI}(38: 6)$	881.518	881.5217	$18: 1 / 20: 5 ; 16: 0 / 22: 6$	4.197
$\mathrm{PI}(38: 5)$	883.5337	883.5378	$18: 0 / 20: 5 ; 18: 1 / 20: 4 ;$	4.640
			$16: 0 / 22: 5$	
$\mathrm{PI}(38: 4)$	885.5493	885.5473	$18: 0 / 20: 4$	-2.258
$\mathrm{PI}(38: 3)$	887.565	887.5619	$18: 0 / 20: 3$	-3.493
$\mathrm{PI}(38: 2)$	889.5806	889.5819	$18: 0 / 20: 2$	1.461
$\mathrm{PI}(38: 1)$	891.5963	891.5968	$18: 0 / 20: 1$	0.561

PI (39:5)	897.5499	869.5426	19:0/20:5	0,891
$\mathrm{PI}(\mathrm{O}-40: 5)(\mathrm{P}-$	897.5857	897.583		-3.008
40:4)*				
$\mathrm{PI}(40: 10)$	901.4867	901.4908	20:5/20:5	4.548
$\mathrm{PI}(40: 9)$	903.5024	903.5034	20:4/20:5	1.107
$\mathrm{PI}(40: 8)$	905.518	905.5199	20:3/20:5	2.098
$\mathrm{PI}(40: 7)$	907.5337	907.5363	20:2/20:5; 18:1/22:6	2.865
PI(40:6)	909.5493	909.5531	20:5/20:1	4.178
$\mathrm{PI}(40: 5)^{* *}$	911.565	911.5638		-1.316
$\mathrm{PI}(40: 4)$	913.5806	913.5799	18:0/22:4; 20:1/20:3	-0.766
$\mathrm{PI}(40: 3)$	915.5963	915.5946	20:1/20:2	-1.857
PI(42:10)	929.518	929.5204	20:5/22:5	2.582
$\mathrm{PI}(42: 9)$	931.5337	931.5382	20:4/22:5; 20:5/22:4	4.831
$\mathrm{PI}(42: 8)^{* *}$	933.5493	933.5511		1.928
$\mathrm{PI}(42: 7)$	935.565	935.5695	22:2/20:5; 20:1/22:6	4.810
[M-H] ${ }^{\text {- }}$				
PS(34:1)	760.5129	760.5142	16:0/18:1	1.709
$\operatorname{PS}(36: 6)^{* *}$	778.4659	778.4687		3.597
PS(36:4)	782.4972	782.4998	16:0/20:4	3.323
PS(36:3)**	784.5129	784.5139		1.275
$\operatorname{PS}(36: 2) * *$	786.5285	786.5327		5.340
PS(36:1)	788.5442	788.5484	18:0/18:1	5.326
PS(O-38:6)(P-	792.518	792,5220	O-16:0/22:6; P-18:0/20:5	5,047
38:5)				
$\begin{aligned} & \mathrm{PS}(\mathrm{O}-38: 5)(\mathrm{P}- \\ & 38: 4)^{* *} \end{aligned}$	794.5336	794.5369		4.153
PS(37:4)	796.5134	796.5156	17:0/20:4	2.762
PS(O-38:4)	796.5493	796.5498	O-18:0/20:4	0.628
PS(38:5)	808.5129	808.5166	18:0/20:5; 16:0/22:5	4.576
PS(38:4)	810.5285	810.531	18:0/20:4, 16:0/22:4	3.084
PS(38:3)**	812.5442	812.5401		-5.046
$\operatorname{PS}(38: 1)^{* *}$	816.5755	816.5796		5.021
PS(O-40:6)	820.5493	820.5528	O-18:0/22:6	4.265
PS(39:5)	822.5291	822.5292	17:0/22:5	0.122
PS(O-40:5)	822.5649	822.5642	O-18:0/22:5	-0.851
PS(40:9)**	828.4816	828.4846		3.621
PS(40:8)**	830.4972	830.5005		3.974
PS(40:5)**	836.5442	836.5421		-2.510
PS(40:4)**	838.5598	838.5596		-0.239
PS(40:3)**	840.5755	840.5753		-0.238
$\operatorname{PS}(40: 2)^{* *}$	842.5911	842.5952		4.866
$\operatorname{PS}(40: 1)^{* *}$	844.6068	844.6039		-3.434

PS(42:11)	852.4816	852.4858	20:5/22:6	4.927
PS(42:10)**	854.4972	854.4992		2.341
PS(42:9)	856.5129	856.5162	20:3/22:6	3.853
PS(42:8)**	858.5285	858.5314		3.378
PS(42:7)	860.5442	860.5484	20:1/22:6	4.881
$\operatorname{PS}(42: 6)^{* *}$	862.5598	862.5596		-0.232
PS(44:10)**	882.5285	882.5323		4.306
[$\mathbf{M}+\mathbf{H}]^{+}$				
PC(28:0)	678.5074	678.5094	14:0/14:0	2.9742
$\mathrm{PC}(\mathrm{O}-30: 2)(\mathrm{P}-$	688.5281	688.5247		-4.9628
30:1)**				
$\mathrm{PC}(\mathrm{O}-30: 1)(\mathrm{P}-$	690.5438	690.5455		2.5096
30:0)*				
PC(29:0)	692.5225	692.5256	14:0/15:0	4.4764
$\mathrm{PC}(\mathrm{O}-30: 0)$	692.5594	692.5605	O-14:0/16:0	1.5652
$\mathrm{PC}(30: 1)$	704.5230	704.5248	16:0/14:1	2.5095
PC(30:0)	706.5387	706.5406	14:0/16:0	2.7146
$\mathrm{PC}(\mathrm{O}-32: 2)(\mathrm{P}-$	716.5594	716.559		-0.5806
32:1)*				
$\mathrm{PC}(\mathrm{O}-32: 1)(\mathrm{P}-$	718.5751	718.5767	O-16:1/16:0; P-16:0/16:0	2.2726
32:0)				
$\mathrm{PC}(\mathrm{O}-32: 0)$	720.5907	720.5912	O-16:0/16:0	0.6703
$\mathrm{PC}(32: 2) *$	730.5387	730.5406		2.6255
PC(32:1)	732.5543	732.5564	16:0/16:1; 14:0/18:1	2.8244
PC(32:0)	734.5700	734.5709	16:0/16:0; 14:0/18:0	1.2497
PC(O-34:5)(P-	738.5438	738.5454		2.2111
34:4)*				
$\mathrm{PC}(\mathrm{O}-34: 4)(\mathrm{P}-$	740.5599	740.5578		-2.8924
34:3)*				
PC(O-34:3)(P-	742.5751	742.574		-1.4369
34:2)*				
$\mathrm{PC}(\mathrm{O}-34: 2)(\mathrm{P}-$	744.5907	744.5919	O-16:1/18:1; O-18:2/16:0;	1.5888
34:1)			P-16:0/18:1; P-18:1/16:0	
$\mathrm{PC}(\mathrm{O}-34: 1)(\mathrm{P}-$	746.6064	746.6081	O-16:0/18:1; P-18:0/16:0	2.3212
34:0)				
PC(33:0)	748.5851	748.5862	16:0/17:0	1.4694
$\mathrm{PC}(\mathrm{O}-34: 0)^{*}$	748.6220	748.6215		-0.6893
PC(34:6)	750.5074	750.5093	12:0/22:6	2.5556
PC(34:5)	752.5230	752.5252	14:0/20:5	2.8810
PC(34:4)	754.5387	754.5387	14:0/20:4	0.0239
PC(34:3)	756.5543	756.5553	16:0/18:3	1.2808
PC(34:2)	758.5700	758.5721	16:0/18:2	2.7921

PC(34:1)	760.5856	760.5877	16:0/18:1	2.7190
$\begin{aligned} & \mathrm{PC}(\mathrm{O}-36: 6)(\mathrm{P}- \\ & 36: 5) \end{aligned}$	764.5594	764.5612	$\begin{gathered} \text { O-14:0/22:6; O-16:1/20:5; } \\ \text { P-16:0/20:5 } \end{gathered}$	2.3321
$\begin{aligned} & \mathrm{PC}(\mathrm{O}-36: 5)(\mathrm{P}- \\ & 36: 4) \end{aligned}$	766.5751	766.5763	$\begin{gathered} \text { O-16:0/20:5; O-14:0/22:5; } \\ \text { P-16:0/20:4 } \end{gathered}$	1.6085
$\begin{aligned} & \mathrm{PC}(\mathrm{O}-36: 4)(\mathrm{P}- \\ & 36: 3)^{*} \end{aligned}$	768.5907	768.589		-2.2340
$\mathrm{PC}(\mathrm{O}-36: 3)$	770.6064	770.6051	O-16:0/20:3	-1.6442
$\begin{aligned} & \mathrm{PC}(\mathrm{O}-36: 2)(\mathrm{P}- \\ & 36: 1) \end{aligned}$	772.6220	772.6229	$\begin{gathered} \text { O-18:1/18:1; O-16:0/20:2; } \\ \text { P- 18:0/18:1 } \end{gathered}$	1.1442
$\mathrm{PC}(36: 8)$ *	774.5074	774.5076		0.2815
$\begin{aligned} & \mathrm{PC}(\mathrm{O}-36: 1)(\mathrm{P}- \\ & 36: 0) \end{aligned}$	774.6377	774.6395	$\begin{gathered} \text { O-16:0/20:1; O-18:0/18:1; } \\ \text { P-18:0/18:0 } \end{gathered}$	2.3663
$\mathrm{PC}(\mathrm{O}-36: 0)^{*}$	776.6533	776.6496		-4.7640
PC(36:6)	778.5387	778.541	14:0/22:6	2.9774
PC(36:5)	780.5543	780.5563	16:0/20:5	2.5226
PC(36:4)	782.5700	782.5681	16:0/20:4	-2.4049
PC(36:3)	784.5856	784.5831	18:1/18:2; 16:0/20:3	-3.2272
PC(36:2)	786.6013	786.6029	18:1/18:1; 16:0/20:2	2.0570
PC(36:1)	788.6169	788.6187	16:0/20:1	2.2419
$\begin{aligned} & \mathrm{PC}(\mathrm{O}-38: 7)(\mathrm{P}- \\ & 38: 6) \end{aligned}$	790.5751	790.5768	O-16:1/22:6; P-16:0/22:6	2.1921
$\mathrm{PC}(36: 0)$	790.6326	790.6295	16:0/20:0	-3.9209
$\begin{aligned} & \mathrm{PC}(\mathrm{O}-38: 6)(\mathrm{P}- \\ & 38: 5) \end{aligned}$	792.5907	792.5925	O-16:0/22:6; P-18:0/20:5	2.2496
PC(37:5)	794.5694	794.5702	17:0/20:5	1.0068
$\begin{aligned} & \mathrm{PC}(\mathrm{O}-38: 5)(\mathrm{P}- \\ & 38: 4) \end{aligned}$	794.6064	794.6045	O-18:1/20:4; P-18:0/20:4	-2.3496
$\begin{aligned} & \mathrm{PC}(\mathrm{O}-38: 4)(\mathrm{P}- \\ & 38: 3)^{*} \end{aligned}$	796.6220	796.6205		-1.9030
PC(37:3)	798.6007	798.6001	17:0/20:3	-0.7513
$\begin{aligned} & \mathrm{PC}(\mathrm{O}-38: 3)(\mathrm{P}- \\ & 38: 2) \end{aligned}$	798.6377	798.6340	$\begin{aligned} & \text { O-18:0/20:3; O-16:0/22:3; } \\ & \text { P-16:0/22:2; P-18:0/20:2 } \end{aligned}$	-4.5916
$\mathrm{PC}(38: 9){ }^{*}$	800.5230	800.5234		0.4597
PC(37:2)	800.6164	800.6186	17:1/20:1; 18:1/19:1	2.7479
$\begin{aligned} & \mathrm{PC}(\mathrm{O}-38: 2)(\mathrm{P}- \\ & 38: 1) \end{aligned}$	800.6533	800.6543	$\begin{gathered} \text { O-16:0/22:2; O-18:1/20:1; } \\ \text { P-18:0/20:1 } \end{gathered}$	1.2277
$\mathrm{PC}(38: 8)$ *	802.5387	802.5382		-0.6006
PC(37:1)	802.6320	802.6337	17:0/20:1; 18:0/19:1	2.1180
$\mathrm{PC}(\mathrm{O}-38: 1)$	802.669	802.6694	O-18:0/20:1	0.4983
PC(38:7)	804.5543	804.556	16:1/22:6	2.0744
PC(38:6)	806.5700	806.5722	16:0/22:6	2.7499

PC(38:5)	808.5856	808.583	16:0/22:5	-3.2551
PC(38:4)*	810.6013	810.6003		-1.2114
PC(38:3)	812.6169	812.6164	18:1/20:2; 16:0/22:3	-0.6547
PC(38:2)	814.6326	814.634	18:1/20:1	1.7407
$\mathrm{PC}(38: 1)$	816.6482	816.6477	16:0/22:1	-0.6514
PC(39:7)	818.5694	818.5703	17:1/22:6	1.0995
$\begin{aligned} & \mathrm{PC}(\mathrm{O}-40: 7)(\mathrm{P}- \\ & 40: 6) \end{aligned}$	818.6064	818.6079	$\begin{gathered} \mathrm{O}-18: 1 / 22: 6 ; \mathrm{P}-18: 0 / 22: 6 ; \text { P- } \\ 18: 1 / 22: 5 \end{gathered}$	1.8727
PC(39:6)	820.5851	820.5871	17:0/22:6	2.4314
PC(O-40:6)	820.6220	820.6226	O-18:0/22:6	0.7117
PC(39:5)	822.6007	822.6014	$\begin{gathered} 19: 1 / 20: 4 ; 17: 0 / 22: 5 ; \\ 19: 0 / 20: 5 \end{gathered}$	0.8510
$\mathrm{PC}(\mathrm{O}-40: 5)$	822.6377	822,6336	O-18:0/22:5;	-4,9439
PC(O-40:4)(P-	824.6533	824.6524		-1.1120
40:3)*				
PC(40:10)	826.5387	826.5399	20:5/20:5	1.4736
PC(40:9)*	828.5543	828.5537		-0.7616
$\mathrm{PC}(\mathrm{O}-40: 2)$	828.6846	828.6853	O-18:0/22:2	0.8447
$\mathrm{PC}(40: 8)$	830.5699	830.5696	$\begin{gathered} 18: 2 / 22: 6 ; 20: 4 / 20: 4 \\ 20: 3 / 20: 5 \end{gathered}$	-0.3997
$\mathrm{PC}(\mathrm{O}-40: 1)$	830.7003	830.7024	O-18:0/22:1	2.5280
$\mathrm{PC}(40: 7)$	832.5856	832.5874	18:1/22:6; 20:2/20:5	2.1235
PC(40:6)	834.6013	834.6028	$\begin{gathered} 20: 1 / 20: 5 ; 18: 0 / 22: 6 ; \\ 18: 1 / 22: 5 \end{gathered}$	1.8188
$\mathrm{PC}(40: 5)$	836.6169	836.6145	20:1/20:4; 18:0/22:5	-2.9069
$\mathrm{PC}(40: 4)$	838.6326	838.6283	18:0/22:4	-5.1059
PC(40:3)	840.6482	840.6467	20:1/20:2	-1.8224
$\mathrm{PC}(40: 2)$	842.6639	842.6656	20:1/20:1; 18:1/22:1	2.0388
PC(40:1)*	844.6795	844.676		-4.1815
PC(41:7)	846.6007	846.6023	19:1/22:6	1.8899
PC(O-42:7)(P-	846.6377	846.6396		2.2831
42:6)*				
PC(41:6)	848.6164	848.6189	19:0/22:6	2.9460
$\begin{aligned} & \mathrm{PC}(\mathrm{O}-42: 6)(\mathrm{P}- \\ & 42: 5) \end{aligned}$	848.6533	848.6527	$\begin{gathered} \text { O-18:0/24:6; O-18:1/24:5; } \\ \text { P-18:0/24:5 } \end{gathered}$	-0.7270
$\mathrm{PC}(\mathrm{O}-42: 5)(\mathrm{P}-$	850.6690	850.6656		-3.9581
42:4)*				
$\mathrm{PC}(42: 11)$	852.5543	852.5564	20:5/22:6	2.4268
PC(42:10)	854.5700	854.5685		-1.7342
$\mathrm{PC}(42: 9)$	856.5856	856.5859	20:3/22:6; 20:5/22:4	0.3129
PC(42:8)	858.6013	858.6019	20:2/22:6; 20:3/22:5	0.7198
$\mathrm{PC}(42: 7)$	860.6169	860.6189	20:1/22:6; 20:2/22:5	2.2867

$\mathrm{PC}(42: 6)$	862.6326	862.6288	$\begin{gathered} 20: 1 / 22: 5 ; 20: 2 / 22: 4 \\ 18: 1 / 24: 5 \end{gathered}$	-4.3843
$\mathrm{PC}(42: 5)$	864.6482	864.649	20:1/22:4; 20:4/22:1	0.8882
PC(43:7)	874.6320	874.6339	21:1/22:6	2.1723
$\mathrm{PC}(\mathrm{O}-44: 7)(\mathrm{P}-$	874.6690	874.6715		2.8960
44:6)*				
PC(44:12)*	878.5700	878.5721		2.4107
$\mathrm{PC}(44: 11)$	880.5856	880.585	22:5/22:6	-0.7177
PC(44:10)*	882.6013	882.6007		-0.6594
PC(44:9)	884.6169	884.6144	22:3/22:6; 20:3/24:6	-2.8623
PC(44:8)	886.6326	886.6357	22:2/22:6	3.5167
PC(44:7)	888.6482	888.6504	22:1/22:6; 20:1/24:6	2.4397
PC(44:6)	890.6639	890.6602	20:1/24:5	-4.1340
PC(46:12)	906.6013	906.6038	22:6/24:6	2.7774
[$\mathrm{M}+\mathrm{H}]^{+}$				
LPC(O-14:1)(P-	452.3141	452.315		1.9853
14:0)*				
LPC(O-14:0)*	454.3298	454.3304		1.4263
LPC(14:1)*	466.2934	466.2942		1.7864
LPC(14:0)	468.3090	468.3101	14:0	2.3126
LPC(O-16:1)(P-	480.3454	480.3459		1.0368
16:0)*				
LPC(O-16:0)*	482.3611	482.3617		1.3434
LPC(16:1)	494.3247	494.3254	16:1	1.4828
LPC(16:0)	496.3403	496.3412	16:0	1.7810
LPC(O-18:2)(P-	506.3611	506.3616		1.0822
18:1) *				
LPC(O-18:1)(P-	508.3767	508.3777		1.9631
18:0)*				
LPC(O-18:0)*	510.3924	510.3924		0.0940
LPC(18:4)*	516.3090	516.3092		0.3544
LPC(18:3)*	518.3247	518.3234		-2.4444
LPC(18:2)	520.3403	520.3413	18:2	1.8911
LPC(18:1)	522.3560	522.3573	18:1	2.5519
LPC(18:0)	524.3716	524.3725	18:0	1.6839
LPC(O-20:1)(P-	536.4080	536.4093		2.4198
20:0)*				
LPC(20:5)	542.3247	542.326	20:5	2.4579
LPC(20:4)	544.3403	544.3384	20:4	-3.5199
LPC(20:3)	546.3560	546.3571	20:3	2.0737
LPC(20:2)	548.3716	548.3731	20:2	2.7044
LPC(20:1)	550.3873	550.3885	20:1	2.2402

LPC(22:6)	568.3403	568.3418	22:6	2.6111
LPC(22:5)	570.3560	570.3566	22:5	1.1098
LPC(22:4)	572.3716	572.3715	22:4	-0.2044
LPC(22:1)	578.4186	578.4199	22:1	2.3063
LPC(24:1)*	606.4487	606.4488		0.2144
[M+H] ${ }^{+}$				
PE(30:3)*	658.4448	658.4439		-1,3395
PE(30:0)*	664.4917	664.4925		1,1558
$\begin{aligned} & \mathrm{PE}(\mathrm{O}-32: 1)(\mathrm{P}- \\ & 32: 0) \end{aligned}$	676.5281	676.5288	$\begin{gathered} \text { O-16:0/16:1; O-16:1/16:0; } \\ \text { P-16:0/16:0 } \end{gathered}$	1,0096
PE(32:1)	690.5074	690.5082	16:0/16:1	1,1846
PE(32:0)	692.5230	692.5217	16:0/16:0	-1,9234
$\begin{aligned} & \mathrm{PE}(\mathrm{O}-34: 6)(\mathrm{P}- \\ & 34: 5) \end{aligned}$	694.4812	694.4824	O-14:1/20:5; P-14:0/20:5	1,7769
PE(O-34:5)(P-	696.4968	696.4942		-3,7574
34:4)*				
PE(O-34:4)(P-	698.5125	698.5127		0,3336
34:3)*				
PE(O-34:1)(P-	704.5594	704.5597	O-18:0/16:1; O-16:0/18:1;	0,4031
34:0)			P-18:0/16:0	
PE(34:5)	710.4761	710.4778	14:0/20:5	2,4181
PE(34:4)**	712.4917	712.4915		-0,3256
PE(34:3)	714.5074	714.5086	16:0/18:3	1,7047
PE(34:2)	716.5230	716.5249	16:0/18:2	2,6070
PE(34:1)	718.5387	718.5403	16:0/18:1	2,2518
PE(O-36:7)(P-	720.4968	720.4981	O-14:1/22:6; P-16:1/20:5; P-	1,7807
36:6)			14:0/22:6	
PE(34:0)*	720.5543	720.5517		-3,6514
PE(O-36:6)(P-	722.5125	722.514	O-16:1/20:5; P-16:0/20:5	2,1218
36:5)				
PE(O-36:5)(P-	724.5281	724.5291	O-16:0/20:5; O-16:1/20:4;	1,3567
36:4)			P-16:0/20:4	
PE(O-36:4)	726.5438	726.5411	O-16:0/20:4	-3,6708
PE(O-36:3)(P-	728.5594	728.5566		-3,8652
36:2)*				
PE(O-36:2)(P-	730.5751	730.5767	O-18:1/18:1; O-16:1/20:1;	2,2352
36:1)			P-18:0/18:1; P-16:0/20:1	
PE(36:8)*	732.4604	732.4596		-1,1359
PE(O-36:1)(P-	732.5907	732.5917	O-18:0/18:1; O-16:0/20:1;	1,3418
36:0)			P-18:0/18:0	
PE(36:7)	734.4761	734.4731	16:2/20:5; 14:1/22:6	-4,0600
PE(36:6)	736.4917	736.4935	16:1/20:5	2,4440

PE(36:5)	738.5074	738.5095	16:0/20:5	2,8436
PE(36:4)	740.5230	740.5204	16:0/20:4	-3,5542
PE(36:3)	742.5387	742.5384	16:0/20:3	-0,4040
PE(O-38:9)(P-	744.4968	744.4963		-0,6716
38:8)*				
PE(36:2)	744.5543	744.5549	18:1/18:1; 16:0/20:2	0,8059
PE(O-38:8)(P-	746.5125	746.5123		-0,2237
38:7)*				
PE(36:1)	746.5670	746.5697	18:0/18:1; 16:0/20:1	-0,3777
PE(O-38:7)(P-	748.5281	748.5298	O-16:1/22:6; P-18:1/20:5; P-	2,2711
38:6)			16:0/22:6	
PE(O-38:6)(P-	750.5438	750.5453	O-18:1/20:5; P-18:0/20:5	2,0425
38:5)				
PE(O-38:5)(P-	752.5594	752.5593	O-18:1/20:4; P-18:0/20:4	-0,1541
38:4)				
PE(O-38:4)	754.5751	754.572	O-18:0/20:4	-4,1083
PE(37:3)	756.5538	756.5521	17:0/20:3	-2.2470
PE(O-38:3)(P-	756.5907	756.5885	O-18:0/20:3; P-18:0/20:2	-2,9078
38:2)				
PE(38:9)*	758.4761	758.4749		-1,5584
PE(O-38:2)(P-	758.6064	758.6078	O-16:0/22:2; P-18:0/20:1	1,8890
38:1)				
PE(38:8)*	760.4917	760.4911		-0,8310
PE(O-38:1)	760.6220	760.6225	O-16:0/22:1	0,6363
PE(38:7)	762.5074	762.5046	16:1/22:6; 18:2/20:5	-3,6721
PE(38:6)	764.5230	764.5247	16:0/22:6; 18:1/20:5	2,1818
PE(38:5)	766.5387	766.54	18:0/20:5	1,7194
PE(O-40:11)(P-	768.4968	768.4948		-2,6025
40:10)*				
PE(38:4)	768.5543	768.5526	18:0/20:4	-2,2523
PE(O-40:10)(P-	770.5125	770.5123		-0,2167
40:9)*				
PE(38:3)*	770.5700	770.5702	18:0/20:3; 18:1/20:2	0,2829
PE(O-40:9)(P-	772.5281	772.5275		-0,7987
40:8)*				
PE(38:2)	772.5856	772.5836	16:0/22:2; 18:1/20:1	-2,6301
PE(P-40:7)	774.5438	774.5436	P-18:1/22:6	-0,2156
PE(38:1)	774.6012	774.5992	18:0/20:1	-2,6878
PE(O-40:7)(P-	776.5594	776.561	O-18:1/22:6; P-18:0/22:6	2,0604
40:6)				
PE(39:6)	778.5381	778.5402	17:0/22:6	2.6974
PE(O-40:6)(P-	778.5751	778.5752	O-18:0/22:6; P-18:0/22:5	0,1708

40:5)				
$\begin{aligned} & \mathrm{PE}(\mathrm{O}-40: 5)(\mathrm{P}- \\ & 40: 4) \end{aligned}$	780.5907	780.5896	$\begin{gathered} \text { O-18:0/22:5; O-18:1/22:4; } \\ \text { P-18:0/22:4; } \end{gathered}$	-1,4310
PE(O-40:4)	782.606367	782.6086	O-18:0/22:4	2,8533
PE(40:10)	784.491732	784.491	20:5/20:5	-0,9331
PE(O-40:3)(P-	784.622016	784.6225	O-18:1/22:2; P-18:0/22:2	0,6169
40:2)				
$\mathrm{PE}(40: 9) *$	786.507382	786.5071		-0,3585
PE(O-40:2)(P-	786.637667	786.6377	O-18:0/22:2; P-18:0/22:1	0,0420
40:1)				
$\mathrm{PE}(40: 8)$	788.523032	788.523	$\begin{gathered} 18: 2 / 22: 6 ; 20: 4 / 20: 4 \\ 20: 3 / 20: 5 \end{gathered}$	-0,0406
PE(O-40:1)	788.653317	788.6509	O-18:0/22:1	-3,0647
PE(40:7)	790.538682	790.5395	18:1/22:6; 20:2/20:5	1,0347
PE(40:6)	792.554331	792.5559	20:1/20:5; 18:0/22:6	1,9797
PE(O-42:12)(P-	794.512467	794.51		-3,1050
42:11)*				
PE(40:5)	794.569982	794.5661	20:1/20:4; 20:5/20:0	-4,8857
PE(O-42:11)(P-	796.5281	796.5249		-4,0174
42:10)*				
PE(40:4)	796.5856	796.5872	18:0/22:4	1,9684
PE(O-42:10)(P-	798.5438	798.543		-0,9605
42:9)*				
$\mathrm{PE}(40: 3) *$	798.6013	798.6027	18:0/22:3	1,7756
PE(O-42:9)(P-	800.559	800.5578		-1,4990
42:8)*				
PE(40:2)*	800.6169	800.6169		-0,0400
PE(O-42:8)(P-	802.5751	802.5758		0,8722
42:7)*				
PE(O-42:7)(P-	804.5907	804.5913		0,7122
42:6)*				
PE(41:6)	806.5694	806.5710	19:0/22:6	1.9837
PE(O-42:6)(P-	806.6064	806.6077	O-18:0/24:6; O-18:1/24:5;	1,6117
42:5)			P-18:0/24:5	
PE(42:11)	810.5074	810.5071	20:5/22:6	-0,3479
PE(42:10)	812.5230	812.5208	20:4/22:6; 20:5/22:5	-2,7470
PE(42:9)	814.5387	814.5384	20:3/22:6	-0,3462
PE(42:8)	816.5543	816.5536	20:2/22:6	-0,8952
PE(42:7)	818.5700	818.5717	$\begin{gathered} 20: 1 / 22: 6 ; 20: 2 / 22: 5 ; \\ 22: 2 / 20: 5 \end{gathered}$	2,0988
$\mathrm{PE}(\mathrm{O}-44: 13)(\mathrm{P}-$ $44 \cdot 12) *$	820.5281	820.5255		-3,1687

PE(42:6)	820.5856	820.5828	22:1/20:5; 20:1/22:5	-3,4512
$\mathrm{PE}(\mathrm{O}-44: 12)(\mathrm{P}-$	822.5438	822.5409		-3,4855
44:11)*				
$\mathrm{PE}(42: 5)$	822.6013	822.6038	20:1/22:4	3,0610
$\mathrm{PE}(\mathrm{O}-44: 11)(\mathrm{P}-$	824.5594	824.5576		-2.2024
44:10)*				
$\mathrm{PE}(\mathrm{O}-44: 10)(\mathrm{P}-$	826.5751	826.5722		-3,5085
44:9)*				
$\mathrm{PE}(44: 12)$	836.523	836.5229	22:6/22:6	-0,1195
PE(44:11)*	838.5387	838.5371		-1.8866
PE(44:10)*	840.5543	840.5535		-0,9886
PE(44:9)*	842.5670	842.5662		-4,4886
PE(44:8)	844.5856	844.5854	22:6/22:2	-0.2747
PE(44:7)**	846.6013	846.6031		2,1474
[M+H] ${ }^{+}$				
LPE(14:0)	426.2621	426.2624	14:0	0.7812
LPE(O-16:1)(P-	438.2985	438.2992		1.7066
16:0)*				
LPE(O-16:0)*	440.3141	440.3148		1.5852
LPE(16:1)	452.2777	452.2788	16:1	2.3945
LPE(16:0)	454.2934	454.2942	16:0	1.8336
LPE(17:1)	466.2928	466.2945	17:1	3.6458
LPE(O-18:1)(P-	466.3298	466.3308		2.2473
18:0)*				
LPE(17:0)	468.3085	468.3101	17:0	3.4166
LPE(O-18:0) *	468.3454	468.3462		1.7039
LPE(18:3)**	476.2777	476.2763		-2.9752
LPE(18:2)	478.2934	478.2949	18:2	3.2051
LPE(18:1)	480.3090	480.31	18:1	2.0466
LPE(18:0)	482.3247	482.3256	18:0	1.9344
LPE(P-20:0) *	494.3611	494.362		1.9176
LPE(20:5)	500.2777	500.2789	20:5	2.3647
LPE(20:4)	502.2934	502.2949	20:4	3.0520
LPE(20:3)	504.3090	504.3087	20:3	-0.6286
LPE(20:2)	506.3247	506.3271	20:2	4.8052
LPE(20:1)	508.3403	508.3415	20:1	2.3291
LPE(20:0)*	510.3560	510.3565		1.0463
LPE(22:6)	526.2934	526.2945	22:6	2.1528
LPE(22:5)**	528.3090	528.3096		1.1035
LPE(22:4)	530.3247	530.3238	22:4	-1.6348
LPE(22:2)**	534.3560	534.3573		2.4946
LPE(22:1)**	536.3716	536.3733		3.1377

LPE(24:6)**	554.3247	554.3261		2.5851
[M+H] ${ }^{+}$				
Cer(d30:1)	482.4573	482.4579	d18:1/12:0	1.2043
Cer(d32:3)	506.4573	506.4559		-2.8018
Cer(d32:1)	510.4886	510.4893	d16:1/16:0	1.3360
Cer(d34:2)	536.5043	536.5054	d18:2/16:0	2.1081
Cer(d34:1)	538.5200	538.521	d18:1/16:0	2.0074
Cer(d36:3)	562.5200	562.5213		2.4550
Cer(d36:2)	564.5356	564.5366		1.8263
Cer(d36:1)	566.5512	566.5523	d18:1/18:0	1.9080
Cer(d38:3)	590.5512	590.5525	d16:1/22:2	2.1692
Cer(d38:2)	592.5669	592.5679	d16:1/22:1	1.7399
Cer(d38:1)	594.5825	594.5839	d16:1/22:0	2.3226
Cer(d40:2)	620.5982	620.5991	d16:1/24:1; d18:1/22:1	1.5002
Cer(d40:1)	622.6138	622.6141		0.4513
Cer(d42:2)	648.6295	648.629		-0.7231
Cer(d42:1)	650.6451	650.6446		-0.7977
[M+H] ${ }^{+}$				
SM(d30:1)	647.5128	647.5147		2.9328
SM(d30:0)*	649.528	649.5265		-3.0037
SM(d32:2)	673.5285	673.5297	d16:1/16:1	1.8544
SM(d32:1)*	675.5441	675.546		2.8111
SM(d34:1)	703.5754	703.5766	d16:1/18:0	1.7042
SM(d34:0)*	705.5911	705.5909		-0.2140
SM(d35:1)	717.5911	717.5915	d16:1/19:0	0.6257
SM(d36:3)	727.5754	727.5767	d16:1/20:2; d18:1/18:2	1.7854
SM(d36:2)	729.5911	729.5924	d16:1/20:1	1.8490
SM(d36:1)*	731.6067	731.6083		2.1856
SM(d38:3)	755.6067	755.6086	d18:1/20:2	2.5132
SM(d38:2)	757.6224	757.6239	d16:1/22:1	2.0446
SM(d40:2)*	785.6537	785.6554		2.2262
SM(d42:2)**	813.6850	813.6865		1.9037
[M+H] ${ }^{+}$				
HexCer(38:2)	754.6197	754.6213	d16:1/22:1	2.1282
HexCer(d40:1)	784.6667	784.6653		-1.7128
[M+H] ${ }^{+}$				
CPE(d32:1)	633.4972	633.4992	d16:1/16:0	3.1571
CPE(d33:1)	647.5128	647.5150	d16:1/17:0	3.3976
CPE(d34:1)	661.5285	661.5299	d18:1/16:0; d16:1/18:0	2.1163
CPE(d35:3)	671.5128	671.5148	d19:3/16:0	2.9783
CPE(d36:3)	685.5285	685.5301	d14:0/22:3; d19:3/17:0	2.3340

CPE(d36:2)*	687.5441	687.5431		-1.4545
CPE(d38:2)	715.5754	715.5775	$\mathrm{~d} 16: 1 / 22: 1$	2.9347
CPE(d40:2)	743.6067	743.6078	$\mathrm{~d} 16: 1 / 24: 1$	1.4793
[M+H] $^{+}$				
CAEP(d30:1)	589.4709	589.4729	$\mathrm{~d} 14: 1 / 16: 0$	3.3929
CAEP(d31:1)			$\mathrm{d} 16: 1 / 15: 0 ; \mathrm{d} 15: 1 / 16: 0 ;$	
	603.4866	603.4882	$\mathrm{~d} 14: 1 / 17: 0$	2.6513
CAEP(d32:1)	617.5022	617.5039	$\mathrm{~d} 16: 1 / 16: 0$	2.7530
CAEP(d33:1)	631.5179	631.5194	$\mathrm{~d} 16: 1 / 17: 0$	2.3752
CAEP(d34:2)	643.5179	643.52	$\mathrm{~d} 18: 2 / 16: 0$	3.2633
CAEP(d34:1)	645.5335	645.5351	$\mathrm{~d} 18: 1 / 16: 0$	2.4786
CAEP(d35:3)	655.5179	655.5195	$\mathrm{~d} 19: 3 / 16: 0$	2.4408
CAEP(d35:1)	659.5492	659.5508	$\mathrm{~d} 19: 1 / 16: 0$	2.4259
CAEP(d35:0)	661.5648	661.5667	$\mathrm{~d} 19: 0 / 16: 0$	2.8720
CAEP(d36:3)	669.5335	669.5351	$\mathrm{~d} 19: 3 / 17: 0$	2.3897
CAEP(d36:2)	671.5492	671.5506	$\mathrm{~d} 16: 1 / 20: 1$	2.0847
CAEP(d36:1)	673.5648	673.5665	$\mathrm{~d} 16: 1 / 20: 0 ; \mathrm{d} 18: 1 / 18: 0 ;$	2.5239
CAEP(d37:3)	683.5492	683.551	$\mathrm{~d} 19: 3 / 18: 0$	2.6333
CAEP(d37:1)	687.5805	687.5821	$\mathrm{~d} 16: 1 / 21: 0 ; \mathrm{d} 18: 1 / 19: 0$	2.3270
CAEP(d38:4)	695.5492	695.5503	$\mathrm{~d} 16: 1 / 22: 3$	1.5815
CAEP(d38:3)	697.5648	697.5661	$\mathrm{~d} 16: 1 / 22: 2$	1.8636
CAEP(d38:2)	699.5805	699.5822	$\mathrm{~d} 16: 1 / 22: 1$	2.4300
CAEP(d39:4)	709.5648	709.5657	$\mathrm{~d} 19: 3 / 20: 1$	1.2684
CAEP(d39:3)	711.5805	711.5818	$\mathrm{~d} 16: 1 / 23: 2$	1.8269
CAEP(d39:2)	713.5961	713.5976	$\mathrm{~d} 16: 1 / 23: 1$	2.1020
CAEP(d40:5)	721.5648	721.564	$\mathrm{~d} 16: 1 / 24: 4$	-1.1087
CAEP(d40:4)*	723.5805	723.5804		-0.1382
CAEP(d40:3)	725.5961	725.5978	$\mathrm{~d} 18: 2 / 22: 1$	2.3429
CAEP(d40:2)	727.6118	727.6133	$\mathrm{~d} 18: 1 / 22: 1, \mathrm{~d} 16: 1 / 24: 1$	2.0615
CAEP(d41:4)	737.5961	737.5964	$\mathrm{~d} 19: 3 / 22: 1$	0.4067
CAEP(d41:3)	739.6118	739.6118	$\mathrm{~d} 19: 2 / 22: 1$	0.0000
CAEP(d41:2)	741.6274	741.6288	$\mathrm{~d} 17: 1 / 24: 1$	1.8877
CAEP(d41:1)	743.6431	743.64	$\mathrm{~d} 16: 1 / 25: 0$	-4.1687
CAEP(d42:6)	747.5805	747.5813	$\mathrm{~d} 16: 1 / 26: 5$	1.0701
CAEP(d42:3)	753.6274	753.6288	$\mathrm{~d} 18: 2 / 24: 1$	1.8577
CAEP(d43:5)*	763.6117	763.6138		2.7501
CAEP(d43:4)	765.6274	765.6296	$\mathrm{~d} 19: 3 / 24: 1$	2.8735
CAEP(d44:6)	775.6118	775.6135	$\mathrm{~d} 16: 1 / 28: 5$	2.1918
[M+H]+				2.5296
N-methyl-			$\mathrm{d} 19: 3 / 16: 0$	
CAEP(d35:3)	669.5335	669.5351		
N-methyl-	711.5805	711.5823		$2: 2$

CAEP(d38:3)
N-methyl-

CAEP(d38:2)	713.5961	713.5979	d16:1/22:1	2.5224
N-methyl-				
CAEP(d39:2)	727.6118	727.6138	d16:1/23:1; d18:1/21:1	2.7487
N-methyl-				
CAEP(d39:1)	729.6274	729.6298	$\mathrm{~d} 16: 1 / 23: 0$	3.2894

Table S2. Relative abundance of lipid molecular species identified by LC-MS in Octopus vulgaris specimens captured and landed along the Atlantic coast of the Iberian Peninsula. Labels of lipid species are according to the notation: AAA ($\mathrm{C}: \mathrm{N}$), (AAA, lipid class; C , total carbon atoms; N, total double bonds of fatty acid substituents) and AAA (O-C:N)(P-C:N) correspond to O- plasmanyl; P- plasmenyl, respectively). Values are mean \pm SD of thirty samples ($n=30$).

Lipid specie	Pe		Rar		RP		Ses		SL	
	Avg	SD								
$\text { PG }(\mathrm{O}-34: 4)(\mathrm{P}-$	5.36	0.62	4.53	1.13	6.18	0.98	4.43	0.42	5.46	0.71
PG(34:1)	79.33	1.29	54.18	9.12	79.52	1.87	81.35	0.97	79.03	1.11
PG(36:5)	7.01	0.57	33.96	10.66	5.46	1.10	3.73	0.35	4.87	0.62
PG(40:6)	8.30	0.49	7.33	1.34	8.84	0.60	10.49	0.60	10.64	0.56
PI(34:4)	0.02	0.00	0.01	0.00	0.01	0.00	0.02	0.00	0.04	0.01
PI(34:2)	0.02	0.00	0.02	0.01	0.04	0.01	0.04	0.00	0.04	0.00
$\begin{aligned} & \text { PI(O-36:5)(P- } \\ & \text { 36:4) } \end{aligned}$	0.28	0.04	0.17	0.02	0.25	0.05	0.38	0.03	0.55	0.05
$\begin{aligned} & \mathrm{PI}(\mathrm{O}-36: 4)(\mathrm{P}- \\ & \text { 36:3) } \end{aligned}$	0.11	0.01	0.11	0.02	0.14	0.01	0.18	0.01	0.17	0.01
$\begin{aligned} & \text { PI(O-36:3)(P- } \\ & \text { 36:2) } \end{aligned}$	0.07	0.00	0.03	0.01	0.07	0.02	0.08	0.01	0.06	0.00
PI(36:5)	12.12	1.18	8.30	0.72	9.57	1.48	15.02	0.76	16.84	0.70
PI(36:4)	3.75	0.30	2.83	0.24	3.23	0.46	3.85	0.19	4.06	0.26
PI(36:3)	0.40	0.03	0.27	0.03	0.33	0.04	0.42	0.03	0.33	0.04
PI(36:2)	0.09	0.01	0.07	0.01	0.08	0.01	0.14	0.02	0.18	0.01
$\begin{aligned} & \text { PI(O-38:5)(P- } \\ & \text { 38:4) } \end{aligned}$	0.50	0.04	0.48	0.04	0.57	0.09	0.90	0.07	1.18	0.07
$\begin{aligned} & \text { PI(O-38:4)(P- } \\ & \mathbf{3 8 : 3}) \end{aligned}$	0.32	0.03	0.46	0.05	0.44	0.05	0.59	0.05	0.51	0.03
$\begin{aligned} & \text { PI(O-38:3)(P- } \\ & \text { 38:2) } \end{aligned}$	0.03	0.00	0.06	0.01	0.05	0.01	0.06	0.00	0.04	0.01
PI(38:6)	5.42	0.44	4.09	0.20	4.97	0.54	4.17	0.26	4.17	0.20
PI(38:5)	46.21	1.71	45.29	1.89	43.83	2.00	45.24	1.35	44.81	1.06
PI(38:4)	14.62	1.12	16.12	1.35	15.87	1.04	13.41	0.64	11.78	0.57
PI(38:3)	1.34	0.12	1.53	0.19	1.47	0.16	1.50	0.09	1.18	0.12
PI(38:2)	0.14	0.02	0.54	0.12	0.33	0.07	0.23	0.02	0.23	0.02
PI(38:1)	0.13	0.02	0.00	0.00	0.16	0.03	0.14	0.01	0.19	0.02
$\begin{aligned} & \mathrm{PI}(\mathrm{O}-40: 5)(\mathrm{P}- \\ & \mathbf{4 0 : 4}) \end{aligned}$	0.02	0.00	0.02	0.00	0.02	0.00	0.03	0.00	0.02	0.00
PI(40:10)	3.91	0.32	6.33	0.64	4.19	0.34	3.61	0.25	3.48	0.21
PI(40:9)	1.89	0.19	2.57	0.26	2.36	0.23	1.71	0.13	1.60	0.17
PI(40:8)	1.22	0.12	1.73	0.23	1.13	0.11	1.25	0.12	0.92	0.08
PI(40:7)	0.85	0.06	1.04	0.12	0.82	0.05	0.96	0.10	0.70	0.05
PI(40:6)	4.43	0.34	4.31	0.21	6.33	0.51	4.12	0.19	4.97	0.30
PI(40:5)	1.57	0.07	2.40	0.24	2.72	0.26	1.43	0.06	1.48	0.13
$\mathbf{P I}(40: 4)$	0.29	0.03	0.56	0.07	0.53	0.04	0.24	0.02	0.22	0.03

PI(40:3)
PI(42:10)
PI(42:9)
PI(42:8)
PI(42:7)
PS(34:1)
PS(36:6)
PS(36:4)
PS(36:3)
PS(36:2)
PS(36:1)
PS(O-38:6)(P38:5)
PS(O-38:5)(P-
38:4)
PS(O-38:4)(P-
38:3)
PS(38:5)
PS(38:4)
PS(38:3)
PS(38:1)
PS(O-40:6)(P40:5)
PS(O-40:5)(P-
40:4)
PS(40:9)
PS(40:8)
PS(40:5)
PS(40:4)
PS(40:3)
PS(40:2)
PS(40:1)
PS(42:11)
PS(42:10)
PS(42:9)
PS(42:8)
PS(42:7)
PS(42:6)
PS(44:10)
Cer(d30:1)
Cer(d32:3)
Cer(d32:1)
Cer(d34:2)
Cer(d34:1)
Cer(d36:3)

0.03	0.01	0.39	0.11	0.19	0.04	0.06	0.01	0.02	0.01
0.12	0.01	0.12	0.01	0.13	0.01	0.09	0.00	0.10	0.01
0.05	0.00	0.06	0.01	0.04	0.01	0.04	0.00	0.02	0.00
0.01	0.00	0.02	0.00	0.01	0.00	0.00	0.00	0.00	0.00
0.06	0.01	0.08	0.01	0.10	0.01	0.08	0.01	0.07	0.01
1.42	0.09	1.22	0.11	1.52	0.19	1.38	0.09	2.04	0.13
0.07	0.01	0.04	0.00	0.06	0.01	0.07	0.01	0.10	0.01
1.39	0.04	1.42	0.15	1.38	0.20	1.25	0.10	1.20	0.08
0.19	0.01	0.20	0.02	0.16	0.03	0.19	0.01	0.23	0.01
0.53	0.02	0.51	0.05	0.53	0.08	0.55	0.04	0.60	0.03
1.80	0.09	1.76	0.14	1.80	0.24	1.77	0.10	2.21	0.12
8.84	0.38	7.50	0.81	9.72	1.02	9.68	0.44	11.78	0.54
5.60	0.26	6.62	0.58	7.41	0.87	7.96	0.26	7.44	0.39
4.09	0.36	6.05	0.94	6.61	0.55	6.88	0.44	5.30	0.28
19.00	0.56	17.79	1.35	17.78	1.43	18.08	0.79	18.34	1.06
9.87	0.33	11.49	1.10	10.67	0.90	9.09	0.61	7.43	0.28
1.28	0.05	1.48	0.17	1.34	0.13	1.19	0.09	0.97	0.07
0.67	0.03	0.81	0.09	0.59	0.07	0.63	0.04	0.69	0.04
15.47	0.73	13.29	1.48	13.53	1.17	12.40	0.59	17.04	0.42
2.88	0.12	2.80	0.30	2.97	0.35	2.85	0.10	3.34	0.11
0.75	0.02	0.51	0.06	0.54	0.05	0.67	0.03	0.63	0.03
0.66	0.03	0.62	0.06	0.53	0.05	0.69	0.06	0.61	0.05
8.70	0.27	9.33	0.75	7.96	0.73	9.00	0.55	8.04	0.34
1.43	0.07	1.85	0.17	1.48	0.16	1.30	0.09	1.02	0.05
0.20	0.01	0.30	0.02	0.21	0.03	0.19	0.02	0.12	0.01
0.71	0.04	0.92	0.09	0.76	0.09	0.88	0.05	0.76	0.04
0.05	0.01	0.09	0.01	0.05	0.01	0.07	0.01	0.05	0.00
0.60	0.04	0.46	0.07	0.30	0.04	0.49	0.05	0.25	0.03
0.35	0.02	0.30	0.04	0.24	0.04	0.29	0.02	0.16	0.02
2.17	0.18	2.29	0.25	1.52	0.16	2.33	0.20	1.56	0.11
1.47	0.14	1.53	0.17	0.89	0.10	1.25	0.10	0.71	0.05
7.42	0.40	6.63	1.19	7.08	0.53	6.81	0.47	5.64	0.41
2.16	0.08	2.01	0.24	2.18	0.19	1.88	0.11	1.59	0.10
0.22	0.02	0.19	0.02	0.19	0.02	0.18	0.01	0.12	0.01
21.95	1.94	24.97	1.55	29.94	3.40	28.69	1.99	24.48	0.88
0.21	0.02	0.40	0.03	0.30	0.03	0.25	0.03	0.21	0.01
29.68	1.75	21.75	1.34	23.17	2.23	23.12	1.33	29.05	1.04
2.26	0.12	2.32	0.23	2.58	0.31	2.66	0.30	2.40	0.13
6.50	0.48	6.60	0.36	4.92	0.51	5.61	0.58	6.34	0.27
1.98	0.12	1.99	0.26	2.12	0.22	2.47	0.26	1.69	0.10

Cer(d36:2)	2.02	0.14	1.87	0.13	1.89	0.14	1.91	0.32	1.90	0.06
Cer(d36:1)	1.26	0.15	1.55	0.10	1.13	0.11	1.34	0.13	1.66	0.06
Cer(d38:3)	2.13	0.21	2.51	0.40	1.52	0.19	2.12	0.22	1.35	0.09
Cer(d38:2)	17.08	1.83	16.63	1.24	16.84	1.25	16.21	1.12	15.58	0.70
Cer(d38:1)	2.67	0.28	3.41	0.36	2.73	0.34	2.96	0.28	3.24	0.16
$\mathbf{C e r}(\mathrm{d} 40: 2)$	7.26	0.75	9.11	0.99	7.73	1.03	6.62	0.73	6.01	0.32
Cer(d40:1)	1.33	0.15	1.65	0.19	1.20	0.13	1.67	0.19	1.44	0.06
Cer(d42:2)	0.61	0.07	1.06	0.11	0.52	0.10	0.68	0.09	0.61	0.04
Cer(d42:1)	0.06	0.01	0.11	0.03	0.03	0.01	0.11	0.04	0.10	0.02
HexCer(38:2)	2.53	0.37	3.28	0.33	2.95	0.28	2.98	0.20	3.39	0.16
HexCer(d40:1)	0.48	0.07	0.80	0.11	0.44	0.06	0.58	0.05	0.54	0.02
$\begin{aligned} & \text { LPC(O-14:1)(P- } \\ & \text { 14:0) } \end{aligned}$	0.09	0.02	0.11	0.04	0.05	0.01	0.04	0.01	0.03	0.00
LPC(0-14:0)	0.14	0.03	0.29	0.09	0.20	0.04	0.16	0.02	0.20	0.02
LPC(14:1)	0.05	0.01	0.02	0.01	0.05	0.01	0.05	0.01	0.07	0.01
LPC(14:0)	1.27	0.12	0.88	0.12	1.11	0.18	1.23	0.17	1.72	0.16
$\begin{aligned} & \operatorname{LPC}(O-16: 1)(P- \\ & \text { 16:0) } \end{aligned}$	0.64	0.08	0.90	0.23	0.45	0.06	0.41	0.03	0.47	0.04
LPC(0-16:0)	3.17	0.28	7.68	1.12	3.62	0.37	3.02	0.19	2.81	0.20
LPC(16:1)	1.02	0.07	0.84	0.09	1.00	0.11	1.01	0.11	1.05	0.08
LPC(16:0)	16.87	0.92	14.87	1.66	14.55	1.49	16.30	1.33	16.66	0.98
$\begin{aligned} & \text { LPC(O-18:2)(P- } \\ & \text { 18:1) } \end{aligned}$	0.06	0.01	0.12	0.03	0.04	0.01	0.05	0.00	0.06	0.01
$\begin{aligned} & \text { LPC(O-18:1)(P- } \\ & \text { 18:0) } \end{aligned}$	0.85	0.08	1.67	0.36	0.74	0.10	0.55	0.03	0.52	0.03
LPC(0-18:0)	1.09	0.11	3.07	0.47	1.30	0.17	1.03	0.07	1.09	0.05
LPC(18:4)	0.13	0.01	0.12	0.02	0.11	0.01	0.13	0.01	0.27	0.02
LPC(18:3)	1.64	0.14	1.62	0.22	1.28	0.14	1.61	0.13	1.69	0.11
LPC(18:2)	0.52	0.04	0.68	0.09	0.40	0.05	0.66	0.09	0.58	0.04
LPC(18:1)	4.58	0.36	4.59	0.55	5.00	0.76	4.60	0.40	5.65	0.41
LPC(18:0)	2.07	0.22	2.21	0.18	2.17	0.27	2.29	0.24	2.41	0.20
$\begin{aligned} & \text { LPC(O-20:1)(P- } \\ & \text { 20:0) } \end{aligned}$	0.14	0.01	0.52	0.11	0.19	0.02	0.11	0.01	0.13	0.01
LPC(20:5)	22.99	1.26	19.31	3.18	23.50	2.62	23.07	1.65	24.58	1.24
LPC(20:4)	3.36	0.37	3.93	0.88	3.61	0.47	3.16	0.23	3.06	0.32
LPC(20:3)	0.87	0.06	1.16	0.16	0.71	0.09	0.97	0.09	0.72	0.05
LPC(20:2)	0.48	0.04	0.67	0.09	0.53	0.06	0.64	0.06	0.50	0.04
LPC(20:1)	3.15	0.26	2.88	0.35	4.29	0.59	3.16	0.26	3.95	0.32
LPC(22:6)	31.65	1.25	27.63	3.10	31.40	2.55	32.71	2.53	28.86	1.83
LPC(22:5)	2.14	0.18	3.02	0.43	2.51	0.40	2.11	0.20	2.01	0.23
LPC(22:4)	0.76	0.06	0.93	0.11	0.88	0.15	0.64	0.05	0.64	0.06
LPC(22:1)	0.12	0.01	0.16	0.02	0.17	0.02	0.14	0.01	0.19	0.01
LPC(24:1)	0.13	0.01	0.12	0.01	0.12	0.01	0.14	0.01	0.10	0.00
LPE(14:0)	0.13	0.01	0.08	0.01	0.13	0.01	0.16	0.02	0.21	0.02
LPE(O-16:1)(P-	2.43	0.17	3.04	0.80	1.85	0.26	1.97	0.17	3.01	0.22

16:0)										
LPE(0-16:0)	2.01	0.12	2.51	0.58	2.19	0.36	2.17	0.15	2.99	0.24
LPE(16:1)	0.17	0.01	0.10	0.01	0.16	0.03	0.14	0.01	0.17	0.02
LPE(16:0)	14.32	1.20	8.05	1.39	12.55	1.78	15.08	0.80	15.57	0.81
LPE(O-18:1)(P-	14.78	0.66	30.50	4.61	17.92	1.63	15.89	0.97	13.90	0.78
18:0)										
LPE(0-18:0)	3.30	0.23	5.16	1.21	3.28	0.51	3.23	0.21	3.72	0.22
LPE(18:3)	1.34	0.11	1.00	0.26	1.36	0.19	1.54	0.13	1.62	0.15
LPE(18:2)	0.32	0.02	0.21	0.05	0.26	0.06	0.36	0.04	0.31	0.02
LPE(18:1)	4.38	0.33	2.36	0.42	4.57	0.85	3.69	0.20	3.91	0.30
LPE(18:0)	15.22	1.21	11.27	1.49	14.69	2.37	15.81	1.20	16.44	1.38
LPE(O-20:1)(P-	0.40	0.02	0.68	0.19	0.53	0.08	0.37	0.03	0.44	0.03
20:0)										
LPE(20:5)	12.87	1.09	10.60	1.47	12.64	1.66	13.27	0.83	13.31	0.73
LPE(20:4)	2.69	0.24	2.78	0.28	2.77	0.42	2.33	0.13	2.04	0.29
LPE(20:3)	3.52	0.19	3.41	0.53	2.96	0.33	3.54	0.23	2.77	0.19
LPE(20:2)	0.89	0.06	0.77	0.16	0.76	0.13	0.97	0.12	0.63	0.05
LPE(20:1)	9.80	0.70	6.27	1.48	12.19	1.44	8.53	0.57	9.34	1.00
LPE(20:0)	0.11	0.01	0.06	0.02	0.13	0.03	0.08	0.01	0.10	0.01
LPE(22:6)	9.16	0.59	8.83	1.49	6.66	0.93	8.98	0.60	7.65	0.47
LPE(22:5)	0.60	0.05	0.80	0.08	0.59	0.12	0.59	0.05	0.52	0.07
LPE(22:4)	1.37	0.10	1.32	0.22	1.66	0.26	1.15	0.06	1.22	0.10
LPE(22:2)	0.04	0.00	0.09	0.03	0.05	0.01	0.05	0.01	0.03	0.01
LPE(22:1)	0.03	0.00	0.01	0.01	0.04	0.01	0.02	0.00	0.05	0.01
LPE(24:6)	0.11	0.01	0.09	0.02	0.06	0.01	0.08	0.01	0.05	0.01
PC(28:0)	0.07	0.01	0.05	0.01	0.05	0.01	0.06	0.01	0.12	0.01
PC(O-30:2)(P-	0.02	0.00	0.02	0.00	0.02	0.00	0.02	0.00	0.02	0.00
30:1)										
$\mathrm{PC}(\mathrm{O}-30: 1)(\mathrm{P}-$	0.24	0.02	0.20	0.04	0.19	0.03	0.16	0.02	0.16	0.01
30:0)										
$\mathrm{PC}(\mathrm{O}-30: 0)$	0.22	0.01	0.37	0.05	0.29	0.05	0.23	0.01	0.32	0.01
PC(30:1)	0.11	0.01	0.08	0.01	0.11	0.02	0.11	0.01	0.14	0.01
PC(30:0)	0.28	0.03	0.29	0.03	0.22	0.03	0.27	0.03	0.42	0.03
PC(O-32:2)(P-	0.12	0.01	0.11	0.03	0.09	0.01	0.09	0.01	0.08	0.00
32:1)										
$\mathrm{PC}(\mathrm{O}-32: 1)(\mathrm{P}-$	0.91	0.02	1.10	0.16	0.81	0.10	0.70	0.04	0.70	0.02
32:0)										
$\mathrm{PC}(\mathrm{O}-32: 0)$	0.51	0.02	0.91	0.10	0.54	0.08	0.47	0.01	0.55	0.02
PC(32:2)	0.09	0.01	0.09	0.01	0.08	0.01	0.11	0.01	0.12	0.01
PC(32:1)	1.28	0.08	1.26	0.10	1.34	0.22	1.37	0.11	1.64	0.08
PC(32:0)	0.59	0.05	0.65	0.07	0.47	0.07	0.55	0.05	0.67	0.03
$\mathrm{PC}(\mathrm{O}-34: 5)(\mathrm{P}-$	0.11	0.02	0.12	0.02	0.16	0.03	0.14	0.01	0.18	0.01
34:4)										
$\mathrm{PC}(\mathrm{O}-34: 4)(\mathrm{P}-$	0.13	0.01	0.14	0.02	0.14	0.02	0.12	0.01	0.13	0.00
34:3)										
PC(0-34:3)(P-	0.09	0.00	0.13	0.01	0.09	0.02	0.09	0.00	0.10	0.0

34:2)										
$\mathrm{PC}(\mathrm{O}-34: 2)(\mathrm{P}-$	0.17	0.01	0.23	0.04	0.17	0.03	0.16	0.01	0.16	0.01
34:1)										
$\mathrm{PC}(\mathrm{O}-34: 1)(\mathrm{P}-$	0.75	0.02	1.21	0.13	0.79	0.10	0.61	0.03	0.66	0.03
34:0)										
PC(0-34:0)	0.20	0.01	0.35	0.04	0.21	0.03	0.17	0.01	0.19	0.01
PC(34:6)	0.03	0.00	0.02	0.00	0.03	0.00	0.04	0.00	0.04	0.00
PC(34:5)	0.71	0.04	0.72	0.07	0.76	0.11	0.89	0.06	1.03	0.07
PC(34:4)	0.36	0.01	0.41	0.03	0.42	0.07	0.46	0.04	0.57	0.04
PC(34:3)	0.20	0.01	0.24	0.03	0.18	0.03	0.25	0.02	0.30	0.02
PC(34:2)	0.67	0.04	0.84	0.07	0.62	0.10	0.84	0.08	0.86	0.05
PC(34:1)	2.76	0.14	3.38	0.37	3.34	0.63	3.10	0.19	4.19	0.19
PC(O-36:6)(P-	0.89	0.06	0.76	0.10	0.97	0.19	0.82	0.07	0.89	0.03
36:5)										
PC(O-36:5)(P-	1.95	0.09	2.81	0.31	2.30	0.30	1.98	0.10	1.97	0.12
36:4)										
$\begin{aligned} & \mathrm{PC}(\mathrm{O}-36: 4)(\mathrm{P}- \\ & \text { 36:3) } \end{aligned}$	0.62	0.03	1.08	0.15	0.88	0.11	0.66	0.04	0.59	0.04
PC(O-36:3)(P-	0.11	0.00	0.17	0.01	0.12	0.01	0.12	0.01	0.12	0.01
36:2)										
PC(O-36:2)(P-	0.14	0.00	0.20	0.02	0.16	0.02	0.12	0.01	0.14	0.01
36:1)										
PC(36:8)	0.05	0.00	0.05	0.00	0.06	0.01	0.08	0.01	0.08	0.01
PC(0-36:1)(P-	0.27	0.01	0.61	0.07	0.43	0.06	0.29	0.01	0.40	0.01
36:0)										
PC(0-36:0)	0.02	0.00	0.05	0.01	0.04	0.01	0.02	0.00	0.04	0.00
PC(36:6)	2.03	0.12	1.60	0.11	1.98	0.22	2.25	0.14	2.28	0.14
PC(36:5)	10.05	0.33	9.41	0.69	9.06	0.90	9.91	0.43	9.95	0.68
PC(36:4)	2.91	0.08	3.34	0.33	3.03	0.43	3.16	0.14	3.10	0.25
PC(36:3)	0.41	0.01	0.52	0.06	0.40	0.05	0.51	0.03	0.47	0.03
PC(36:2)	0.53	0.03	0.68	0.09	0.80	0.12	0.67	0.03	0.78	0.04
PC(36:1)	0.75	0.04	1.02	0.12	0.91	0.13	0.89	0.06	1.08	0.05
PC(0-38:7)(P-	1.80	0.17	1.09	0.19	1.38	0.13	1.32	0.11	1.32	0.04
38:6)										
PC(36:0)	0.07	0.01	0.09	0.01	0.08	0.01	0.09	0.01	0.10	0.01
PC(0-38:6)(P-	7.28	0.33	8.42	1.01	8.49	0.82	7.47	0.27	6.80	0.26
38:5)										
PC(0-38:5)(P-	1.87	0.09	2.67	0.28	2.34	0.29	1.85	0.07	1.83	0.08
38:4)										
PC(0-38:4)(P-	0.46	0.03	0.91	0.09	0.70	0.13	0.50	0.03	0.43	0.03
38:3)										
PC(0-38:3)(P-	0.05	0.00	0.10	0.01	0.08	0.01	0.06	0.00	0.05	0.00
38:2)										
PC(38:9)	0.14	0.01	0.09	0.01	0.14	0.01	0.16	0.01	0.16	0.01
PC(0-38:2)(P-	0.10	0.01	0.20	0.02	0.18	0.02	0.13	0.01	0.11	0.01
38:1)										
PC(38:8)	0.69	0.03	0.64	0.05	0.66	0.07	0.83	0.03	0.80	0.05

$\begin{aligned} & \mathrm{PC}(\mathrm{O}-38: 1)(\mathrm{P}- \\ & \text { 38:0) } \end{aligned}$	0.05	0.00	0.12	0.01	0.08	0.01	0.06	0.00	0.06	0.00
PC(38:7)	1.04	0.05	0.87	0.06	0.95	0.10	1.12	0.05	0.90	0.06
PC(38:6)	22.93	0.60	18.95	1.25	19.95	1.70	21.82	0.47	20.17	0.77
PC(38:5)	5.53	0.14	5.25	0.41	5.48	0.75	5.84	0.29	5.66	0.29
PC(38:4)	1.17	0.03	1.49	0.18	1.36	0.16	1.26	0.03	1.17	0.07
PC(38:3)	0.20	0.01	0.25	0.03	0.25	0.04	0.24	0.01	0.23	0.01
PC(38:2)	0.33	0.02	0.39	0.03	0.56	0.09	0.39	0.02	0.52	0.04
PC(38:1)	0.09	0.00	0.10	0.01	0.13	0.02	0.10	0.01	0.13	0.01
$\begin{aligned} & \mathrm{PC}(\mathrm{O}-40: 7)(\mathrm{P}- \\ & 40: 6) \end{aligned}$	2.15	0.09	1.57	0.18	1.77	0.24	1.49	0.04	1.51	0.05
$\begin{aligned} & \mathrm{PC}(\mathrm{O}-40: 6)(\mathrm{P}- \\ & 40: 5) \end{aligned}$	2.37	0.13	2.93	0.24	2.69	0.32	2.25	0.11	2.52	0.06
$\begin{aligned} & \mathrm{PC}(\mathrm{O}-40: 5)(\mathrm{P}- \\ & 40: 4) \end{aligned}$	0.38	0.02	0.63	0.06	0.50	0.06	0.37	0.02	0.42	0.02
$\begin{aligned} & \mathrm{PC}(\mathrm{O}-40: 4)(\mathrm{P}- \\ & 40: 3) \end{aligned}$	0.01	0.00	0.05	0.01	0.03	0.01	0.01	0.00	0.01	0.00
PC(40:10)	0.43	0.03	0.41	0.03	0.27	0.04	0.39	0.03	0.34	0.02
PC(40:9)	1.63	0.06	1.33	0.13	1.51	0.15	1.72	0.05	1.57	0.07
$\begin{aligned} & \mathrm{PC}(\mathrm{O}-40: 2)(\mathrm{P}- \\ & 40: 1) \end{aligned}$	0.01	0.00	0.04	0.00	0.03	0.00	0.01	0.00	0.01	0.00
PC(40:8)	0.94	0.05	1.05	0.08	0.82	0.09	1.11	0.07	0.85	0.06
$\begin{aligned} & \mathrm{PC}(\mathrm{O}-40: 1)(\mathrm{P}- \\ & 40: 0) \end{aligned}$	0.01	0.00	0.02	0.00	0.01	0.00	0.01	0.00	0.01	0.00
PC(40:7)	3.20	0.09	2.74	0.22	3.07	0.39	3.14	0.17	2.82	0.10
PC(40:6)	4.42	0.16	3.76	0.21	4.83	0.46	4.66	0.22	5.38	0.20
PC(40:5)	0.93	0.03	0.94	0.09	1.21	0.16	1.04	0.04	1.06	0.07
PC(40:4)	0.12	0.00	0.15	0.01	0.15	0.03	0.12	0.01	0.12	0.01
PC(40:3)	0.01	0.00	0.02	0.00	0.02	0.01	0.01	0.00	0.01	0.00
PC(40:2)	0.04	0.00	0.04	0.00	0.06	0.01	0.04	0.00	0.07	0.00
PC(40:1)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PC(P-42:6)	0.28	0.02	0.41	0.05	0.40	0.05	0.26	0.01	0.33	0.02
$\begin{aligned} & \mathrm{PC}(\mathrm{O}-42: 6)(\mathrm{P}- \\ & 42: 5) \end{aligned}$	0.06	0.00	0.09	0.01	0.07	0.01	0.04	0.00	0.09	0.01
$\begin{aligned} & \mathrm{PC}(\mathrm{O}-42: 5)(\mathrm{P}- \\ & 42: 4) \end{aligned}$	0.05	0.00	0.07	0.01	0.07	0.01	0.04	0.00	0.05	0.00
PC(42:11)	1.11	0.07	0.96	0.12	0.61	0.08	0.90	0.05	0.68	0.03
PC(42:10)	0.54	0.02	0.50	0.04	0.44	0.06	0.54	0.03	0.43	0.02
PC(42:9)	0.94	0.06	1.05	0.08	0.80	0.09	1.03	0.05	0.78	0.04
PC(42:8)	0.52	0.03	0.59	0.05	0.47	0.05	0.64	0.05	0.48	0.02
PC(42:7)	2.31	0.12	1.88	0.18	2.90	0.35	2.39	0.11	2.84	0.18
PC(42:6)	0.64	0.03	0.54	0.05	0.71	0.10	0.51	0.02	0.63	0.04
PC(42:5)	0.19	0.01	0.18	0.02	0.21	0.02	0.19	0.01	0.17	0.02
PC(P-44:6)	0.02	0.00	0.01	0.00	0.02	0.00	0.01	0.00	0.01	0.00
PC(44:12)	0.54	0.02	0.42	0.05	0.31	0.04	0.43	0.02	0.31	0.01
PC(44:11)	0.33	0.02	0.27	0.02	0.21	0.03	0.29	0.02	0.18	0.01

PC(44:10)	0.28	0.01	0.22	0.02	0.31	0.03	0.28	0.01	0.28	0.01
PC(44:9)	0.09	0.00	0.06	0.00	0.09	0.01	0.07	0.00	0.07	0.00
PC(44:8)	0.04	0.00	0.03	0.00	0.05	0.00	0.05	0.00	0.04	0.00
PC(44:7)	0.08	0.00	0.06	0.00	0.11	0.01	0.10	0.01	0.13	0.01
PC(44:6)	0.03	0.00	0.04	0.00	0.05	0.01	0.04	0.00	0.05	0.00
PC(46:12)	0.13	0.01	0.09	0.02	0.08	0.01	0.11	0.01	0.05	0.00
PE(30:3)	0.58	0.02	0.53	0.03	0.67	0.04	0.75	0.02	0.80	0.02
PE(30:0)	0.00	0.00	0.02	0.01	0.00	0.00	0.00	0.00	0.00	0.00
$\begin{aligned} & \text { PE(O-32:1)(P- } \end{aligned}$	0.02	0.00	0.02	0.00	0.02	0.00	0.02	0.00	0.02	0.00
PE(32:1)	0.06	0.00	0.24	0.09	0.05	0.01	0.04	0.00	0.04	0.00
PE(32:0)	0.01	0.00	0.02	0.01	0.01	0.00	0.00	0.00	0.01	0.00
PE(P-34:5)	0.02	0.00	0.01	0.00	0.01	0.00	0.03	0.00	0.07	0.01
$\begin{aligned} & \text { PE(O-34:5)(P- } \\ & \text { 34:4) } \end{aligned}$	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00
$\begin{aligned} & \mathrm{PE}(\mathrm{O}-34: 4)(\mathrm{P}- \\ & 34: 3) \end{aligned}$	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00
$\begin{aligned} & \text { PE(O-34:1)(P- } \\ & \text { 34:0) } \end{aligned}$	0.02	0.00	0.02	0.00	0.02	0.00	0.02	0.00	0.04	0.00
PE(34:5)	0.05	0.00	0.07	0.01	0.06	0.01	0.07	0.01	0.09	0.00
PE(34:4)	0.03	0.00	0.06	0.02	0.03	0.00	0.03	0.00	0.04	0.00
PE(34:3)	0.02	0.00	0.03	0.01	0.01	0.00	0.02	0.00	0.02	0.00
PE(34:2)	0.05	0.00	0.09	0.02	0.04	0.01	0.06	0.01	0.05	0.00
PE(34:1)	0.12	0.01	0.12	0.02	0.13	0.02	0.11	0.01	0.18	0.01
PE(P-36:6)	0.05	0.00	0.02	0.01	0.03	0.01	0.06	0.01	0.14	0.02
PE(34:0)	0.01	0.00	0.01	0.00	0.01	0.00	0.01	0.00	0.02	0.00
$\begin{aligned} & \text { PE(O-36:6)(P- } \\ & \text { 36:5) } \end{aligned}$	2.33	0.11	1.39	0.15	1.61	0.22	1.95	0.11	3.16	0.26
$\begin{aligned} & \text { PE(O-36:5)(P- } \\ & \text { 36:4) } \end{aligned}$	2.37	0.06	2.04	0.15	2.17	0.22	2.10	0.13	2.71	0.10
$\begin{aligned} & \text { PE(O-36:4)(P- } \\ & \text { 36:3) } \end{aligned}$	0.53	0.03	0.53	0.05	0.56	0.07	0.50	0.03	0.51	0.03
$\begin{aligned} & \text { PE(O-36:3)(P- } \\ & \text { 36:2) } \end{aligned}$	0.04	0.00	0.05	0.00	0.05	0.01	0.04	0.00	0.05	0.00
$\begin{aligned} & \text { PE(O-36:2)(P- } \\ & \text { 36:1) } \end{aligned}$	0.03	0.00	0.04	0.00	0.03	0.00	0.04	0.00	0.06	0.00
PE(36:8)	0.02	0.00	0.02	0.00	0.02	0.00	0.02	0.00	0.03	0.00
$\begin{aligned} & \text { PE(O-36:1)(P- } \\ & \text { 36:0) } \end{aligned}$	0.05	0.01	0.05	0.00	0.05	0.01	0.06	0.01	0.11	0.01
PE(36:7)	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.01	0.00
PE(36:6)	0.10	0.01	0.10	0.02	0.10	0.01	0.12	0.01	0.14	0.01
PE(36:5)	6.10	0.18	5.14	0.43	5.13	0.43	5.85	0.30	5.97	0.21
PE(36:4)	1.48	0.05	1.30	0.11	1.31	0.14	1.41	0.07	1.38	0.09
PE(36:3)	0.16	0.01	0.16	0.02	0.14	0.02	0.18	0.01	0.19	0.01
$\begin{aligned} & \text { PE(O-38:9)(P- } \\ & \text { 38:8) } \end{aligned}$	0.25	0.01	0.16	0.02	0.22	0.04	0.19	0.01	0.31	0.03

PE(36:2)
PE(O-38:8)(P-
38:7)
PE(36:1)
PE(O-38:7)(P-
38:6)
PE(O-38:6)(P-
38:5)
PE(O-38:5)(P-
38:4)
PE(O-38:4)(P-
38:3)
PE(O-38:3)(P-
38:2)
PE(38:9)
PE(O-38:2)(P-
38:1)
PE(38:8)
PE(O-38:1)(P-
38:0)
PE(38:7)
PE(38:6)
PE(38:5)
PE(O-40:11)(P-
40:10)
PE(38:4)
PE(O-40:10)(P-
40:9)
PE(38:3)
PE(O-40:9)(P-
40:8)
PE(38:2)
PE(O-40:8)(P-
40:7)
PE(38:1)
PE(O-40:7)(P-
40:6)
PE(O-40:6)(P-
40:5)
PE(O-40:5)(P-
40:4)
PE(O-40:4)(P-
40:3)
PE(40:10)
PE(O-40:3)(P40:2)
PE(40:9)

0.09	0.00	0.10	0.01	0.09	0.01	0.10	0.01	0.10	0.00
0.59	0.02	0.51	0.05	0.63	0.12	0.49	0.03	0.62	0.04
0.10	0.00	0.08	0.01	0.11	0.01	0.10	0.01	0.14	0.00
2.68	0.11	2.05	0.25	2.33	0.32	2.56	0.16	3.45	0.17
18.21	0.51	17.65	1.10	20.29	2.03	19.34	0.55	19.70	0.43
11.07	0.30	14.09	1.04	12.85	1.22	11.98	0.38	10.51	0.44
2.05	0.15	2.48	0.23	2.21	0.21	2.06	0.10	1.77	0.15
0.16	0.01	0.20	0.02	0.17	0.02	0.15	0.01	0.16	0.01
0.03	0.00	0.02	0.00	0.03	0.01	0.02	0.00	0.03	0.00
0.09	0.01	0.12	0.01	0.13	0.02	0.13	0.01	0.17	0.01
1.66	0.09	1.30	0.16	1.50	0.24	1.31	0.08	1.27	0.10
0.04	0.00	0.05	0.00	0.04	0.01	0.05	0.00	0.10	0.00
0.49	0.03	0.45	0.05	0.48	0.08	0.42	0.02	0.39	0.03
6.01	0.23	4.37	0.32	4.37	0.41	5.24	0.20	5.03	0.21
6.41	0.16	6.31	0.54	5.48	0.52	6.32	0.21	6.24	0.20
0.09	0.01	0.06	0.01	0.09	0.02	0.05	0.01	0.07	0.01
2.04	0.07	2.20	0.20	1.96	0.19	2.03	0.09	1.78	0.12
0.24	0.01	0.20	0.02	0.23	0.04	0.21	0.02	0.29	0.02
0.44	0.03	0.43	0.04	0.34	0.03	0.46	0.02	0.44	0.01
1.75	0.05	1.79	0.19	2.08	0.27	1.79	0.08	1.81	0.08
0.22	0.02	0.20	0.02	0.18	0.02	0.20	0.02	0.19	0.01
1.80	0.03	2.10	0.15	2.17	0.34	1.79	0.07	1.67	0.07
0.03	0.00	0.02	0.00	0.02	0.00	0.02	0.00	0.03	0.00
7.11	0.24	7.90	0.62	8.19	0.70	8.13	0.33	7.61	0.25
3.90	0.10	4.41	0.39	4.20	0.51	4.22	0.16	4.44	0.15
1.00	0.04	1.32	0.10	1.11	0.09	1.08	0.05	1.02	0.04
0.27	0.01	0.36	0.03	0.28	0.04	0.28	0.01	0.24	0.02
0.15	0.01	0.13	0.01	0.12	0.02	0.12	0.01	0.11	0.01
0.08	0.00	0.12	0.01	0.11	0.01	0.11	0.00	0.11	0.01
0.92	0.05	0.76	0.12	0.81	0.16	0.75	0.03	0.69	0.0

$\begin{aligned} & \text { PE(O-40:2)(P- } \\ & \text { 40:1) } \end{aligned}$	0.08	0.00	0.13	0.01	0.14	0.02	0.12	0.00	0.13	0.00
PE(40:8)	1.57	0.09	1.74	0.14	1.40	0.22	1.50	0.08	1.18	0.08
PE(O-40:1)(P-	0.00	0.00	0.01	0.00	0.01	0.00	0.01	0.00	0.02	0.00
40:0)										
PE(40:7)	1.28	0.03	1.27	0.13	1.15	0.13	1.23	0.07	1.02	0.05
PE(40:6)	4.17	0.15	3.82	0.34	3.74	0.36	3.83	0.12	4.17	0.19
PE(P-42:11)	0.21	0.02	0.17	0.01	0.24	0.06	0.16	0.01	0.18	0.02
PE(40:5)	1.22	0.04	1.22	0.11	1.15	0.14	1.00	0.04	0.99	0.05
$\begin{aligned} & \text { PE }(\mathrm{O}-42: 11)(\mathrm{P}- \\ & 42: 10) \end{aligned}$	0.19	0.01	0.21	0.02	0.23	0.04	0.15	0.01	0.15	0.01
PE(40:4)	0.18	0.01	0.18	0.02	0.16	0.02	0.18	0.02	0.13	0.01
$\begin{aligned} & \text { PE(O-42:10)(P- } \\ & \text { 42:9) } \end{aligned}$	0.53	0.01	0.68	0.05	0.67	0.08	0.62	0.02	0.57	0.03
PE(40:3)	0.55	0.04	0.41	0.04	0.36	0.04	0.48	0.05	0.39	0.02
$\begin{aligned} & \text { PE(O-42:9)(P- } \\ & \text { 42:8) } \end{aligned}$	0.40	0.01	0.49	0.05	0.45	0.06	0.43	0.02	0.41	0.02
PE(40:2)	0.17	0.01	0.15	0.02	0.12	0.01	0.15	0.02	0.14	0.01
$\begin{aligned} & \text { PE(O-42:8)(P- } \\ & \text { 42:7) } \end{aligned}$	0.46	0.02	0.61	0.04	0.74	0.07	0.61	0.05	0.50	0.03
$\begin{aligned} & \text { PE(O-42:7)(P- } \\ & \text { 42:6) } \end{aligned}$	0.36	0.01	0.41	0.03	0.49	0.06	0.41	0.03	0.42	0.01
$\begin{aligned} & \text { PE(O-42:6)(P- } \\ & \text { 42:5) } \end{aligned}$	0.12	0.00	0.13	0.01	0.15	0.01	0.12	0.00	0.13	0.01
PE(42:11)	0.53	0.04	0.56	0.08	0.40	0.08	0.48	0.03	0.33	0.02
PE(42:10)	0.22	0.01	0.24	0.03	0.20	0.03	0.20	0.01	0.15	0.01
PE(42:9)	0.76	0.05	0.82	0.09	0.59	0.09	0.68	0.04	0.54	0.03
PE(42:8)	0.35	0.02	0.38	0.04	0.28	0.04	0.34	0.03	0.24	0.01
PE(42:7)	1.20	0.04	1.04	0.11	1.22	0.12	1.05	0.05	1.09	0.05
$\begin{aligned} & \text { PE(O-44:13)(P- } \\ & \text { 44:12) } \end{aligned}$	0.04	0.00	0.05	0.00	0.05	0.01	0.04	0.00	0.04	0.00
PE(42:6)	0.37	0.02	0.33	0.02	0.36	0.04	0.32	0.01	0.31	0.01
$\begin{aligned} & \text { PE(O-44:12)(P- } \\ & \text { 44:11) } \end{aligned}$	0.03	0.00	0.04	0.00	0.04	0.01	0.03	0.00	0.03	0.00
PE(42:5)	0.09	0.01	0.08	0.01	0.07	0.01	0.07	0.00	0.05	0.00
$\begin{aligned} & \text { PE(O-44:11)(P- } \\ & \text { 44:10) } \end{aligned}$	0.03	0.00	0.05	0.00	0.06	0.01	0.04	0.00	0.03	0.00
$\begin{aligned} & \text { PE(O-44:10)(P- } \\ & \text { 44:9) } \end{aligned}$	0.02	0.00	0.02	0.00	0.03	0.00	0.02	0.00	0.02	0.00
PE(44:12)	0.37	0.04	0.41	0.05	0.20	0.03	0.32	0.04	0.16	0.01
PE(44:11)	0.10	0.01	0.12	0.01	0.06	0.01	0.09	0.01	0.04	0.00
PE(44:10)	0.10	0.00	0.10	0.01	0.10	0.01	0.08	0.00	0.07	0.01
PE(44:9)	0.04	0.00	0.03	0.00	0.03	0.01	0.03	0.00	0.02	0.00
PE(44:8)	0.03	0.00	0.03	0.00	0.02	0.00	0.02	0.00	0.02	0.00
PE(44:7)	0.02	0.00	0.01	0.00	0.02	0.00	0.01	0.00	0.01	0.00
SM(d30:1)	0.95	0.07	0.68	0.07	0.94	0.12	0.59	0.07	0.88	0.07

SM(d30:0)	0.25	0.03	0.40	0.09	0.33	0.03	0.41	0.07	0.28	0.05
SM(d32:2)	0.70	0.05	0.85	0.08	0.86	0.09	0.65	0.04	0.55	0.03
SM(d32:1)	43.68	1.00	40.63	1.61	45.11	1.65	46.02	1.87	52.07	1.82
SM(d34:1)	16.73	0.89	14.31	1.12	11.62	1.20	13.32	0.76	11.60	0.65
SM(d34:0)	0.91	0.09	0.73	0.08	0.76	0.08	1.05	0.08	0.90	0.10
SM(d35:1)	3.19	0.24	3.12	0.42	3.92	0.19	4.13	0.30	2.78	0.23
SM(d36:3)	1.41	0.06	1.05	0.13	1.49	0.12	1.93	0.21	1.40	0.10
SM(d36:2)	2.89	0.13	3.08	0.24	3.68	0.26	2.92	0.18	2.61	0.15
SM(d36:1)	2.25	0.10	3.03	0.34	2.39	0.20	2.71	0.15	2.49	0.14
SM(d38:3)	2.64	0.16	3.38	0.22	2.05	0.18	2.86	0.28	1.65	0.08
SM(d38:2)	18.67	0.63	21.31	1.49	21.27	1.42	18.29	0.92	18.15	1.16
SM(d40:2)	5.38	0.32	7.00	0.66	5.32	0.31	4.84	0.31	4.43	0.33
SM(d42:2)	0.36	0.03	0.44	0.08	0.26	0.02	0.29	0.03	0.21	0.02

