
Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2019

Luís Filipe
Sobral Silva

Dignitas - Uso de reputação como moeda para
avaliar a sensorização humana em Cidades
Inteligentes

Dignitas - Using reputation as a coin to evaluate
human sensing in Smart Cities

Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2019

Luís Filipe
Sobral Silva

Dignitas - Uso de reputação como moeda para
avaliar a sensorização humana em Cidades
Inteligentes

Dignitas - Using reputation as a coin to evaluate
human sensing in Smart Cities

Dissertação apresentada à Universidade de Aveiro para cumprimento dos requisi-
tos necessários à obtenção do grau de Mestre em Engenharia de Computadores e
Telemática, realizada sob a orientação científica do Doutor André Zúquete, Pro-
fessor auxiliar do Departamento de Eletrónica, Telecomunicações e Informática
da Universidade de Aveiro, e do Doutor Carlos Senna (co-orientador), Professor
Investigador no Instituto de Telecomunicações .

Ao meu irmão Tomás, por não me ter deixado crescer

o júri / the jury
presidente / president Prof. Doutor Joaquim João Estrela Ribeiro Silvestre Madeira

Professor Auxiliar da Universidade de Aveiro

vogais / examiners committee Prof. Doutor António Alberto dos Santos Pinto
Professor Adjunto do Instituto Politécnico do Porto

Prof. Doutor André Ventura da Cruz Marnoto Zúquete
Professor Auxiliar da Universideade de Aveiro

agradecimentos Gostaria de agradecer ao Prof. Zúquete e ao Dr. Carlos pela orientação - as ideias,
as críticas, as vírgulas e, ainda, todas as agradáveis reuniões que tivemos. Aos meus
amigos e ao meu irmão, que não me deixaram enlouquecer nos últimos metros
desta maratona. Quero agradecer também à minha mãe, pelo apoio incondicional
durante todo o meu percurso pela Universidade. E, finalmente, à Ana Margarida,
por me aturar e ser alguém com quem posso sempre contar independentemente de
tudo.

Palavras Chave Blockchain, sistemas distribuídos, reputação, confiança, privacidade, cidades in-
teligentes, redes veiculares

Resumo Vivemos num mundo cada vez mais digital, onde as cidades inteligentes passaram
a ser uma realidade. Uma das caracteristicas que permite a estas cidades serem in-
teligentes é a capacidade de adquirir informação e agir sobre ela, melhorando a vida
de todos os cidadãos. Neste trabalho apresentamos o nosso sistema, Dignitas, um
sistema de reputação baseado numa blockchain que permite aos cidadãos de uma
cidade inteligente avaliar informação relatada por outras pessoas. Esta avaliação
é baseada numa aposta feita pelo relator, e por todos os que com ele concordam,
em que põe em risco parte da sua Reputação no sistema. Este uso da Reputação
como uma moeda é o que nos permite construir um sistema anónimo. O uso de
uma blockchain permite-nos ter multiplas autoridades responsáveis, evitando por
isso o uso de esquemas centralizados. O nosso trabalho focou-se em desenvolver a
nossa idea, uma prova de conceito, e testar a viabilidade desta nossa nova solução.

Keywords blockchain, distributed systems, reputation, trust, privacy,Smart Cities, vehicular
networks

Abstract We live in an increasingly digital world, where Smart Cities have become a reality.
One of the chaacteristics that make these cities smart is their ability to gather
information and act upon it, improving their citizens lives. In this work, we present
our system, Dignitas. A blockchain-based reputation system that allows citizens
of a Smart City to assess the truthiness of information posted by other citizens.
This assessment is based on a bet that reporters make, and oll of those who agreed
with him, that puts their gathered reputation at stake. This use of Reputation as
a currency is a novel idea that allowed us to build an anonymous system. Using
blockchain we were able to have multiple authorities, working with each other to
make the system secure and thus avoinding centralized schemes. Our work was
focused on developing our idea, a proof of concept, and testing the viability of our
new solution.

contents i

Contents

Contents . i

List of Figures . v

List of Tables . vii

Glossary . ix

1 Introduction . 1

1.1 Objectives . 2

1.2 Contributions . 3

1.3 Document Structure . 3

2 Background Review . 5

2.1 Security Principles . 5

2.1.1 Public Key Cryptography . 5

2.1.2 Digest Functions . 6

2.1.3 Attacks on Reputation Systems . 6

2.2 Distributed Ledger Technology . 7

2.2.1 Bitcoin and the origin of Blockchain . 7

2.2.2 Blockchain nowadays . 9

2.2.3 Consensus in a Distributed Ledger . 10

2.3 Smart Cities . 12

2.3.1 Vehicular Ad-Hoc Network (VANET) . 13

3 State of the Art . 15

3.1 Traditional Reputation and Trust Systems . 15

3.2 Reputation Systems in Smart Cities . 17

3.3 Blockchain in Reputation Systems . 19

i

ii contents

4 Reputation as a Coin . 21

4.1 Overview . 21

4.2 Actors . 22

4.2.1 Untrusted Actors (UA) . 22

4.2.2 Trusted Actors (TA) . 23

4.3 Processes . 23

4.3.1 Reporting Phase . 23

4.3.2 Evaluation Phase . 24

4.4 Rewarding . 25

5 Architecture . 27

5.1 The Network . 29

5.2 The Ledger . 29

5.3 The Proxies . 30

5.3.1 Ledger Proxy . 30

5.3.2 Secure Server . 31

5.4 The User Applications . 31

5.4.1 Native or Web . 31

5.4.2 UA application . 32

5.4.3 TA application . 32

5.5 Scenario . 33

6 Implementation . 35

6.1 Rust Programming Language . 35

6.2 Distributed Ledger Implementation . 37

6.2.1 Choosing a Distributed Ledger Platform . 37

6.2.2 Sawtooth Architecture Overview . 39

6.2.3 Network Layer . 40

6.2.4 Data Layer . 41

6.2.5 Application Layer . 46

6.3 Untrusted Side Ledger Proxy . 49

6.3.1 Endpoint Specification . 50

6.4 UA Android Application . 52

6.5 Trusted-Side Secure Server . 55

6.5.1 Endpoint Specification . 56

6.6 TA application . 56

7 Results . 59

7.1 Testing Tools . 59

ii

contents iii

7.2 Testing . 61

8 Conclusion . 65

Bibliography . 67

iii

list of figures v

List of Figures

2.1 Schematic of transactions between three users . 8

2.2 Chain of blocks schematic . 9

2.3 Two Generals Problem . 11

2.4 Three major areas of a Smart City . 13

2.5 VANET architecture overview . 14

5.1 Architectural schematic of Dignitas . 28

5.2 Possible scenario deployment of Dignitas . 33

6.1 Sawtooth architecture overview . 39

6.2 Network layer architecture . 41

6.3 Node states . 41

6.4 Geohash algorithm in 2D . 43

6.5 Report and Wallet data structures . 45

6.6 Fields of a Sawtooth Transaction . 46

6.7 Fields of a Sawtooth Batch . 47

6.8 Payloads of different actions . 48

6.9 UA proxy source code structure . 50

6.10 Response from the POST /transaction endpoint . 51

6.11 Response from the GET /votes endpoint . 51

6.12 Response from the GET /balance/<wallet> endpoint . 52

6.13 Dignitas Android application architecture . 53

6.14 . 54

6.15 . 54

6.16 . 55

6.17 Secure server implementation . 55

6.18 TA application . 57

v

vi list of figures

7.1 Clignitas help information . 60

7.2 Test tools integration . 61

7.3 Number of blocks published during the stress test . 62

7.4 Number of blocks considered during the stress test . 63

7.5 Number of transactions committed to the ledger during the stress test 63

7.6 Processing time of the 99th percentile of transactions committed to the ledger during the

stress test . 64

vi

list of tables vii

List of Tables

6.1 Capability analysis of blockchain frameworks . 38

6.2 Usability analysis of blockchain frameworks . 38

vii

ix

Glossary

ØMQ ZeroMQ
API Application Programming Interface
BFT Byzantine Fault Tolerant
CBOR Concise Binary Object
DLT Distributed Ledger Technology
DPoS Delegated Proof of Stake
MANET Mobile ad hoc networks
OBU On Board Unit
OBU On Board Units
P2P Peer-to-Peer
PKI Public Key Infrastructure
PoC Proof Of Concept
PoA Proof of Authority
PoS Proof of Stake
PoW Proof of Work

RSU Road Side Unit

RSU Road Side Units

REST REpresentational State Transfer

SHA Secure Hash Algorithm

TA Trusted Actors

TP Transaction Processor

UA Untrusted Actors

V2I Vehicle-to-Infrastructure

V2V Vehicle-to-Vehicle

VANET Vehicular Ad-Hoc Network

MVVM Model-View-ViewModel

cli Command Line Interface

DoS Denial of Service

SDK Software Development Kit

ix

https://zeromq.org/

1

chapter 1
Introduction

Nowadays, computers are everywhere, from the ones scattered around the world in the
so-called cloud to the ones in everyone’s pocket, our smartphones. However, the mass adoption
of these technological wonders might not have happened if they did not possess one key
feature, the ability to communicate with each other. Communication is the property that
enables the creation of huge networks, interconnecting systems and facilitating constant flows
of information and data all around the globe.

Today the information available through this distributed network is no longer solely
human-generated data with the intent of informing other humans, there has been an increase
on the amount of information being created by machines with the sole purpose of being
aggregated and analyzed by another machine and then, finally, being presented to a Human in
a distilled and resumed way. This new paradigm is usually used when there is a need to sense
and watch over an environment and where the sensing is done by small machines (sensors)
collecting small pieces of data about that same environment that when processed with other
bits of information can build a bigger picture of what they are observing. Smart Cities are
one contemporary application of this model.

Smart Cities is a concept that has been growing gradually over the past years, they are no
longer an idea but have become a reality in our society. Cities have measurable advantages in
becoming “smart”, deploying a wide network of sensors allow for the city administrators to
easily overview the well-being of their population. One way of attaining this knowledge is
through the measurement of environmental data such as air and water quality, or by measuring
car flows on the streets to identify possible circulation bottlenecks and accident-prone locations.

It is evident that the need for this sensing of our cities will increase. One way to handle
this increment is to deploy more sensors. Another interesting approach is to use one element
that is essential to cities, its citizens. Citizens are those for whom there are more advantages
in this type of systems. Information about the place they live is priceless, enables them to

1

2 chapter 1. introduction

act upon it and enhance their lives. For instance, it would be useful for a citizen to know in
advance if there is an accident in the route they usually use to commute so they can take
an alternative. If citizens are the ones that most benefit from this, it makes sense to induce
them in this process of sensing their own city, to get people to act as sensors in this mesh of
interconnected nodes.

However, “with great power comes great responsibility”1 and if the purpose is to give
citizens more power to participate in this process, there is also the need to ensure that
somehow people are going to take this task seriously. This is where reputation comes into
play. Since the dawn of human interactions, reputation has played a crucial part in the
first assessment of new information. Humans tend to trust new information based on the
person that is telling it. Today, in our everyday life, reputation systems are frequently used:
specialized reputation systems, such as Tripadvisor, as part of online commerce systems, such
as eBay and Amazon, or even in programming support systems, such as StackOverflow. Even
current social networks can be seen as a reputation system, where the opinion of someone is
rated not by its content but by the number of people paying attention to it.

Reputation systems are also inherently insecure in terms of user privacy because their
whole purpose is to guide human interactions solely through an identity based process. Even
with people being more aware than ever about privacy and its importance in our modern
world, it is more common to hear about systems leaking private information about its users.

So, how can we build a secure and private reputation system that is able to shape the
future of information and interactions in our Smart Cities ?

1.1 objectives

This work main objective was to build a Blockchain-based private reputation system that
could support an event reporting system for a Smart City.

A system that could aid in reducing the problems caused by the exponential growth of
cities, enabling citizens to receive information, in real time, about their surroundings and
allowing them to make informed decisions based on the information that the system provides.

Citizens should play a central role in their cities and our system should give them the power
to make an impact in their communities. The reputation of participants should guide the
final credibility of the information being spread. Individual reputation is used as a “currency”,
citizens bet with their reputation when giving an opinion, and get some reputation back when
they are considered to be right.

However, there is a key principles that we should enforce: privacy by design, meaning that
every citizen that would want to participate should feel secure doing so. Our objective is to
create a system that could help and improve citizens lives and not the other way around.

The sense of community and helping others should be fostered and citizens could also be
rewarded for their good behaviours, without necessary giving up on their privacy.

1Popular quote from Stan Lee’s Spiderman comic books

2

1.2. contributions 3

In these types of systems, where one could leverage opportunities, generally, some problems
arise such as: “Quis custodiet ipsos custodes?”2. If the integrity of the system is relying on a
single entity how could we be sure of its impartiality?

With this in mind, our proposed system should not rely on a single, centralized authority
entity. Our proposed distributed solution makes our system invulnerable to this types of
problems. The reputation system should have the ability to be supervised by municipality
stakeholders, which in turn have the role of giving a final decision on the quality of the
information and, consequently, in the update of the reputations associated with. The blockchain
technology is used as a natural solution to spread power among stakeholders when it comes
to reputation management, ensuring a trustworthy dissemination of information.

For our work we also assumed the deployment of the system in a smart city scenario where
it should rely on the existing infrastructure to support itself, meaning that it should be able
to deal with devices that have limited operational capability.

1.2 contributions

The main contribution of this work is the novel idea of using reputation as a coin
disassociating an individual reputation from its identity. Meaning that, in a reputation system
based on this approach, users could preserve their anonymity while participating. This idea
was present in a paper [49] that was accepted and present on the 2019 Fifth Conference on
Mobile and Secure Services (MobiSecServ).

Following up on this work, we worked on a practical implementation of this idea in
a Smart City scenario from which we developed a framework called Dignitas, our Proof
Of Concept (PoC). This framework could be used in a Smart City scenario, but also in
any other scenario that could take advantage of a reputation scheme. With it, we also
successfully demonstrate yet another use for the distributed ledger technology (blockchain) in
an environment requiring the existence of distributed trust.

During this work some spin-off contributions were also made to the open source community,
namely on some library support for the novel language Rust.

1.3 document structure

After this introductory chapter the reader will find Chapter 2, a small background review
which presents some concepts and give some indispensable context in order to understand the
rest of the work. In Chapter 3 the reader will find the state of the art where we present and
discuss related works. Next, in Chapter 4 we begin the presentation of our solution discussing
its main ideas, processes and actors. In Chapter 5 we deep dive into our system components
explaining how they should operate and communicate with each other. Chapter 6 is dedicated

2Latin for “who guards the guards?”

3

4 chapter 1. introduction

to our system implementation, here the reader will understand the steps and decisions made
while building our Proof Of Concept (PoC). In Chapter 7 we explain how we tested and what
results we got from our PoC. Finally, in Chapter 8 the conclusions of this work are presented.

4

5

chapter 2
Background Review
“Familiarity breeds liking.” - Daniel Kahneman, Thinking, Fast and Slow

Since this works spawns across several different fields, this chapter’s purpose is to give
an overview of concepts that are indispensable to understand it. One of the main objectives
of this work was to implement, above all, a secure system. For this reason, in this chapter
the reader will find the description of security concepts important to understand our work.
The Blockchain is another important foundation and tool of this work, we will explain how it
came to exist, its main attributes, use cases and how we can position this tool in the broader
ecosystem of Distributed Ledger Technology (DLT). Another topic we addressed briefly are
smart cities; since they are one of the use cases of this work, we decided it was important to
discuss some important concepts.

2.1 security principles

Being one of the core aspects of the our proposed solution, security has a big part in this
work. In this section we present several concepts that are fundamental to understand the
proposed solution in detail. Concepts such as public key cryptography, what it is and what
role does it play in current security solutions. Also, security primitives used throughout this
work, such as hash functions, are presented.

2.1.1 public key cryptography

When there is cryptography, there are keys. To us, the idea of using a key to encode
something is very intuitive. It is a process that has been employed since the times of ancient
Greece. The privacy of a message depends entirely on the privacy of the key being used to
secure it. If the necessity to share the keys with the party we want to communicate with is

5

6 chapter 2. background review

considered, then we have a problem; specifically, the need to find a secure channel for sharing
the key in the first place.

In recent years, there has been a sprung of cryptographic systems based on more than one
simple key. These solutions tried to tackle the problem described above, the dissemination of
a key when there is no previous secure channel on whom to trust. In [12] Diffie and Hellman
defined the basics ideas behind a system based on two different keys: one that must be
always private, and other that can be public and shared with everyone. Both these keys
are intertwined with themselves. The public key is generated from the private one, but it is
infeasible to generate the private key from the public one. This generation of keys is based
on the known intractability of certain mathematical problems, which are easy to state but
difficult to solve, for instance, discrete logarithm problems or integer factorization [19].

These type of cryptosystems, also called Public Key cryptosystems, can have different
purposes, such as key agreement or digital signatures. Key agreement is the problem stated
above, the need to exchange a secrete key over an insecure channel. Another use for this
systems are digital signatures. Digital signatures, similarity to their counterpart in the physical
world, are used to verify the author of some information, providing authentication of messages.
However, signatures from the digital world can do more than that, they can ensure that the
message was not modified (provide integrity) and can even ensure the non-repudiation of
messages, meaning that a person cannot deny having signed a specific information.

2.1.2 digest functions

Digest functions are a special type of cryptographic construction [40]. They create a sort
of summary, or fingerprint, for an arbitrarily sized piece of information.

Thinking in terms of a black box a digest function takes as input some block of information
and deterministically returns a fixed sized representation of that data. They must possess some
important properties for them to be useful and used in real scenarios. First, the computation
should be fast (linear time). Next, the inversion of this computation should be infeasible
(exponential time). Last, but not least, the digest function should be collision resistant,
meaning that it should be hard to find two different documents with the same digest.

This tool can be used in digital signatures. Digitally signing a document is usually achieved
by only signing the document digest, and not the full version.

Nowadays, the digest function more widespread and used is the Secure Hash Algorithm
(SHA). SHA is actually a family of functions that are represented by SHA-n where n represents
the fixed size in bits of the output, such as, SHA-256, SHA-512, SHA-1024.

2.1.3 attacks on reputation systems

Reputation systems, as any other type of system, are not impervious to malicious attacks.
Even more so because attackers can personally benefit from such attacks. There are a plethora

6

2.2. distributed ledger technology 7

of different attacks than can be performed on a reputation system; however, based on [28] we
can group them into different classes such as:

• Self-Promoting: attackers try to influence their own reputation with false reports;
• Whitewashing: attackers try to “reset” their reputation in order to avoid the negative

effects of bad behaviour enabling them to continue;
• Slandering: attackers try to influence other people’s reputation by falsely reporting;
• Orchestrated: attackers collude and perform one or more of the above strategies;
• Denial of Service: attackers affect the normal behavior of the reputation system by

affecting the way reputation is disseminated;

These classes are just a guideline, and they can be subdivided into even more types of
attacks, for instance, one that is important to be familiar with is the Sybill attack [33]. Sybil
attacks occur when an attacker creates several identities and by doing so it can manipulate
the system to gain unfair advantages over the other participants in the system

It is important that we know what we are up against when building our solution and to
plan for it.

2.2 distributed ledger technology

Blockchain is a household name bringing attention to many systems. However, it is
inserted in a much broader ecosystem of architectures and solutions. In this section, this novel
technological field is explored, namely, its origin and its properties. Ideas such as ledger and
consensus are explored and explained in this section, so that we can understand why it was
chosen as a tool in our solution.

2.2.1 bitcoin and the origin of blockchain

Bitcoin [42] by Satoshi Nakamoto was the system that brought Blockchain to the main-
stream conscience. Because of that, usually, the technology (Blockchain) is usually mixed and
associated indiscreetly with cryptocurrencies in general. Fun fact, in his paper about Bitcoin,
Satoshi not even once uses the name Blockchain. The solution proposed by Satoshi focused
on solving a problem: creating a version of electronic cash that allowed for users to send
payments directly to other users without the use of a middleman to mediate the transaction.

His solution was based on a Peer-to-Peer (P2P) network of nodes that collaboratively
maintain the network working. Each node of the network is responsible for maintaining the
state of the system and keeping a copy of a ledger. The ledger was nothing more than a
registry of every transactions of coins that users made to one another. Transactions leverage
the power of public key cryptography, through the signing process. To make a transaction,
the recipient’s public key is needed. This public key is hashed with the previous transaction
of the coin and the new recipient public key. The hash is then signed by the current owner

7

8 chapter 2. background review

Previous Owner
Signature

Hash

Next Owner
Pub Key

Current Owner
Pub Key

Sign
Current Owner

private Key

Hash

Current Owner
Signature

verify

Previous Owner
Pub Key

Hash

Signature

Transaction
 #1

Transaction
 #2

Transaction
 #3

Figure 2.1: Schematic of transactions between three users

of the coin. This ensures several things: the traceability of a coin (through the hash of the
previous transaction), the coin can only be claimed by a specific user and the non-repudiation
of the transaction (the signing to spend a coin must be with the private key of the current
coin owner). We can see this process schematically in Figure 2.1.

The problem is that these methods do not solve the problem of double spending. This is
why a point of authority is usually used, this authority is responsible to review the transactions
that are arriving and ensure that there is no problem with the transaction being proposed.
For this process to work on a distributed manner, the author proposed the creation of a
distributed time stamp server instead of centralized mint. To better understand this process
lets understand the idea of a single time stamp server. The time stamp server is responsible
to group transactions, time stamping them, and create a hash. This hash is then used when
creating the next block of time stamped transactions. Through this, we can ensure that there
is an order of transactions that existed at specific times. As we can see in Figure 2.2, this
process creates a chain of blocks, hence the name blockchain.

Finally, the last major contribution of [42] is the Proof of Work (PoW) consensus mechanism.
The time stamp server has to work on a distributed way. Because of this, some time stamp
servers can be receiving transactions that did not yet arrive to other servers. The general
objective is for the whole network to share the same state; so, the nodes must preserve the
same ledger state, the same chain of blocks. Satoshi come up with a solution based on [4],
using a cryptographic puzzle to moderate the creation of blocks. This puzzle must be difficult
to solve, but easy to verify. The idea is that each server, when after grouping some transactions
in a block, add a nonce to the block and create its hash. The problem lies in the need of the
hash to have a particular structure, for instance, begin with some predetermined number of
zeros. The server must then continuously try and hash the block with different nonces until
finding a suitable nonce. This is similar to a lottery, in which the winner gains the right of

8

2.2. distributed ledger technology 9

Transaction

Transaction

Transaction

Prev. Block Hash

Timestamp Nonce

Block n+2

Hash
Transaction

Transaction

Transaction

Prev. Block Hash

Timestamp Nonce

Transaction

Transaction

Transaction

Prev. Block Hash

Timestamp Nonce

Hash Hash

Block n Block n+1

Figure 2.2: Chain of blocks schematic

adding the block to the chain. To ensure that there is a reward for performing this kind of
search work to the network, the entity that successfully finds a solution for adding a block to
the chain also gains the right to create some new currency, adding it to its account.

So, in conclusion, users create transactions and send them to timestamp servers. These
servers verify the transactions, create a block through the PoW mechanism and announce the
new block to the ledger holders. Other time stamp servers can easily verify that everything is
alright with the proposed block, add it to their copy of the chain and start working on the
next block.

With Bitcoin we can easily identify 4 basic principles of the blockchain as a tool [31]:

• Distributed Database
– The ledger can be seen as a distributed database that every nodes has access to.

There is no middleman and every node verifies everything.
• Peer-to-Peer Communication

– The P2P network provides a base for communications that does not need a central
node to work.

• Transparency with Pseudonymity
– The transactions are all recorded and are visible to every actor of the network,

providing full transparency. However, the records only register transactions between
public keys, which, in the absence of more information do not provide any useful
information about their real owners.

• Irreversibility of records
– The linked nature of the records in the blockchain ensures that once a record is

deemed true, it will be very difficult to alter that.

2.2.2 blockchain nowadays

As it is well known, Blockchain became a household name that has rally many different
opinions over the last few years. Some people believe that blockchain is a concept that will

9

10 chapter 2. background review

solve all the world problems. Others understand that it is only a tool that can useful when
used in the right use case. Various platforms have leverage the success of bitcoin to launch
themselves frameworks based on blockchain. These platforms aim to provide the industry
with blockchain-based solutions.

If we look to the bitcoin use of blockchain, we see that these concepts are already present.
In bitcoin, each node verifies a set of rules to ensure that the transactions being presented are
valid. However, these rules are not mutable and cannot be changed (if they are, the node can
no longer be a part of the network). Bitcoin and financial transactions in general are one of
the use cases for the blockchain technology.

Lately, several use cases have been proposed, where the blockchain could be put to good
use. Supply chain management is one of the recurrent novel use for blockchain. There is a
lack of transparency in the course of products along supply chains, namely when there are
several entities involved. Consumers do not always know the provenience of the products they
are buying. Blockchain properties, such as the immutable transactions and distributed nature,
can help mitigate this problem. Several other use cases, such as Digital Identity, Voting,
Healthcare and Notary can also leverage the power that this technology provides [55].

The industry needed tools in which it could implement their own rules in terms of
transaction validation and business rules that manage the network. Several new frameworks
started to appear which provided the flexibility needed, bringing Distributed Ledger Technology
(DLT) to the industry world.

One of the most known solutions is the Ethereum framework [9] where Vitalin introduces
us to the concept of smart contracts. Throughout the different frameworks available, smart
contracts receive different names; however, the main ideas are transversal to them. Smart
contracts are the way the basic features of the blockchain are expanded. While in Bitcoin the
program that runs to verify each transaction is pre-defined with smart contracts it is possible
to specify any program to run, to specify transaction validation rules in order to implement
any business logic.

2.2.3 consensus in a distributed ledger

Consensus is a very important concept in a distributed ledger architecture. So far, the
only one mentioned was the PoW mechanism sugested by Satoshi for the bitcoin application.
Before going into more detail, lets first arrive to a definition of consensus. When we have a
distributed network of peers, and they all need to share a state that can mutate, we say that
there is a consensus when all the peers agree on the same state, in other words, consensus is
the same thing as agreement.

The Two Generals’ Problem [1][25] is a classic consensus problem, well-known in distributed
systems. In it, two generals must coordinate an attack, however, there are no guarantees that
the messages they try to exchange actually reach their destination (Figure 2.3). This problem
has been proved impossible to solve in a finite way, meaning that there is no finite protocol
that can solve it. The system will never reach a state in which there is full certainty that both

10

2.2. distributed ledger technology 11

generals agree with the attack plan.

Attack Tomorrow 0900 hours

General #1 General #2

Enemy Territory

Interception of Message

Figure 2.3: Two Generals Problem

The Two Generals’ Problem was expanded by Lamport, Shostak and Pease in [37]. The
new version of the problem contained more than two generals trying to reach an agreement on
the plan of action. However, they add another layer of problems by allowing the presence of
traitor generals (generals that can lie about their choice). The authors called this new version
the Byzantine Generals’ Problem. A algorithm that solves this problem must allow that all
loyal generals decide upon the same strategy and that a small number of traitor generals
cannot jeopardize the attack by causing the loyal generals to adopt a bad plan. In a more
practical, way we can map this problem in a distributed system where the peers (generals)
are trying to reach a consensus about something (plan of attack) while malicious node are
trying not to (traitors). Algorithms that can reach consensus withstanding faults, such as
malicious actors, are known as Byzantine Fault Tolerant (BFT).

With bitcoin PoW, there is a probabilistic solution to the Byzantine Generals Problem.
Other consensus protocols that exist must all be BFT. This property is important to ensure
that malicious nodes (if they are contained to a specific range) cannot influence the network
in a bad way.

The PoW consensus mechanism consumes a high amount of resources, because of the
way it was designed. The nodes are constantly looking for a suitable nonce for a block of
information, thus hashing over and over again, trying to win the lottery of adding a new
block. Being this process the bottleneck for a new transaction being accepted, in order for
the network to grow this process must also scale. Meaning that, there is a ever growing need
for electricity to power this process. In its peak, the bitcoin network was using the power
equivalent to a country [35].

Because of this, other consensus mechanisms have started to appear. Proof of Stake (PoS)
based mechanisms are proofs that require that nodes that wish to add new information to
the system to put at stake some of their wealth. There are different type of PoS mechanisms;
however currently there are two major flavours: chain-based and BFT-style. In chain-based
protocols the validators of blocks lock away some of their wealth and are assigned to add a

11

12 chapter 2. background review

new block to the chain. If they act in a badly manner, their wealth is not returned to them.
In BFT-style protocols, also called Delegated Proof of Stake (DPoS), several validators are
chosen and together (after locking up some of their wealth) they decide on which block to
add to the system. PoS-based consensus is clearly more eco-friendly than PoW, because it is
not based on work-intensive puzzle solving.

Another example of these novel consensus mechanisms is the Proof of Authority (PoA).
This protocol leverages identity in order to save on computing resources. In it, there are
some nodes which are deemed trusted a priori, they are called validators and are the ones
with authority to add new information to a specific ledger in a specific network. Usually,
PoA networks are used in private/semi-private systems, where we can clearly identify the
authorities. Note that in order to fully obtain all the benefits of a decentralized solution there
should always be different authorities. In these systems, nodes will never battle for authority,
usually the power to add new information to the ledger is alternated between all the validators
using for instance, a round-robin approach. Because of this, these systems are fairly faster
and less resource intensive.

There are several ways of achieving consensus in a blockchain system. One must access all
the benefits and disadvantages in order to choose in the best way possible.

2.3 smart cities

The definition of what a Smart City is is still a open debate. In the eyes of Harrison
et al. [26] the term Smart City stands for a “instrumented, interconnected and intelligent city”
(Figure 2.4). Instrumented refers to the ability of capturing live, real-world data, achieved
through the use of sensors. Interconnected since its sensors should form a connectivity mesh
supporting the constant sharing of information. Finally, intelligent in the way that we must
be capable of handling this complex processes autonomously through advance modeling,
visualization, all with the purpose of enhancing the operational decision making process. This
definition is going to be maintained throughout this work.

Smart Cities are a growing trend. In Europe, for instance, 75% of the population lives
in urban areas and this is a number that is expected to grow up to 80% until 2020 [2]. The
main takeaway is that the growth of cities is the driving force behind the concept of Smart
Cities and innovations associated with them. Currently, this is a field with a fast paced race
to improve urban sustainability with a anthropocentric approach, enabling those in charge to
respond more efficiently to their citizens needs.

12

2.3. smart cities 13

Intelligent

Interconnected

Instrumented

Figure 2.4: Three major areas of a Smart City

2.3.1 VANET

A Vehicular Ad-Hoc Network (VANET), as the name itself says, is a special type of network
architecture. It relies on vehicles to relay information, enabling Vehicle-to-Vehicle (V2V) and
Vehicle-to-Infrastructure (V2I) communication. VANETs are a type of ad hoc networks and
considered a subclass of Mobile ad hoc networks (MANET) with some special characteristics
such as high node speed and highly volatile topology. They have several applications such as:
safety applications, using V2V to disseminate emergency messages for making the roads more
safe; traffic optimizations, using real-time data of traffic for enabling people/autonomous cars
to better plan out and optimize routes; improve visibility, for instance in intersections where
physical visibility is impossible, the use of this network can warn about incoming cars or
other invisible dangers; and many others, such as encouraging cooperative behaviors, enabling
advanced driver support and overall improvement on communication.

When we talk about a VANET infrastructure there are some important entities on which
these networks are built upon (Figure 2.5). Namely, the On Board Units (OBU) and Road
Side Units (RSU). The Road Side Unit (RSU) is an entity fixed by nature; deployed in
strategical places, these equipments are the intermediary between the mobile nodes of the
network and the infrastructure and/or the Internet (V2I communication). A On Board
Unit (OBU) is installed in the vehicles and is the mobile entity of the network. It is the
equipment responsible for creating intra-vehicle networks and must be capable of V2V and
V2I communication through the use of some wireless communication technology.

Although beyond the scope of this work, wireless communication technologies are an
important component in this type of architectures. The mobiles nodes must have the
capability to communicating using existing protocols such as the traditional WiFi (802.11), or
through the use of other protocols, such as the ones in the core of the WAVE architecture ?? .
Built upon a stack of standards, it has the goal of supporting low-latency communications
among vehicles in mind.

However, the principal idea in a VANET is to create a multi-technology environment with

13

14 chapter 2. background review

OBU

OBU

RSU

OBU

Access
Network

Internet

Other RSUs

Gateway

V2V

V2I

Figure 2.5: VANET architecture overview

nodes being able to communicate with different technologies and where applications must
overcome the mobility induced problems of such a network topology.

14

15

chapter 3
State of the Art
“We learn from failure, not from success!” - Bram Stoker, Dracula

No work is a standalone project and reputation systems make the base for ours. In this
chapter are presented in a top down approach the works that based and guided our process.
First, it is important to understand what has been done relatively to reputation systems:
understand where they are usually used, common problems they present and solutions usually
employed. Next, we tried to understand how this work was being applied in the scenario of
Smart Cities, problems that arise and usual methodologies to solve them. Finally, we searched
for similar solutions that might employ some of our mechanisms, such as blockchains.

3.1 traditional reputation and trust systems

Nowadays, reputation systems are ubiquitous. Sometimes, more than we are willing to
accept, for instance, in the case of governments trying to keep a reputation system to evaluate
all of their citizens actions [50]. This continuous interest ensures that there is a ever-growing
literature around this thematic.

In [34], Jøsang et al. evaluated and explained the need for reputation systems in online
environments, namely, in service provision through some existing solutions. They identified
core concepts such as Trust and Reputation. Trust is presented as two different definitions.
Reliability Trust referring to the expectation that certain individual behaves in a certain way
and Decision Trust to which they defined as being the willingness of someone to depend on
something or someone and feeling relatively safe doing so. Trust can be seen as a subjective
value intrinsically present in human interactions. They presented the concept of reputation
as one being closely linked to trustworthiness. We use the same definition for Reputation as
being what is generally said or believed about a person’s or thing’s character or standing.
The reason for the two concepts being inherently entwined is that the trust we feel towards

15

16 chapter 3. state of the art

something depends on their reputation. And the other way around also works, we might
discard sometimes reputation if we already have a predisposition to trust it. With focus
on the architectures, they concluded the existence of two main architectures for reputation
systems: Centralized reputation systems, on which there is a central authority, and Distributed
reputation systems environments, where information about reputation can be distributed on
different stores or each participant is responsible to store information needed to compute
reputation. Our system is included in the later type, increasing service availability, robustness
and security. In their conclusion they pointed some problems on existing reputation systems.
Problems such as, the possibility for entities to manipulate reputation scores. In our solution,
we try to tackle this problem through the use of the Blockchain and its tamper resisting
properties. Another problem pointed out is the lack of incentives to provide ratings. We try
to counter this by making the process of rating transparent to users, but extract reputation
through their actions on the network, namely, their behaviour while voting.

In a more recent survey [27], Hendrikx et al. reiterated the important distinction between
trust and reputation. One distinction that we maintained throughout this work. In it, they
classified a reputation system as a system that can collect and aggregate data about an entity
in order to characterize and predict future behaviour from that entity. Another key point of
reputation systems is that they must be able to share this reputation amongst other users,
enabling the emulation of a long term relationship even if there was no previous interaction
between them. In their taxonomy, the first level they presented devises reputation systems in
explicit and implicit. Implicit reputation systems are the ones that have almost no structure,
the ones that simply appear. One example of this type of systems is, for example, the one
that derives from our natural human interactions, we know which baker to buy bread from,
or where to find the best fruit and even when not to trust the travelling salesman. These
intuitions arise from our day-to-day interactions, and they form a reputation system without
any real structure. In a more recent example, social networks are also a type of implicit
reputation system. There is no formal reputation system in place, however, people tend to
make their own conclusions about someone influencing their behavior with them. The system
present in this work is included in the second type of systems, it is an explicit reputation
system. There are mechanisms in place to evaluate and gather information about users and
also a way to share this information with other users.

Traditional reputation systems usually separate the user interaction and the trust building
process. When a user interacts with another user, and a traditional reputation system is in
place, the interaction is separated from the reputation. It is a two step process, first the user
access the reputation of the user we will interact with and then, based on that information it
decides if it will proceed or not. Privacy is usually not a big concern of these systems. Our
system innovates in a way that the reputation is implicit in the interaction itself, it only takes
one step, when a user starts to interact it also presents theirs’ reputation. Users do not need
to go and consult anything or anyone about that user’s reputation to decide on either trust
or not the information. The “trustworthiness” is implicit in the message/interaction. This
implies that the interaction can be private, and users do not have to know each other to trust

16

3.2. reputation systems in smart cities 17

in the information they provide.
Recently, with growing concerns about privacy and data protection, users are more aware

of the dangers of using a not so private system. Because of this, there is a growing number
of contributions in improving the privacy of systems. However, as said before, most of the
literature in this area is focused on online marketplaces and so is the work that tries to tackle
the privacy problem.

The work in [7] by Blömer et al. is a classical example of such premise. Their main
focus was to build a private reputation system to govern online transactions. Built around a
centralized architecture, they presented a system on which a user must register in a central
authority and then ask for tokens to the providers in order to rate a provider’s product.
Secured with cryptography operations such as Zero Knowledge Proofs and a Public Key
Infrastructure (PKI), the users can post their opinions, in a secure way, once per product (if
they post more than one opinion per product they endanger their privacy). This types of
solutions are not suitable to our goal because they depend on a central authority and, because
of, that they cannot scale.

In [3], [5] Bag, Azad, and Hao presented a system that also has privacy as the main
concerned and claims a decentralized nature. Fueled by public concerns about an increase in
fraud over online marketplace transactions, their proposal was built upon concepts such as
Zero-Knowledge Proofs and other cryptography primitives to secure their system. The main
takeaway is their use of a public board that registered the users opinions. Although public,
the remarks enclosed on the board were cryptographically secure and ensured the privacy of
the post creator. Another key point of their architecture was that, in order for a user to be
able to post in the public board, the marketplace regulator must issue tokens for the user
to use while posting their opinion. Several problems rise from this type of solutions. One
of them, and the most common in similar solutions, is the need for a trusted intermediary;
in this case, this dependency surges with the tokens that are issued by a central authority,
meaning that they have control of what is being published in the board. Although claiming
a decentralized architecture, they presented a centralized system scaled into a decentralized
pattern by multiplying the centralized idea.

3.2 reputation systems in smart cities

With any reputation system it is important to understand the scope and what is being
evaluated. So far we have seen that a common implementation of reputation systems is in
online marketplaces. In those systems, usually, the users are categorized as either being
trustworthy or not in order to influence future interactions.

Even when we change the formula of a reputation system in order for it to be applied
in a Smart City many concepts are transferred into this new domain: there is still going to
be users; the main objective is still to influence behaviors based on previous interactions;
and usually, there are messages and informations that are being distributed throughout the

17

18 chapter 3. state of the art

network. Applying reputation concepts to this kind of scenario brings the same advantages
as in the previously discussed ones. One can consider to act upon a new information or not,
based on reputation (e.g I decide to go through a specific route in order to avoid traffic, since
I trust the report of traffic, henceforth I change my original action).

Reputation in Smart Cities is a broad topic. There are several works that use reputation
to, for instance: find badly behaving nodes in the networks, since Smart Cities are heavily
based on sensor meshes it is important to filter sensor information [36]; to correctly route
messages in the network based on node reputation [38][39]. In this section, we narrowed the
search down to the works that directly could help us find our final solution, namely, the ones
that could help with taxonomy, that had message passing and that allowed for people input
into the system.

From a systematic review done by Soleymani, Abdullah, Hassan, et al. [52] it is possible
to extract important taxonomy. They identify three major types of reputation systems in a
VANET environment:

• Identity based, when there is the idea of identity and individual. Usually, these models
and solutions heavily depend on information about their peers in order to being able to
compute the trustworthiness of their messages. This dependency is their Achilles heel
since, most of time, because of the highly dynamic environment, the nodes fail to gather
the information necessary to correctly assess their peers.

• Data based systems, when the main objective is to simply assess the trustworthiness of
the data/message being delivered (ignoring the sender). The need for the message to be
self-contained, meaning that its trustworthiness cannot depend on external parties, can
increase the message size and can be a problem in high density networks.

• Combined systems, which as the name says are a composition of the ones above. Initially,
they may depend on identity information but they try to limit it to a minimum.

Unfortunately, our proposed solution does not fit well into these definitions. On one side
it does not use identity to compute the trustworthiness of a message but on the other side
it allows for certain interaction based that are based on pseudo-identities, for instance, the
rewarding system.

An early example can be found in [13], where Dotzer, Fischer, and Magiera propose a
reputation system for a VANET in order to generate trust towards messages being exchanged.
In their work, they specified the difference between an event, a decision and distribution areas.
The event area is where the trustworthiness of the message can be assessed. The decision area
is the area on which a decision must be reached. Finally, the distribution area is where we
can find people interested in the message. The system relied on the calculation of the message
trustworthiness, for which they rely on several inputs: direct observation when the car is
on the event area; indirect observation through the trust the vehicle has in their neighbors;
opinion piggybacking, with opinions being added to the message while it transverses the
network. Because of the early nature of the work, there are no security concerns mentioned
and no privacy aware measures in the system, a problem tackled by us.

18

3.3. blockchain in reputation systems 19

Gómez Mármol and Martínez Pérez [22] work presented us a new solution and establishes
comparisons to other systems. A scenario is presented with many of the components of
a VANET, such as RSUs. The main objective is to reliable identify vehicles that are not
trustworthy and, henceforth, ignore their messages. They define the main requirements for a
trust and reputation model:

• Simple, light, fast in order to provide reliable feedback to its users.
• Accurate so that the model does not add entropy to the system.
• Resilient to security and privacy threats, since more than ever it is on the users minds

its importance.
• Scalable, in order to provide space for cities to grow.
• Not dependent on mobility patterns, the system should not be dependent on the network

characteristics.
About the system presented, when a message was received the vehicle was then responsible

for calculating the reputation score of each node. This was done by taking information from
different sources (as the previous work). This reputation score was then compared against a
scale to decide if the message was worth taking into consideration, if it should be passed along
or discarded. The authors conclusion is that their system fulfills all the objectives that they
proposed for a reputation and trust model. However, it appears to be an erroneous conclusion.
For instance, they write about the importance of being independent from mobility pattern
and then, in the formula they use to calculate the reputation score, 0.7% of the weight is
based on interactions with other vehicles that they previously had interactions with. Also,
they do not provide any privacy or security mechanism but claim to be partially resilient to
this types of threats. In our work, we agree with the objectives proposed by Gómez Mármol
and Martínez Pérez and we believe we actually fully achieve them.

A new trend emerged in this type of scenarios: the idea of soft sensing and crowdsourcing.
From the work of Vakali, Angelis, and Giatsoglou [54] we get a simple but innovative idea:
complement the objective input from sensors and machines with subjective input from people’s
opinions. The authors presented a system that uses social networks in order to gather human
opinions. Sensors in the network are responsible to present the facts, these facts are then
posted into a citizen accessible forum (social network) where they can debate the situation
and give even more insights to the situation. This idea of harnessing the power of people’s
opinions plays a major role in our work.

As we can see, reputation systems are not a new concept in a Smart City scenario. However,
the existing solutions are lacking either in terms of privacy or even scalability. Our system is
a new approach to this problem, leveraging solutions and avoiding pitfalls that others suffer.

3.3 blockchain in reputation systems

As we saw before, a blockchain can be a powerful tool to enforce certain properties in a
system. Because of that, its no surprise that there is already work that tries to harness the
power of tool, namely, in reputation systems.

19

20 chapter 3. state of the art

Dennis and Owen [11] proposed a blockchain-based reputation system, presenting it as a
generic reputation system that can be deployed in different scenarios such as, e-commerce;
in the presented work the focus is on a P2P network. They proposed the creation of a “new
blockchain” built specifically to handle the registration of reputation scores, which can either
be a one or a zero.

The miners (nodes that want to add new blocks to the blockchain) are responsible to
connect to both peers that took place in the transaction and ask for cryptographic proofs
that they both have the correct file. After the miner validate these, the block is added to the
blockchain in a similar fashion as bitcoin. Dennis and Owen system is presented as a generic
reputation system, however, their blockchain is tightly coupled to the requirements/properties
of their specific file sharing in a P2P scenario. Nevertheless, it gives an idea of how the
blockchain can be used to enhance the security requirements of a reputation system.

Another example using a blockchain can be seen in [48]. Sharples and Domingue present
solutions for education systems: as a permanent digital record; as a proof of intellectual work;
or even as intellectual currency.

20

21

chapter 4
Reputation as a Coin
“Most people are not prepared to have their minds changed” - Iain M. Banks, Use of Weapons

In this chapter we present our solution. First, we present a small overview of the main
idea and how the system would work. We then explain the main entities present in our system
and through which processes they interact with each other. Finally, we present our proposed
architecture and the main components that take part of our solution.

4.1 overview

Using reputation as a coin is a novel way to deal with reputation, one that allows for the
separation of identity and reputation. This allows for a new generation of system which can
use reputation without compromising their users privacy.

To clarify our idea, we will use the following scenario to present the system that from now
on will be referred as a whole by the name Dignitas:

Olivia is a citizen that on her way to work sees a car crash. Immediately, she alerts
the authorities using Dignitas. Other citizens in the area also report on this accident, the
competent authority is alerted for this and based on the opinions of people has total trust in
deploying the necessary means to the reported place. Bob is a citizen, he likes to plan his day
meticulously, before leaving for work he accesses Dignitas and is now aware of a massive crash
in is usual route, for that reason he decides to take another route in order to arrive to work
on time. Olivia is a very active citizen in her community, she likes to report on neighborhood
problems, such as broken water pipes and potholes, competent authorities see these reports
and since Olivia has a good reputation they are confident that they are not wasting resources
when they dispatch them to resolve those issues and can react much quicker to any problems
that arrive. All of the above interactions have a interesting caveat. All those messages are

21

22 chapter 4. reputation as a coin

exchanged anonymously, and although we name the characters in the story, in the system
they are invisible to each other.

With this, we can empower citizens in a city to cooperate and report on events anonymously
and getting valuable information for their everyday life. We can also see the several benefits
of a system like this, not only to the citizens but also to responsible entities that are able to
gauge their city and act upon disturbances more promptly. Offering such functionalities is
the main purpose of Dignitas.

4.2 actors

In Dignitas, we have two types of actors that can take advantage of our solution. Those
two different types of actors have different obligations and benefits from a system like this. In
this section both of them are explained in detail.

4.2.1 Untrusted Actors (UA)

Untrusted Actors (UA) are composed by the vast majority of citizens. They are the ones
who can benefit the most from a system like this and, because of that, they are also the ones
with greater responsibility in maintaining this system. They can interact with the system in
two different ways:

• Actively: by generating event reports. These events can be anything from car accidents
to a broken water pipe, or even use it to report on other types of events, such as social
gatherings.

• Passively: citizens can also use the information provided to make plans in advance taken
in consideration these previous reported events (e.g. taking an alternative route to work
if there is an accident in their usual one).

The reason they are called untrusted is because the information they provide to the system
can either be true or false, there are no a priori guarantees. In our anonymous system, there
is no identity that we can bind to the users, all that we can use is their reputation. A UA can
be a reputable citizen that behaves accordingly and only reports truthful events, but it can
also behave in a malicious way and falsely report events for whatever reasons.

Because of this, the reputation value assumes an important role in keeping the system
useful. UAs have assigned to them a reputation score that they can use to give credibility to
their claims. They do this by using this reputation to generate reports and also to reinforce
other UAs reports.

In turn, the system rewards UAs that were being truthful.

22

4.3. processes 23

4.2.2 TA

Trusted Actors (TA), on the other hand, are composed of already trusted entities in a city
ecosystem, namely, law enforcement forces, firefighters, emergency medical services agencies or
even town hall representatives. These entities can use this system in order to better manage
their deployments and have a sense of what is happening in a city, collecting and analysing
data to enhance their services.

TAs that want to use the system have responsibilities too, they must monitor the system
and react upon when they are needed. Different TAs have different responsibilities, since the
reports can span multiple areas of intervention.

They can also report events in the system, like the UAs can; however, these entities are
deemed honest and, because of that, everything they say is considered true by definition.
Because of this particular power, they are also able to “close” event reports, meaning that,
thereafter the truth about that event has been set by authorities. This is also the power that
enables the system to reward well-behaved citizens that reported truthfully on events.

4.3 processes

The system actors interact with our system through two main processes. One of the
processes is the ability that citizens have to report on real-world events, bridging the real-world
with the digital one. The other one is the opportunity that citizens have to evaluate these
reports by voting on the truthiness of the events. All citizens (anonymously) registered in
the system maintain a value of reputation that is essential to their ability to participate in
those processes. For that, citizens will use their reputation as a currency traded inside the
reputation system: putting their reputation at stake when they wish to participate, and being
rewarded for good behaviour.

Using reputation as an asset that the user can use to interact with other users is what
allows to detach the identity of the user and create anonymous trust-based decisions.

4.3.1 reporting phase

A citizen, when confronted with a real-world situation, has the ability to broadcast that
information to other citizens through our system. To do so, they must use their reputation to
back their claim. In that sense, they put at stake their reputation by betting part of it. Thus,
each message broadcast on the system has associated with it a discrete amount of reputation.
This value of reputation, associated with the message, is what other users will use to discern
between worthy messages and fake ones. Using this approach, we can ensure the anonymity
of the reporters, since the information being broadcast has no personal elements. A person
does not need to know the other person to trust in what they are saying, they only have to
infer that from the reputation being putted at stake.

23

24 chapter 4. reputation as a coin

For this actions we use asymmetric cryptography, UAs generate a key pair in order to
participate in Dignitas. They then use these keys to digitally sign their reports and the
transaction of reputation associated with it. This information gets published on a public
ledger that anyone can access. Digital signatures ensure the non-repudiation of information,
meaning that once it is published, the user as effectively put part of their reputation at stake
and they relish control over the amount they bet. They also ensure that the information that
is published cannot be tampered with.

The goal of using part of the reputation as a bet is twofold. First, citizens have a limited
capacity to broadcast reports, bounded by their amount of reputation, therefore, they cannot
flood the system with messages. Second, higher bets will provide higher rewards (or penalties),
and, because of that, will naturally be associated with true events since users are risking more.
This somewhat ensures that reports backed by high reputation bets will probably be true.

4.3.2 evaluation phase

The reputation of a message is not solely dictated by the reputation the original announcer
was able to put at stake. Other UAs can receive a message and re-enforce it, positively
or negatively, but always by putting some of their reputation at stake as well. Thus, the
“trustworthiness” value a message has inside the network can vary over time. Also, it is not the
number of people that agree that matter, is the amount of reputation that they are willing to
risk vouching for some piece of information. This process generates a type of voting situation,
where each citizen can vote about some report veracity with their reputation.

This process can generate some “fuss” while the network tries to decide whether a piece of
information is false or not. If these types of report fall under some trusted entity jurisdiction
they can be closed by one of the TA responding to the commotion, ensuring that the vote has
an end and that these entities only respond to critical situations. These entities are naturally
trusted by the system, so they can close the voting on a particular message and decide about
its veracity.

After this, two things happen. First, all citizens will see the quality of the message as
decided by the trusted entity (either true or false). Second, all citizens that bet an amount of
reputation on it will receive some reward back or lose the bet accordingly with their positions
and the final result. For instance, if the message was deemed true, those who supported this
position will receive their reputation back and be rewarded with some more, whilst those that
supported a opposing opinion will lose all the reputation that they bet on it.

To support these interactions asymmetric cryptography is also employed. TAs have known
public keys, meaning that one can always differentiate their votes and actions from the other
citizens. Those keys, besides being used to vote/close reports of events, are also the only ones
that are valid to reward users with new reputation.

24

4.4. rewarding 25

4.4 rewarding

Rewarding plays a major role in our solution and has multiple objectives. First, it ensures
that UA keep caring for the system, since it mostly depends on their participation in order to
properly function. The reputation gathered could be used outside the system, for instance, in
real-life rewards.

Besides penalizing erroneous reporters, the rewarding scheme also plays a role in keeping
the system secure. In Chapter 2, we talked about the possible attacks on a reputation system,
we use the rewarding process in order to mitigate some of them.

One usual attack that systems where identity is obfuscated suffer are Sybil Attacks. As
previously mentioned, in Sybil Attacks the attacker generates multiple identities, which he
uses to gain advantages over other users. In our system, having many identities does not
help you passing a report as truthful, since, what really counts into assessing the veracity
of reputation is the total amount that was at stake and not the number of people voting.
A malicious UA can create several fake identities in order to poulte the system with fake
reports, however, a well behaved citizen with lots of reputation to swing the report to the
right direction.

Whitewashing should also be mitigated by making new identities start with the minimum
amount of reputation possible, which makes it impracticable “resetting” an identity.

“Bounty Hunting” is another type of behavior that we should try to mitigate. This
behaviour is characterized by users join voting late in order to accumulate reputation without
actually putting much at stake. In order to do so, our rewarding scheme varies with time,
meaning that, voting on existing reports with already many participants is not beneficial.
The rewarding amount percentage drops with the amount of participants. Our system highly
rewards “risky” bets, as any other bet.

These types can be damaging to the system, with the rewarding scheme we must ensure
that an attacker can not really take any advantage, it should be more easy to play by the
rules than to behave badly.

25

27

chapter 5
Architecture
“If you’re afraid to change something it is clearly poorly designed.” - Martin Fowler

In this chapter we present our proposed system architecture, we then explain some decisions
that were made in order to successfully deploy the reputation as a coin in a Smart City
scenario.

However, the contribution of this work was always intended to be of a reputation system
that was agnostic to the implementation, meaning that it could be deployed over different
architectures and scenarios. For this reason, although taking in consideration Smart City
characteristics, we also explain the reasoning and behaviours some entities and components
must have present in any type of implementation.

In Figure 5.1 it is possible to find, in a schematic way, all the components that take part
in our system and how they interact with each other. The system can be seen has three
independent sections: the network that contains the public ledger; the untrusted side, the
components that refers to UA interactions, namely, the ledger proxy and the UA application;
and the trusted side, that refers to the components that TAs interact with, the secure server
and the TA application.

27

28 chapter 5. architecture

Distributed Public Ledger

Ledger Proxy Trusted Server

UA Application TA Application

Ledger
Node

Ledger
Node

Ledger
Node

Citizen
(Untrusted Actor)

Authority
(Trusted Actor)

Figure 5.1: Architectural schematic of Dignitas

28

5.1. the network 29

5.1 the network

The network part of this system is responsible, solely, for the transport of the messages
being exchanged. Besides that, for our system to work the network does not need any more
special characteristics. Functionalities such as secure channels, tamper resistant transportation
protocols or other security measures are dispensable for the system to work, since our protocols
rely on cryptographic primitives where this type of security is already embedded. However,
the added security in the network allows for a smoother experience.

For these reasons, the network used can be one of the already deployed, as the public
Internet, but there is also space to use other type of networks such as, for instance, a city
VANET. Other components of the architecture take this into consideration, since they must
be the bridge and entry point to any type of network used.

5.2 the ledger

The ledger is the component where all the information is stored. Like the other components,
it must also have some characteristics in order to be employed in our system. First and
foremost, should be a public board, where anyone can post anything without restrictions.
The only restrictions that should exist are the ones associated with the “cost” of publishing
something, namely, the cost of putting reputation at stake when stating something. The use
of reputation should be the only regulatory element of this open board. This open concept
allows for process transparency and greater audit capability.

However, the ledger public nature should not compromise its integrity. The board should
be secure, meaning, should be tamper-resistant (a user should not be able to tamper it by
changing things in the board) and timely-immutable (anything that is written in the board
should be able to change over time, however, it should not be possible to reverse time and
change something that occurred in the past). Users should also be unable to repudiate
information that they had post. This can be achieved through cryptographic primitives, as
hash-linking and digital signatures.

Another important characteristic that this ledger should have is being of decentralized
nature. This is important for several reasons. First, availability; in a system that is supposed
to be deployed in large environments, a centralized architecture is a bottleneck that can lead
to catastrophic failures. Another important reason is due to the fact that this system is
supposed to be regulated by several entities (e.g firefighters, police , etc) and a decentralized
architecture allows for a wide variety of responsible parties that do not have to be under the
rule of one central authority governing the public board.

All of this characteristics can be found in contemporary solutions based on Distributed
Ledger Technology (DLT), the so called blockchains. Because of this we chose to employ a
blockchain in our solution and harvest the full potential it offers. In Chapter 2 in Section 2.2
there is an in-depth explanation of how these systems usually work and which concepts are

29

30 chapter 5. architecture

related to them. Here, we will explain how we can leverage these properties in our solution.
The nodes of the ledger can be distributed across the city under different jurisdictions,

there is no need for a central authority. Anyone can run its own node and help increase the
security and usability of the system, even if only a few are authorized to add new information.
These nodes are responsible for receiving reports and add them to the ledger, they will then
try and reach a consensus with all the other nodes in the network by broadcasting the new
information to their neighbours.

5.3 the proxies

In earlier drafts of the project architecture these components did not exist. The idea was,
for instance, the UA application to communicate directly with the ledger nodes. However,
depending on the number of nodes deployed, and their geographical location, it could not
be an ideal scenario, since it could create a bottleneck scenario if several UAs tried to send
reports at the same time to a node. It is important to remember that ledger nodes, although
being highly performant, they have important requirements in term of computation power,
since they ensure that our network stays secure. And for this reason, it is important to offload
some tasks away from them, and that is why proxies came to exist.

In our system we have two types of proxies, one for each type of user. However both
behave as a buffer to the ledger, thus an intermediate step between the UA/TA applications
and the distributed ledger.

5.3.1 ledger proxy

The ledger proxy is the one who receives the reports and proxies them to the distributed
ledger. This approach, besides the previously discussed performance improvements, has
another important advantage: allow us to regionalize the reports. This means that this proxy
acts as a regional manager. If correctly distributed across a geographical area this would allows
us to do some regional delimitations, thus enhancing even more the system performance.

For instance, without this proxy all the users would connect to a ledger node in order to
report something. With this approach, the UAs would send their requests through the proxies
and those have the ability of, for instance, batch several reports together and send them all at
once to the public ledger, minimizing network impact. This batching mechanism does not
compromise security, since the reports are signed by the user, it can even improve it if some
verifications are ran, for instance, we can deter UAs from reporting events that they could not
possibly be aware to report, based on the geographical provenience of the requests. Another
improvement of this technique is that, while fetching reports present in the distributed ledger,
we could fetch only the relevant ones to our geographical area instead of the whole set of
reports, and proxies could even cache the reports off their geographical responsibility in order
to improve response time to UA applications.

30

5.4. the user applications 31

In a smart city scenario, this type of proxy could be implemented in already used
components of a VANET network, specifically in OBU and RSU, which are geographically
distributed across the city and could work as the entry point for our network.

5.3.2 secure server

Another type of proxy present in our system is the one TAs use in theirs application. This
proxy is similar to the previous in some aspects, as the batching of requests. However, it also
has some different characteristics, for instance, the geographic properties do not make sense
anymore.

This secure server has more responsibilities than the simple ledger proxy, besides proxying
it will also be responsible for creating, batching, signing and do everything related with the
TA. This does not mean that should be only one secure server for all the TAs, it means
that each TA should have its own secure server that it uses to connect themselves to the
network. It should monitor the distributed ledger, searching for important reports that should
be dealt with by the specific TA in charge and send that information in real time to the TA
application.

5.4 the user applications

For a system that allows people to sense their environment and report back some data,
there has to be a bridge between these two worlds. This can be done through applications
that people use. First, there are two different kinds of applications at stake: the one that is
used by the UAs to report and endorse events; and another to be used by the TAs to monitor
the system and respond to events. These applications must met some requirements. They
both must have cryptographic capabilities in order to be able to follow the system protocol.
Also, for UAs the application must not be resource intensive, since it will mainly be present
in mobile hardware that may not have the best capabilities.

5.4.1 native or web

When we talk about building applications for users there are mainly two ways of doing
it, each with its own subset of advantages and disadvantages: we either build a web-based
solution, or a native application.

We talk about web-based solutions when we have the application available through a web
browser. This is a big strength for this type of applications, using the browser makes them
extremely portable since it will be available in every platform that can access the Internet.
This type of solution also has easier implementations and faster prototyping time. However,
using the browser to build an application comes with one major drawback: you are restricted

31

32 chapter 5. architecture

by what the browser can offer you. This means that you need to use the browser APIs to build
your application. Usually, this is not a problem for many applications, since the browser is
mainly used to present information while a backend computes and makes information available
for the frontend to consume.

On the other side of the coin we have native applications. These applications are built
with a specific environment in mind, making them only available in that specific environment
and binding the programmer to the tools the manufacturer considers fit in order to program
its devices (increasing development time in order to accommodate a new platform). However,
native applications come with a big advantage, allowing the programmer to interact directly
with the devices APIs, giving them more freedom and processing power. For instance, easier
access to cryptographic primitives such as digital signatures; in handling media formats like
video or audio; and even storage options.

5.4.2 UA application

Initially we wanted that the UA application to be the most simple it could be. Ideally,
it would not perform any major action, such as digital signatures or any other similar
cryptographic action. For the UA application, an easy solution would be a web-based solution,
a website where a UA would, somehow, securely login and post his findings.

However, this approach would not work, because if we want people to be able to sign
reports anywhere they are, then, they need to have their keys with them when using the
system. We thought about relegating the responsibility of creating the cryptographic reports
to another entity, but again, because of the keys needed to do this, it would not make sense
to have any other entity creating the reports other than the UA application.

For this reason, the UA application needed to be able to perform cryptographic actions,
such as signing the reports it builds and sends to the system. Nowadays, web APIs do not
fully enable us to create signatures in a efficient way, namely, it would not be viable to load a
user private key from their device and using a centralized approach to store users keys would
defeat the purpose of our decentralized solution.

Then, the UA application should be a native application, for instance, an Android
application. In our case this, enable us to more easily create reports, digitally signing them
and also storing cryptographic secrets in the end-user devices without compromising the
distributed way of our system. This application is then going to communicate with the ledger
proxy, passing to it the reports created by the user.

5.4.3 TA application

With the TA application, we can follow the previous mantra of keeping it as simple as
it can possibly be, since there is no problem of delegating the responsibility of creating new
reports to the proxy. In this case this makes sense, because there will be more than one single

32

5.5. scenario 33

person impersonating a responsible entity, for instance, a police precinct will only have one
key pair associated with it but multiple police officers can close out votes.

So, the TA application can be a web-based portal where users interact with the real time
reports being broadcast in the network. The application works as a remote control, issuing
instructions and actions to another place. However, it should also meet some requirements, as
the ability to broadcast and present information in real-time to the TAs.

5.5 scenario

In figure 5.2 we can see a possible deployment scenario. In it, we can see that there is
no central authority but rather trust in a distributed ledger. Also, we see the possibility of
interconnecting our system with VANET components, namely, OBUs and RSUs. In different
colors we see possible areas of ownership, each TA should have its own secure server and
ideally should be in charge of at least one ledger node.

For the purpose of this work we devise some basic operations that our Proof Of Concept
(PoC) users should be able to do. We also devised some use cases for our systems users,
however, since there are different types of users, they also have different basic use cases. For
instance, in a UA perspective, several things should be possible in a PoC:

• UC-1 Create their own “account”, getting a reputation wallet;
• UC-2 Report on events that are taking place in the real world;
• UC-3 Vote on existing events that are in discussion;

TA
App

UA
App

Citizen

Secure
Server

Secure
Server

Secure
Server

Ledger
Proxy

Ledger
Proxy

Ledger
Proxy
RSU

Ledger Nodes

Ledger Nodes

Ledger Nodes

Ledger Nodes

Ledger
Proxy
OBU

TA
App

UA
App

Citizen

Police

EMS Dispatcher

Figure 5.2: Possible scenario deployment of Dignitas

33

34 chapter 5. architecture

• UC-4 Be able to know how much reputation has gathered on the network;
• UC-5 Scout for events in specific geographic areas to gain information;

Another user perspective is the TAs one, and they should be able to:
• UC-6 Be notified in real time of new events that people report;
• UC-7 Close votes based on the information they gather;
These use cases were the base on which we built our scenarios and the needed components.

34

35

chapter 6
Implementation
“Talk is cheap. Show me the code.” – Linus Torvalds

This chapter introduces the details of our Proof Of Concept (PoC) implementation. As
discussed in the previous chapter, this work is only possible with the interconnection of several
different components. All of the components presented were modelled and tested successfully.

In Section 6.1 we talk about one of the programming languages used in the project, Rust,
and why we chose it. Next, in Section 6.2 we dive into the ledger details, how we chose our
distributed ledger platform, how it works and all the changes that we needed to implement in
order for it to work with our solution. Section 6.3 is where we present the implementation
of the UAs proxy, the ledger proxy. Followed by Section 6.4, where the UA application is
presented. In Section 6.5 we present the TAs proxy, and the secure server. Finally, in section
6.6 we present the TA application.

6.1 rust programming language

Currently, there is a plethora of programming languages that programmers can use. They
are nothing more than tools that programmers can choose to perform their job, and like any
other job, it is important to choose the correct tool. Before choosing a programming language
it is important to understand the requirements of the application we are trying to build.
When we look at some of the components of our system, as the ledger and the proxies, we see
that depending on the deployment scenario they can experience high request loads. These
types of components must be extremely reliable and are expected to be highly performant.

Interpreted languages (e.g. Python and Javascript) are still big candidate choices when it
comes to prototyping a solution, since they are generally easier to implement. However, they
tend to lack in performance, are prone to runtime errors, and because of their interpreted

35

36 chapter 6. implementation

nature they cannot benefit from compile optimizations. Because of this, interpreted languages
are not ideal for critical components in our PoC.

Usually, when it comes to high performant code the choice falls onto C/C++, a compiled
language that has beaten the test of time. However, being highly performant comes with a
price: developers are expected to know very well what they are doing. Compilers for C/C++
have been improving continuously to try and protect the developer from unsafe code; however,
there are still many instances where C/C++ can produce unsafe code with undefined behavior,
causing ambiguous and hard to predict bugs.

For some of our most critical components we ended up using a relatively new language:
Rust [47]. Rust is focused on programming safety, while maintaining high performance. It is a
multi-paradigm compiled language created by Mozilla Engineers to power the Firefox browser
engine.

Syntactically, Rust is very similar to C/C++, separating statements by semicolons, using
curly braces to delimit blocks of code and the same control flows operands. It introduces
some new operands, such as match, a powerful pattern matching operand, and a for loop
that works more like a for-each type of loop. It is also a statically typed language, meaning
that variables types are know at compile time. However, unlike Java, it does not require the
programmer to explicit write these types because they can be deduced with type inference,
similar to languages like Haskell and OCaml. Dynamic typed languages, as Python, only infer
variable types at runtime and it is a common origin of bugs.

Some language, as Java, use garbage collectors to automatically handle memory man-
agement, freeing memory that has been allocated but is no longer in use. This method
has some advantages, mainly, it is a safer approach than relying on programmers to do it
manually. There are also some drawbacks: it increases the resources needed, affecting the
performance of applications namely when dealing with real-time requirements or low-power
devices; it is non-deterministic, since the garage collection can run at any time, leading to
unpredictable stalls on program execution; also there is no guarantee a resource is freed when
the programmer wants it to be.

One of the more interesting features of Rust is its ownership system to handle memory
management, ensuring memory safety without using a garbage collector. The ownership
system allows for the compiler to check at runtime that the program is free of memory safety
errors, such as dangling pointers, double frees and others. It does this by restricting the way
the programmer can use pointers based on three simple rules: every value has a owner, there
can only be one owner for a certain value at a certain time, when this owner goes out of scope
so goes the value it owns.

By enforcing some rules to the programmer when dealing with variables and references, all
memory management errors can be detected at compile time, which ensures run-time safety.

Rust characteristics allows us to build performant components without compromising on
system security or reliability. In our PoC we used Rust to build some internal components of
the ledger and also in the UA proxy, two of the components more likely to receive high loads
of requests.

36

6.2. distributed ledger implementation 37

6.2 distributed ledger implementation

One big part of our system is the distributed ledger. In Chapter 5, Section 5.2 we talked
about its importance and which characteristics our ledger should have. Throughout this
section we explain the choice process for the ledger used, the characteristics and implications
of it and how we used them to ensure it met our system requirements.

6.2.1 choosing a distributed ledger platform

When it comes to choosing a blockchain platform, there is also a plethora of options
to choose from. Since the bitcoin network became a success and its cryptocurrency widely
adopted, companies have tried to tip their toes on a market they all saw as being profitable
and revolutionary. However, not every goose gives golden eggs, in fact, the vast majority does
not.

Eight platforms were chosen for analysis. This analysis was conducted based on the
information and documentation the authors provided, with the objective of finding the best
option for this work use case. The platforms were analysed in two distinct areas, first in terms
of capabilities and then in terms of usability. In terms of capabilities, things like the type of
consensus mechanisms, the possibility for smart contracts, type of permissions, scalability and
security were taken into consideration. For the usability part, documentation, community
behind the project, activity, deployment and licensing were the focus.

Bitcoin [6] can be considered the original distributed ledger, designed to support the
bitcoin cryptocurrency is a sturdy platform that has the benefit of being the first one and
having a wide community supporting its mechanisms and growth. In terms of capabilities, it
has the possibility for some kind of smart contracts but is limited. Uses the PoW consensus,
known for its massive amount of processing power and energy needed. Is a permissionless
blockchain, meaning that anyone can participate and join the network at any time.

Ethereum [15] belongs to the new generation of blockchains. It introduces the concept
of smart contracts in a more generalized way, enabling the creation of truly decentralized
applications. It still uses the PoW consensus, however has plans to move to PoS in order to
deal with the problems presented above. It also behaves as a permissionless Blockchain just
like Bitcoin.

On top of Ethereum was built a framework called Hydrachain [29]. This framework
leverages all the benefits of Ethereum and adds a control layer that enables the creation of
permissions in this ecosystem.

Another option available is the Exonum [16] platform, built to provide a skeleton for
blockchain applications. It is a bare bone framework that gives a lot of flexibility to the
developer. However, one of the main problems is the team behind the project: a small team
without any major name backing the idea, which can be a problem in the long term.

Speaking of teams, another framework that was a possibility was the OpenChain Frame-
work [43], a small, simple and modular framework, ideal for deploying a prototype. However,

37

38 chapter 6. implementation

after close inspection, it was detected that the company behind the project was over and
because of that the project was not maintained anymore.

Corda [10] is a framework with some special characteristics. There is no need for the global
broadcast of data across the entire peer to peer network. It has a modularity that enables it
to plug any kind of consensus algorithm. It is a sturdy platform with a clear business focus.

Based on Bitcoin we can find one more solution, the Multichain [41]. The main difference
between them is the possible creation of multiple assets, multiple currencies.

At last, but not least, there is the Hyperledger project [30]. This project can be seen as
an “umbrella” project, because it is composed of different projects, each of them independent
from each other. Creation of the Linux Foundation Project, with members like IBM, Intel
and Cisco; all the projects are well-backed by these teams. The most popular project, the
Hyperledger Fabric, is a private blockchain with all the features a regular blockchain offers,
such as smart contracts and a distributed ledger. Another project under this “umbrella” is
the Hyperledger Sawtooth, a versatile framework that enables different applications without
having a cryptocurrency automatically associated with the blockchain.

All this information is summarized in Tables 6.1 and 6.2.

Consensus Smart Contracts Permissions Scalability
Bitcoin PoW Limited Open Limited
Ethereum PoW/PoS Supports Open Limited
Hydrachain PoW/PoS Supports Open Limited
Exonum BFT Supports Open Limited
OpenChain Direct Validation Limited Supports Limited
Corda Plugable Supports Supports High
Hyperledger Fabric Direct Validation Supports Supports High
Hyperledger Sawtooth Plugable Supports Supports High

Table 6.1: Capability analysis of blockchain frameworks

Open-Source Community Activity Documentation
Bitcoin Yes Big In Development Extense

Ethereum Yes Big In Development Extense
Hydrachain Yes Big In Development Extense
Exonum Yes Small In Development In Development

OpenChain Yes Small Closed In Development
Corda Yes Closed In Development Extense

Hyperledger Fabric Yes Big In Development Extense
Hyperledger Sawtooth Yes Big In Development Extense

Table 6.2: Usability analysis of blockchain frameworks

In the end, the choice has fallen in the Sawtooth Distributed Ledger of the Hyperledger
“umbrella” project.

38

6.2. distributed ledger implementation 39

Sawtooth Node

Validator

Transaction
ProcessorsTransaction

ProcessorsTransaction
Processors

Sawtooth Network

REST API

Consensus
Engine

Interconnect

Transaction HandlingBlock Management

Consensus
Proxy State

P2P Network

Sawtooth Node

Sawtooth Node

Sawtooth Node

Figure 6.1: Sawtooth architecture overview

6.2.2 sawtooth architecture overview

One of the more interesting parts of the Sawtooth ecosystem is its components modularity;
every part of the system is built in a modular way, allowing a more detailed control. It separates
core system modules, such as the communication between peers and the P2P protocols that
are the base for a distributed system, from application domain, i.e, the applications running
on top. This modularity allows for a fine design while developing applications, there is no
need to compromise in order to accommodate application-specific constraints.

Figure 6.1 presents a schematic overview of a Sawtooth network deployment. The Sawtooth
network is comprised of several interconnected nodes, which are the central pieces of Sawtooth
deployments. Each of these nodes is composed of several smaller elements. One of those
elements is the validator component itself, it is one element that is always present no manner
the deployment and always works the same way. The other components function on a
“plug-and-play” manner, for instance: the consensus engine, that allows different consensus
algorithms to be used; the transaction processors, that implements the business logic of the
system.

In the following sections these nodes will be explained in more detail, in order to understand

39

40 chapter 6. implementation

the changes and decisions made to accommodate our project and PoC. We subdivided the rest
of this section in three parts: Section 6.2.3 explains the networking principals used within this
framework, the protocols and messages; Section 6.2.4 presents what we called our data layer;
this layer encompasses the methods used to store and how to store information in this P2P
network and also how this information is allowed to mutate; finally, Section 6.2.5 presents the
application layer, namely, the transaction processor implementation which is the component
responsible to handle our application business logic.

6.2.3 network layer

As with every distributed ledger, it guarantees a distributed architecture with every
participant in the P2P network having access to the same information. This connectivity
is the responsibility of an abstract layer that we called the network layer. This layer is
responsible for several things that are the backbone of the whole system: initial connectivity,
peer discovery and message handling. The system nodes use specific interface and ports to
listen to connections.

After the initial connection the nodes exchange messages with each other based on
an epidemic protocol. Epidemic protocols, also known as gossip, are used to disseminate
information efficiently in distributed networks. Such protocols can also be used to provide
failure detection and to self-organize complex network topologies.

The Sawtooth network uses ZeroMQ (ØMQ) to handle communications which is a platform-
agnostic network library. It provides a framework that offers sockets that carry atomic messages
over diverse transport layers, from local message passing to TCP and multicast. I/O operations
are modeled in an asynchronous way, enabling the creation of scalable applications based on
message passing, ideal for a P2P network. Within ØMQ, an asynchronous client/server pattern
is used, an N-to-1 architecture, where various clients talk to a single server, asynchronously.
But, since a node in the network works simultaneously as a client to different servers and as
a server to different clients (see Figure 6.2), the generated connection are, in fact, N-to-N
between all the peers.

Each node can be seen as a state machine, changing between 3 different states: unconnected,
connected and peered. They define the state of the connection between any two nodes. The
nodes are unconnected when there is no connection between them, connected when there is a
communication between tho nodes and peered when both nodes establish the client/server
pattern between themselves. In Figure 6.3 we can see the available protocol messages and
how the node transits between states based on those messages.

Most of the times, in complex scenarios there is not a full mesh connectivity, but it
is ensured that each node achieves a minimum of connectivity with n other nodes. The
bi-directional peering based on this neighboring construction ensures a reliable connectivity
throughout the network.

40

https://zeromq.org/

6.2. distributed ledger implementation 41

Sawtooth Node

Server

Client

Sawtooth Node

Server

Client

Sawtooth Node

Server

Client

Figure 6.2: Network layer architecture

CONNECTUnconnected PEER

PING

DISCONNECT

Connected

UNPEER

Peered

GET PEERS

Figure 6.3: Node states

6.2.4 data layer

As we previously mentioned the main objective of DLTs is to, as the name implies,
distribute a ledger. This ledger is nothing more that a type of database that all nodes should
be able to access in a consistent manner.

Classical DLTs, distribute information in the form of transactions. Each node does not
store a current state, for instance, the only way to know for sure the amount of bitcoin a
person has is to iterate all of the blocks and find transactions from and to a specific person.
Imagine a bank statement that instead of giving you the transactions and the amount you
have, only gave you the list of transactions and you were responsible to add it all up.

More recent DLT have a state and record transactions that alter that state, so if all the
nodes follow the same transactions, all the nodes have the same final state. The state allows
for the implementation of more complex use cases and applications, such as smart contracts.
In Sawtooth this is called global state and every node is responsible for its copy of the state.

In terms of implementation, the state is an addressable Merkle-Radix tree. This is a
Merkle tree, because it stores a hash that corresponds to the hash of all hashes of the tree
nodes. This process starts at the leaf nodes, where the hash label corresponds to the data
hash, all the way to the root node, passing through all the intermediate nodes, which in turn

41

42 chapter 6. implementation

compute their label hashes by adding and hashing the hashes of their respective child nodes.
The root hash of the tree is used in the block header to gain consensus not only on the chain
of blocks but also in the state of the global state. The global state is also a Radix tree because
its addresses allow for the identification of the path to a leaf node in a unique way, property
which we take extensive advantage of.

So, to store information in the global state we just need an address. We can think of
the global state as a big dictionary that uses addressing to store information. The addresses
available to use are 35 byte long. In Sawtooth, the first 3 bytes are special, they represent the
namespace of the address. We already talked a little about the transaction processors that
are responsible to implement the business rules of the system. The namespace allow us to
have multiple transaction processors, each responsible for their own namespace and also, as
a security feature, transaction processors cannot access addresses that are not under their
namespace.

The data stored in each node of the tree state is a byte array that is transparent to the
node. Here, we can see an example of a leaf node full address that can be used to store
information in the global state:

Example global state leaf node address (35 bytes)︷ ︸︸ ︷
657374︸ ︷︷ ︸

Namespace prefix (3 bytes)

6F752070656C6F7320636162656C6F7320636F6D20657374612074657365202E

For our scheme there are two things that we choose to store in this ledger. First, and
the most easy to understand are the reputation wallets, which are a simple integer value
representing the amount of dignitas each UA has; the second one are the event reports made
by the participants. In order to do this an we needed a addressing scheme that followed some
rules:

• Have a namespace prefix;
• Be deterministic;
• Be collision resistant.
Having a namespace prefix and a determined size are restrictions enforced by the Sawtooth

framework. They need to be deterministic, because different nodes and clients must calculate
the address in the exact same way, any time they are needed to be accessed. Also, ideally,
it should be collision resistant; if not, the consumers of this addresses should know how to
handle collisions, also in a deterministic way.

As previously stated, there are two main types of addresses, however, they share the first
3 bytes, the namespace.

Namespace prefix = First 3 bytes hash256(“dignitas”) = CE9618

The next byte in our scheming address is used to discern between the two types of addresses:
00 for the reputation wallets, and 01 for the reports. Let us start with the first one, wallet
addresses. These addresses are used to store the reputation value of each UA, a integer value
that represents the amount of reputation they gathered so far. These type of addresses have,

42

6.2. distributed ledger implementation 43

besides the namespace and the discerning byte, 31 remaining bytes used to identify the user.
These bytes are the first 31 bytes of a 521-bit digest of the UA public key (kpub).

Wallet address = CE9618 + 00︸︷︷︸
Discerning byte (1 byte)

+
User Id (31 bytes)︷ ︸︸ ︷
hash512(pubK)

The addressing scheme is used to store each Wallet or Report in the correct location in
the ledger state but also to enable their retrieval in a deterministic way. Because of the radix
nature of the global state tree we can use our addressing scheme to, for instance, retrieve all
the addresses that correspond to wallets. The address CE961800 represents all the addresses
that start by that sequence, in this case all the Wallet addresses. This property is very
powerful and it is used to a greater extent in the Report addresses.

First, each Report on our system has a specific address that can only be used by one
Report at a time. The Report address has the same initial bytes of their Wallet counterparts,
the namespace using the first three bytes and also the discerning byte. The remaining bytes
are used to uniquely identify the report. In our PoC we use a geohash in the next 6 bytes.

Report address = CE9618 + 01︸︷︷︸
Discerning byte (1 byte)

+
Vote Id (6 bytes)︷ ︸︸ ︷

GeoHash(Vote Location) +Remaining 25 Bytes

GeoHash [20] is a hashing algorithm built for geographic coordinates, a geocoding system.
It encodes geographic coordinates into bits and it decodes bits into geographic coordinates.
The public domain geocoding system GeoHash encodes the bits in a strange alphabet that takes
into consideration the original use of this encoding method, replacing the Postal Code System
and enabling a global code that could be used to send mail to any geographic coordinate.
For this reason, since the code was designed to be written in letter envelopes and read by
mailmen, some characters are not used so that they could not be misinterpreted as numbers
(e.g the o and the 0). Because of this design quirk we had to build our own library to encode
geographic coordinates using the standard hexadecimal notation as the final encoding method.
It works in a very simple way: it starts by dividing the globe in two halves, the algorithm
adds a 1 or a 0 based on which half the geographic point is on, this process keeps repeating
until the necessary precision is achieved.

Earth

0 1

0
1 0 1

0
1

Figure 6.4: Geohash algorithm in 2D

43

44 chapter 6. implementation

In Figure 6.4 it is shown in a simplified way the algorithm: in that example the resulting
bit string would be 1010 that would translate to 0xA. This encoding method has variable
precision, every string of bits will always represent a curved surface on earth, with more
bits this surface area is smaller and represent a more precise location, another important
characteristic is that, the longer the prefix two places share, more likely is for them to be
closer together. Both of these properties allow us to retrieve votes based on their location
without any major calculations.

We previously stated, that the GeoHash algorithm itself has variable precision, however
we use a fixed number of bytes to represent the hash of a Report location. This precision
is important since we use it to prevent “deja-vu” events, a UA is not capable of repeating
events in the same location; at least, not until they are resolved. Since area calculations
on non-spheric planes is out of scope for this work we calculated our precision based on
existing values for the original GeoHash. In our solution we use 6 bytes of hexadecimal
characters, meaning that in total we have forty height bits encoding our GeoHash. In the
original GeoHash, bits were encoded using a thirty two character alphabet, which means that
it would be able to encode our forty height bits into at least nine characters. In [21] we see
that for our number of characters we can have a rectangle of approximately three by three
meters, which makes it the precision of our Reports.

The information stored on each leaf node of the tree is nothing more than a group of bytes
to the validator node but it must yield some meaning to the clients that want to use that
information; in this case, the Transaction Processor (TP), which is the validator component
that stores and reads information from the global state (more details in the next section).

Since the information stored in the global state has no intrinsic meaning associated with
it, it can be anything, since we are only storing bytes. However, one must be able to store
something and retrieve it in the same exact way, extracting the same exact information.

With the Wallets this is a simple problem, since we are only storing the reputation value
value of the UAs, which is a simple integer, it is how many dignitas a user has. The encoding
method used to store this value is simply convert the value to bytes and store it in the
respective address. When the value is retrieved is decoded from the bytes and interpreted
again as a integer.

Problems start to arise when we want to use more complex structures. With Reports we
need to take into consideration that we want to store more fields, and not only a numerical
value (e.g the bets of other users). For this, we use objects to represent this types of structures.
However, we needed to be careful with the object we choose to store this information. Since
what is stored in the ledger is only a collection of bytes, it is critical to use a serialization
mechanism which is deterministic across platforms and across time. The use of Maps or
HashMaps is not advised, since they produce non-deterministic byte arrays and could make the
network useless, since some validators would consider a state valid and then other validators
might not be able to find the same result. Because of this serialization concerns, we used
a serialization method that can be reproduced across time, platforms and allows the use of
complex objects, the Concise Binary Object (CBOR) [8]. CBOR is a data format specified in

44

6.2. distributed ledger implementation 45

Wallet

into_bytes numerical value (i64)

Report

id
vote id
(String)

timestamp

title

lat

lng

direction

info

timestamp
(u64)

CBORevent name
(String)

Bytes

event
geographic

position
(f64,f64,f64)

event details
(String)

_type

_true

_false

verdict

vote status
(String)

amounts at
stake

(i64,i64)

final verdict
(String)

Byte Array

Figure 6.5: Report and Wallet data structures

IETF RFC 7049, a format that was designed to be stable for decades. It is build around the
JSON data model, with a key-value design without the need for a schema; basically,this is
everything we needed. This data format allows us to store complex information in a binary
format while enabling others to retrieve the same information and decode it in the same exact
way.

In Figure 6.5 we can see all the fields that compose each Report and each wallet as well as
the encoding method used for each one. Those are the fields stored in the distributed ledger,
the ones that are stored in the Report and Wallet addresses, respectively. These are the base
structures that act as the ground truth for the rest of our system.

Next, it is explained how the TP works and how it interacts with the data stored in the
ledger. The ledger information, with the global state, behaves as a dictionary where each
entry as a specific address and each value a specific encoding. The information stored in this
dictionary (the global state) is only modified through transactions. Transaction can perform
multiple things, such as changing the data stored in a specific entry or creating new ones.
Transactions arrive at the nodes wrapped around in Batches. A Batch is the SQL equivalent
of a SQL-Transaction, meaning that all the operations inside a batch are performed or none
is. The Batch is the atomic unit of state change. These mechanisms are explained in detail in
the next Section.

45

46 chapter 6. implementation

SHA512

Payload

Protobuf

Transaction Header

Transaction

Family Name

Family Version

Batcher Public Key

Dependencies

Inputs

Outputs

Nonce

Payload Hash

Signer Public Key

Action

Action Specific Fields

Serialized Header

Header Signature

Payload

Figure 6.6: Fields of a Sawtooth Transaction

6.2.5 application layer

In Section 2.2, we talked about the core concepts of DLTs, one of them being the process
that a requester has to go through in order to submit an update into the Ledger. It starts by
creating a transaction where encapsulates the desired change, then submitting that transaction
to a validator node that has the responsibility of verifying the conditions of that transaction.
As previously stated, the Sawtooth Distributed Ledger abstracts the application-specific
verifications from the core system in a subsystem called Transaction Processor (TP).

In Sawtooth, Transactions and Batches are the basic units for state change and the
component responsible for handling and implementing these changes is the TP.

In Figure 6.6 we can see the different fields that are used to generate a transaction. First,
the payload is where the action we want to apply is specified; more on that later. The payload
is then encapsulated in a transaction, this transaction is made of a header, its signature and
the payload. The header has several fields that are necessary in order for our distributed
ledger to work in a trustworthy and safe way:

• The family name and family version are just fields used by the validator node in order
to send the transaction to the correct TP;

• The batcher public key is a field that indicates the public key of the transaction batcher,
meaning that one entity can create the transaction and another could be responsible to
batch them together. However, not any batcher can grab transactions and batch them
together, only the one that has the private key to this public key can do it;

• Dependencies is where we can specify transactions on which this one depends. Since

46

6.2. distributed ledger implementation 47

Protobuf

Batch Header

Batch

Signer Public Key

Transaction IDs

Serialized Header

Header Signature

List of Transactions

Trace

Transaction #1

Transaction #2

Transaction #3

Figure 6.7: Fields of a Sawtooth Batch

this is a distributed process, there is no guarantee that transaction will be applied in
the order they arrive to the node. For this reason when a causality dependence exist,
we need to specify it;

• Inputs and Outputs represents the global state addresses that are going to be used while
performing the payload operation. If a transaction tries to access addresses not specified
in this field it will fail;

• The nonce is used in order to guarantee that even if everything is the same, we can still
differentiate two transactions

• The payload hash is a SHA512 digest of the payload;
• The signer public key is the public key of the one who created this transaction.
These transactions are then wrapped around in a batch; even if it is just one transaction,

it must always be wrapped around in a batch. In Figure 6.7 we can see what constitutes a
batch. This structure also uses a header to ensure cryptographic safety through signatures.
In the header is present the public key of the signer and a list of the transaction IDs that are
present in the batch. This way, attackers cannot hijack batches adding transactions to the
batch illegally. The batch body is composed of the elements necessary to ensure the signature
works and the list of transactions. The Trace is a field that a developer can use in order to
trace the batch through the blockchain for debugging purposes.

One of the purposes of transaction/batches is to deliver in a safe way the payload to the
TP, so it can alter the global state of the system. The validator node receives the batches
from its clients, run validations, schedules them and sends them to the respective TP. The
TP receives the transactions, runs verifications and applies the changes to the global state. It
is the one responsible to apply all the application logic.

Within our TP there are 4 main types of actions allowed, which include the creation of
reports and voting on them by the UAs and also closing votes and reward users by the TAs.
These actions have specific associated payloads generated by the system actors when they
want to perform each action. The payload is a key-value structure that instructs the TP what
action should be performed and with which values (see Figure 6.8).

47

48 chapter 6. implementation

Create Report Payload

action "create"

title

details

lat

lng

dir

time

event name
(e.g accident)

event details

event
geographic

position

timestamp

Vote Payload

action "vote"

reportID

value

report ID

value at stake

Close Report Payload

action "close"

reportID

Reward Payload

action "reward"

voter

value

UA Wallet

value to be
rewarded

last last reward
indicator

report ID

Figure 6.8: Payloads of different actions

After the validator receives a batch it will schedule its correspondent transactions into
their respective TPs. The TP will then extract the payload from the transaction, namely, the
first field that dictates the respective action to be made. After determine the action, it calls
the function that is supposed to handle that action.

Let us start by the process of creating a Report. After determining that the payload
objective is to create a Report, the program will try to extract the rest of the fields that it
expects to be present in the payload, which are:

• the title, where the user specifies the title of the event (e.g. “accident”, “party”, “broken
water pipe”);

• the details, where the user can give more informations about the event;
• the lat, lng and dir that correspond to the event latitude, longitude and direction or

heading, respectively;
• the time field, that corresponds to a timestamp.
If any of these fields does not exist, the transaction fails and is not applied. With this

information the TP has the conditions to create a new vote in the global state of the ledger. In
order to do this, the TP calculates the address of this vote and stores the vote information as
explained in Section 6.2.4. Creating a new vote is a fairly simple ordeal in the TP perspective.

The voting process (i.e putting reputation at stake) goes along in a very similar way, it
starts by extracting the payload fields: reportID that represents the ID of the Report on which
the UA wants to vote; and the value that it wishes to put at stake. However, it must perform
some validations and side action in order to successfully vote, for instance, it has to ensure
the UA has sufficient dignitas in order to place that Vote on a Report; It is important to
note that we learned in section Section 6.2.4 that the Wallet addresses are computed through
the public key of the UAs. So, in order to verify that a specific user has sufficient funds to
perform a specific vote, we need the public key of that voter. However, there is no field for
the voter public key in the payload of the vote action. This happens because that public key
is already present in the transaction itself in order to verify signatures. This enables us to

48

6.3. untrusted side ledger proxy 49

access it and to use it while also ensuring that users are not able to vote with somebody else’s
Dignitas. After ensuring the voter credit, the TP performs several actions. First it updates
the voter balance, removing from his account the value they want to put at stake, and then,
updates the Reports _true or _false fields in order to reflect the opinion of the voter. If any
of these steps fails the whole transaction is discarded.

Both of the previous actions can be made by any UA, with the only pre-requisite being
that while trying to vote it must have sufficient credit. The next two are special actions only
accessible to TAs, the closing and rewarding actions.

They both are very similar they both update state in a simple way, the closing action
simply updates the Report state and the rewarding updates the Wallet values of the UA its
payload specifies.

We implemented this TP using Rust, as said before. The TP behaves as a plugin and,
although being inside the Validator node, is a subsystem that communicates through messages
with the core of the node. We used the Software Development Kit (SDK) provided by Sawtooth
which allows for a straightforward implementation of the topics above. From our work, we
were also able to contribute to the Sawtooth project itself: There was no documentation
for the Rust SDK and, since we were able to use it successfully, we decided to write some
documentation for it and share it with the community [53].

6.3 untrusted side ledger proxy

The UA Proxy is a REST server built in Rust. Rust was chosen because of some
characteristics that had to be taken into consideration while building this proxy, namely:

1. The need for it to be small, since it was meant to be deployed in components of a
VANET network, specifically in OBUs and RSUs, which may have limited processing
capabilities;

2. The need for it to be highly performant, since if we expect to deploy this system in a
city we should also expect incredibly high amounts of connections to this proxy at any
given time;

3. Rust programming language offers both of these, giving us great performances with
small overheads.

In this PoC we used the Rocket library [46], a web framework that allows quick prototyping
of web applications. Since this is just a PoC, it is important to build code that allows evolution,
namely when it comes to communication forms, because our system should be able to be
deployed over any type of network and be agnostic to the underlying network implementation.

In Figure 6.9 we can see the way the proxy was built that allows for a very modular
approach. The bin folder holds the entry points of our application, is a very simple file that
only starts the web server, making our application listen for HTTP requests on a specific
port. The lib.rs file is where we define how we process transactions, how we should handle
cryptographic elements, basically, it is the file that holds the “business” logic of the ledger.

49

50 chapter 6. implementation

/proxy_src

/bin

main.rs

lib.rs

/comns

api.rs

out.rs

/data

schemas

/util

transaction_helper.rs

Figure 6.9: UA proxy source code structure

This file is supported by other files that help subdivide the problem in sections, in order to
better scale this solution. In the comns folder two important files can be found: api.rs where
we define the exposed Application Programming Interface (API) for the UA client application
to use; out.rs is where the communication with the ledger is defined; in our PoC is also
established through HTTP. The way we built this should ensure that changing communication
protocols should be trivial. In the data folder we can find the data schemas of objects that
travel through the ledger, since Rust is also a strongly typed language, every object must have
a type and its size must be known at compile time. This ensures type safety, but also forces
us to think very well about the data we will be handling. At last, but not least, there is the
util folder, where we can find the transaction_helper.rs a module which sole purpose is
to handle operations that relate to Sawtooth transactions, such as creating batches with the
client transactions and cryptographically sign these batches before sending them to the ledger.

6.3.1 endpoint specification

This specification corresponds to the publicly available API that is present in our ledger
proxy. All endpoints are prefixed with /api/v1.

post /transaction

This endpoint is the most used one, it is through it that the UAs can submit transactions
to the ledger. This endpoint accepts a HTTP POST that should have in its body a serialized
version of a transaction. The proxy creates a batch from the incoming transactions, and signs
them with its private key. We use this to enhance the security of our system, because a UA
can specify the public key of a transaction batcher, meaning that the UAs can choose to

50

6.3. untrusted side ledger proxy 51

which proxy to send their transaction, and we can securely guarantee that these transaction
are not hijacked and used somewhere else. If, for any reason, the transaction sent is not valid,
this operation will fail. Another advantage of having a proxy is that we can keep this errors
from the main ledger, meaning that a Denial of Service (DoS) attack could be stopped in the
proxy layer without interfering with the ledger. After creating the batch, it is sent to the
ledger. This part functions on a best effort basis. Because of the nodes high mobility, it is
impractical to maintain the notion of state on the proxy. So, instead of waiting for a response
from the ledger, we respond with a OK if this process of sending the transaction to the ledger
went as planned. The OK from the proxy does not mean that the transaction arrive to the
ledger or that it will be added to the global state; it just means that the proxy did its job
of proxying. The responses from this endpoint (see Fig. 6.10) are simple JSON messages
signalling if the process went as expected.

{
"status" : "ok"

}

Figure 6.10: Response from the POST /transaction endpoint

get /reports

This endpoint is the one used by UA applications to retrieve the reports from the ledger.
The client application just needs to make a simple GET HTTP request. As discussed before
the proxy could act as a geographic filter, only dealing with requests of a predetermined area.
This does not imply that a proxy cannot retrieve reports from other geographical areas, since
the ledger is public and all the information is available. The proxy can also choose to cache
the information it retrieves from the ledger. This information is always timestamped and
digitally signed by the ledger validators so UAs can always verify if the information they
receive from the proxy has been tampered with.

The endpoint can also decode the responses from the ledger, for instance, if the proxy is
deployed in a OBU, we could assume that it is a trusted environment and that communications
between the OBU proxy and the on-board UA application can be considered secure. If we
assume this, we can offload the UA application even more by decoding the byte array received
from the ledger to a format simpler for the user application to understand avoiding having to
deal with serialization in the UA application side. In this cases the response can be a simple
JSON that sends the votes information to the user application.

{
"timestamp": timestamp in seconds,
"votes" : [list_of_votes]

}

Figure 6.11: Response from the GET /votes endpoint

51

52 chapter 6. implementation

get /balance/<wallet>

This endpoint, as the name says, retrieves the dignitas balance for a specific wallet. The
user application should make a GET HTTP request with the wallet address it wishes to receive
information about. Like the previous endpoint we can simplify the task of the UA application
by deserializing responses from the ledger and only sending the valuable information to the
client. The wallet address is the address where the wallet is stored in the ledger.

{
"timestamp": timestamp in seconds,
"value" : amount of dignitas on the <wallet>

}

Figure 6.12: Response from the GET /balance/<wallet> endpoint

6.4 UA android application

For a system to be useful, its users must have a easy way to interact with it. In this PoC
we used Kotlin to develop an application targeting Android devices. The application was
built using the Model-View-ViewModel (MVVM) architecture. This architecture helped us
build a sustainable and scalable application, while also being considered heavily favoured by
the Android community because of the available Android components that enable it.

In MVVM, we have the Views that are responsible for the immediate interactions with
the user. They do not execute any business logic; their main purpose is to take care of the UI
and dispatch events to the level below. The level below, the ViewModel, serves as a bridge
between the UI and the business logic of the application. Finally, there is the Model, where
the domain-specific data appears in the form of a repository, which is seen as the single source
of truth for the system. The repository itself can gather information from multiple sources,
but as far as the ViewModel knows, there is only one place to fetch information from. All of
these components are empowered by a new data type in the Android ecosystem, the LiveData,
which is an Observable data type that allows changes from data to seamless flow from the
Repository to the View. The Views observe LiveData on the ViewModels, than in turn observe
them in the Model (i.e the Repository). When some value is changed in the repository, a
chain reaction is triggered updating all the values all the way up to the UI. In Figure 6.13
we can see the schematic architecture of our application, where all of this components are
present.

The application was built in order to explore our API and enable the user to interact with
the system. We achieved this by using the Retrofit [45] and Gson [23] Libraries, simple yet
powerfull solutions. We also take advantage of Kotlin coroutines to handle asynchronous,
such as for fetching remote data. In order for the application to work even when offline some
information is cached in the Local SQLite Android Database using the ROOM library allowing
a nicer user experience even when our proxy cannot be reached. The application also uses

52

6.4. UA android application 53

Profile
View

Report
View

List
View

Repository

Local Data

List
ViewModel

Report
ViewModel

Profile
ViewModel

Remote Data Source

Ledger Proxy
SQLite

Subscribe to Object Changes

Observe Object Changes

Live Data Changes Flow

Figure 6.13: Dignitas Android application architecture

the Kodein Library, that allows us to perform dependency injection, in order to enhance the
maintainability of our code.

Figure 6.14a show us the profile page of the application; this is the entrance point of the
application, in our PoC we just added in this view the current balance of dignitas. Going
forward, this view can be reused to show more information, for instance, the history of
transactions the user has done so far. In Fig.6.14b we see the settings page, where the user
can input the desired batcher address, for instance, to lock its application to communicate
only with the proxy ledger that is inside the OBU of its vehicle.

Figure 6.15a is the view that the user uses to find nearby events, the events appear as
a overlay of points in a Map, this map should be centered around the current location of
the user and show all of the events in the area, while also showing which of them have been
resolved and are closed and the ones that are still open for voting. When a user clicks on a
particular event, he will be able to see its details in the detail page that we see in 6.15b. This
view also enables the user to see positive or negative opinions (votes) on the event, while also
being able to cast his vote.

Finally, in Figure 6.16a we see the report page, this is where a user can report new events
by filling up some fields, such as the title and detailed info. GPS information such as position
and heading can be inferred from the device when available.

53

54 chapter 6. implementation

(a) Profile page (b) Settings Page

Figure 6.14

(a) Nearby events page (b) Event details page

Figure 6.15

54

6.5. trusted-side secure server 55

(a) Report page

Figure 6.16

6.5 trusted-side secure server

The secure server is a NodeJS application. Unlike its counter part from the untrusted
side, it does not have tight restrictions in terms of performance, since it can be deployed in
more powerful hardware. This component also performs more actions than its counterpart, it
is more than just a proxy and it is actually responsible to create transactions for TAs, for
instance, the transaction that closes out reports and redistributes dignitas.

In Figure 6.17 we can see how we divided and built the secure server. Since one of the
main objectives for this server was to relay information in real time to the authorities, it
communicates with the main ledger through a websocket connection that keeps the server
updated with every new piece of information that appears on the ledger. It is also possible
to only be listening for some kind of events in a pre-determined area, achieving the regional
properties that we previously mentioned. This information, captured on the public ledger, is

Secure Server

REST
API

Outbound
Socket

Inbound
Socket

SQLlite

LedgerTA
Application

Figure 6.17: Secure server implementation

55

56 chapter 6. implementation

directly piped to the TA application also through websockets. For websockets operations we
used the socket.io library [51].

Other than proxying information from the ledger to the TA application, there is one more
action that the component must perform, which is creating rewarding transactions. These
transactions are triggered by the TA application calling a specific HTTP REST endpoint. We
use the express library [17], a minimal web framework ideal for either prototyping and big
scale projects. In order to support the rewarding part of the system, we have a local database
that stores IDs of reports being made in the network in order for us to just query this local
database when we want to reward people for their behavior. For testing purposes we use
SQlite, where the system stores references to UA reports in order for it to be able to trigger
rewards without having to transverse through the ledger.

6.5.1 endpoint specification

These endpoints correspond to the exposed API of the secure servers. Unlike the other
proxy there is not only HTTP REST endpoints available, there is also a websocket endpoint.

post /close/<reportid>/<verdict>

This endpoint is the one used when a TA wants to close out a Report. The information
that should be provided is the reportId and the verdict from the TA. After this, the secure
server will fetch the UA report that it has been storing locally, calculate how much the reporter
and supporters should get, create several transactions to mirror these changes, batch all of
them and then, finally, send this batch to the ledger. The way we are redistributing Dignitas
is trough using the algorithm discussed in Section 4.4, in practice, we are redistributing the
dignitas wrongly staked by UAs that correctly voted on the report.

ws://<server>:<port>

This endpoint is the websocket that the TA application uses to connect and receive live
events’ data from the ledger. This endpoint is very simple because it simply holds a connection
to the application and everytime we get a new event from the socket ledger we directly pipe it
into this websocket, so that it could flow to the application.

6.6 TA application

Last, but not least, we have the TA application, which is a simple React [18] application
using Redux [44] to manage application state. It receives new information in real time through
web sockets and instructs the secure server through the provided REST API.

In Figure 6.18 it is possible to see how it looks like. It provides information about real time

56

6.6. TA application 57

Figure 6.18: TA application

reports by showing a list of events. Besides the list view, it can also open up the report details
where they can for instance see the report position on the map or trigger the reward process.
Its only responsibilities are to provide a visualization of the data and to give instructions to
the secure server which makes this a very simple component.

57

59

chapter 7
Results
“...logical validity is not a guarantee of truth.” — David Foster Wallace, Infinite Jest

Every solution looks perfect while it sits on paper. In order for us to confidently write
that our solution works, as we proposed it would, we needed to properly test it. Testing big
projects like this one is always a challenge, since there are many levels that you can test and
account for; testing individual components, testing communication or even system-wide tests
are all different possible degrees for testing our platform. In this chapter we explain how we
approached this task. First we present some tools used while testing the system, tools that
we built and existing one that we took advantage of. Next, we talk about the system-wide
tests that were done and the extracted metrics. Finally, we also discuss some of the results, in
order for us to understand if they make sense or if they make our solution unviable.

7.1 testing tools

Early into the development of Dignitas we felt the need to build yet another component.
This need arose because we found it inadequate to use the user applications, either the UA
or the TA one, in tests. Although their sole purpose of existence is to easy the use of our
system to users, while testing, they cannot provide the level of productivity that we desired.
For instance, it would be impractical for us to use the UA Android Application everytime we
wanted to test sending a Report into the ledger, or even to start the TA React application
whenever we wanted to close out a Report while testing. Even more given the platform
diversity of our components. We needed a simple tool that would help us interact with the
system without the need for the user applications, and that is how the clignitas was born.

clignitas is a simple Command Line Interface (cli) that, basically, mimics the behaviour
of the user applications, allowing us to quickly interact with Dignitas through the terminal.
This small program was built in Rust and offer several capabilities, such as creating new

59

60 chapter 7. results

Figure 7.1: Clignitas help information

Reports, vote in existing ones and also closing them. It also has implemented several “quality
of life” tools, for instance, it allows the easy creation of key pairs, it can decode byte arrays
extracted from the ledger into human readable structures. One other important feature is
the possibility of performing automated tests onto the dignitas system, more on that later.
Overall is a swiss army-knife that helped us develop our PoC In Figure 7.1 we can see the
help command output of this tool.

One other tool that helped us bringing Dignitas to life was Docker [14]. Docker is a
virtualisation software that enabled us to build the different components in self-contained
environments. This process allowed for easy deployments of, for instance, Sawtooth Nodes in
a predictable and deterministic way, very useful when dealing with such complex systems.

There is one more tool which is important to mention, Grafana [24]. Grafana is an open
source, general purpose dashboard, which allowed for the visualization of different metrics on
our system. However, in order to use Grafana with our system we had to integrate Dignitas
with InfluxDB [32]. InfluxDB is a time-series based database that acts as a sink to our system

60

7.2. testing 61

Docker Container Docker Container

Sawtooth Node

Docker Container

Sawtooth Node

Clignitas

Docker Container

Ledger Proxy

Docker Container

Secure Server

InfluxDB

Docker Container

Grafana
Dashboards

Figure 7.2: Test tools integration

metrics and logs. Grafana is then responsible to build dashboards and visualizations from the
values it extracts from the tables in InfluxDB.

In Figure 7.2 we can see how all this work with each other in our tests.

7.2 testing

When it comes to testing the system we had a very pragmatic approach. First, all of
our system components were tested individually to ensure they worked as expected. We also
ensure that every part was correctly communicating with each other. We made sure that the
use cases we set for ourselves in the beginning were achieved in the final version of Dignitas.

However, we tried to test our solution even better. For instance, we try some stress tests
to see how our solution would cope. For these tests, we were mainly interested in how the
distributed ledger would handle a high volume of requests. We choose the distributed ledger
since its use to store reputation is the main novelty of our work. We considered traffic times
between components, and cryptographic operations duration to be either negligible, or out
of scope for this work. Next, we will explain how this test was performed, and then discuss
some of the results that we had.

The test consisted in making a huge amount of requests (i.e creating new Reports or
randomly vote on existing ones) to the proxy ledger in order to simulate high traffic volume.
In order to do it we used our clignitas, which allowed us to perform stress tests with predefined
parameters. It works by creating several threads in order to maximize the amount of parallel
requests that are done to the proxy server, in our case we used four, which allowed us
a throughput of around eighteen requests per minute (which should represent an intense
throughput of Reports in our system). The test consisted of:

61

62 chapter 7. results

1. Sending ten transactions
2. Waiting thirty seconds
3. Sending one hundred transactions
4. Waiting thirty seconds
5. Sending one thousand transactions
6. Waiting thirty seconds
7. Sending ten thousand transactions

The whole stress test took about ten minutes to run. After running the test, we went to
Grafana and extracted some results that we found were interesting to discuss in this work. All
the function graphs present were built using Grafana, and since they are based in time-series
of events the x axis always represents a timestamp. Since all of the graphs were taken from
the same test, we can see that the x axis coincides in all of them.

In Figure 7.3 we find the first graph that we found interesting to analyze. In it, we can
see the number of blocks published during the test, these are the blocks of batches that were
added to the ledger. It is possible to see that were published almost five thousand blocks
into the ledger. This, at first sight, could raise suspicions about the amount of disk space
that a solution like this would require. However, it is important to note that more than ten
thousand Reports were created or updated, this value is massive compared to the actual
numbers that we could expect from a reporting system. We can see, in Figure 7.4, that the
number of blocks published is equal to the number of blocks considered. This means that no
block was discarded during the stress test. Block considered are, as the name says, blocks
that the nodes consider adding into the ledger. These blocks can either be added and end
up as published or they can be discarded when there is something wrong while validating its
data or during the consensus process.

Figure 7.3: Number of blocks published during the stress test

However, the number of blocks might coincide with each other but it does not mean that
all the information we sent was registered into the ledger. If we look into Figure 7.5, we can

62

7.2. testing 63

Figure 7.4: Number of blocks considered during the stress test

see that the number of transactions processed during the test is a little above five thousand.
First, we see that there is some discrepancy between the number of transactions added and
the number of transactions sent, which were over ten thousand. There are a couple of reasons
for this to be happening, however it is not very significant. Since clignitas does not use any
type of retry mechanism, and only works on a best effort basis (like the rest of the system),
we can assume that these results are to be expected and can be easily improved upon.

Figure 7.5: Number of transactions committed to the ledger during the stress test

Analysing in terms of time, the transactions that actually got processed we see in Figure 7.6
that in the ninety-ninth percentile the transactions all took under twenty milliseconds to be
processed. This is the time it takes for the validator to be unpacked the transaction from its
batch (making all the necessary validations), to send it to the TP, the TP to perform the
action inside the transaction (it can be creating a new Report in global state, or voting); and
return it to the validator. Under twenty milliseconds is an acceptable processing time, taking

63

64 chapter 7. results

into consideration all the steps it took.

Figure 7.6: Processing time of the 99th percentile of transactions committed to the ledger during
the stress test

After all of this, once again, we arrived at the same conclusion. Dignitas works as intended
and it allows for a highly performant reporting system, which is also secure and anonymous.
The use of a distributed ledger does not appear to be a bottleneck in the implementation of
our solution.

64

65

chapter 8
Conclusion

In this work we presented Dignitas, a blockchain-based, anonymous reputation framework.
Dignitas and the supporting protocols are built around the novel idea of using Reputation as
a Coin, which allows users to preserve anonymity while participating.

To demonstrate the effectiveness of the proposed solution, we used it as the backbone for a
reporting system in a Smart City scenario. In this scenario, citizens are able to provide reports
on real-life events. This information is then disseminated throughout the city, through already
existing infrastructure. This allows citizens to be used as sensors in their own cities. Citizens
can vote on existing Reports, using their own accumulated reputation to back someone else’s
claim. This process works as a bet, if they end up backing up a false Report they will lose
the Reputation they have put at stake. Through this, citizens are able to discern between
truthful and erroneous reports by analyzing the reputation a Report has backing it up. Our
solution does not require a central authority. The system is administered by a set of already
trusted authorities in the context of a city, such as firefighters and police forces, which have
the final word when it comes to determine the veracity of a Report, and are able to reward
good behaving citizens.

We built a prototype of the system that works as a proof of concept. Our prototype was
architected in order to be the most scalable possible solution. On top of which, we run stress
tests in order to determine the viability of the solution, using our own tools.

From this work we can take several conclusions. First, the viability of blockchains and
distributed ledgers in general. Right now, these tools gather different and opposite opinions.
Some think it will revolutionize the world, while others think it is a bogus tool riding on the
“hype” of bitcoin. However, we found that the main problem with this tool is the incorrect
use-cases on which it is used. As with every tool, blockchains , and DLTs in general, have
a specific purpose and an ideal scenario where they should be employed. We found that
scenarios where multiple authorities exist is ideal. The idea of distributed trust is the main

65

66 chapter 8. conclusion

power of a blockchain-based architecture. Other critics say that DLTs need many resources,
however, we found that with some careful planning is possible to leverage all the benefits,
without worrying about performance issues.

We proved the viability of this technology, and that a Smart City is one ideal scenario
for it. Because, the reality is that there already exist multiple authorities, it is already a
distributed scenario.

Using our system, Cities could improve their ways, turning citizens lives easier. Fostering
a sense of community and responsibility, Dignitas enables Cities to really embark into the
future with the right foot.

However, there is still room for improvement in several areas. One of which is the
rewarding part of the system, we had a very naive approach to it and it could benefit from an
in depth study, maybe using game theory in order to maximize people interactions and sense
of accomplishment. Another meaningful work that could sprung from this base is, a more
detailed evaluation of the impacts of different consensus protocols, leveraging the fact that
using Sawtooth they are a “plug-in” component.

This work also opens up a new frontier for application in a Smart City scenario, one that
may be worth pursuing for a better tomorrow.

66

67

Bibliography
[1] E. A. Akkoyunlu, K. Ekanadham and R. V. Hubert, “Some constraints and tradeoffs in the design of

network communications”,

[2] V. Albino, U. Berardi and R. M. Dangelico, “Smart Cities: Definitions, Dimensions, Performance, and
Initiatives”, Journal of Urban Technology, vol. 22, 1 January 2015.

[3] M. A. Azad, S. Bag and F. Hao, “PrivBox: Verifiable decentralized reputation system for online
marketplaces”, Future Generation Computer Systems, vol. 89, December 2018.

[4] A. Back, “Hashcash - A Denial of Service Counter-Measure”,

[5] S. Bag, M. A. Azad and F. Hao, “A privacy-aware decentralized and personalized reputation system”,
Computers & Security, vol. 77, August 2018.

[6] Bitcoin - Open source P2P money. [Online]. Available: https : / / bitcoin . org / en/ (visited on
20/03/2019).

[7] J. Blömer, J. Juhnke and C. Kolb, “Anonymous and Publicly Linkable Reputation Systems”, in Financial
Cryptography and Data Security, R. Böhme and T. Okamoto, Eds., Berlin, Heidelberg: Springer Berlin
Heidelberg.

[8] C. Bormann and P. Hoffman, Concise Binary Object Representation (CBOR), en. [Online]. Available:
https://tools.ietf.org/html/rfc7049 (visited on 10/12/2019).

[9] V. Buterin, “A next generation smart contract & decentralized application platform”,

[10] Corda | Home. [Online]. Available: https://www.corda.net/ (visited on 20/03/2019).

[11] R. Dennis and G. Owen, “Rep on the block: A next generation reputation system based on the
blockchain”, in 2015 10th International Conference for Internet Technology and Secured Transactions
(ICITST), December 2015.

[12] W. Diffie and M. E. Hellman, “Multiuser cryptographic techniques”, in Proceedings of the June 7-10,
1976, national computer conference and exposition on - AFIPS ’76, New York, New York: ACM Press,
1976.

[13] F. Dotzer, L. Fischer and P. Magiera, “VARS: A vehicle ad-hoc network reputation system”, in Sixth
IEEE International Symposium on a World of Wireless Mobile and Multimedia Networks, Jun. 2005.

[14] Enterprise Container Platform. [Online]. Available: https://www.docker.com/ (visited on 10/12/2019).

[15] Ethereum Project. [Online]. Available: https://www.ethereum.org/ (visited on 20/03/2019).

[16] Exonum — A framework for blockchain solutions. [Online]. Available: https://exonum.com/ (visited on
20/03/2019).

[17] Expressjs/express, original-date: 2009-06-26T18:56:01Z, December 2019. [Online]. Available: https:
//github.com/expressjs/express (visited on 05/12/2019).

[18] Facebook/react, original-date: 2013-05-24T16:15:54Z, December 2019. [Online]. Available: https://
github.com/facebook/react (visited on 05/12/2019).

67

https://bitcoin.org/en/
https://tools.ietf.org/html/rfc7049
https://www.corda.net/
https://www.docker.com/
https://www.ethereum.org/
https://exonum.com/
https://github.com/expressjs/express
https://github.com/expressjs/express
https://github.com/facebook/react
https://github.com/facebook/react

68 bibliography

[19] S. D. Galbraith, Mathematics of Public Key Cryptography. October 2018.

[20] Geohash, December 2019. [Online]. Available: https://en.wikipedia.org/w/index.php?title=
Geohash&oldid=929284482 (visited on 10/12/2019).

[21] Geohash encoding/decoding. [Online]. Available: https://www.movable-type.co.uk/scripts/geohash.
html (visited on 10/12/2019).

[22] F. Gómez Mármol and G. Martínez Pérez, “TRIP, a Trust and Reputation Infrastructure-based Proposal
for Vehicular Ad Hoc Networks”, J. Netw. Comput. Appl., vol. 35, 3 May 2012.

[23] Google/gson, original-date: 2015-03-19T18:21:20Z, December 2019. [Online]. Available: https://github.
com/google/gson (visited on 03/12/2019).

[24] Grafana/grafana, original-date: 2013-12-11T15:59:56Z, December 2019. [Online]. Available: https:
//github.com/grafana/grafana (visited on 10/12/2019).

[25] J. Gray, “Notes on Data Base Operating Systems”, in Operating Systems, An Advanced Course, London,
UK, UK: Springer-Verlag, 1978.

[26] C. Harrison, B. Eckman, R. Hamilton, P. Hartswick, J. Kalagnanam, J. Paraszczak and P. Williams,
“Foundations for Smarter Cities”, IBM Journal of Research and Development, Jul. 2010.

[27] F. Hendrikx, K. Bubendorfer and R. Chard, “Reputation systems: A survey and taxonomy”, Journal of
Parallel and Distributed Computing, vol. 75, January 2015.

[28] K. Hoffman, D. Zage and C. Nita-Rotaru, “A Survey of Attack and Defense Techniques for Reputation
Systems”, ACM Comput. Surv., vol. 42, December 2009.

[29] HydraChain/hydrachain: Permissioned Distributed Ledger based on Ethereum. [Online]. Available: https:
//github.com/HydraChain/hydrachain (visited on 20/03/2019).

[30] Hyperledger – Open Source Blockchain Technologies. [Online]. Available: https://www.hyperledger.org/
(visited on 02/04/2019).

[31] M. Iansiti and K. R. Lakhani, “The Truth About Blockchain”,

[32] Influxdata/influxdb, original-date: 2013-09-26T14:31:10Z, December 2019. [Online]. Available: https:
//github.com/influxdata/influxdb (visited on 10/12/2019).

[33] R. John, J. P. Cherian and J. J. Kizhakkethottam, “A survey of techniques to prevent sybil attacks”, in
2015 International Conference on Soft-Computing and Networks Security (ICSNS), February 2015.

[34] A. Jøsang, R. Ismail and C. Boyd, “A survey of trust and reputation systems for online service provision”,
Decision Support Systems, vol. 43, 2 March 2007.

[35] S. Küfeoglu and M. Özkuran, “Energy Consumption of Bitcoin Mining”, Faculty of Economics, University
of Cambridge, Working Paper, May 2019. [Online]. Available: https://www.repository.cam.ac.uk/
handle/1810/294129 (visited on 08/12/2019).

[36] N. Kumar and N. Chilamkurti, “Collaborative trust aware intelligent intrusion detection in VANETs”,
Computers & Electrical Engineering, vol. 40, 6 August 2014.

[37] L. Lamport, R. Shostak and M. Pease, “The Byzantine Generals Problem”, ACM Transactions on
Programming Languages and Systems, vol. 4, 3 Jul. 1982.

[38] X. Liu, N. Xiong, N. Zhang, A. Liu, H. Shen and C. Huang, “A Trust With Abstract Information
Verified Routing Scheme for Cyber-Physical Network”, IEEE Access, 2018.

[39] Y. Liu, M. Dong, K. Ota and A. Liu, “ActiveTrust: Secure and Trustable Routing in Wireless Sensor
Networks”, IEEE Transactions on Information Forensics and Security, vol. 11, 9 Sep. 2016.

[40] A. J. Menezes, P. C. Van Oorschot and S. A. Vanstone, Handbook of applied cryptography, ser. CRC
Press series on discrete mathematics and its applications. CRC Press, 1997.

[41] MultiChain | Open source blockchain platform. [Online]. Available: https://www.multichain.com/
(visited on 20/03/2019).

68

https://en.wikipedia.org/w/index.php?title=Geohash&oldid=929284482
https://en.wikipedia.org/w/index.php?title=Geohash&oldid=929284482
https://www.movable-type.co.uk/scripts/geohash.html
https://www.movable-type.co.uk/scripts/geohash.html
https://github.com/google/gson
https://github.com/google/gson
https://github.com/grafana/grafana
https://github.com/grafana/grafana
https://github.com/HydraChain/hydrachain
https://github.com/HydraChain/hydrachain
https://www.hyperledger.org/
https://github.com/influxdata/influxdb
https://github.com/influxdata/influxdb
https://www.repository.cam.ac.uk/handle/1810/294129
https://www.repository.cam.ac.uk/handle/1810/294129
https://www.multichain.com/

69

[42] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System”,

[43] Openchain - Blockchain technology for the enterprise. [Online]. Available: https://www.openchain.org/
(visited on 20/03/2019).

[44] Reduxjs/redux, original-date: 2015-05-29T23:53:15Z, December 2019. [Online]. Available: https://
github.com/reduxjs/redux (visited on 05/12/2019).

[45] Retrofit. [Online]. Available: https://square.github.io/retrofit/ (visited on 03/12/2019).

[46] Rocket - Simple, Fast, Type-Safe Web Framework for Rust. [Online]. Available: https://rocket.rs/
(visited on 02/10/2019).

[47] Rust-lang/rust, original-date: 2010-06-16T20:39:03Z, December 2019. [Online]. Available: https://
github.com/rust-lang/rust (visited on 10/12/2019).

[48] M. Sharples and J. Domingue, “The Blockchain and Kudos: A Distributed System for Educational
Record, Reputation and Reward”, in Adaptive and Adaptable Learning, K. Verbert, M. Sharples and
T. Klobučar, Eds., Springer International Publishing, 2016.

[49] L. Silva, C. Senna and A. Zúquete, “Using Reputation as a Coin to Bet on Information Items Distributed
in a Smart City”, in 2019 Fifth Conference on Mobile and Secure Services (MobiSecServ), March 2019.

[50] Social Credit System, May 2019. [Online]. Available: https://en.wikipedia.org/w/index.php?title=
Social_Credit_System&oldid=898779809 (visited on 29/05/2019).

[51] Socketio/socket.io, original-date: 2010-03-11T18:24:48Z, December 2019. [Online]. Available: https:
//github.com/socketio/socket.io (visited on 04/12/2019).

[52] S. A. Soleymani, A. H. Abdullah, W. H. Hassan, M. H. Anisi, S. Goudarzi, M. A. Rezazadeh Baee and
S. Mandala, “Trust management in vehicular ad hoc network: A systematic review”, EURASIP Journal
on Wireless Communications and Networking, May 2015.

[53] Using the Rust SDK — Sawtooth v1.2.3 documentation. [Online]. Available: https : / / sawtooth .
hyperledger.org/docs/core/releases/latest/app_developers_guide/rust_sdk.html (visited on
10/12/2019).

[54] A. Vakali, L. Angelis and M. Giatsoglou, “Sensors talk and humans sense Towards a reciprocal collective
awareness smart city framework”, in 2013 IEEE International Conference on Communications Workshops
(ICC), Jun. 2013.

[55] K. Wüst and A. Gervais, “Do you Need a Blockchain?”, in 2018 Crypto Valley Conference on Blockchain
Technology (CVCBT), Jun. 2018.

69

https://www.openchain.org/
https://github.com/reduxjs/redux
https://github.com/reduxjs/redux
https://square.github.io/retrofit/
https://rocket.rs/
https://github.com/rust-lang/rust
https://github.com/rust-lang/rust
https://en.wikipedia.org/w/index.php?title=Social_Credit_System&oldid=898779809
https://en.wikipedia.org/w/index.php?title=Social_Credit_System&oldid=898779809
https://github.com/socketio/socket.io
https://github.com/socketio/socket.io
https://sawtooth.hyperledger.org/docs/core/releases/latest/app_developers_guide/rust_sdk.html
https://sawtooth.hyperledger.org/docs/core/releases/latest/app_developers_guide/rust_sdk.html

	Contents
	List of Figures
	List of Tables
	Glossary
	Introduction
	Objectives
	Contributions
	Document Structure

	Background Review
	Security Principles
	Public Key Cryptography
	Digest Functions
	Attacks on Reputation Systems

	Distributed Ledger Technology
	Bitcoin and the origin of Blockchain
	Blockchain nowadays
	Consensus in a Distributed Ledger

	Smart Cities
	VANET

	State of the Art
	Traditional Reputation and Trust Systems
	Reputation Systems in Smart Cities
	Blockchain in Reputation Systems

	Reputation as a Coin
	Overview
	Actors
	Untrusted Actors (UA)
	TA

	Processes
	Reporting Phase
	Evaluation Phase

	Rewarding

	Architecture
	The Network
	The Ledger
	The Proxies
	Ledger Proxy
	Secure Server

	The User Applications
	Native or Web
	UA application
	TA application

	Scenario

	Implementation
	Rust Programming Language
	Distributed Ledger Implementation
	Choosing a Distributed Ledger Platform
	Sawtooth Architecture Overview
	Network Layer
	Data Layer
	Application Layer

	Untrusted Side Ledger Proxy
	Endpoint Specification

	UA Android Application
	Trusted-Side Secure Server
	Endpoint Specification

	TA application

	Results
	Testing Tools
	Testing

	Conclusion
	Bibliography

