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Resumo Na sociedade moderna, praticamente qualquer pessoa consegue capturar
momentos e registar eventos devido à facilidade de acesso a smartphones.
Isso leva à questão, se registamos tanto da nossa vida, como podemos facil-
mente recuperar momentos específicos? A resposta a esta questão abriria a
porta para um grande salto na qualidade da vida humana. As possibilidades
são infinitas, desde problemas triviais como encontrar a foto de um bolo
de aniversário até ser capaz de analisar o progresso de doenças mentais em
pacientes ou mesmo rastrear pessoas com doenças infecciosas.
Com tantos dados a serem criados todos os dias, a resposta a esta pergunta
torna-se mais complexa. Não existe uma abordagem linear para resolver
o problema da localização de momentos num grande conjunto de imagens
e investigações sobre este problema começaram há apenas poucos anos.
O ImageCLEF é uma competição onde investigadores participam e tentam
alcançar novos e melhores resultados na tarefa de recuperação de momentos
a cada ano.
Este problema complexo, em conjunto com o interesse em participar na
tarefa ImageCLEF Lifelog Moment Retrieval, apresentam-se como um bom
desafio para o desenvolvimento desta dissertação.
A solução proposta consiste num sistema capaz de recuperar automatica-
mente imagens de momentos descritos em formato de texto, sem qualquer
tipo de interação de um utilizador, utilizando apenas métodos estado da arte
de processamento de imagem e texto.
O sistema de recuperação desenvolvido alcança este objetivo através da ex-
tração e categorização de informação relevante de texto enquanto calcula
um valor de similaridade com os rótulos extraídos durante a fase de proces-
samento de imagem. Dessa forma, o sistema consegue dizer se as imagens
estão relacionadas ao momento especificado no texto e, portanto, é capaz
de recuperar as imagens de acordo.
Na subtarefa ImageCLEF Life Moment Retrieval 2020, o sistema de recu-
peração automática de imagens proposto alcançou uma pontuação de 0.03
na metodologia de avaliação F1-measure@10. Mesmo que estas pontuações
não sejam competitivas quando comparadas às pontuações de outros sis-
temas de outras equipas, o sistema construído apresenta-se como uma boa
base para trabalhos futuros.





Keywords Computer Vision, Natural Language Processing, ImageCLEF, Lifel-
ogging, Moment Retrieval

Abstract In our modern society almost anyone is able to capture moments and record
events due to the ease accessibility to smartphones. This leads to the ques-
tion, if we record so much of our life how can we easily retrieve specific
moments? The answer to this question would open the door for a big leap
in human life quality. The possibilities are endless, from trivial problems like
finding a photo of a birthday cake to being capable of analyzing the progress
of mental illnesses in patients or even tracking people with infectious dis-
eases.
With so much data being created everyday, the answer to this question be-
comes more complex. There is no stream lined approach to solve the problem
of moment localization in a large dataset of images and investigations into
this problem have only started a few years ago. ImageCLEF is one competi-
tion where researchers participate and try to achieve new and better results
in the task of moment retrieval.
This complex problem, along with the interest in participating in the Im-
ageCLEF Lifelog Moment Retrieval Task posed a good challenge for the
development of this dissertation.

The proposed solution consists in developing a system capable of retriving
images automatically according to specified moments described in a corpus
of text without any sort of user interaction and using only state-of-the-art
image and text processing methods.

The developed retrieval system achieves this objective by extracting and
categorizing relevant information from text while being able to compute a
similarity score with the extracted labels from the image processing stage. In
this way, the system is capable of telling if images are related to the specified
moment in text and therefore able to retrieve the pictures accordingly.

In the ImageCLEF Life Moment Retrieval 2020 subtask the proposed au-
tomatic retrieval system achieved a score of 0.03 in the F1-measure@10
evaluation methodology. Even though this scores are not competitve when
compared to other teams systems scores, the built system presents a good
baseline for future work.
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CHAPTER 1
Introduction

The pervasive creation and consumption of visual media content is ingrained into our
modern world. In the past, the main purpose given to pictures was to save moments of events.
Nowadays people are constantly consuming visual media content. Images have many different
usages, not only we use them for social media but also we use them in engineering, in art, in
science, in medicine, in entertainment and also in advertising [1].

With the rapid development of Internet of things (IOT) this growth in consumption of
visual media content has increased the usage of wearable and smart technologies making the
subject of lifelogging more prevalent in the recent years. Lifelogging is the task of tracking
and recording personal data created trough the activities and behaviour of individuals during
their day-to-day life in the form of images, video, biometric data, location and other data.
The name given to the data created by lifelogging has the name of “lifelog data” and it is rich
in resources for contextual information retrieval [2].

Some examples of the usefulness of lifelogging is using it as a memory extension for people
who suffer from memory impairments such as Alzheimers, to find lost items during the day or
even to understand human behaviour.

The technical problems related to creating, compressing, storing, transmitting, rendering
and protecting image data are mostly solved. However there still exists two difficult problems
to tackle which are the issues associated with image location and the continuous growth of
image data (big data) [1].

“Locating images involves analysing them to determine their content, classifying them into
related groupings, and searching for images. In order to solve these problems, the current tech-
nology relies heavily on the image description” [1], usually called as “image metadata”. This
data can either be added automatically at the capturing time or manually added afterwards.

According to the literature [1]: “In the present time the development in the area of con-
tent–based analysis (indexing and searching of visual media) is increasing, this is where most
of the research in image management is concentrated. Automatic analysis of the content
of images, which in turn would open the door to content–based indexing, classification and
retrieval, is an inherently difficult problem and therefore progress is slow.”

However, if one day a fully automatic image/video retrieval system is implemented it will
vastly improve the life quality of the human kind. A great example that we can apply at
the present time is that it will be possible to backtrack the last few days of humans infected
with COVID-19 through their lifelog data, which in turn would help to identify more possible
infected and warn more people to get tested.
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1.1 Challenges

As it has been described earlier in the chapter, creating an automatic system capable of
fully analysing the content of images is a difficult problem. This difficulty comes from two
main challenges which are image processing and text processing.

Creating an automatic system capable of image retrieval means that the computer has to
be able to understand images and text while at the same time being capable of relating both.

For the image processing challenge, the computer has to be able to extract relevant informa-
tion from images like colors, objects, places, locations, indoors, outdoors, activities happening
in the photo, people, etc. However, in order to do this, many different and complex algorithms
have to be implemented like object detection, activity recognition, scene recognition and oth-
ers. The usage of several algorithms can require extreme computational time and resources
depending on the size of the dataset to be analysed. If one image requires 1 second to be fully
processed by an algorithm, a dataset of 200.000 images of the same resolution would require
approximately 2 days. This processing time might be different depending of the algorithm
used, since it can either extract more or less labels from the images. However, one thing is
certain, the more algorithms that are implemented for label extraction, the more time it will
take to process the image. It is necessary to carefully select which ones to use if there is an
intent in saving computer resources and processing time.

Tackling the text processing challenge requires the usage of Natural Language Processing
algorithms for the extraction of linguistic annotations from the text, and the implementation
of semantic and syntax rules in order to enable the computer to automatically categorize the
extracted words according predefined categories like “activities”, “locations”, “relevant things”,
etc.

Finally, the computer has to be capable of comparing the extracted features from the text
with extracted features from the images, in order to associate images to text.

1.2 Contributions

Since the process of automatic image retrieval is still a complex problem this works aims
at contributing with a baseline system for future investigations with some suggestions on how
to improve it further. Additionally a study of the available technology is conducted that may
help on finding new and better paths for future investigations on automatic image retrieval.

The main contribution of this work was the development of an automatic image retrieval
system with the objective of participating in the ImageCLEF Lifelog challenge, more specifi-
cally in the LMRT subtask (described in Chapter 2). The participation in this challenge was
done using two different systems, one being interactive and the other automatic. The system
built in this work was capable of achieving a 0.031 score while the interactive system achieved
a more competitive result of 0.517 in the F1-measure@10 metric [3].

To achieve the goal of creating an automatic image retrieval system other tasks had to
be fulfilled. Firstly, a study on the state of the art of image and text processing was done
in order to choose the algorithms to be used for label extraction. Subsequently, an algorithm
was built capable of processing a large dataset of images with the aim of extracting relevant
features. Following, another algorithm was programed capable of processing text with the
intention of extracting relevant words and categorize them accordingly. Afterwards, in order
to compare the extracted features from images and text another algorithm was built capable
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of associating images to text. This algorithm recurs to a similarity function that computed
a confidence score for every image. After computing a confidence score for every image, an
algorithm was created capable of computing the F1-measure@X score of the final results in
order to allow the system of self evaluating. Finally, with the aim of facilitating the process a
batch script was created in order to allow the system to run with one click.

As a result of the work developed and participation in the challenge the paper “UA.PT
Bioinformatics at ImageCLEF 2020: Lifelog Moment Retrieval Web based Tool” (Ricardo
Ribeiro & Júlio Silva, 2020) was published.

1.3 Document Structure

This document has a total of 7 chapters and an appendix that are divided accordingly:

• Chapter 1 presents the context and motivation along with the challenges and contribu-
tions of this work.

• Chapter 2 discusses the imageCLEF Lifelog Challenge and the concept of lifelogging.

• Chapter 3 provides a survey on the subject of feature extraction from images while giving
an introduction to some important concepts like computer vision, machine learning, deep
learning, artificial intelligence, neural networks and so on. An overview of the current
state of the art and latest achievements is also exposed.

• Chapter 4 addresses the thematic of extracting data from text. The subjects of natural
language processing and respective applications, word embeddings, useful libraries and
models are examined.

• Chapter 5 provides an overview on how the automatic image retrieval system was built.
Firstly, the image processing stage is explained and the tests that were run are presented.
Secondly, it is described how the system manages to extract information from text while
categorizing the respective data in predefined categories automatically. Finally, it is
made clear how the system is able to compare the extracted visual data and the extracted
textual data in order to retrieve images accordingly.

• Chapter 6 presents the achieved results in the ImageClef LMRT challenge. Examples of
system performance are showcased, distinctions between the submitted runs are made
clear and the difference of the scores achieved between the automatic system and the
interactive system are discussed.

• Chapter 7 describes the conclusions taken from the development of the work and provides
some ideas for future investigations and improvements.

• Appendix A gives an overview of some of the most common neural networks architec-
tures, object detection systems and image classification models.
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CHAPTER 2
ImageCLEF Lifelog Challenge

This chapter aims at describing the ImageCLEF Lifelog challenge. Firstly in Section 2.1
an introduction is given to the challenge and the respective goals. Section 2.2 describes the
tasks available for the year 2020. The concept of lifelogging is explained in Section 2.3. Finally
Section 2.4 clarifies the Lifelog Moment Retrieval Task (LMRT) which is the main focus of
this work, along with an introduction to the dataset, dev topics, test topics, ground truth and
the evaluation methodology of the task.

2.1 The ImageCLEF challenge

The ImageCLEF challenge is a large–scale evaluation campaign that aims at evaluat-
ing cross-language image retrieval systems. It is organized as part of the CLEF Initiative
(Conference and Labs of the Evaluation Forum, formerly known as Cross-Language Evalua-
tion Forum) and launched in 2003. Initially proposed by Mark Sanderson and Paul Clough
from the Department of Information Studies from the University of Sheffield with the goal of
providing support for the evaluation of 1) language-independent methods for the automatic
annotation of images with concepts, 2) multimodal information retrieval methods based on
the combination of visual and textual features, and 3) multilingual image retrieval methods,
so as to compare the effect of retrieval of image annotations and query formulations in several
languages.

Every year an evaluation cycle campaign occurs that consist in workshops where teams
can compete to achieve the best possible results while discussing new techniques and ideas.
In addition to offering the evaluation platform, ImageCLEF also provides several publicly
resources, such as benchmarks to evaluate retrieval systems. These benchmarks have helped
researchers develop new approaches to visual information retrieval and automatic annotation
by enabling the performance of various approaches to be assessed.

Since the launch of ImageCLEF, researchers within academic and commercial research
groups worldwide, including those from Cross–Language Information Retrieval (CLIR), medi-
cal informatics, Content–Based Image Retrieval (CBIR), computer vision and user interaction
have been participating in the challenge.

Currently, ImageCLEF main goal is to support the advancement of the field of visual
media analysis, indexing, classification, and retrieval, by developing the necessary infrastruc-
ture for the evaluation of visual information retrieval systems operating in both monolingual,
cross–language and language-independent contexts [1].
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2.2 The Tasks

The ImageCLEF 2020 edition presents 4 different tasks:

• ImageCLEFlifelog: Addresses the problems of lifelogging data retrieval and summa-
rization. The work done in this thesis aims at participating in this task, therefore this
task can be read in more detail in Section 2.4.

• ImageCLEFcoral: Addresses the problem of automatically segmenting and labeling
a collection of images that can be used in combination to create 3D models for the
monitoring of coral reefs.

• ImageCLEFmedical: The task combines the most popular medical tasks of Image-
CLEF and continues the last year idea of combining various applications, namely: auto-
matic image captioning and scene understanding, medical visual question answering and
decision support on tuberculosis. This allows to explore synergies between the tasks.

• ImageCLEFdrawnUI: The task addresses the problem of automatically recognizing
hand drawn objects representing website UIs, that will be further translated into auto-
matic website code.

2.3 The concept of lifelogging

Lifelogging is defined as a form of pervasive computing consisting of a unified digital record
of the totality of an individual’s experiences, captured multimodally through digital sensors
and stored permanently as a personal multimedia archive. In a simple way, lifelogging is the
process of tracking and recording personal data created through our activities and behaviour.

Personal lifelogs have a great potential in numerous applications, including memory and
moments retrieval, daily living understanding, diet monitoring, or disease diagnosis, as well as
other emerging application areas. For example: in Alzheimer’s disease, people with memory
problems can use a lifelog application to help a specialist follow the progress of the disease,
or to remember certain moments from the last days, weeks or even months.

One of the greatest challenges of lifelog applications is the large amount of lifelog data that
a person can generate. The lifelog datasets, for example the ImageCLEFlifelog dataset, are
rich multimodal datasets which consist in one or more months of data from multiple lifeloggers.
Therefore, an important aspect is the lifelog data organization in the interest of improving the
search and retrieval of information. In order to organize the lifelog data, useful information
has to be extracted from it [4] [3].
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2.4 ImageCLEFlifelog

The ImageCLEFlifelog 2020 task is divided into two different sub-tasks: the Lifelog mo-
ment retrieval (LMRT) and Sport Performance Lifelog (SPLL) sub-task. In this work, as
in the previous year’s challenge, it was only addressed the LMRT sub-task, as a continuous
research work that is intended to be developed with the aim of giving a contribution to real
problems that exist around the world that can benefit from this technology.

The UA.PT Bioinformatics, a team from the Institute of Electronics Engineering and
Telematics in the University of Aveiro, participated in the LMRT subtask with two different
retrieval systems. The first one is an automatic retrieval system which was a continuation of
the work done in the previous year challenge [4] and the main objective of this thesis. The
second system, not developed in this thesis, was a retrieval system capable of providing user
interaction and visualization.

The interactive retrieval system is only interesting for this work in terms of comparing the
achieved results, therefore this document will only give a small description of this system in
Chapter 6 Section 6.3.1. More details are presented in [3].

2.4.1 SubTask: Lifelog Moment Retrieval

In the LMRT subtask, the main objective is to create a system capable of retrieving a
number of predefined moments in a lifelogger’s day-to-day life from a set of images. Moments
can be defined as semantic events or activities that happen at any given time during the
day. For example, given the query “Find the moment(s) when the lifelogger was having an
icecream on the beach” the participants should return the corresponding relevant images that
show the moments of the lifelogger having icecream at the beach. Like last year, particular
attention should be paid to the diversification of the selected moments with respect to the
target scenario.

ImageCLEFlifelog dataset is a rich multimodal dataset which consists of 4.5 months of
data from three lifeloggers, namely: images (1,500-2,500 per day), visual concepts (automat-
ically extracted visual concepts with varying rates of accuracy), semantic content (locations
and activities) based on sensor readings on mobile devices (via the Moves App), biometrics
information (heart rate, galvanic skin response, calories burn, steps, continual blood glucose,
etc.), music listening history and computer usage. Except for the images, all of the data was
provided in a csv file. An excerpt of this file is presented in Figure 2.1 and examples of im-
ages from the dataset are showcased in Figure 2.2. The total dataset was composed of nearly
200.000 images.

Figure 2.1: Excerpt of the csv file provided by the organizers.
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Figure 2.2: Example of images from the imageCLEF dataset.

In this work only the images, the respective semantic content and time were used [3].
This decision is mainly justified by the fact that much of the provided data like the biometric
information, computer usage and music history gives no useful information for the retrieval of
images. The visual concepts provided were also not utilized since the system created in this
work uses its own algorithms in order to extract more accurate labels from the images.

Initially, the dev topics are first released along with the images dataset and the corre-
sponding ground truth. This means that it is possible to initially create a retrieval system
and analyse if it is producing good results, since thanks to the ground truth it is known which
pictures should be retrieved for each textual topic.

After a few weeks the test topics for evaluation are released without the ground truth, the
participants who achieve the best results are the ones who have the highest F1-measure at the
top 10 images score. This is further discussed in Section 2.4.4.
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2.4.2 Dev Topic example

As discussed above the participants should return the corresponding relevant images that
show the moments of the lifelogger during a predefined moment.

Those moments are provided in the format of a pdf file that contains 10 different textual
query topics representing 10 different moments. Topic 1 is illustrated below to serve as an
example of the query topics:

Title : “Having Beers in a Bar”
Description : “Find the moment in 2015 and 2016 when u1 enjoyed beers in the bar.”
Narrative : “To be considered relevant, u1 must be clearly in a bar. Any moments that

u1 drinks beers at home or outside without the bar view are not considered relevant.”

• Example of the ground truth

The ground truth is given as text file with the following format : [topic number, image
name, cluster]. The cluster number is used to calculate the F1-measure score which will be
explained in more detail in Section 2.4.4.

Figure 2.3: Excerpt of the ground truth for the dev topic 1.

• Example of corresponding pictures

The dataset is composed of nearly 200.000 images. Figure 2.4 illustrates lifelog pictures
from the dev topic 1 that correspond to the ground truth given in Figure 2.3:

Figure 2.4: Example of 3 images that belong to the ground truth of the topic 1.
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2.4.3 Test Topic example

As an example of one of test topics used for evaluation in the challenge, test topic 7 is
presented next:

Title : “Seafood at Restaurant.”

Description : “Find moments when u1 was eating seafood in a restaurant in the evening
time.”

Narrative : “The moments show u1 was eating seafood in any restaurant in the evening
time are considered relevant. Any dish has seafood as one of its parts is also considered
relevant. Some examples of the seafood can be shrimp, lobster, salmon.”

Something important to notice is that the dev and test topics share similarities in the text
syntax.

2.4.4 Evaluation Methodology

In order to evaluate performance, the organizers use the F1-measure at X (F1@X) evalu-
ation method. The F1-measure is the harmonic mean of both Cluster Recall at X (CR@X)
metric and the Precision at X (P@X) measure. The Cluster recall is a metric that assesses how
many different clusters from the ground truth are represented among the top X results while
the Precision measures the number of relevant photos among the top X results [5]. Figure 2.5
illustrates these calculations.

Figure 2.5: Illustration of Recall and Precision calculations [6].

However, in the challenge these calculations are done as follows:

Cluster Recall at X (CR@X) = N/Ngt

Precision at X (P@X) = Nr/X

F1@X = 2× (P@X × CR@X)/(P@X + CR@X)

N is the number of image clusters represented in the first X ranked images. Ngt is the
total number of image clusters from the ground truth. Nr is the number of relevant pictures
from the first X ranked results.
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This year edition official rankings are obtained trough the F1-measure@10, which gives
equal importance to diversity (via CR@10) and relevance (via P@10). Another important
aspect of a F1-measure@10 is that only the top 10 pictures for each topic with the highest
confidence score are accountable for performance assessment.

2.4.5 Evaluation Problems

The main problem in the evaluation of the imageCLEF lifelog subtask is that pictures that
could be considered to belong to a given moment are at times not present in the ground truth
and therefore decrease the score in the F1-measure evaluation. In addition to this problem,
some pictures accounted in the ground truth should have not been considered.

Dev topic 4 is presented next to serve as an example.

Title: “Television Recording.”

Description: “Find the moments when u1 was being recorded for a television show.”

Narrative : “To be considered relevant, there must clearly be a television camera in front
of u1. The moments the interviewer/cameramen is interviewing/recording u1 are also
considered relevant. This can take place at home or in another location. All recording
took place in one day and in more than one location.”

Figure 2.6: Sample of pictures that are considered in the ground truth of dev topic 4 but
should not have been.

Figure 2.7: Sample of pictures that were not considered in the ground truth of dev topic 4
but should have been.

It is clear that the pictures shown in Figure 2.6 should not belong in the ground truth of
the dev topic 4 since none of them are representative of an interview going on. The first picture
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shows the user on the phone, the second shows two people talking and the last picture is just
a door. One possible reason for this to ocurr is that pictures are part of a recording event,
pictures before these and after these are related to the moment described, and since these
pictures are close in the time frame, the ground truth consideres them correct.However there
should have been some manual avaluation in order to remove this picture from the ground
truth.

Finally, the images presented in Figure 2.7 should belong to the moment described in the
dev topic 4 since all of them show a camera pointed at the user, however they are not. This
situation is important to have in account since the system can be retrieving images that should
belong to the topic but the evaluation process just considers them wrong for not being in the
ground truth. In short, this can have an impact not only in the dev topics but also in the test
topics evaluation, since the ground truth is incomplete and does not present all the possible
images related to a moment.
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CHAPTER 3
Information Extraction From Images

The task of automatically recognizing and locating objects in images and videos is ex-
tremely important for computers to be able to understand and interact with their surroundings.
Some major applications of this particular task of object detection are pedestrian detection,
surveillance, autonomous driving, text digitalization, face detection and recognition, robotics,
object counting and so on [7].

For this work the purpose of using object detection technologies is to convert images into
text in order to allow the computer to compare an image with a moment described in text.

Feature extraction plays an important role in image classification and object detection
systems which are two core components of computer vision. To put in simple terms, feature
extraction is the first step in converting an image into text [8]. Figure 3.1 shows an example
of feature extraction. However, the computer can be capable of learning that the extracted
features represent a motorcycle (in the case of the example shown below) after classifying the
extracted data. One way of achieving this is done by recurring to deep learning.

Figure 3.1: Feature extraction from an image [9].

This chapter starts with fundamental concepts in Section 3.1. Section 3.2 introduces the
important subjects of machine learning, deep learning and neural networks and computer
vision. Subsequently, in Section 3.3 a few examples of some of datasets used to train neural
networks are presented. Afterwards, Section 3.4 gives a brief introduction of the most common
computer vision libraries. Finally, a state of the art in object detection and image classification
can be read in Section 3.5.

13



3.1 Concepts of Label Extraction

• Features and Feature Space

A feature is considered to be a measurable piece of data in the image which is unique to
a specific object, it can be color, texture or shape. Usually these features are extracted from
the image and used in order to represent an object. Color is the most straightforward visual
feature for indexing and image retrieval, while shape representation is the most difficult. This
is because a 3-D real world object is represented in a 2-D plane in an image, which means
that one dimension of information is completely lost. Texture features are very important in
pattern recognition and is an important cue in region based segmentation of images.

The similarity between images can be determined through features which are represented
as a vector.

To sum things up, feature space is a collection of features related to some properties of
the object, while a feature is an individual measurable characterstic of the object [8].

• Objects

An object is used to identify specific items in an image or a video. It is possible to label
multiple objects in an image. An example of objects in an image of a car might be wheels,
headlights, etc. Usually an object is represented by a group of features in form of a feature
vector that is used to recognize objects and classify them [8].

In object detection, small objects are normally the ones that give worst results and lower
performance when being detected. This happens because the information available to detect
them is more compressed and hard to decode without some prior knowledge or context [7].

• Image Annotation and Classification

Image classification is the process of associating an entire image with just one label. A
simple example of image classification is labeling types of animals, cars or plants [10].

Image annotation, one of the most important tasks in computer vision, is the process
of annotating an image with labels. These labels are predetermined in order to give the
computer vision model information about what is shown in the image, they are a combination
of a bounding box in specific coordinates of the image and a description of the object inside
of it [11].

Feeding this kind of annotated image data to a computer model teaches it to recognize
the visual characteristics of that specific label, this makes the model able to categorize new
unannotated images of the same type of that label. Some of these models are presented in
Appendix A.

• Object Detection, Segmentation and Recognition

Object detection is the name given to the process that combines image classification with
object localization [12]. As previously explained, image classification is the prediction and
assignment of a class label to an image, while object localization is the prediction and drawing
of a bounding box around one or more objects in the image. In other words, object detection
is the task that deals with the detection of objects of a certain class (e.g “flower”, “table”,
“plane”) in images, making it a natural extension of the classification problem.
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The object detection task is considered to be a supervised learning problem, since the
objective is to design an algorithm which can accurately locate and correctly classify as many
instances of the target objects as possible, in a bounding box, while avoiding false detections
in a given set of training images. As an added challenge, many object detection applications
require the problem to be solved in real time, which can be achieved. However, in order for a
detector to be faster, accuracy is usually compromised.

Finally, object segmentation is the task of grouping pixels from the same object into a
single region and object recognition is usually defined as giving the name of the category of
an object that is contained in an image or a bounding box, assuming there is only one object
in the image. For some authors object recognition can also involve detecting all objects in an
image [7].

A survery on classification and regression based algorithms for object detection can be
read in Appendix A.

• Image Description

Image description is the meaning of an image and humans can understand it with relative
ease. However computers only see the digital representation of images, only detecting pixels,
and therefore they are not able to recognize the semantic of the image. This problem makes
the semantic gap the main challenge in computer vision [13]. This gap is defined by the lack
of coincidence between the information extracted from visual data and the interpretation in
a given situation [7].

As an example, Figure 3.2 shows an image of a family having a picnic. Feeding this image
to a computer can output very different results from what a human would say. However, this
is highly depedent of the algortihms used and their respective purpose that was taken into
account during their design.

Figure 3.2: Generic picture of a family having a picnic.

Using google cloud vision API [14] to extract information from the image, the following
data is what the computer outputs:

• Objects: Person - 89%, Person - 86%, Person - 82%, Tableware -59%, Tableware - 55%,
Package goods - 54%, Package goods - 50%.

• Labels: Picnic - 93%, Recreation - 86%, Sharing - 82%, Event - 74%, Summer - 70%,
Child - 61%, Play - 57%, Family - 52%, Lunch - 52%.

However, the human output would be:
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• Sentence: A family having a picnic in the park.

In the given example, the computer is only capable of outputting the objects and labels
detected but is incapable of giving them any sort of meaning like a human can. However,
recurring to recent image caption systems the computer might achieve some degree of similarity
to a human in terms of describing an image.

3.2 Teaching a Computer on How to Learn

Artificial Intelligence (AI) is the artificial simulation of human intelligence by a computer
system in a way that it can perceive its environment, understand its behaviors and take action.
Two important areas of AI are machine learning and deep learning [15].

3.2.1 Machine Learning

Machine learning can be defined as a data analytics technique that allows computers
to learn from experience. There are two types of machine learning techniques, which are
supervised learning and unsupervised learning.

Normally, supervised machine learning is used to train a model to predict future outputs,
this is done by inputting and outputting known data. Supervised learning uses two different
techniques which are classification and regression. Classification techniques are used to classify
input data into categories while regression techniques are used to predict continuous responses.

Unsupervised learning is mostly used to find hidden patterns or intrinsic structures in
input data. The most common unsupervised learning technique is clustering which is used for
data analysis exploration, in order to find hidden patterns or groupings in data [16].

3.2.2 Deep Learning

Deep Learning is a subset of Machine Learning that is inspired by the structure and
function of the human brain. In order to achieve this, deep learning resorts to artificial neural
networks (ANNs).

The idea behind an ANN is that it tries to replicate the working of the human brain in the
processing of data and creation of patterns, which is important for decision making. These
ANNs are capable of learning unsupervised data that can either be unstructured, unlabeled
or both. In short, deep learning is a machine learning technique that teaches computers to
learn by example, like a human would [17]. This is also true for supervised machine learning.

Thanks to the new digital era, there has been an exponential increase in all forms of data
from every region of the planet. This data is defined as “big data” and comes from sources
like social media, search engines, live streaming services and many others. Even though all of
this information is easily accessible, it is unstructured. The problem with unstructured data is
that the human brain cannot comprehend it efficiently enough to extract relevant information.
However, using deep learning, all of this unstructured data can be usable.

A computer model learns how to perform classification tasks directly from data, being it
text, images or sound. Current deep learning models are able to achieve such levels of accuracy
that they can outperform humans in specific and very controlled tasks.

In deep learning, models are trained with large sets of labeled data and neural network
architectures that contain several layers. This is one of the disadvantages of deep learning, in
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order to improve the results of an ANN it requires to be trained with large amounts of labeled
data. Since deep learning deals with such great volumes of information, this introduces another
disadvantage to deep learning, which is the extreme need of higher and higher computing
power.

The term “deep” comes from the usage of an extensive quantity of hidden layers in the
neural network. A normal neural network usually contains 2-3 hidden layers where as a deep
neural network can go up to 150 hidden layers or more.

As explained previously, deep learning models are trained by the usage of large sets of
labeled data and neural network architectures that are capable of automatically extracting
features from the data, without the need for manual feature extraction. This automated
feature extraction makes deep learning models highly accurate and practical for computer
vision tasks such as object classification.

Deep Learning also offers “end-to-end learning”, this means that a network can learn how
to automatically classify raw data. In addition, deep learning algorithms scale with data,
where as machine learning methods bottleneck at a certain level of performance when more
examples and training data are added, which gives deep learning networks a key advantage
since they improve as the size of the data increases [17].

The main purpose of deep learning, for this work, will be to apply it to the images provided
by the imageCLEF challenge.

3.2.3 Neural Networks

A neural network can be considered a computer program that operates identically to how
a human brain would, in the sense that it is able to be taught to do certain tasks like problem-
solving. The appeal of a neural network is the ability to emulate the human brain in pattern
recognition skills.

Neural networks are composed of many small cells called neurons. These neurons are
grouped into several layers that form columns. The connection between columns are formed
also through their neurons. Each neuron of each layer is connected to every neuron of the
next layer. A visual representation of a generic neural network architecture is shown in Figure
3.3. For further readings on neural network architectures Appendix A describes most of the
common architectures.

Figure 3.3: Typical neural network architecture [18].

The connections between layers are called weighted connections and they are adjusted
with a real-valued number attached to them. This number is important, each neuron takes
the output value of the attached neuron (in their layer) and multiplies it by their connection
weight. The bias value is an additional parameter in the neural network which is used to
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adjust the output along with weighted sum of the inputs to the neuron. The sum of the bias
value with the weights is put through an activation function which mathematically transforms
the value and assigns it to the connected neuron in the adjacent layer. This is propagated
through the whole network. See Figure 3.4 for a clear representation of this process.

Figure 3.4: Operations done by a neuron [19].

To put it simply, a neural network can be compared to a filter that goes through all of the
possibilities, so that the computer is able to come up with the correct answer.

Sometimes, an object might be too similar to another object which can make the network
output a wrong answer. The solution to this problem is the usage of a back-propagation
algorithm. This algorithm allows the network to adjust the connections back through the
network, check if all the bias values are correct and all of the connections are weighted properly
[20].

3.2.4 Neural Network Training

The best way to train a neural network from scratch is to design a network architecture
that will learn through the feeding of a large dataset of labeled data. This allows it to learn
the features in order to create a model. The problem with this is that depending on the
learning rate of the network and the amount of data, these networks can take a lot of time to
train (days, maybe weeks).

To solve the problem of time, deep learning applications can recur to the usage of transfer
learning. Transfer learning is a process that involves the fine-tuning of a pre trained model.
This works by using a pre trained model, for example one trained with an existing network
architecture like GoogLeNet, and feed it new data of previously unknown classes to the model.
After some tweaks, the model will be able to categorize only a specific object instead of many
different ones. This not only allows the model to be more precise in categorizing that one
specific object, but it will also save lot of computation time [17].

3.2.5 Learning From Images

Computer vision is a field of artificial intelligence and computer science that focuses on
giving computers a visual understanding of the world [21] [22]. This is done by enabling
computers to process and identify objects in a way similar to humans. This processing is
done at a pixel level. Thanks to the recent innovations in deep learning and neural networks,
computers are able to accurately identify, classify and even react in real time to objects and
their surroundings.
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3.3 Datasets With Common Objects

A common objects dataset is a collection of images and videos that contain every day life
objects that are manually labeled. State-of-the-art object detection models require deep neural
networks. Training datasets are used in order to train these neural networks, as previously
explained.

A few examples of some available datasets are: MS COCO [23], ImageNet [24] , Visu-
alGenome [25], OpenImages [26] and Pascal-VOC [27].

Some of these datasets propose challenges, where teams are able to compete in order to
achieve state-of-the-art results. This subject is discussed in Section 3.5.

3.4 Computer Vision Libraries

• OpenCV

OpenCV is an open source computer vision and machine learning software library originally
developed by Intel in the year 2000 [28].

The library has more than 2500 optimized algorithms, which includes a comprehensive set
of both classic and state-of-the-art computer vision and machine learning algorithms. These
algorithms can be used to detect and recognize faces, identify objects, classify human actions in
videos, track camera movements, track moving objects, extract 3D models of objects, produce
3D point clouds from stereo cameras, stitch images together to produce a high resolution
image of an entire scene, find similar images from an image database, remove red eyes from
images taken using flash, follow eye movements, recognize scenery and establish markers to
overlay it with augmented reality, etc [29].

OpenCV Supports the deep learning frameworks like Tensorflow, Torch/PyTorch, Caffe
and it is the most standardized tooling for computer vision.

• Tensorflow

Tensorflow is currently the most popular open source framework for numerical computation
and large-scale machine learning introduced by google and was originally created for tasks with
heavy numerical computations [30] [31].

The name given to tensorflow comes from the inputs, since it receives inputs as a multi-
dimensional array, also known as tensors. The input (tensor) goes on one end and then it
“flows” throughout a system of operations and comes out on the other end as output.

Tensorboard is a feature of tensorflow that allows the monitoring of what tensorflow is
doing graphical and visually.

• VLFeat

The VLFeat open source library implements popular computer vision algorithms special-
izing in image understanding and local features extraction and matching. Algorithms include
Fisher Vector, VLAD, SIFT, MSER, k-means, hierarchical k-means, agglomerative informa-
tion bottleneck, SLIC superpixels, quick shift superpixels, large scale SVM training, and many
others. It offers interfaces in MATLAB for ease of use, and detailed documentation through-
out. It supports Windows, Mac OS X, and Linux [32].
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• BoofCV

BoofCV is an open source library written from scratch for real-time computer vision. Its
functionality covers a range of subjects, low-level image processing, camera calibration, feature
detection/tracking, structure-from-motion, fiducial detection, and recognition.

This library is organized into several packages: image processing, features, geometric vi-
sion, calibration, recognition,visualize, and IO. Image processing contains commonly used im-
age processing functions which operate directly on pixels. Features contains feature extraction
algorithms for use in higher level operations.

Calibration has routines for determining the camera’s intrinsic and extrinsic parameters.
Recognition is for recognition and tracking complex visual objects. Geometric vision is com-
posed of routines for processing extracted image features using 2D and 3D geometry. Visualize
has routines for rendering and displaying extracted features. IO has input and output routines
for different data structures [33].

• GluonCV

GluonCV is a toolkit that offers pre trained models, performance metrics of the different
available models, consistent interface for when switching between the models, regular re-
training and continuous integration to ensure code correctness, detailed documentation and
well-documented examples. It also supports a range of different applications like : image clas-
sification, object detection, semantic segmentation, instance segmentation, pose estimation,
video action recognition, depth prediction and a few others.

In short, gluonCV provides implementations of state-of-the-art deep learning algorithms
in computer vision. It aims to help engineers, researchers, and students quickly prototype
products, validate new ideas and learn computer vision [34].
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3.5 Recent Innovations and Improvements

Image classification and object detection are both subjects that are constantly innovating
and improving upon previous results, every month new papers are published with new and
more efficient networks.

In Figures 3.5 and 3.6 it is shown not only the current best methods for both image
classification and object detection but also the development of the state of the art throughout
the years.

BO
X 

AP Faster R-CNNFaster R-CNN Faster R-CNN + FPNFaster R-CNN + FPN
Mask R-CNNMask R-CNN RefineDet512+RefineDet512+

D-RFCN + SNIPD-RFCN + SNIPSNIPERSNIPER PANetPANet

Cascade Mask R-CNNCascade Mask R-CNN

Other methods State-of-the-art methods

2016 2017 2018 2019 2020
10

20

30

40

50

60

Figure 3.5: Object Detection COCO test-dev benchmark [35].
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Figure 3.6: Image Classification ImageNet benchmark [36].

Due to the fact that object detection is a subject of great innovation, there is an extreme
amount of papers that try to compete for the best results coming out every few months. So,
in order to do a review of the state of the art, the Tables 3.1 and 3.2 show the benchmarks
for both imageNet and COCO test-dev. These tables were obtained from [2] and are based
on the analysis of [36] and [35] which is a website dedicated to the current state of the art for
object detection and image classification.
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3.5.1 COCO Test-Dev

The COCO benchmark [23] is a dataset that places object recognition in the context
of scene understanding. The evaluation metric used is the average precision (AP). Table 3.1
shows the current best architectures and their respective score for the COCO test-dev dataset.

Table 3.1: COCO Test-Dev Benchmarks.

Method Backbone AP (%)

Liu et al.(2019) [37] ResNeXt-152 53.3
Tan et al. (2019) [38] EfficientNet 51.0

Zhang et al. (2019) [39] ResNeXt-101 50.7
Girshick et al. (2018) [40] ResNeXt-152 50.2

Li et al. (2019) [41] ResNet-101 48.4

Zhang et al. (2019) [39] ResNet-101 46.3

Mahajan et al. (2018) [42] ResNeXt 45.2

Zhao et al. (2019) [43] VGG16 44.2

Cai et al. (2018) [44] ResNet-101 42.8

Wang et al. (2019) [45] ResNet-50 39.8

Lin et al. (2017) [46] ResNet-101 39.1

Shrivastava et al. (2016) [47] Inception-ResNet-v2 36.8

Kim et al. (2018) [48] VGG-16 35.2

Liu et al. [37] achieved the best score in the COCO Test-Dev in 2019. They proposed
better detection performance by creating a more powerful backbone network from previously
existing backbones like ResNet [49] and ResNetXt [50]. They implemented a strategy for
assembling multiple identical backbones (called Assistant Backbones and Lead Backbones)
linked by composite connections between the adjacent backbones in order to form a more
powerful backbone which was given the name of Composite Backbone Network (CBNet).

In typical CNN based detectors, the backbone network (the baseline of a network archi-
tecture) is used for basic feature extraction.

CBNet feeds the output features of the previous backbone as an input feature to the
succeeding backbone through composite connections. At the final stage, the Lead Backbone
outputs features for object detection.

This architecture was able to achieve the best result in the COCO Test-Dev with a 53.3%
AP with single model by integrating a CBNet using triple ResNeXt-152 [50] backbones into
the Cascade Mask R-CNN baseline.

Figure 3.7 presents the architecture for CBNet.
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Figure 3.7: CBNet Architecture for object detection [37].

• ResNeXt

ResNeXt, also known as Aggregated Residual Transform Network was created by facebook
researchers and it is a simple highly modularized network architecture for image classification.

The network is constructed by repeating a building block that aggregates a set of transfor-
mations with the same topology. The simple design results in a homogeneous, multi-branch
architecture that has only a few hyper-parameters to set. This strategy creates a new dimen-
sion, which was given the name of “cardinality” (size of the set of transformations).

This architecture is an improvement over the Inception architectures, being more simple
in design and adding more branches (towers) within modules [50].

Figure 3.8: ResNeXt architecture [51].
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3.5.2 ImageNet

The imageNet Large Scale Visual Recognition challenge [52] is a benchmark for object cat-
egory classification and detection. The evaluation metrics used are top-1 and top-5 accuracy.

Table 3.2: ImageNet Benchmarks.

Method Backbone Top-1 Acc (%)

Xie et al. (2019) [53] EfficientNet 88.4
Kolesnikov et al. (2019) [54] ResNet-152 87.8
Touvron et al. (2019) [55] ResNeXt-101 86.4

Xie et al. (2019) [56] EfficientNet 85.5

Mahajan et al. (2018) [42] ResNeXt 85.4

Tan et al. (2019) [57] EfficientNet 84.4

Touvron et al. (2019) [55] ResNet-50 82.5

Szegedy et al. (2017) [58] Inception-resnet-v2 80.1

Szegedy et al. (2017) [58] Inception-v4 80.0

Simonyan et al. (2014) [59] VGG-16 74.4

Xie et al. [53] stated that current state-of-the-art vision models are still trained with
supervised learning, which implies the necessity of large corpus of labeled images in order to
work properly. The fact that current models are only shown labeled images causes an obvious
limitations in the improvement of accuracy and robustness of current state-of-the-art models,
this can be improved with the usage of large quantities of unlabeled images that are available.

Having this in mind, they decided to use unlabeled images to improve the state-of-the-art
ImageNet accuracy and show that accuracy has an outsized impact on robustness. For this
purpose, they used a much larger corpus of unlabeled images, where a large fraction of images
did not belong to ImageNet training set distribution.

Using a self-training framework the model was trained with 3 main steps which consist in:

1. Training of a teacher model on labeled images.

2. Usage of the teacher to generate pseudo labels on unlabeled images.

3. Train a student model on the combination of labeled images.

The algorithm was iterated a few times by treating the student as a teacher to relabel the
unlabeled data and train a new student.

An important discovery was made during the training of the algorithm. For the method
to work well at scale, the student model should be noised during its training while the teacher
should not be noised during the generation of pseudo labels. This way, the pseudo labels are
as accurate as possible and the noised student is forced to learn harder from the pseudo labels.
To induce noise in the model it was used RandAugment data, dropout and stochastic depth
during the training. Figure 3.9 shows a brief view of how the method works. This is where the
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name of the method “Noisy Student” comes from, since the student is noised to learn beyond
the teacher’s knowledge. With this method they were able to show that it is possible to use
unlabeled images to significantly advance both accuracy and robustness of state-of-the-art
imageNet models.

The presented model uses EfficientNet as a backbone trained on images from imageNet
dataset and was able to obtain the best results in the ImageNet benchmark dataset by achiev-
ing an accuracy of 88.4%.

Figure 3.9: Noisy Student Method [53].

Researchers at Google decided to study the impact of scaling up CNNs (shown in Figure
3.10), in order to achieve better accuracy and efficiency. EfficientNet-B0 was developed based
on a simple idea, scaling each of the dimensions of the network (width, depth and resolution)
with a constant ratio, improves the overall performance [57].

Figure 3.10: Comparison of different scaling methods: (a) is a baseline network example;
(b)-(d) are conventional scaling that only increases one dimension of network width, depth,
or resolution. (e) is the proposed compound scaling method that uniformly scales all three

dimensions with a fixed ratio [57].
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The baseline network architecture, EffecientNet-B0, uses mobile inverted bottleneck con-
volution (MBConv), similar to MobileNetV2 [60] and MnasNet [61]. Figure 3.11 shows the
baseline network architecture EfficientNet-B0.

Figure 3.11: EfficientNet-B0 architecture representation [62].

3.6 Final Remarks

The models and algorithms experimented in this thesis were provided trough a computer
vision python library called imageAI, which allows the ability to easily use state-of-the-art AI
features [63]. This library required the pre-installation of TensorFlow, OpenCV and Keras
libraries. The Keras library [64] is an open-source neural network library written in Python
which is capable of running on top of TensorFlow.

During the development of the automatic retrieval system, several of the described algo-
rithms and models in Appendix A were tested. For image classification the algorithms analysed
were DenseNet, InceptionV3, ResNet and SqueezeNet. For object detection the models used
were YoloV3, TinyYoloV3, RetinaNet and ResNetXt-101. The testing of all of these models
was done in order to find the most suitable model to process the imageCLEF images dataset.
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CHAPTER 4
Information Extraction From Text

As previously discussed, the problem of big data has become more relevant in the re-
cent years. This problem does not apply only to the ever growing amount of multimedia
data created by smartphones but also to the growing presence of information in the form of
news, corporate files, medical records, government documents, court hearing and social media.
There is an ever increasing flood of information in an unstructured form. Natural Language
Processing (NLP) is related to the usage of computation methods to process such data as a
mode of communication used by humans.

“There are lot many processes involved in the pipeline of NLP. At the syntactic level,
statements are segmented into words, punctuation (i.e. tokens) and each token is assigned
with a label in the form of noun, verb, adjective, adverb and so on (Part of Speech Tagging).
At the semantic level, each word is analyzed to get the meaningful representation of the
sentence. Hence, the basic task of NLP is to process the unstructured text and to produce a
representation of its meaning.” [65].

Information Extraction (IE) from text is the process of extracting useful information from
textual sources by implementing techniques of NLP. It can be defined as the act of efficiently
and effectively analyze text and extract valuable and relevant knowledge from it in the form
of structured information. “The goal of IE is to extract salient facts about pre-specified types
of events, entities, or relationships, in order to build more meaningful, rich representations of
their semantic content, which can be used to populate databases that provide more structured
input.” [65].

In this thesis, NLP is implemented to serve the purpose of creating an algorithm capable of
extracting relevant information from a textual source. Furthermore, the algorithm must also be
able to categorize the extracted data according pre-specified categories such as “locations” and
“activities”. Additionally, NLP is also used for the computation of similarity values between
extracted textual data and extracted visual labels from images.

This chapter starts with an introduction to Natural Language Processing in Section 4.1.
Section 4.2 explains the process of representing text in a numerical vector form while describing
the concept of word embeddings. Static and contextualized word embedding models are
introduced in Section 4.3 and 4.4 respectively. An overview on some of the available NLP
libraries is presented in Section 4.5. Finally, Section 4.6 gives the final remarks of this chapter.
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4.1 Natural Language Processing

Natural language processing is a subfield of linguistics, computer science, information
engineering and artificial intelligence, which is devoted to the engineering of computational
models and processes to give the ability of human-like comprehension of texts/languages to
computers [66].

Human language is extremely complex and rarely precise. In order to understand it, not
only it is required to comprehend what words alone mean, but also how linking them together
creates meaning. The nature of the human language makes NLP one of the most difficult
tasks in computer science.

Figure 4.1 shows the classification of NLP, which consists in two major components, Nat-
ural Language Understanding (NLU) and Natural Language Generation (NLG) [66].

Figure 4.1: Classification of NLP [66].

Natural Language Understanding is the process of understanding text. It is related to
the science of Linguistic that studies the meaning of languages, context and various forms of
language.

Natural Language Generation is the process of generating text, sentences and paragraphs
that are meaningful from an internal representation [66].

Using the visual representation of Figure 4.1 the important terminologies of NLP are as
follows [66]:

• Phonology: The part of Linguistics which refers to the systematic arrangement of
sound;

• Morphology: In linguistics, morphology is the study of words, how they are formed,
and their relationship to other words in the same language. The different parts of the
word represent the smallest units of meaning known as Morphemes;

• Lexical: In Lexical the focus is the interpretation of the meaning of individual words;

• Syntax: Syntax refers to the study of the grammatical structure of the sentence;

• Semantic: Semantic processing determines the possible meanings of a sentence by
pivoting on the interactions among word-level meanings in the sentence;
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• Discourse: Discourse focuses on the properties of the text as a whole that convey
meaning by making connections between component sentences;

• Pragmatic: Subfield of linguistics that studies the ways in which the context of a
sentence contributes to the meaning.

The field of NLP can be divided in two broad sub-areas: core areas and application
areas. The core areas address fundamental problems such as language modeling, morphological
processing, parsing and semantic processing [67].

• Language modeling is considered the most important task in NLP and an essential piece
in any application of NLP. It is the process of creating a model capable of predict-
ing words or simple linguistic components given previous words or components. It can
capture syntactic and semantic relationships among words or components in a linear
neighborhood, making it useful for tasks such as machine translation and text summa-
rization.

• Morphological processing is the process of finding segments within single words, including
roots and stems, prefixes and suffixes.

• Parsing examines how different words and phrases relate to each other.

• Semantic processing is the task of understanding the meaning of words and phrases.
This is done recurring to word embedding models, like Word2Vec. This will be further
discussed in this chapter.

The application areas address topics such as extraction of useful information from text
(e.g named entities and relations), translation of text, summarization of written documents,
automatic answering of questions, chat bots, email spam detection and many others [67].

4.2 Numerical Representation of Text

Machine learning algorithms and most of all deep learning architectures are incapable of
processing strings of text, this is because they require numbers (vectors) as an input in order
to perform linear algebra operations [68] which is not possible with words. A human can
easily tell that the word “dog” and the word “cat” are identical, since they both represent an
animal, however a computer would assume that they are completely different things since all
the letters in those words are different.

4.2.1 Word Embeddings

The dominant approach to solve this problem is the usage of word embeddings, which
is a type of word representation that allows words with similar meaning to have a similar
representation by mapping a set of words, or phrases in a vocabulary, to vectors of numerical
values. For example, the word “happy” can be represented as a vector of 4 dimensions [0.24,
0.45, 0.11, 0.49] and “sad” as the following vector [0.88, 0.78, 0.45, 0.91]. The reason for this
vectors to exist is so that a machine learning algorithm can perform linear algebra operations
on numbers (vectors) instead of words [69]. Word embedding methods learn a real-valued
vector representation for a predefined fixed size vocabulary from a corpus of text [70]. A
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vector representation of a word may be a one-hot encoded vector where 1 stands for the
position where the word exists and 0 everywhere else.

As an example, the sentence “Word Embeddings are Word converted into numbers” can
be converted to the following dictionary using the one-hot encoded vector representation
: [“Word”,“Embeddings”,“are”,“Word,“Converted”,“into”,“numbers”]. Using this representation
the word “numbers” in the one-hot encoded vector is [0,0,0,0,0,1] and for the word “converted”
is [0,0,0,1,0,0]. This is considered to be the most simple method to represent words in vector
forms [68]. Figure 4.2 showcases the given example.

Figure 4.2: Example of text representation by one-hot vector.

4.3 Static Word Embedding Models

This section introduces some common static word embedding models to learn word em-
beddings from text.

Static word embedding have the fundamental problem which is that they generate the same
embedding, in different contexts, for the same word and once learned they do not change it.
They map each word type to a single vector, making it harder to deal with the polysemy
problem. This is due to the fact that each word has a single vector, regardless of context [71].
Therefore, these models assume that the meaning of any given word is the same across the
entire text.

As an example, having the following two phrases:

• “I saw her at the library.”

• “Pass me the saw to cut the log in half.”

In this case, the word “saw” has two different meanings. In the first phrase the word “saw”
refers to the verb “see” and for the second phrase it refers to the tool “saw”. However, for
static word embedding models, words only have one single meaning and therefore the word
representation for “saw” would be the same in both cases.

Dynamic word embeddings models represent “saw” differently according to the contexts,
while static embedding can not distinguish the semantic difference between two “saws” and
therefore represent “saw” with the same vector no matter the context [72] [73].
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4.3.1 Word2Vec

One of the most important and most popular models developed in NLP was Word2Vec.
Created by Tomas Mikolov, et al. [71] at Google in 2013, Word2Vec is a two-layer neural
network that processes text by “vectorizing” words with the purpose of grouping vectors of
similar words together in vectorspace. These similarities are detected by creating vectors that
are distributed numerical representations of word features, without human intervention. A
vocabulary is outputted from Word2Vec where each item has a vector attached to it. This
can be fed into a deep-learning network or queried to detect relationships between words,
like similarities. The similarities are measured trough a cosine similarity, having no similarity
is expressed as a cosine similarity of 0 since it is 90 degree angle, while a full similarity is
expressed as cosine similarity of 1 and it is a 0 degree angle, complete overlap. Sweden
is equal to Sweden therefore the cosine similarity is equal to 1, while Norway has a cosine
distance of 0.760124 from Sweden [74].

In a regular one-hot encoded vector all words have the same distance between each other,
even though their meanings are completely different, this creates a loss in information at the
encoding. However, Word2Vec is capable of learning vectors by understanding the context in
which words appear. This results in vectors in which words with similar meanings end up with
a similar numerical representation in the vectorspace. Figure 4.3 illustrates this situation. For
instance, cats and dogs are more similar than fish and sharks. This extra information is useful
for machine learning algorithms [75].

(a) One-hot encoding resulting
vector [75].

(b) Word2Vec encoding
resulting vector [75].

Figure 4.3: One-hot encoding vs Word2Vec encoding.

Furthermore, using a word offset technique, Word2Vec is capable of performing simple al-
gebraic operations to the word vectors. An example is that the vector(“King”) - vector(“Man”)
+ vector(“Woman”) results in a vector that is closest to the vector representation of the word
“Queen” [71].

Word2Vec is composed of two different models, CBOW (Continuous Bag of words) which
predicts a word given the context and Skip-Gram which predicts context given a word [71]
[74] as shown in Figure 4.4.
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Figure 4.4: CBOW and Skip-gram models [71].

• Continuous Bag of Words

CBOW allows to take a big amount of text and train a neural network to predict a word
by inputting the N words at each side. In the given example in Figure 4.4 N = 2. Using the
example given in [76] : “The monkey is eating a banana”, the word “eating” is predicted given
that the previous two words are “The” and “monkey” and the next two are “a” and “banana”.

Using Figure 4.4 again, the inputs of CBOW would be: w(t+2) = “monkey”, w(t+1) =
“is”, w(t-1) = “a”, w(t+2) = “banana” and the output (prediction) would be w(t) = “eating”
[76].

• Skip-gram

Skip-gram is much identical to CBOW but instead of predicting a word given the context,
it predicts the context given a word.

Once again recurring to Figure 4.4, the input of Skip-gram would be: w(t) = “eating” and
the outputs would be : w(t+2) = “monkey”, w(t+1) = “is”, w(t-1) = “a”, w(t+2) = “banana”
[76].

4.3.2 GloVe

GloVe stands for Global Vectors for Word Representation and was a new approach created
by Pennington et all. in 2014 [77] to generate word embeddings with unsupervised learning.
Glove main goals are to create word vectors that capture meaning in the vector space and to
take advantage of global count statistics instead of using only local information.

The problem with Word2Vec is that it only takes local information into account, and does
not consider global context. This means that the semantics learnt for a given word are only
affected by the surrounding words.

GloVe works by aggregating global word-to-word co-occurrence matrix from a of corpus
text. This means that if two words keep appearing together in a corpus of text they either

32



share a linguistic or a semantic similarity. Simply put, similar words will be placed together in
the high-dimensional space. Therefore, GloVe can be seen like an extension to the Word2Vec
model.

4.3.3 FastText

FastText, created by Facebook’s AI Research (FAIR) lab in 2016, is a fast text classifier
based on the skipgram model used for efficient learning of word representations and sentence
classification. Popular models like word2Vec and GloVe are based on continuous word repre-
sentations that create vectors directly from words in a sentence while ignoring the morphology
of words, this is done by assigning a distinct vector to each word, fastText uses a different ap-
proach treating each word as bag of characters n-grams. A vector representation is associated
to each character n-gram and words are represented as the sum of these representations. This
allows fastText to work with rare words not seen in the training data since the word is broken
down into n-grams to get the corresponding embeddings [78].

Using the word “where” as an example and n=3, the representation of this word in a
fastText model is <wh, whe, her, er, re> and the special sequence <where>. The angular
brackets serve as boundary symbols to distinguish the n-gram of a word from the word itself,
this means that if the word “her” was part of the vocabulary it would be represented as
<her>, which allows the preservation of the meaning of shorter words and the understanding
of suffixes and prefixes.

4.4 Contextualized Word Embedding Models

Contextualized words embeddings aim at using different embeddings for different word
contexts to address the issue of polysemous and the context-dependent nature of words [73].
Using the example given in Section 4.3, these models would be able to distinguish the different
meaning of the word “saw” given the two different sentences.

4.4.1 Context2vec

Context2Vec is an unsupervised model capable of learning efficiently generic context em-
bedding of wide sentential contexts, using a bidirectional long short-term memory (LSTM)
recurrent neural network.

A large plain text corpora is utilized in order to learn a neural model capable of embed-
ding entire sentential contexts and target words in the same low-dimensional space, which is
optimized to reflect inter-dependencies between targets and their entire sentential context as
a whole.

In contrast to word2vec that uses context modeling mostly internally and considers the
target word embeddings as their main output, the focus of context2vec is the context repre-
sentation. Context2vec achieves this objective by assigning similar embeddings to sentential
contexts and their associated target words [79].
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Figure 4.5: A 2D illustration of context2vec’s embedded space and similarity metrics.
Triangles and circles denote sentential context embeddings and target word embeddings,

respectively [79].

Figure 4.6: Closest target words to various sentential contexts, illustrating context2vec’s
sensitivity to long range dependencies, and both sides of the target word [79].

4.4.2 ELMo

ELMo (Embeddings from Language Models) is a NLP model with context-aware repre-
sentation, it understands different meanings for the same word since it takes into account the
surrounding words unlike traditional word embedding models such as Word2Vec and GLoVe.
In order to achieve this, ELMo attributes an embedding for each word after looking at the
entire context in which it is used, instead of using fixed embeddings for each word. Therefore,
the same word might have different word vectors under different contexts.

It models both syntax and semantics of word use and how these uses vary across lin-
guistic context. The word vectors are learned through the usage of internal states of a deep
bidirectional LSTM algorithm, trained on a large corpus of text. Bidirectional implies that
the algorithm takes into account the words before and the words after it in both directions.
LSTM (Long Short-Term Memory) is one type of neural network that is able to retain data
in memory for long periods of time, allowing it to learn longer-term dependencies. This lan-
guage model can predict both the next word and the previous word and it is a character
based model allowing the network to use morphological clues to form robust representations
for out-of-vocabulary tokens not presented during training [80].

Figure 4.7 presents an example of the differences between GLOVe that is a non-context
aware model and ELMo biLM (bidirectional Language Model) that is context aware.
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Figure 4.7: Nearest neighbors to “play” using GLoVe and context embeddings from a biLM
[80].

GLoVe only uses the word “play” as source, therefore the obtained neighbors for that word
are spread across several parts of speech however they all focus on the sports-related sense
of the word “play”. ELMo biLM uses the entire sentence as source, this means that it is
able to understand the context of the word. Therefore, in both cases, the biLM is able to
disambiguate both the part of speech and word sense in the source sentence [80].

4.5 Available NLP libraries

There is a wide array of NLP tools and services available. Knowing their features is
important in order to find the most appropriate one for the project at hands. Some might
be better for smaller project and others better for experts working with big data projects.
Furthermore, NLP libraries solve the problem of requiring superior knowledge of mathematics,
machine learning, and linguistics. Using these tools, developers can simplify text processing
so that they can concentrate on building machine learning models.

• SpaCy

SpaCy is a free, open-source library for advanced natural language processing written in
Python and Cython published by Explosion AI. It was designed specifically for production
use and to help in the building of applications that process and “understand” large volumes
of text data. Some use cases for this specific library are to build information extraction or
natural language understanding systems, or to pre-process text for deep learning [81]. Some
of the features that SpaCy offers are:

- Tokenization: The segmentation of text into words, punctuation, etc

- Part-of-Speech Tagging: The assignment of word types to tokens, like verb, noun, etc

- Similarity: The comparison between different words, phrases or text documents and
how similar they are.

- Lemmatization: The assignment of base forms of words.
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• Natural Language ToolKit

Developed by Steven Bird, Edward Loper and Ewan Klein in the Department of Computer
and Information Science at the University of Pennsylvania, NLTK (Natural Language ToolKit)
is a suite of open source program modules, tutorials, problem sets and a leading platform for
building Python programs to work with human language data. NLTK covers symbolic and
statistical natural language processing, and is interfaced to annotated corpora. This library
provides easy-to-use interfaces such as WordNet, along with a suite of text processing libraries
for classification, tokenization, stemming, tagging, parsing, and semantic reasoning [82].

• Stanford Core NLP

Developed at Stanford University, Core NLP is a library written in Java with wrappers
for different languages, including Python. This library is fast and some of its components can
be integrated to NLTK which boosts efficiency. CoreNLP enables users to derive linguistic
annotations for text, including token and sentence boundaries, parts of speech, named entities,
numeric and time values, dependency and constituency parses, coreference, sentiment, quote
attributions, and relations [83].

• Gensim

Gensim (“Generate Similar”) is a Natural Language Processing open-source library for un-
supervised topic modeling (a technique to extract the underlying topics from large volumes
of text) and for natural language processing. This python-cython library specializes in find-
ing the semantic similarity between two documents through vector space modeling and topic
modeling toolkit. It is capable of building document or word vectors, corpora, performing
topic identification, performing document comparison (retrieving semantically similar docu-
ments) and analysing plain-text documents for semantic structure. In terms of producing
word embedding, gensim allows for the usage of Word2Vec and fastText [84].

• TextBlob

TextBlob, also a Python library, offers an API for performing NLP tasks, like part-of-speech
tagging, noun phrase extraction, sentiment analysis, classification, language translation, word
inflection, parsing, n-grams, and WordNet integration [85].

• Flair

Flair allows the usage of state-of-the-art NLP models for entity recognition (NER), part-
of-speech tagging (PoS), sense disambiguation and classification [86].

• Polyglot

This python NLP package supports various multilingual applications and offers the fol-
lowing tasks language detection (196 languages), tokenization (165 languages), named entity
recognition (40 Languages), part of speech tagging (16 languages), sentiment analysis (136
Languages) [87].
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4.6 Final Remarks

In this thesis the NLP library that was chosen for the development of the text processing
phase of the automatic image retrieval system was SpaCy. This decision was based of the
fact that there was some previous knowledge thanks to the work developed last year for the
ImageCLEF challenge [4]. In addition, SpaCy also provides state-of-the-art NLP models,
many useful features, it is easy to use and it offers a simple and well written documentation
which makes it very beginner friendly.
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CHAPTER 5
Proposed Approach

This chapter aims at making clear how the automatic image retrieval system was built
and how it operates.

Initially in Section 5.1 the system workflow architecture is illustrated trough a diagram
and a small description is presented. Section 5.2 describes some of the preliminary experiences
done to image recognition algorithms and object detection models provided by the ImageAI
library. Afterwards, Section 5.3 describes a very raw first attempt at an image retrieval
system using only object detection. The implementation of the scene recognition algorithm
is demonstrated in Section 5.4. Following up, in Section 5.5 it is presented a description of
the differences between both submitted runs in the image processing stage. Subsequently, the
text processing stage is introduced in Section 5.6, in this section there is an explanation on
how the system was able to extract linguistic annotations, what kind of syntax and semantic
rules were implemented in the algorithm and how the categorization and extraction of relevant
words from text was done. Section 5.7 explains how the system is capable of automatically
retrieving images for a given moment described in text, how it is able to compare the similarity
of the mined text words with the visual concept words and all the calculations it does in order
to compute weights and confidence scores. Lastly, Sections 5.8 and 5.9 explain both of the
submitted runs for the automatic image retrieval system.

5.1 System Workflow Architecture Diagram

The diagram presented in Figure 5.1 represents the automatic system architecture which
is a majorly contribution of this thesis.

It is possible to see that the system starts by firstly processing all images from the dataset
provided by the imageCLEF challenge with scene and object recognition algorithms. During
the process the labels are categorized according pre-defined categories.

Subsequently, text is processed using an NLP model that extracts linguistic annotations
from textual sources. With the implementation of syntax and semantic rules alongside with
the provided linguistic annotations, relevant words are extracted and categorized in pre-defined
categories.

Following up, when all of the textual and visual labels are extracted and correctly cate-
gorized the confidence score computation stage starts. This stage has several steps that can
be summarized in two main steps: the computation of weights for each category and the
calculation of similarity scores.

Finally, in the retrieval stage, the system checks for the 50 highest confidence scores for
a given topic and stores it in a csv file. These 50 images are the ones retrieved for a given
moment.
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As an extra step, an evaluation stage was created to analyse system results for the dev
topics with the objective of emulating the evaluation methodology for the challenge.

Figure 5.1: System Architecture.
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5.2 Preliminary Experiences

With the goal of comparing the different image recognition algorithms and object detection
models a few test runs were made. The models and algorithms were provided trough a
computer vision python library called imageAI, which allows the ability to easily use state-
of-the-art AI features. It supports algorithms for image prediction, custom image prediction,
object detection, video detection, video object tracking and image predictions trainings [63].

The test runs consist on feeding each of the models and algorithms with one picture
manually chosen beforehand. Each model produces predictions on what the image represents
or what is the objected detected. The prediction probability ranges in an interval between
[0,100]. This prediction probability represents the certainty of the model or algorithm in the
respective prediction.

Sections 5.2.1 and 5.2.2 provide examples of the performance test runs done to the models
and algorithms.

5.2.1 Image Recognition Preliminary Experiences

The imageAI library allows the usage of 4 image recognition algorithms for image recog-
nition which are DenseNet, inceptionV3, ResNet50, and SquezeeNet that were pre-trained on
the the ImageNet-1000 dataset. This means that they can predict/recognize 1000 different
objects in any image or number of images. The experiences done to evaluate these algorithms
consist in analysing one image and compare the results of the different algorithms with the
goal of finding which one was the best performer and had the most accurate prediction with
the highest prediction probability.

In order to given a few examples of these preliminary experiences, the images in Figure
5.2 were fully analysed with the image recognition algorithms.

(a) (b) (c)

Figure 5.2: Samples of pictures used for image recognition preliminary experiences.

41



• Obtained performance graphs in the image recognition tests

Figures 5.3, 5.4 and 5.5 show three examples of the performance achieved of these algo-
rithms in the processing of the pictures shown in Figure 5.2.The graphs are structured in the
following manner : the X axis represents the predictions, the Y axis represents the percentage
probability certainty for the respective prediction and the color represents the algorithm used.

In the first example a picture of a dog (breed Saluki) is analysed. Figure 5.3 shows that
InceptionV3 is the best performer in the first run, predicting correctly with an efficiency of
96.38% and out performing the other 3 neural networks by a large margin, being that the
second best is the ResNet50 with an efficiency of 42.32%.

For the second example a picture of a car was processed. Figure 5.4 illustrates that
InceptionV3 predicted with a 99.99% that the car was a minivan. The shown car is not a
minivan but its similar to one, so it is possible to assume that the prediction is correct.

The final example a picture of an espresso coffee is analysed. In this example all image
recognition algorithms predicted correctly that the image represents an espresso. However,
SquezeeNet only achieved 63.88% efficiency while InceptionV3 predicted with 100.0% efficiency
as shown in Figure 5.5.

From the 3 examples that were shown, it is clear that the inceptionV3 algorithm achieved
the best results and out performed the other algorithms.

Figure 5.3: Performance achieved of different algorithms in the processing of Figure 5.2 a).

42



Figure 5.4: Performance achieved of different algorithms in the processing of Figure 5.2 b).

Figure 5.5: Performance achieved of different algorithms in the processing of Figure 5.2 c).
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5.2.2 Preliminary Experiences in Object Detection

ImageAI provides 3 different models trained on the COCO dataset for object detection
that are able to identify up to 80 of the most common objects in everyday life. Figure 5.6
illustrates all of the objects that these models are able to detect in an image. The models that
are provided include RetinaNet, YOLOv3 and TinyYOLOv3. [63].

Figure 5.6: Available labels for detection.

This section presents the tests done with object detection models, which are structured in
the following way: on the left is the picture with the respective detections and on the right
is an image with a graph representation of the detections. The color represents the detected
object (label).

The pictures used for the testing of the described models are presented in Figure 5.7.

Figure 5.7: Sample pictures used for testing the object recognition models.

Figures 5.8, 5.9, 5.10 present the performance achieved for the first image. Figures 5.11,
5.12, 5.13 show the results obtained for the second image. Finally, Figures 5.14, 5.15, 5.16
illustrate the performance obtained in the processing of the third picture.

From the different test runs done it is possible to analyse that the TinyYOLOv3 model
under performs severely compared to RetinaNet and YOLOv3. This is expected, as explained
in Appendix A Section A.3.3, the TinyYOLOv3 model is a smaller model of YOLOv3 that
requires less computational resources and is better suited for more constrained environments
with smaller targets.

Comparing RetinaNet to YOLOv3 it is possible to conclude that YOLOv3 is more accurate
than RetinaNet. For example, in the first run, RetinaNet detects knifes and forks in the same
place as shown in Figure 5.8 a), in the third example RetinaNet detects a bus in the place of
a building as illustrated in Figure 5.14 a) while YOLOv3 was capable of correctly detecting a
stop sign that no other model detected, as shown in Figure 5.15.
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• Object Detection Experience Number 1

(a)
(b)

Figure 5.8: Test run 1 with RetinaNet; a) Analysed picture with detections; b) Performance
achieved on detections.

(a)
(b)

Figure 5.9: Test run 1 with YOLOv3; a) Analysed picture with detections; b) Performance
achieved on detections.

(a)
(b)

Figure 5.10: Test run 1 with TinyYOLOv3; a) Analysed picture with detections; b)
Performance achieved on detections.

45



• Object Detection Experience Number 2

(a)

(b)

Figure 5.11: Test run 2 with RetinaNet; a) Analysed picture with detections; b) Performance
achieved detections.

(a)

(b)

Figure 5.12: Test run 2 with YOLOv3 model; a) Analysed picture with detections; b)
Performance achieved on detections.

(a)
(b)

Figure 5.13: Test run 2 with TinyYOLOv3; a) Analysed picture with detections; b)
Performance achieved on detections.
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• Object Detection Experience Number 3

(a) (b)

Figure 5.14: Test run 3 with RetinaNet; a) Analysed picture with detections; b) Performance
achieved detections.

(a)
(b)

Figure 5.15: Test run 3 with YOLOv3 model; a) Analysed picture with detections; b)
Performance achieved on detections.

(a)
(b)

Figure 5.16: Test run 3 with TinyYOLOv3; a) Analysed picture with detections; b)
Performance achieved on detections.
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5.2.3 Object Detection Word Clouds Preliminary Experiences

In order to make the labels extraction more easily visible and still achieve some degree of
performance comparison between the 3 object detection models, word clouds were generated.
In a word cloud, the bigger a word is the more times that label was detected in the pictures.
For this test 6 images were processed with identical setting in order to generate 1 word cloud
for each object detection model with all of the extracted labels.

Figure 5.17 presents the images that were used for word cloud generation:

Figure 5.17: Used images for word cloud generation.

As for the word clouds generated, it is possible to notice that in the YOLOv3 cloud and
the RetinaNet cloud (shown in Figure 5.18 a) and b) respectively) there are many more words
than in the TinyYOLOv3 cloud (shown in Figure 5.18 c)). Again, TinyYOLOv3 is severely
under performing when compared to the other 2 models. Looking at the YOLOv3 model word
cloud its possible to notice some consistency because most of the words have the same size.
In the RetinaNet word cloud there are many words of different sizes, this can occur because
RetinaNet wrongly detects 1 or 2 object like “pizza”, “donut” and “person” in some of the
images. In addition, it is also possible to analyse that much of the extracted labels for all
of the models were the exact same, this happens because all of them were trained using the
same dataset, as previously explained. Using a different model of YOLOv3 trained with other
dataset would probably provide a word cloud with different labels.

These test runs allow for the conclusion that the YOLOv3 model is the better performing
one and therefore it was the one chosen to do object detections for the automatic image
retrieval system. However, it is important to note that due to time constraints this kind of
model selection and analysis only serves as a good proxy in order to have an idea of which
model might be the best.
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(a)
(b) (c)

Figure 5.18: Generated Word Clouds; a) YOLOv3 word cloud; b) RetinaNet word cloud; c)
TinyYOLOv3 word cloud

5.3 Example of a Raw Retrieval System

As a first step in building a fully automatic retrieval system a “raw retrieval system” was
created without any text processing and very raw on the way it worked. Simply put, a user just
needs to write a label, according to one of the words available for detection, and the system
will scan all the images that are inside a directory and return the images that have detections
of that specific user inputted label. The user is also able to input the minimum percentage
probability for the detections, therefore, if the user chooses “cup” and “40%”, objects that are
not “cup” or that are “cup” but below the threshold of 40% wont be retrieved.

Figure 5.19 illustrates the “raw retrieval system” user interface and Figure 5.20 presents
the retrieved images for the given example.

Figure 5.19: System capable of detecting specific user inputted labels in multiple images.
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Figure 5.20: Retrieved images for the label “cup” with “40%” threshold.

5.4 Scene Recognition

In order to detect indoors, outdoors and places a pre-trained model provided by Zhou et
al., 2018 [88] trained on the Places365 standard dataset was used. The following example
shown in Figure 5.21 presents the extractions done to a sample picture.

(a) (b)

Figure 5.21: Example of scene recognition; a) Picture 20161004_213423_000.jpg from the
imageclef dataset; b) Scene recognition model output for that image.

The “io_score” represents the indoor vs outdoor certainty. It ranges from 0 to 1. If its
close to 0 it means the image is probably an indoor scenery and if it is close to 1 it means it
is probably an outdoor scenery. In this example, the image represents an indoor scenery and
the “io_score” is 0, therefore the model predicted correctly that the image is in fact an indoor
scenery.
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Following up, the “categories” is where the model tries to predict what the image repre-
sents in terms of a scene. In this case the model predicts with 34.8% accuracy that it is a
“television_room” which is also correct, since the image represents a division of a house with
a television.

Finally, for the “attributes” is where the model tries to describe the picture. Some of the
attributed labels were “enclosed area”, “man-made”, “indoor lightning” and so on which are all
correct since the image represents a man-made enclosed space structure with indoor-lightning.

5.5 ImageCLEF Submissions

In this year ImageCLEFlifog LMRT subtask, 3 different runs were submitted. The first 2
runs belong to the automatic image retrieval system and the last to the interactive retrieval
system.

Since the interactive system processed the images with detections from a combination of
ResNeXt-101 and Feature Pyramid Network architectures in a basic Faster Region-based Con-
volutional Network (Faster R-CNN) pretrained on the COCO dataset proposed by Mahajan
et al. [42] it was decided to reutilize those labels for the automatic system, since the labels
were already readily available. Therefore, for the first submitted run of the automatic image
retrieval system it was used the ResNeXt-101 labels and for the second run it was used the
YOLOv3 [89] extracted labels.

The usage of two different set of extracted labels from two different object detection models
was mainly done in order to have an understanding if the the difference in labels and the
respective scores would help in achieving better results. Furthermore the images were also fully
processed with the Places scene recognition model. This exhaustive approach of processing so
many images took a lot of computer processing time and resources

Figure 5.22 shows the fully processing of the image shown in Figure 5.21 a) with YOLOv3
and PLACES365:

Figure 5.22: Fully processed image with YOLOv3 and PLACES365.
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Figure 5.23 shows the fully processing of the image shown in Figure 5.21 a) with ResNeXt-
101 and PLACES365:

Figure 5.23: Fully processed image with ResNeXt-101 and PLACES365.

The “activity” and “location” were extracted from the data provided by the organizers in a
csv file. However, this data is not accurate enough, and a good option would be to use activity
recognition algorithms to extract activities from images. However, the implementation of this
processing algorithm was not done since the processing time was already to high with the
current setup. The “local_time” was extracted directly from the picture name. The “box” is
the pixels location of the respective “concept” in the image.
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5.6 Text Word Extraction and Categorization

In the text mining/processing stage, the query topics are analysed using Natural Language
Processing tools to extract relevant words in order to retrieve the desired moment. Those
words are compared with the visual concepts words obtained in the image processing stage.

The SpaCy model [81] is used to analyse the query topics fully, extracting relevant words
from the title, the description and narrative. This model is an english multi-task CNN trained
on OntoNotes, with GloVe vectors trained on Common Crawl and is a general-purpose pre-
trained model to predict named entities, part-of-speech tags and syntactic dependencies. It
can be used out-of-the-box and fine-tuned on more specific data [81]. This model was chosen
since it is specific for the English language and it is medium sized (48 MB) which is a good
balance between loading speed and accuracy. The larger SpaCy model is 756 MB (79 times
larger) which makes it much more slower to load and process. However, the difference in
performance between the two models for the given task is negligibly.

The words extracted are divided into 10 categories being them : “relevant things”, “activ-
ities”, “dates”, “locations”, “inside”, “outside”, “negative relevant things”, “negative activities”,
“negative locations” and “negative dates”. The importance of this extraction and categoriza-
tion is done in order to later compare this extracted textual data with the extracted visual
data from all of the images. To give a clear example, it is crucial to correctly extract the con-
cept “fast food” from Figure 5.24 and categorize it in the “relevant things” textual category in
order to compare with the “concepts” visual category. It is also important to extract the word
“airport” and categorize it in the “locations” category in order to compare with the “location”
visual category. It would not make sense to extract the word “fast food” and categorize it in
the “locations” textual category for later comparing with the “location” visual category.

In order to assign words to each category some linguistic rules were defined, such as
semantic and syntactic rules. Semantic rules build the meaning of the sentence from its words
and how words combine syntactically. Syntax rules refer to the rules that govern the ways in
which words combine to form phrases and sentences.

Figure 5.24: Linguistic annotations generated by the SpaCy library [81] for the narrative of
the topic 6 of the test topics.
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Using Figure 5.24 to illustrate, the extracted words for the the narrative of the test topic
6 are presented next:

• relevant things : “fast food”.

• activities : “ordering”, “ordering fast food”.

• locations : “airport”.

• inside : “True”.

• outside: “False”.

5.6.1 Implemented Syntax Rules

The syntax rules were created from a continuous work from last year [4]. However, this
year many more rules were implemented and more categories for word categorization were
created like the negatives category. This is also one of the majorly contribution of this thesis.
Something very important to note is that the syntax from the dev topics and test topics is
very specific and very similar, therefore some syntax rules that were created probably wouldn’t
work so well for other kinds of documents with different syntaxes.

An excerpt of few of the most simple syntax rules that were applied to the extraction and
categorization of the textual data are presented next:

• If the word is a “VERB” and ends with “ing”, like “ordering” then it probably is an
activity and if the words that follows are “NOUN” then those words probably refer to a
location or an object.

• If the word is and “ADP” (adposition) and its either “in” or “at” then the words that
follow are probably locations and usually means that the moment occurs inside a location
and not outside, the category “inside” is then flagged to “True” and “outside” is flagged
to “False”.

• If the word is a “NUM” (number) then it probably refers to a year.

• If the word is a “VERB”, and the following word is a “poss” (possession modifier) and
if the following word to the last is a “NOUN”, then all of this sentence refers to an
activity and the NOUN to an object. For example “Repairing his car”. “Repairing” and
“Repairing his car” are the activities and “car” is the relevant thing.

• If the sentence has an auxiliary verb, the main verb usually corresponds to an activity
and the words that follow the main verb may be objects or locations.

• If the word is an “ADJ” (adjective) then the following word is probably an object. It
can also be a bi-gram like “ice cream” or in this case “fast food”.

• If the sentence ends with “not considered relevant” the extracted words go to the negative
categories.

• Rules for the extraction of dates, like the day of the week, the month or even years were
also created. However do the syntax of the test topics, since they had no reference to
dates in the text, the dates category was discarded in order to save time. Nevertheless,
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for the dev topics dates were used and produced good results. As an example if in the
topic it was said that the moment happened on a “wednesday” or in year 2014, only
pictures from wednesday or the year 2014 were retrieved.

The main idea in creating these syntax rules was to look at the linguistic annotations that
the SpaCy model provided and see which words were the ones important for extraction. This
was something that was complex to do, but after making the algorithm work for the dev topics,
the test topics did not require much iteration since the syntax was very much identical to the
dev topics. Furthermore, many more syntax rules than the ones that were presented were also
implemented which made the algorithm increasingly complex. However, the word extraction
and categorization is not flawless and sometimes it places things to wrong categories or misses
one or two words for extraction. Nevertheless, in the current state, it can be considered that
it it working well enough.

5.7 Image Retrieval

In the retrieval step the images are recovered according to the desired query topic. As an
example Figure 5.25 represents the test topic number 7.

Figure 5.25: Test topic number 7.

The extracted words of the title, description and narrative are as follows:

• relevant things : “seafood”, “parts”, “shrimp”, “lobster”, “salmon”.
• activities : “eating”, eating seafood.
• locations : restaurant, “evening time”.
• inside : “True”.
• outside: “False”.
• dates: NULL.
• negative relevant thing: NULL.
• negative activities: NULL.
• negative locations: NULL.
• negative dates: NULL.
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An important detail to be noticed is that the extracted words “evening time” are wrongly
categorized on the “locations” textual category. The main reason for this error to occur is
probably a direct consequence of one of the syntax rules that did not work as intended for
this specific case. The sentence is written in the following manner “The moments show u1
was eating seafood in any restaurant in the evening time...” and one of the rules for locations
extraction is, as previously discussed, if the word is an “ADP” (adposition) and its either “in”
or “at” then the words that follow are probably locations. However, in this case, there are two
different “in”, one refers to “restaurant” which is a location and the other to “evening time”
which is not a location. This is an example of the algorithm not working as intended.

5.7.1 Retrieving Images According to the Similarity Between Words

In order to retrieve images according to a defined moment in a textual topic a comparison
is made between the extracted labels from the images and the words extracted from the topics.
This comparison is done trough the calculation of similarity score obtained by an NLP model
provided by the SpaCy library. This similarity score alongside the weight attributed to each
category is critical for the calculation of the confidence score for each image. The images with
the highest confidence scores for a given topic are selected for retrieval.

• Similarity Score Computation

The SpaCy model allows the computer to calculate the similarity between the visual con-
cepts and the extracted data. As an example of similarity between words using the described
model, the word “television” and “seafood” have a similarity of approximately 0.07 (7%) while
“television” and “screen” have a similarity of approximately 0.43 (43%).

The computation of this value is also one of the most important contributions of this thesis.
Using Figures 5.22 and 5.23 to illustrate the different categories, the calculation of the

similarity scores is done trough the comparison of the extracted words and the visual concepts:

1. The visual category “concepts” is compared to the textual category “relevant things” and
“negative relevant things”;

2. The visual category “activity” is compared to the textual category “activities” and “neg-
ative activities”;

3. The visual category “location” is compared to the textual category “locations” and “neg-
ative locations”;

4. Depending if the textual category “inside” = “True” / “False” the visual category
“io_score” value will have different impact on the confidence score.

• Category Weight

The weight for each category is obtained through two different factors, an importance
weight factor and a distributed weight factor. The weight of the category is therefore the sum
of the importance and the distributed weight factor.

Weight = ImportanceFactor +DistributedFactor
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• Importance Weight Factor

The importance weight factor is a value that is assigned to the positive available categories
that are not empty. It is a pre-defined value and is the factor that gives more importance
to one category than others for the contribution of the confidence score computation. This
factor ranges from 0 to 1 and the sum of all of the factors is equal to 1. For example, if the
category of “relevant things” is worth 0.4 and if the category of “activities” is worth 0.2, then
“relevant things” has a weight always two times higher than “activities” for the computation
of the confidence score.

• Distributed Weight Factor

The distributed weight factor is the distribution of the importance weight factor from
an empty category to all other categories that are not empty. To make it clear, if the text
mining algorithm didn’t extract any words to the “activities” category then there is no use
in calculating millions of similarity scores that are comparing the images category “activities”
with the NULL “activities” textual category .

Assuming the following example:

1. (Not Empty category) “Relevant Things” importance weight factor = 0.4 (40%);

2. (Empty category) “Activities” importance weight factor = 0.2 (20%);

3. (Not Empty category) “Inside/Outside” importance weight factor = 0.3 (30%);

4. (Not Empty category) “Location” importance weight factor = 0.1 (10%);

5. Sum of all importance factors = 1.

In this example, the “Relevant Things” category is worth 40% of the sum of all importance
factors while “Activities” is worth 20%, “Inside/Outside” is worth 30% and “Location” is worth
10%. Therefore, if by any means the “Activities” category is empty, the importance weight
factor of this category will be distributed to all other categories in the following way:

1. Distribution : 0.4x + 0.3x + 0.1x = 0.2 (=) x = 0.25;

2. Weight “Relevant Things” = 0.4 + 0.4*0.25 = 0.5 (50%);

3. Weight “Activities” = 0;

4. Weight “Inside/Outside” category = 0.3 + 0.3*0.25 = 0.375 (37.5%);

5. Weight “Location” = 0.1 + 0.1*0.25 = 0.125 (12.5%);

6. Sum of all weights = 1.

This distribution achieves two important things, the sum of all weights is always 1 (100%)
and the ratio between categories is always the same. In the begin “Relevant things” was 40%
and “Location” was 10% which is a ratio of 4 and in the end “Relevant things” is 50% and
“Location” is 12.5% which is still a ratio of 4. This means that in this situation “Relevant
things” has a weight of 50% for the computation of the confidence score.

The negative categories works the same way, but instead of contributing for the confidence
score, it decreases the value.
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• Confidence Score Computation

The confidence score is a value that also ranges from 0 to 1 (0% to 100%) and is the final
value that gives the verdict on how an image relates to a given moment. A score of 20% means
that the image is not related while a higher score of 80% means that an image probably relates
to the moment. This calculation is therefore also one of the most important contributions of
this thesis.

The computation of the confidence score is also influenced by the score of the image
concepts obtained trough the image processing phase. This means that an image with low
prediction score (from the image processing stage) will have a lower confidence score.

Since the images dataset consists in 200.000 images and the test topic dataset consists on
10 topics, approximately 2.000.000 confidence score calculations had to be computed. This
step is extremely exhaustive on computer time and resources, which made it hard to make
adjustments, correct errors and bugs in the code.

In order to have a better visualization of how all of this calculations are done the follow
equations illustrate all the steps needed in order to compute the confidence:

ConceptScore = [Weight1]× [HighestSimilarityScore]× [V isualScore]

LocationScore = [Weight2]× [HighestSimilarityScore]

ActivityScore = [Weight3]× [HighestSimilarityScore]

InsideScore = [Weight4]× (1− [ioscore])

OutsideScore = [Weight5]× ([ioscore])

PositiveScore = ConceptScore+ LocationScore+ActivityScore+ (Inside||Ouside)Score

NegativeConceptScore = [Weight6]× [HighestSimilarityScore]× [V isualScore]

NegativeLocationScore = [Weight7]× [HighestSimilarityScore]

NegativeActivityScore = [Weight8]× [HighestSimilarityScore]

NegativeScore = Negative(ConceptScore+ LocationScore+ActivityScore)

ConfidenceScore = PositiveScore−NegativeScore

• Image Retrieval

Finally, a script runs through all the selected confidence scores for a given query topic and
stores the 50 pictures with the highest confidence score for each topic. The 10 highest pictures
for each topic are the ones who count for the F1@10 score.

• Discarded Categories

Due to the fact that the PLACES365 scene recognition model extracts scenes with very
low scores, rarely above 30%-40% it was decided to discard the category “categories” and
“attributes” from contributing to the confidence score in order to save processing time.
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• General Thresholds

A few general thresholds were defined:

1. Visual concept label score minimum threshold : 0.3;

2. “Relevant Things” category score minimum threshold: 0.15;

3. Confidence score minimum threshold : 0.25.

The thresholds were implemented through some trial and error during the test phases, and
they merely serve the purpose of saving some computational time so that confidence scores of
images with low scores are not fully processed.

5.8 Submitted Run 1

The first run that was submitted for the imageclef LMRT subtask used a combination
of ResNeXt-101 and Feature Pyramid Network architectures in a basic Faster Region-based
Convolutional Network (Faster R-CNN) pretrained on the COCO dataset for the extraction
of visual concepts.

In this run all of the importance weight factors for all categories were the same. This
means that each category counts the same for the computation of the confidence score. No
category is more or less important. When a category is empty, their respective importance
factor is equally apportionated to all other categories but never to the negative categories. If
a negative category is empty, the respective importance factor is apportionated to the other
negative categories. And if a positive category is empty, their factor is apportionated to the
positive categories.

Another aspect of Run 1 is that the negative categories can only impact the confidence
score up to 50% in the image confidence score.

5.9 Submitted Run 2

In the second run, the object detection algorithm used is the YOLOv3 model pretrained in
the COCO dataset. It was decided to define the importance weight factor differently for each
category. It was given a bigger importance to specific categories like “relevant things” and
“io_score”. Categories like ”activities” and ”locations” get a lesser importance weight factor
since they are being compared to the organizers labeled data which is limiting and lesser
accurate. Another difference between Run 1 abd Run 2 is that all of the negative categories
were discarded from contributing to the confidence score. This was done in order to save more
processing time and to see if this had a good or bad impact on final results.
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CHAPTER 6
Results

This chapter aims at presenting and discussing the results achieved in the ImageCLEF
LMRT challenge. Firstly, in Section 6.1 a few examples of some tests that showcase the
fine-tuning of the system are presented. Secondly, in Section 6.2 an example on how the
system performed in a given topic is showcased and some insight is given on the differences in
performance between the submitted runs. Finally, in Section 6.3 the results achieved on the
challenge are presented.

6.1 System Fine-Tuning Using The Dev Topics

The first tests using the system architecture described on the previous chapter were run
on a laptop. The dataset of pictures used was smaller (20.000 images) and not all topics were
fully analysed. This tests took between 8h-10h each and they were done in order to find a good
weight distribution between each category, detect bugs on the code and overall fine-tune the
system before sending the code to the main processing computer (where the fully processing
of the dataset took up to 1-2 days).

Figure 6.1: Examples of some different results with the fine-tuning of the weight distribution.
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The examples in Figure 6.1 show the different achieved performances of the system in
the F1-measure@XX during testing. In some cases the importance weight factor attributed
to specific categories might be higher or lower, in other cases the general thresholds were
changed and in other cases the negative categories were discarded. This tests were conducted
during various days with the objective of using the case where the scores were better for
the processing of the full dataset. However, since only a small sample of the dataset was
processed during testing and fine-tuning, there were no guarantees that having good results
during testing would produce good results when processing the full dataset.

6.2 Final System Performance Example

After computing all confidence scores for every image and every topic, the system generates
an csv file used for evaluation. The file is organized in the following way: [topic id number,
image name, confidence score]. The 50 highest scoring pictures for each topic are stored
in this file, however only the 10 highest pictures for each topic are used for the challenge
evaluation. An excerpt showing the performance of both runs in test topic 9 is presented in
Figure 6.2. This will be further discussed in Section 6.2.1.

(a) Run 1 (b) Run 2

Figure 6.2: Achieved results on topic 9 of the test topics.
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6.2.1 Topic 9 Performance Analysis

In order to critically analyse the retrieved images from both runs it is important to
understand the moment described in topic 9, which is presented next:

Title: “Eating pizza”.
Description: “Find the moments when u1 was eating a pizza while talking to one man”.
Narrative: “To be considered relevant, the u1 must eat or hold a pizza with a man

visible in the background. The moments that u1 was talking to more than one person are
not relevant”.

Analysing the images retrieved by both runs for topic 9 (illustrated in Figure 6.3 and 6.4)
it is clear that run 1 achieved better performance for this specific topic, since 3 of the top 10
images returned belong to the moment described while for run 2 only 2 images from the top
10 belong to the moment.

As shown in Figure 6.3 for run 1 the top 1, 2 and 4 all belong to the moment since all of
these images show the user eating pizza with a man visible in the background. Furthermore,
the top 5 image from run 1 also shows the user with a pizza in the background, however there
is no man in the background. Subsequently, the top 6 image has a poster of a pizza. Image
top 7,8,9 and 10 are not related to the moment at all, however all of the pictures are inside
interiors and illustrate food which is similar to the description of the moment.

For run 2 (represented in Figure 6.4), the top 8 and 9 are images that are related to the
topic, since both of them also show the user eating pizza with a man on the background. All
of the other images are related to food being eaten inside an interior, however they do not
belong to the described moment. Top 1 and top 2 images show an image of a lasagne which
is similar to pizza where the scenario can be considered identical.

Some possible reasons that lead run 1 to achieve better performance than run 2 are pre-
sented next:

• The negative categories on run 1 might have decreased the confidence score on pictures
that don’t belong to the topic.

• The object detection algorithm on run 1 might have provided better detections than the
algorithm used for run 2.

• The category weight distribution on run 2 might have decreased the weight on some
categories that were important for the confidence score calculation in the images that
belong to the topic.

• The difference in the similarity score between the different visual concepts on each run
might also impact the performance of the system.
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(a) Top 1 (b) Top 2 (c) Top 3

(d) Top 4 (e) Top 5 (f) Top 6

(g) Top 7 (h) Top 8 (i) Top 9

(j) Top 10

Figure 6.3: Top 10 retrieved pictures for topic 9 on run 1
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(a) Top 1 (b) Top 2 (c) Top 3

(d) Top 4 (e) Top 5 (f) Top 6

(g) Top 7 (h) Top 8 (i) Top 9

(j) Top 10

Figure 6.4: Top 10 retrieved pictures for topic 9 on run 2
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6.3 Achieved Overall Performance Results

Tables 6.1 and 6.2 provide an overview of the performance results achieved in different runs
for different systems that were obtained in the year 2019 and 2020 for the ImageCLEFlifelog
LMRT subtask.

2019 Results
Team System Type Run Name F1-measure@10

UA.PT Bioinformatics automatic Run 1 0.016
UA.PT Bioinformatics automatic Run 2 0.026
UA.PT Bioinformatics automatic Run 3 0.027
UA.PT Bioinformatics automatic Run 4 0.027
UA.PT Bioinformatics automatic Run 5 0.036
UA.PT Bioinformatics automatic Run 6 0.057

Best Results Achieved by a Team
HCMUS interactive Run 2 0.61

Table 6.1: Results obtained in 2019 from UA.PT Bioinformatics [4] and the best team [90].

2020 Results
Team System Type Run Name F1-measure@10

UA.PT Bioinformatics automatic Run 1 0.031
UA.PT Bioinformatics automatic Run 2 0.031
UA.PT Bioinformatics interactive Run 3 0.517

Best Results Achieved by a Team
HCMUS interactive Run 10 0.81

Table 6.2: Results obtained in 2020 from UA.PT Bioinformatics [3] and the best team [5].

6.3.1 Overall Performance Analysis

Comparing the Table 6.1 that shows the results of the year 2019 and Table 6.2 that shows
the results of this year challenge, it is clear that there was no overall improvement on an
automatic system performance. Furthermore, it is also possible to clearly see the difference in
performance between interactive systems and fully automatic systems. Having user interaction
and visualizations yields much better results than a fully automatic system [3].

The tables shown make a strong argument that for the ImageCLEF LMRT sub-task an
interactive approach is a much better suited method, the user visualization and interaction
with the application allows for much more accurate results since the user can manually choose
the picture that he thinks is correct for the corresponding moment.

Another important aspect to notice is that the results of the automatic approach this year
achieved the same exact F1-measure@10 score, this is highly due to the fact that even when
using different state-of-the-art object detection algorithms, different weights for each category
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and even using negative categories on one run and not on the other, much of the data used for
both runs was provided by the organizers which is a highly faulty and inaccurate. Furthemore,
both models used for object detection were trained in the COCO dataset, and therefore extract
the same kind of labels from images.

The interactive system is built around a web application where the user has interaction
with 3 different stages of the application. These stages are upload, retrieval and visualization.

In the upload, the user uploads the dataset to be processed. During the retrieval stage, the
user inputs the words extracted from the query topic into several categories and a comparison
is done with the inputs and the app database information. This comparison is done in order to
compute a confidence for each image for the assigned topic. Finally, in the visualization stage
the user visualizes the images retrieved in forms of image gallery or data tables and manually
selects the relevant clusters for the query topic. In order to improve the results, the user can
exclude several irrelevant images from the selected clusters. To improve the cluster recall of
the run, the user can change the confidence of a relevant image of each selected timestamp
clusters [3].

This last visualization step is the critical difference between both systems. In the interac-
tive system the the user can exclude images that he thinks that do not belong to the moment
described in the query topic. This makes the automatic system incapable of competing with
the results of the interactive system.

Figure 6.5 shows a screenshot of the application retrieval view and Figure 6.6 illustrates
the different stages presented in the interactive system.

Figure 6.5: Web application retrieval view [3].
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Figure 6.6: General representation of the developed web application. The user interacts with
the three stages of the application: Upload, Retrieval and Visualization [3].
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CHAPTER 7
Conclusions

The objectives defined in the first chapter for this thesis were fully achieved. However, like
last year, the end results are not satisfactory enough.

Given the complexity and difficulty of creating a fully automatic image retrieval system
and considering the limitation in research in this area and the extreme amount of computing
processing time and resources a system of this kind requires, it can be concluded that the
results of this work open the possibility for more exploration into to the development of a
more robust system.

With the current state of the art and computer technology fully automatic retrieval systems
cannot surpass interactive systems in performance. Some very good reasons for this is that
interactive systems offer user visualization, user interaction and user decision. This helps the
system to be tremendously more accurate than a computer, since the user can correct the
computer if the retrieved images are not related to the topic.

However even though the end results have low-score, it was still possible to present results
that prove that the automatic retrieval system built was capable, in some situations, of working
like intended. This was shown in the given example in Chapter 6 where the pictures returned
in the first run did indeed belong to the moment that was described in the test topic. This
concludes that a system like this can work, and can contribute to the improvement of the
quality of life of the human kind, however it still requires a lot of improvement. Furthermore,
like described in Chapter 2, the ground truth of the challenge does not consider all possible
images for a moment, therefore it is possible that the present system might actually perform
better than the challenge results achieved demonstrate.

7.1 System Advantages

• Capable of fully processing a big dataset of images, extracting dates, object labels and
scene labels;

• The system is modular, which means it can be easily added new algorithms to fine-tune
the image processing or more linguistic rules that can achieve better text mining results;

• Capable of text processing and word extraction to specific predefined categories;

• Capable of self-evaluation using the F1-measure@xx if the ground truth is available.

7.2 System Disadvantages

• Requirement of a lot of processing time in order to retrieve images of a big dataset;

• Requirement of good computer specs;
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• Low-score end results;

• Dependence on constants/heuristics.

7.3 Future Work

A few things can be done in order to improve system performance for the 2021 imageCLEF
LMRT sub-task.

Firstly the text processing and word extraction stage can be improved in order to only
extract meaningful words. Sometimes, in the extractions, words that had no meaningful
use and were only clutter were extracted. For example “evening time” was in the category
“locations”. In most cases this wont influence the confidence score by much, but will increase
a lot the processing time. This is because “evening time” will be compared with all of the
images extracted “locations” from the organizers data. Another aspect that needs improving
is the extraction of negative words which is very dependent on how the sentence is worded.

Using more powerful computers and improve system optimization is essential in order to
conduct a more large quantity of tests to fine tune the system. Currently the system is so
slow that the fine-tuning process becomes complex.

Since most of the dataset is comprised of folders of images of one full day, it is theoretically
possible to link a set of images like a video and implement activity video recognition algorithms
in order to extract the activity of the images instead of using the organizers data, which was
in most cases inaccurate. Furthermore, better scene recognition and even color recognition
algorithms will definitely improve the f1-measure@10 scores. Another suggestion is using
algorithms to remove blurred images, which can help the time it takes for the system to
process the dataset by removing low quality images. Some further pre-processing could have
be done to the images dataset in order to dewarp the fisheye lens of the images, improve white
balancing, or enchance constrast and bightness.

In addition, using two or three different object detection algorithms, all pre-trained with
different datasets, will allow for the extraction of different image labels , which might improve
performance, however this will require a lot of processing time in order to extract and then to
compare the image labels with the textual data.

Another future improvement would be to implement the google cloud vision API [14],
which extracts labels that are more related to the words extracted than the algorithms used
in this work. Figure 7.1 shows a few examples of the extracted labels from google cloud vision
API.
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Figure 7.1: Examples of google cloud vision API extracted labels [14].
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APPENDIX A
Neural Networks

This appendix provides an overview of the most common neural networks architectures.
In addition, it also presents a survey on several image classification models, object detection
classification based algorithms and regression based algorithms.

A.1 Types of Neural Networks architectures

A.1.1 Feedforward Neural Network

A Feedforward neural network has the most simple architecture, the data only travels in
one single direction. It goes through the input node and exits at the output node. Since there
is no back-propagation algorithm this neural network is not able to correct itself [20] [91].

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

Figure A.1: Example of a Feedforward Neural Network with one hidden layer (with 5
neurons) [92].

A.1.2 Radial Basis Function Neural Network

This network is composed of two layers. In the first one, features are combined with a
radial basis function in the inner layer. The second layer is the output, where these features
are taken in consideration while computing the same output in the next function.

A radial basis function means that the distance of a point is considered with respect to
the center [20].
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A.1.3 Recurrent Neural Network (RNN)

Recurrent Neural Networks (RNNs) are designed to recognize sequential data character-
istics and use patterns to predict the next likely scenario. In these kind of neural networks
the signals are propagated in both directions as well as within the layers. They work on the
principle of saving the output of a layer and feeding it to the input to help in the prediction
of the outcome of the layer.

RNNs use the back-propagation algorithm which allows to make sure that the output is
correct almost 100% of the time [20].

A.1.4 Convolutional Neural Network (CNN)

CNNs, also known as ConvNets, are a class of deep neural networks that employ the math-
ematically convolutional operation in at least one of its layers and have a deep feed-forward
(not recurrent) architecture [2]. They share similarities with feedforward neural networks,
since neurons also have weights and biases that are able to learn. In this network the input
features are taken like a filter, which allows the network to have memory, since it can remem-
ber the images in parts and compute operations like conversion of the image from RGB or HSI
to grayscale, allowing the detection of edges and images that can be classified into different
categories [20].

The only notable difference between CNNs and traditional ANNs is that CNNs are pri-
marily used in the field of pattern recognition within images. This allows the encoding image-
specific features into the architecture, making the network more suited for image-focused tasks,
while further reducing the parameters required to set up the model [93].

CNN convolves learned features with input data, and uses 2D convolutional layers which
make this architecture one of the best to process 2D data, such as images. They also remove
the necessity of manual feature extraction. There is no need to identify features used to classify
images since CNNs work by extracting them directly from images. This is important because
relevant features are not pretrained, they are learned while the network trains on a dataset
[17]. Figure A.2 illustrates the CNN architecture.

Figure A.2: CNN architecture [2].
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Input Layers
The input layer is the first layer of a CNN and serves the purpose of resizing an image in

order for it to pass onto further layers for feature extraction [2]. It also holds the pixel value
of the images [93].

Convolutional Layers
The convolutional layers extracts low-level features from an image, such as edges, color or

gradient orientation, according to the applied filter or kernel [2].

Activation Functions
The activation function introduces nonlinearity in order for CNNs to learn functionalities.

They serve as decision functions and help in learning complex patterns. Some examples of
activation functions are sigmoid, softmax and ReLU [2].

Pooling Layers
The pooling layers serve the purpose of reducing the parameters required and computation

in the network by controlling the overfitting. This is achieved by reducing the spatial size of
the network [2].

Overfitting happens when a model learns the detail and noise in the training data to an
extent that it negatively impacts the performance of the model on new data [93].

Fully Connected Layers
The final layer in a CNN is usually a fully connect layer used for classification purposes.

They take all features from the previous layer and compute class probabilities or scores. These
features are then translated into a different class [2].

A.2 CNNs architectures For Image Classification

A.2.1 SquezeeNet

SquezeeNet is a deep neural network for computer vision that is more efficient for dis-
tributed training, since it requires less parameters to be transferred. The main goal of
SquezeeNet creation was to obtain a smaller neural network with fewer parameters that could
more easily fit into a computer memory, making it more easily transmitted over a computer
network. This neural network was firstly implemented on top of the caffe deep learning soft-
ware framework and later ported to the chainer deep learning software framework and Apache
MXNET framework.

The basis of SquezeeNet consists in 3 ideas [94]:

• Replacing 3x3 filters with 1x1 filters and reduce the number of input channels. This
improves computation speed and alleviates the computer resources required, since 1x1
filters have 9 times less parameters than 3x3 filters.

• Utilize 1x1 filters as a bottleneck layer to help reducing the computation required for
the following 3x3 filters.

• Keeping a big feature map by down sampling late.
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This neural network is built with fire modules, which are represented in Figure A.3.

Figure A.3: SqueezeNet fire module [94].

The fire module contains both a squeeze layer and an expand layer. SquezeeNet stacks fire
modules and pooling layers (this can be seen in Figure A.4). The squeeze layer and expand
layer maintain the same feature map size, while the pooling layers reduce the depth to a
smaller number, later increasing it. Reducing the depth means the expand layer has fewer
computations to do, boosting the speed.

Squeeze layer architecture: Consists on 1x1 convolutions, it essentially combines all
the channels of the input data into one (and thus reducing the number of input channels
needed in the next layer).

Expand layer architecture: Consists on 1x1 convolutions mixed alongside 3x3 convo-
lutions. The 1x1 convolutions combine the channels of the previous layers in various ways.
The 3x3 convolutions detect structures in the image since 1x1 convolutions can’t.

SquezeeNet architecture: SquezeeNet doesn’t fully connect layers and it consists of
8 fire modules and a single convolution’s layer as input and output. It uses Global Average
Pooling, taking each channel from the previous convolution layer and builds an average over
all values.
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Figure A.4: SqueezeNet architecture. [95]

A.2.2 ResNet

The core idea of ResNet (Residual Neural Network) is introducing skip connections (also
called identity shortcut connection, represented in Figure A.5). The way this works is by
adding the output of an earlier layer to a later layer in order to jump over some layers.

The vanishing of gradients problem makes deep neural networks hard to train, this happens
because as the gradient is propagated back to earlier layers, repeated multiplications may turn
the gradient too small, this results in a rapidly performance degradation. Skipping over layers
helps avoiding the vanishing of gradients problem and improves the accuracy of the neural
network. Having the skip connection allows the training of extremely deep neural networks,
more than 150 layers, successfully and still being able to achieve a compelling performance
[49].

This architecture is represented in Figure A.6.

Figure A.5: Skipping connection example [49].
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Figure A.6: ResNet architecture [51].

A.2.3 InceptionV3

Initially named GoogLeNet, the Inception-v1 architecture was proposed by researchers of
Google company and was the winner of the ILSVRC 2014 competition, making it historically
significant in Convolutional Neural Networks.

This network, trained on the imageNet dataset, introduced inception modules (shown in
Figure A.7) that allowed for a more efficient computation and deeper network.

Figure A.7: Inception module [96].

The Inception architecture (Inception-v1) was improved by the introduction of batch nor-
malization (Inception-v2) [2].

InceptionV3, is 48 layers deep and able to classify images into 1000 different categories.
The improvement over its predecessors is the adding of factorization ideas (Figure A.8 shows
an example of this).

Figure A.8: Mini-network replacing the 5×5 convolutions (Example of factorization) [97].
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This third interaction aims at factorizing convolutions, reducing the number of connec-
tions/parameters required while maintaining network efficiency. As an example, using a layer
of 5x5 filter requires 5x5=25 parameters, this layer can be replaced by two 3x3 layers which
reduce the number of parameters required by 28%, since 2x(3x3) = 18 parameters. Reducing
the number of parameters required reduces the computational resources required and also
prevents overfitting. This enables the network to go deeper [98].

The inceptionv3 architecture can be seen in the figure below.

Figure A.9: InceptionV3 architecture [98].

Even though InceptionV4 [58] is already available it was not used in this work. The
improvements over its predecessor are as follow:

1. Converting Inception modules to Residual Inception blocks.

2. Adding more Inception modules.

3. Adding a new type of Inception module (Inception-A) after the Stem module.
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A.2.4 DenseNet

Densely Connected Convolutional Networks aim at expanding the depth of deep convolu-
tional networks by connecting each layer to every other layer, in a feed forward fashion (which
can be seen in Figure A.10), this reduces the number of parameters required and alleviates the
problem of the vanishing-gradients, while improving feature propagation (ensuring maximum
information and gradient flow) and feature reuse which allows the learning of more compact
and accurate models. This kind of neural network simplifies the connectivity pattern between
layers introduced in other architectures (such as ResNets) [97].

The improved flow of information and gradients makes DenseNets easier to train, since
each layer has direct access to the gradients from the loss function and the original input
signal, leading to an implicit deep supervision.

DenseNets scale naturally to hundreds of layers, while exhibiting no optimization difficul-
ties.

Figure A.10: A 5-layer dense block. Each layer takes all preceding feature-maps as input [97].

A.3 Regression based algorithms for Object Detection

Regression based algorithms (also called single stage detectors) work differently than clas-
sification based algorithms. Instead of selecting multiple interesting parts of an image, they
predict classes and bounding boxes for the entire image in one single run of the algorithm.

These algorithms are extremely fast but are not so accurate as classification based algo-
rithms [46]. RetinaNet, YOLO and SSD are a few examples of object detection algorithms of
this type.

A.3.1 RetinaNet

RetinaNet is a one-stage object detector presented at the 2017 International Conference
on Computer Vision by the Facebook AI Research.

In order to improve performance a loss function was implemented, called Focal Loss,
allowing the network to focus more on difficult samples. With the loss function, alongside a
one-stage network architecture, RetinaNet is able to achieve state-of-the-art performance in
terms of accuracy and running time.

This neural network is essential composed of one backbone network and two subnetworks.
The backbone network is called Feature Pyramid Net [99], built on top of ResNet, and has
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the purpose of computing convolutional feature maps of an image. Both subnetworks serve
different purposes, one is for object classification using the backbone network output and the
other subnetwork is responsible for performing the bounding box regression using the backbone
network output [46].

In Figure A.11 its observable the Feature Pyramid Network (FPN) on top of the convo-
lutional neural network ResNet as a backbone network (a) to generate a rich convolutional
feature pyramid (b). The class subnet (c) is for classifying anchor boxes, and the box subnet
(d) is for regressing from anchor boxes to ground-truth object boxes.

Figure A.11: RetinaNet architecture [46].

A.3.2 YOLOv3

YOLOv3 (You Only Look Once version 3) is a state-of-the-art, real-time object detection
that’s in the third iteration of the original YOLO, it’s extremely fast and accurate (on par
with the accuracy of focal loss from RetinaNet, but 4 times faster). YOLO allows the user to
tradeoff between speed and accuracy simply by changing the size of the model.

Compared to other classification networks that perform predictions multiple times for
various regions in an image, YOLO architecture is more like a fully convolutional neural
network do to the fact that it takes an image as input and passes it only once through the
FCNN. The network divides the image into regions and predicts bounding boxes (weighted
by predicted probabilities) and probabilities to each region, outputting a vector of bounding
boxes and classes predictions.

YOLO works by dividing an image in an SxS grid and assuming B bounding boxes per
grid. Each of the bounding box predicts 4 coordinates, object and class probabilities [7].

Figure A.12: Bounding box prediction: predicted box (blue), prior box (black dotted) [89].
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YOLO image predictions are informed by global context in the image since it can look
at the entire image at the test time. This gives it several advantages over classifier-based
systems. In addition, this algorithm also uses an open source neural network called Darknet-
53 for feature extraction, this neural network is written in C and CUDA and it supports CPU
and GPU computation [89].

The full architecture of YOLOv3 is represented in Figure A.13.

Figure A.13: The network architecture of YOLO base model [100].

A.3.3 TinyYoloV3

TinyYOLOv3 is a smaller model of YOLOv3 that requires less computational resources
since it doesn’t occupy a large amount of memory, making it able to run in a smartphone. This
model has a smaller number of convolutional layers, which improves the detection for small
targets, therefore, it’s a model best suited for constrained environments. In its architecture
this network is composed of 7 convolutional layers and 6 pooling layers and can detect 80
different object categories. For complex scenes TinyYOLO is not accurate enough, however
it is one of the fastest algorithms available [101].

A.3.4 Single Shot MultiBox Detector (SSD)

SSD is a method for detecting objects in images using a single deep neural network. This
Multibox detector discretizes the output space of bounding boxes into a set of default boxes
over different aspect rations and scales per feature map location.

The base network of SSD is a VGG-16 network [59] followed by multibox convolutional
layers. VGG-16 has the purpose of extracting the features for high quality image classification.
The additional convolutional layers have the purpose of detecting objects, they are located at
the end of the base network and decrease in size progressively, which helps with the detection
of objects at multiple scales. The deep layers cover larger receptive fields and are helpful for
larger objection detection, while the initial convolutional layers cover smaller receptive fields
and are used for smaller objects detection [102].

The added auxiliary structure can be summarized in the following key points:

• Multi-scale feature maps for detection. These layers decrease in size progressively
and allow predictions of detections at multiple scales.

• Convolutional predictors for detection. Each added feature layer can produce a
fixed set of detection predictions using a set of convolutional filters.
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• Default boxes and aspect ratios. They associate a set of default bounding boxes
with each feature map cell, for multiple feature maps at the top of the network. The
default boxes tile the feature map in a convolutional manner, so that the position of
each box relative to its corresponding cell is fixed.

The SSD architecture is represented in Figure A.14.

Figure A.14: SSD architecture [102].

The prediction of bounding boxes is done by multiple feature maps of different sizes that
represent multiple scales. During prediction time, the network generates scores for the presence
of each object category in each default box and produces adjustments to the box to better
match the object shape. The network also combines predictions from multiple feature maps
with different resolutions to naturally handle objects of various sizes.

SSD is simple relative to methods that require object proposals because it completely
eliminates proposal generation and subsequent pixel or feature resampling stages and encap-
sulates all computation in a single network. This makes SSD easy to train. The core of SSD
is predicting category scores and box offsets for a fixed set of default bounding boxes using
small convolutional filters applied to feature maps. To achieve high detection accuracy, SSD
produces predictions of different scales from feature maps of different scales, and explicitly
separate predictions by aspect ratio. These design features lead to simple end-to-end training
and high accuracy, even on low resolution input images, further improving the speed vs accu-
racy trade-off. This approach is based on a feed-forward convolutional network that produces
a fixed-size collection of bounding boxes and scores for the presence of object class instances
in those boxes, followed by a non-maximum suppression step to produce the final detections
[102].

A.4 Classification Based Algorithms For Object Detection

Classification based algorithms work in two stages. Firstly, they select interesting regions
from the image and secondly, they classify those regions using convolutional neural networks.
The problem with this approach is that it can be extremely slow since a prediction is run for
every selected region, however this approach is extremely accurate [46].

RCNN, Fast-RCNN and Faster-RCNN are some types of classification based algorithms.
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A.4.1 R-CNN Models Summary

In the picture below a compact summary of all of the R-CNN models is illustrated.

Figure A.15: R-CNN model family summary [103].

• R-CNN

The principal idea behind Region-based Convolutional Networks (R-CNN) can be split into
two steps. In the first step the network identifies a number of regions of interest (bounding-box
object region candidate) using a selective search method [103], which is a common algorithm
to provide region proposals that can potentially contain objects [104].

In the second step it extracts CNN features from each region independently for the clas-
sification.

Figure A.16: R-CNN architecture [103].

• Fast R-CNN

The idea behind Fast-RCNN [105] is, as the name implies, to make R-CNN faster. In order
to achieve this, the training procedure was improved by unifying three independent models
into one jointly trained framework and increasing shared computation results.

In this new improved network, the CNN feature vectors are not extracted independently
for each region proposal, instead this model aggregates them into one CNN forward pass over
the entire image and the region proposals share the feature matrix. This feature matrix is
then branched to be used for learning the object classifier and the bounding-box regression.
In short, computation sharing improves the speed of R-CNN [103].
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Figure A.17: Fast R-CNN architecture [103].

• Faster R-CNN

The Faster R-CNN [106] improves upon the previous considered solutions since it integrates
the region proposal algorithm directly into the CNN model. It can be seen as a single, unified
model composed of a region proposal network and fast R-CNN with shared convolutional
feature layers [103].

Figure A.18: Faster R-CNN architecture [103].

• Mask R-CNN

The final model of the R-CNN family, Mask R-CNN [107], extends faster R-CNN to pixel-
level image segmentation by decoupling the classification and the pixel-level mask prediction
tasks. It adds a third branch for predicting an object mask in parallel with existing branches for
classification and localization, based of the Faster R-CNN framework.This new mask branch
predicts a segmentation mask in a pixel-to-pixel manner.

Mask R-CNN improves the region of interest pooling layer because pixel-level segmentation
requires much more fine-grained alignment than bounding boxes. This allows the region of
interest to more precisely map regions of the original image [103].

Figure A.19: Mask R-CNN is a Faster R-CNN model with image segmentation [103].

84



Bibliography

[1] Jin Zhang. The Information Retrieval Series. 2008, p. 300. isbn: 9783540751472.

[2] Ricardo Ferreira Ribeiro and Ieeta Deti. “Object Recognition with Convolutional Neu-
ral Networks”. In: ().

[3] Ricardo Ribeiro and Alina Trifan. “UA . PT Bioinformatics at ImageCLEF 2020 :
Lifelog Moment Retrieval Web based Tool”. In: (2020), pp. 22–25.

[4] Ricardo Ribeiro, António J.R. Neves, and José Luis Oliveira. “UA.Pt bioinformatics
at ImageClef 2019: Lifelog moment retrieval based on image annotation and natural
language processing”. In: CEUR Workshop Proceedings 2380 (2019), pp. 9–12. issn:
16130073.

[5] Van-tu Ninh et al. “Overview of ImageCLEF Lifelog 2020 : Lifelog Moment Retrieval
and Sport Performance Lifelog”. In: (2020), pp. 22–25.

[6] Wikipedia. F1 score. 2020. url: https://www.wikiwand.com/en/F1_score%20https:
//en.wikipedia.org/wiki/F1_score (visited on 09/19/2020).

[7] Shivang Agarwal and Jean Ogier. “Recent Advances in Object Detection in the Age of
Deep Convolutional Neural Networks”. In: (2019). arXiv: arXiv:1809.03193v2.

[8] Aastha Tiwari, Anil Kumar Goswami, and Mansi Saraswat. “Feature Extraction for
Object Recognition and Image Classification”. In: International Journal of Engineering
Research & Technology (IJERT) 2.10 (2013), pp. 1238–1246.

[9] The Computer Vision Pipeline, Part 4: feature extraction | Manning. url: https:
//freecontent.manning.com/the-computer-vision-pipeline-part-4-feature-
extraction/ (visited on 02/18/2020).

[10] Xin Feng et al. “Computer vision algorithms and hardware implementations: A survey”.
In: Integration 69.August (2019), pp. 309–320. issn: 01679260.

[11] Limarc Ambalina. What is Image Annotation? – An Intro to 5 Image Annotation
Services - By Limarc Ambalina. url: https://hackernoon.com/what-is-image-
annotation-an-intro-to-5-image-annotation-services-yt6n3xfj (visited on
01/22/2020).

[12] Jason Brownlee. A Gentle Introduction to Object Recognition With Deep Learning.
url: https://machinelearningmastery.com/object- recognition- with- deep-
learning/ (visited on 01/22/2020).

85

https://www.wikiwand.com/en/F1_score%20https://en.wikipedia.org/wiki/F1_score
https://www.wikiwand.com/en/F1_score%20https://en.wikipedia.org/wiki/F1_score
https://arxiv.org/abs/arXiv:1809.03193v2
https://freecontent.manning.com/the-computer-vision-pipeline-part-4-feature-extraction/
https://freecontent.manning.com/the-computer-vision-pipeline-part-4-feature-extraction/
https://freecontent.manning.com/the-computer-vision-pipeline-part-4-feature-extraction/
https://hackernoon.com/what-is-image-annotation-an-intro-to-5-image-annotation-services-yt6n3xfj
https://hackernoon.com/what-is-image-annotation-an-intro-to-5-image-annotation-services-yt6n3xfj
https://machinelearningmastery.com/object-recognition-with-deep-learning/
https://machinelearningmastery.com/object-recognition-with-deep-learning/


[13] Thomas S. Huang. “Can the world-wide web bridge the semantic gap?” In: Image and
Vision Computing 30.8 (2012), pp. 463–464. issn: 02628856.

[14] Cloud Vision API | Cloud Vision API | Google Cloud. url: https://cloud.google.
com/vision/docs/drag-and-drop%20https://cloud.google.com/vision/docs/
reference/rest/ (visited on 09/11/2020).

[15] MathWorks. What Is Artificial Intelligence? | KurzweilAI. url:
https://www.mathworks.com/discovery/artificial-intelligence.html%20http:
/ / www . kurzweilai . net / what - is - artificial - intelligence (visited on
03/06/2020).

[16] MathWorks. What Is a Machine Learning? - MATLAB & Simulink. url: https://
www.mathworks.com/discovery/machine-learning.html (visited on 03/12/2020).

[17] MathWorks. What Is Deep Learning? | How It Works, Techniques & Applications -
MATLAB & Simulink. 2019. url: https://www.mathworks.com/discovery/deep-
learning.html (visited on 03/05/2020).

[18] MathWorks. What Is a Neural Network? - MATLAB & Simulink. url: https://www.
mathworks.com/discovery/neural-network.html (visited on 03/06/2020).

[19] Arthur Arnx. First neural network for beginners explained (with code) | by Arthur
Arnx | Towards Data Science. url: https : / / towardsdatascience . com / first -
neural- network- for- beginners- explained- with- code- 4cfd37e06eaf (visited
on 09/20/2020).

[20] Armaan Merchant. Neural Networks Explained – Data Driven Investor – Medium. 2018.
url: https://medium.com/datadriveninvestor/neural- networks- explained-
6e21c70d7818 (visited on 03/04/2020).

[21] Adrien Kaiser. What is Computer Vision? | Hayo. url: https://hayo.io/computer-
vision/ (visited on 01/22/2020).

[22] Jason Brownlee. A Gentle Introduction to Computer Vision. url:
https://machinelearningmastery.com/what- is- computer- vision/ (visited on
01/22/2020).

[23] Tsung Yi Lin et al. “Microsoft COCO: Common objects in context”. In: Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics) 8693 LNCS.PART 5 (2014), pp. 740–755. issn: 16113349.
arXiv: 1405.0312.

[24] Y. Takamitsu and Y. Orita. “Effect of glomerular change on the electrolyte reabsorption
of the renal tubule in glomerulonephritis (author’s transl)”. In: Japanese Journal of
Nephrology 20.11 (1978), pp. 1221–1227. issn: 03852385.

[25] Connecting Language et al. “Visual Genome - connected language and Vision using
crowdsourced dense image annotations”. In: (2015).

86

https://cloud.google.com/vision/docs/drag-and-drop%20https://cloud.google.com/vision/docs/reference/rest/
https://cloud.google.com/vision/docs/drag-and-drop%20https://cloud.google.com/vision/docs/reference/rest/
https://cloud.google.com/vision/docs/drag-and-drop%20https://cloud.google.com/vision/docs/reference/rest/
https://www.mathworks.com/discovery/artificial-intelligence.html%20http://www.kurzweilai.net/what-is-artificial-intelligence
https://www.mathworks.com/discovery/artificial-intelligence.html%20http://www.kurzweilai.net/what-is-artificial-intelligence
https://www.mathworks.com/discovery/machine-learning.html
https://www.mathworks.com/discovery/machine-learning.html
https://www.mathworks.com/discovery/deep-learning.html
https://www.mathworks.com/discovery/deep-learning.html
https://www.mathworks.com/discovery/neural-network.html
https://www.mathworks.com/discovery/neural-network.html
https://towardsdatascience.com/first-neural-network-for-beginners-explained-with-code-4cfd37e06eaf
https://towardsdatascience.com/first-neural-network-for-beginners-explained-with-code-4cfd37e06eaf
https://medium.com/datadriveninvestor/neural-networks-explained-6e21c70d7818
https://medium.com/datadriveninvestor/neural-networks-explained-6e21c70d7818
https://hayo.io/computer-vision/
https://hayo.io/computer-vision/
https://machinelearningmastery.com/what-is-computer-vision/
https://arxiv.org/abs/1405.0312


[26] Alina Kuznetsova et al. “The Open Images Dataset V4: Unified image classification,
object detection, and visual relationship detection at scale”. In: (2018), pp. 1–20. arXiv:
1811.00982.

[27] Mark Everingham et al. “The pascal visual object classes (VOC) challenge”. In: Inter-
national Journal of Computer Vision 88.2 (2010), pp. 303–338. issn: 09205691.

[28] Ivan Culjak et al. “A brief introduction to OpenCV”. In: MIPRO 2012 - 35th Inter-
national Convention on Information and Communication Technology, Electronics and
Microelectronics - Proceedings (2012), pp. 1725–1730.

[29] OpenCV Team. About. url: https://opencv.org/about/ (visited on 01/23/2020).

[30] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Dis-
tributed Systems. Tech. rep.

[31] John D. Dignam et al. “Eukaryotic gene transcription with purified components”. In:
Methods in Enzymology 101.C (1983), pp. 582–598. issn: 15577988.

[32] A. Vedaldi and B. Fulkerson. VLFeat: An Open and Portable Library of Computer
Vision Algorithms. 2008. (Visited on 01/23/2020).

[33] BoofCV Team. BoofCV. url: https://boofcv.org/index.php?title=Main%7B%5C_
%7DPage (visited on 01/23/2020).

[34] Jian Guo et al. “GluonCV and GluonNLP: Deep Learning in Computer Vision and
Natural Language Processing”. In: (2019), pp. 1–6. arXiv: 1907.04433.

[35] Paperswithcode. COCO test-dev Leaderboard | Papers with Code. url: https : / /
paperswithcode.com/sota/object-detection-on-coco (visited on 03/06/2020).

[36] Paperswithcode. ImageNet Leaderboard | Papers with Code. url:
https://paperswithcode.com/sota/image-classification-on-imagenet (visited
on 03/06/2020).

[37] Yudong Liu et al. “CBNet: A Novel Composite Backbone Network Architecture for
Object Detection”. In: (2019). arXiv: 1909.03625.

[38] Mingxing Tan, Ruoming Pang, and Quoc V. Le. “EfficientDet: Scalable and Efficient
Object Detection”. In: (2019). arXiv: 1911.09070.

[39] Shifeng Zhang et al. “Bridging the Gap Between Anchor-based and Anchor-free Detec-
tion via Adaptive Training Sample Selection”. In: 2 (2019). arXiv: 1912.02424.

[40] Ross Girshick et al. Detectron. 2018. url: https://github.com/facebookresearch/
detectron (visited on 03/09/2020).

[41] Yanghao Li et al. “Scale-Aware Trident Networks for Object Detection”. In: (2019).
arXiv: 1901.01892.

87

https://arxiv.org/abs/1811.00982
https://opencv.org/about/
https://boofcv.org/index.php?title=Main%7B%5C_%7DPage
https://boofcv.org/index.php?title=Main%7B%5C_%7DPage
https://arxiv.org/abs/1907.04433
https://paperswithcode.com/sota/object-detection-on-coco
https://paperswithcode.com/sota/object-detection-on-coco
https://paperswithcode.com/sota/image-classification-on-imagenet
https://arxiv.org/abs/1909.03625
https://arxiv.org/abs/1911.09070
https://arxiv.org/abs/1912.02424
https://github.com/facebookresearch/detectron
https://github.com/facebookresearch/detectron
https://arxiv.org/abs/1901.01892


[42] Dhruv Mahajan et al. “Exploring the Limits of Weakly Supervised Pretraining”. In:
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) 11206 LNCS (2018), pp. 185–201.
issn: 16113349. arXiv: 1805.00932.

[43] Qijie Zhao et al. “M2Det: A Single-Shot Object Detector Based on Multi-Level Feature
Pyramid Network”. In: Proceedings of the AAAI Conference on Artificial Intelligence
33 (2019), pp. 9259–9266. issn: 2159-5399. arXiv: 1811.04533.

[44] Zhaowei Cai and Nuno Vasconcelos. “Cascade R-CNN: Delving into High Quality Ob-
ject Detection”. In: Proceedings of the IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (2018), pp. 6154–6162. issn: 10636919. arXiv:
1712.00726.

[45] Jiaqi Wang et al. “Region proposal by guided anchoring”. In: Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition 2019-June
(2019), pp. 2960–2969. issn: 10636919. arXiv: 1901.03278.

[46] Tsung Yi Lin et al. “Focal Loss for Dense Object Detection”. In: Proceedings of the
IEEE International Conference on Computer Vision 2017-October (2017), pp. 2999–
3007. issn: 15505499. arXiv: 1708.02002.

[47] Abhinav Shrivastava et al. Beyond Skip Connections: Top-Down Modulation for Object
Detection. 2016. arXiv: 1612.06851 [cs.CV].

[48] Seung Wook Kim et al. “Parallel Feature Pyramid Network for Object Detection”.
In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) 11209 LNCS (2018), pp. 239–256.
issn: 16113349.

[49] Kaiming He et al. “Deep residual learning for image recognition”. In: Proceedings of
the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
2016-December (2016), pp. 770–778. issn: 10636919. arXiv: 1512.03385.

[50] Saining Xie et al. “Aggregated residual transformations for deep neural networks”. In:
Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017 2017-January (2017), pp. 5987–5995. arXiv: 1611.05431.

[51] Raimi Karim. Illustrated: 10 CNN Architectures. url: https://towardsdatascience.
com/illustrated-10-cnn-architectures-95d78ace614d (visited on 03/12/2020).

[52] Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition Challenge”. In:
International Journal of Computer Vision 115.3 (2015), pp. 211–252. issn: 15731405.
arXiv: 1409.0575.

[53] Qizhe Xie et al. “Self-training with Noisy Student improves ImageNet classification”.
In: (2019). arXiv: 1911.04252.

88

https://arxiv.org/abs/1805.00932
https://arxiv.org/abs/1811.04533
https://arxiv.org/abs/1712.00726
https://arxiv.org/abs/1901.03278
https://arxiv.org/abs/1708.02002
https://arxiv.org/abs/1612.06851
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1611.05431
https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d
https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d
https://arxiv.org/abs/1409.0575
https://arxiv.org/abs/1911.04252


[54] Alexander Kolesnikov et al. Large Scale Learning of General Visual Representations
for Transfer. 2019. arXiv: 1912.11370 [cs.CV].

[55] Hugo Touvron et al. Fixing the train-test resolution discrepancy. 2019. arXiv: 1906.
06423 [cs.CV].

[56] Cihang Xie et al. Adversarial Examples Improve Image Recognition. 2019. arXiv: 1911.
09665 [cs.CV].

[57] Mingxing Tan and Quoc V. Le. EfficientNet: Rethinking Model Scaling for Convolu-
tional Neural Networks. 2019. arXiv: 1905.11946 [cs.LG].

[58] Christian Szegedy et al. Inception-v4, Inception-ResNet and the Impact of Residual
Connections on Learning. 2016. arXiv: 1602.07261 [cs.CV].

[59] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for Large-
Scale Image Recognition. 2014. arXiv: 1409.1556 [cs.CV].

[60] Mark Sandler et al. MobileNetV2: Inverted Residuals and Linear Bottlenecks. 2018.
arXiv: 1801.04381 [cs.CV].

[61] Mingxing Tan et al. MnasNet: Platform-Aware Neural Architecture Search for Mobile.
2018. arXiv: 1807.11626 [cs.CV].

[62] Mingxing Tan. Google AI Blog: EfficientNet: Improving Accuracy
and Efficiency through AutoML and Model Scaling. url: https :
//ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html
(visited on 09/20/2020).

[63] Moses and John Olafenwa. ImageAI, an open source python library built to empower
developers to build applications and systems with self-contained Computer Vision capa-
bilities. Mar. 2018–. url: https://github.com/OlafenwaMoses/ImageAI.

[64] Chollet François. “Keras: The Python Deep Learning library”. In: Keras.Io (2015). issn:
00046256.

[65] Sonit Singh. Natural Language Processing for Information Extraction. 2018. arXiv:
1807.02383 [cs.CL].

[66] Diksha Khurana et al. “Natural Language Processing : State of The Art , Current
Trends and Challenges Natural Language Processing : State of The Art , Current Trends
and Challenges Department of Computer Science and Engineering Manav Rachna In-
ternational University , Faridabad-”. In: arXiv preprint arXiv August 2017 (2018).

[67] Daniel W. Otter, Julian R. Medina, and Jugal K. Kalita. “A Survey of the Usages of
Deep Learning in Natural Language Processing”. In: XX.X (2018), pp. 1–22. arXiv:
1807.10854.

89

https://arxiv.org/abs/1912.11370
https://arxiv.org/abs/1906.06423
https://arxiv.org/abs/1906.06423
https://arxiv.org/abs/1911.09665
https://arxiv.org/abs/1911.09665
https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/1602.07261
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1807.11626
https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html
https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html
https://github.com/OlafenwaMoses/ImageAI
https://arxiv.org/abs/1807.02383
https://arxiv.org/abs/1807.10854


[68] Analytics Vidhya. Understanding Word Embeddings: From Word2Vec to Count Vectors.
2017. url: https://www.analyticsvidhya.com/blog/2017/06/word-embeddings-
count-word2veec/ (visited on 02/06/2020).

[69] Murat Mustafa. GloVE | Mustafa Murat ARAT. url: https://mmuratarat.github.
io/2020-03-20/glove (visited on 05/13/2020).

[70] Jason Brownlee. What are word embeddings for text? 2017. url:
https://machinelearningmastery.com/what-are-word-embeddings/ (visited on
02/06/2020).

[71] Tomas Mikolov et al. “Efficient estimation of word representations in vector space”.
In: 1st International Conference on Learning Representations, ICLR 2013 - Workshop
Track Proceedings (2013), pp. 1–12. arXiv: 1301.3781.

[72] Yuxuan Wang et al. “From static to dynamic word representations: a survey”. In: In-
ternational Journal of Machine Learning and Cybernetics 11.7 (2020), pp. 1611–1630.
issn: 1868808X.

[73] David Batista. [oorsig] Language Models and Contextualised Word Embeddings. 2018.
url: http://www.davidsbatista.net/blog/2018/12/06/Word_Embeddings/ (visited
on 02/10/2020).

[74] A.I. Wiki. A Beginner’s Guide to Word2Vec and Neural Word Embeddings | Skymind.
url: https : / / pathmind . com / wiki / word2vec % 20https : / / skymind . ai / wiki /
word2vec (visited on 02/08/2020).

[75] Word2Vec Explained Easily - InsightsBot. url: http : / / www . insightsbot . com /
word2vec-explained-easily/ (visited on 02/08/2020).

[76] Gabriel Mordecki. word embeddings transform text numbers. 2017.

[77] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. “GloVe: Global vec-
tors for word representation”. In: EMNLP 2014 - 2014 Conference on Empirical Meth-
ods in Natural Language Processing, Proceedings of the Conference. Association for
Computational Linguistics (ACL), 2014, pp. 1532–1543. isbn: 9781937284961.

[78] Piotr Bojanowski et al. “Enriching Word Vectors with Subword Information”. In: arXiv
preprint arXiv:1607.04606 (2016).

[79] Oren Melamud, Jacob Goldberger, and Ido Dagan. “context2vec: Learning generic con-
text embedding with bidirectional LSTM”. In: CoNLL 2016 - 20th SIGNLL Conference
on Computational Natural Language Learning, Proceedings (2 016), pp. 51–61.

[80] Matthew E. Peters et al. “Deep contextualized word representations”. In: Proc. of
NAACL. 2018.

[81] Spacy. spaCy 101: Everything you need to know · spaCy Usage Documentation. 2017.
url: https://spacy.io/usage/spacy-101 (visited on 02/10/2020).

90

https://www.analyticsvidhya.com/blog/2017/06/word-embeddings-count-word2veec/
https://www.analyticsvidhya.com/blog/2017/06/word-embeddings-count-word2veec/
https://mmuratarat.github.io/2020-03-20/glove
https://mmuratarat.github.io/2020-03-20/glove
https://machinelearningmastery.com/what-are-word-embeddings/
https://arxiv.org/abs/1301.3781
http://www.davidsbatista.net/blog/2018/12/06/Word_Embeddings/
https://pathmind.com/wiki/word2vec%20https://skymind.ai/wiki/word2vec
https://pathmind.com/wiki/word2vec%20https://skymind.ai/wiki/word2vec
http://www.insightsbot.com/word2vec-explained-easily/
http://www.insightsbot.com/word2vec-explained-easily/
https://spacy.io/usage/spacy-101


[82] Edward Loper and Steven Bird. “Nltk”. In: March (2002), pp. 63–70.

[83] Christopher Manning et al. “The Stanford CoreNLP Natural Language Processing
Toolkit”. In: (2015), pp. 55–60.

[84] Radim Řehůřek and Petr Sojka. “Software Framework for Topic Modelling with Large
Corpora”. English. In: Proceedings of the LREC 2010 Workshop on New Challenges for
NLP Frameworks. http://is.muni.cz/publication/884893/en. Valletta, Malta:
ELRA, May 2010, pp. 45–50.

[85] TextBlob: Simplified Text Processing — TextBlob 0.16.0 documentation. url: https:
//textblob.readthedocs.io/en/dev/ (visited on 07/28/2020).

[86] Alan Akbik, Duncan Blythe, and Roland Vollgraf. “Contextual String Embeddings for
Sequence Labeling”. In: COLING 2018, 27th International Conference on Computa-
tional Linguistics. 2018, pp. 1638–1649.

[87] Rami Al-Rfou, Bryan Perozzi, and Steven Skiena. “Polyglot: Distributed Word Rep-
resentations for Multilingual NLP”. In: Proceedings of the Seventeenth Conference on
Computational Natural Language Learning. Sofia, Bulgaria: Association for Computa-
tional Linguistics, Aug. 2013, pp. 183–192.

[88] Bolei Zhou et al. “Places: A 10 Million Image Database for Scene Recognition”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 40.6 (2018), pp. 1452–1464.
issn: 01628828.

[89] Joseph Redmon and Ali Farhadi. “YOLOv3: An Incremental Improvement”. In: (2018).
arXiv: 1804.02767.

[90] Nguyen Khang Le et al. “Lifelog moment retrieval with advanced semantic extraction
and flexible moment visualization for exploration”. In: CEUR Workshop Proceedings
2380 (2019), pp. 9–12. issn: 16130073.

[91] Vikas Gupta. Understanding Feedforward Neural Networks. 2017. url: https://www.
learnopencv.com/understanding-feedforward-neural-networks/.

[92] Kjell Magne Fauske. What Is Deep Learning? | How It Works, Techniques & Applica-
tions - MATLAB & Simulink. 2019. url: https://www.mathworks.com/discovery/
deep-learning.html (visited on 03/05/2020).

[93] Keiron O’Shea and Ryan Nash. “An Introduction to Convolutional Neural Networks”.
In: November (2015). arXiv: 1511.08458.

[94] Forrest N. Iandola et al. “SqueezeNet: AlexNet-level accuracy with 50x fewer parame-
ters and <0.5MB model size”. In: (2016), pp. 1–13. arXiv: 1602.07360.

[95] Sik-Ho Tsang. Review: SqueezeNet (Image Classification) - Towards Data Science. url:
https://towardsdatascience.com/review-squeezenet-image-classification-
e7414825581a (visited on 01/23/2020).

91

http://is.muni.cz/publication/884893/en
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://arxiv.org/abs/1804.02767
https://www.learnopencv.com/understanding-feedforward-neural-networks/
https://www.learnopencv.com/understanding-feedforward-neural-networks/
https://www.mathworks.com/discovery/deep-learning.html
https://www.mathworks.com/discovery/deep-learning.html
https://arxiv.org/abs/1511.08458
https://arxiv.org/abs/1602.07360
https://towardsdatascience.com/review-squeezenet-image-classification-e7414825581a
https://towardsdatascience.com/review-squeezenet-image-classification-e7414825581a


[96] Bharath Raj. A Simple Guide to the Versions of the Inception Network. url: https://
towardsdatascience.com/a-simple-guide-to-the-versions-of-the-inception-
network-7fc52b863202 (visited on 01/23/2020).

[97] Christian Szegedy et al. “Rethinking the Inception Architecture for Computer Vi-
sion”. In: Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition 2016-December (2016), pp. 2818–2826. issn: 10636919. arXiv:
1512.00567.

[98] Sik-Ho Tsang. Review: Inception-v3 — 1st Runner Up (Image Classification) in
ILSVRC 2015. url: https://medium.com/@sh.tsang/review-inception-v3-1st-
runner- up- image- classification- in- ilsvrc- 2015- 17915421f77c (visited on
01/23/2020).

[99] Tsung-Yi Lin et al. Feature Pyramid Networks for Object Detection. 2016. arXiv: 1612.
03144 [cs.CV].

[100] Lilian Weng. “Object Detection Part 4: Fast Detection Models”. In:
lilianweng.github.io/lil-log (2018).

[101] Zhang Yi, Shen Yongliang, and Zhang Jun. “An improved tiny-yolov3 pedestrian de-
tection algorithm”. In: Optik 183.January (2019), pp. 17–23. issn: 00304026.

[102] Wei Liu et al. “SSD Net”. In: Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
9905 LNCS (2016), pp. 21–37. issn: 16113349. arXiv: arXiv:1512.02325v5.

[103] Lilian Weng. “Object Detection for Dummies Part 3: R-CNN Family”. In:
lilianweng.github.io/lil-log (2017).

[104] Lilian Weng. “Object Detection for Dummies Part 1: Gradient Vector, HOG, and SS”.
In: lilianweng.github.io/lil-log (2017).

[105] Ross Girshick. Fast R-CNN. 2015. arXiv: 1504.08083 [cs.CV].

[106] Shaoqing Ren et al. Faster R-CNN: Towards Real-Time Object Detection with Region
Proposal Networks. 2015. arXiv: 1506.01497 [cs.CV].

[107] Kaiming He et al. Mask R-CNN. 2017. arXiv: 1703.06870 [cs.CV].

92

https://towardsdatascience.com/a-simple-guide-to-the-versions-of-the-inception-network-7fc52b863202
https://towardsdatascience.com/a-simple-guide-to-the-versions-of-the-inception-network-7fc52b863202
https://towardsdatascience.com/a-simple-guide-to-the-versions-of-the-inception-network-7fc52b863202
https://arxiv.org/abs/1512.00567
https://medium.com/@sh.tsang/review-inception-v3-1st-runner-up-image-classification-in-ilsvrc-2015-17915421f77c
https://medium.com/@sh.tsang/review-inception-v3-1st-runner-up-image-classification-in-ilsvrc-2015-17915421f77c
https://arxiv.org/abs/1612.03144
https://arxiv.org/abs/1612.03144
https://arxiv.org/abs/arXiv:1512.02325v5
https://arxiv.org/abs/1504.08083
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1703.06870

	List of Figures
	List of Tables
	Acronyms
	Introduction
	Challenges
	Contributions
	Document Structure

	ImageCLEF Lifelog Challenge
	The ImageCLEF challenge
	The Tasks
	The concept of lifelogging
	ImageCLEFlifelog
	SubTask: Lifelog Moment Retrieval
	Dev Topic example
	Test Topic example
	Evaluation Methodology
	Evaluation Problems


	Information Extraction From Images
	Concepts of Label Extraction
	Teaching a Computer on How to Learn
	Machine Learning
	Deep Learning
	Neural Networks
	Neural Network Training
	Learning From Images

	Datasets With Common Objects
	Computer Vision Libraries
	Recent Innovations and Improvements
	COCO Test-Dev
	ImageNet

	Final Remarks

	Information Extraction From Text
	Natural Language Processing
	Numerical Representation of Text
	Word Embeddings

	Static Word Embedding Models
	Word2Vec
	GloVe
	FastText

	Contextualized Word Embedding Models
	Context2vec
	ELMo

	Available NLP libraries
	Final Remarks

	Proposed Approach
	System Workflow Architecture Diagram
	Preliminary Experiences
	Image Recognition Preliminary Experiences
	Preliminary Experiences in Object Detection
	Object Detection Word Clouds Preliminary Experiences

	Example of a Raw Retrieval System
	Scene Recognition
	ImageCLEF Submissions
	Text Word Extraction and Categorization
	Implemented Syntax Rules

	Image Retrieval
	Retrieving Images According to the Similarity Between Words

	Submitted Run 1
	Submitted Run 2

	Results
	System Fine-Tuning Using The Dev Topics
	Final System Performance Example
	Topic 9 Performance Analysis

	Achieved Overall Performance Results
	Overall Performance Analysis


	Conclusions
	System Advantages
	System Disadvantages
	Future Work

	Neural Networks
	Types of Neural Networks architectures
	Feedforward Neural Network
	Radial Basis Function Neural Network
	Recurrent Neural Network (RNN)
	Convolutional Neural Network (CNN)

	CNNs architectures For Image Classification
	SquezeeNet
	ResNet
	InceptionV3
	DenseNet

	Regression based algorithms for Object Detection
	RetinaNet
	YOLOv3
	TinyYoloV3
	Single Shot MultiBox Detector (SSD)

	Classification Based Algorithms For Object Detection
	R-CNN Models Summary



