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Palavras Chave Deteção de Pessoas, Ambientes Interiores, Radar, Aprendizagem Au-
tomática, Robótica Móvel

Resumo A presente dissertação descreve o desenvolvimento e implementação de um
sistema baseado em radar que tem como objetivo detetar e distinguir pessoas
de outros objetos que se movem num ambiente interior. Os métodos de de-
teção e distinção exploram os dados de radar que são processados por um
sistema que abrange a aquisição e pré-processamento dos dados, a extração
de características, e a aplicação desses dados a modelos de aprendizagem
automática especificamente desenhados para atingir o objetivo de classifi-
cação de alvos.
Além do estudo da teoria básica de radar para o desenvolvimento bem-
sucedido desta dissertação, este trabalho contempla uma componente im-
portante de desenvolvimento de software e testes experimentais. Entre out-
ros, os seguintes tópicos foram abordados nesta dissertação: o estudo dos
princípios básicos do funcionamento do radar e do seu equipamento; pro-
cessamento de sinal do radar; técnicas de remoção de ruído, extração de
características, e segmentação de dados aplicada ao sinal de radar; imple-
mentação e calibração de hiper-parâmetros dos modelos de aprendizagem
automática para sistemas de classificação; estudo de métodos de deteção e
seguimento de múltiplos alvos.
A aplicação para deteção de pessoas foi testada em diferentes cenários in-
teriores que incluem o radar estático ou transportado por um robot móvel.
Esta aplicação pode ser executada em tempo real e realizar deteção e clas-
sificação de múltiplos alvos usando algoritmos básicos de segmentação e
seguimento. O estudo do impacto da deteção de múltiplos alvos no funciona-
mento da aplicação é apresentado, bem como a avaliação da eficiência dos
diferentes métodos de classificação usados.
As possíveis aplicações do sistema de deteção proposto incluem a deteção
de intrusão em ambientes interiores e aquisição de dados anónimos para
seguimento e contagem de pessoas em espaços públicos tais como hospitais
ou escolas.





Keywords People Detection, Indoor Environments, Radar, Machine Learning, Mobile
Robotics

Abstract The present dissertation describes the development and implementation of a
radar-based system with the purpose of being able to detect people amidst
other objects that are moving in an indoor scenario. The detection methods
implemented exploit radar data that is processed by a system that includes the
data acquisition, the pre-processing of the data, the feature extraction, and the
application of these data to machine learning models specifically designed to
attain the objective of target classification.
Beyond the basic theoretical research necessary for its sucessful develop-
ment, the work contamplates an important component of software develop-
ment and experimental tests. Among others, the following topics were covered
in this dissertation: the study of radar working principles and hardware; radar
signal processing; techniques of clutter removal, feature exctraction, and data
clustering applied to radar signals; implementation and hyperparameter tuning
of machine learning classification systems; study of multi-target detection and
tracking methods.
The people detection application was tested in different indoor scenarios that
include a static radar and a radar dynamically deployed by a mobile robot. This
application can be executed in real time and perform multiple target detection
and classification using basic clustering and tracking algorithms. A study of
the effects of the detection of multiple targets in the performance of the appli-
cation, as well as an assessment of the efficiency of the different classification
methods is presented.
The envisaged applications of the proposed detection system include intru-
sion detection in indoor environments and acquisition of anonymized data for
people tracking and counting in public spaces such as hospitals and schools.
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Chapter 1

Introduction

Radar, which stands for Radio Detection And Ranging, was designed to detect targets,
and measure their respective distances and velocities. This is accomplished by emitting radio
waves that are reflected by other objects. Radar, as a sensory technology, had its initial
major developments in World War II, were it was used to detect missiles and airplanes. The
fundamental theoretical principles, however, were formulated years before. The first radar
systems were limited by the technology of the time, in particular the limited power and
frequency on the signal generator, which in turn restricted the detection range and demanded
large antennas [1]. Radars were mostly used in the military industry, but in the post-war
period the radar devices continued to be refined, and currently can achieve high resolutions
in range and velocity due to the increase in the frequencies transmitted and received by the
radars, and the availability of powerful digital signal processing hardware. This makes radars
appealing to integrate in modern civil applications, such as civil and maritime navigation,
meteorology and medicine, and also the automobile industry in the context of autonomous
navigation [2].

Autonomous navigation is a research area which has been drawing increasing attention
in the latest decades. Autonomous navigation is not only focused on self-driving cars, but
in any kind of robotic agent that can move on its own. Boosted by the developments on
artificial intelligence, computer processing power, sensory technology, and safety concerns
regarding the automotive mobility, this area promotes a world where robotic systems can
travel in environments where the presence of people is typical, and execute tasks in a way
that was not possible before. Such tasks might include survivor detection in emergency
scenarios, intrusion detection, mapping, etc. In order to navigate in any scenario without the
aid of humans, robotic agents need to have a mean to observe the surrounding environment.
Hence, sensory devices, such as video cameras, lidar, radar or sonar need to be applied in
such systems, and the algorithms for data extraction and processing need to be developed to
aim the robot with the necessary information to make autonomous decisions.

In order to provide robotic agents with the necessary intelligence to distinguish objects
based on the received information, one modern approach is the use of machine learning (ML)
to train a computer to learn patterns from the stored data. In fact, ML has shown that with
the necessary and right type of data, and with the adequate models, computers can perform
complex decisions based solely on the data they have processed so far. These tasks include
speech and image recognition, medical diagnosis such as the analysis of skin lesions, among
others.
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1.1 Motivation

The utilization of standard sensors such as cameras, laser or infrared in order to detect
the presence of people and other objects in a given scenario of interest is often hampered by
the diversity of environmental effects such as dust, fog, rain, darkness, strong heat or fire.
In contrast, radar signals are immune to these disturbances. Additionaly, radar systems can
be easily parameterized to deal with a diversity of operational conditions. In recent years,
the number and diversity of applications of radar sensors has been increasing dramatically
motivated by the emergence of inexpensive, self-contained development kits. These devices
permit rapid prototyping and testing of radar-based solutions and their reduced cost and
dimension make them affordable for academic research and permit their integration in small,
inexpensive robots.

Despite the aforementioned advantages, robust feature extraction from radar data is still
an open problem because the radar physics is prone to generate a diversity of artifacts that
pose significant challenges to conventional signal processing techniques. This problem is
especially dramatic in indoor environments due to the ubiquity of obstacles (clutter) normally
present in these scenarios.

The present dissertation introduces a novel ML approach integrated with mobile robotic
platforms to address the problem of radar-based detection of moving people in an indoor sce-
nario. To the best of my knowledge, none of the alternative works address the specific problem
that is tackled in this dissertation: the detection of people (walking and on wheelchair) in
indoor environments based on statistical measures of radar Doppler data acquired by static or
mobile robots. The envisioned applications include elderly monitoring and rescue operations
in vision-denied environments. The dissertation does not discuss other sensor alternatives
(e.g. vision) because the radar is intended to work as a complementary instrument or as a
replacement sensor in scenarios where the alternative sensors are prone to fail.

1.2 Objectives

The envisaged application aims to distinguish people moving amidst other objects, using
a small, low-cost, MIMO radar. This will be achieved by extracting data from moving targets
with the radar. The data will be used to generate datasets, which will be used to train classi-
fication models to be able to distinguish people moving amidst other objects. The application
intends to detect not only people walking but also people moving in wheelchairs. Different
optimization techniques will be applied to try to maximize the performance of the ML models.
Lastly, the developed application is intended to function in real time, with the radar deployed
by a moving robot, and detect and classify more than one target simultaneously.
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1.3 Main contributions

The main contribution of this dissertation consists in the introduction of a new, robust
approach for classification of moving objects based on radar data, with the ability to distin-
guish people from other moving agents in an indoor environment. The specific achievements
of this work include:

• The exploitation of the Doppler histograms representative of the velocity distribution
of the points that constitute the point cloud acquired by the radar (originated from
the multiple scatterers of a given object) as a feature that permits a robust distinction
between moving rigid bodies and people.

• The utilization of the radar cross section of targets as a classification feature, and the
derivation of a practical method for its computation.

• The demonstration of the radar-based classification system ability to work not only with
static radars but also to be deployed and operated autonomously by mobile robots. For
such, a dedicated standalone radar kit was assembled and tested in the present work.

• The development and implementation of basic algorithmic tools for clutter removal and
outliers detection that can be used as building blocks of more advanced tracking and
data association methods for people detection and tracking.

1.4 Dissertation structure

This dissertation is structured in the following six chapters:

• Chapter 1 - This is an introductory (and current) chapter of the dissertation. The
chapter starts by succinctly explaining the radar purpose and inner workings and gives a
brief description of its history. The applications of radar are presented, and a connection
is established with the use of ML in these same applications. The text moves on to
explain the advantages of the development of people detection applications with radars,
and presents a summary of the steps implemented to achieve it.

• Chapter 2 - Basic radar principles, particularly the theory behind the FMCW radar
technology, are described in this chapter. The equations of range, velocity and angle
estimation and resolution are explained, and the concept of radar cross section is in-
troduced. The main radar hardware and software tools employed in this work are also
presented.

• Chapter 3 - This dissertation focuses on the use of ML, therefore, several concepts of
this field are explained in this chapter, as well as the software tools used. Related work
on people detection with radars and ML is also presented.

• Chapter 4 - The development of an application for people detection with a static
radar is described in this chapter. The data received from the radar is described, and
the process of feature extraction and processing is detailed. Then, the results of the
models performance are plotted and compared.
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• Chapter 5 - This chapter details the implementation of methods to enhance the classi-
fication models performance, such as the implementation of techniques to optimize the
hyperparameters of the models. A method to reduce the dimension of the features used
is also described in this chapter.

• Chapter 6 - Describes the development of an application for people detection using
a radar dynamically deployed by a moving robot. This chapter also describes the
implementation of a real-time version of the developed application, and the detection
of multiple people. The implications and problems originated by the detection and
classification of more than one target at the same time are also analyzed.

• Chapter 7 - Presents the main conclusions of this work and a discussion of the attained
results. The chapter also mentions the related work that resulted from this disserta-
tion, such as papers and participation in conferences, and outlines possible future work
directions, giving a proper justification on how they might improve this work.
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Chapter 2

Radar technology and methods

The present chapter describes the radar basic working principles, particularly the FMCW
radar technology. The chapter also presents the main types of radar-based approaches for
people detection and tracking.

2.1 Basic radar terminology

For the convenience of the reader this section presents the basic concepts and terminology
about radar systems, that will be used throughout this dissertation.

• In radar terminology, any object that can be detected by the radar is often designated
as target.

• The scalar measure representative of the radial velocity of the target, i.e. its velocity
projected onto the central axis of the radar transmitter, is normally designated as
Doppler since it is computed based on the frequency shift (Doppler effect) incurred by
the radar wave due to the target velocity.

• A frame constitutes an elementary structure of reflectivity data that characterizes
the state of the target in terms of its distance (range) and radial velocity (Doppler),
relatively to the radar system.

• The multiple-input multiple-output (MIMO) radar technology considered in this
work permits the discrimination of simultaneous reflections from different points in the
plane of the radar wave by exploiting the beam-formimg capability of the MIMO system.

• In the present context, a point cloud is a collection of points corresponding to indi-
vidual reflections from a scene acquired at a given instant of time and represented in
different positions of the radar sensor grid; these points may correspond to different
reflections from a single object or from multiple targets.

• Clutter is the result of unwanted echoes in the radar field of view (FoV), that may
result, for example, from multi-paths of the radio waves reflections.

• Angle of arrival (AoA) is the angle between a reflected signal from an object and the
central axis of the radar transmitter.
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• A phased array radar is a radar device with several transmitting antennas and re-
ceiving antennas, that can provide signals with different phase shifts. This technique
allows the detection of the AoA of multiple reflection points.

2.2 Radar basic working principles

Radar is a technology that permits extracting range, velocity and angle from objects,
through electromagnetic waves in the radio frequency spectrum, called radio waves. The
way radar systems achieve this is by emitting these radio waves and then receiving and
detecting them when they are reflected by other objects as illustrated in figure 2.1. Modern

Figure 2.1: Schematic of a radar device detecting a target.

radar systems can also track, identify, image and classify targets, while at the same time
suppressing background noise, also known as clutter. There are different types of radar
systems, but in general these must include a transmitting antenna, receiving antenna, and
signal processor. The transmitting antenna is responsible for generating the microwave signal,
while the receiving antenna is the subsystem that receives the electromagnetic waves reflected
by the objects (targets of interest or clutter). The signal received is ultimately analyzed by
the signal processor [3].

2.2.1 Radar Cross Section

RADAR Cross Section, usually referred by its initials RCS, and represented by the Greek
letter σ, is a parameter that, in general terms, describes the energy reflected by an object.
The RCS can be interpreted as the effective reflecting area of the target as seen by the radar
although its value is not only a function of the size but also of other properties of the target
such as its shape and constitutive materials; for example, a small object with a metallic
surface can reflect more energy to the radar than a larger target built from soft materials.
RCS is a parameter that is often used to distinguish classes of radar targets. Typical values
of RCS for each specific type of object - cars, people, ships - are well known and tabulated,
and therefore can aid the detection of a specific object. Several formulas to compute the RCS
can be found in the literature, and usually relate distance of the measured object with the
power of the signal received and transmitted, as well as signal-to-noise ratio.
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2.3 Detecting radar targets with multiple reflection points

Due to the characteristics of the electromagnetic waves propagation and the high resolu-
tions attained by radars, these devices are capable of sensing multiple reflection points from
different targets. These reflection points constitute point clouds, where each point can rep-
resent a vector of data, containing its range, azimuth, and radial velocity (range rate),
among other features. Real life targets are thus represented not by a single point but by
multiple ones. Figure 2.2 shows the radar geometry schematic. Rmin and Rmax are the mini-
mum and maximum range (respectively); −φmin and +φmax are the minimum and maximum
measurable angle (respectively), and φn is the azimuth; rn and ṙn represent respectively the
range and the radial velocity (Doppler) of one point at a given instant in the radar coor-
dinates frame. This figure also illustrates the ability of the radar system to estimate the
bi-dimensional velocity of a target, vn, based on successive detections of its reflections points
(pointn−1 and pointn).

Figure 2.2: Radar geometry in 2D. Source [4].

7



2.4 FMCW radar

2.4.1 Fundamentals of FMCW radar

Radar systems can be divided into several categories, regarding their characteristics. This
dissertation will solely focus on FMCW radar, which will be the one used in this work. FMCW
(radar) stands for Frequency Modulated Continuous Wave. FMCW works by emitting a
continuous wave with a time-varying frequency. One of the most typical kinds of modulation
applied is the sawtooth modulation in which the frequency increases linearly with time [5].
A wave of this type is called a chirp. Figure 2.3 shows this typical modulation, as well as
some other parameters namely bandwidth and sweep time. Figure 2.4 shows the signal
evolution over time for a single chirp. The bandwidth can be defined as the difference between
the maximum and minimum frequency of the chirp. The sweep time is the time necessary for
the chirp to traverse all the programmed bandwidth [6].

Figure 2.3: Time-frequency representation of chirps with sawtooth modulation.

Figure 2.4: Signal evolution over time for a single chirp.

An FMCW radar includes a synthesizer that generates the chirps. The chirps are trans-
mitted by the transmitting antenna(s) and the corresponding reflections from the objects
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present in the radar FoV are received by the receiving antenna(s). The emitted signal and
the received one are combined by the mixer, to generate the so called Intermediate Fre-
quency (IF) signal [6]. A schematic representation of this structure is depicted in figure
2.5.

Figure 2.5: Schematic of a radar device with one transmitting antenna and one receiving
antenna. Adapted from [6].

2.4.2 Range estimation and resolution

Range estimation

The radar emits a continuous wave signal whose frequency increases linearly with time
during the chirp period (sweep time). The reflected signal is a chirp with the same character-
istics of the emitted chirp, but delayed in time. Because of this delay, which is a function of
the distance to the object, when mixed, there will be a difference in frequency, between the
original and reflected chirp, which will be the frequency of the IF signal. Figure 2.6 depicts
this rationale, where on the top left side it is possible to see the emitted and received chirp
and the resulting IF signal (bottom left); on the right side there is a similar image, but the
chirps are further apart on the time domain, which makes the resulting IF signal (bottom
right) to have a different (higher) frequency.
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Figure 2.6: Transmission (Tx) and reception (Rx) chirp (top left and right) and resulting IF
signal (bottom left and right). fb is the (beat) frequency of the IF signal; τ is the time of
flight; fi represents the initial frequency and ft represents the frequency of the emitted chirp
after τ seconds. Adapted from [6].

An object standing at a constant distance from the radar produces an IF signal with a
constant frequency. Consider d as the distance between the radar and the object, and c as
the speed of light in vacuum. The time of flight, represented by τ, can be calculated as

τ =
2d

c
. (2.1)

Consider S as the slope (quotient between bandwidth and sweep time) of the chirp, which
means how much frequency increases by unit of time. The beat frequency (fb) is equal to
the subtraction of the frequency at point ft and point fi. In this context, fi is the initial
frequency, and ft is the frequency of the emitted chirp after τ seconds. The value of ft can
be derived by the following equation

ft = fi + Sτ. (2.2)

Considering equation (2.1), we can rewrite the previous equation as

ft = fi + S
2d

c
. (2.3)
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The respective IF signal frequency, represented by fb, is calculated as

fb = ft − fi = S
2d

c
. (2.4)

The above equation shows that in principle it is possible to calculate the distance from
the radar to an object using the frequency of the IF signal. The Fourier Transform (FT) is
a mathematical operation that transforms a function in the time domain into its constituent
frequencies (function in the frequency domain), and the discrete-time Fourier transform
(DFT) is an implementation of FT [7]. The calculation of the frequency of the IF signal
is done with a Fast Fourier Transform (FFT) over the IF signal. The FFT applied to
resolve the targets in the range domain is called, in the literature, the 1D-FFT or range-
FFT. Consider that the ADC sampling data of the chirps is stored as columns of a matrix.
The FFT is performed over each column to resolve the targets in range by determining the
corresponding frequency peaks. Figure 2.7 serves as an illustration of this concept. If multiple
objects are at different distances from the radar, the IF will not be a pure tone, but a sum
of tones. Each tone frequency (peak in the range-FFT) corresponds to the distance of each
object.

Figure 2.7: 1D-FFT to resolve targets in the range domain. The top image is a frequency-time
plot of the emitted chirps. The bottom image represents each chirp stored as a column of a
matrix. Each square in a column represents a bin of the DFT. Each column represents a set
of frequency bins of the DFT applied to a single chirp, and each row represents the bins with
the same index of different chirps of a frame. Each colored square represents the location
of a frequency peak. The vertical dimension is usually designated as fast time because the
duration of the chirp is very small; the horizontal dimension is usually designated as slow
time because the duration of a set of chirps is very large when compared to the duration of
a single chirp. Adapted from [6].
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Range resolution

Range resolution refers to the ability of resolving two closely spaced objects, or in other
words, how close can two objects be for the radar to distinguish them in the range domain.
The frequency of the IF signal results from an FFT performed in the range domain. If two
objects are too closely spaced, then the FFT will yield only one peak in the frequency domain.
Figure 2.8 serves as an illustration of this. This representation considers a small observation
time window.

Figure 2.8: Amplitude-time representation of two IF signals with similar frequencies (top)
and corresponding peak generated by FFT in the range domain (bottom), considering a small
observation time window. Adapted from [6].

To resolve distinct objects in these conditions, the solution is to increase the size of the
observation time window, which increases the duration of the IF signal, and allows the FFT
to resolve the two objects by determining distinct peaks in the frequency spectrum. Such
rationale is illustrated in figure 2.9. This representation considers a larger observation time
window.

Figure 2.9: Amplitude-time representation of two IF signals with similar frequencies (top)
and corresponding peaks generated by FFT in the range domain (bottom), considering a large
observation time window. Adapted from [6].

Consider N as the number of points of a DFT, and Fs as the sampling frequency of the
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ADC. The frequency resolution (∆f) can be written as

∆f = Fs/N. (2.5)

The total number of points of the DFT is expressed by the following equation, where T
represents the sweep time

N = FsT. (2.6)

Replacing N in equation 2.5, we derive

∆f =
1

T
. (2.7)

The variable ∆f represents the minimum frequency difference for two objects to be sep-
arated in the range domain. Consider now two objects at distance d1 and d2 from the radar.
The beat frequency of each one is defined as

fb1 =
2d1S

c
and fb2 =

2d2S

c
. (2.8)

Consider ∆d as the minimum distance required between two objects in order to enable
the radar to distinguish them in the range domain. Likewise, the difference between the
frequency of the respective IF signals (∆fb) will be the minimum frequency difference that
permits the two objects to be discriminated. The bandwidth is represented by B. Hence, the
range resolution can be derived as follows

∆fb =
2(d1 − d2)S

c

⇔ 1

T
=

2∆dS

c
⇔ 1

T
=
B

T

2∆d

c
⇔ ∆d =

c

2B
.

(2.9)

In order to discriminate two objects based on this principle, it is necessary to increase
the bandwidth. Assuming the slope remains unchanged, increasing the bandwidth implies to
increase the duration of the IF signal.

Table 2.1 shows some typical values for bandwidth and the respective range that is
achieved.

Bandwidth Range Resolutions

4GHz 3.75 cm

2GHZ 7.5 cm

1GHz 15 cm

600 MHz 25 cm

Table 2.1: List of range resolutions and the respective bandwidth [6].
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Maximum distance measurable

The maximum distance (dmax) that can be unambiguously measured by the radar is
dependent on the maximum frequency of the IF signal. Because the IF signal is digitized to
be further processed on the DSP, the maximum frequency of the IF signal is limited by the
ADC sampling rate (Fs). In order to respect the Nyquist theorem, the following condition
applies 1:

Fs ≥ 2
Sdmax
c

. (2.10)

We conclude that the ADC sampling frequency limits the maximum unambiguous range
of the radar, which can be defined by the following equation

dmax =
Fsc

2S
. (2.11)

2.4.3 Velocity estimation and resolution

Velocity estimation

Although a single chirp is enough to determine the range of one or more objects, to
measure velocity requires the use of more than one chirp. If a radar transmits two chirps
closely spaced in the time domain, the range-FFT corresponding to each one of those chirps
will have the same peak on the frequency spectrum, but with different phases. By examining
the phase of the IF signal, it is possible to see that the IF signal is very sensitive to small
displacements in the object range. A small motion of the object does not change the frequency
of the IF signal, at least not enough to be detected using an FFT. However, the resulting
peaks will have different phases, and thus velocity can be determined. The difference in phase
corresponds to the velocity of the object. An FFT on the sequence of phasors corresponding
to the range FFT peaks is called the 2D-FFT or the Doppler-FFT [6]. See figure 2.10 as
an illustration.

Figure 2.10: 2D-FFT to resolve targets in the velocity domain. Each colored square represents
the location of a frequency peak. Adapted from [6].

1The Nyquist theorem states that the sampling frequency should be at least the double of the highest
frequency present in the signal being sampled. However, the radar devices used in this work perform complex
sampling, therefore, the sampling frequency may be equal (or larger) than the highest frequency present in the
signal being sampled.
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Consider the phase difference between two chirps as ∆φ, the time of flight as τ (defined
in equation 2.1), λ as the wavelength, d as the distance traveled by the target, and f as the
frequency of the transmitted chirp, and the time interval between two chirps as Tc. ∆τ is
proportional to the distance difference between successive positions of the target (∆d). The
above variables are related by the following equations:

λ =
c

f
and ∆τ =

2∆d

c
. (2.12)

Based on the previous equations, and knowing that the phase difference is proportional to
∆τ, it can be derived as follows

∆φ = 2πf∆τ

⇔ ∆φ =
2π2∆d

c
f ⇔ ∆φ =

4π∆d

λ
⇔ ∆φ =

4πvTc
λ

.
(2.13)

From (2.13) we can easily derive velocity using the phase difference as variable, as shown
in the next equation

v =
λ∆φ

4πTc
. (2.14)

Velocity resolution

In order for an FFT to separate two frequencies, the difference between them, ∆ω, must
be larger than 2π

N Fs rad/sample, where N is the number of samples. In the present context, N
represents the number of chirps used for FFT computation. The frequency is the derivative
in time of the phase, thus, we can assume the equality ∆φ = ∆ωTc. Based on these premises,
and considering equation (2.7), the velocity resolution (vres) is derived as follows

∆ω >
2π

N
Fs

⇔ ∆φ >
2π

TcN
Tc ⇔ ∆φ >

2π

N
⇔ 4πvTc

λ
>

2π

N
⇔ v >

λ

2NTc
=⇒ vres =

λ

2Tf
,

(2.15)

where Tf is equal to NTc (number of chirps multiplied by chirp time) which corresponds to
the frame length.

Maximum velocity measurable

An unambiguous measurement of velocity requires that the modulus of the phase is smaller
than π. From equations 2.13 and 2.14 we can derive the expression that defines how the
maximum speed of an object relatively to the radar can be calculated, using two chirps
separated by a time interval equal to Tc, considering that the expression in 2.13 has to be
smaller than π

vmax =
λ

4Tc
. (2.16)
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Discriminating two objects at the same distance

We have seen before that two objects that are approximately equally distanced from
the radar may not be distinguished. A possible solution is to increase the range resolution
by increasing the bandwidth of the chirp. Another option is to use the Doppler-FFT to
distinguish these same objects based on their respective velocities. By emitting and receiving
a succession of chirps, and if the objects move with different velocities and the difference of
velocities between the different objects is larger than the velocity resolution, the Doppler-FFT
will detect multiple peaks, and thus, the different objects are revealed.

2.4.4 Angle estimation and resolution

Angle estimation of a single target

A visual representation of the AoA is presented in figure 2.11.

Figure 2.11: Schematic representation of the AoA concept.

To be able to determine the AoA it is necessary to use more than one receiving antenna.
As discussed before, a small change in the distance of an object to the radar results in a
phase change on the received signal in each receiving antenna. This phase change enables the
estimation of the AoA. See figure 2.12.
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Figure 2.12: Two receiving antennas used to determine the AoA.

Consider the AoA as θ. Consider also d as the distance of an object being detected by
the radar to a receiving antenna. ∆d is the additional distance between this same object and
another receiving antenna (see figure 2.12). Through trigonometric calculus one can derive
the following equation:

∆d = l sin(θ), (2.17)

where l is the distance between the antennas. The phase change is derived as:

∆φ =
2πlsin(θ)

λ
(2.18)

Hence, the AoA can be computed as:

θ = sin−1

(
λ∆φ

2πl

)
(2.19)

Equation 2.18 shows that ∆φ is a nonlinear function of θ, and this nonlinearity increases
with the angle θ; sin(θ) is approximately equal to θ when θ has a small value. Thus, when
determining the AoA, the accuracy is higher when θ is smaller. In other words, the farther an
object is from the central axis of the radar transmitter, the larger is the uncertainty relatively
to its angle.

Angle estimation of multiple targets

When multiple targets are present at the same range and with the same velocity (station-
ary or not), using the aforementioned method based on one transmitting and two receiving
antennas is not sufficient to discriminate them in terms of AoA because both the objects ap-
pear in the same frequency bin of the 2D-FFT and the phase of their phasors is combined in
both the receiving antennas. In order to resolve them in terms of AoA it is necessary to have
a large number of receiving channels (physical or virtual receiving antennas). An FFT on the
sequence of phasors corresponding to the Doppler-FFT peaks across the sequence of channels
can resolve the multiple targets by measuring the corresponding phases at each channel. This
is called the 3D-FFT or angle-FFT, see figures 2.13 and 2.14.
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Figure 2.13: Two receiving antennas used to determine the AoA of two objects with the same
range and Doppler.

Figure 2.14: 3D-FFT to resolve targets in the angle domain. Each colored square represents
the location of a frequency peak. The 3D-FFT is applied over a large number of antennas,
therefore, some matrices on the image were occluded (with suspension points) to represent
this idea.
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Angle resolution

Angle resolution is the minimum necessary angle separation between two objects to appear
as separate peaks in the angle-FFT. Angle resolution is defined by equation 2.20

θres =
λ

Nal cos(θ)
, for |θ| < 90o, (2.20)

where θres represents the angle resolution, Na is the number of receiving antennas, l is the
distance between the antennas, and θ is the AoA. We conclude that a larger number of
receiving antennas yields a better angle resolution, and the angle resolution deteriorates as θ
increases.

Maximum angle measurable

As in the case of velocity, unambiguous measurement of angles requires that the modulus
of the phase change must be smaller than π. Hence, from equation 2.18 we can establish the
following condition

2πlsin(θ)

λ
< π. (2.21)

Rearranging the inequality above, and solving for θ we can derive the equation that
translates the maximum angle, θmax, that may be measured by the device

θmax = sin−1

(
λ

2l

)
. (2.22)

Thus, the maximum FoV of a radar is defined by the relation between the wavelength of
the signal and the spacing between the antennas. The largest FoV possible is ±90o, which
can be achieved with a spacing between the antennas of l = λ

2 .

2.4.5 Parameters trade-off

Optimally, we wish for a radar device with the best resolution and range in all the different
parameters (distance, velocity and angle). However, such is not possible due to the fact that
the increase of some parameters often results in the degradation of others. Table 2.2 serves
as a summary of the parameters that affect resolution and maximum value of range, velocity
and angle.

Requirement Resolution Range

Distance Bandwidth Chirp slope and ADC sample rate

Velocity Frame period Sweep tine

Angle Num. of Rx antennas and spacing Spacing between the Rx antennas

Table 2.2: Parameters that affect both the resolution and maximum value of the device’s
range, velocity and angle measured.

Consider that we have requirements for range resolution and maximum velocity mea-
surable. For this, we have to fix a value for bandwidth (range resolution) and sweep time
(maximum velocity). With this, we are also imposing a value for the slope of the chirp. Hence,
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if we also have a requirement for maximum range, the ADC of the device must be able to
support the necessary IF bandwidth, otherwise, a trade-off between slope and bandwidth or
sweep time has to be made.

Besides ADC sampling rate, other device specific requirements affect the parameters of
the chirps. One of these requirements is the memory of the device. In order to permit the
application of Doppler-FFTs, the radar must first calculate the range-FFTs and to store all
of them in memory for all the chirps in a given frame. This affects the number of chirps that
may be used in a frame. The device may also have specific idle times between chirps, which
may affect either the number of chirps in a frame, or the frame time.

2.5 Radar-based approaches for people detection and tracking

The present section describes the state of the art in terms of radar-based approaches for
people detection and tracking together with an overview of related applications for indoor
environments. In general, the approaches described in the literature to detect and track
moving persons can be divided into the following categories, depending on the main data
types and the signal processing techniques applied:

• Doppler-based detection followed by range/Doppler/azimuth based tracking;

• Range/Doppler-based detection followed by range/Doppler/azimuth based tracking;

• Returned signal strength-based detection.

The next subsections provides a detailed description of each one of the aforementioned
methods.

2.5.1 Doppler-based detection followed by range/Doppler/azimuth based
tracking

This approach separates moving people from clutter based essentially on Doppler data,
representative of the velocity of the target relatively to the radar; static objects can be easily
classified as clutter due to their zero-Doppler attribute while non-zero Doppler measurements
associated to people (or any other object) motion are used to initiate and propagate target
tracks in time.

To enable tracking, one has to perform data association. Recall the concept of frame
seen in the beginning of the chapter; a frame can be seen as a snapshot in time of the
environment which is under the FoV of the radar. The data association problem consists
in applying an interframe correspondence between different objects after detecting them in
successive frames. Data association performed for each target relies on the Doppler, but also
on information regarding the target position in 2D, including its range and bearing provided
by a phased array radar. This approach has demonstrated its efficacy to track multiple people
with a single, low-cost MIMO radar but it fails in two relevant aspects:

• It cannot distinguish moving people from other moving targets of approximately the
same dimensions (or radar cross section);

• It cannot detect or track a non-walking person even if he/she is performing some task
(seated or standing).
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This approach is illustrated by the demonstrations provided by the Texas Instruments man-
ufacturer of the xWR1642 and xWR1443 families of FMCW radars; see, e.g., [8] and [4].
Figure 2.15 shows a screenshot of the application developed by Texas Instruments for people
detection and tracking [9].

Figure 2.15: Screenshot of the TI application for people detection and tracking. Image from
People Counting User’s Guide, Texas Instruments, 2018.

The former approach is also adopted in the works of [10] and [11]. In [10], FMCW radar
technology is used, with a bandwidth of 100MHz, were the purpose is to minimize the effect
of radar multipaths, result of the signals reflected by humans that are also reflected (subse-
quently) in the walls and furniture, and to extract only the echoes relative to human motion.
The authors effectively achieve this through Doppler prepossessing. After applying an FFT
on successive reflected signals received in each observation time window (the authors call it
slow-time) to obtain beat-spectrum, another FFT is applied again, at each spectrum, to esti-
mate Doppler frequency at each range. Then, using a high-pass filter and inverse transforms,
stationary targets (walls and furniture) response can be removed. In [11], a pipeline char-
acterized by beamforming, background subtraction and Högbom CLEAN algorithm allows
to detect the targets in clutter intensive environments. The tracking stage is implemented
by a Markov Chain Monte Carlo Data Association (MCMCDA) together with an Extended
Kalman Filter. The authors use a low power MIMO FMCW radar constituted by 8 receiving
antennas and 4 transmitting antennas. The application is tested in indoor environments char-
acterized by a metal frame construction, which increases clutter and augments the challenge
of both detecting and tracking humans. The tests were performed with different trajecto-
ries and some with two people simultaneously walking in front of the sensor, and eventually
crossing paths. The results showed that the application was able to successfully track the real
targets.
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2.5.2 Range/Doppler-based detection followed by range/Doppler/azimuth
based tracking

This approach exploits the extended velocity profile (or velocity dispersion) characteristic
of human motion. In this context, the term profile is used to describe the physical and
kinematic properties of a target in the range, angle and velocity dimensions. This exploits the
fact that humans do not move as rigid objects but rather present typical oscillating movements
of their members and body; for example, there is a typical spreading and contraction pattern
of the velocity profile, with a sinusoidal character, in the case of movement of arms and
legs of a walking pedestrian. This approach is obviously more robust and holds a larger
application potential in most scenarios where humans are required to interact with other
mobile agents (including mobile robots, small vehicles, and other machines with moving parts
in general). Typically, during a short time interval (for example, a radar frame of a few
tens of milliseconds), walking pedestrians present Doppler profiles with multiple, distinct
velocity components centred on a single point in the range domain (due to his small velocity,
a walking human practically does not change its position during such a short interval). This
is in contrast with the compact, point-shaped profile presented by a rigid moving body (a
mobile robot or a car) in the Doppler domain due to its constant velocity during an equivalent
period of time.

An interesting implementation of the Range-Doppler detection approach is described in
[12]. The type of device used in this work is a 24GHz automotive radar sensor with a
bandwidth of 150 MHz, and the type of modulation applied allows for a simultaneous high
estimation accuracy of range and velocity. The authors apply a Support Vector Machine to
classify pedestrians. For such, they propose three feature extraction schemes with increas-
ing computational complexity and latency corresponding to increasing classification success
rates. The features used in the simplest implementation are the range-velocity profiles and
associated dispersion metrics extracted from the set of reflections obtained in a single radar
measurement. A more elaborate solution exploits data from multiple buffered radar measure-
ments. The most advanced implementation complements the radar returns with additional
feedback information provided by a Kalman-based tracker. In the three solutions, the true
positive rates for pedestrians are, 45%, 54%, and 61%, respectively.

Another potential application of the Range-Doppler detection approach consists of ex-
ploiting the patterns of hands movements of a person in order to detect her presence and
even to interpret his gestures (for example as remote commands for a robot). This method is
illustrated by the work of [13]. In this work, a hand gesture recognition system is developed
using a ML algorithm fed with data from a radar to permit steering small mobile robots
without direct human operation. The authors use an AWR1642 radar device from TI, using
a bandwidth of 2 GHz, which yields a range resolution of approximately 7.5cm. The velocity
resolution is 0.058m/s. The clutter was filtered by bypassing the objects with low peak value
(intensity). Because learning models demand that the data fed into the model is the same
size, and the point cloud retrieve by the radar may have a variable number of points, the
coordinates of each target are averaged into a single point. The several points in gesture
recognition are combined with each other yielding the average shape of the gesture. The
gestures considered are: swipe left, swipe right, push, and pull. The ML implementation of
gesture recognition relies on decision trees providing a mean success rate (true positives) of
96%.
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2.5.3 Returned signal strength-based detection

This approach exploits measurements of signal intensity returned from the target that
may be used directly, as in the case of classification schemes based on the computed absolute
RCS of targets, or indirectly by exploiting the relative intensity of the echos corresponding to
distinct scatterers of the same target. RCS is a property of the target’s reflectivity, commonly
used to detect and classify airplanes in a wide variation of ranges. In principle, the technique
can be applied to distinguish terrestrial targets, because cars, motorcycles, bicycles, and
pedestrians present distinctive RCS values. In practice, the method may be difficult to apply
due to the large dependence of RCS measurements on the orientation of the target relatively
to the radar; see, e.g., [14]. To the best of our knowledge RCS has not been applied before to
detection and tracking of people. The aforementioned indirect method is illustrated by the
collection of methods proposed in [15] that exploits the 2D radar intensity image of a small
object in order to derive a model of its bi-dimensional shape. This is combined with measures
of its Doppler spectrum distribution to build a feature vector used by a fuzzy membership
function that maps the acquired features onto the corresponding target class. As such, the
solution integrates techniques pertaining to the two above-mentioned approaches in order to
implement a robust classification system. The success rate (true positives) achieved with this
system varies between 40% and 95% depending on the orientation of the pedestrian trajectory
(from radial to lateral) relatively to the radar axis.

2.6 Micro-Doppler for people detection

Other related works (e.g. [16]) have focused on the use of micro-Doppler data to
detect human motions. Micro-Doppler (effect) is defined as phase shift on the returned radar
signal, that is a result of the target’s micro-motion dynamics, such as mechanical vibrations.
Despite the high potential of the approach, exploitation of this effect with the radar kits on
hand is not suitable for the current application given the demanding signal processing power
required to resolve the micro-Doppler components induced by the targets while simultaneously
dealing with the envisaged sensing requirements of maximum detection range, and maximum
unambiguous velocity of different moving objects. Another issue with this approach is raised
by the inherent vibrations of mobile robots (carrying the radar sensors) that induce micro-
Doppler effects susceptible of masking those of the targets.

2.7 Hardware and software tools

2.7.1 Board Texas Instruments AWR1642BOOST-EVM

The board used was the AWR1642BOOST-EVM (figure 2.16) from Texas Instruments,
that possesses an AWR1642 single chip 76-GHz to 81-GHz automotive radar, and integrates
also a C67x DSP and ARM R© CortexTM-R4F MCU. More details of this board are available
at the following link: http://www.ti.com/lit/ug/swru508b/swru508b.pdf. The AWR1642
board possesses buttons and leds which allow the programmer to quickly develop a simple
user interface; it has XDS110-based JTAG with serial-port interface that is used for flash
programming, a UART-to-USB to control, configure, and provide real-time data visualization.
It also has a CAN connector that enables direct interface with car units.
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Figure 2.16: Board AWR1642BOOST-EVM from Texas Instruments. Image from http:

//www.ti.com/tool/AWR1642BOOST, online, accessed July 2019.

Other alternative devices

Other alternative devices are common in the market. Texas Instruments itself has a
panoply of other similar devices with different valences. Examples are the AWR1443, the
AWR1243, and AWR1642BOOST-ODS. The devices are similar between them and also sim-
ilar to the one used in this work. The differences rest on technical details of the boards such
as the antennas positioning and the SDK used. The selected board was used because it had
already been demonstrated in basic demos by TI to be adequate for people detection, and to
be a a versatile board in terms of configuration for multi-purpose applications.

2.7.2 Matlab

The present work was partly accomplished using Matlab software. Specifically, the version
of Matlab used was Matlab R2018b, with the Robotic Systems Toolbox installed.

Matlab is a programming language and computer software that is particularly useful for
simulation of mathematical calculus. The use of native data structures such as matrices, and
the built-in functions for plotting data make it an adequate candidate to be used on the stage
of processing the collected data. The Robotics Systems Toolbox enabled the processing of
data acquired while using ROS.

2.7.3 ROS

ROS, which stands for Robot Operating System, is an open source middleware for robotic
systems. ROS is distributed under different versions. The version used in this work is the
melodic version, supported by the build system catkin. The ROS package rosbag is partic-
ularly useful. This package allows the creation of files with extension ”bag”, which are files
were it is possible to store the data received with the respective timestamps. Consequently,
this also permits to playback the data with the correct timing and enables the offline pro-
cessing of the data. ROS software was used to store the data captured and feed it to the
preprocessing algorithms.
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2.7.4 UniFlash 4.4.0

UniFlash is a software tool from TI that allows to transfer the binaries of the applications,
that one wants to execute, to the flash memory of a wide set of TI boards.

2.7.5 mmWave SDK Demo

The mmWave SDK Demo is an out-of-box application developed by TI that processes
radar data - performs FFT to resolve range and Doppler; if several antennas are connected,
it performs beam forming to solve for angle of arrival; applies CFAR for noise deletion, and
sends the data through TLVs to the host computer, via the USB port. TLV is a type of
data/message encoding, where the data is divided in three blocks: the type block, the length
block and finally the value block. The type block has a fixed length and defines the type
of information the message represents. The length field is also of fixed length, and defines
the length of the value field. Finally the value field contains the body of the message itself.
The mmWave SDK Demo is often used in conjunction with the application mmWave Demo
Visualizer to see in real time the result of this processing.

The way the data is processed by this application is defined in a configuration file (exten-
sion ”.cfg”). This file allows the user to send commands to the target board.
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Chapter 3

Machine Learning applied to radar
data

This chapter presents the main ML applications in the context of radar systems. First,
the key concepts of ML are clarified, and then the ML techniques applied to radar data are
described.

3.1 Basic principles of machine learning

With the developments on informatics and communication systems, the flow and quantity
of data, particularly on the Internet, has increased tremendously. Examples of this are the
fact that Walmart processes 1 million transactions per hour, and has databases containing
more that 2.5 petabytes (2.5 × 1015) of information; YouTube has one hour of video being
uploaded to its platform every second [17]. This enormous amount of data calls for methods
that can substitute the humans in the processing stage and to be able to extract patterns from
these data completely autonomously. Associated with this, is the problem of having tasks
for which it is not feasible to code a solution. Examples of this are spam filtering, face and
speech recognition, text translation, and so forth. Hence, it is necessary to follow a different
approach. ML allies the existence of such large amounts of data with the need to develop
algorithms that can find solutions to these problems in an automated manner, and to make
predictions of future data using knowledge acquired from training data. As stated in [17],
the goal of ML is to discover methods that can automatically detect patterns, and use them
to predict future data or other outcomes of interest. ML intuition comes from the fact that
virtually all learning problems can be formulated as (complex) mappings between inputs and
outputs. Mathematically speaking, we search for a ”good” function F : X × y → O, where X
is the set of all possible inputs, y represents the labels, and O the set of all possible outputs.
For the aforementioned examples, we want to map an email to spam or not spam, an image
to the identified faces, a speech signal to a text sentence, and so on [18].

The question is now how does a computer learn these mappings. The learning method
depends on the data that is used. If the data samples contain both the input and the output,
supervised learning can be applied. If only the inputs are available, then unsupervised learning
can be applied. For other cases, where there is no direct access to the correct output, but to
a measure of the quality of a particular output o ∈ O following some particular input i ∈ I,
then reinforcement learning is applied [18].
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3.1.1 Supervised Learning

In supervised learning, we have training data (that will be used to train the agent) encoded
as pairs (i,o). The function F : I → O is often dependent in a (sometimes large) set of
parameters, and the learning goal is to adjust these parameters in order to fit the data. To
further understand the concept of supervised learning, and of ML in general, some concepts
need to be clarified:

• Feature: Is a characteristic of the data, to be taken into account by the learning
method. For the case of spam filtering, it might be the type of words in the email, the
number of images, etc.

• Data sample: Is a sample of the data that is being used to train the learning model or
to test its ability to classify the data. For the example of spam filtering, a data sample
is a single email message.

• Label: Is the output for a data sample. For the example of spam filtering, it is spam
or not spam. Often, the term class is used as a synonymous.

• Dataset: Is the collection of all data samples, along with the respective labels for the
case of supervised learning, or without them, for the case of unsupervised learning.

Learning models are methods to determine the class of functions from the dataset, while
the learning algorithm is how the parameters of the equation are determined to best fit
the data. In the context of supervised learning there are two types of predictive models:
classification and regression.

Classification

Classification is used in cases where the label is defined by a discrete (nominal or categor-
ical) set of values. Graphically speaking, for the case of classification we want to find the line
that separates the several classes at play. A visual representation of such line is presented in
figure 3.1.

Figure 3.1: Classification applied to a dataset with two distinct classes (and two features).
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If the number of classes is equal to 2, this is called binary classification. When there
are more than 2 classes, then it is called multiclass classification. When the labels are not
mutually exclusive, then we are facing a multi-label classification problem, where multiple
labels may be assigned to a single data sample.

Regression

Regression is used when the label is defined by a continuous interval of values. Graphically,
we want to derive the line that best translates the evolution of the data. In figure 3.2, the
line generated aims at best fitting all the outputs for the respective inputs. According to this
model, further inputs will have an output that rests around the regression line.

Figure 3.2: Linear regression applied to a dataset. Source [19].

An example of regression is to predict tomorrow’s stock market price given current market
conditions and other possible side information [17]. A variant of regression, known as ordinal
regression, occurs when the label space has some natural order, like grades A to F.
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3.1.2 Unsupervised Learning

In unsupervised learning, also referred to as knowledge discovery, the goal is to determine
if there is any relation between the different features, and to segment the data in different
groups, or, in other words, cluster the data in groups, and detect outliers [18]. The classes
(or clusters) in which the data is divided are not explicit a priori, and there is no obvious
error metric, unlike in supervised learning where we can compare the output or estimation
of the model with the real value [17]. Figure 3.3 shows the data before the application of
unsupervised learning, and the result after. As shown, points near each other were assigned
to the same cluster, while far away points were assigned to different clusters, which resulted
in two different clusters being discriminated.

Figure 3.3: Data before being clustered (left) and after being clustered (right). The two
clusters generated are represented with different colours.

Unsupervised learning is closer to the way humans and animals learn. It is also more
widely applicable than the supervised version, due to the fact that labeled data is expensive
and requires a human expert to label it [17].

3.1.3 Reinforcement Learning

As stated earlier, in reinforcement learning there is no direct access to the correct output
for a given input, but there is however a measure of the quality of that output. This is often
referred to as the reward, which can be positive or negative [18]. Reinforcement learning
functions as a loop, where the intelligent agent interacts with the environment - percepts the
state of the world, executes the action it considers to be the most appropriate one, and is
then rewarded. Note that the notion of reward is different from its original meaning. As said
before, this reward can be negative. The goal of the agent is to perform the actions that
maximize its cumulative reward over time.

The values of the reward are related to the purpose of the task at hands. Consider a
system that is learning to play some game, for example chess, and receives negative reward
when it looses a piece, and positive reward when it eliminates a piece from its opponent.
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3.2 Machine Learning techniques applied to radar data

A surge of interest in ML for radar has been witnessed in the last few years. This is
illustrated in the recent special issue [20] containing a collection of papers that illustrate
the state of the art on ML applications to radar and radio communications; the most pop-
ular classes of algorithms employed are deep learning and reinforcement learning but
some classical approaches such as support vector machines, are also included. Among the
problems addressed in the papers are: learning of operational parameters of radio-frequency
(RF) devices and communication channels (RF interference, target, and clutter effects) for
improved medium access control; radar waveform classification; identification and adaptation
of network topology. The special issue also addresses the need for publicly available reposito-
ries of sample RF data for ML training and validation and presents some pioneering efforts
developed towards the constitution of such knowledge base. However, the number of ML ap-
plications devoted to object recognition and tracking is still scarse. The operation of radars
installed on mobile robots, particularly in indoor environments, is also still poorly covered in
the literature. Some notable exceptions are [21], [22], and [23].

A comprehensive revision of the use of radar systems together with the application of ML
for people detection tasks can also be found in [24]. The authors present the main applications
of radar in indoor environments, and detail different types of radar feature extraction and
types of features. Examples of this are handcrafted features, such as physical features
like the Doppler bandwidth (characteristic of the target motion) or the stride rate; speech-
inspired features like the mel-frequency are also a possible type of feature to extract. Other
type of feature extraction is data-driven feature learning like the application of Principal
Component Analysis (PCA), a technique of data transformation that allows to derive the
directions in feature space with the most variance. In that manuscript the authors study
the performance of different Deep Neural Network learning models, such as autoencoders and
Convolutional Neural Networks.

3.3 Software tools

3.3.1 Python

Python is an interpreted, high level object oriented programming language, that has been
widely used because of its simple syntax. The version of this language, that was used in this
work, was Python 3.6. scikit-learn (version 0.20.3) is a popular open source python library
focused on ML. It provides an extensive set of APIs for data mining and data analysis. This
tool was used to implement and test the learning models presented in this work, and also to
implement the feature extraction methods on the radar data.
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Chapter 4

People detection with static radar

To discriminate a moving person from other targets, we intend to establish parameters
that allow to distinguish the classic motion of people from the motion of other targets, and
use them to feed and train classification models. We rely on the Doppler property of the
data for this. The purpose is to determine how the Doppler varies along time and to try to
visualize patterns of motion. In this context, as it is possible to store the properties of each
point of the point cloud along the several frames, it is intended to see the distribution of the
values of Doppler of the points, while following a specific path. To visualize this distribution,
the data is plotted in 3D histograms, with the first dimension being the Doppler value, the
second dimension the time instant or frame, and lastly, because it is a histogram, the third
dimension is the number of points within a given Doppler range (bin) at each instant of time.

To analyze this pattern and to collect the data needed, several tests were performed. In
the following subsections of this chapter the setup and the tests are thoroughly described, as
well as the mechanisms used to segment the point cloud and store the data. A visual analysis
of the data is also performed.

4.1 Scenario configuration

Firstly we define the configuration used for data acquisition. The tests with the radar
were performed in a wide open area, free of obstacles. The host computer communicates with
the sensor via a Raspberry Pi 3 (model B+) connected directly to the sensor. The radar is
placed at a height of 1.9 meters (in order to stand taller than most people) with a downwards
inclination of about 10 degrees. This placement of the device aims at minimizing the number
of people that can be occluded by other people present in the area. Figure 4.1 shows the
physical setup of the radar device placed on the tripod.

In table 4.1 details of the chirp used can be found.
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Figure 4.1: Radar device placed on the tripod, connected with the Raspberry Pi device.

Chirp Parameter (Units) Value Chirp Parameter (Units) Value

Start Frequency (GHz) 77 Maximum unambiguous range (m) 5

Slope (MHz/us) 60 Maximum radial velocity (m/s) 5.2936

Samples per chirp 128 Azimuth resolution (degrees) 14.5

Chirps per frame 256 Velocity resolution (m/s) 0.0827

Frame duration (ms) 50 Number of transmitting antennas 2

Sampling rate (Msps) 2.5000 Range resolution (m) 0.0488

Bandwidth (GHz) 3.0720 Number of receiving antennas 4

Table 4.1: Chirp parameters. A similar table to this one can be found in the Texas Instruments
documentation.
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4.2 Tests performed

In order to enable a learning model to distinguish people from other targets, representative
data sets of both classes of targets have to be provided. Therefore, tests were made with
people, but also with other targets, such as dummies with a dimension close to that of an
adult. Furthermore, with the intent of making this application as inclusive as possible, people
with limitated mobility were also taken into account by performing tests with a person driving
an automated wheelchair.

Each elementary test in this experiment consisted of a target moving in a specific direction.
In the test field, 4 types of directions were considered: from one corner to the opposite one
(left to right and right to left); from the top centre of the field to the bottom centre; from
the lateral centre of the field to the other lateral centre. For each direction, the two ways
were considered, yielding therefore a total of 8 different trajectories. For each trajectory,
10 different tests were performed, for a total of 80 tests for each specific target. Figure 4.2
shows a schematic representation of the trajectories traversed by the targets used in the tests.
Notice that, although the trajectories are represented as straight lines, while performing the
data acquisition tests, it is not guaranteed that the agents will travel straight lines. This is
only an approximation of the real trajectories.

Figure 4.2: Schematic of the test field with the trajectories considered represented by bidirec-
tional non-black arrows, and the limits of the FoV represented by circumferences. The length
of each path is represented in meters.

Three different types of targets were considered: person walking, person in a wheelchair,
and two different dummies. A picture of one of the dummies is shown in 4.3, as well as the
wheelchair and the radar device.
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Figure 4.3: Wheelchair (left) and one of the dummies (right) used in the tests.

4.3 Point cloud retrieved from sensor

Using the AWR1642 board, for each point of the point cloud, the device provides (among
others) the following data that is used by the current application:

• Range: the radial distance (meters), applied in the clustering of the point cloud;

• Relative intensity: the relative intensity of the signal in that specific point, used in
the computation of the RCS (feature extraction);

• Radial velocity (Doppler): in meters per second, used in the computation of the
velocity histograms to be used in the classification stage (feature extraction);

• Angle of arrival (azimuth): the angle that the point makes with the central axis of
the radar transmitter, in degrees, used to compute the projection of the radial distance
in the axis of the radar coordinates frame. Applied in the clustering of the point cloud.

In any frame, the points of the point cloud closer than 0.5 meters from the sensor are elimi-
nated. The reason behind this is that the device can not correctly distinguish points too close
to the device, hence, bellow a range of 0.5 meters, the radar is prone to detect a lot of clutter.

After retrieving the point cloud and the associated frames and recording these data, we
can playback the tests made and visualize the point cloud. Figures 4.4 and 4.5 show two
consecutive snapshots of two point clouds retrieved from different frames on the same test.
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Figure 4.4: Snapshot of the point cloud of a person walking in front and towards the radar
(path C), with the right side of the point cloud more advanced than the left side.

Figure 4.5: Snapshot of the point cloud of a person walking in front and towards the radar
(path C), with the left side of the point cloud more advanced than the right side.

The test consisted in a person walking in front and to the radar (position (0, 0) in the
graph.). The first and second snapshot are a few frames apart. The first snapshot shows
a right side to be more advanced (closer to the horizontal axis) than the left side. This
is resultant from the movement of the arms; in this case, the left arm (not the right arm,
remember that the person is moving to the (0, 0) position) of the person performing the test
is advanced relatively to the body, and the right arm is lagging behind the body. Opposite to
this, in the second snapshot the left side is more advanced, which results from the fact that
the right arm is advanced relatively to the body and the left arm is lagging behind the body.
This means that we can visually observe the pendulum like motion of the arms.

The point cloud of a person walking should have a periodic dispersion (when the arms
and legs are further away from the body) and contraction (when the arms and legs are in
line with the rest of the body) of the points. Other targets, such as robots, which move as a
block, do not have this periodic dispersion and contraction of the points of their point cloud.
Instead, the points of their point cloud will always be concentrated around a central position.
Figure 4.6 serves as an illustration of this.
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Figure 4.6: Illustration of a person walking and a robot moving and the respective point
clouds.

4.4 Clustering - DBSCAN

When performing measurements using the radar, clutter may coexist with the point cloud
of a target of interest. It is then important not only to detect this clutter, but to eliminate it,
ensuring that these points will not be included in the creation of the dataset. The obvious way
to segment the point cloud corresponding to a target is by using an appropriate clustering
method. Clustering methods have the advantage of being able to determine clusters with
an arbitrary shape (spherical, linear, elongated, etc), and such is the case of the type of
point clouds examined in this work. The method chosen in the current implementation was
DBSCAN (Density-based spatial clustering of applications with noise) [25]. DBSCAN is a
clustering method that relies solely on two base parameters: minimum number of points and
maximum distance between them for a set of points to be considered a cluster. Henceforth,
minimum number of points will be designated as MinPts and the maximum distance will
be designated by Eps. DBSCAN intuition follows the rationale used by humans to visually
detect clusters in a point cloud. Take, for example, figure 4.7; the figure contains 3 images of
point clouds, each one with a different number of clusters, with different forms and densities.
A human being can rapidly identify all of the clusters in the images, because all of them have
typical densities that are constant through the cluster.
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Figure 4.7: Three different point clouds with clusters of different forms and densities. Source
[25].

This is exactly what DBSCAN tries to uncover. The key ideas of DBSCAN is that, for
each point, in a given radius (or Eps) the neighborhood has to contain at least a minimum
number of points (MinPts), or in other words, the density in the neighborhood of a given
point has to exceed some threshold. The shape of a cluster is defined by the choice of the
distance function used, as well as the value attributed to the Eps and MinPts [25]. Note
that the DBSCAN algorithm can deal with any distance function (euclidean, Manhattan,
Chebyshev, etc) and with any dimensional space (1D, 2D, 3D, and so on). According to the
reference on [25], there are 6 definitions one has to consider in order to understand DBSCAN:

1. The Eps neighborhood of a point q is defined by every point that stands at a distance
from q that is smaller or equal to Eps;

DBSCAN algorithm makes a distinction between core and border points. Core
points are those that are located in or near the center of a cluster. These points have a
high density of points on their surroundings. Border points, as the name suggests, are
points located near the border of the cluster, and so, are not surrounded by a density of
points comparable to the core points. As such, in order for border points to obey to the
aforementioned condition, we would have to set the value of MinPts to a particularly
small value, which won’t be representative of the cluster. The next definition aims at
solving this issue, while using an adequate value for MinPts.

2. A point q is directly density reachable from a point p if the distance from q to p
is smaller or equal to Eps, and if the Eps neighborhood of p has at least a number of
points equal to MinPts;

3. A point q is density reachable from a point p if there is a chain of points p1, p2, ..., pn,
such that pi+1 is directly density reachable from pi;

4. A point p and q are density-connected if there is a point o such that both p and q
are density reachable from o;

5. Considering a point cloud, a cluster is defined as a non-empty subset of points that obey
the two following conditions:

For any point p and q, if p belongs to cluster C, and q is density-reachable from p,
then q also belongs to C ;

If a point p and q belong to C, then p is density connected to q.

6. Noise is defined as any point in the point cloud that does not belong to any cluster.
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4.4.1 Algorithm inner working

The way the algorithm works, and how it is implemented particularly in the context of
this dissertation, is described in this subsection. The algorithm starts by choosing a point
randomly. Then, all the points located at a distance from the original point smaller or equal
to Eps are counted. If the counted number of points is larger or equal to MinPts, then the
original point is considered part of a cluster, and their neighbors are also part of that cluster.
After, the points in the vicinity of each of the neighbors of the original point are determined.
This means the cluster is being expanded, until the border points are reached. At this mo-
ment, the cluster is defined. This process is applied to the other points of the point cloud
which have not been attributed to any cluster. When all the points have been processed, the
ones that were not associated to any cluster are considered noise points.

The number of clutter points in the point cloud is unpredictable, and nothing can assure
that, while using the aforementioned parameters for DBSCAN, there will not be more than
one cluster detected. To deal with this issue, because the tests are performed with one target
at a time, we consider that even if multiple clusters are detected, the cluster of interest will be
the one that has the largest number of points (the largest cluster), and we will only consider
for analysis the data from the points that belong to that same cluster.

4.4.2 Choosing the values for Eps

There are several approaches to assign the best values to the two parameters that define
DBSCAN, and the vast majority of them are empirical. The parameter MinPts is defined
according to some established rule, based on experiments, but Eps can be calculated using a
well defined theoretical rationale. Inside the several clusters, the distance between a point and
its closest point is constrained in a small interval of values. However, the distance between a
noise point and its closest point is very large when compared to the previous case. Figure 4.8
depicts a graph that shows how the distance increases, from the point that has the smallest
distance to its nearest neighbor, to the point that has the largest distance to its nearest
neighbor. Until the first 91 points the Eps almost does not increase, which may indicate that
the points are all located inside clusters, where the distances have small variations. From
this point on, the distance increases rapidly, which indicates that those points are now in the
domain of the noisy points. The chosen Eps should be the one that is better able to allow the
detection of the possible clusters, and make a distinction between them and noise. Therefore,
in this case, the Eps should be between the one of the 91th point and the 92th point. This
part of the graph is defined as the ”elbow” of the graph. Notice that this approach is only
effective in simplified scenarios, such as the one considered in this work. In more complex,
cluttered scenarios, where the clusters are not so clearly separated, the elbow of the graph
may not be easy to identify.
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Figure 4.8: Distance of each point to its closest neighbor sorted in ascending order.

To determine an adequate Eps, we should then calculate the elbow of the graph. This
can be seen as a good approach, because it dynamically calculates the most well suited Eps.
However, because the number of points and their disposition on the radar FoV changes from
frame to frame, Eps needs to be re-calculated in every frame. This implies an increase of com-
putational complexity which decreases execution speed and can be particularly problematic
in the context of a real time application. For this reason, in the present application, instead
of dynamically calculating the Eps, the parameter values were chosen based on practical
experiments. The values are MinPts = 5 and Eps = 0.5.

4.5 Data acquisition and feature extraction

The velocity of the points belonging to the point cloud of a frame are processed to build
a Doppler histogram. Based on this, the target kinematics is represented as an image by the
concatenation of the Doppler histograms of the successive point cloud of all frames. For a
better visualization, the values of the bins are color coded. In this work, the term first order
features is used to define a type of data that is extracted through basic signal processing of
raw data samples. Based on this definition, the present method considers two types of first
order features: the Doppler bins resulting from the histogramic representation and the RCS.
Based on this approach, the data acquired in each test is transformed into a single dataset
constituted by 151 features (150 velocity bins plus one value for RCS) per frame and with a
varying number of data samples equal to the number of frames. A visual representation of
an offline implementation of this data processing scheme can be found in figure 4.9.
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Figure 4.9: Schematic representation of data acquisition and feature extraction process. No-
tice that the attribution of a label to a frame is supervised by a human agent.

In the current experiment, the complete dataset consists of a total of 24455 frames. Out of
these 24455 frames, 11285 correspond to people moving, and the remaining 13170 correspond
to other moving targets. Table 4.2 shows the distribution of frames for the different paths
and different agents. Mannequin 1 is the term used to define the mannequin shown in figure
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4.3, and Mannequin 2 is the term used to define the other dummy.

People walking People in wheelchair Mannequin 1 Mannequin 2

Path A 2111 1660 1756 1240

Path B 1158 1454 1819 1334

Path C 1264 1561 1992 1810

Path D 940 1137 1591 1628

Table 4.2: Distribution of frames for different paths and agents. Mannequin 1 is the man-
nequin used (shown in figure 4.3) and Mannequin 2 is the other dummy used.

4.6 Representation of movement

The data is recorded using ROS, and is stored in a file with extension ”.bag”, which allows
the data to be later processed and also played back with the original time intervals. The
pattern of velocities of the different parts of the body of a walking person can be summarized
by a histogram representative of the distribution of the Doppler measures acquired in each
frame. A histogram is then a snapshot of the kinematic state of a person at a specific time.
The concatenation of the histograms obtained for successive frames provides a 3D histogram
in which the first dimension represents Doppler, the second dimension the frame (time), and
the third the number of points. The limits of the velocity axis, +/ − 6 meters per second,
were chosen considering that in the indoor scenario under study, targets will not move with
higher velocities. As such, the histogram is constituted by a set of 150 bins in order to obtain
a velocity resolution of about 0.08 m/s, which is the velocity resolution of the radar device
and the one used with the present device configuration. In each frame, the total number of
points is normalized (to 1), which results in the summation of the points across the several
bins in the same frame yielding 1. According to this representation, figure 4.10 shows the
typical pattern of a person walking. In this specific case, the person was moving in front and
towards the sensor (path C).

Figure 4.10: Histogramic representation of Doppler measures of a person walking in front
and towards the radar (path C). The colour bar on the right of the histogram represents the
absolute number of points.
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The plot clearly shows the dispersion of velocity values associated to the walking person.
As can be seen in figure 4.10, the points are centered around the −1 m/s value, but there is
a dispersion both in the negative and positive direction with a periodical variation. This is
in accordance with the motion of a person. The majority of the points, which are a result
of reflections on the torso, have all the same speed. The points corresponding to the arms
and legs have different velocities from the rest of the body. As the arms travel in opposite
directions at each moment, they generate a dispersion both in the positive and negative
direction. For other directions, such as diagonal or transversely relatively to the radar (paths
A, B and D), the pattern is similar, although with different amplitudes.

Differently from the former, the motion pattern of a non-person target, for example a
mannequin, presents a reduced Doppler variability. As the mannequin moves as a block, the
great majority of the points will have the same Doppler value (like the torso of the person in
the previous case). As such, the visual representation of the Doppler dispersion over time will
result in almost single line, with barely no dispersion in the Doppler axis. Figure 4.11 shows
the Doppler distribution for the case of the mannequin. However, notice that there is a small
dispersion of Doppler of the mannequin, which is caused by small oscillatory movements of
its pending arms combined with a certain component of rotation of the body during towing
of the dummy.

Figure 4.11: Histogramic representation of Doppler measures of a mannequin moving in front
and towards the radar (path C). The colour bar on the right of the histogram represents the
absolute number of points.

The pattern of motion of a person moving in a wheelchair is similar to the one of a
mannequin. A person moving in an automated wheelchair doesn’t show movement of arms
and limbs, and so, he/she moves as a block. Figure 4.12 shows the typical motion of a person
in an automated wheelchair.
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Figure 4.12: Histogramic representation of Doppler measures of a person in an automated
wheelchair moving in front and towards the radar (path C). The colour bar on the right of
the histogram represents the absolute number of points.

4.7 Calculation and usage of RCS as a feature

We have previously introduced the concept of RCS. In this work, as it was not possible
to find a clear definition of the RCS in the TI documentation, the formula shown in equation
(4.1) was derived from basic radio-frequency principles to compute the RCS. The expression
derived is

σ =
(4π)3d4Pr
λ2GtGrPt

, (4.1)

where d denotes the distance to the target (the range mentioned in section 4.3), Pt and
Pr represent the power emitted by the radar and the received power, respectively, λ is the
wave length of the radar signal, and Gt and Gr are the transmission and reception gains,
respectively1.

The value for Pt is 12.5 dBm, which is later converted to Watts. The transmission and
reception gains, Gt and Gr, have the same value of 9dB. Because the radar chirp used has a
bandwidth of approximately 4 GHz (sweeping the frequencies between 77 GHz and 81 GHz),
in order to calculate the RCS, the wave length used is based on the central frequency, 79 GHz,
which corresponds to a wave length of 0.0038 meters. Since the received signal is attenuated
by a series of filtration steps in the DSP pipeline of the radar, the power of the digitized signal
after FFT processing needs to be compensated in order to obtain the total power reflected
by the target. This compensation is implemented according to equation (4.2) as explained

1The values of RCS effectively used in this work were amplified (multiplied) by a factor of 2.4. This is an
unwanted effect due to an error present in the Matlab code used to calculate this feature. The classification
tests were repeated using the values of RCS without the amplification of this factor. The results achieved were
similar to the ones attained with the multiplication factor (variations of less than 1% which are considered
negligible).
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below; see also [14].

Pr = PFFT − [20log10(2(nbits−1)) + 20log10(
N−1∑

i=0

ωi)− 20log10(
√

2)], (4.2)

where PFFT stands for the power of the signal after ADC and FFT processing (the relative
intensity mentioned in section 4.3), nbits is the number of ADC bits used (12 in this case),
the ωi summation compensates the attenuation effect of windowing prior to the application
of the FFT. Equation (4.2) is used as a correction factor [14]. The resulting value for power
received is later converted from dBm to Watts.

The RCS for a target is usually defined as a single value. However, a target generates
multiple points that appear in the point cloud, and the RCS is calculated for each one of them.
To extract a single value for RCS, the average of the target’s RCS is derived, by calculating
the mean of the RCS of all points in the point cloud of the target. The RCS is calculated in
every frame, and thus can be different from frame to frame.

Figure 4.13 shows how the values of RCS evolve as a function of distance, for the three
types of targets: people, people in wheelchair, mannequin. Two immediate conclusions can
be deducted from the graph. The first one is that the RCS increases with distance, due
possibly to a overcompensation by a nonlinear gain of the signal spread loss associated to
the distance, and a linear amplification introduced by the artificial factor of 2.4, in equation
(4.1). The second is that the RCS from the mannequin or the wheelchair is systematically
and significantly different from the one of a person, but the RCS of the mannequin and the
wheelchair does not differ significantly. Thus, the RCS can be a relevant feature to distinguish
a person from a mannequin, but not a mannequin from a person in a wheelchair. For other
trajectories, this pattern holds.

Figure 4.13: Representation of the RCS values as a function of distance to the radar. The
path being traveled is in front and towards the radar (path C). Even at a short range there is
a clear difference between some types of targets, such as the wheelchair and the mannequin.
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4.8 Learning models applied

The learning models used in this work are implemented in the well-known Python ML
toolkit named scikit-learn. Each model is dependent on a set of parameters. The values
chosen for each of the parameters of each model will be presented in the sections detailing
the performance of each one of the models in the generated dataset. The parameters for
which the respective value is omitted are considered to have the default value defined in the
aforementioned library.

In the subsequent section, all the models go through a phase of training and cross val-
idation. The models then go under a testing stage, to derive their generalization error. In
this work, 75% of the dataset (equivalent to 18341 frames) were used for training and the
cross validation stage, and the remaining were applied in the testing stage. The dataset was
previously shuffled, and the division in cross validation and test set was done in a stratified
manner. When the datasets are stratified, it means that the percentage of each class in both
the training and test set is equal to the percentage of each class in the original dataset. In
this specific context, stratified sampling is not strictly necessary, because the dataset is fairly
balanced; 53.9% of the data samples are from non-people moving, and the remaining 46.1%
is related to people moving. This means that only by performing random sampling we would
probably achieve in both the cross validation and test set the same distribution of samples as
in the original dataset. However, if the dataset is unbalanced, then the distribution of classes
in each of the sub datasets might be very different from the original one. Although this last
case is not the one we are dealing with, stratified sampling can be still applied just to make
sure the distribution of classes remains equal as the original one.

4.8.1 Artificial Neural Network

Artificial Neural Networks (ANNs) are a class of learning models applied in a wide range
of scenarios, that has shown impressive results. ANNs are defined by being a structure
constituted of several layers, each embodied by a set of processing units called the neurons
or nodes. Each node in one layer connects with all the other nodes in the next layer, as
depicted in figure 4.14. ANNs were inspired in biological neural networks, thus the strong
resemblance with them. The main advantages in the use of ANNs are its capability to deal
with non linear problems and the high processing parallelism that is evident in each layer by
the existence of more than one node.

An ANN works by receiving, in each node, the outputs from the previous nodes; these
outputs are combined in a function called activation function, and are passed on to the next
node (in the next layer). Each input is associated with a weigth, meaning that the connection
between a node and one in the next layer has a respective weight. The training of the neural
networks consists in adjusting the connection weights in proportion to the difference between
the produced output and the correct one - the error [26]. The error is thus a function of the
weights, that yields an hypersurface with an irregular shape, with many peaks, saddle points
and minima. With the aid of an adequate learning algorithm, the global minima, or a local
minima of this function can be found [26].
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Figure 4.14: Structure of an ANN, with 1 hidden layer of 2 nodes, plus an input layer with 3
nodes and an output layer with one node.

4.8.2 Random Forest

In order to understand the concept of Random Forest (RF), it is convenient to have an
adequate grasp of what is a decision tree. A decision tree is a decision model used in ML
[27]. In the context of decision trees, a node represents a test on an attribute, and each branch
represents a specific outcome of that test. Each set of nodes that have the same number of
ancestor nodes constitute a level of the tree; each node without descendants is called a leaf
node. At each level, one or more features of the input data are used to perform the partition.
Each leaf node represents a possible output. A generic representation of a decision tree can
be found in figure 4.15.

Figure 4.15: Schematic representation of a decision tree.

Decision trees have the advantage of being easily interpreted by humans, handle both
numerical and categorical data and to mimic the way humans think and reason. Nonetheless,
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decision trees suffer from high variance; the decision trees output depends on the feature that
is used at each level. A method with this characteristic is not robust. To reduce variance, one
possible approach is to train different trees on different training sets and then to take into
account all the outputs by averaging them all (numerical data) or by choosing the output
with the majority of the votes (categorical data). This increases the statistical accuracy of
the decision trees. The problem with this approach is that often there is no access to several
training sets. To solve this, we can use bootstrap, which consists in random sampling with
replacement. The method of using bootstrap to create several training tests and then train a
plurality of decision trees is called bagging. Although bagging decreases variance, it has the
disadvantage of creating similar trees. Suppose there is a very influential (or strong) feature.
Most of the trees will choose this feature for the top split. Thus, as said, the trees generated
will be similar. Hence, to tackle this issue, RF are used. In the RF model, each tree only
considers a subset of the features when deciding which feature to use in a split. Considering p
as the total number of features, the typical number of features considered at each split when
applying the RF model is approximately equal to

√
p. This process serves the purpose of

decorrelating the trees, reducing variability and hence make the model more reliable.

4.8.3 Model’s hyperparameters and parameters

When training different models, one concern is the hyperparameter tuning. Hyperpa-
rameters are the parameters that need to be defined before training the model, or in other
words, parameters that are not fitted by the model whilst training. On the other hand, pa-
rameters is the name used to define the parameters that are learned from the training data.
In the case of a neural network, the parameters are the weights of the network, that will be
fitted during training in order for the model to achieve the best possible performance. The
hyperparameters can be the number of hidden layers, the number of hidden nodes in each
hidden layer and the activation function in each node.

As mentioned, the hyperparameters are not learned from the data available. Furthermore,
there is no defined formula for the definition of the hyperparameters. The definition of
the hyperparameters is empirical, meaning that only through experience it is possible to
reach an adequate value for it. There are different searching techniques to explore the best
hyperparameters. At this stage of the work, we will perform manual search, which means to
manually test a set of different hyperparameters and verify what are the ones that work best
for the available data.

4.9 Validation and selection of best model

4.9.1 Cross Validation

After training (possibly) several models, it is necessary to select the best model. One
way to achieve this is by training the models and then derive its misclassification rate on
the same training stage. Misclassification rate is defined as the number of wrong outputs
divided by the total number of outputs. However, as the model uses this data to train, when
testing, this data is not new to the model, and so, it will have a higher probability of being
correctly classified. What is really needed is to determine the generalization error, that
is, the misclassification rate on data the models have not processed before [17]. In order to
compute this generalization error, the model must be tested in a dataset that has not been
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used in the training stage. To achieve this, we can partition the dataset used in training and
validation set. The validation set is used to select the best model. The original dataset can
be further partitioned in a test set. After the best model is selected, we can train it using
both the training and cross validation set, and test it on the test set, and extract its final
estimation accuracy.

K-Fold Cross Validation

The aforementioned approach is well-suited when we possess a large dataset. Otherwise,
when partitioning the dataset into training, validation and test set, we might not have enough
data samples in the training set to train the models, and won’t also have enough data in the
validation and testing set to determine its future performance. A possible approach to solve
this is K-Fold cross validation. The intuition of K-Fold cross validation consists in dividing
the dataset into K folds. For each fold k ∈ {1, ...,K}, we train the model in all the folds but
the kth one. The kth fold is used to test the model, in a round-robin fashion [17]. Figure
4.16 shows a schematic representation of this rationale; the dataset is divided in four folds,
and in each iteration we test the model in each different fold, for a total of 4 iterations.

Figure 4.16: K-fold cross validation schematic.

Then the error is stored when the model is tested in each fold, and it is averaged. This
will be the test error.

In the present work, the part of the dataset that is used for K-Fold cross validation (75%
of the original dataset) will be divided in 5 folds, which is a typical number of folds used.

4.9.2 Artificial Neural Network

The first model applied was an artificial neural network, using as features the histogram
data and the RCS. The chosen values for the hyperparameters were the following:

• Activation function: ReLU, which stands for Rectified Linear Units, is a function
defined as f(x) = max(0, x)

• Number of hidden layers and number of neurons: 4 layers, with (from the first
layer to the last) 100, 70, 50 and 20 neurons

• Learning rate: 0.001
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• Maximum iterations: 10000

• Random state: 42

In this work we define the performance of the models as being the accuracy. Following
the standard nomenclature of ML, accuracy is defined as the quotient between the total
number of correctly classified samples and the total number of samples, TP+TN

N , where TP
and TN stands for true positives and true negatives (respectively), and N represents the total
number of examples. The average performance attained was 84.9%. The average error is the
complement of this value. When training and testing the model, if we remove the RCS from
the feature space and re-trained the model, the average performance dropped to 82.5%.

4.9.3 Random Forest

The second learning model applied was a RF, with the following hyperparameters:

• Number of estimators: 500

• Maximum depth: 600

• Random state: 0

The average accuracy attained was 86.2%, which is better than the one achieved by the
neural network. As in the case for the neural network, when the RCS is not used the accuracy
decreases, in this case for a value of 83%.

4.9.4 Selection of best model

Given the results of the K-Fold cross validation, we can conclude two things: the first one
is that the RF model is superior to the ANN both in the case the RCS is used as a feature and
in the case the RCS is not used; the second conclusion is that the RCS has a visible impact
on the performance of both models, and its absence decreases the accuracy of both models.

Based on the above described results, the model chosen is the RF. This model is re-trained
using the train and validation set, and tested on the remaining 25% of the dataset. The final
performance achieved is 86% using the RCS, and 82.9% without RCS. Table 4.3 shows the
confusion matrices of the RF. Table 4.4 shows the confusion matrices of the ANN when trained
with 75% of the dataset and tested in the remaining 25%. The performance attained with
the ANN was 85.9% using the RCS and 81.5% not using the RCS. Notice that, although only
the accuracy is referenced, all the other metrics (such as precision, recall, etc) can be derived
from the confusion matrices.

Predicted Not Person (with RCS) Predicted Person (with RCS)

Not Person 2916 387

Person 470 2341

Predicted Not Person (without RCS) Predicted Person (without RCS)

Not Person 2821 482

Person 563 2248

Table 4.3: RF confusion matrices.
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Predicted Not Person (with RCS) Predicted Person (with RCS)

Not Person 2890 413

Person 448 2363

Predicted Not Person (without RCS) Predicted Person (without RCS)

Not Person 2732 571

Person 559 2252

Table 4.4: Artificial neural network confusion matrices.

4.10 Discussion of results

From the results achieved in this chapter, several conclusions can be deduced. The DB-
SCAN algorithm was considered an adequate method to apply in this type of data (point
cloud), and allows to correctly segment the point cloud and isolate the target of interest.
Although there are methods to theoretically define the Eps, it was shown that it is possible
to achieve an adequate clustering efficacy with values chosen empirically.

The motion of people can be visually detected by looking at the evolution of the position
of the points of the point cloud over time. By representing the distribution of velocity values
as a bi-dimensional histogram, and by concatenating the histograms derived from each frame,
we achieve a three-dimensional view of the velocity distribution pattern of each target while
traversing some trajectory. Each bi-dimensional histogram, along with the calculated RCS
from the target of interest, can be used to feed an ANN or a RF, which can classify the target
moving with a high level of accuracy (around 86%). Moreover, as seen, the RCS contributes
to the improvement of the performance of the classification models.
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Chapter 5

Feature extraction refinement and
model optimization

5.1 Using more than one frame in each data sample

While each data sample consists of only one frame, the learning model is processing pat-
terns from instantaneous representations (snapshots) of Doppler dispersion rather than from
a sequence of Doppler metrics representative of the motion pattern. The wide instantaneous
dispersion over the Doppler axis is indeed a characteristic of the motion of a person, but the
cadence of this same dispersion is also characteristic of the movement. So far, this imple-
mentation does not take this aspect into consideration. In order to enable the algorithm to
try to capture the pattern of motion, it is necessary to provide it with more than one frame
at each iteration. Hence, each data sample needs to have more than one frame. To achieve
this, successive frames are concatenated, generating a new data sample where the number of
elements is given by the the expression: 151×Nframes, where Nframes represents the number
of frames that compose a single data sample. Figure 5.1 illustrates this process for two frames
per data sample.

Figure 5.1: Concatenation of two data samples, to generate a data sample with two frames.

We will opt to apply the two classification models used in the previous chapter, and
check how the number of frames impacts their performance. For such, the ANN and RF
will be trained with the new training set (75% of the dataset), and tested on the test set
(25% of the dataset). We start by creating a dataset with two frames per data sample and
analyze its impact on the performance. The new dataset is created using a ”sliding window”
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approach. While retrieving the frames of the histogram generated by a test, the first frame is
concatenated with the second one, the second frame is concatenated with the third, the third
with the fourth, and so on. This way, we minimize the reduction of the dataset. The new
dataset has a total of 24125 data samples, each constituted by a total of 302 features.

5.1.1 Advantages of using more than one frame

Using the same neural network architecture as described in the previous chapter, the
performance was 85.9% using only one frame, and increased to 86.8% with two frames. Re-
garding the RF, using the same parameters as the ones before, the performance increased to
89.1%. This is indicative that more than one frame does increase the ability of the models
to classify correctly the target that originates the radar returns. It is useful to analyze how
much performance increases for a larger number of frames. Figure 5.2 shows how the number
of frames impacts both the RF and ANN, from 1 frame up to 10 frames. Table 5.1 shows
the number of data samples for each type of dataset and the number of features in each data
sample.

Figure 5.2: Influence of the number of frames used in the performance of the models.

54



Number of frames Number of data samples Number of features

1 frame 24455 151

2 frames 24125 302

3 frames 23920 453

4 frames 23448 604

5 frames 23102 755

6 frames 22772 906

7 frames 22426 1057

8 frames 22096 1208

9 frames 21751 1359

10 frames 21421 1510

Table 5.1: Size of dataset in data samples and features, as a function of the number of frames
per data sample.

As can be seen in the plot, the RF has a better performance than the ANN until the 6th
frame. From this point on, the ANN performs better than the RF.

Note that the performance comparison with different number of frames may not be fair
because it is done using always the same ANN and RF configuration, which were found to
be (through experiments) the best configurations possible while using one frame per data
sample. For other types of datasets, there may be better configurations that will yield an
even better performance. Another important aspect to note is that the size of the current
dataset decreases as we increase the number of frames per data sample, which means that
there are fewer data samples to train and test the models. However, even considering these
aspects, the improvement of performance with the increase of frames is evident.

5.1.2 Disadvantages of using more than one frame

The usage of more frames per data sample for classification yields disadvantages regarding
the time needed to extract these features. Each frame takes 0.05 seconds to be acquired, thus,
using more frames implies that the system will take a longer time performing measurements;
after the measures have been acquired, the feature extraction algorithms will have to perform
more computations (when compared to the case where only one frame per data sample is
used) because there are more frames from where to extract features. Thus, it will take a
longer time to acquire the necessary features to use in the classification stage. Therefore, a
trade-off needs to be made between performance of the system and feature extraction latency.
The effects of the use of more frames per data sample on the classification execution speed
will be evaluated in section 5.3.

5.2 Feature dimension reduction and Haralick features

The number of first order features used is considerably large; even when using only one
frame per data sample, we have to consider 151 features. Furthermore, the vast majority of
the bins in the dataset have a Doppler value of zero, which might indicate some redundancy
or excess of features in the dataset, and thus, drawing an approach which is able to reduce
the number of features is desirable.
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The reduction of features aims at extracting statistical information from the frames, and
compress it into a smaller subset of features. To achieve this we extract a set of features from
the generated histograms, called the Haralick features. In this context, they are consid-
ered second order features because they are extracted from first order features previously
defined. Each set of Haralick features is extracted from a data sample with only one frame.
Haralick features are a set of high order statistics often applied in the detection of textures
in images, by exploring the distribution of gray values in the pixels of the images and the
spatial relation between them. These features are computed from a gray-level co-occurrence
matrix (GLCM), which is a method of quantifying the spatial relation of neighboring pixels
in an image. The Haralick features computed from the GLCM have been successfully applied
in a myriad of applications, from skin texture analysis, to plant leaf classification and analy-
sis of MRI and ultrasound images of organs [28]. In the present work, instead of exploiting
gray levels, we apply the same concepts to process the relative frequency of Doppler values
represented by the histograms of Doppler radar data.

The GLCM is an m by m matrix, where m is the number of different gray intensity
values. Each value in the matrix is calculated by counting how often a pixel with intensity
(gray value) value i occurs in a defined spatial relationship, P , to a pixel with value j. Often,
the spatial relationship considered is the immediate right, or by other words, the pixel that
stands immediate to the right of the other pixel. Nonetheless, other relationships can be
defined, but in this work, the immediate right will be the one considered. To summarize,
each element (i, j) of the GLCM is the number of times a pixel with value j appeared in the
immediate right of a pixel with value i. Figure 5.3 shows an example of how one can derive
the GLCM from an image.

Figure 5.3: Visual example of the derivation of a GLCM from an image.

At the top we have an image, represented as a matrix where in each cell (pixel) is registered
the gray intensity. Because the maximum intensity is 4, the GLCM (represented in the lower
part of the same figure) will be a 4 by 4 matrix. To avoid looking at all the pixels in the
image, pay special attention to the marked numbers on the image. The pixel with intensity
2 is horizontally adjacent to the pixel 4 two times. Thus, in position (4, 2) in the GLCM, the
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value will be 2. The same rationale applies to all the other positions in the matrix.
After obtaining the GLCM, the next step is to calculate the Haralick features. The

literature defines a total of 14 features [29]. In our work, the features extracted from each
frame are the standard deviation (not an Haralick feature), entropy, contrast, energy, and
homogeneity. These Haralick features were chosen due to their relatively simple interpretation
and because of the fact of being the most used features. Bellow follows a description of each
one of these features, as well as the equations used to calculate each of the features. In the
following equations (5.1) to (5.4), i represents the row index and j represents the column
index of the GLCM. Consider N as the sum of the elements of the GLCM. If the GLCM is
divided by N , then p(i, j) represents the joint probability that a pair of points in the original
image (used to derive the GLCM) obey to the relation P for the pair of pixels with value
represented by the indexes of i and j in GLCM. K is used to define the maximum gray
intensity (or the highest row/column number of the GLCM).

• Entropy: Is a measure of the ”disorder” (or ”randomness”) of the image. Entropy has
value 0 when the probability that any pair of pixels obeys to relation P is 0 (all pi,j
values are 0), and has value 2log2K when all pairs of pixels have the same probability
of obeying to relation P (∀i,j , pi,j has the same value).

Entropy = −
K∑

i

K∑

j

[p(i, j)log2(p(i, j))] (5.1)

• Contrast: Is a measure of the local variations present in the image, or by other words,
the variation between the reference pixel and the neighbor pixels. A large contrast is a
result of large intensity differences. Contrast is equal to 0 when the image is constant,
and the maximum value is (K − 1)2.

Contrast =

K∑

i

K∑

j

|i− j|2p(i, j) (5.2)

• Energy: This feature measures the repeatability of pairs of pixels. A large value for
energy occurs when the image has a periodic or constant form. The range of values for
energy is [0,1].

Energy =

K∑

i

K∑

j

p(i, j)2 (5.3)

• Homogeneity: Is a measure of the similarity between the distribution of the elements
in the image and the diagonal of the GLCM. This feature has values that are contained
in the interval [0, 1]. The value of 1 is attained when the GLCM is a diagonal matrix.

Homogeneity =
K∑

i

K∑

j

p(i, j)

1 + |i− j| (5.4)

In order to extract the aforementioned features, the histogram of each frame is converted
in a gray-level-co-occurence (GLCM) matrix, using matlab function graycomatrix. Then,
using function graycoprops and passing the generated matrix as argument, we can extract the
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contrast, the energy and the homogeneity. Standard deviation and entropy can be calculated
using the Matlab function std and entropy, respectively. Using these methods, each frame of
150 values is converted into a frame of only 5 features.

5.2.1 Classification based on Haralick features

The new generated dataset, composed by the retrieved Haralick features, has a total
of 24455 data samples, like the dataset used in the previous chapter. Each data sample
has 6 features (the 4 Haralick features aforementioned, plus the standar deviation and the
RCS). Using the same RF and ANN as before, and applying the same k-fold cross validation
methodology as applied in section section 4.9, the average performance attained for the RF
was 62.3% and for the ANN was 67.4%. After testing the models on the testing set (25%
of the dataset), the final values attained were 62.9% for the RF and 66.8% for the ANN.
However, when ignoring the RCS, the final performance of the ANN was 64.1%, which is
worse than when using the RCS, but the performance of the RF increased to 66%. Table 5.2
and table 5.3 show the confusion matrices of the ANN and RF, respectively.

Predicted Not Person (with RCS) Predicted Person (with RCS)

Not Person 2665 638

Person 1390 1421

Predicted Not Person (without RCS) Predicted Person (without RCS)

Not Person 2630 673

Person 1525 1286

Table 5.2: ANN confusion matrices while using Haralick features.

Predicted Not Person (with RCS) Predicted Person (with RCS)

Not Person 2101 1202

Person 1069 1742

Predicted Not Person (without RCS) Predicted Person (without RCS)

Not Person 2501 802

Person 1276 1535

Table 5.3: RF confusion matrices while using Haralick features.

We conclude from these results that the chosen Haralick features combined with the
standard deviation, although allowing for a more compact feature representation, do not
enable a good model performance, especially when compared to the original dataset. The low
performance of the classification models while using the Haralick features can be explained
by the fact that these features are normally retrieved from bi-dimensional data, while in this
case we have exploited only uni-dimensional data (one frame). As seen in subsection 5.1.1,
the use of more than one frame per data sample could possibly lead to a better performance
of these models when using the Haralick features. Another aspect to note is that, when the
RCS is used as a feature, the ANN can perform better than the RF on this dataset, but while
using the original dataset (with the velocity bins) this was not the case.

It is also important to bear in mind that the architecture of the models was not optimized
for this dataset. Other configurations may yield better results than the ones presented.
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5.3 Performance assessment of different methods of feature
extraction and classification

Until this point, this dissertation covered three main methods of feature extraction:

• Retrieving the histogram values of velocity and the RCS of each frame, and using the
data from each frame as a single data sample;

• Apply the same method as above, but use more than one frame per data sample;

• Apply a feature reduction method, namely the extraction of Harralick features from the
velocity bins, and use them in conjunction with the RCS as a single data sample.

We have compared the methods in terms of classification performance, but have yet to
assess and compare the computational effort of the three methods. For such, we adopt as a
metric of computational effort the execution time of the overall classification process.

In order to compute the overall execution time, we need to measure the execution time
in two different stages; firstly we have to measure the execution time of the code that is
responsible to perform feature extraction (implemented in Matlab); secondly, we have to
measure the execution time of the classification models using such features (implemented
in Python). The application code was executed in a Fujitsu laptop, with the following
characteristics:

• Laptop: Fujitsu LIFEBOOK S Series

• Model: S752 Notebook

• RAM: 8 GB

• Processor: Intel R© Core
TM

i5-3230M CPU @ 2.60GHz * 4

• OS: Ubuntu 18.04.1 LTS

5.3.1 Timing metrics

Notice that the feature extraction process is applied in each frame. Thus, from frame
to frame, given that the number of points and amount of clusters is different, the execution
speed might also be different. Therefore, to derive an effective estimate of the performance of
the code, it is necessary to measure the execution time for different frames and for different
types of tests (person walking, mannequin moving, etc). For the specific case of feature
extraction, the function used to derive the execution time is the timeit function of Matlab.
After creating a handle of the function whose execution time we want to measure, we simply
pass this function as an argument to the timeit function. This function calls the specified
function multiple times and returns the average of the measurements, in seconds, which is the
wall-clock time for the execution of the specified code. The wall-clock time is defined also as
the elapsed real-time between the start and the end of a program. Considering the wall-clock
time is a better metric than considering the CPU time. The CPU time only accounts for the
time the processor is handling the program, and not for the memory access time and eventual
input/output interaction. If a computer is performing a lot of tasks at the same time, using
the wall-clock time may yield biased/unrealistic results. However, if the computer used is
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only executing the desired program, all the resources will be available to the program, and
the processing time will take in account only the execution of that program, and naturally
the execution of some other operative system (OS) related tasks (which we will consider
negligible). The timeit function also considers first-time costs. First-time cost is the time
taken to execute the code for the first time. In fact, executing a script for the first time may
take longer than executing for a second (or third, etc) time, due to different reasons; after
executing the code for the first time, the processor may be working at a higher speed, which
makes it faster to execute on the second time; the impact of the cache is also considerable,
in the first time the code is executed, a lot of data may not be present in the cache, so the
access to the memory will take a longer time, but on the second time, a lot of data might be
already in cache, so the memory access will be processed at a higher speed.

5.3.2 Timing procedure

To have a robust estimate of the execution time of the feature extraction process, we have
to measure the execution time for the feature extraction process in several different frames
from different tests, several times each one. We consider one test of each target traveling
each one of the eight trajectories defined in section 4.2, and compute the execution time of
the feature extraction process for every frame. Finally, we average all the retrieved execution
times to obtain a final average execution time. Note that the timeit function executes the
same script multiple times, and yields as the execution time of a script the average of the
execution times attained.

In order to measure the execution time of the classification process, we also consider
the wall-clock time, by using the built-in Python library time. As opposed to the feature
extraction case, for the classification process it is not necessary to measure the execution
time when classifying different frames. The frames when in the form of data samples, are
conceptually equal to each other; they have the same length and the same type of data.
Therefore, theoretically, all data samples should take the same time to classify. In practice,
this might not be the case, only due to computer related issues, such as the number and
type of tasks the computer OS is handling at the specific moment it is also classifying a data
sample, but not because of the data sample per se. Due to these reasons, to have a statistically
valid estimation of the execution time for the classification process, we have to classify a data
sample several times, and it can be always the same data sample. We will classify a data
sample 1000 times and average the execution times of each turn. This is our estimate of the
classification execution time. We apply this process both for the ANN and for the RF, and
consider each model execution time individually. Also, keep in mind that it is irrelevant if the
data sample chosen for classification is correctly or wrongly classified, because, as described
before, we are only interested in measuring the time necessary to output a classification result
for a specific sample, not in the result of the classification.
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5.3.3 Overall execution time

It is important to note that we are not actually considering the time necessary to train
the model using the different types of data samples that can be derived from the different
types of feature extraction. The model training is a procedure to be processed off-line and
only once. Therefore, the time necessary for training is not relevant in this case.

The overall execution time will be the result of the summation of the feature extraction
execution time plus the classification (by the ANN or the RF) execution time. Notice, how-
ever, that in a real time application, we would have to take in account also for the time
necessary for the radar to retrieve a frame, which is 0.05 seconds, and not only the time for
feature extraction and classification.

5.3.4 Extracting and classifying radar data from a single frame

The average feature extraction time was 38.1 milliseconds (ms), with the minimum time
being 32.0 ms and the maximum being 67.4 ms. In the classification stage, the RF takes
around 40.1 ms to classify a data sample, while the ANN takes around 0.5 ms. Thus, we
obtain a final value of 78.2 ms for the feature extraction and classification using RF, and
38.6 ms for feature extraction and classification using the ANN. Table 5.4 summarizes the
execution time for this type of feature extraction and classification.

Process Execution time (ms)

Feature extraction (average) 38.1

Feature extraction (maximum) 67.4

Feature extraction (minimum) 32.0

RF classification 40.1

ANN classification 0.5

Overall processing using RF 78.2

Overall processing using ANN 38.6

Table 5.4: Execution times for extracting and classifying radar data with the bins and RCS
from a single frame.

5.3.5 Extracting and classifying radar data from more than one frame

When using more than one frame per data sample, the expectation is that both the feature
extraction process and the classification will take a longer time to compute, because more
features will have to be extracted to create a single data sample, and the classification will
have to take into account more features to output a result. In this subsection we examine
how the increase in the number of frames per data sample impacts (and possibly increases)
the execution time for feature extraction and classification. As done in section 5.1, we will
consider an increasing number of frames, from 2 to 10. For each different number of frames
per data sample, we will measure the execution time for feature extraction and classification
using the same methods as used in the previous subsection.

Figure 5.4 shows how the execution time of the classification by the ANN and RF evolves
as a function of the number of frames.
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Figure 5.4: Execution times of both models classification, as a function of the number of
frames. Notice the two different scales on the vertical axis.

Figure 5.5 shows the time for feature extraction, and ANN and RF overall classification
time.

Figure 5.5: Execution times of feature extraction and overall classification time for the ANN
and RF, as function of the number of frames.

From the plotted graphs we can firstly conclude that the models classification process
seems to not be visibly affected by the increase in the number of frames. In fact, for the
case of the ANN processing, the minimum time measured was 0.39 ms with 2 frames, and
the maximum was 0.537 ms with 5 frames. The average time was 0.454 ms and the standard
deviation was 0.0047 ms. With the maximum number of frames (10) the time for classification
was 0.476 ms. The ANN is faster than the RF at performing classification. The second
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conclusion is that the feature extraction time increases almost linearly with the number of
frames, for both models. The maximum time necessary to extract frames was 181.4 ms, for
10 frames, and 63.5 ms for 2 frames. Table 5.5 summarizes the mentioned execution times in
tabular form, for the case of the ANN.

Process Number of frames Execution time (ms)

Feature extraction (maximum) 10 181.4

Feature extraction (minimum) 2 63.5

ANN classification (minimum) 2 0.39

ANN classification (maximum) 5 0.537

ANN average classification - 0.454

ANN classification 10 0.476

Table 5.5: Execution times for extracting and classifying radar data with the bins and RCS
from more than one frame.

5.3.6 Extracting and classifying radar data based on Haralick features from
a single frame

The third and last method whose timing execution was measured was the classification
process based on Haralick features using only one frame plus the standard deviation and the
RCS. Table 5.6 shows the execution times for feature extraction and classification using the
ANN and the RF.

Process Execution time (ms)

Feature extraction (average) 48.9

RF classification 40.2

ANN classification 0.2

Table 5.6: Execution times for extracting and classifying radar data based on Haralick features
from a single frame.

5.3.7 Comparison of results

The extraction of features from only one frame for each data sample was, as expected,
faster than using more than one frame. The difference between the fastest (1 frame) and
the most time consuming version (10 frames) is 143.3 ms. Since the total time including
the frame acquisition and classification in the worst case considered (RF plus 10 features)
remains bellow 800 ms, the total classification time is compatible with its use in real-time
applications. In the case of the classification process, the execution time did not increase
with the number of features. The use of Haralick features requires more time to process than
using directly the 150 bins of histograms. The extraction of Haralick features was still faster
than creating a data sample composed by more than one frame. In the classification stage,
the data samples composed by Haralick features were the fastest ones to classify while using
the ANN. For the case of the RF, the classification of Haralick features took approximately
the same time as classifying the velocity bins and the RCS of one frame per data sample.
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5.4 Hyperparameter optimization

In subsection 4.8.3 we briefly mentioned the existence of different techniques to search for
the optimal model’s hyperparameters. Manual search is of course the most basic searching
technique. However there are other more effective techniques, such as those described bellow:
grid search and random search.

Note that the manual search used to find the optimal parameters for the ANN and the
RF was done considering the dataset with one frame per data sample and using the velocity
bins and the RCS. The best model found using manual search was then applied to the other
types of datasets. As mentioned before, different hyperparameters may achieve better results
in different datasets. In this section we will exploit only the hyperparameter optimization for
the dataset using the velocity bins of one single frame per data sample plus the RCS value.

5.4.1 Grid search

Grid search is a simple searching technique were, for each hyperparameter that we want
to tune, we define a list of values; the set of combinations of values for all hyperparameters is
called the grid. Grid search builds a model for every combination of hyperparameters specified
in the grid. The performance of each model is recorded, and in the end we can retrieve the
hyperparameters that yielded the best performance according to some predefined metric.

Neural network optimization

For the case of the neural network, the parameters that were tuned were the activation
function, the solver for weight optimization, the learning rate, the number of hidden
layers and the number of neurons in each layer. Table 5.7 shows the set of values used
for each of the hyperparameters. Notice that not all combinations of number of hidden layers
and hidden nodes per layer (network architecture) were tested.

Parameter Values

Activation function ReLU, Tanh, Logistic

Solver SGD, Adam

Learning rate 0.0001, 0.001, 0.01, 0.05, 0.1

Number of hidden layers 1, 2, 3, 4, 5, 6, 7

Number of hidden nodes per layer 1, 2, 3, 4, 5, 6, 7, 10, 20, 50, 70, 100, 200, 500

Table 5.7: Range of values used in grid search for different ANN hyperparameters.

The total number of combinations (or networks) is 360. The best performing network
attained an accuracy of 86.3%, and had the following hyperparameters:

• Activation function: ReLU

• Solver: Adam

• Learning rate: 0.01

• Number of hidden layers: 3

• Number of hidden nodes per layer (from 1st to last layer): 100, 70, 10
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Random forest optimization

In the case of the RF, different models are generated with different combinations of hy-
perparameters. Table 5.8 shows the hyperparameters that were modified and the respective
set of values. The number of different models generated was 225.

Parameter Values

Number of estimators (trees) 1, 5, 10, 20, 50, 100, 200,
250, 500, 650, 800, 1000, 1200, 1500, 2000

Maximum depth 1, 5, 10, 20, 50, 100, 200, 250, 500, 650,
800, 1000, 1200, 1500, 2000

Table 5.8: Range of values used in grid search for different RF hyperparameters.

The best performance attained was 86.4% accuracy, achieved with the following hyperpa-
rameters:

• Number of estimators: 1200

• Maximum depth: 150

5.4.2 Random search

Grid search is widely used because it is simple to implement, it is a process easy to
parallelize, and its reliable in low dimensional spaces (one dimension or two dimensions),
meaning that a good solution is easy to find. However, grid search has the disadvantage of
being computationally expensive, because it tests a lot of different parameter combinations.
Also, as mentioned in [30], some hyperparameters do not matter much for the performance
of the models, but because grid search tests all combinations, it ”wastes” time on not so
important hyperparameters. Random search can be more efficient than performing trials on
a grid, especially in high dimensional spaces. Empirical evidence shows that random search
can find models that are as good or even better than the ones found with grid search, while
only using a fraction of the time.

Random search works by extracting independent draws from a parameter uniform distri-
bution. Because it is based on random sampling, the technique may cope better with non
important hyperparameters. Consider each hyperparameter value combination as a point in
the parameter space. Consider also a particular case were we only have two parameters. In
figure 5.6, the image at the left shows how the points are distributed in the parameter space
using the grid technique. In contrast, at the right we see how the points are distributed in
the random layout. As we can see, in the grid layout, the points are more evenly distributed.
However, if we project the points in any of those dimensions, most of the points will be pro-
jected onto the same location and thus cover a smaller space of each parameter spectrum.
On the other hand, in the random layout, the projection of the points in each parameter
dimension covers a lot more space of the specific parameter range, which in turn, makes it
account for more variability in combinations of different parameter values and to have more
sensibility to different parameter impact.
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Figure 5.6: Grid and random search over 9 trials. Grid layout (left) and random layout
(right). Source [30].

Neural network optimization

To perform random search, we simply provide the same list of parameter values as provided
for the grid search (see table 5.7), and we define how many different parameter settings we
want to be sampled. Originally we had 360 different combinations. In random search we
are going to retrieve 100 random samples and calculate their individual performance. The
learning rate is randomly generated, with values in the interval ]0, 1]. The best performing
combination was the one listed bellow, with an accuracy of 86.02%.

• Activation function: ReLU

• Solver: SGD

• Learning rate: 0.23

• Number of hidden layers: 6

• Number of hidden nodes per layer (from 1st to last layer): 500, 500, 200, 100,
50, 5

Random forest optimization

To apply random search for the hyperparameter optimization in the RF model, we generate
a random (integer) number for the maximum depth of the trees and the number of estimators.
The ranges of each hyperparameter are the same as those presented in table 5.8. Note that,
because the value of each parameter is defined randomly, the random search technique is
exploiting hyperparameter values that were not considered in the grid search case, simply
because these same values were not defined in the parameters list of values. We perform
a total of 112 searches. In practice, this means we consider 112 different hyperparameters
combinations, which is about half of the number of combinations of hyperparameters for the
RF model when compared with the grid search case. The performance attained was 86.2%,
achieved with the following hyperparameters:
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• Number of estimators: 1017

• Maximum depth: 337

5.4.3 Discussion and conclusions on hyperparameters optimization

The results achieved in this section show that the hyperparameters retrieved by grid and
random search led to a model performance that is, for both models, only slightly better
(less than 0.5% better) than the models that use the hyperparameters found through manual
search. Grid and random search were executed in a remote HP Proliant device, with two (2x)
Intel Xeon 2.5GHz processor and 32GiB of RAM for a total availability of 12 cores and 24
execution threads. Grid and random search required 4 and 1 day (respectively) to perform all
the necessary computations to retrieve the best ANN hyperparameters, whereas for the case
of the RF, both techniques required several hours to calculate the optimal hyperparameters.
Using manual search, in a few trials it was possible to retrieve the hyperparameters presented
in subsection 4.9.2 and subsection 4.9.3. This leads to the conclusion that by performing
a small number of tests, a good set of hyperparameters can be found, and thus, grid and
random search are disadvantageous techniques to use in this case because they require a long
time to perform all the computations. However, grid and random search have the advantage
of searching for the optimal hyperparameters autonomously. In conclusion, manual search
may be considered an adequate searching technique to use in this case.
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Chapter 6

People detection by a mobile robot

The previous chapter showed the efficacy of classification models when applied to distin-
guish people moving from other moving targets, based on data acquired by a radar device po-
sitioned on a tripod. For static scenarios, where the objective is to identify targets that appear
in a well defined area, that method is sufficient. However, a more dynamic scenario envisages
a small robot that carries the device, and is able to position itself and to move in an indoor
space and eventually acquire and classify data while moving. To achieve and test such system,
we start by installing the aforementioned radar in a TurtleBot, and test the performance of the
models with the newly acquired data, with the radar-equipped robot immobilized in an initial
set of trials. TurtleBot is a small low cost robot, suited for navigation in indoor environments.
More details about this robot can be found in https://www.turtlebot.com/turtlebot2/.
Figure 6.1 shows the robot used, with the radar device installed. The radar is placed with an
inclination of 10 degrees facing upwards. This makes sense if we recall that when the radar
was positioned in the tripod, the device was facing downwards with a slope of 10 degrees. As
the radar pose is now symmetric to the previous one, we consider also a symmetric inclination.

Figure 6.1: TurtleBot with radar installed at the top of it, with an upwards inclination of 10
degrees.
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6.1 People detection by a motionless robot

A new series of tests was performed with the radar in the new position. The targets
trajectories considered were the same as the ones mentioned in the fourth chapter. This
time, only walking people, people in wheelchair and a mannequin were involved in the tests.
In the previous scenario (radar installed in the tripod) we used two different mannequins
representative of the non people case. In this scenario, only one mannequin is used. The
number of tests performed with this mannequin was double relatively to the number of tests
done in the fourth chapter, in order to ensure that about half of the dataset contains data
samples labeled as non people targets. In the case of the wheelchair, half of the tests were
done with a larger velocity than the other half, to provide tests with different velocities. Table
6.1 shows the distribution of frames for the different agents and paths.

People walking People in wheelchair Mannequin

Path A 1762 3710 4557

Path B 1633 4214 4256

Path C 1899 4730 5285

Path D 1114 2810 4460

Table 6.1: Distribution of frames for different paths and agents, acquired with the robot
immobilized

Figures 6.2 to figure 6.4 show the velocity patterns of a person walking, a person in a
wheelchair, and a mannequin moving, using data acquired with the radar positioned in the
robot. As it is possible to see, the patterns are similar to the ones obtained in the fourth
chapter.

Figure 6.2: Histogramic representation of Doppler measures of a person walking in front
and towards the radar (path C) installed on the robot. The colour bar on the right of the
histogram represents the absolute number of points.
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Figure 6.3: Histogramic representation of Doppler measures of a person moving in an auto-
mated wheelchair in front and towards the radar (path C) installed on the robot. The colour
bar on the right of the histogram represents the absolute number of points.

Figure 6.4: Histogramic representation of Doppler measures of a mannequin moving in front
and towards the radar (path C) installed on the robot. The colour bar on the right of the
histogram represents the absolute number of points.

The newly created dataset, which comprises only one frame in each data sample, has a
total of 40430 data samples, of which 21872 correspond to people moving. The models were
trained in 75% of the dataset and tested with the remaining data samples. Although the
targets move with different absolute velocities, we want the classification models to base their
performance on the dispersion of velocity and the motion pattern, rather than the absolute
velocity. In other words, we don’t want to exploit the absolute velocity as a feature, because
this could be misleading and result in biased models of the targets. That is the reason why
the tests with the wheelchair were performed with different velocities.

The classification models used were the ANN and RF with the same configuration as men-
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tioned in section 4.9. The classification based on the ANN, using as features the normalized
histogram bins as well as the RCS, achieved an accuracy of 96.1%. Using the same ANN with
similar hyperparameters but excluding the feature RCS, the performance was 92.0%. Using
the RF, the accuracy attained was 95.3%. As in the case of the ANN, when the RCS is not
used as a feature the accuracy decreases, in this case for a value of 91.9%. The confusion
matrices of the ANN and Random Forest are represented in table 6.2 and 6.3, respectively.

Predicted Not Person (with RCS) Predicted Person (with RCS)

Not Person 4487 175

Person 217 5229

Predicted Not Person (without RCS) Predicted Person (without RCS)

Not Person 4357 305

Person 506 4940

Table 6.2: ANN confusion matrices with data acquired in a motionless robot.

Predicted Not Person (with RCS) Predicted Person (with RCS)

Not Person 4450 212

Person 263 5183

Predicted Not Person (without RCS) Predicted Person (without RCS)

Not Person 4316 346

Person 468 4978

Table 6.3: RF confusion matrices with data acquired in a motionless robot.

6.2 People detection by a moving robot

Based on the successful experiments performed in classifying targets with the device in
the robot, we proceed to a new experimental configuration where the robot that carries the
radar is moving. As the device is moving, the tests planned are different from the previous
ones. The tests to be considered are the following (refer to figure 4.2 for a visualization of
the paths):

• Target going to robot and robot moving towards the target (path C).

• Target moving away from robot and robot moving towards the target (path C).

• Target moving transversely (path A) in relation to the robot, in front of it, and robot
moving towards the target (path C).

• Target moving diagonally (path D and B) in relation to the robot, in front of it, and
robot moving towards the target (path C).

Three different targets were tested: people, people in wheelchair, mannequin (the last is
a counter example of a person). The total number os tests made is 420.
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6.2.1 Dynamic detection issues

In the present scenario of tests we need to address the following implementation issue:
the targets that contribute with points to the point cloud detected by the radar are only
those who have an apparent movement relatively to the sensor. In these tests, since the
sensor is moving, all targets have apparent movement relatively to the radar, and thus, all
targets contribute with points to the acquired point cloud. The point cloud generated is thus
larger than when the radar was immobilized. The first tests revealed that this increase of
information (points) is enough to crash the radar signal processing, due to the excess of data
to process in real-time. The solution was to alter the configuration used, and to reduce the
number of ADC samples collected during sampling time, from 128 to 64.

6.2.2 Clustering limitations and basic tracking

Another consequence of the above-described issue was that the clustering method wasn’t
robust enough to detect and retrieve only the cluster of interest. As the sensor is moving,
there will be more clusters now than when the robot was immobilized. Thus, choosing the
largest cluster as the cluster of interest (as done in the previous implementations) does not
guarantee that the cluster chosen corresponds to the target of interest. It may be caused by
a large, static target that has now an apparent motion relatively to the radar. Therefore, in
order to process the data, it is necessary to develop a method that can distinguish and select
the cluster of interest and follow that cluster.

There are two aspects that characterize the clusters originated from noisy points of clut-
ter: they are random, and can appear and disappear between successive frames; and they
usually are placed on a constant position relatively to the sensor, because most of this clutter
corresponds to nearby reflections from the ground where the robot is moving, whose distance
to the radar remains constant. The cluster of interest, on the other hand, does not stay in
the same position, because in every test performed, the target is moving (normally with a
velocity superior to the robot), and also, the cluster of interest doesn’t disappear between
frames. Furthermore, because frames have a periodicity of 0.05 seconds, a person, wheelchair
or mannequin cannot move a large distance during that period, i.e., in this time interval it is
unfeasible for this target to travel large distances. Armed with these premises, we can develop
a tracking method that is able to reject the clutter and false targets, and to select and follow
the cluster of interest in each test. The next paragraphs detail this heuristic-based tracking
method.

6.2.3 Dynamic clustering algorithm

The heuristic method adopted to implement the new clustering algorithm uses the follow-
ing principles: for a given frame, we start by applying the usual clustering method using the
coordinates of the points, and then choose the largest cluster. The next step is to calculate
its centroid. The centroid will be used to compute the distance between the cluster chosen on
the current frame and the cluster chosen on the previous frame. On the first iteration, only
the storage of the current centroid is done. In the succeeding iterations, start by calculating
the current centroid coordinates and then the distance to the previous cluster centroid. Every
cluster centroid is determined, and then the closest one is chosen. If, however, the closest
centroid is located at a distance superior to 1.6 meters, then this means that the target would
have travel at a very high velocity, which is unfeasible. The value of 1.6 meters was chosen
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based on practical experiments, that showed that this value was adequate. If the distance
between the previous and the current cluster centroid is larger than 1.6 meters, it is con-
cluded that the cluster chosen has no spatial continuity with the previous one, and thus,
the script is alternating between clusters. This means the cluster chosen in the beginning or
in the previous iteration was a noise cluster which disappeared in the present iteration. The
solution is to go back to the first iteration, and choose a different cluster to start with. If the
cluster chosen in the beginning is the cluster of interest, then the algorithm should be able
to follow that cluster. Even if in some iteration it firstly chooses another one, it will correct
itself and choose the right cluster again to guarantee spatial continuity. If however the cluster
chosen in the beginning is a noise cluster, two things may happen:

• The noise cluster may at some iteration, disappear. Then, because spatial continuity is
not ensured, the script will restart the iterations and start on a different cluster, which
can be the cluster of interest.

• However, it can happen that the cluster of noise is always present, ensuring the spatial
continuity. To detect this hazard and correct it, we consider that (as described before)
the cluster of interest is moving in relation to the radar, even with the two elements
moving, and has to travel a distance equal or higher than 1.5 meters (value empirically
chosen). Normally, the noisy clusters that appear continuously in the FoV of the radar
are a result from nearby reflections in the ground, that appear to be static in relation
to the sensor, meaning that they are always in same position of the FoV of the radar.
By simply storing the distance traversed by each cluster centroid, we can detect if the
cluster chosen was a noise cluster (that appears to be static in the FoV of the radar) or
was the cluster of interest.

Algorithm 1 shows the pseudo code of this tracking method.

Algorithm 1: Heuristic tracking algorithm
Iteration = 1; TotDistance = 0;
while there are data frames do

if Iteration == 1 then
Compute and store centroid of cluster;

else
Calculate closest centroid to previous one;
Store centroid of cluster;
Displacement = distance between previous and closest centroid;
if Displacement > 1.6 then

Iteration = 1; TotDistance = 0;
Start on different cluster;
Continue;

end
TotDistance = TotDistance + Displacement ;

end
if Iteration == total number of frames then

if TotDistance < 1.5 then
Iteration = 1; TotDistance = 0;
Start on different cluster;
Continue;

end

end
Iteration = Iteration + 1;

end

Another aspect to note is that the distance traversed by the centroid of the cluster (that is
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being tracked at a given instant) must not be iteratively updated based on the successive
values of the Cartesian distance between the two centroids, because the centroid in a static
cluster always has minor coordinate changes. What this means is that, between successive
frames, even if a noisy cluster is always located in the same region in relation to the radar,
the cluster centroid will have always some natural coordinate changes, due to the nature
of the radio reflections, that originate different points detected between successive frames,
even if the cluster detected is the same as the one detected in previous frames. Therefore, if
we consider the Cartesian distance, the distance traversed will always increment from frame
to frame, even if the cluster is alternating between the same positions. The solution is to
accumulate the coordinate differences in each iteration, and only in the end calculate the
Cartesian distance. This way, if the centroid revolves around the same position, the total
distance traveled will not increase.

Figure 6.5, figure 6.6, and figure 6.7 show the pattern of velocity distributions of person,
person in wheelchair and mannequin (respectively) moving in direction to the radar and robot
moving in direction to the person/mannequin.

Figure 6.5: Histogramic representation of Doppler measures of a person walking in the direc-
tion of the radar and the robot moving towards the person. The colour bar on the right of
the histogram represents the absolute number of points.
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Figure 6.6: Histogramic representation of Doppler measures of a person moving in an auto-
mated wheelchair in the direction of the radar and the robot moving towards the person. The
colour bar on the right of the histogram represents the absolute number of points.

Figure 6.7: Histogramic representation of Doppler measures of a mannequin moving in the
direction of the radar and the robot moving towards the mannequin. The colour bar on the
right of the histogram represents the absolute number of points.
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6.2.4 Classification results with dynamically deployed radar

In the current experiment, the complete dataset consists of a total of 25431 frames. Out of
these 25431 frames, 12720 correspond to people moving, and the remaining 12711 correspond
to other moving targets. Table 6.4 shows the distribution of frames for agents and paths, for
the case of the dynamically deployed radar.

People walking People in wheelchair Mannequin

Path A 1443 1615 4478

Path B 1366 1503 2409

Path C 1635 1580 2397

Path D 1460 2118 3427

Table 6.4: Distribution of frames for different paths and agents, acquired with the dynamic
robot.

25% of the dataset was used for test, while the remaining was applied in the training stage.
Using the ANN described in the previous chapter and considering the RCS as a feature, the
accuracy attained was 97.7%, while ignoring the RCS the performance was 96.2%. For the
Random Forest, the accuracy were 97.8% using the RCS as a feature, and 96.5% without
RCS. The resultant confusion matrices of the ANN and Random Forest are represented in
table 6.5 and 6.6, respectively.

Predicted Not Person (with RCS) Predicted Person (with RCS)

Not Person 3135 66

Person 83 3074

Predicted Not Person (without RCS) Predicted Person (without RCS)

Not Person 3076 125

Person 115 3042

Table 6.5: ANN confusion matrices in the case of a moving robot.

Predicted Not Person (with RCS) Predicted Person (with RCS)

Not Person 3133 68

Person 74 3083

Predicted Not Person (without RCS) Predicted Person (without RCS)

Not Person 3070 131

Person 91 3066

Table 6.6: Random Forest confusion matrices in the case of a moving robot.
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6.2.5 Discussion of results attained with radar positioned on the robot

In the first approach, the robot that carries the radar is static. As it was possible to
see, the histogramic representation of the Doppler measures of the different agents traveling
each one of the considered paths was similar to the representation generated when the radar
was positioned on the tripod. The classification results attained with this configuration were
significantly better than the ones attained in the previous chapter. The acquisition of data
with the radar deployed dynamically by the robot revealed that the clustering mechanism
was not robust enough to deal with this data acquisition scenario. A basic heuristic tracking
algorithm is enough to mitigate the problems resultant from the motion of the robot. The
histogramic representation of the Doppler measures resultant from the motion of the different
targets traversing the different paths, when the robot was immobilized or in motion, was
similar to the one attained in the fourth chapter. The results attained were better than
the ones attained with the static robot. In all cases, the RCS continues to improve the
performance of the classification models.

6.3 Real time application

The results previously presented were obtained with the application functioning offline;
the data is retrieved by the radar, stored in a file on the computer system, and then replayed
and processed. In a realistic scenario, the application must function online, i.e., continuously
retrieving and processing the data within an acceptable delay. As mentioned earlier, the data
retrieval and processing part of the application is coded in Matlab. However, to programat-
ically connect to the ROS nodes to receive the data in real time, Python is often used. For
such, all the methods and data structures used in the Matlab version of the application were
”translated” into Python scripts.

After training the models, the Joblib library from Python allows the users to store the
models in files with the extension ”.joblib”. In essence, what is being stored is the Python
object associated with the implemented model. In the same way the Joblib library allows the
users to store their models, it also allows them to load a previously stored model. By loading
the classification model, we can apply it again to classify new data, without the need to re-
train again the model, because the weights of the model were stored. To perform real-time
data retrieval and subsequent classification, the data retrieved using the scripts developed
(by exporting the Matlab coded methods to Python) is used as input to the loaded models,
and finally we can reach a classification output. If several people move in front of the radar
device at the same time, only one of them will be classified, because the method presently
implemented only selects one cluster in each frame. The interface for the real time application
is the rviz GUI. The point cloud retrieved from the radar is displayed in rviz, as depicted in
figure 6.8.
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Figure 6.8: Point cloud retrieved from the radar, represented in rviz. Two people are in the
FoV of the radar, and there is some clutter present in the point cloud.

After segmenting the point cloud, the largest cluster is classified. If the target is classified
as a person, a green circle is drawn, otherwise a red circle is drawn, with the center positioned
on the centroid of the cluster. This can be seen in figure 6.9, where a person is walking in
front of the radar.

Figure 6.9: Person walking in front of the radar is detected, and a green solid circle is drawn
above the points that belong to that target.
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6.4 Multiple and simultaneous target detection and classifica-
tion

Until this point, this dissertation only considered the case of one person/non-person clas-
sification at each time instant, applying for this purpose clustering methods to isolate an
unique target. This was particularly relevant in the training stage, where it was imperative
that only one target was detected at each time to ensure a clear selection of the type of target
observed during the data acquisition phase. However, after we have trained the classification
models, it is not necessary to ensure that only one cluster is classified at each time. In fact,
because (after training) the classification models have the ability to classify correctly the tar-
gets, we can rely on the DBSCAN clustering method to isolate clusters and detect clutter,
and use the trained models to classify all clusters. This is called multiple and simultaneous
target classification, and can also be performed in real time. Figure 6.10 shows, at the left,
two volunteers walking in front of the radar that is placed in the turtlebot in front of them,
and at the right, the rviz view.

(a) (b)

Figure 6.10: Two people walking in front of the static sensor (left) and the graphical repre-
sentation of this experiment in rviz (right).

As mentioned, a non-person target is marked with a red circle. Figure 6.11 shows, at the
left, a person walking in front of the radar while, at the same time, a ball bouncing in the FoV
of the radar. At the right of the same figure, we can see the respective target clusters being
classified on the rviz GUI. Note that, although the classification models were trained with
the mannequins as counter examples of people moving, they were able to classify a bouncing
ball (a target they have never ”seen” before) in front of the radar as non-person target.
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(a) (b)

Figure 6.11: A person walking and a ball bouncing in front of the static sensor (left) and the
graphical representation of this experiment in rviz (right).

6.5 Distinguish closely spaced targets

If we consider more than one target moving in front of the radar, the clustering method
may fail under certain circumstances. Specifically, consider two people walking in front of the
radar, depicted for example in figure 6.12.

Figure 6.12: Point clouds of two people spatially apart.

In this case, the people are relatively distanced from one another, and the amount of
clutter in the FoV is also minimum. In these conditions, the DBSCAN algorithm can easily
detect two clusters, because, spatially, the clusters are separated. Consider now that these
two people get very close to each other. Theoretically, we would want the DBSCAN method
to distinguish the two different targets, but because this method relies on the spatial distance
between the clusters, which is practically non-existent in this case, the two clouds are in fact
misinterpreted as one cluster, as shown in figure 6.13.
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Figure 6.13: Point cloud of two people very close to each other.

Note that figure 6.12 and 6.13 both belong to the same test recorded, where two volunteers
walk in front of the sensor and randomly cross paths with each other at the same time. Targets
can be miss-classified as one if they are both visible from the radar but are very closely spaced.
Targets can also be miss-classified as only one target if one of the targets is being occluded
by the other.

In tracking applications, occlusion of one target or agent by other static or dynamic
targets present in the environment is a typical, well-studied problem. This is defined as the
occlusion problem. An effective and robust solution to this problem implies the application
of advanced tracking and data association methods which have not been implemented in the
present work due to time limitations. Some of these methods, envisaged as future work,
include the techniques described in [4], [11] and [31]. In this work we adopted a basic,
heuristic clustering method designed to cope with the occlusion problem, described bellow.

The enhanced and more complex clustering mechanism relies in additional features of the
points in order to distinguish targets that are spatially close but must be associated to distinct
clusters. We have used before the Doppler feature of the data to train classification models
to classify targets. The Doppler can also be used as a feature for the clustering method.
Consider two people closely spaced, but each one moving in opposite directions (opposite
velocities); if we apply clustering using the Doppler as a feature and ignoring the positions of
the points of the point cloud of each target, theoretically, in the situation represented in figure
6.13 the method should separate the two people due to their different velocities. However,
we can not use only the Doppler feature to distinguish targets, because this will assume as
belonging to the same clusters targets that are spatially distant from one another, but have
the same velocity. Therefore, we have to consider both the position and the velocity of each
target.
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6.5.1 Cascaded clustering

In practice, point clouds that are spatially distant belong to different clusters. Point clouds
that are spatially close may belong to different clusters if their velocity is different. In a first
stage, the targets should be separated by their position (clustering in position). On a second
stage, each cluster is subclustered using the Doppler feature (clustering in velocity). Notice
that, by applying this method, the different parts of the human body can be subclustered
in different clusters due to their different velocities. Possible solutions to this problem are
presented in the next subsection. This method allows to separate clusters that were, in the
first stage, assigned to only one major cluster due to their positions. We call this approach
cascaded clustering, because we apply the different clustering methods in succession in
order to separate targets. When applying the DBSCAN with the Doppler feature, we consider
the values of Eps = 0.3 and MinPts = 8. As in subsection 4.4.2, these values were chosen
based on experiments.

The application of clustering using the Doppler as a feature is able to distinguish people
that cross paths when they are walking towards and away from the radar. Figure 6.14 shows
two images of a point cloud of two people that are close to each other, obtained with the two
approaches:

• cascaded clustering is not applied (left).

• cascaded clustering is applied (right).

(a) (b)

Figure 6.14: Point cloud before applying cascaded clustering (a) and after applying cascaded
clustering (b).

As shown in the plots, the two targets can be distinguished. Notice also that some of the
points of the point cloud that has been processed by the cascaded clustering method are not
associated to the targets, whereas in the case where only spatial clustering is used, this points
are associated to the targets. Therefore, information can be loss when applying the cascaded
clustering method.
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6.5.2 Occlusion problem and limitations of cascaded clustering

When targets move in the current experimental setup, they are prone to be occluded by
having some other target between them and the sensor. Figure 6.15 shows the result of a
point cloud after applying the cascaded clustering when the targets trajectories overlap. As
it is possible to see, in this case the cascaded clustering method is not effective. This can be
explained by the fact that the occluded target is not detected, and therefore, only points of
one target are being clustered.

Figure 6.15: Point cloud of two people crossing transversely using the cascaded clustering
technique.

Another issue with this approach is that this clustering technique is prone to sometimes
wrongly divide clusters related to one target in more subclusters. This is due to the different
motion of the different parts of the human body; because they have different velocities, they
can be subclustered in different clusters. Although this problem can be mitigated by altering
the DBSCAN parameters (Eps and MinPts) the solution may also reduce the efficacy of
the method in distinguishing two targets too closely spaced. There is, therefore with this
method, a trade-off between the detection of the motion of limbs in a single target, and the
discrimination of two targets shortly distanced from one another.

6.6 Discussion of results attained with simultaneous multiple
target classification

In the previous section it was demonstrated the effectiveness of the application at clas-
sifying simultaneous multiple targets. Furthermore, it was shown that the coexistence of
multiple targets in the FoV of the radar can, in specific circumstances, raise issues regarding
their correct detection.

When the targets are relatively distant from one another, the clustering method used is
sufficient to isolate the targets, and a correct classification output can be achieved. When
the targets are spatially close, the clustering method fails to segment correctly the point
cloud, and multiple targets can be clustered as a single target. Another consequence of
the coexistence of multiple targets is that one target can be occluded by another target,
which makes its detection by the radar unfeasible in the current scenario. To resolve this
limitations, a cascaded clustering method that relies on the Doppler information of the points
to differentiate the different targets was developed. The clustering method is defined as being
a two stage mechanism, where in the first stage the targets are separated by their relative
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positions; in the second stage, each cluster defined in the previous stage is further segmented
based on the Doppler information of its points. The key idea is that clusters spatially distant
belong to different targets; if two clusters are close to one another, they can be separated if
their velocities are different. This method is robust enough to differentiate targets that are
closely spaced, except if one of the targets is being occluded by other. In this situation, it is
necessary to use a tracking algorithm to be able to detect and distinguish the two targets.
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Chapter 7

Summary and conclusions

7.1 Summary

7.1.1 System development and tests

As can be seen from the results presented, the performance of the classification models
tested in this dissertation clearly evidence the high potential of the methods to detect people
in indoor environments, even if moving in an automated wheelchair. The inclusion of the
RCS of each detected target as a classification feature was shown to improve significantly
the performance of the target recognition methods in both models and in the different cases
considered (radar in tripod, radar immobilized in TurtleBot and radar dynamically deployed
by the TurtleBot). Even using only the values of the RCS, whose calibration was beyond the
scope of this dissertation, it is possible to show that the relative values of this parameter,
when acquired by the same radar with fixed parameters, is sufficient to discriminate some
classes of targets in a given scenario.

Although the tests with the moving TurtleBot hampered the tracking and distinction of
the cluster of interest, the classification methods had a better performance in this case than
when the robot was immobilized. In the experiments were the TurtleBot was immobilized,
the ANN had a better performance than the RF. In the experiments where the Turtle Bot is
moving, the RF had a better performance than the ANN. The RCS had a larger impact on
performance in the experiments where the TurtleBot is static, comparing to the experiments
where it is moving. If we consider the experiments where the radar was placed in the top of
the tripod, the RF always has a better performance than the ANN. The impact of the RCS
on the performance of the models in this last case was similar to when the radar is static in
the TurtleBot.

We showed that the approach is effective in two distinct scenarios (robot immobilized and
robot moving) which can lead to a wide range of applications in robotics. The presence of
clutter and its deleterious effect, which can be typical in indoor environments, was also solved
with a simple heuristic tracking algorithm.

The feature extraction process and classification can be performed within small time inter-
vals that are adequate for real time applications. In fact, it was proven that this application
can detect multiple targets simultaneously and in real time. The execution time of the appli-
cation increases with the increase in the number of features in a data sample. The bottleneck
in terms of execution time is located in the feature extraction process, since the classification
stage, when comparing to the extraction of features, is almost non affected.
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The detection of more than one target at the same time originated other problems, namely
the occlusion problem and the perception of more than one target as a single target. The
miss segmentation of the point cloud and the association of more than one target to a single
one can be solved by developing a more robust clustering method that relies on additional
characteristics of the targets besides their position in space. However, this method can only
function properly if a target is not being completely occlude by other (occlusion problem). If
a target is being occluded by other target, then the radar sensor will not be able to detect it,
and thus it can not distinguish the two targets, only the one ”visible” from the point of view
of the radar.

7.1.2 Publications and presentations

Some of the results achieved in this dissertation resulted in two papers that were later
published and presented in two conferences:

• Encontro Português de Inteligência Artificial (EPIA), held in Vila Real, Portugal, be-
tween the 3rd and 6th of September. The title of the paper submitted for this conference
was ”Machine learning for radar-based people detection”. The scientific article is avail-
able at https://link.springer.com/book/10.1007%2F978-3-030-30244-3. See also
Appendix A.

• Fourth Iberian Robotics Conference - ROBOT2019, held in Porto, Portugal, between
the 20th and 22nd of November. The title of the paper submitted was ”Machine learn-
ing methods for radar-based people detection and tracking by mobile robots”. See also
Appendix B.

The developed application was also exhibited at:

• Encontro Ciência 2019 held in Lisbon, an event devoted to interchange and presentation
of the scientific work developed in Portugal,

• TechDays held in Aveiro, an event with the purpose of showing to the community the
most recent developments in technology that is developed by different companies and
investigation groups of the region.

7.2 Conclusions

One of the main results of this work is the demonstration that the Doppler of each target,
calculated by the radar device, is a feature that can be effectively used to detect different
types of targets, because different targets present different motion patterns. By representing
the Doppler values of the points of the point cloud of each target as an histogram, the data
is organized under a fixed format, which enables its application in ML methods that usually
require that the different inputs have a fixed size. The RCS does not depend on the kinematics
of the target, but on the physical properties of the target, which acts as complementary feature
to the motion pattern, and improves the performance of the models at distinguishing different
targets. The ML classification models can use this data to distinguish with a high level of
accuracy the different types of targets.

The use of more frames per data sample increases the performance of the models, which
indicates that the models are sensitive to motion pattern of targets that can repeat itself in
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time. The execution time of the classification models was not visibly affected by the size
of data samples used. This is a consequence of the high parallelism of the models used,
and the fact that the increase in the dimension of the features only impacts part of the
models architecture. For example, in the case of the ANN, only the input layer changes
its size with the number of features. Moreover, the different methods of feature extraction
and classification take negligible time intervals to compute, which allows the application to
be executed in real-time. Since the target kinematics can be represented as an image, the
extraction of Haralick features was implemented in order to reduce the dimension of the data.
However, this approach resulted in poor model performance. This is probably due to the
fact that these features are often used in 2D dimensional data (such as images), but in this
work they were applied only in 1D dimensional data (one histogram). The performance of the
classification models based on Haralick features can potential be improved when extracted
from bi-dimensional data samples built from multiple frames, as proposed in this work. In
this application, we showed that a simple manual search to optimize the hyperparameters of
the ML models was enough to attain good performances. Other searching techniques (grid
and random search), which take considerable amount of time to perform all the necessary
computations, were not able to significantly improve the performance of the ML models.

The type of data used can be acquired with the radar positioned in different locations.
The target kinematics, as observed by the radar, is similar both in the case the radar is static
or moving. This allows the application to function in a diversity of operational conditions.
When the radar is being dynamically deployed by a moving robot, the observable clutter
increases, which requires the application of more complex algorithms to filtrate it. The
results with the moving radar were better than the ones attained with the static radar, which
can be explained by the motion of the robot that leads to small variations in the radar point
of view, with the potential of increasing the information extracted from the moving target.
Multiple targets can be detected simultaneously, by using an adequate clustering mechanism
(DBSCAN) to isolate the different point clouds of each target. The clustering method that
relies only on the spatial position of the points of each target in 2D plane was not enough
to discriminate different targets that are spatially close to one another. By considering the
Doppler information of the points of each target, it is possible to discriminate multiple targets
spatially close. However, this method is not enough to detect targets that are being occluded
by others. In these conditions, only appropriate tracking mechanisms can distinguish all the
targets in the radar FoV.

7.3 Future Work

The types of features and ML methods used in this work, as well as the optimization
techniques and clustering methods, allowed to achieve the good results for target classification
presented in the previous chapters. There are, however, different techniques that could have
been applied in the development of this work, and that are detailed in following subsections.

7.3.1 Advanced methods for hyperparameter optimization

In the context of model optimization, this dissertation covered three main methods of
search in the hyperparameter space, namely: manual, grid, and random search. These meth-
ods already provide a high performance of the models. Given the nature of the models and
the search methods used, it is very unlikely that other optimization techniques could lead

89



to major improvements of performance. However, in future implementations of this type of
system in different contexts, other optimization techniques could be applied due to their po-
tential computational efficacy in terms of exploration of the hyperparameter space. Among
the suggested approaches, two techniques are proposed: evolutionary algorithms (EA)
and Bayesian optimization (BO).

EA are used to find optimal (or suboptimal) solutions for a given problem. This class of
algorithms mimics the process of natural selection and evolution in nature; thus the name evo-
lutionary algorithm. The key concepts of EA are reproduction, mutation and selection.
Each possible solution is defined as a single individual. A set of individuals is defined as a
population. Each individual is encoded as a string composed of characters of some alphabet
(binary, integer values, etc). The initial population is generated by randomly generating these
strings. The initial population is also considered the first generation. A fitness function
is used to evaluate the initial population’s performance in the problem domain according to
some predefined metric. The probability that an individual is selected for the reproduction
stage is a function of its performance. Thus, individuals that have a better performance have
a higher probability of being selected for the reproduction stage. The individuals selected for
reproduction are combined between each other and generate new individuals (a new gener-
ation). This means that the new individuals have shared characteristics from their parents.
The offspring is further altered by means of mutation, that introduces new characteristics in
the individuals, which may or may not enhance their fitness. This process is repeated until
some criteria is met, such as the number of generations or a certain fitness value [32]. The
idea of this approach is that the overall fitness of the individuals increases over generations
(iterations) because the most fitted individuals are being used to reproduce amongst each
other. This type of approach has been applied in the design of ANNs, by combining different
network architectures that have shown the best performances in previous iterations. However,
the method is computationally intensive due to the amount of evaluations that need to be
performed to derive the best architecture, and does not guarantee that an adequate set of
hyperparameters will be found.

The second approach is based on the use of BO. This is a more advanced technique when
compared to the techniques used in this work. BO has been widely used in recent years and
offers a different paradigm than grid or random search; while in the last mentioned methods
we have to provide the values for the hyperparameters to be tested, BO is in charge of deriving
precisely that. This method starts by considering an initial set of hyperparameters and their
respective performance, and by using Gaussian processes, tries to predict what will be the
best parameters that will yield a better performance. These parameters are tested to confirm
or not the prediction of the method, and the process is repeated, until, eventually, a set of
hyperparameters that allow for a satisfactory performance are found.

7.3.2 Reinforcement learning for model training

Throughout this dissertation, only two ML paradigms have been considered; supervised
learning (ANN and RF) for training of the models, and unsupervised (DBSCAN) for clustering
of the point cloud, although in subsection 3.1.3 we have mentioned another type of ML
method: reinforcement learning. This type of ML method could also be used to train
the ANN, RF, or any other classification model. The use of supervised learning to train
and adjust the models parameters based on a specific training set implies that the data has
been previously acquired and stored. With a reinforcement learning method, the data could
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be acquired and the models could make predictions in real time. An autonomous agent
could automatically receive some negative reward when it classifies wrongly a human as a
non-human target, and a non-human by a human target.

7.3.3 Exploit different classification models

Although only two ML models (ANN and RF) have been applied in this work, others could
have been tested. Neural networks are divided in different types, and in particular, recurrent
neural networks (RNN) have specific characteristics that make them interesting candidate
models to be applied. The motion of people is characterized by periodic movements that are
repeated in time. The cadence of these movements is thus a characteristic of the motion of
people. The models applied so far only consider and classify snapshots of the movement (or a
concatenation of them if we use more than one frame per data sample), and have no sensibility
for how these movements and snapshots are repeated in time. This is an important feature
that should be considered by the ML models. RNNs are used to model temporal dynamic
behaviors, and therefore allow to capture patterns that have a certain periodicity in time,
such as the motion of people.

7.3.4 Tracking methods

We have seen that the clustering method that relies not only in the position of the points
of the point cloud, but also on their velocity, can distinguish targets closely spaced. However,
the occlusion problem can not be solved simply using this method. To solve this issue, the
most adequate approach is in fact to apply a tracking mechanism, based for example on
(Extended) Kalman Filters or Particle Filters, that can follow the different targets, even
if they are temporarily occluded by some other targets. Even though these methods were
not applied in this work, some exploratory work was already developed. Appendix C is
extracted from the technical report written for the research grantship of project RETIOT,
and details the implementation of a Kalman Filter that uses the position and velocity of the
target measured with the radar, and outputs predictions about the target’s real position.
The developed Kalman Filters work with data that has been processed a priori by the People
Counting Demo of TI. This application performs the clustering of the point cloud and returns
information about each target position.

7.3.5 Future applications

This dissertation only focus on the detection of people moving. However, other applica-
tions could be implemented using the retrieved data and the datasets that were created. The
detection of people that are not walking or moving, but yet perform small amplitude move-
ments, such as people seated performing some tasks, is an interesting application. Similarly,
the detection of falls is important in the context of elderly monitoring. From the data col-
lected, other aspects related to people motion could be derived, such as the trajectories that
are being traveled by each agent, which can be relevant for example in intrusion detection or
patients tracking in hospitals.
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Abstract. This paper describes the work developed towards the im-
plementation of a radar-based system for people detection and tracking
in indoor environments using machine learning techniques. For such, a
series of experiments were carried out in an indoor scenario involving
walking people and dummies representative of other moving objects. The
applied machine learning methods included a neural network and a ran-
dom forest classifier. The success rates (accuracies) obtained with both
methods using the experimental data sets evidence the high potential of
the proposed approach.

Keywords: RADAR · Locomotion Pattern · RCS · Machine Learning.

1 Introduction

1.1 Motivation

The number and diversity of applications of radar sensors have been increas-
ing dramatically in recent years, motivated by the emergence of inexpensive,
self-contained development kits that permit rapid prototyping and testing of
radar-based solutions. The reduced cost and dimension of these systems make
them affordable for academic research and permit their integration in small,
inexpensive robots.

The immunity of radar signals to some of the main sources of noise (such
as dust, fog, rain, strong heat and fire) that disrupt measurements taken with
other sensors (such as cameras, laser or infrared) is one of the most important
arguments for the adoption of radar as sensory devices in autonomous systems in
general and in mobile robotics in particular. Robotic applications currently oper-
ational or under development include: obstacle detection and mapping of indoor
environments, ground and pavement classification, terrain-referenced navigation,
Simultaneous Localization and Mapping (SLAM), and detection and tracking of
people and objects in motion.
? Funded by Research Project RETIOT PT2020-03/SAICT/2015 - Fundação para a
Ciência e Tecnologia.
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Despite the aforementioned advantages, feature extraction from radar data
poses significant challenges to conventional signal processing techniques due to
the diversity of artifacts that typically affect unprocessed radar signals. This
problem is especially dramatic in indoor environments due to the ubiquity of
obstacles (clutter) normally present in these scenarios.

This paper addresses the problem of radar-based detection of walking people
in an indoor scenario using machine learning techniques. The method proposed
is envisaged as a building block of a more general robust classifier and tracker of
people in indoor environments that is currently under development in our labo-
ratory. The aim of the this work is to develop a highly reconfigurable real-time
location system (RTLS) that integrates static radars with radars installed on mo-
bile platforms and Internet-of-Things (IoT) devices. The envisioned applications
include elderly monitoring and rescue operations in vision-denied environments.
The paper does not discuss other sensor alternatives (e.g. vision) because the
radar is intended to work as a complementary instrument or as a replacement
sensor in scenarios where the alternative sensors are prone to fail.

1.2 Summary of prior work

In order to establish a clear context for the methods described in the present
paper, we present below a summary of the state of the art in terms of radar-
based approaches for people detection and tracking together with an overview
of related applications for indoor environments.

According to the main data types and the signal processing techniques ap-
plied, the approaches proposed in the literature to detect and track moving
persons can be divided into the following categories:

Doppler-based detection and range/Doppler/azimuth based tracking.
This approach separates moving people from clutter based essentially on Doppler
data (representative of the velocity of the target relatively to the radar); static
objects can be easily classified as clutter due to their zero-Doppler attribute
while non-zero Doppler measurements associated to people motion are used to
initiate and propagate target tracks in time; data association performed for each
target relies on additional information regarding the target position in 2D, in-
cluding its range and bearing provided by a phased array radar. This approach
has demonstrated its efficacy to track multiple people with a single, low-cost
multiple-input multiple-output (MIMO) radar but it fails in two relevant as-
pects: i) it cannot distinguish moving people from other moving targets of ap-
proximately the same dimensions (or radar cross section) and ii) it cannot detect
or track a non-walking person even if he/she is performing some task (seated
or standing). This approach is illustrated by the demonstrations provided by
the Texas Instruments manufacturer of the xWR1642 and xWR1443 families of
frequency modulated continuous wave (FMCW) radars; see, e.g., [8] and [6]. It
is also adopted in the works of [9] and [5].
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Range/Doppler-based detection and range/Doppler/azimuth based
tracking. This approach exploits the extended velocity profile (or velocity dis-
persion) characteristic of human motion that stems from the fact that humans
do not move as rigid objects but rather present typical oscillating movements
of their members and body; for example, there is a typical spreading and con-
traction pattern of the velocity profile, with a sinusoidal character, in the case
of movement of arms and legs of a walking pedestrian. This approach is ob-
viously more robust and holds a larger application potential in most scenarios
where humans are required to interact with other mobile agents (including mo-
bile robots, small vehicles, and other machines with moving parts in general).
Typically, during a short time interval (for example, a radar frame of a few
tens of milliseconds), walking pedestrians present Doppler profiles with multi-
ple, distinct velocity components centered on a single point in the range domain
(due to his small velocity, a walking human practically does not change its po-
sition during such a short interval). This is in contrast with the compact, point-
shaped profile presented by a rigid moving body (a mobile robot or a car) in
the Doppler domain due to its constant velocity during an equivalent period of
time. An interesting implementation of the Range-Doppler detection approach is
described in [4]. The authors apply a Support Vector Machine to classify pedes-
trians, vehicles, and other objects in an urban area, using an automotive 24
GHz radar sensor with a bandwidth of 150 MHz as the measuring device. For
such, they propose three feature extraction schemes with increasing computa-
tional complexity and latency corresponding to increasing classification success
rates. The features used in the simplest implementation are the range-velocity
profiles and associated dispersion metrics extracted from the set of reflections
obtained in a single radar measurement; a more elaborate solution exploits data
from multiple buffered radar measurements; the most advanced implementation
complements the radar returns with additional feedback information provided
by a Kalman-based tracker. In the three solutions, the true positive rates for
pedestrians are, 45%, 54%, and 61%, respectively. Another potential application
of the Range-Doppler detection approach consists of exploiting the patterns of
hands movements of a person in order to detect her presence and even to inter-
pret his gestures (for example as remote commands for a robot). This method is
illustrated by the work of [2] that implements a hand gesture recognition system
using a machine learning algorithm fed with data from a radar to permit steer-
ing small mobile robots without direct human operation. The machine learning
implementation of gesture recognition relies on decision trees providing a mean
success rate (true positives) of 96%.

Returned signal strength-based detection. This approach exploits mea-
surements of signal intensity returned from the target that may be used directly,
as in the case of classification schemes based on the computed absolute radar
cross section (RCS) of targets, or indirectly by exploiting the relative intensity
of the echos corresponding to distinct scatterers of the same target. RCS is a
property of the target’s reflectivity, commonly used to detect and classify air-
planes in a wide variation of ranges. In principle, the technique can be applied to
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distinguish terrestrial targets, because cars, motorcycles, bicycles, and pedestri-
ans have distinct RCS values. In practice, the method may be difficult to apply
due to the large dependence of RCS measurements on the orientation of the
target relatively to the radar; see, e.g., [7]. To the best of our knowledge RCS
has not been applied before to detection and tracking of people. The indirect
method is illustrated by the collection of methods proposed in [1] that exploits
the 2D radar intensity image of a small object in order to derive a model of its
bi-dimensional shape. This is combined with measures of its Doppler spectrum
distribution to build a feature vector used by a fuzzy membership function that
maps the acquired features onto the corresponding target class. As such, the solu-
tion integrates techniques pertaining to the above-mentioned approaches 1) and
2) in order to implement a robust classification system. The success rate (true
positives) achieved with this system varies between 40% and 95% depending on
the orientation of the pedestrian trajectory (from radial to lateral) relatively to
the radar axis.

1.3 Novelty and main contributions of the paper

In this paper we propose a new, robust approach for classification of moving
objects based on radar measurements in indoor scenarios. The main novelty of
the method is the exploitation of the velocity pattern associated to the collection
of points (point cloud) representative of the multiple radar scatterers of a given
object that permits a robust distinction between moving rigid bodies and people.
Another relevant and novel contribution consists in the utilization of the radar
cross section of the observed objects as a classification feature, which is shown
to significantly increase the performance of the classifier.

2 Problem formulation and proposed solution

2.1 Basic terminology

– In radar terminology, any object that can be detected by the radar is often
designate as target.

– The scalar measure representative of the radial velocity of the target, i.e. its
velocity projected onto the central axis of the radar transmitter, is normally
designated as Doppler since it is computed based on the frequency shift
(Doopler effect) incurred by the radar wave due to the target velocity.

– A frame constitutes an elementary structure of reflectivity data that char-
acterizes the state of the target in terms of its distance (range) and radial
velocity (Doppler), relatively to the radar system.

– The MIMO radar technology considered in this work permits the discrimi-
nation of simultaneous reflections from different points in the plane of the
radar wave by exploiting the beam-formimg capability of the MIMO system.

– In the present context, a point cloud is a collection of points corresponding
to individual reflections from a scene acquired at a given instant of time and
represented in different positions of the radar sensor grid; these points may
correspond to different reflections from a single or multiple targets.
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2.2 Problem formulation

The problem can be formulated as follows: Given an indoor scenario charac-
terized by the presence of a diversity of static and mobile objects, implement a
method to unambiguously detect the presence of a walking person and estimate
its kinematic properties using range and Doppler data acquired with a low-cost
radar.

2.3 Proposed solution

The proposed approach relies on the following principles.
The motion of people is characterized by the pendular motion of arms, as

well as legs. Other objects, such as robots, usually move as a block. The pattern
of motion of people is, therefore, different from the pattern of motion of other
mobile agents, and thus, capturing this pattern over time and feeding it to a
learning model can provide a mean to dynamically detect people and distinguish
them from other objects.

Using a radar to capture the pattern of motion of an object actually implies
measuring the velocity of the points that constitute the point cloud of that object
and its variation along time. The velocity of a point is given by its associated
Doppler value. When some object moves in front of the radar, a series of frames
are recorded, and the values of Doppler are stored. In this way, the evolution of
the kinematic properties of a target can be stored and indexed to time.

In addition to the utilization of the velocity pattern of the objects observed
in a given scenario, we propose to acquire their RCS and use it in order to make
the classification more robust.

The RADAR device used was the AWR1642-BOOST EVM from Texas In-
struments. In table 1 details of the chirp can be found.

In this work, the RCS, represented by the Greek letter σ, was calculated
using the following equation

σ =
4π3d4Pr

λGPt
, (1)

Chirp Parameter (Units) Value Chirp Parameter (Units) Value
Start Frequency (GHz) 77 Maximum unambiguous range (m) 5

Slope (MHz/us) 60 Maximum radial velocity (m/s) 5.2936
Samples per chirp 128 Azimuth resolution (degrees) 14.5
Chirps per frame 256 Velocity resolution (m/s) 0.0827

Frame duration (ms) 50 Number of transmission antennas 2
Sampling rate (Msps) 2.5000 Range resolution (m) 0.0488
Bandwidth (GHz) 3.0720 Number of reception antennas 4

Table 1. Chirp parameters and respective value.
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where d denotes the distance to the object, Pt and Pr represent the power emitted
by the radar and reflected by the target, respectively, λ is the wave length of the
radar signal, and G is the ratio between the transmission and reception gain .

The value for Pt is 12.5 dBm, and is later converted to Watts. The trans-
mission and reception gains have the same value of 9 dB, thus G = 1. Because
the radar chirp used has a bandwidth of 4 GHz (from 77 GHz to 81 GHz), in
order to calculate RCS, the wave length used is based on the central frequency,
79 GHz, which corresponds to a wave length of 0.0038 meters. Since the received
signal is attenuated by a series of filtration steps in the digital signal processor
(DSP) pipeline of the radar, the power of the digitized signal after fast Fourier
transform (FFT) processing needs to be compensated in order to obtain the to-
tal power reflected by the target. This compensation is implemented according
to equation (2) as explained below; see also [7].

Pr = PFFT − [20log10(2
(nbits−1)) + 20log10(

N−1∑

i=0

ωi)− 20log10(
√
2)] + 10 (2)

Where PFFT stands for the power of the signal after analog-to-digital con-
verter (ADC) and FFT processing, nbits is the number of ADC bits used (12 in
this case), the ωi summation represented compensates the attenuation effect of
windowing prior to the application of the FFT, and the additive term 10 is used
to convert from dBFS (dB full-scale) to dBm. Equation 2 is used as a correction
factor [7]. The resulting value for power received is later converted from dBm to
Watts.

The velocity of the points belonging to the point cloud of a frame are repre-
sented by a histogram. The histogram is calculated between -6 and 6 m/s with
150 bins. Therefore the bin size (resolution) is 0,08 m/s . The kinematic of the
object can be viewed as an image by the concatenation of the histograms of the
object point cloud in all frames. Naturally the values of the bins are color coded.

Based on this configuration, the data acquired in each test is transformed
into a single dataset constituted by 151 elements (150 velocity bins plus one
value RCS) and with a number of data samples equal to the number of frames.
The total dataset is constituted by the collection of all the datasets obtained in
all the tests. Hence, in the current experiment, the complete dataset consists of
a total of 24455 frames. Out of these 24455 frames, 11285 correspond to people
moving, and the remaining 13170 correspond to other moving objects.

When performing measurements using the RADAR, clutter may coexist with
the point cloud of an object of interest. It is then important not only to detect
this clutter, but to eliminate it, ensuring that these points will not be included
in the creation of the dataset. The obvious way to segment the point cloud corre-
sponding to a target is by using an appropriate clustering method. The method
chosen in the current implementation was DBSCAN (Density-based spatial clus-
tering of applications with noise); [3]. DBSCAN is a clustering method that relies
solely on two base parameters: minimum number of points and minimum dis-
tance between them for a set of points to be considered a cluster. Henceforth,
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minimum number of points will be designated as MinPts and the minimum
distance will be designated by Eps. In the current application, clustering is per-
formed not only in spacial dimension, but also in the velocity dimension. The
justification of this strategy is the fact that two closely spaced objects will not
be distinguished by the algorithm if we only consider spatial distance between
points. However, if we consider clustering in the velocity dimension, then two
objects, even if closely spaced, will be distinguished if they have different veloc-
ities. This clustering approach is applied in a hierarchical fashion. First, only
spacial-based clustering is applied, resulting in an initial set of clusters. Then,
to every cluster, velocity based sub-clustering is applied inside each cluster, per-
mitting to discriminate sub-clusters of points whose velocity difference exceeds a
predefined threshold. The parameter values of MinPts=4 and Eps=0.6, both in
the spatial and velocity dimension, were chosen based on practical experiments.

It is important to remark that with the present configuration of clustering
parameters, the method does not decompose the cloud of points of a single
person into different clusters; it allows for the coexistence of significant velocity
differences in the same cluster in order to contemplate the representation of the
pendular motions of the arms and legs of the same person.

3 Experiments

3.1 Scenario configuration

The tests with the radar were performed in an indoor wide open area, free of
obstacles. This simplified scenario is proposed, similarly to other works described
in the literature, in order to permit a proof of concept involving the type of
classification methods proposed here. The host computer communicates with
the sensor via a Raspberry Pi connected directly to the sensor. The device is
placed at a height of 1.9 meters (in order to stand taller than most people) with
an inclination (facing downwards) of about 10 degrees. This placement of the
device aims at minimizing the number of people that can be occluded by other
people present in the area.

The whole test field contains blue marks that can be found on the ground.
They identify the bottom and top left and right corners, as well as the centre
of the field and the centre of each one of the sides. There are also blue marks
to identify the 30 and 60 degree mark on the bottom and middle of the field,
and the 30 degree mark at the top of the field (which is coincident with the top
left and right corner). The blue marks at the bottom of the two front legs of
the tripod serve the purpose of marking the position of the sensor, to ensure
the tests are done with the device placed always in the same position. Figure 1
shows a schematic of the test field.

3.2 Types of tests carried out

To enable a learning model to distinguish people from other objects, representa-
tive data sets of both classes of targets had to be provided. Therefore, tests were
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Fig. 1. Schematic of the test field with the trajectories considered represented by bidi-
rectional non-black arrows, and the corners by circumferences. The length of each
trajectory is represented in meters.

made with people, but also with objects, such as dummies with a dimension close
to that of an adult. Furthermore, with the intent of making this application as
inclusive as possible, people with limited mobility were also taken into account
by performing tests with a person driving an automated wheelchair.

Each elementary test in this experiment consisted of an object moving in a
specific direction. In the test field, 4 types of directions were considered: from
one corner to the opposite one (left to right and right to left); from the top centre
of the field to the bottom centre; from the centre side of the field to the other
centre side. For each direction, the two ways were considered, yielding therefore a
total of 8 different trajectories (see Fig. 1). For each trajectory, 10 different tests
were performed, for a total of 80 tests for each specific object. Three different
types of objects were considered: person walking, person in a wheelchair, and
two different dummies. A picture of one of the dummies is shown in 2, as well
as the radar device.

The typical velocity pattern of a person walking in front and to the device
is depicted in figure 3; the plot clearly shows the dispersion of velocity val-
ues associated to the walking person. For other directions, such as diagonal or
transversely, the pattern is similar. Figure 4 shows the velocity pattern of the
mannequin and of a person in a wheelchair. As can be seen, the velocity pattern
of the locomotion of the dummy is clearly different from that of a person. Most
of the points of a person-related point cloud are located within a defined region
of the Doppler, and this can be explained by the fact that most of the points
are correspondent to the torso and thus move with the same velocity. However,
as a result of the motion of the arms and legs, we can see there is a spread of
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Fig. 2. One of the dummies used in the tests.

points along the Doppler dimension. This spread is symmetrical (both in the
positive and negative side) and approximately periodic. This is accordance with
the movement of the limbs, which have a velocity superior to the rest of the body
and travel in opposite directions. On the other hand, the motion pattern of the
dummy is rather different. As the dummy moves as a block, the great majority
of the points will have the same Doppler value.

4 Learning Models Applied

The learning models used in this paper are implemented in the well-known
Python machine learning library named scikit-learn. Each model is depen-
dent on a set of parameters. The parameters for which the respective value is
omitted are considered to have the default value defined in the aforementioned
library. 25% of the dataset (equivalent to 6114 frames) were used for test, while
the remaining were applied in the training stage. The dataset was previously
shuffled to ensure an equal representation of both classes in both the training
and testing set.

4.1 Artificial Neural Network

The first model applied was an artificial neural network. Several values for the
hyperparameters were tested. The optimal performance was 85.9%. The values
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Fig. 3. Velocity pattern of a person walking in front and to the device.

Fig. 4. Velocity pattern of a mannequin (left) and of a person in a wheelchair (right)
moving in front and to the device. The Doppler scale is the same as the one in Fig. 3.

used for the artificial neural network parameters are shown in table 2. Using the
same hyperparameters but ignoring the RCS as a feature, the accuracy is 81.5%.
In table 3 is shown the confusion matrix both in the case the RCS is used and
in the case the RCS is not used.

4.2 Random Forests

The second model applied was a Random Forest, with a number of estimators of
500 and a maximum depth of 600, and the random state is set to 0. The accuracy
attained was 86%, which is better than the one achieved by the neural network.
As in the case for the neural network, when the RCS is not used the accuracy
decreases, in this case for a value of 82.9%. Table 4 shows the confusion matrix
of the Random Forest model.
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Activation function Relu Num. of hl 4
Num. of neurons (1st to last layer) 100, 70, 50, 20 Learning rate 0.001

Maximum iterations 10000 Random state 42
Table 2. Artificial Neural Network Hyperparameters. hl stands for hidden layers.

Predicted Not Person (with RCS) Predicted Person (with RCS)
Not Person 2890 413
Person 448 2363

Predicted Not Person (without RCS) Predicted Person (without RCS)
Not Person 2732 571
Person 559 2252

Table 3. Artificial Neural Network confusion matrix.

5 Discussion of results and conclusions

As can be seen from the results presented in the previous section, the inclusion
of the RCS of each detected target as a classification feature was shown to
improve significantly the performance of the target recognition methods in the
two studied approaches. Actually, even without using an absolute values of the
RCS, whose calibration was beyond the scope of the present study, it is possible
to show that the relative values of this parameter, when acquired by the same
radar with fixed parameters, is sufficient to discriminate some classes of objects
in a given scenario. In our opinions, this constitutes an interesting contribution
of the present work.

The overall performance of the classification models tested in this study
evidence clearly the high potential of the methods to detect people in indoor
environments, even if moving in a wheelchair, and to support the application
envisaged in our work.

The work currently in progress at our laboratory includes additional tests
with other types of targets and the detection of non-walking people based on
movements of the arms and hand gestures.

In future work we intend to test the same methods in more problematic
scenarios (e.g. with furniture and other obstacles) in order to assess their perfor-
mance and the potential adequacy of different models to the different environ-

Predicted Not Person (with RCS) Predicted Person (with RCS)
Not Person 2916 387
Person 470 2341

Predicted Not Person (without RCS) Predicted Person (without RCS)
Not Person 2821 482
Person 563 2248

Table 4. Random Forest confusion matrix.
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ments. Moreover, different parameters of the classification models will be also
tested, and their results evaluated.
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Abstract. This paper reports a machine learning approach for people
detection and tracking in indoor environments using a compact radar
system deployed by a mobile robot. The set-up described in the paper
includes a series of experiments carried out in an indoor scenario involv-
ing walking people and dummies representative of other moving objects.
In these experiments, distinct learning models (a neural network and a
random forest) were explored with different combinations of radar fea-
tures to achieve person versus non-person classification.

Keywords: RADAR · Mobile Robotics · Machine Learning · People
Detection

1 Introduction

1.1 Motivation

The utilization of standard sensors such as cameras, laser or infrared in order
to detect the presence of people and other objects in a given scenario of interest
is often hampered by the diversity of environmental effects such as dust, fog,
rain, strong heat or fire. In contrast, radar signals are immune to these distur-
bances. Additionaly, radar systems can be easily parameterized to deal with a
diversity of operational conditions. In recent years, the number and diversity of
applications of radar sensors have been increasing dramatically motivated by the
emergence of inexpensive, self-contained development kits. These devices permit
rapid prototyping and testing of radar-based solutions and their reduced cost
and dimension make them affordable for academic research and permit their
integration in small, inexpensive robots.

Despite the aforementioned advantages, robust feature extraction from radar
data is still an open problem because the radar physics is prone to generate a
diversity of artifacts that pose significant challenges to conventional signal pro-
cessing techniques. This problem is especially dramatic in indoor environments
due to the ubiquity of obstacles (clutter) normally present in these scenarios.
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The present paper introduces a novel machine learning approach integrated
with mobile robotic platforms to address the problem of radar-based detection
of moving people in an indoor scenario. To the best of our knowledge, none of
the alternative works address the specific problem that we tackle in this pa-
per: the detection of people (walking and on wheelchair) in indoor environments
based on statistical measures of radar Doppler data acquired by mobile robots.
The envisioned applications include elderly monitoring and rescue operations
in vision-denied environments. Other related works have focused on the use of
micro-Doppler data to detect human motions. Micro-Doppler (effect) is defined
as frequency modulation on the returned radar signal, that is a result of the tar-
get’s micro-motion dynamics, such as mechanical vibrations. Despite the high
potential of the approach, exploitation of this effect with the radar kits on hand
is not suitable for the current application given the demanding signal process-
ing power required to resolve the micro-Doppler components induced by the
targets while simultaneously dealing with the envisaged sensing requirements:
1) maximum detection range, and maximum unambiguous velocity of different
moving objects, and 2) the inherent vibrations of mobile robots (carrying the
radar sensors) that induce micro-Doppler effects susceptible of masking those of
the targets. The paper does not discuss other sensor alternatives (e.g. vision)
because the radar is intended to work as a complementary instrument or as a
replacement sensor in scenarios where the alternative sensors are prone to fail.

1.2 Summary of prior work

According to the main data types and the signal processing techniques applied,
the approaches proposed in the literature to detect and track moving persons
can be divided into the following categories:

Doppler-based detection and range/Doppler/azimuth based tracking.
This approach is applied in demonstrations and technical documents provided
by the Texas Instruments manufacturer of the xWR1642 and xWR1443 families
of FMCW radars; see, e.g., [11] and [8]. It is also adopted in the works of [12]
and [7]. These methods distinguish moving people from clutter based essentially
on Doppler data (representative of the velocity of the target relatively to the
radar); static objects can be easily classified as clutter due to their zero-Doppler
attribute while non-zero Doppler measurements associated to people motion are
used to initiate and propagate target tracks in time; data association performed
for each target relies on additional information regarding the target position
in 2D, including its range and bearing provided by a phased array radar. The
approach has been applied successfully to track multiple people with a single,
low-cost MIMO radar but it fails in two relevant aspects: i) it cannot distinguish
moving people from other moving targets of approximately the same dimensions
(or radar cross section) and ii) it cannot detect or track a non-walking person
even if he/she is performing some task (seated or standing).
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Range/Doppler-based detection and range/Doppler/azimuth based
tracking. This approach exploits the extended velocity profile (or velocity dis-
persion) characteristic of human motion that stems from the fact that humans
do not move as rigid objects but rather present typical oscillating movements
of their members and body; for example, there is a typical spreading and con-
traction pattern of the velocity profile, with a sinusoidal character, in the case
of movement of arms and legs of a walking pedestrian. This approach is obvi-
ously more robust and holds a larger potential of application in most scenarios
where humans are required to interact with other mobile agents (including mo-
bile robots, small vehicles, and other machines with moving parts in general).
An interesting implementation of Range/Doppler-based detection is described
in [6]. The authors apply a Support Vector Machine to classify pedestrians, ve-
hicles, and other objects in an urban area, using an automotive 24 GHz radar
sensor with a bandwidth of 150 MHz as the measuring device. Another potential
application of the Range-Doppler detection approach consists of exploiting the
patterns of hands movements of a person in order to detect her presence and
even to interpret his gestures (for example as remote commands for a robot) [2].

Returned signal strength-based detection. This approach exploits mea-
surements of signal intensity returned from the target that may be used directly,
as in the case of classification schemes based on the computed absolute radar
cross section (RCS) of targets, or indirectly by exploiting the relative intensity of
the echos corresponding to distinct scatterers of the same target. RCS is a prop-
erty of the target’s reflectivity, commonly used to detect and classify airplanes
in a wide variation of ranges. In principle, the technique can be applied to dis-
tinguish terrestrial targets, because cars, motorcycles, bicycles, and pedestrians
have distinct RCS values. In practice, the method may be difficult to apply due
to the large dependence of RCS measurements on the orientation of the target
relatively to the radar; see, e.g., [9]. To the best of our knowledge RCS has not
been applied before to detection and tracking of people.

A comprehensive revision of the use of radar systems together with the ap-
plication of machine learning for people detection tasks can be found in [5]. The
operation of radars installed on mobile robots, particularly in indoor environ-
ments, is still poorly covered in the literature. Some notable exceptions are [10],
[1], [2], and [3]. However, none of those works tackles the problem of people
detection and tracking by moving robots that is addressed in this work.

1.3 Main contributions of the paper

The main contribution of this paper is the introduction of a new, robust approach
for classification of moving objects based on radar measurements acquired by
mobile robots in indoor scenarios. In terms of formulation and implementation,
the main novelties of the work are: i) the exploitation of the Doppler histograms
representative of the velocity distribution of the points that constitute the point
cloud acquired by the radar, originated from the multiple radar scatterers of a
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given object as a feature that permits a robust distinction between moving rigid
bodies and people, and ii) the utilization of the radar cross section of targets as a
classification feature; we introduce here a practical method for its computation
and propose its application in order to implement more robust classifiers and
trackers of people.

2 Terminology, problem formulation and solution

2.1 Basic terminology and problem formulation

Basic terminology. In radar terminology, any object that can be detected by
the radar is often designate as target. The scalar measure representative of the
radial velocity of the target, i.e. its velocity projected onto the central axis of
the radar transmitter, is designated as Doppler since it is computed based on
the frequency shift (Doppler effect) incurred by the radar wave due to the target
velocity. A frame is a fixed-size packet of reflectivity data (chirp reflections) that
characterizes the state of the target in terms of its distance (range) and radial
velocity (Doppler) relatively to the radar. The multiple-input multiple-output
(MIMO) radar technology considered in this work permits the discrimination
of simultaneous reflections from different points in the plane of the radar wave
by exploiting the beam-formimg capability of the MIMO system. In the present
context, a point cloud is a collection of points corresponding to individual re-
flections from a scene acquired at a given instant of time and represented in
different positions of the radar sensor grid; these points may correspond to dif-
ferent reflections from a single object or from multiple targets.

Problem formulation. The problem addressed here can be formulate as fol-
lows: Given an indoor scenario characterized by the presence of a diversity of
static and mobile objects, implement a method to unambiguously detect the pres-
ence of a walking person and estimate its kinematic properties using range and
Doppler data acquired with a low-cost radar installed on a mobile robot.

2.2 Proposed solution

Among other characteristics, the motion of people is characterized by the pendu-
lar movements of arms and legs. Other objects, such as robots, usually move as
a block. The pattern of motion of people is, therefore, different from the pattern
of motion of other mobile agents, and thus, capturing this pattern over time and
feeding it to a learning model can provide a mean to dynamically detect people
and distinguish them from other objects.

Another issue is that the RCS of a person (even when seated) can be distin-
guished from that of other objects. Hence, the RCS may be used as a feature in
order to make the classification more robust.

Radar system. The RADAR device used was the AWR1642-BOOST EVM
from Texas Instruments. Details of the radar signal can be found in table 1.
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Radar data processing. Although the discussion of this topic is beyond the
scope of this work, the RCS, represented by the Greek letter σ, can be computed
as

σ =
4π3d4Pr

λGPt
, (1)

where d denotes the distance to the object, Pt and Pr represent the power emitted
by the radar and reflected by the target, respectively, λ is the wave length of the
radar signal, and G is the ratio between the transmission and reception gain.

The velocity of the points belonging to the point cloud of a frame are repre-
sented by a histogram. The histogram is calculated between -6 and 6 m/s with
150 bins. Therefore the bin size (resolution) is 0,08 m/s . Based on this, the tar-
get kinematics is represented as an image by the concatenation of the Doppler
histograms of the successive point cloud of all frames. For a better visualization,
the values of the bins are color coded; see e.g. Figs. 3 and 4.

Based on this configuration, the data acquired in each test is transformed
into a single dataset constituted by 151 elements (150 velocity bins plus one
value RCS) and with a number of data samples equal to the number of frames.

Data Clustering. When performing measurements using the RADAR, clutter
may coexist with the point cloud of an object of interest. It is then important
not only to detect this clutter, but to eliminate it, ensuring that these points
will not be included in the creation of the dataset. The obvious way to segment
the point cloud corresponding to a target is by using an appropriate cluster-
ing method. The method chosen in the current implementation was DBSCAN
(Density-based spatial clustering of applications with noise), [4]. DBSCAN is a
clustering method that relies solely on two base parameters: minimum number of
points and minimum distance between them for a set of points to be considered
a cluster. Henceforth, minimum number of points will be designated as MinPts
and the minimum distance will be designated by Eps. The parameter values of
MinPts=2 and Eps=0.6 were chosen based on practical experiments. Although
several clusters can be detected with this method, in the the tests performed,
we only consider one object in front of the device at a time. Therefore in all our

Chirp Parameter (Units) Value Chirp Parameter (Units) Value
Start Frequency (GHz) 77 Maximum unambiguous range (m) 5

Slope (MHz/us) 60 Maximum radial velocity (m/s) 5.2936
Samples per chirp 128 Azimuth resolution (degrees) 14.5
Chirps per frame 256 Velocity resolution (m/s) 0.0827

Frame duration (ms) 50 Number of transmission antennas 2
Sampling rate (Msps) 2.5000 Range resolution (m) 0.0488
Bandwidth (GHz) 3.0720 Number of reception antennas 4

Table 1. Chirp parameters and respective values.
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Activation function Relu Num. of hl 4
Num. of neurons (1st to last layer) 100, 70, 50, 20 Learning rate 0.001

Maximum iterations 10000 Random state 42
Table 2. ANN hyperparameters. hl stands for hidden layers.

experimental set-ups for each data frame, the largest cluster is considered the
cluster of interest.

2.3 Description of learning models applied

The learning models used in this paper are implemented in the well-known
Python machine learning library named scikit-learn. Each model is dependent
on a set of parameters. The parameters for which the respective value is omitted
are considered to use the default values defined in the aforementioned library.
The models applied were an Artificial Neural Network (ANN) and a Random
Forest. The hyperparameters for the ANN are defined in table 2. The Random
Forest was designed as having a number of estimators of 500 and a maximum
depth of 600, and the random state is set to 0.

The ANN was chosen due to its traditional applicability to image processing
and classification, and the good results it has achieved in this field. Because the
statistical Doppler patterns are represented as 2D images, ANN is an adequate
model to apply using this type of data. The Random Forest was chosen because
it is a model different from the ANN, and allows us to investigate how this model
works in this type of classification task.

3 Experiments

The reported experiments consist of a series of tests performed with a radar
installed on a small robot, the TurtleBot. In order to address the problem on
hand with varying degrees of complexity, two main configurations have been
contemplated: one where the radar is installed on a static robot, and another
with the radar deployed by a moving robot. In both cases, the moving targets
(people and objects) are made to travel along the same set of pre-defined paths
shown in Fig. 1.

3.1 Scenario configuration

The tests executed for radar data acquisition were performed in an indoor wide
open area, free of obstacles. This simplified scenario is proposed, similarly to
other works described in the literature, in order to permit a proof of concept
involving the type of classification methods proposed here. The host computer
responsible for recording and storing the measurements communicates with the
sensor via a Raspberry Pi connected directly to the sensor. The radar device is
placed on top of the TurtleBot.
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A set of blue marks was placed on the ground in order to serve as a visual
guide for the targets and to locate the corners of the field of view (see Fig. 1).

3.2 Types of tests carried out

Tests with radar installed on static robot. In order to enable a learning
model to distinguish people from other objects, representative data sets of both
classes of targets had to be provided. Therefore, tests were made with people but
also with a mannequin with a dimension close to that of an adult. Furthermore,
with the intent of making this application as inclusive as possible, people with
limitated mobility were also taken into account by performing tests with a person
driving an automated wheelchair.

Each elementary test in this experiment consisted of an object moving in a
specific direction within the field of view of the radar. In the test field, four types
of directions were considered: from one corner to the opposite one (left to right
and right to left); from the top centre of the field to the bottom centre; from the
centre side of the field to the other centre side. For each direction, the two ways
were considered, yielding therefore a total of 8 different trajectories, as shown
in Fig. 1. For each trajectory, 10 different tests were performed, comprising a
total of 80 tests for each specific object. Three different types of objects were
considered: person walking, person in a wheelchair, and a mannequin. A picture
of the mannequin is shown in Fig. 2, as well as the wheelchair used, and the
radar positioned on the TurtleBot.

The typical pattern of velocity distribution acquired by the radar when a
person is walking in front and towards the device (trajectory C) is depicted
in Fig. 3; the plot clearly shows the dispersion of velocity values associated to

Fig. 1. Schematic of the test field with the trajectories considered represented by bidi-
rectional non-black arrows, and the limits of the field of view represented by circum-
ferences. The length of each trajectory is represented in meters, and each one has also
a letter identifier.
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the walking person. For other directions, such as diagonal or transversely to
the orientation of the radar, the pattern is similar. Fig. 4 shows the velocity
pattern of the mannequin and of a person in a wheelchair, moving in front and
towards the radar. As can be seen, the velocity pattern of the locomotion of
the mannequin is clearly different from that of a person. Most of the points of
a person-related point cloud are located within a defined region of the Doppler
domain, and this can be explained by the fact that most of the points represent
reflections from the torso and thus move with the same velocity. However, as
a result of the motion of the arms and legs, there is a clear spread of points
along the Doppler dimension. This spread is symmetrical (both in the positive
and negative side) and approximately periodic. This is in accordance with the
movement of the limbs, which have a velocity superior to the rest of the body
and travel in opposite directions. On the other hand, the motion pattern of the
mannequin is rather different. As the mannequin moves as a block, the majority
of the points have approximately the same Doppler value.

Tests with radar deployed by a moving robot. The tests performed with
the radar deployed by the moving robot involved the same targets (people, man-
nequin, and wheelchair) moving along the same paths as used in the tests exe-
cuted with the static robot. In the case of the tests performed with the moving
robot, the robot travelled along a straight trajectory that crossed or converged
with the path of the other targets; see Fig. 1.

4 Results with radar installed on the static robot

The dataset acquired in this experiment consists of a total of 40430 frames. Out
of these 40430 frames, 21872 correspond to people moving (walking or moving in
a wheelchair), and the remaining 18558 correspond to other moving objects. For
classification purposes, 25 % of the dataset was used for test, while the remaining
was applied in the training stage. The dataset was previously shuffled to ensure

Fig. 2. Wheelchair (left) and mannequin (center) used in the tests. TurtleBot with
radar installed on its top (right), with an upward inclination of 10 degrees.
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Fig. 3. Histogramic representation of Doppler measures of a person walking in front
and to the device (trajectory C), with the TurtleBot immobilized. The Doppler axis
only ranges from −4 m/s to 2 m/s because in this case there are no points beyond
those limits. The colour bar on the right represents the absolute number of points.

an equal representation of both classes (people moving and other moving objects)
in both the training and testing set.

The classification based on the ANN described in subsection 2.3, and using as
features the normalized histogram bins as well as the RCS, achieved an accuracy
of 96.1%. Following the standard notation of this field, accuracy is defined as
TP+TN

N , where TP and TN stands for true positives and true negatives (respec-
tively), and N represents the total number of examples. Using the same ANN
with similar hyperparameters but excluding the feature RCS, the performance
was 92.0%. Using the Random Forest, the accuracy attained was 95.3%. As in
the case of the ANN, when the RCS is not used as a feature the accuracy de-
creases, in this case for a value of 91.9%. The confusion matrices of the ANN
and Random Forest are represented in table 3 and 4, respectively. Note that,
although we only reference the accuracy, all the other metrics (such as precision,
recall, etc) can be derived from the confusion matrices.

Predicted Not Person (with RCS) Predicted Person (with RCS)
Not Person 4487 175
Person 217 5229

Predicted Not Person (without RCS) Predicted Person (without RCS)
Not Person 4357 305
Person 506 4940
Table 3. ANN confusion matrices in the case of an immobilized TurtleBot.
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Fig. 4. Histogramic representation of Doppler measures of a mannequin (left) and
person in wheelchair (right) moving in front and to the device, with the TurtleBot
immobilized. The Doppler scale is the same as the one in Fig. 3. Notice the dispersion
of Doppler of the mannequin, which is caused by small oscillatory movements of its
pending arms combined with a certain component of rotation of the body during towing
of the dummy. In contrast, the person in the automated wheelchair is practically still.
The colour bar on the right of each histogram represents the absolute number of points.

5 Results with radar installed on the moving robot

5.1 Constraints

When the radar is installed on a static platform, the objects that contribute
with points to the point cloud generated by the radar are only those who have
an apparent movement relatively to the sensor. However, in this experiment, as
the sensor is moving, all objects exhibit apparent movement relatively to the
radar, and thus, all objects contribute with points to the point cloud generated.
Hence, in this experiment the point cloud generated is larger than when the
radar was immobilized. The first tests revealed that this increase of information
(points) is enough to make the radar application provided by the manufacturer
to crash. To solve this problem the radar configuration was modified, reducing
the number of ADC samples collected per chirp, from 128 to 64.

One of the issues observed in this experiment was that the clustering method
wasn’t robust enough to detect and retrieve only the cluster of interest. Due
to the above mentioned reasons, when the sensor is moving, more clusters are
generated than when the robot is immobilized. Thus, choosing the largest cluster
as the cluster of interest does not guarantee that the cluster corresponds to the
target of interest; it may be generated by any sufficiently large object nearby,

Predicted Not Person (with RCS) Predicted Person (with RCS)
Not Person 4450 212
Person 263 5183

Predicted Not Person (without RCS) Predicted Person (without RCS)
Not Person 4316 346
Person 468 4978

Table 4. Random Forest confusion matrices in the case of an immobilized TurtleBot.
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with an apparent motion. To resolve this, an heuristic-based tracking algorithm
was developed in order to detect a cluster and to follow it along a sequence of
frames, and to detect if the cluster chosen to initialize the track is the right
cluster originated with data from the target of interest; see Algorithm 1. This
algorithm considers that from frame to frame, the same cluster can not travel
more that 1.6 meters, because otherwise, it would have a velocity higher than
what is expected from objects moving in the environment under study. On the
other hand, the total distance traversed by a cluster along the experiment must
be equal or greater than 1.5 meters. Otherwise, it would mean the cluster barely
moved, which can not be the case for the cluster of interest.

5.2 Results

In the current experiment, the complete dataset consists of a total of 25431
frames. Out of these 25431 frames, 12720 correspond to people moving, and the
remaining 12711 correspond to other moving objects. 25 % of the dataset was
used for test, while the remaining was applied in the training stage.

Using the ANN described in subsection 2.3 and considering the RCS as a fea-
ture, the accuracy attained was 97.7%, while ignoring the RCS the performance
was 96.2%. For the Random Forest, the accuracy were 97.8% using the RCS as a
feature, and 96.5% without RCS. The resultant confusion matrices of the ANN
and Random Forest are represented in table 5 and 6, respectively.

Algorithm 1: Heuristic tracking algorithm
Iteration = 1; TotDistance = 0;
while there are data frames do

if Iteration == 1 then
Compute and store centroid of cluster;

else
Calculate closest centroid to previous one;
Store centroid of cluster;
Displacement = distance between previous and closest centroid;
if Displacement > 1.6 then

Iteration = 1; TotDistance = 0;
Start on different cluster;
Continue;

end
TotDistance = TotDistance + Displacement;

end
if Iteration == total number of frames then

if TotDistance < 1.5 then
Iteration = 1; TotDistance = 0;
Start on different cluster;
Continue;

end
end
Iteration = Iteration + 1;

end
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Predicted Not Person (with RCS) Predicted Person (with RCS)
Not Person 3135 66
Person 83 3074

Predicted Not Person (without RCS) Predicted Person (without RCS)
Not Person 3076 125
Person 115 3042

Table 5. ANN confusion matrices in the case of a moving robot.

Predicted Not Person (with RCS) Predicted Person (with RCS)
Not Person 3133 68
Person 74 3083

Predicted Not Person (without RCS) Predicted Person (without RCS)
Not Person 3070 131
Person 91 3066
Table 6. Random Forest confusion matrices in the case of a moving robot.

6 Discussion of results and conclusions

As can be seen from the results presented, the performance of the classification
models tested in this study clearly evidence the high potential of the methods to
detect people in indoor environments and to support the application envisaged in
our work. Although the tests with the moving TurtleBot hampered the tracking
and distinction of the cluster of interest, the methods had a better performance
in this case than when the robot was immobilized. In all cases, the classification
models had their performance deteriorated when the RCS was not used as a
feature. In the experiments were the TurtleBot was immobilized, the ANN had
a better performance than the Random Forests. In the experiments where the
TurtleBot is moving, the Random Forests had a better performance than the
ANN. The RCS had a greater impact on performance in the experiments where
the TurtleBot is static, comparing to the experiments where it is moving.

We showed that the approach is effective in two distinct scenarios (robot
immobilized and robot moving) which can lead to a wide range of applications in
robotics. The presence of clutter and its deleterious effect, which can be typical in
indoor environments, was also solved with a simple heuristic tracking algorithm.

In future work we intend to test the same methods in more problematic
scenarios (e.g. with furniture and other obstacles) in order to assess their perfor-
mance and the potential adequacy of different models to the different environ-
ments. Moreover, different parameters of the classification models will be also
tested, and their results evaluated. The configuration of the radar device can
also be altered with the purpose of detecting velocities and distances with a
higher resolution or with larger ranges. The output rate can also be increased.
By modifying the configuration of the radar, we can study how the different
parameters affect the quality of the data and the performance of the model,
and ultimately determine the best radar parameters. Another interesting appli-
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cation is, besides detecting people, to detect other features such as the different
trajectories travelled by each object.

Acknowledgement

This work is funded by Research Project RETIOT PT2020-03/SAICT/2015 -
Fundação para a Ciência e Tecnologia.

References

1. Barrett, D., Alvarez, A.: mmWave radar sensors in robotics applications. Tech.
rep., Texas Instruments (2017)

2. Berkius, C., Buck, M., Gustafsson, J., Kauppinen, M.: Human Control of Mobile
Robots Using Hand Gestures. Bachelor thesis in electrical engineering, Chalmers
University of Technology. Gothenburg, Sweden. (2018)

3. Dogru, S., Marques, L.: Using Radar for Grid-based Indoor Mapping. In: Proc. 19th
IEEE International Conference on Autonomous Robot Systems and Competitions,
ICARSC’2019. April24-25. Gondomar, Porto. Portugal (2019)

4. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A Density-based Algorithm for Dis-
covering Clusters in Large Spatial Databases with Noise. In: Proceedings of the
Second International Conference on Knowledge Discovery and Data Mining. pp.
226–231. KDD’96, AAAI Press (1996)

5. Gurbuz, S.Z., Amin, M.G.: Radar-based human-motion recognition with deep
learning: Promising applications for indoor monitoring. IEEE Signal Processing
Magazine 36(4), 16–28 (July 2019). https://doi.org/10.1109/MSP.2018.2890128

6. Heuel, S., Rohling, H.: Pedestrian Recognition Based on 24 GHz Radar Sensors.
vol. Ultra-Wideband Radio Technologies for Communications, Localization and
Sensor Applications, chap. 10, pp. 241–256. InTech (2013)

7. Knudde, N., Vandersmissen, B., Parashar, K., Couckuyt, I., Jalalvand, A., Bour-
doux, A., Neve, W.D., Dhaene, T.: Indoor Tracking of Multiple Persons With a 77
GHz MIMO FMCW Radar. In: 2017 European Radar Conference (EURAD). pp.
61–64 (2017)

8. Livshitz, M.: Tracking radar targets with multiple reflection points. https://e2e.
ti.com/cfs-file/__key/communityserver-discussions-components-files/
1023/Tracking-radar-targets-with-multiple-reflection-points.pdf
(2018), [Online; accessed 13-June-2019]

9. Machado, S., Mancheno, S.: Automotive FMCW Radar Development and Verifica-
tion Methods. Master’s thesis, Department of Computer Science and Engineering.
Chalmers University of Technology. University of Gothenburg, Sweden. (2018)

10. Takeuchi, E., Elfes, A., Roberts, J.: Localization and Place Recognition Using an
Ultra-Wide Band (UWB) Radar, Springer Tracts in Advanced Robotics, vol. 105.
Springer (2015)

11. Texas-Instruments: People Tracking and Counting Reference Design Using
mmWave Radar Sensor. TI Designs: TIDEP-01000. (Mar 2018)

12. Yamada, H., Wakamatsu, Y., Sato, K., Yamaguchi, Y.: Indoor Human Detection by
Using Quasi-MIMO Doppler Radar. In: 2015 International Workshop on Antenna
Technology (iWAT). pp. 35–38 (2015)



Appendix C

Excerpt of the technical report of
the research grant supported by
project RETIOT

127



1 Application and test of Kalman Filters on the
data acquired by the sensor

With the acquired data stored according to a well predefined format, it is possible
to process it offline. From the mapping of the radial position of a person detected
by the sensor to the Cartesian coordinates, it is possible to reconstruct the tra-
jectory travelled. Figure 1 shows the trajectory defined by a person in the data
acquisition stage. Notice that the radar is positioned in the origin of the referen-
tial, at point (0,0) with the antennas oriented towards the positive direction of Y
axis. Besides showing the successive positions of the person, the velocity vector
is also represented at each time instant, with a size that is proportional to the
intensity.

The Kalman Filter is a mathematical method whose purpose is to use measu-
rements acquired through time, that can potentially contain noise, and produce
predictions about the real values of the state variables, which tend to be closer to
the real value then the acquired measurements. Using only the data available in
the TLV packets of the the detected targets, it was possible to create two Kalman
filters to predict the real position of the target. The two types of filters differ
in the way the velocity component is used to make the predictions. In the first
approach, the velocity was used as one of the measurements to feed the filter in
order to perform the position prediction. In the second approach, the velocity was
used as an input to the filter.
Figure 2 shows the trajectory predicted by the Kalman Filter, using the velocity
as a measurement. Notice the great similarity with the trajectory measured by
the sensor in figure 1.
Figure 3 shows the trajectory predicted by the Kalman filter, using the velocity as
an input to the system. Notice once again the great similarity with the trajectory
measured by the radar. In both types of Kalman Filters implemented, as well as
in the data retrieved by the radar, it is possible to see that, on the line defined by
the equation x = 0, the density of points that mark the position of the target is
smaller. The area where the densisity of points is samller increases as a function
of the distance to the origin. This reflects the influence of the blind angle in the
performance of the filters.

1



Figura 1: Reconstruction of the travelled trajectory.

The code developed to implement the second version of the Kalman Filter is avai-
lable at appendix A. In the appendix it is possible to see the matrix that translates
the evolution of the system and the error matrix, as well as the method used to
update the covariance matrix and the state prediction. The name of each one of
the variables used in the filter implementation are the ones which are traditionally
used in the literature.
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Figura 2: Kalman Filter prediction of the travelled trajectory, using the velocity
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Figura 3: Kalman Filter prediction of the travlled trajectory, using the veloicty as
an input

A
Matlab implementation of the Kalman Filter
that uses the velocity as an input

1 delta_t = 0 . 0 5 ; % Time i n t e r v a l between measurements
2

3 samples = 575 ; % Number o measurements
4

5 I = eye (2 ) ; % Iden t i t y matrix
6

4



7 A = [1 , 0 ;
8 0 , 1 ] ; % Evolut ion o f the model
9

10 B = [ delta_t , 0 ;
11 0 , delta_t ] ;
12

13 u = [ ve lx ; ve ly ] ;
14

15 H = [ 0 . 4 5 , 0 ; 0 , 0 . 3 1 ] ;
16

17 Q = [ 0 . 0 5 , 0 ;
18 0 , 0 . 0 5 ] ;
19

20 R = [ 0 . 0 5 , 0 ;
21 0 , 0 . 0 5 ] ; % Noise o f the s enso r (RADAR)
22

23 error_X = ze ro s (1 , samples ) ; % Vector to s t o r e e r r o r s a long
X dimension

24 error_Y = ze ro s (1 , samples ) ; % Vector to s t o r e e r r o r s a long
Y dimension

25

26 s t a t e_ap r i o r i = ze ro s (2 , samples ) ;
27 s t a t e_apo s t e r i o r i = ze ro s (2 , samples ) ;
28 P_aprior i = ones (2 , 2) ;
29 P_aposter io r i = ones (2 , 2) ;
30 K = ze ro s (2 , 2) ; % Kalman Gain
31

32 % I n i t i a l cond i t i on on the s tate , X and Y.
33 z = [ posx ; posy ] ;
34 % Pred i c t i on equat ions
35 s t a t e_ap r i o r i ( : , 1 ) = [ posx (1 ) ; posy (1 ) ] ;
36 P_aprior i = A∗ I ∗A. ’ + Q;
37 % Update equat ions
38 K = P_aprior i /( P_aprior i + R) ;

5



39 P_aposter io r i = ( I − K)∗P_aprior i ;
40 s t a t e_apo s t e r i o r i ( : , 1 ) = s t a t e_ap r i o r i ( : , 1 )+K∗( z ( : , 1 ) −

s t a t e_ap r i o r i ( : , 1 ) ) ;
41

42 % Calcu la te the e r r o r s
43 error_X (1) = abs ( posx (1 )−s t a t e_apo s t e r i o r i ( 1 , 1 ) ) ;
44 error_Y (1) = abs ( posy (2 )−s t a t e_apo s t e r i o r i ( 2 , 1 ) ) ;
45

46 f o r j =2: samples
47 % Pred i c t i on equat ions
48 s t a t e_ap r i o r i ( : , j ) = A∗ s t a t e_apo s t e r i o r i ( : , j−1) + B∗u

( : , j−1) ;
49 P_aprior i = A∗P_aposter io r i ∗A. ’ + Q;
50 % Update equat ions
51 K = P_aprior i /( P_aprior i+R) ;
52 P_aposter io r i = ( I − K)∗P_aprior i ;
53 s t a t e_apo s t e r i o r i ( : , j ) = s t a t e_ap r i o r i ( : , j )+K∗( z ( : , j ) −

s t a t e_ap r i o r i ( : , j ) ) ;
54 error_X ( j ) = abs ( posx ( j )−s t a t e_apo s t e r i o r i (1 , j ) ) ;
55 error_Y ( j ) = abs ( posy ( j )−s t a t e_apo s t e r i o r i (2 , j ) ) ;
56 end
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