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We study the spontaneous scalarization of a standard conducting charged sphere embedded in
Maxwell-scalar models in flat spacetime, wherein the scalar field φ is nonminimally coupled to the
Maxwell electrodynamics. This setup serves as a toy model for the spontaneous scalarization of
charged (vacuum) black holes in Einstein-Maxwell-scalar (generalized scalar-tensor) models. In
the Maxwell-scalar case, unlike the black hole cases, closed-form solutions exist for the scalarized
configurations. We compute these configurations for three illustrations of nonminimal couplings:
one that exactly linearizes the scalar field equation, and the remaining two that produce nonlinear
continuations of the first one. We show that the former model leads to a runaway behaviour in
regions of the parameter space and neither the Coulomb nor the scalarized solutions are stable in
the model; but the latter models can heal this behaviour producing stable scalarized solutions that
are dynamically preferred over the Coulomb one. This parallels reports on black hole scalarization
in the extended-scalar-Gauss-Bonnet models. Moreover, we analyse the impact of the choice of the
boundary conditions on the scalarization phenomenon. Dirichlet and Neumann boundary condi-
tions accommodate both (linearly) stable and unstable parameter space regions, for the scalar-free
conducting sphere; but radiative boundary conditions always yield an unstable scalar-free solution
and preference for scalarization. Finally, we perform numerical evolution of the full Maxwell-scalar
system, following dynamically the scalarization process. They confirm the linear stability analysis
and reveal that the scalarization phenomenon can occur in qualitatively distinct ways.
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I. INTRODUCTION

Compact objects such as neutron stars and black holes can undergo a spontaneous scalarization phenomenon in
asymptotically flat spacetimes, in scalar-tensor theories of gravitation, see e.g. [1–7] for scalarization of relativistic
stars and e.g., [8–40] for black hole scalarization. This is a strong gravity phase transition, wherein the nonminimal
coupling between the scalar field and a curvature invariant (or matter density) plays a key role that triggers a tachyonic
growth of the scalar field in high curvature (or high density) backgrounds.

Spontaneous scalarization, however, is not exclusive of either scalar-tensor models or even of strong gravity*1; it
occurs in a broader class of models. For instance, if the scalar field nonminimally couples to the Maxwell (rather than
a curvature) invariant FµνFµν , with Fµν being the electromagnetic field strength, charged black holes can scalarize
in Einstein-Maxwell-scalar models [46–57], wherein both the scalar and electromagnetic fields minimally couple to
Einstein’s gravity (see also [58, 59] for scalar field couplings in nonlinear electrodynamics). Additionally, even in
the absence of gravity, a nonminimal coupling of the scalar field to Maxwell’s electromagnetism, f(φ)FµνFµν , where
f(φ) is a regular function of φ, may allow scalarization of a charged object, such as a conducting sphere [46] (see
also [60]). This occurs in Maxwell-scalar (Ms) models on Minkowski spacetime, which therefore provide one of the
simplest arenas to study the spontaneous scalarization phenomenon. Studying this phenomenon in detail will be the
subject of this paper.

Ms models are rather simple for the static and spherically symmetric configurations, which possess an integrable
structure [61]. Then, despite being non-trivially coupled to the electromagnetic dynamics via a nonminimal coupling
function f(φ), the scalar field equation can be fully decoupled from Maxwell’s equations via considering the first
integral that arises from the latter, the electric charge. Consequently, specifying f(φ), one can fully grasp the
linear/nonlinear structure of the scalar field equation. This is unlike what happens in scalar-tensor or Einstein-
Maxwell-scalar models, in which the impact of the geometry on the scalar field equation and the precise structure of
the corresponding nonlinearities are not so explicit in general, since the geometry is sourced by the scalar field.

The first investigation of spontaneous scalarization in an Ms model was briefly mentioned in [46], wherein a closed-
form solution describing a scalarized conducting sphere was reported. This was found for the specific nonlinear form
of f(φ) given by Eq. (26) below. As it turns out, the particular simplicity induced by this coupling can be traced to
the fact that it exactly linearizes the scalar field equation. Using appropriate variables, the latter is, in fact, simply the
standard harmonic equation. In [46], it was observed that the corresponding scalarized conductor was energetically
preferred over the Coulomb solution with the same charge in a subset of the parameter space, but no dynamical
or stability analysis was performed in Ref. [46]. Such an analysis will be performed in this paper, leading to the
conclusion that this model is afflicted by a runaway mode: there are regions of the parameter space wherein neither
the scalar-free (Coulomb) nor the scalarized conducting sphere are stable.

A physically more reasonable behaviour, with a stable (classical) vacuum, can be obtained by augmenting the
previous model with sufficient nonlinearities. This will be illustrated by considering two examples of nonlinear
couplings f(φ) given by Eqs. (37) and (45) below, that can be regarded as nonlinear continuations of the first choice
that led to the linear model. In fact, the scalar field equation now becomes that of a nonlinear harmonic oscillator.
The nonlinearities that these couplings induce in the latter equation will be shown to be able to quench the runaway
mode, by introducing an effective potential with new extrema, yielding stable scalarized configurations.

This dichotomy between the linear and nonlinear models and (non)existence of a stable scalarized vacuum, which
was just explained above, finds a close parallelism with the situation found in black hole spontaneous scalarization
in extended-scalar-tensor-Gauss-Bonnet models. The simplest nonminimal coupling allowing for black hole scalariza-
tion [8], which produces a linear scalar field equation*2, yields static scalarized black holes that are not entropically
preferred over the Schwarzschild solution with the same mass and, moreover, which were later found to be radially

*1 Also, a similar phenomenon exists for vector and tensor (rather than scalar) fields, see and e.g. [41–45].
*2 This linearity is only apparent, since the scalar field backreacts on the geometry which then impacts on the scalar field equation.
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unstable [12]. But couplings which produces a manifestly nonlinear scalar field equation could give rise to perturba-
tively stable scalarized solutions [9, 12, 13, 17, 30, 31]. We suggest that the aforementioned Ms models, described
herein, are a simple toy model to study this behavior and the dynamical formation process of scalarized solutions.

In the Ms models, unlike the black hole case, however, there is a larger freedom in choosing the boundary conditions
for the scalar field on the surface of the conducting sphere. We will show that the choice of the boundary conditions can
impact significantly on the instability of the conducting sphere. These findings will result from a linear perturbation
theory analysis, which is also performed for the scalarized solutions, but will also be confirmed by fully nonlinear
numerical evolution. Moreover, the latter will help us understand how the scalarized solution is reached. We will
see that the tachyonic scalarization instability is always stronger in the immediate vicinity of the surface of the
conducting sphere, and then propagates towards large radial distances. Moreover, in some cases the scalarization
instability proceeds in a rather monotonic and straightforward manner to form the scalarized solutions, whereas in
other cases the scalar field oscillates considerably before approaching the end point.

This paper is organized as follows. Ms models are briefly described in Section II, where the Coulomb solution and
its stability, when embedded in these models, is considered for different boundary conditions. Section III describes
the linear model and its scalarized solution, establishing they are always unstable. Section IV describes the two
nonlinear models and their scalarized solution, establishing the regimes in which they are stable. In Section V we
describe the numerical simulations to study the time evolution of the scalarization phenomenon. Some conclusions
are presented in Section VI. Two appendices provide some further technical details.

II. MAXWELL-SCALAR (MS) MODELS

A. Action and field equations

Let us consider the following family of Ms models, wherein a real scalar field φ is nonminimally coupled to the
electromagnetic field:*3

S = −
∫
d4x [2∂µφ∂µφ+ f(φ)FµνFµν ] , (1)

where Fµν = ∂µAν−∂νAµ is the electromagnetic field strength, Aµ is the U(1) gauge field, and f(φ) is a free function
of the scalar field φ, specifying the nonminimal coupling. For f = 1 the scalar field is free and it is not sourced by
the electromagnetic field; we shall be interested in non-trivial functions f(φ) that allow a scalarization phenomenon,
triggered by charged configurations. Throughout this work, dynamics will take place on flat Minkowski spacetime,
whose metric is taken in the standard spherical coordinates

ds2 = −dt2 + dr2 + r2
(
dθ2 + sin2 θdϕ̄2

)
, (2)

where t, r, and (θ, ϕ̄) are the time, radial and angular coordinates, respectively. By varying the action (1) with respect
to φ and Aµ, we obtain the Ms field equations:

�φ− 1

4
fφ(φ)FµνFµν = 0 , (3)

Dµ (f(φ)Fµν) = 0 , (4)

where fφ := df/dφ. We shall be interested in spherical dynamics and spherical static configurations. As such, for
static solutions we assume a spherically symmetric ansatz for both the gauge potential and the scalar field:

Aµ = (At, Ar, Aθ, Aϕ̄) := (A0(r), 0, 0, 0) , (5)

φ = φ0(r) . (6)

In this spherical sector, the Ms model is integrable [61]. The nontrivial components of the vector and scalar field
equations of motion, Eqs. (3) and (4), are given by

φ′′0(r) +
2

r
φ′0(r) +

1

2
fφ(φ0)A′0(r)2 = 0 , (7)

*3 The standard normalizations of the scalar and Maxwell kinetic terms correspond to multiplying this action by 1/4.
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A′′0(r) +
2

r
A′0(r) +

fφ(φ0)

f(φ0)
φ′0(r)A′0(r) = 0 , (8)

where ‘prime’ denotes radial derivative. Integrating the second equation yields a first integral:

A′0(r) =
Q

r2f(φ0)
, (9)

where the integration constant Q is the total electric charge. The scalar field equation (7) then reduces to

r2 d

dr

(
r2 dφ0

dr

)
=

d

dφ0

(
Q2

2f(φ0)

)
. (10)

Defining a new radial coordinate x := 1/r and an effective potential for the motion

Veff(φ0) := − Q2

2f(φ0)
, (11)

Eq. (10) becomes

d2φ0

dx2
= −dVeff

dφ0
. (12)

This describes a mechanical model of a particle with degree of freedom φ0 moving under the influence of a 1-dimensional
potential (11), with the inverse radius x playing the role of ‘time’. This potential is, up to a constant, the inverse of
the coupling function. The model can be solved for any choice of the nonminimal coupling function f(φ). We remark
that a second integral can be obtained from (10) [61].

B. The Coulomb solution embedded in Ms models and its stability

The Coulomb solution in standard electromagnetism, plus a trivial scalar field,

A′0(r) =
Q

r2
, φ0(r) = 0 , (13)

solve the Ms theory (1) as long as the coupling function obeys

f(0) = 1 , fφ(0) = 0 . (14)

If f(φ) admits a Taylor series around φ = 0, then the general form of the coupling satisfying (14) is given by

f(φ) = 1 + aφ2 +

∞∑
n=3

fnφ
n , (15)

where a > 0 and fn (n = 3, 4, · · · ) are constants.
Embedding the Coulomb solution in a Ms theory raises the question whether it is the preferred vacuum in spherical

symmetry with charge Q. Or, could there be another dynamically preferred vacuum? And, in that case, do scalar
perturbations promote the evolution of the Coulomb solution towards the preferred vacuum?

In order to address these questions, the physical setup herein is to consider a conducting charged sphere with a
radius r = rs. This circumvents the well-known issue in classical electromagnetism that the energy of the Coulomb
solution diverges as r → 0. Having such a sphere, the Coulomb solution holds on and outside the conductor. In our
study, we shall always focus on the behaviour on and outside the conductor only.

In Appendix A, we discuss the linear radial perturbations in general backgrounds in Ms models. For the coupling
given by Eq. (15), scalar and vector field perturbations decouple in Eq. (A1); the scalar field radial perturbation
φ1(r) obeys

−φ̈1 + φ′′1 +
2

r
φ′1 +

aQ2

r4
φ1 = 0 , (16)

where ‘dot’ stands for a time derivative. Fourier decomposing the solution, φ1(t, r) =
∫
dωe−iωtφω(r), each mode

obeys

φ′′ω(r) +
2

r
φ′ω(r) +

aQ2

r4
φω(r) = −ω2φω(r) . (17)
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An instability is present if there are modes with purely imaginary eigenvalues, ω2 < 0 (see Appendix B for the
proof). Thus, instabilities are absent if the mode ω2 = 0 is the lowest eigenmode; in this case, the solution φω=0 has no
nodes between the conductor at r = rs and spatial infinity r →∞. For convenience, we introduce the dimensionless
quantities,

r̄ :=
r

rs
, Q̄ :=

Q
√
a

rs
, (18)

so that the conductor surface is located at r̄ = 1. Imposing the physical boundary condition that the perturbation
should vanish at spatial infinity, φω → 0, we obtain the following solution for the ω = 0 mode:

φω=0 = C0 sin

(
Q̄

r̄

)
, (19)

where C0 is an integration constant. At the surface of the conductor different boundary conditions can be chosen.
The Dirichlet (D) or Neumann (N) boundary conditions,

φ0(rs) = 0 (D) , φ′0(rs) = 0 (N) , (20)

lead to

sin
(
Q̄
)

= 0 (D) , cos
(
Q̄
)

= 0 (N) ; (21)

consequently, these boundary conditions yield, respectively, the following constraints on the parameters:

Q̄
∣∣∣
D

= π(1 + n) , Q̄
∣∣∣
N

=
π

2
(1 + 2n) , n ∈ N0 . (22)

If Q̄ is greater than the value given by (22) for n = 0, the lowest mode of φ1 has nodes, implying there are eigenmodes
with ω2 < 0. Then, the Coulomb solution is unstable. Instability is therefore present if the effective coupling Q̄ is
larger than a threshold value, which depends on the boundary condition chosen, i.e., when

Q̄ > Q̄D := π , Q̄ > Q̄N :=
π

2
. (23)

A third type of boundary condition can be defined, which will make contact with the numerical evolution in Section
V

(rφω=0)′|r=rs = 0 . (24)

This will be called a radiative (R) boundary condition, which corresponds to the ingoing boundary condition Eq. (59)
for ω = 0. From (19) it leads to the condition

tan
(
Q̄
)

= Q̄ . (25)

In this case, the lowest mode gives Q̄ = 0. Thus for any value of a,Q > 0, the Coulomb solution is always unstable
for these radiative boundary conditions.

III. THE LINEAR MODEL

Let us now consider several specific choices of the coupling function f(φ). The first choice leads to an exact solution
already discussed in [46]. Albeit not discussed explicitly therein, this choice linearizes the φ equation. Thus, we call
it the linear model.

A. The scalarized solution

The linear model has the coupling function:

f(φ) =
1

1− aφ2
,

(11)⇒ Veff(φ0) =
Q2

2
(aφ2

0 − 1) . (26)
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The effective potential Veff informs us that this coupling leads to a 1-dimensional mechanical model with a harmonic
potential. It has a minimum at φ0 = 0; this is not, however, the only solution to the equations of motion, as we shall
promptly see. For this model, the electric field (9) reduces to

A′0 =
Q

r2
(1− aφ2

0) . (27)

One possible viewpoint is to face the scalarized solutions as introducing a sort of medium around the charged sphere.
This interpretation has been used, say, in [61]. Then, the impact on the gauge field can be regarded as a screening
of the charge. The scalar field equation (12) then becomes the exactly linear (harmonic) equation

d2φ0

dx2
= −aQ2φ0 . (28)

The solution satisfying the boundary condition φ(r →∞) = 0 is given by, in terms of the r variable,

φ0 = ζ sin

(√
aQ

r

)
, (29)

where ζ is an undetermined amplitude. Observe that this exact solution for the scalar field in the Ms model defined
by the coupling (26), precisely coincides with the solution for the ω = 0 linear perturbation around the Coulomb
solution in Eq. (19). In the limit of r →∞ Eq. (29) leads to

φ0 =
Qs
r

+O
(

1

r3

)
, (30)

where the scalar “charge” Qs
*4 has been identified as Qs :=

√
aζQ. Since the equation of motion (28) is linear, Qs

also grows linearly with the amplitude ζ.
Imposing the boundary conditions (D) and (N) on the solution given by Eq. (29) at the surface of the conductor,

leads to, precisely, the conditions in Eq. (22). For each type of boundary conditions, there are, therefore, solutions
with n ∈ N0 nodes between the conductor and infinity. The lowest state, the n = 0 node solution, branches off from
the pure Coulomb solution at the threshold of instability against scalar perturbations; that is, when Q̄ = Q̄N or
Q̄ = Q̄D, for the boundary conditions (N) or (D), respectively, given by Eq. (23). The branching is controlled by the
amplitude ζ; the electrostatic potential of the scalarized solution becomes [46]

A0 = −
[(

1− aζ2

2

)
Q

r
+

√
aζ2

4
sin

(
2
√
aQ

r

)]
. (31)

As we shall see in the next subsection, however, the scalarized solution Eqs. (29) and (31) for the model (26) turns out
to be unstable. This should be no surprise, considering the effective potential (26). Indeed, from (12), the (inverse)
radial coordinate plays the role of “time” in the 1-dimensional mechanical model. Thus the sinusoidal oscillations
in the radial coordinate of solution (29) correspond to the time oscillations of a harmonic oscillator. Since such an
oscillator has only a stable equilibrium point at the minimum of the potential, we anticipate that only the solution
with φ0 = 0 everywhere could be stable. One can also relate this instability to the linear nature of (28), which
allows the amplitude of the scalar field to grow without bound. This is reminiscent of the instability observed for
the scalarized black holes in extended-scalar-tensor-Gauss-Bonnet gravity, for a quadratic coupling function, that also
leads to a scalar field equation which is linear in the scalar field [8, 9, 12, 13, 17, 30, 31].

B. Instability of the scalarized charged conductor in the linear model

To assess the linear stability of the scalarized solution given by Eqs. (29) and (31), we consider small radial
perturbations about it:

At = A0(r) + εat(t, r) , Ar = εar(t, r) , φ = φ0(r) + εφ1(t, r) , (32)

where ε � 1 is the benchmark parameter for the perturbations. The details of the perturbation analysis are shown
in Appendix A. By integrating out the gauge field perturbations at and ar, one can obtain the master equation for

*4 Using common terminology, the coefficient of the leading asymptotic term of the scalar field, Qs, is called “charge”; but, in fact, it is
not associated to any conservation law.
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the scalar field perturbation. Fourier decomposing the master variable Φ, Φ =
∫
dωΦωe

−iωt, each mode obeys a time
independent Schrödinger-type equation

−Φ′′ω + Veff(r)Φω = ω2Φω , (33)

where we have defined the effective potential for the perturbations

Veff(r) := − Q2

2r4f(φ0(r))3

[
f(φ0(r))fφφ(φ0(r))− 2fφ(φ0(r))2

]
, (34)

with fφφ(φ) := d2f(φ)/dφ2. For the model (26), this effective potential simplifies to

Veff(r) = −Q
2a

r4
, (35)

which is negative definite. This implies that unstable modes (ω2 < 0, see Appendix B) may exist. In fact, they will
exist if the perturbation with ω = 0 has nodes. The analysis then reduces to that of Sec. II B, and the conclusion
is that the scalarized charged conductors are unstable in the linear model whenever the Coulomb solution, with the
same charge and the same boundary conditions, is unstable. Thus, the scalarized solution cannot be the endpoint of
the instabiity of the Coulomb solution.

It is interesting to notice, in fact, that allowing for both a radial and a time dependence in the ansatz (5), the
model (26) admits the exact time dependent solution

φ0 = ζt sin

(√
aQ

r

)
, A0 = −

[(
1− aζ2t2

2

)
Q

r
+

√
aζ2t2

4
sin

(
2
√
aQ

r

)]
, (36)

which simply amounts to giving the amplitude ζ a linear time dependence ζ → ζt. The existence of such an unbound
(secular), growing solution, is again, related to the linear nature of the model.

To obtain a physically self-consistent model, in the next Section IV we shall consider scalarized charged conductor
solutions for more general coupling functions, wherein the nonlinear corrections in the scalar field equation are able
to quench the tachyonic instability.

IV. NONLINEAR MODELS

We shall now consider two examples of coupling functions leading to models where the scalar equation of motion is
nonlinear. As we shall see, in such cases the scalarized solutions may be free of instabilities.

A. The inverse quartic polynomial model

The first model is a nonlinear continuation of the linear model (26). Specifically, we consider model (26) augmented
by a quartic term:

f(φ) =
1

1− aφ2 + k2a2φ4/4

(11)⇒ Veff(φ0) =
Q2

2

(
−k

2a2

4
φ4

0 + aφ2
0 − 1

)
. (37)

The effective potential has extrema at

φ0 = 0 (local minimum) , φ0 = ±
√

2

ak2
(maxima) . (38)

With the choice (37), the electric field (9) becomes

A′0 =
Q

r2

(
1− aφ2

0 +
a2k2

4
φ4

0

)
. (39)

Substituting this expression for the electric field into (7), the scalar equation becomes that of a nonlinear harmonic
oscillator. Its solution, satisfying the boundary condition φ0(r →∞) = 0 reads

φ̄(r̄) =

√
1−

√
1− C̄0 sn

[
Q̄√
2r̄

√
1 +

√
1− C̄0,

1−
√

1− C̄0

1 +
√

1− C̄0

]
, (40)
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where “sn” denotes a Jacobi elliptic function,

φ̄ :=

√
ak2

2
φ0 (k 6= 0) , (41)

r̄ and Q̄ were introduced in Eq. (18), and C̄0 is an integration constant, which will be fixed by the boundary conditions
at the surface of the conductor r = rs. This form of the solution applies for k 6= 0; for k = 0 the coupling (37) reduces
to the coupling (26) and hence we recover the linear model.

At first glance, the function (40) looks imaginary for C̄0 > 1. However, we numerically confirmed that φ̄ remains
real even if Eq. (40) is analytically continued into the parameter region of C̄0 > 1 and satisfies the boundary condition
φ̄(r̄ →∞) = 0, similarly to what holds for 0 6 C̄0 6 1, although we did not find an alternative analytic form of (40)
in which the arguments are explicitly real. In this sense the solution (40) is valid for C̄0 > 0. We exclude the case of
C̄0 < 0, for which Eq. (40) becomes imaginary. As shown in Fig. 1, the boundary conditions (N) and (D) (20) admit
the solutions 0 6 C̄0 6 1 for any Q̄. On the other hand, the solutions adapted to the radiative boundary condition
used in the numerical simulations (see Section V) include the case C̄0 > 1. We can then resort to numerical methods
to obtain the corresponding profiles of the scalarized solution of Eq. (7). We also remark that for C̄0 = 0 one recovers
the Coulomb solution with φ̄ = 0; for C̄0 = 1 one obtains

φ̄→ tanh

(
Q̄√
2r̄

)
. (42)

The asymptotic (r̄ →∞) behaviour of (40) gives

φ̄ =
Q̄s
r̄

+O
(

1

r̄3

)
; (43)

then, considering (41), the scalar “charge” Q̄s is given by

Q̄s =

√
C̄0Q̄√

2
. (44)

Solution (40) contains two independent integration constants, C̄0 and Q̄. These are, however, related by the boundary
condition on the conductor, r̄ = 1. In Fig. 1 this relation is exhibited: C̄0 is shown as a function of Q̄. The solid
and dashed curves correspond to the boundary conditions (D) and (N) at the surface of the conductor, respectively,
where each curve is truncated at C̄0 = 0.9995. Red, blue, green, and purple curves correspond to the solutions with
0-, 1-, 2- and 3-nodes, respectively. The inset provides a magnification of the 0-node solutions around the bifurcation
point from the Coulomb solution. The critical couplings (23) given by Q̄N = π/2 ≈ 1.5708 and Q̄D = π ≈ 3.1416, are
in good agreement with the bifurcation points of the 0-node solutions, given in the inset of the figure.

Fig. 1 shows that for the 0-nodes solutions, C̄0 approaches unity very quickly as a function of Q̄. The limit C̄0 → 0
reproduces Eq. (21) giving rise to the solutions (22) which correspond to vertical straight lines starting from the
bifurcation points in Fig. 1.

B. The inverse cosine coupling

As a second nonlinear completion of the coupling (26) (which led to the linear model), we consider the inverse
cosine coupling (45),

f(φ) =
1

cos
(√

2aφ
) (11)⇒ Veff(φ0) = −Q

2

2
cos
(√

2aφ0

)
. (45)

The effective potential has now infinite countable set of extrema, at

sin
(√

2aφ0

)
= 0 . (46)

The electric field (9) is now

A′0 =
Q

r2
cos
(√

2aφ0

)
. (47)



9

5 10 15 20 25 30
Q

0.2

0.4

0.6

0.8

1.0

C0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

FIG. 1. C̄0 as a function of Q̄ for the scalar field solution (40), in the model with an inverse quartic coupling (37), and for
the boundary condition (D) (solid curves) or the boundary condition (N) (dashed curves). Red, blue, green, and purple curves
correspond to solutions with 0-, 1-, 2- and 3-nodes, respectively. Each curve is truncated at C̄0 = 0.9995. (Inset) Zoom of the
0-node solutions around the origin.

The scalar field equation (12) becomes a 1-dimensional sine-Gordon equation. Its solution, satisfying the boundary
condition φ0(r →∞) = 0, can be expressed in terms of the Jacobi amplitude, denoted “am(k,m)” as:

φ̄(r) = am

(√
C1

2

Q̄

r̄
,

2

C1

)
, (48)

where now

φ̄ :=

√
a

2
φ0 , (49)

and C1 is an integration constant. The function (48) takes a real value and satisfies the boundary condition φ̄(r̄ →
∞) = 0 for any C1 > 0. On the other hand, we exclude the case of C1 < 0, for which Eq. (48) becomes imaginary. In
order to impose the (D) or (N) boundary conditions (20), we restrict to 0 6 C1 6 2 (see Fig. 2). In the lower limit,
C1 → 0, one verifies that φ → 0, which represents the Coulomb solution. In the upper limit, C1 = 2, the solution
becomes

φ̄(r) = 2 arctan−1
(
eQ̄/r̄

)
− π

2
, (50)

which coincides with the 1-soliton solution of the sine–Gordon equation with no time dependence [62].
In the large distance limit, (48) yields

φ̄ =
Q̄s
r̄

+O
(

1

r̄2

)
. (51)

Thus, the scalar charge is Q̄s :=
√
C1Q̄/

√
2.

As in the previous subsection, C1 is related to Q̄ by imposing a boundary condition at the surface of the conductor
r̄ = 1. This relation is exhibited in Fig. 2, where C1 is shown as a function of Q̄ for the boundary condition (D)
(solid curves) and the boundary condition (N) (dashed curves). The red, blue, green, purple curves correspond to the
solutions of 0-, 1-, 2- and 3-nodes, respectively. Each curve is truncated at C1 = 1.999. The inset corresponds to the
magnification of the 0-node solutions around the origin. Thus, the behavior of this model is similar to the previous
one, defined by (37). The threshold coupling for which the Coulomb solution becomes unstable is given by Eq. (23).
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FIG. 2. C1 as a function of Q̄ for the scalar field solution (48), in the model with an inverse quartic coupling (45), and for
the boundary condition (D) (solid curves) or the boundary condition (N) (dashed curves). Red, blue, green, and purple curves
correspond to solutions with 0-, 1-, 2- and 3-nodes, respectively. Each curve is truncated at C1 = 1.999. (Inset) Zoom of the
0-node solutions around the origin.

C. Stability of the scalarized charged conductor in the nonlinear models

In order for the scalarized solution to be the end state emerging from the evolution of the (unstable) Coulomb
solution, it must be the preferred state. Let us first assess energetic preference, and then the dynamical one.

The energy of the scalarized solution can be computed as:

E = 4π

∫ ∞
rs

dr r2

[
1

2
φ′2 +

1

2
f(φ)(A′0)2

]
= 2π

∫ ∞
rs

dr
Q2

r2

[
Ci − 1 +

2

f(φ(r))

]
= ECoulomb(Ci − 1) + 4πQ2

∫ ∞
rs

dr
1

r2f(φ(r))
, (52)

where i = 0, 1, to account simultaneously for each of the two models in the previous subsections, and C0 := C̄0/k
2.

To illustrate which one is the energetically preferred state, let us take concrete values for Ci. If we choose C̄0 = 1,
for the inverse quartic polynomial model, then we obtain

E = ECoulomb − 2πQ̄2 rs

a

{
1− 2

√
2

Q̄
tanh

(
Q̄√

2

)(
1− 1

3
tanh2

(
Q̄√

2

))}
. (53)

For the solutions satisfying Q̄/
√

2 > 1.2964, the second term is negative, so that E < ECoulomb. If we choose C1 = 2,
for the inverse cosine model, we obtain

E = ECoulomb − 4πQ̄
rs

a

(
4

1 + e2Q̄
+ Q̄− 2

)
. (54)

If Q̄ > 1.9150, the second term is, again, negative. Thus, this illustrates that, at least in some part of the parameter
space, the scalarized solutions have less energy than the Coulomb solution.

Next, we consider the linear stability of the scalarized solutions to assess if they can be, dynamically, the end state.
For the models (37) and (45) with the nonlinear corrections in the scalar field equations of motion, introducing the
dimensionless quantities (18) the effective potential for the radial perturbations (34) is given by, respectively,

Veff(r̄) = − Q̄
2

r̄4

(
1− 3φ̄0(r̄)2

)
, (55)

Veff(r̄) = − Q̄
2

r̄4
cos
(
2φ̄0(r̄)

)
. (56)
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This informs us that when the amplitude of the background scalar field φ̄0(r) becomes sufficiently large, the effective
potential becomes non-negative in part of the spacetime region, unlike that for the linear model (35), which is
everywhere negative. We can therefore understand the (potential) healing effect of the nonlinear terms, which may
indeed quench the instability.

Next, we investigate if for concrete solutions the above effective potential indeed becomes positive. In Figs. 3 and 4
we show the plots for the effective potential for radial perturbations for the models (37) and (45); φ̄0 and Veff are
shown as functions of r̄ for illustrations of scalarized solutions satisfying the boundary condition (N).
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FIG. 3. φ̄0 (left panel) and Veff (right panel) as functions of r̄ for the model (37) and the boundary condition (N). We set
Q̄ = 3.22738 and C̄0 = 0.995. The inset shows a zoom of Veff , to clearly exhibit the negative region.
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FIG. 4. Same as Fig. 3 but now for the model (45) and the boundary condition (N). We set Q̄ = 3.24484 and C1 = 1.95.

Figs. 3 and 4 confirm that, for both the models, the effective potential becomes positive in the vicinity of the
conductor and hence there is no tachyonic mode trapped in the vicinity of r = rs. This confirms the healing potential
of the nonlinear models, concerning the instability of the scalarized solution. However, the effective potential is still
(mildly) negative at larger radius (see the insets in Figs. 3 and 4).*5 Thus, we must further analyze the perturbation
equation in order to establish the stability of the scalarized solutions.

By the same procedure that was followed for the linear model, introducing the dimensionless quantities (18), we
have obtained the scalar field perturbation equation around the scalarized solution in a Schrödinger-like form:

−Φ′′ω(r̄) + VeffΦω = ω̄2Φω , (57)

where now the prime denotes the derivative with respect to r̄ and Veff is given by Eq. (55) or Eq. (56), and we have
introduced ω̄ := ωrs.

*5 This is unlike what happens for black hole scalarization, see e.g. [49].
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To solve (57) we need to impose appropriate boundary conditions for the perturbations. A first possibility are
standard quasinormal mode-like boundary conditions: we impose outgoing (ingoing) boundary conditions at infinity
(on the conductor’s surface), for the perturbations:

(Φ′ω − iω̄Φω)|r̄=∞ = 0 , outgoing condition, (58)

(Φ′ω + iω̄Φω)|r̄=1 = 0 , ingoing condition. (59)

This generalizes the radiative boundary conditions introduced before for ω = 0, cf. Eq. (24), since Φ := rφ1, cf.
Appendix A, and justifies the terminology “radiative” boundary condition. As two other possibilities, we impose a
Dirichlet (Neumann) boundary condition at the conductor’s surface instead of an ingoing boundary condition, which
is equivalent to the boundary conditions (D), (N) used for obtaining the static solution and the numerical simulations
in Sec. V and hence useful for interpreting the result of the latter,

(Φ′ω − iω̄Φω)|r̄=∞ = 0 , outgoing condition, (60)

Φω|r̄=1 = 0 , Dirichlet condition. (61)

(Φ′ω − iω̄Φω)|r̄=∞ = 0 , outgoing condition, (62)(
Φω
r

)′∣∣∣∣∣
r̄=1

= 0 , Neumann condition. (63)

In order to obtain the parameter space regions of (in)stability, we follow the method already used in Section II B.
Focusing on the static solutions (for the perturbations, ω̄ = 0) and confirming that the solution does not cross the
horizontal axis, we obtain the stability regions in Fig. 5. The instability regions are highlighted as the shaded blue
regions in the different panels. In this analysis we have left the constants C̄0 and C1 as arbitrary (in terms of Q̄), in
order to accommodate an arbitrary boundary condition for the scalarized solution. Then, to identify the (background)
scalarized solutions with the different boundary conditions, in the different plots we added solid, dashed, and dotdashed
lines, corresponding to the scalarized solutions with boundary conditions (D), (N) and (R)*6, respectively. The colours
of these lines define the number of nodes of the solution, being the same as in Figs. 1 and 2 for (D) and (N) boundary
conditions; in particular red and blue colors correspond to 0 and 1 node solutions, respectively.

Fig. 5 (left panels) exhibits the behavior for the inverse quartic polynomial model and ingoing/radiative boundary
conditions (top), (D) boundary conditions (middle), and (N) boundary conditions (bottom) for the perturbations.
Each panel also shows the static scalarized solutions with corresponding boundary conditions (with 0, 1, or 2 nodes)
respectively. The gray dashed line shows the result obtained from Eq. (52) about energetic preference: scalarized
solutions to the right (left) have less (more) energy than the Coulomb solution with the same charge. The following
conclusions can be drawn from these three panels:

i) (Top panel) The (in)stability boundary line crosses C̄0 = 1 at some value of Q̄, below which all scalarized
solutions with C̄0 6 1 are unstable. This may be interpreted from the fact that the effective potential approaches
the Coulomb solution’s one for small charge or coupling and, as we have seen, the Coulomb solution is always
unstable against radiative boundary conditions. On the other hand, the boundary line approaches C̄0 = 1 at
large charge or coupling.

ii) (Middle and bottom panels) There is no unstable region above C̄0 = 1. Since the limit C̄0 → 0 yields the
Coulomb solution, the boundary line of the stability reproduces the previous analysis of the stability of the
Coulomb solution: along the Q̄ axis, instability holds for Q̄ > Q̄D = π (middle) and Q̄ > Q̄N = π/2 (bottom)
(see Eq. (23)).

iii) (All panels) Only the 0-nodes scalarized solutions fit into the stable areas. This fits the generic expectation that
0-node solutions are fundamental states and non-zero node solutions are excited states. Moreover, there is no
implication (either way) between energy preference and dynamical stability.

Fig. 5 (right panels) exhibits the behavior for the inverse cosine model and ingoing/radiative boundary conditions
(top), (D) boundary conditions (middle), and (N) boundary conditions (bottom) for the perturbations. Again, some
observations can be made:

*6 The last ones require the field value that extremizes the effective potential to hold at the conductor; they correspond to the radiative
boundary condition used in the numerical evolution of the next section.
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FIG. 5. (Un)Stable region of the scalarized solution in the two considered nonlinear models: Eq. (40) (left panels) and Eq. (48)
(right panels). The boundary condition for the perturbation, at the conductor, is taken as the ingoing condition (top panels),
Dirichlet condition (middle panels), and Neumann condition (bottom panels). The gray dashed lines (“Energy line”) correspond
to the critical value of Q̄ above which the scalarized solution has less energy than the Coulomb solution. The curved lines
correspond to the static solutions satisfying the boundary conditions (D) (solid curves), or (N) (dashed curves) or (R) [also
enforcing a potential minimum Eqs. (38) and (46) at the surface r̄ = 1] (dotdashed curves). The correspondence between the
line color and the node of the solution is the same as Figs. 1 and 2 for the boundary condition (D) and the boundary condition
(N). For the potential minimum condition, we can write the solution of Eq. (46) as φ̄ = nπ/2, where n is an integer, and red,
blue, green, purple... lines correspond to the solution with n = 1, 2, 3....

i) (Top panel) Stable regions now alternate with unstable regions, due to the oscillating behavior of the effective
potential, Eq. (45). Now, the raditative boundary condition [imposing also that extermizes the effective poten-
tial (45) and thus obey (46) (equivalently, sin(2φ̄0) = 0) at the conductor, a requirement that will become clear
in the next section] leads to 2φ̄0 = nπ, where n is an integer. We can see that odd (even) n solutions lie in
the stable (unstable) region. The energy preference line (the gray dashed line) behaves in a similar manner to
the previous model for small Q̄. However, due to the existence of unstable regions, the line roughly follows the
boundary lines of the stability.

ii) (Middle and bottom panels) There is no unstable region above C1 = 2 and only 0-nodes solutions are stable.
Again, the limit C1 → 0 yields the Coulomb solution; as such along the Q̄ axis instability occurs for Q̄ > Q̄D =
π(Q̄N = π/2) (see Eq. (23)).

To conclude: scalarized solutions with 0-nodes are possible final states of the scalarization instability of the Coulomb
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solution, in some ranges of the parameter space and for the different boundary conditions. The next section will confirm
this expectation, via fully dynamical numerical evolutions.

V. TIME EVOLUTIONS

In the previous sections we have constructed scalarized conducting spheres in Ms models, under specific choices
of the nonminimal coupling function f(φ), namely Eqs. (26), (37), and (45). Then, we have investigated the linear
stability of these solutions. For the nonlinear models (37) and (45), this analysis suggests that there are stable
scalarized solutions in appropriate parameter regions, which could be the end state of the evolution of the unstable
Coulomb conducting sphere, when embedded in the corresponding Ms model. In order to establish if such scalarized
solutions are indeed the final state of the dynamics, in this section we numerically solve the time evolution of the Ms
system. This will also allow us to investigate how the final state is reached.

Performing time evolution implies dropping the stationarity assumption, which has been used in the previous
sections to compute the scalarized solutions. Nonetheless, even dropping this assumption, the only relevant component
of the electromagnetic field remains the radial one, Er = F tr, due to spherical and gauge symmetries. Therefore, the
expression for the electromagnetic field is the same as in the static case and we obtain the scalar field equation from
Eqs. (3) and (4) as follows:

−φ̈(t, r) + φ′′(t, r) +
2

r
φ′(t, r) = −Q

2fφ(φ)

2r4f(φ)2
. (64)

In the following, we shall solve the time evolution of Eq. (64) numerically around the conductor. To do so, let us
define new variables ϕ, π as

ϕ := rφ , π := rφ̇ . (65)

Using these variables, Eq. (64) is brought to a first order system of two equations:

ϕ̇ = π , (66)

π̇ = ϕ′′ +
Q2fφ(ϕ/r)

2r3f(ϕ/r)2
. (67)

The conducting sphere’s radius is rs(> 0); thus, the physical domain within the radial direction is [rs,∞[. The
boundary condition imposed on the scalar field at the conductor must be chosen, as in the previous sections. In the
subsequent analysis, we consider three different kind of boundary conditions during the numerical evolution. The first
boundary condition is

π̇ = π′ +
fφ
f2

Q2

2r3
, (68)

ϕ̇ = π , (69)

on the surface of the conductor. At the end state (π̇ = ϕ̇ = 0), (68)-(69) implies that, at the conductor,

fφ
f2

= 0 . (70)

This boundary condition for the perturbation around the Coulomb solution is compatible with Eq. (24)*7 and hence
it is radiative/outgoing. Moreover, (70) informs us that at the endpoint the scalar field is at an extremum of the
effective potential (11) at the surface of the conductor. This makes direct contact with the stability analysis discussed
in the top panels of Fig. 5. The second boundary condition is a Dirichlet (D) boundary condition:

π̇ = 0 , ϕ̇ = π , (71)

on the surface of the conductor. In this case, the scalar field value is always zero at the conductor. Then, scalarized
solutions with the boundary condition (D) are realized as the end states. This makes direct contact with the stability
analysis discussed in the bottom panels of Fig. 5. The third boundary condition is a Neumann (N) boundary condition:

∂r

(ϕ
r

)
= 0 , (72)

*7 To check this point, let us consider perturbations around the Coulomb solution under the boundary condition given by Eq. (69). The
perturbations can be expressed as a sum of an ingoing mode ϕ+(t+ r) and an outgoing mode ϕ−(t− r). From the boundary condition,
we can show the outgoing mode vanishes on the conductor; thus the boundary condition Eq. (69) corresponds to Eq. (59).
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∂r

(π
r

)
= 0 , (73)

on the surface of the conductor. In this case, the radial derivative of the scalar field φ is always zero at the conductor,
and scalarized solutions with the boundary condition (N) are realized as the end states. In the asymptotic region, we
impose an outgoing boundary condition.

To perform the evolution a c++ time evolution code was written. Time integration is calculated using a 4th order
Runge-Kutta method, and spatial derivatives are evaluated using a 4th order central difference scheme. Ghost zones
(grid areas beyond inner boundary and outer boundary) for each boundary are evaluated using a 2nd order Lagrange
extrapolation. The numerical code has, overall, a 2nd order convergence.

The general behavior of the evolution does not strongly depend on the chosen initial data. Here, we use momentarily
static Gaussian initial data:

ϕ(r, t = 0) = Are−( r−r0
w )

2

, (74)

π(r, t = 0) = 0 , (75)

where A, r0, and w are the amplitude, position, and width of the Gaussian pulse, respectively. In the graph of the

simulation, we use φ̄ =
√

ak2

2 φ for the inverse quartic polynomial model, and φ̄ =
√

a
2φ for the inverse cosine model.

A. Numerical results

We shall now report the results obtained from the numerical simulations. We shall use the scaled charge Q̄, cf.
Eq. (18), in order to compare the results with the scalarized solutions obtained in the previous sections.

1. Inverse quartic polynomial model

Let us first report the evolutions for the inverse quartic polynomial model (37) and for the radiative boundary
conditions (68)-(69). We have observed two qualitatively distinct types of evolution, both leading to a scalarized
solution. For large Q̄ and a small initial perturbation, scalarization proceeds in a direct manner. That, is the
tachyonic instability sets in, the scalar field grows, it briefly oscillates at each radial position but quickly settles
down to the scalarized solution. This is illustrated by the top panels in Fig. 6, for which the initial parameters are
(A,w) = (0.01φmin, 4rs) and the charge is Q̄ is 0.1

√
2. The left panel shows that the scalarization starts in the vicinity

of the sphere and propagates outwards. This is expected, as the strength of the tachyonic instability of the Coulomb
solution decays with r. The right panel shows the radial profile, obtained from the evolution at different time slices,
which can be observed to approach the one of a scalarized solution with C̄0 = 1.559, such that the relaxation time
is longer for larger r, as expected. Moreover, the final value of φ̄ at the conductor is φ̄ = 1 corresponding to an
extremum of the effective potential, as expected from the radiative boundary condition (cf. (38) and (41)). Thus, the
final scalarized solution interpolates (from the conductor to infinity) between two extrema of the effective potential:
φ̄ = 1 and φ̄ = 0.

The bottom panels in Fig. 6 show a qualitatively different behaviour. After the tachyonic instability settles in, the
scalar field initially evolves in the “wrong” direction; in this case it acquires negative values. Then, it oscillates around
φ = 0, loosing energy and decreasing the oscillations amplitude. At some point, the scalar field stops crossing φ = 0,
and starts to oscillate around its final non-trivial value (in this case a positive value), approaching the scalarized

solution. This occurs for a smaller value of the charge, Q̄ = 0.1
√

2, and the scalarization process takes considerably
longer. Hence, in the left bottom panel of Fig. 6, the slope is barely visible (but still present), indicating that, as
before, scalarization proceeds faster in the immediate vicinity of the conductor, then spreading towards larger values
of r. Again, the final value at the conductor is φ̄ = 1.

Next, we consider evolution for the inverse quartic polynomial model (37) and for the boundary condition (D) (71).
We shall also illustrate two qualitatively different types of behaviour. For sufficiently small charge, scalarization does
not occur. This is illustrated by the simulation shown in the top panel of Fig. 7. One observes that the initial Gaussian
perturbation produces some brief oscillations, but it essentially propagate outwards leaving behind an unscalarized
Coulomb conductor. The lack of scalarization for small charges agrees with the analysis in Section II. For values of
Q̄ that can fit the stability window in Fig. 5, we expect such a stable scalarized solution to form. This is illustrated
by the bottom panel of Fig. 7. As in Fig. 6 we can see scalarization to proceed first in the vicinity of the conductor
and then propagating outwards, this time in a direct manner, without oscillations. The endpoint can be identified as
a scalarized solution with C̄0 ' 0.978 (right panel). Observe that in this case the scalarized solution has φ̄ = 0 at the
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FIG. 6. Two illustrations of time evolution in the inverse quartic polynomial model (37) with a radiative boundary condi-

tion (68)-(69). The initial data are a momentarily static Gaussian initial data (75) with w = 4rs and (top panels) A
√

ak2

2
= 0.01,

Q̄ =
√

2 or (bottom panels) A
√

ak2

2
= 0.07, Q̄ = 0.1

√
2. (Left panels) Contour plot of the time evolution for rφ̄/rs. (Right

panels) Radial profiles from snapshots of the time evolution at different times and of the final scalarized solution (blue dashed
line) which has C̄0 ' 1.559 (top right panel) or C̄0 ' 100 (bottom right panel).

conductor, and thus an extremum outside the conducting sphere, unlike the previous case, which is to be expected
for the boundary conditions (D).

Finally, we consider evolutions for the inverse quartic polynomial model (37) and for the boundary condition
(N) (73). The situation is analogous to that of the boundary condition (D) and we shall illustrate the same two
qualitatively different behaviours. For a sufficiently small charge, scalarization does not occur. This is illustrated by
the simulation shown in the top panel of Fig. 8. As in the previous case, the initial Gaussian perturbation produces
some brief oscillations, but then dissipates away. This is in agreement with the analysis in Section II. But for values
of Q̄ that can fit the stability window in Fig. 5, a scalarized solution forms. This is illustrated by the bottom panel of
Fig. 8. As in the (D) case, scalarization proceeds in a rather monotonic fashion, without oscillations. Unlike the (D)
case, however, the scalarized solution has no extremum outside the conducting sphere and has φ̄ = 1 on the conductor,
again, interpolating between the two extrema of the potential at the conductor (φ̄ = 1) and infinity (φ̄ = 0).

2. Inverse cosine model

The evolution for the inverse cosine model (45) shows qualitatively similar features to the ones of the inverse
quartic polynomial model (37) discussed in the previous subsection. These are illustrated for the radiative boundary
conditions (68)-(69) in Fig. 9, for the boundary condition (D) in Fig. 10 and for the boundary condition (N) in Fig. 11.
However, as is shown in Fig. 5, there are many stable scalarized solutions for the inverse cosine model with radiative
boundary condition. This fact suggests that the final state may depend on the initial data. Fig. 9 shows the two
simulations with same Q̄ and different initial data, and the final scalarized solution is different. The simulations with
the boundary conditions (D) and (N) in Figs. 10-11, each considers one case where scalarization occurs (bottom panel)
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FIG. 7. Two illustrations of time evolution in the inverse quartic polynomial model (37) with the boundary condition (D) (71).

The initial data are a momentarily static Gaussian initial data (75) with w = 4rs, r0 = 8rs, and (top panel) A
√

ak2

2
= 0.1,

Q̄ =
√

2 or (bottom panels) A
√

ak2

2
= 0.01, Q̄ = 4

√
2. (Top and bottom left panels) Contour plot of the time evolution for

rφ̄/rs. (Bottom right panel) Radial profiles from snapshots of the time evolution at different times and of the final scalarized
solution (blue dashed line) which has C̄0 ' 0.978. In the simulation of the top panel, the final state is the Coulomb solution.

and one where it does not (top panel).

VI. CONCLUSIONS

In this paper we have investigated spontaneous scalarization of a charged, conducting sphere in Maxwell-scalar (Ms)
models. These models provide a simple, yet sufficiently rich, arena to study the spontaneous scalarization phenomenon,
which has recently received considerable attention in the context of strong gravity. Indeed, as we have explained, Ms
models can parallel features observed in the gravitational context, such as the coupling dependence on the existence
(or not) of stable scalarized solutions. We believe that, in this respect, Ms models are insightful on the behaviour of
the strong gravity models. On the other hand, Ms models for scalarization of a conductor have features absent in
strong gravity, such as the freedom to choose boundary conditions on the conductor, which in the gravitational case
is fixed by requiring regularity at the event horizon. We have explored how the choice of boundary conditions impacts
on the physical properties of the system, showing that such impact can be of considerable relevance. For instance, in
the case of radiative boundary condition, the Coulomb solution is always unstable against scalarization, as shown in
Section II. This is not the case for Dirichlet or Neumann boundary conditions, for which there are regions of stability
and regions of instability.

The simplicity of the Ms model allows also to perform numerical evolution of the scalarization phenomenon which is
more challenging in the strong gravity case, although they have been performed for charged black holes in, e.g., [46, 49].
The simulation herein helps us to understand how scalarization proceeds, when it occurs. We can distinguish two
main behaviours: (i) direct scalarization; the scalar field directly grows to form the scalarized solution, from the
Coulomb solution; (ii) oscillating scalarization; the scalar field oscillates between the two scalarized solutions before
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FIG. 8. Two illustrations of time evolution in the inverse quartic polynomial model (37) with the boundary condition (N) (73).

The initial data are a momentarily static Gaussian initial data (75) with r0 = rs and (top panel) A
√

ak2

2
= 0.1, w = 4rs, Q̄ = 1

or (bottom panels) A
√

ak2

2
= 0.1, w = 4rs, Q̄ = 5. (Top and bottom left panels) Contour plot of the time evolution for rφ̄/rs.

(Bottom right panel) Radial profiles from snapshots of the time evolution at different times and of the final scalarized solution
(blue dashed line) which has C̄0 ' 0.99995. In the simulation of the top panel, the final state is the Coulomb solution.

settling into one of the solutions. If the charge is sufficiently small, on the other hand, the Coulomb solution is stable
against scalarization (except for radiative boundary conditions).

For black hole scalarization in scalar-gravity systems, the boundary conditions in the limit of the event horizon are
determined by regularity, and the derivative of the scalar field in the horizon limit is automatically fixed once the
horizon field value is specified, and thus the flexibility seen in this paper has no parallelism, However, scalar-gravity
systems allow the scalarization of sufficiently compact objects, albeit non-black holes, such as neutron stars. In this
case, there will be a similar freedom in the choice of boundary conditions; for instance, in the case of neutron stars
the derivative of the scalar field at the center of the star also depends on the energy density and pressure at the center
of the star obeying the given equation of state. Therefore, one of the lessons from this work is that neutron star
scalarization may depend on the choice of the boundary condition on the surface of such a compact object.

Adding the mass term 2m2φ2 or self-interaction potential V (φ) in the action (1) may significantly modify our
results. As in the case of spontaneous scalarization of neutron stars [63–65] and black holes [22], adding the mass
term to the action (1) may change the asymptotic behaviour of the scalar field, while it may be possible to stabilize
scalarized solutions even in the linear model by including appropriate self-interactions. The investigation of these
generalized models is, however, beyond the scope of this paper.

Finally, as a direction for further research, the simplicity of the Ms model may allow us to consider spontaneous
scalarization beyond spherical symmetry, analysing, in particular, the role of dissipation played by the electromagnetic
radiation.
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FIG. 9. Two illustrations of time evolution in the inverse cosine model (45) with a radiative boundary condition (68)-(69). The
initial data are a momentarily static Gaussian initial data (75) with r0 = rs, w = 8.0rs, Q̄ = 4
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(top right panel) or C1 ' 69.0 (bottom right panel).
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Appendix A: The radial stability analysis in Ms models

To assess the linear stability of the solutions in Ms models given by Eqs. (29) and (31), we consider small radial
perturbations given by Eq. (32). We then expand the field equations up to first order in ε, and obtain the perturbed
scalar field equation given by

−φ̈1 + φ′′1 +
2

r
φ′1 +

Q2fφφ(φ0)

2r4f(φ0)2
φ1 −

Qfφ(φ0)

r2f(φ0)
(ȧr − a′t) = 0 . (A1)
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FIG. 10. Two illustrations of time evolution in the inverse cosine model (45) with the boundary condition (D) (71). The
initial data are a momentarily static Gaussian initial data (75) with r0 = 8rs and (top panel) A

√
a
2

= 0.1, w = 4rs, Q̄ =
√

2 or

(bottom panels) A
√

a
2

= 0.1, w = 4rs, Q̄ = 4
√

2. (Top and left bottom panels) Contour plot of the time evolution for rφ̄/rs.
(Right bottom panel) Radial profiles from snapshots of the time evolution at different times and of the final scalarized solution
(blue dashed line) which has C1 ' 1.88. In the simulation of the top panel, the final state is the Coulomb solution.

Integrating the t-component of the the perturbed vector field equation provides the relation

ȧr = a′t +
Qfφ(φ0)

r2f(φ0)2
φ1 , (A2)

where we set the integration constant to be zero; using the last relation in the perturbed scalar field equation (A1)
yields

−φ̈1 + φ′′1 +
2

r
φ′1 +

Q2

2r4f(φ0)3

[
f(φ0)fφφ(φ0)− 2fφ(φ0)2

]
φ1 = 0 . (A3)

Introducing Φ := rφ1, one can eliminate the first derivative terms

Φ′′ +
Q2

2r4f(φ0)3

[
f(φ0)fφφ(φ0)− 2fφ(φ0)2

]
Φ = Φ̈ . (A4)

Fourier decomposing the field Φ, Φ =
∫
dωΦωe

−iωt, each mode obeys a time independent Schrödinger-type equation

−Φ′′ω + Veff(r)Φω = ω2Φω , (A5)

where the effective potential Veff(r) is given by Eq. (34).

Appendix B: On the unstable modes

Since the linear stability analysis depends on the chosen boundary conditions, in this appendix we revisit the
standard argument of the analysis for our setup. We start from Eq. (57) with a time independent Schrödinger-type
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FIG. 11. Two illustrations of time evolution in the inverse cosine model (45) with the boundary condition (N) (73). The
initial data are a momentarily static Gaussian initial data (75) with r0 = rs, A

√
a
2

= 0.1, w = 4rs and (top panel) Q̄ =
√

2 or

(bottom panels) Q̄ = 4
√

2. (Top and left bottom panels) Contour plot of the time evolution for rφ̄/rs. (Right bottom panel)
Radial profiles from snapshots of the time evolution at different times and of the final scalarized solution (blue dashed line)
which has C1 ' 1.9996. In the simulation of the top panel, the final state is the Coulomb solution.

form

−Φ′′ω + Veff(r̄)Φω = ω̄2Φω , (B1)

where ‘prime’ here denotes the derivative with respect to r̄. Multiplying Φ∗ω and integrating from the surface of the
conductor to infinity, we have

ω̄2

∫ ∞
1

dr̄ |Φω|2 = −Φ∗ωΦ′ω

∣∣∣
r→∞

+ Φ∗ωΦ′ω

∣∣∣
r̄→1

+

∫ ∞
1

dr̄
[
|Φ′ω|

2
+ Veff(r̄) |Φω|2

]
= −iω̄ |Φω(∞)|2 + Φ∗ωΦ′ω

∣∣∣
r̄→1

+

∫ ∞
1

dr̄
[
|Φ′ω|

2
+ Veff(r̄) |Φω|2

]
, (B2)

where we have imposed the outgoing boundary condition at spatial infinity:

Φ′ω(∞)→ iω̄Φω(∞) . (B3)

On the other hand, as in Eqs. (59) and (61), we consider three different boundary conditions on the conductor:

Φω|r̄→1 = 0 (D) , (B4)

d

dr̄

(
Φω(r̄)

r̄

)∣∣∣∣
r̄→1

= 0 (N) , (B5)

Φ′ω(1)→ −iω̄Φω(1) (R) . (B6)

For the boundary condition (R), Eq. (B2) reduces to

ω̄2

∫ ∞
1

dr̄ |Φω|2 + iω̄
(
|Φω(∞)|2 + |Φω(1)|2

)
=

∫ ∞
1

dr̄
[
|Φ′ω|

2
+ Veff(r̄) |Φω|2

]
. (B7)
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Since the right-hand side is real, the imaginary part of the left-hand side has to vanish, i.e.,

ω̄R

(
2ω̄I

∫ ∞
1

dr̄ |Φω|2 +
(
|Φω(∞)|2 + |Φω(1)|2

))
= 0, (B8)

and we can show that ω̄R vanishes for unstable modes with ω̄I > 0. For the boundary condition (D), a similar analysis
leads to

ω̄R

(
2ω̄I

∫ ∞
1

dr̄ |Φω|2 + |Φω(∞)|2
)

= 0, (B9)

and again ω̄R = 0 for ω̄I > 0. Finally, for the boundary condition (N), Eq. (B2) reduces to

ω̄2

∫ ∞
1

dr̄ |Φω|2 + iω̄ |Φω(∞)|2 = |Φ(1)|2 +

∫ ∞
1

dr̄
[
|Φ′ω|

2
+ Veff(r̄) |Φω|2

]
. (B10)

Since the right-hand side is real, a similar analysis leads to the same condition as (B9), and hence shows that ω̄R = 0
vanishes for ω̄I > 0. Thus, for all the boundary conditions considered, we have shown that the eigenvalues of the
unstable modes are always purely imaginary: ω̄R = 0.
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