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The H-join of arbitrary families of graphs

Domingos M. Cardoso * Helena Gomes' Sofia J. Pinheiro?

Abstract

The H-join of a family of graphs G = {G1,...,Gp}, also called the generalized

composition, H[G1,...,Gp|, where all graphs are undirected, simple and finite, is
the graph obtained from the graph H replacing each vertex i of H by G; and adding
to the edges of all graphs in G the edges of the join G; V G, for every edge ij of H.
Some well known graph operations are particular cases of the H-join of a family of
graphs G as it is the case of the lexicographic product (also called composition) of
two graphs H and G, H[G], which coincides with the H-join of family of graphs G
where all the graphs in G are isomorphic to a fixed graph G.
So far, the known expressions for the determination of the entire spectrum of the
H-join in terms of the spectra of its components and an associated matrix are
limited to families of regular graphs. In this paper, we extend such a determination
to families of arbitrary graphs.
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1 Introduction

Nearly five decades since the publication in 1974 of Allen Shweenk’s article [17], the
determination of the spectrum of the generalized composition H[G,...,G,] (recently
designated H-join of G = {G1,...,G,} [2]), in terms of the spectra of the graphs in G
and an associated matrix, where all graphs are undirected, simple and finite, was lim-
ited to families G of regular graphs. In this work, the determination of this spectrum
is extended to families of arbitrary graphs (which should be undirected, simple and finite).

The generalized composition H[G4,...,Gpl, introduced in [I7, p. 167] was redis-
covered in [2] under the designation of H-join of a family of graphs G = {G1,...,G,},
where H is a graph of order p. In [I7, Th. 7], assuming that Gi,...,G, are all regular
graphs and taking into account that V(G1)U---UV(G,) is an equitable partition 7, the
characteristic polynomial of H[G1,...,G)| is determined in terms of the characteristic
polynomials of the graphs G'1,...,G), and the matrix associated to .
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Using a generalization of a Fiedler’s result [7, Lem. 2.2] obtained in [2 Th. 3],
the spectrum of the H-join of a family of regular graphs (not necessarily connected)
is determined in [2, Th. 5]. When the graphs of the family G are all isomorphic to
a fixed graph G, the H-join of G is the same as the lexicographic product (also called
the composition) of the graphs H and G which is denoted as H[G] (or H o G). The
lexicographic product of two graphs was introduced by Harary in [I1I] and Sabidussi in
[16] (see also [12| [10]). From the definition, it is immediate that this graph operation is
associative but not commutative.

In [I], as an application of the H-join spectral properties, the lexicographic powers
of a graph H were considered and their spectra determined, when H is regular. The
k-th lexicographic power of H, H*, is the lexicographic product of H by itself k times
(then H? = H[H]|,H® = H[H?] = H?[H],...). As an example, in [1], the spectrum of
the 100-th lexicographic power of the Petersen graph, which has a gogool number (that
is, 10190 of vertices, was determined. With these powers, H”, in [3] the lexicographic
polynomials were introduced and their spectra determined, for connected regular graphs
H, in terms of the spectrum of H and the coeflicients of the polynomial.

Other particular H-joins appear in the literature under different designations, as it
is the case of the mixed extension of a graph H studied in [8], where special attention
is given to the mixed extensions of P3. The mixed extension of a graph H, with vertex
set V(H) = {1,...,p}, is the H-join of a family of graphs G = {G4,...,G,}, where
each graph GG; € G is a complete graph or its complement. From the H-join spectral
properties, we may conclude that the mixed extensions of a graph H of order p has at
most p eigenvalues unequal to 0 and —1.

The remaining part of the paper is organized as follows. The focus of Section [2 is
the preliminaries. Namely, the notation and basic definitions, the main spectral results
of the H-join graph operation and the more relevant properties, in the context of this
work, of the main characteristic polynomial and walk matrix of a graph. In section[3] the
main result of this artice, the determination of the spectrum of the H-join of a family of
arbitrary graphs is deduced.

2 Preliminaries

2.1 Notation and basic definitions

Throughout the text we consider undirected, simple and finite graphs, which are just
called graphs. The vertex set and the edge set of a graph G is denoted by V(G) and
E(G), respectively. The order of G is the cardinality of its vertex set and when it is n
we consider that V(G) = {1,...,n}. The eigenvalues of adjacency matrix of a graph G,
A(G), of order n are also called the eigenvalues of G. For each distinct eigenvalue p of G,

Ec(u) denotes the eigenspace of 1 whose dimension is equal to the algebraic multiplicity
of 1, m(p). The spectrum of G is denoted o(G) = {,u[lml], . ,u[sms],u[;fl“], . ,,ugmt]},
where ¢t < n and ugmi] means that m(u;) = m;. When we say that p is an eigenvalue
of G with zero multiplicity (that is, m(u) = 0) it means that u & o(G). The distinct
eigenvalues of G are indexed in such way that the eigenspaces Eg(u;), for 1 <i < s, are
not orthogonal to j,,, the all-1 vector with n entries. The eigenvalues p;, with 1 <¢ <'s

are called main eigenvalues of G and the remaining distinct eigenvalues non-main. The



concept of main (non-main) eigenvalue was introduced in [4] and further investigated in
several publications. As it is well known, the largest eigenvalue of a connected graph is
main and its remaining distinct eigenvalues are non-main [5]. A survey on main eigen-
values was published in [I5].

2.2 The H-join operation
Now we recall the definition of the H-join of a family of graphs [2].

Definition 2.1. Consider a graph H with vertex subset V(H) = {1,...,p} and a family
of graphs G = {G1,...,Gp} such that |V (G1)| = n1,...,|V(Gp)| = np. The H-join of G

is the graph
G=\/¢
H

in which V(G) = | J’_, V(G;) and E(G) = ( P E(Gj)) U (UmeE(H) E(G, sz)),

=1 =1
where G V G4 denotes the join.

Theorem 2.2. [2] Let G be the H-join as in Definition[21], where G is a family of reqular
graphs such that Gy is di-regular, Gy is da-regular, ... and G is d,-regular. Then

o(@) = [ U @)\ {4} | ue(©). 1)

where the matriz C has order p and is such that

B d, if r=s,
(C) =4 s ifrse E(H), (2)
s 0 otherwise,

and the set operations in [{l) are done considering possible repetitions of elements of the
multisets.

From the above theorem, if there is G; € G which is disconnected, with ¢ components,
then its regularity d; appears ¢ times in the multiset o(G;). Therefore, according to (),
remains as an eigenvalue of G with multiplicity ¢ — 1.

From now on, given a graph H, we consider the following notation:

_ [ 1 ifije E(H),
0i3(H) = { 0 otherwise.

Before the next result, it is worth observe the following. Considering a graph G, it is
always possible to extend a basis of the eigensubspace associated to a main eigenvalue y;,
Ec(pn)NJ T, to one of E(p;) by adding an eigenvector 1, which is uniquely determined
without considering its multiplication by a nonzero scalar. The eigenvector 1, is called
the main eigenvector of p;. The subspace with basis {1, ..., 0, } is the main subspace
of G and is denoted as Main(G). Note that for each main eigenvector 1, of the basis
of Main(G), ﬁfjj # 0.



Lemma 2.3. Let G be the H-join as in Definition[21 and p; ; € 0(G;). Then p; ; € o(G)
with multiplicity

m(i, ;) whether p; ; is a non-main eigenvalue of G,
m(pi ;) —1  whether p, ; is a main eigenvalue of G;.

Proof. Denoting 6; ; = d; ;(H), then 6i7jjnij£j is an n; X n; matrix whose entries are 1 if
ij € E(H) and 0 otherwise. Then the adjacency matrix of G has the form

A(Gl) 51,2jn1j£2 e 51,p71jn1j£ _1 51,pjn1j£
62,1j’ﬂ2j£1 A(G2) o 52,p—1jn2jnp71 52,pjn2jnp
5p—1,1jnp71j£1 5p—1,2jnp71j£2 e A(Gp—l) 6p—1,pjnp71j£p

6p,1jnpj£1 61772jnpj£2 U 6p7p—1jnpjzp,1 A(G;D)

Let u;; be an eigenvector of A(G;) associated to an eigenvalue p; ; whose sum of its
components is zero (then, y; ; is non-main or it is main with multiplicity greater than
one). Then,

0 b1 (32 Wi 5)
0 Gi1i (37 wig) dnis
AG) [ wy | = A(Gi)u, : (3)
0 6i+1,i (jziui;j)jnwrl
0 6;0,1' (jz7L ui,j) jnp
It should be noted that when p;; is main, there are m(u, ;) — 1 linear independent
eigenvectors belonging to &g (i ;) Nj'. O

2.3 The main characteristic polynomial and the walk matrix

If G has s distinct main eigenvalues p1, ..., us, then the main characteristic polynomial
of G is the polynomial of degree s [15]

ma(z) = IE_(z— )
= 2°—cp—c1x— - —Cs0x’ 2 — o121 (4)

Note that if p is a main eigenvalue of G so is its algebraic conjugate p*. Therefore, the
coefficients of mg(x) are integers as referred in [15] (see also [6]).

Let G be a graph. From [I5, Prop. 2.1] it is immediate that mg(A(G))j = O.
Therefore,

A%(G)j = coj + A A(G)j + -+ + o2 A HG)j + s 1 A1 (G (5)
Given a graph G of order n, let us consider the n x k matrix [13] [14]
WG;k = (J7 A(G)ju A2(G)J7 cee 7Ak_1(G)J) .

The vector space spanned by the columns of W, is denoted by ColSpW ..



Theorem 2.4. [9] Let G be a graph of order n with s distinct main eigenvalues. If k > s,
then Wg., has rank s.

As an immediate consequence of Theorem [2.4] the number of distinct main eigenval-
ues is s = min{k : {j, A(Q)j, A%(Q)j, ..., A¥(G)j} is linearly dependent}.

For a graph G of order n with s distinct main eigenvalues, the n x s matrix Wg,s =
(3, A(@)j, A%(G)j, ..., A*~1(@)j) is referred to be the walk matrix of G and is just de-
noted as Wg.

From (@) we have the following corollary.

Co

Corollary 2.5. The s-th column of A(G)Wg is A*(G)j = Wg : , where ¢;,
Cs—2
Cs—1

for 7=0,...,8 =1, are the coefficients of the main characteristic polynomial of ma(x),

given in ({@).

From this corollary we may conclude that the coeflicients of the main characteristic

polynomial of G can be determined from its walk matrix W, solving the linear system
WGx = AS(G)J

Theorem 2.6. [15, Th. 2.4] Let G be a graph with s distinct main eigenvalues. Then
the column space ColSpW g coincides with Main(G).

Moreover M ain(G) and the vector space spanned by the vectors orthogonal to M ain(G),
(Main(G))*, are both A-invariant [15, Th. 2.4].

From the above definitions, if G is a r-regular graph of order n, since its largest
eigenvalue, r, is the unique main eigenvalue, then mg(z) =z —r and Wg = (jn)-

3 The spectrum of the H-join of a family of arbitrary
graphs

Before the main result of this paper we need to define a special matrix W which will be

called the H-join associated matrix.

Definition 3.1. Let G be the H-join as in Definition[21l. The main eigenvalues of each

G; € G are pi,...,1is; and the corresponding main characteristic polynomial @) is
me, () = 2% —cio—ci1w — - — 5,125 L. For 1 <i <p, let Wg, be the walk matriz
of G; and consider the matrix
s1 columns s;_1 columns s;41 columns sp columns
—_—N— — — —_—~—
Sinde, Wa, -+ Siicadn,  Wa,_, 0 0 -+ 0 cip 5i,i+1j£i+1 Waipr 6i,pj£p Wea,
0 0 10 0 cia 0 0
0 cee 0 0 1 0 Ci,2 0 cee 0
0 0 o o0 .- 1 cis;—1 0 0



The H-join associated matriz is the s x s matriz, where s =Y 7_, s;,

W,
— W,
W = .
W,
0 0 0 Ci0
1 0 0 Ci
Observe that the submatrix in Wi, C(mg,) = 01 ... 0 ¢ , is the
0o 0 ... 1 Ci,s;—1
Frobenius companion matrix of the main characteristic polynomial
ma, (x) =% —cio — cinx — - — Cig 125

whose roots (that is, eigenvalues of C(my,)) are the main eingenvalues of G;.

jZWGw
0...0 —
Defining M; = . , a S8; X 8; submatrix of the s; x s matrix W;, then
0...0
W, = (0iaMy ... b6iiMioy C(mg,) biiviMivr ... Giphy, ).
Using this notation,

C(mGl) 5172M2 BN 51,p71Mp71 51,;0M

—~ 5271M1 C(mG2) PN 52,p71Mp71 52,;0Mp

W = . . . . .
5p71M1 5p72M2 NN 5p1p,1Mp,1 C(mgp)

Theorem 3.2. Let G be the H-join as in Definition[2.1], where G is a family of arbitrary
graphs. If for each of the graphs G;, with 1 <1 < p,

i, [ i,84 ] [ Q,8; ] [mz ]
U( ) {M1m 17""”131 7p‘zsl+1+17"' N }
where t; < mng, m;; = m(pi ;) and i1, .., 1 s, are the main eigenvalues of G;, then
g 0 mes] Y |l
m1 Mi,s; — Mi,s; mz
U 1 . lu’i,si } U U {ui,si+1+1 o " } U U(W)
i=1 i=1

where the union of multisets is considered with possible repetitions.

Proof. From Lemma 23] it is immediate that

mi, 1 mwsl M, s Mt
U{u[ U }uU{mﬂ“,...,uLti "} Co(6).



So it just remains to prove that o(W) C o(G).

Vi
Let us define the vector v = : such that
Vp
;0
N e k . i1 A
Vi= Y i A¥(Gi)in, = Wg, . = Wg, d, (6)
k=0 :
ai,si—l
Q5.0
781
where &; = . , for 1 <4 < p. Then each v; € Main(G;) and
A s, —1
57;71
A(Gi)Vi = A(G))Wa,di = > i ) ATH(Gy)jn,, for 1 < i <p. (7)
k=0
Therefore,
A(Gl) 51,2jn1.j£2 e 51,pjn1jz {’1
. 'T . . A~
AGY = Ponkraln, A(.Gz) N ek, v
5p,1jnpj£1 6p,2jnpj£2 T A(GP) {’P

AG)1 + (e 1) O1.adn, Va ) s
A(G2)v2 + ( Zgeppi 2y 92.dn, Va ) dna

A(Gp)Vp + (qu[p]\{p} 6207(1j£q‘7‘1) Jny
A(Gl)ol + qu[p]\{l} 61,qj£qWquq j’ﬂl
A(G2)v2 + Zqé[p]\{?} 52,qj£qWquq Jno

A(Gyy + (St ip) Opait, We,bq) i,
where (@) is obtained applying (@) in (8)). Defining

Bio= Y. OGigdh V= D bigin Wa,by, for 1<i<p,
q€lp]\{i} q€lp]\{i}



the i-th row of (@) can be written as

Biojn; + A(Gi)Vi

s;—1

= Z 5z‘,kj£k Wa, 6 | jn, + Z i g AFTH(G)jin,

ke[p]\{i} k=0
Bi,0
s;—1
= Biojn; + Z ai,k—lAk(Gi)jni + @5, 1A% (Gi)jn,
k=1
Ci0
. si—l A . Ci,1
= Biojn; + Z @i, k-1 A (Gi)jn; + i, —1Wa,
k=1
Ci,si
Bio + Qis,—1Ci0
;.0 + Qs —1Ci 1
Qjs;—2 + Qg s;—1Ci s, —1
a%)
= Wg, ( 01 M C(mg,) SipMpy ) | G
W, :
G
Observe that () is obtained applying Corollary 25 to (ITI).
Finally, if A(G)¥ = p¥, then &1,...,&,...,&, can be determined as follows.

Wg, 0 0 W,
0 WG2 0 W2
AG)v = . . . .
0 0 - Wg, Wp
We, 0 0 Q1
0 We, 0 &%)
= p . . .
0 0 WGP by

, taking into account ().

(10)

(11)



Then we obtain

We, 0 - 0 W, 1
0 Wg, - 0 W, G
. S . I Y " | =o. (13)
0 0 - Wg, W, a,p

Since the columns of each matrix W, are linear independent, the columns of the matrix
aq

— Qo
(%) are also linear independent and, consequently, ([I3]) is equivalent to (W — pIS) .

Qp
W,
—~ 2
0, where W = ) . Therefore, the eigenvalue p is a root of the characteristic poly-
W,
nomial of the matrix W. O

Example 3.3. Consider the graph H = Ps, the path with three vertices, and the graphs
K13, Ko and Ps depicted in the Figure[dl

2 5 7 2 5 7
1 3 8 1 b s
4 6 9 4 6 9
G1=K13 G2 = Ko Gs =P3 G:\/P3 {G1,G2,G3}

Figure 1: The Ps-join of the family of graphs G1, G2 and G3.

The spectra of the graphs G1, Go and Gs, depicted in Figure[l, are
0(K1,3) = {\/gu _\/gu 0[2]}7
o(Kz) = {1L,—-1},
0(P3) = {\/_7_\/570}7

and their main characteristic polynomials are mg,(z) = 22 — 3, mg,(z) = v — 1 and
ma,(x) = 2% — 2, respectively. Since

o o 0 C1,0 51722 51_’33 51_’34 o
Wi = (1 a0 0 0 -

Wz (52,14 02,16 20 02,33 52,34)

e _ 53714 53716 53_’22 O 6370 _
Ws ( 0 0 0 1 ¢ B

I
—~
co®™ ~o



it follows that

. 03200
N W, 1000 0
W=|W, |[=]46 1314
W, 0020 2
00010

and thus the characteristic polynomial of W s the polynomaal

Py (2) = —42 — 402 + 152® 4+ 192° + 2* — 2°.

Therefore, applying Theorem [3.23, the characteristic polynomial of G is
pa(x) = 2% (@ + 1)pgy (@) = 2°(x + 1)(—42 — 40z + 152° + 192° + 2" — 2°).

When all graphs of the family G are regular, that is, G; is dj-regular, G2 is do-

regular, ..., G, is dy-regular, the walk matrices are Wg, = (jn,), Wa, = (ns), - -
Wg, = (jnp), respectively. Consequently, the main polynomials are mg, () =  — dj,
ma,(x) = —dy, ..., mg,(x) = —d,. As direct consequence, for this particular case,
the H-join associated matrix is

di 51,2j£2 Wag, - (Sl,ijpVVGp d1 d1,2m2 -+ O1pnp
— 52,1.i£1 Wa, d2 xx 62,pjzp We, 02,111 d2 cee d2,pNyp
W = =

Sp1im Wa,  Opojn,Wa, - dp Spani  Opana .- dyp

Therefore, it is immediate that when all the graphs of the family G are regular, the
matrix W and the matrix C in @) are similar matrices. Note that C =DWD! , Where

= diag (,/ N1, /N2,y /T ) and thus W and C are cospectral matrices as it should
be.
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