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The H-join of arbitrary families of graphs

Domingos M. Cardoso ∗ Helena Gomes† Sofia J. Pinheiro‡

Abstract

The H-join of a family of graphs G = {G1, . . . , Gp}, also called the generalized
composition, H [G1, . . . , Gp], where all graphs are undirected, simple and finite, is
the graph obtained from the graph H replacing each vertex i of H by Gi and adding
to the edges of all graphs in G the edges of the join Gi ∨Gj , for every edge ij of H .
Some well known graph operations are particular cases of the H-join of a family of
graphs G as it is the case of the lexicographic product (also called composition) of
two graphs H and G, H [G], which coincides with the H-join of family of graphs G
where all the graphs in G are isomorphic to a fixed graph G.
So far, the known expressions for the determination of the entire spectrum of the
H-join in terms of the spectra of its components and an associated matrix are
limited to families of regular graphs. In this paper, we extend such a determination
to families of arbitrary graphs.
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MSC 2020: 05C50, 05C76.

1 Introduction

Nearly five decades since the publication in 1974 of Allen Shweenk’s article [17], the
determination of the spectrum of the generalized composition H [G1, . . . , Gp] (recently
designated H-join of G = {G1, . . . , Gp} [2]), in terms of the spectra of the graphs in G
and an associated matrix, where all graphs are undirected, simple and finite, was lim-
ited to families G of regular graphs. In this work, the determination of this spectrum
is extended to families of arbitrary graphs (which should be undirected, simple and finite).

The generalized composition H [G1, . . . , Gp], introduced in [17, p. 167] was redis-
covered in [2] under the designation of H-join of a family of graphs G = {G1, . . . , Gp},
where H is a graph of order p. In [17, Th. 7], assuming that G1, . . . , Gp are all regular
graphs and taking into account that V (G1)∪ · · · ∪ V (Gp) is an equitable partition π, the
characteristic polynomial of H [G1, . . . , Gp] is determined in terms of the characteristic
polynomials of the graphs G1, . . . , Gp and the matrix associated to π.
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Using a generalization of a Fiedler’s result [7, Lem. 2.2] obtained in [2, Th. 3],
the spectrum of the H-join of a family of regular graphs (not necessarily connected)
is determined in [2, Th. 5]. When the graphs of the family G are all isomorphic to
a fixed graph G, the H-join of G is the same as the lexicographic product (also called
the composition) of the graphs H and G which is denoted as H [G] (or H ◦ G). The
lexicographic product of two graphs was introduced by Harary in [11] and Sabidussi in
[16] (see also [12, 10]). From the definition, it is immediate that this graph operation is
associative but not commutative.

In [1], as an application of the H-join spectral properties, the lexicographic powers
of a graph H were considered and their spectra determined, when H is regular. The
k-th lexicographic power of H , Hk, is the lexicographic product of H by itself k times
(then H2 = H [H ], H3 = H [H2] = H2[H ], . . . ). As an example, in [1], the spectrum of
the 100-th lexicographic power of the Petersen graph, which has a gogool number (that
is, 10100) of vertices, was determined. With these powers, Hk, in [3] the lexicographic
polynomials were introduced and their spectra determined, for connected regular graphs
H , in terms of the spectrum of H and the coefficients of the polynomial.

Other particular H-joins appear in the literature under different designations, as it
is the case of the mixed extension of a graph H studied in [8], where special attention
is given to the mixed extensions of P3. The mixed extension of a graph H , with vertex
set V (H) = {1, . . . , p}, is the H-join of a family of graphs G = {G1, . . . , Gp}, where
each graph Gi ∈ G is a complete graph or its complement. From the H-join spectral
properties, we may conclude that the mixed extensions of a graph H of order p has at
most p eigenvalues unequal to 0 and −1.

The remaining part of the paper is organized as follows. The focus of Section 2 is
the preliminaries. Namely, the notation and basic definitions, the main spectral results
of the H-join graph operation and the more relevant properties, in the context of this
work, of the main characteristic polynomial and walk matrix of a graph. In section 3, the
main result of this artice, the determination of the spectrum of the H-join of a family of
arbitrary graphs is deduced.

2 Preliminaries

2.1 Notation and basic definitions

Throughout the text we consider undirected, simple and finite graphs, which are just
called graphs. The vertex set and the edge set of a graph G is denoted by V (G) and
E(G), respectively. The order of G is the cardinality of its vertex set and when it is n

we consider that V (G) = {1, . . . , n}. The eigenvalues of adjacency matrix of a graph G,
A(G), of order n are also called the eigenvalues of G. For each distinct eigenvalue µ of G,
EG(µ) denotes the eigenspace of µ whose dimension is equal to the algebraic multiplicity

of µ, m(µ). The spectrum of G is denoted σ(G) = {µ[m1]
1 , . . . , µ

[ms]
s , µ

[ms+1]
s+1 , . . . , µ

[mt]
t },

where t ≤ n and µ
[mi]
i means that m(µi) = mi. When we say that µ is an eigenvalue

of G with zero multiplicity (that is, m(µ) = 0) it means that µ 6∈ σ(G). The distinct
eigenvalues of G are indexed in such way that the eigenspaces EG(µi), for 1 ≤ i ≤ s, are
not orthogonal to jn, the all-1 vector with n entries. The eigenvalues µi, with 1 ≤ i ≤ s

are called main eigenvalues of G and the remaining distinct eigenvalues non-main. The
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concept of main (non-main) eigenvalue was introduced in [4] and further investigated in
several publications. As it is well known, the largest eigenvalue of a connected graph is
main and its remaining distinct eigenvalues are non-main [5]. A survey on main eigen-
values was published in [15].

2.2 The H-join operation

Now we recall the definition of the H-join of a family of graphs [2].

Definition 2.1. Consider a graph H with vertex subset V (H) = {1, . . . , p} and a family
of graphs G = {G1, . . . , Gp} such that |V (G1)| = n1, . . . , |V (Gp)| = np. The H-join of G
is the graph

G =
∨

H

G

in which V (G) =
⋃p

j=1 V (Gj) and E(G) =
(⋃p

j=1 E(Gj)
)
∪
(⋃

rs∈E(H) E(Gr ∨Gs)
)
,

where Gr ∨Gs denotes the join.

Theorem 2.2. [2] Let G be the H-join as in Definition 2.1, where G is a family of regular
graphs such that G1 is d1-regular, G2 is d2-regular, . . . and Gp is dp-regular. Then

σ(G) =




p⋃

j=1

(σ(Gj) \ {dj})


 ∪ σ(C̃), (1)

where the matrix C̃ has order p and is such that

(
C̃
)
rs

=





dr if r = s,√
nrns if rs ∈ E(H),

0 otherwise,
(2)

and the set operations in (1) are done considering possible repetitions of elements of the
multisets.

From the above theorem, if there is Gi ∈ G which is disconnected, with q components,
then its regularity di appears q times in the multiset σ(Gi). Therefore, according to (1),
remains as an eigenvalue of G with multiplicity q − 1.

From now on, given a graph H , we consider the following notation:

δi,j(H) =

{
1 if ij ∈ E(H),
0 otherwise.

Before the next result, it is worth observe the following. Considering a graph G, it is
always possible to extend a basis of the eigensubspace associated to a main eigenvalue µj ,
EG(µj)∩ j⊤, to one of EG(µj) by adding an eigenvector ûµj

which is uniquely determined
without considering its multiplication by a nonzero scalar. The eigenvector ûµj

is called
the main eigenvector of µj . The subspace with basis {ûµ1

, . . . , ûµs
} is the main subspace

of G and is denoted as Main(G). Note that for each main eigenvector ûµj
of the basis

of Main(G), ûT
µj
j 6= 0.
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Lemma 2.3. Let G be the H-join as in Definition 2.1 and µi,j ∈ σ(Gi). Then µi,j ∈ σ(G)
with multiplicity

{
m(µi,j) whether µi,j is a non-main eigenvalue of Gi,

m(µi,j)− 1 whether µi,j is a main eigenvalue of Gi.

Proof. Denoting δi,j = δi,j(H), then δi,jjni
jTnj

is an ni × nj matrix whose entries are 1 if
ij ∈ E(H) and 0 otherwise. Then the adjacency matrix of G has the form

A(G) =




A(G1) δ1,2jn1
jTn2

· · · δ1,p−1jn1
jTnp−1

δ1,pjn1
jTnp

δ2,1jn2
jTn1

A(G2) · · · δ2,p−1jn2
jTnp−1

δ2,pjn2
jTnp

...
...

. . .
...

...
δp−1,1jnp−1

jTn1
δp−1,2jnp−1

jTn2
· · · A(Gp−1) δp−1,pjnp−1

jTnp

δp,1jnp
jTn1

δp,2jnp
jTn2

· · · δp,p−1jnp
jTnp−1

A(Gp)




.

Let ui,j be an eigenvector of A(Gi) associated to an eigenvalue µi,j whose sum of its
components is zero (then, µi,j is non-main or it is main with multiplicity greater than
one). Then,

A(G)




0
...
0

ui,j

0
...
0




=




δ1,i
(
jTni

ui,j

)
jn1

...
δi−1,i

(
jTni

ui,j

)
jni−1

A(Gi)ui,j

δi+1,i

(
jTni

ui,j

)
jni+1

...
δp,i

(
jTni

ui,j

)
jnp




. (3)

It should be noted that when µi,j is main, there are m(µi,j) − 1 linear independent
eigenvectors belonging to EG(µi,j) ∩ j⊤.

2.3 The main characteristic polynomial and the walk matrix

If G has s distinct main eigenvalues µ1, . . . , µs, then the main characteristic polynomial
of G is the polynomial of degree s [15]

mG(x) = Πs
i=1(x− µi)

= xs − c0 − c1x− · · · − cs−2x
s−2 − cs−1x

s−1. (4)

Note that if µ is a main eigenvalue of G so is its algebraic conjugate µ∗. Therefore, the
coefficients of mG(x) are integers as referred in [15] (see also [6]).

Let G be a graph. From [15, Prop. 2.1] it is immediate that mG(A(G))j = 0.
Therefore,

As(G)j = c0j+ c1A(G)j + · · ·+ cs−2A
s−2(G)j + cs−1A

s−1(G)j. (5)

Given a graph G of order n, let us consider the n× k matrix [13, 14]

WG;k =
(
j, A(G)j, A2(G)j, . . . , Ak−1(G)j

)
.

The vector space spanned by the columns of WG;k is denoted by ColSpWG;k.
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Theorem 2.4. [9] Let G be a graph of order n with s distinct main eigenvalues. If k ≥ s,
then WG;k has rank s.

As an immediate consequence of Theorem 2.4, the number of distinct main eigenval-
ues is s = min{k : {j, A(G)j, A2(G)j, . . . , Ak(G)j} is linearly dependent}.

For a graph G of order n with s distinct main eigenvalues, the n× s matrix WG;s =(
j, A(G)j, A2(G)j, . . . , As−1(G)j

)
is referred to be the walk matrix of G and is just de-

noted as WG.

From (5) we have the following corollary.

Corollary 2.5. The s-th column of A(G)WG is As(G)j = WG




c0
...

cs−2

cs−1


 , where cj,

for j = 0, . . . , s− 1, are the coefficients of the main characteristic polynomial of mG(x),
given in (4).

From this corollary we may conclude that the coefficients of the main characteristic
polynomial of G can be determined from its walk matrix WG, solving the linear system
WGx = As(G)j.

Theorem 2.6. [15, Th. 2.4] Let G be a graph with s distinct main eigenvalues. Then
the column space ColSpWG coincides with Main(G).

MoreoverMain(G) and the vector space spanned by the vectors orthogonal toMain(G),

(Main(G))⊥, are both A–invariant [15, Th. 2.4].

From the above definitions, if G is a r-regular graph of order n, since its largest
eigenvalue, r, is the unique main eigenvalue, then mG(x) = x− r and WG = (jn).

3 The spectrum of the H-join of a family of arbitrary

graphs

Before the main result of this paper we need to define a special matrix W̃ which will be
called the H-join associated matrix.

Definition 3.1. Let G be the H-join as in Definition 2.1. The main eigenvalues of each
Gi ∈ G are µi,1, . . . , µi,si and the corresponding main characteristic polynomial (4) is
mGi

(x) = xs − ci,0 − ci,1x− · · · − ci,si−1x
s−1. For 1 ≤ i ≤ p, let WGi

be the walk matrix
of Gi and consider the matrix

W̃i =




s1 columns

︷ ︸︸ ︷
δi,1j

T
n1

WG1
· · ·

si−1 columns

︷ ︸︸ ︷
δi,i−1j

T
ni−1

WGi−1
0 0 · · · 0 ci,0

si+1 columns

︷ ︸︸ ︷
δi,i+1j

T
ni+1

WGi+1
· · ·

sp columns

︷ ︸︸ ︷
δi,pj

T
np

WGp

0 · · · 0 1 0 · · · 0 ci,1 0 · · · 0

0 · · · 0 0 1 · · · 0 ci,2 0 · · · 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 · · · 0 0 0 · · · 1 ci,si−1 0 · · · 0




.
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The H-join associated matrix is the s× s matrix, where s =
∑p

i=1 si,

W̃ =




W̃1

W̃2

...

W̃p




.

Observe that the submatrix in W̃i, C(mGi
) =




0 0 . . . 0 ci,0
1 0 . . . 0 ci,1
0 1 . . . 0 ci,2
...

...
. . .

...
...

0 0 . . . 1 ci,si−1



, is the

Frobenius companion matrix of the main characteristic polynomial

mGi
(x) = xsi − ci,0 − ci,1x− · · · − ci,si−1x

si−1,

whose roots (that is, eigenvalues of C(mGi
)) are the main eingenvalues of Gi.

Defining Mi =




jTnWGi

0 . . . 0
...
. . .

...
0 . . . 0


, a si × si submatrix of the si × s matrix W̃i, then

W̃i =
(
δi,1M1 . . . δi,i−1Mi−1 C(mGi

) δi,i+1Mi+1 . . . δi,pMp

)
.

Using this notation,

W̃ =




C(mG1
) δ1,2M2 . . . δ1,p−1Mp−1 δ1,pMp

δ2,1M1 C(mG2
) . . . δ2,p−1Mp−1 δ2,pMp

...
...

. . .
...

...
δp,1M1 δp,2M2 . . . δp,p−1Mp−1 C(mGp

)


 .

Theorem 3.2. Let G be the H-join as in Definition 2.1, where G is a family of arbitrary
graphs. If for each of the graphs Gi, with 1 ≤ i ≤ p,

σ(Gi) = {µ[mi,1]
i,1 , . . . , µ

[mi,si
]

i,si
, µ

[mi,si+1]

i,si+1 , . . . , µ
[mi,ti

]

i,ti
},

where ti ≤ ni, mi,j = m(µi,j) and µi,1, . . . , µi,si are the main eigenvalues of Gi, then

σ(G) =

p⋃

i=1

{µ[mi,1−1]
i,1 , . . . , µ

[mi,si
−1]

i,si
} ∪

p⋃

i=1

{µ[mi,si+1]

i,si+1 , . . . , µ
[mi,ti

]

i,ti
} ∪ σ(W̃),

where the union of multisets is considered with possible repetitions.

Proof. From Lemma 2.3 it is immediate that

p⋃

i=1

{µ[mi,1−1]
i,1 , . . . , µ

[mi,si
−1]

i,si
} ∪

p⋃

i=1

{µ[mi,si+1]

i,si+1 , . . . , µ
[mi,ti

]

i,ti
} ⊆ σ(G).
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So it just remains to prove that σ(W̃) ⊆ σ(G).

Let us define the vector v̂ =




v̂1

...
v̂p


 such that

v̂i =

si−1∑

k=0

αi,kA
k(Gi)jni

= WGi




αi,0

αi,1

...
αi,si−1


 = WGi

α̂i, (6)

where α̂i =




αi,0

αi,1

...
αi,si−1


, for 1 ≤ i ≤ p. Then each v̂i ∈ Main(Gi) and

A(Gi)v̂i = A(Gi)WGi
α̂i =

si−1∑

k=0

αi,kA
k+1(Gi)jni

, for 1 ≤ i ≤ p. (7)

Therefore,

A(G)v̂ =




A(G1) δ1,2jn1
jTn2

· · · δ1,pjn1
jTnp

δ2,1jn2
jTn1

A(G2) · · · δ2,pjn2
jTnp

...
...

. . .
...

δp,1jnp
jTn1

δp,2jnp
jTn2

· · · A(Gp)







v̂1

v̂2

...
v̂p




=




A(G1)v̂1 +
(∑

q∈[p]\{1} δ1,qj
T
nq
v̂q

)
jn1

A(G2)v̂2 +
(∑

q∈[p]\{2} δ2,qj
T
nq
v̂q

)
jn2

...

A(Gp)v̂p +
(∑

q∈[p]\{p} δp,qj
T
nq
v̂q

)
jnp




(8)

=




A(G1)v̂1 +
(∑

q∈[p]\{1} δ1,qj
T
nq
WGq

α̂q

)
jn1

A(G2)v̂2 +
(∑

q∈[p]\{2} δ2,qj
T
nq
WGq

α̂q

)
jn2

...

A(Gp)v̂p +
(∑

q∈[p]\{p} δp,qj
T
nq
WGq

α̂q

)
jnp




, (9)

where (9) is obtained applying (6) in (8). Defining

βi,0 =
∑

q∈[p]\{i}

δi,qj
T
nq
v̂q =

∑

q∈[p]\{i}

δi,qj
T
nq
WGq

α̂q, for 1 ≤ i ≤ p,

7



the i-th row of (9) can be written as

βi,0jni
+ A(Gi)v̂i =




∑

k∈[p]\{i}

δi,kj
T
nk

WGk
α̂k

︸ ︷︷ ︸
βi,0




jni
+

si−1∑

k=0

αi,kA
k+1(Gi)jni

= βi,0jni
+

si−1∑

k=1

αi,k−1A
k(Gi)jni

+ αi,si−1A
si(Gi)jni

(10)

= βi,0jni
+

si−1∑

k=1

αi,k−1A
k(Gi)jni

+ αi,si−1WGi




ci,0
ci,1
...

ci,si


 (11)

= WGi




βi,0 + αi,si−1ci,0
αi,0 + αi,si−1ci,1

...
αi,si−2 + αi,si−1ci,si−1


 (12)

= WGi

(
δi,1M1 . . . C(mGi

) . . . δi,pMp

)
︸ ︷︷ ︸

W̃i




α̂1

...
α̂i

...
α̂p




.

Observe that (11) is obtained applying Corollary 2.5 to (10).

Finally, if A(G)v̂ = ρv̂, then α̂1, . . . , α̂i, . . . , α̂p can be determined as follows.

A(G)v̂ =




WG1
0 · · · 0

0 WG2
· · · 0

...
...

. . .
...

0 0 · · · WGp







W̃1

W̃2

...

W̃p







α̂1

α̂2

...
α̂p




= ρv̂

= ρ




WG1
0 · · · 0

0 WG2
· · · 0

...
...

. . .
...

0 0 · · · WGp







α̂1

α̂2

...
α̂p


 , taking into account (6).
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Then we obtain



WG1
0 · · · 0

0 WG2
· · · 0

...
...

. . .
...

0 0 · · · WGp




︸ ︷︷ ︸
(∗)







W̃1

W̃2

...

W̃p




− ρIs







α̂1

α̂2

...
α̂p


 = 0. (13)

Since the columns of each matrix WGi
are linear independent, the columns of the matrix

(∗) are also linear independent and, consequently, (13) is equivalent to
(
W̃ − ρIs

)



α̂1

α̂2

...
α̂p


 =

0, where W̃ =




W̃1

W̃2

...

W̃p



. Therefore, the eigenvalue ρ is a root of the characteristic poly-

nomial of the matrix W̃.

Example 3.3. Consider the graph H = P3, the path with three vertices, and the graphs
K1,3, K2 and P3 depicted in the Figure 1.
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7

8

9

G3 = P3

✟✟✟✟

❍❍❍❍
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❅
❅
❅
❅

✟✟✟✟
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�
�
�
PPPPPP
◗
◗
◗
◗
◗◗✏✏✏✏✏✏

✑
✑
✑
✑
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s

s

s

s

s

s

s

s

s

1

2

3

4

5

6

7

8

9

G =
∨

P3
{G1, G2, G3}

Figure 1: The P3-join of the family of graphs G1, G2 and G3.

The spectra of the graphs G1, G2 and G3, depicted in Figure 1, are

σ(K1,3) = {
√
3,−

√
3, 0[2]},

σ(K2) = {1,−1},
σ(P3) = {

√
2,−

√
2, 0},

and their main characteristic polynomials are mG1
(x) = x2 − 3, mG2

(x) = x − 1 and
mG3

(x) = x2 − 2, respectively. Since

W̃1 =

(
0 c1,0 δ1,22 δ1,33 δ1,34
1 c1,1 0 0 0

)
=

(
0 3 2 0 0
1 0 0 0 0

)
,

W̃2 =
(
δ2,14 δ2,16 c2,0 δ2,33 δ2,34

)
=

(
4 6 1 3 4

)
and

W̃3 =

(
δ3,14 δ3,16 δ3,22 0 c3,0
0 0 0 1 c3,1

)
=

(
0 0 2 0 2
0 0 0 1 0

)
,
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it follows that

W̃ =




W̃1

W̃2

W̃3


 =




0 3 2 0 0
1 0 0 0 0
4 6 1 3 4
0 0 2 0 2
0 0 0 1 0




and thus the characteristic polynomial of W̃ is the polynomial

p
W̃
(x) = −42− 40x+ 15x2 + 19x3 + x4 − x5.

Therefore, applying Theorem 3.2, the characteristic polynomial of G is

pG(x) = x3(x+ 1)p
W̃
(x) = x3(x+ 1)(−42− 40x+ 15x2 + 19x3 + x4 − x5).

When all graphs of the family G are regular, that is, G1 is d1-regular, G2 is d2-
regular, . . . , Gp is dp-regular, the walk matrices are WG1

= (jn1
), WG2

= (jn2
), . . . ,

WGp
=

(
jnp

)
, respectively. Consequently, the main polynomials are mG1

(x) = x − d1,
mG2

(x) = x− d2, . . . , mGp
(x) = x− dp. As direct consequence, for this particular case,

the H-join associated matrix is

W̃ =




d1 δ1,2j
T
n2

WG2
· · · δ1,pj

T
np

WGp

δ2,1j
T
n1

WG1
d2 · · · δ2,pj

T
np

WGp

...
...

. . .
...

δp,1j
T
n1

WG1
δp,2j

T
np

WG2
· · · dp


 =




d1 δ1,2n2 · · · δ1,pnp

δ2,1n1 d2 · · · δ2,pnp

...
...

. . .
...

δp,1n1 δp,2n2 · · · dp


 .

Therefore, it is immediate that when all the graphs of the family G are regular, the

matrix W̃ and the matrix C̃ in (2) are similar matrices. Note that C̃ = DW̃D−1, where

D = diag
(√

n1,
√
n2, . . . ,

√
np

)
and thus W̃ and C̃ are cospectral matrices as it should

be.

Acknowledgments. This work is supported by the Center for Research and Devel-
opment in Mathematics and Applications (CIDMA) through the Portuguese Foundation
for Science and Technology (FCT - Fundação para a Ciência e a Tecnologia), reference
UIDB/04106/2020.

References

[1] N. Abreu, D.M. Cardoso, P. Carvalho, C.T.M. Vinagre, Spectra and Laplacain
spectra of arbitrary powers of lexicographic products of graphs. Discrete Math. 340
(2017): 3235–3244.

[2] D.M. Cardoso, M.A.A. Freitas, E.A. Martins, M. Robbiano, Spectra of graphs ob-
tained by a generalization of the join graph operation. Discrete Math. 313 (2013):
733-741.

[3] D.M. Cardoso, P. Carvalho, P. Rama, S.K. Simić, Z. Stanić, Lexicographic poly-
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