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Abstract Let F[D] be the polynomial ring with entries in a finite field F. Con-
volutional codes are submodules of F[D]n that can be described by left prime
polynomial matrices. In the last decade there has been a great interest in convo-
lutional codes equipped with a rank metric, called sum rank metric, due to their
wide range of applications in reliable linear network coding. However, this metric
suits only for delay free networks. In this work we continue this thread of research
and introduce a new metric that overcomes this restriction and therefore is suitable
to handle more general networks. We study this metric and provide characteriza-
tions of the distance properties in terms of the polynomial matrix representations
of the convolutional code. Convolutional codes that are optimal with respect to
this new metric are investigated and concrete constructions are presented. These
codes are the analogs of Maximum Distance Profile convolutional codes in the
context of network coding. Moreover, we show that they can be built upon a class
of superregular matrices, with entries in an extension field, that preserve their su-
perregularity properties even after multiplication with some matrices with entries
in the ground field.

1 Introduction

Within the area of coding theory, network coding has been a very active topic of
research as it provides an effective tool to disseminate information (packets) over
networks. Mathematically, we can consider the transmitted packets as columns of
a matrix with entries in a finite field Fq, and the linear combinations performed
in the nodes of the network correspond to columns operations on this matrix. If
no errors occur during the transmission over such a network, the Fq-column space
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of the transmitted matrix remains invariant. To achieve a reliable communication
over this channel, matrix codes are employed forming the so-called rank metric

codes (see [31]). Rank metric codes such as Gabidulin codes are known to be able
to protect packets in such a scenario. We call these codes one-shot codes, as they
use the (network) channel only once. However, coding can also be performed over
multiple uses of the network (multi-shot) in a sequential fashion, as it has been
recently shown by several authors, see for instance [5,18,23,27,32].

The general idea of multi-shot network coding stems from the fact that cre-
ating dependencies among the sequence of transmitted codewords (subspaces) of
different shots can improve the error-correction capabilities of the code. A first
attempt to explain multi-shot network coding was presented in [27] and a type of
concatenated n-shot codes (n ≥ 1) was proposed based on a multilevel code (see
also [24]). Apart from concatenated codes, another very natural way to spread
redundancy across codewords is by means of convolutional codes (see [15,22]).
Adapting this class of codes to the context of networks gave rise to rank metric
convolutional codes (see [5,18,19,32]). The work in [32] was pioneer in this direc-
tion by presenting the first class of rank metric convolutional codes together with
a decoding algorithm able to deal with errors, erasures and deviations. However,
the results were only valid for unit memory convolutional codes and in [5,18,19]
an interesting and more general class of rank metric convolutional codes was in-
troduced to cope with network streaming applications. For a more general and
theoretical framework for rank metric convolutional codes we refer to [23].

The first metric proposed in this context was the active column sum rank distance

in [32] and it was defined using the state trellis graph of the convolutional code.
The j-th active column sum distance just considers sequences that are constructed
by exiting the zero state of the trellis at time instant 0 and not re-entering it for
1 ≤ t ≤ j − 1. Thus, some sequences are not considered in the time interval [0, j]
and therefore this metric is not a sufficient metric to guarantee decoding within a
time interval. Hence, a new distance, called sum rank distance, was introduced as
a generalization of the active column rank distance and the rank distance used for
one-shot network coding (see [19], [21] and [27]). This new distance has proven to
be the proper notion in order to deal with networks that are delay-free. In delay-
free networks it is assumed that the natural delay in the transmission (due, for
instance, to the delay of the nodes) is so small that can be disregarded.

In this work, we continue this thread of research and consider convolutional
codes tailor-made to handle networks with delays. We show that the previous
metrics are not enough to characterize the error correction capability of the code
in these networks (see Example 1) and consider a new (rank) metric, called column
rank distance, that solves this problem. This distance is the rank analog of the so-
called column distance of Hamming convolutional codes, see [10,14,15]. It can also
be seen as the standard rank distance of a block code, but the code considered here
is nonlinear as it is derived from truncated convolutional codes, see definition of
column block code in (7). Hence, previous known results of rank metric linear block
codes cannot be straightforward applied in this case. We will show that the column
rank distance characterizes the error correcting capability of the convolutional code
within a time interval, in more general network channels (see Theorem 4). Moreover
such characterization leads to an efficient algorithm to recover the lost packages
(see Example 2). We also present concrete constructions of convolutional codes
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that are optimal with respect to the column rank distance using a particular type
of superregular matrices that preserve superregularity after some linear operations.

In Section 2, we present fundamental results on classical one-shot network cod-
ing, multi-shot network coding and convolutional codes. With this basic knowledge
we introduce, in Section 3, the metrics used so far for multi-shot network coding
and introduce a new rank metric, presenting also some of its characterizations (see
Theorem 3) and properties (see Theorem 4). Section 4 is devoted to convolutional
codes that are optimal with respect to this metric, called Maximum Rank Profile,
and we provide a characterization of them in terms of the sliding matrix of the
code (see Theorem 6). We also present novel results on the optimization of the
recovery of packets when this class of optimal codes are employed (see Theorem 7).
In Section 5 we discuss and solve the problem of the existence and construction
of these codes. We prove that this problem can be reduced to the construction
of certain classes of matrices called superregular matrices (see Theorem 8) and
present a concrete class of such matrices. The problem of deriving superregular
matrices to build convolutional codes has become an active area of research, see
for instance [3,6,12], and the results presented in this section extend the known
results on this topic.

2 Preliminaries

In order to state more precisely our results, we introduce in this section the nec-
essary material and notation on standard theory of (multi-shot) network coding
and convolutional codes.

Let q be a prime power and let Fq denote the finite field with q elements and let
M > 1 be an integer. It is well-known that there always exists a primitive element
α of the extension field FqM , such that FqM is isomorphic to Fq[α]. Moreover, FqM
is isomorphic (as a vector space over Fq) to the vector space FMq . One then easily
obtains the isomorphic description of matrices over the base field Fq as vectors over
the extension field, i.e., FM×Nq ∼ FNqM . Let φ : FNqM → FM×Nq be the isomorphism

that converts vectors in w ∈ FNqM into matrices φ(w) = W ∈ FM×Nq .

2.1 From One-shot to Multi-shot Network Coding

2.1.1 The network model: One-shot

Let v ∈ FnqM (or equivalently V ∈ FM×nq ), called channel packet, v represents the n
packets of length M to be sent through the network. We shall follow the approach
of [19] and consider a rank-deficiency channel for one shot given by

x> = A? v>, (1)

where x ∈ FnqM represents the received packets and A? ∈ Fn×nq is the rank de-

ficiency channel matrix. The channel matrix A? corresponds to the overall linear
transformations applied by the network over the base field Fq and it is known
by the receiver (as the combinations are carried over in the header bits of the
packets). For perfect communications we have that rank(A?) = n, but failing and
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deactivated links may cause a rank deficient channel matrix. We call n− rank(A?)
the rank deficiency of the channel. In order to protect information in this setting,
rank metric codes are used.

A rank metric code C is defined as a nonempty subset of FM×nq equipped with

the distance measure drank(V,W ) = rank(V −W ), where V,W ∈ FM×nq (see [16]).

The rank distance of a code C ⊂ FM×nq is defined as

drank(C) = min
V,W∈C, V 6=W

drank(V,W ). (2)

Although rank metric codes are in FM×nq , they are usually constructed as linear
block codes of length n over the extension field FqM (see [16]). Then, with some
obvious abuse of notation, we will sometimes use drank(C) when C ⊂ FnqM . Consider

linear codes over FqM and use k for their dimension. A linear (n, k) rank metric
code over FqM satisfies the following analog of the Singleton bound:

drank(C) ≤ n− k + 1.

A code that achieves this bound is called Maximum Rank Distance (MRD).
Gabidulin codes, introduced in [9], are a well-known class of MRD codes, see also
[8] and [26].

2.1.2 Multi-shot

In many situations the sender needs to transmit not only one single vector v ∈ FnqM
of data but a sequence of vectors. Suppose that we have a stream of source packets
u0,u1, · · · ∈ FkqM to be transmitted. Then, the idea of multi-shot network coding
is that instead of encoding each ut in vt independently of other ui, one can gen-
erate each codeword vt based on ut and previous ui , i ≤ t to improve the error
correcting capabilities of the code.

The multi-shot setting can be described as follows: the transmitter receives at
each time instance t a source packet ut ∈ FkqM (constituted by a set of k packets).

A channel packet vt ∈ FnqM (constituted by a set of n packets) is constructed
using not only ut but also previous source packets u0, . . . ,ut−1. Then, the channel
packet vt is sent through the network at each shot (time instance) t. The receiver
observes not only a combination of the n packets sent at instant t but also of
previous packets sent at time i < t. Hence, following the operator channel in (1) at
each shot t the received packets xt ∈ FnqM are linear combinations of the packets of
vt and, if there is delay in the transmission, also of combinations of the previous
packets v0, . . . ,vt−1. Hence, for any j ≥ 0, we have

x>[0,j] = A?[0,j]v
>
[0,j] (3)

where x[0,j] = (x0,x1, . . . ,xj), v[0,j] = (v0,v1, . . . ,vj) ∈ Fn(j+1)

qM
and A?[0,j] is a

block lower triangular truncated channel matrix

A?[0,j] =


A?00
A?10 A

?
11

...
...

. . .

A?j0 A
?
j1 · · · A

?
jj

 , (4)
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where A?i` are square (not necessarily nonsingular) matrices of order n, for i ≤ ` ≤ j.
The rank deficiency during the time interval [0, j] is n(j + 1) − rank(A?[0,j]) and
measures the amount of information lost during this interval.

So far this channel model has not been proposed nor addressed in the literature
in this generality and only the delay-free case has been considered, see [19] and
references therein. In the delay-free case only combinations of packets of vt arrive
at time instance t and not of packets of vi, i < t and therefore in this case the
rank deficiency matrix A?[0,j] is a block diagonal matrix, i.e., A?i` = 0 for i > `.
This assumption constitutes a restriction as there may exist a time-varying delay
in the end-to-end transmission due to link delays. As we shall see, the extension
to the above more general setting is not straightforward. In the next section, we
introduce a metric that suits that framework.

Note that, in practice, the receiver can compute the rank deficiency as each
packet carries a label identifying the shot (or generation) to which it corresponds.
The possibility of using multi-shot coding in the context of network coding was
already observed in the seminal papers [16] and [31]. In this setting, convolutional
codes are a natural way to protect and process information in a sequential manner.

2.2 Convolutional codes

As opposed to block codes, convolutional codes treat the information as a stream of
data. If we introduce a variable D, usually called the delay operator, to indicate the
time instant in which each information arrived or each codeword was transmitted,
then we can represent the sequence message (v0,v1, · · · ) as a polynomial sequence
v(D) = v0 + v1D + · · · . Similarly, we can represent the information vector to be
encoded as u(D) and the encoder (typically implemented by means of a linear
finite-state shift register) as G(D). Formally, we can define convolutional codes as
follows (see [10]): A convolutional code C of rate k/n is an FqM [D]-submodule of

FqM [D]n of rank k such that there exists a polynomial matrix G(D) ∈ FqM [D]k×n,
called generator matrix, that is basic, i.e., there exists a polynomial matrix X(D)
such that G(D)X(D) = Ik (that is, G(z) has a polynomial right inverse), with the
property that

C = im G(D) =
{
v(D) = u(D)G(D) | u(D) ∈ FkqM [D]

}
.

Two generator matrices G1(D) and G2(D) generate the same convolutional
code if there exists a unimodular matrix U(D) ∈ Fk×k

qM
[D], that is, its determinant

is a nonzero element of FqM , such that G1(D) = U(D)G2(D). The degree δ of a
convolutional code C is the maximum of the degrees of the determinants of the
k × k sub-matrices of one, and hence, any generator matrix of C. The degree of
C is the minimum size of a state space realization of C (the McMillan degree of
the corresponding linear system, see [30]). For that, we feel that it is the single
most important code parameter on the side of the transmission rate k/n. Note
that a block code is a convolutional code with δ = 0. For more general classes of
convolutional codes see [4,25]
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In the sequel, we adopt the notation of McEliece [22, p. 1082] and denote a
convolutional code of rate k/n and degree δ an (n, k, δ)-convolutional code.

If we write v(D) = v0 + v1D+ . . .+ v`D
`, and we represent G(D) as a matrix

polynomial,

G(D) = G0 +G1D + · · ·+GνD
ν ,

where Gν 6= 0 and Gi = 0, for i > ν, the truncated sliding generator matrix is

Gtrunc(j) =


G0 G1 · · · Gj

G0 · · · Gj−1

. . .
...

G0

 ∈ Fk(j+1)×n(j+1)

qM
(5)

for any j ≥ 0, and a truncated codeword can be represented as

v[0,j] = (v0,v1, · · ·vj) = (u0,u1, · · ·uj) Gtrunc(j). (6)

For each channel packet it holds that

vt =
∑̀
i=0

ut−iGi.

Define now the j-th column block code of C as

Ccj =
{

(u0,u1, . . . ,uj)Gtrunc(j) | u0,u1, . . . ,uj ∈ FkqM ,u0 6= 0
}

=

{
(v0,v1, . . . ,vj) |

∑
h∈N

vhD
h ∈ C,v0 6= 0

}
⊆ F(j+1)n

qM
.

(7)

Note that this block code is nonlinear (over FqM ) as the zero vector is not in Ccj .
In this work we will be primarily interested in the correction capabilities of this
nonlinear column block code rather than in the linear (over FqM [D]) code C.

The code C can be equivalently described using an (n− k)× n full rank poly-
nomial parity-check matrix H(D), defined by

C = ker H(D) =
{
v(D) ∈ FqM [D]n | H(D)v(D)> = 0 ∈ FqM [D]n−k

}
,

and the associated truncated sliding parity-check matrix of H(D) =
∑m
i=0HiD

i is

Htrunc(j) =


H0

H1 H0

...
...

. . .

Hj Hj−1 · · · H0

 (8)

with Hj = 0 when j > m, j ∈ N.
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3 Metrics for multi-shot network coding

The sum rank distance, the distance that has been widely considered for multi-
shot network coding, was first introduced in [27] under the name of extended rank

distance. We note that the sum rank distance has been also used in the context of
block codes reducing their decoding complexity, see for instance [21].

Let v = (v0, . . . ,vt) and w = (w0, . . . ,wt) be two (t + 1)-tuples of vectors in
FnqM . The sum rank distance (SRD) between them is

dSR(v,w) =
t∑
i=0

rank(φ(vi)− φ(wi)),

where φ is the isomorphism that converts vectors v ∈ FnqM into matrices φ(v) =

V ∈ FM×nq .
For an (n, k, δ)-convolutional code C and v(D) = v0 +v1D+v2D

2 + · · · ∈ C we
define its free sum rank distance (FSRD) as

dSR(C) = min

∑
i≥0

rank(φ(vi)) | v(D) ∈ C and v(D) 6= 0

 ,

and, for 0 ≤ j ≤ t, its j-th Column Sum Rank Distance (j-th CSRD) as

djSR(C) = min

{
j∑
i=0

rank(φ(vi)) | v(D) ∈ C and v0 6= 0

}
.

In [32], concrete decoding algorithms for unit memory rank metric convolu-
tional codes were presented using another distance, namely the active rank dis-
tance. However, in [19], it was shown that this metric fails to fully determine
the error-correcting capabilities of rank metric convolutional codes with arbitrary
memory and the j-th CSRD needs to be considered.

Moreover, in [23, Theorem 4.1] it was derived a Singleton-type upper bound
for the FSRD of C in a different setting. This can be adapted easily to our context
to obtain:

dSR(C) ≤ (n− k)

(⌊
δ

k

⌋
+ 1

)
+ δ + 1. (9)

Note that this bound coincides with the so-called generalized Singleton bound of
(Hamming) (n, k, δ)-convolutional codes (see [28] and [29]). Thus, the bound (9)
could be also derived from the fact that the rank distance is upper bounded by the
Hamming distance (see [9,20]). Although some results were presented in [7], the
problem of existence and construction of rank metric convolutional codes whose
free rank distance achieves the bound (9) remains open.

The following result was obtained in [19] and shows that the j-th CSRD can
be used to characterize the error-correcting capabilities of multi-shot codes in the
context of delay-free networks.
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Theorem 1 [19, Theorem 2] Let C = im G(D) ⊂ FnqM be a rank metric convolutional

code, v(D) = u(D)G(D) ∈ C, u0 6= 0 and A∗[0,j] be the truncated block diagonal

channel matrix. Then, u0 is recoverable at time instant j if

djSR(C) > n(j + 1)− rank(A∗[0,j]). (10)

The following example illustrates that, when the network has delays in the
transmission of packets, i.e., when A∗[0,j] is not necessarily block diagonal, the j-th
CSRD fails to characterize the rank deficiency correcting capability of C.

Example 1 Let G(D) = G0 + G1D ∈ F26 [D]2×3 be a generator matrix of the con-
volutional code C ⊂ F26 [D]3, α a primitive element of F26 such that α6 = α + 1
and

G0 =

[
1 0 0
1 α α2

]
, G1 =

[
0 1 0
α3 α4 α5

]
.

It is easy to see that d1SR(C) = 2 and that there exists a v(D) ∈ C such that
v[0,1] = (1, 0, 0 | 0, 1, 0) ∈ F6

26 .
By Theorem 1 one can always recover u0 in delay-free networks as far as

the j-th CSRD of C is larger than the rank deficiency in the window [0, j], i.e.,
if n(j + 1) − rank(A?[0,j]) < djSR(C). Thus, in this example one can recover u0 if
6 − rank(A?[0,1]) ≤ 1 or equivalently, if rank(A?[0,1]) ≥ 5. However, in presence of
delays in the network this does not necessarily hold. Take the channel matrix with
delays

A?[0,1] =


0 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

0 0 0 1 0 0
1 0 0 0 1 0
0 0 0 0 0 1

 ∈ F6×6
2

that has rank equal to 5 and yields A?[0,1]v
>
[0,1] = 0, i.e., v[0,1] is indistinguishable

from the zero sequence and therefore cannot be corrected.

For the general case, i.e., for not necessarily delay free networks, we introduce
the j-th Column Rank Distance (j-th CRD) for convolutional codes as follows:

djCR(C) = min

{
rank(φ(v0) | · · · | φ(vj)) | v(D) =

j∑
i=0

viD
i ∈ C and v0 6= 0

}
= min

{
rank(φ(v[0,j])) | v[0,j] = u[0,j]Gtrunc(j) and u0 6= 0

}
= min

{
rank(φ(v[0,j])) | Htrunc(j)v

>
[0,j] = 0 and v0 6= 0

}
= drank(Ccj ). (11)

Note that this metric is the rank metric of the block code Ccj but such a code
is nonlinear and therefore existing results on linear rank metric codes cannot be
directly applied to our case.

Clearly, djCR(C) ≤ dSR(C), for any j ≥ 0. Therefore, we have the following
Singleton bound for column rank distance:
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djCR(C) ≤ (n− k)

(⌊
δ

k

⌋
+ 1

)
+ δ + 1. (12)

Next, we show that the j-th CRD characterizes the recovery capability within
an interval over a channel that admits delays in the transmission. We then inves-
tigate how to build convolutional codes with designed j-th column rank distance.
For the sake of clarity we first revise the linear block case and the characterization
of the rank distance in terms of the properties of the corresponding parity-check
matrices.

Lemma 2 Let C ⊂ FnqM be a linear block code and H ∈ F(n−k)×n
qM

a parity-check of C.

Then, drank(C) = d (defined in (2)) if and only if both of the following conditions hold

1. for all nonsingular matrix A ∈ Fn×nq , every set of d−1 columns of HA, are linearly

independent;

2. for all nonsingular matrix A ∈ Fn×nq , there exists d linearly dependent columns of

HA.

Proof The proof follows easily from [9, Theorem 1].

Next we derive a counterpart result in the context of convolutional codes. First,
for any j ≥ 0, A[0,j] will represent a nonsingular block lower triangular matrix with
entries in the base field Fq, of the form

A[0,j] =


A00

A10 A11

...
...

. . .

Aj0 Aj1 · · · Ajj

 ∈ Fn(j+1)×n(j+1)
q . (13)

Theorem 3 Let C = ker H(D) ⊂ FqM [D]n. Then, the following are equivalent

1. djCR(C) = drank(Ccj ) = d;

2. none of the first n columns of Htrunc(j)A[0,j] is contained in the FqM -span of any

other d − 2 columns of Htrunc(j)A[0,j] for all nonsingular block lower triangular

A[0,j] as in (13) and, moreover, one of the first n columns of Htrunc(j)A[0,j] is in

the FqM -span of other d− 1 columns of Htrunc(j)A[0,j], A[0,j] as in (13).

Proof (2.⇒ 1.): Suppose that one of the first n columns of Htrunc(j)A[0,j] is in the
FqM -span of other d − 1 columns of Htrunc(j)A[0,j] for a nonsingular lower trian-

gular A[0,j] ∈ Fn(j+1)×n(j+1)
q . Thus, Htrunc(j)A[0,j] has d columns linearly depen-

dent, say ci1 , ci2 , . . . , cid , therefore there exists α` ∈ FqM , ` ∈ S = {i1, i2, . . . , id},
such that ∑

`∈S
α`c` = 0

and at least one element in S, say i1, belongs to {1, . . . , n}. Now take w =

(w1,w2, . . . ,wn(j+1)) ∈ Fn(j+1)

qM
with w` = 0 if ` /∈ S, w` = α` if ` ∈ S. As

Htrunc(j)A[0,j]w
> = 0, then wA>[0,j] is a codeword. Since φ(w) has at most d

nonzero columns and A[0,j] is nonsingular then φ(wA>[0,j]) has rank at most d.

Thus djCR(C) ≤ d.
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To show that djCR(C) ≥ d we do it by contradiction. Assume djCR(C) < d. Then,

there exists v = (v0,v1, . . . ,vj) ∈ Fn(j+1)

qM
with v0 6= 0, rank(φ(v)) ≤ d − 1 and

Htrunc(j)v
> = 0. Since v0 6= 0, at least one of the first n coordinates of v is

nonzero. Take a nonsingular block upper triangular matrix B[0,j] ∈ Fn(j+1)×n(j+1)
q

such that φ(v)B[0,j] has at most d− 1 nonzero columns. Then vB[0,j] has at most

d− 1 nonzero coordinates. Let A[0,j] = (B>[0,j])
−1, then A[0,j] is as in (13) and

Htrunc(j)A[0,j](B
>
[0,j]v

>) = 0,

this implies that one of the first n columns of Htrunc(j)A[0,j] is contained in the
span of other d− 2 columns of Htrunc(j)A[0,j]. By the first part of 2. we obtain a

contradiction. Hence, djCR(C) = d.
The proof of (1.⇒ 2.) follows the same reasoning.

We are now in a position to provide a necessary condition to recover rank
deficiencies within a given time interval.

Theorem 4 Let C = im G(D) = ker H(D) ⊂ FnqM be an (n, k, δ)-convolutional code,

v(D) = u(D)G(D) ∈ C, u0 6= 0 and A∗[0,j] be the truncated channel matrix, where

j ≥ 0. Then, u0 is recoverable at time instant j if

djCR(C) > n(j + 1)− rank(A∗[0,j]). (14)

Proof As G(D) is basic, G(0) is full row rank and therefore to recover u0 it is
enough to decode v0. Obviously, if rankA∗00 = n there is no rank deficiency at time
instant zero and v0 can be immediately recovered. Assume then that rankA∗00 < n.

The received vector x = (x1, . . . ,xj) ∈ Fn(j+1)

qM
and A∗[0,j] are known and we aim

to find v = (v0,v1, . . . ,vj) ∈ Fn(j+1)

qM
such that x> = A∗[0,j](v0,v1, . . . ,vj)

> and

Htrunc(j)(v0,v1, . . . ,vj)
> = 0. We will show that v0 is uniquely determined.

By the Gauss elimination, there exists a nonsingular block lower triangular

matrix A[0,j] ∈ Fn(j+1)×n(j+1)
q such that the nonzero columns of A∗[0,j]A[0,j] are

linearly independent. Clearly, the number of nonzero columns of A∗[0,j]A[0,j] is

equal to rank(A∗[0,j]). Denote v> = (v0, . . . ,vj)
> = A−1

[0,j](v0, . . . ,vj)
>. First we

find v in order to obtain v0. From the equation

x> = A∗[0,j]A[0,j]v
>

rank(A∗[0,j]) coordinates of v can be uniquely determined. Notice that this system
of equations always admits a nonzero solution. The remaining coordinates must
satisfy the system of linear equations

(Htrunc(j)A[0,j])v
> = 0.

The unknowns in v satisfy a system of linear equations By = c where y represents

the vector of t unknowns, with t = n(j + 1) − rank(A∗[0,j]) and c ∈ Fk(j+1)

qM
is a

constant vector (notice that some of the k(j + 1) equations may be trivial). This
system is always soluble since Htrunc(j)v

> = 0. Now, by (14), t < djCR(C). Let yi
be one the unknowns of v0. Since t − 1 ≤ djCR(C) − 2, the column corresponding
to yi of B is not a linear combination of the other t − 1 columns, by theorem 3.
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Therefore yi can be uniquely determined. Since this is true for any unknown of
v0, we can recover the whole vector v0. Finally, as A−1

[0,j] is also a nonsingular and

block lower triangular matrix, v0 is recovered as well.

Remark 1 It is important to remark that, as opposed to the proof of Theorem
1 provided in [19], the proof of Theorem 4 is constructive in the sense that it
provides a decoding procedure to recover u0 when the conditions of the theorem
are satisfied. The next example illustrates this procedure.

Example 2 Let H(D) = H0 + H1D ∈ F26 [D]1×3 be a parity-check matrix of the
convolutional code C ⊂ F26 [D]3, α a primitive element of F26 such that α6 = α+ 1
and

H0 =
[
α5 α3 α2

]
, H1 =

[
α4 1 1

]
.

Thus,

Htrunc(1) =

[
α5 α3 α2 0 0 0

α4 1 1 α5 α3 α2

]
,

and it is straightforward to verify that d1CR(C) = 2 and therefore by Theorem 4
each truncated codeword v[0,1] can be recovered if the rank deficiency in the time
interval [0, 1] is not larger than 1. Consider, for instance that the channel matrix
is

A?[0,1] =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0

0 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

 ,

and the received vector is x = (0, 1, 0 | 0, 1 + α3, α). We aim at finding v0 ∈ F3
26

with v = (v0,v1) ∈ F6
26 such that x = A?[0,1]v and Htrunc(1)v> = 0. Following the

notation and the steps described in the proof of Theorem 4 one obtains

A∗[0,1]A[0,1] =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0

0 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 1

 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0

0 0 0 1 0 0
0 1 0 0 1 0
0 0 0 0 0 1

 .

Since the base field has characteristic 2, A−1
[0,1] = A[0,1]. Define v> = A−1

[0,1]v
>.

From equation
x> = A∗[0,1]A[0,1]v

>

we obtain

v0 = (0, 1,y2),

v1 = (0, α3, α),

where y2 can be computed solving Htrunc(1)A[0,1]v
> = 0, which yields{

α3 + y2α
2 = 0

1 + (1 + α2)y2 + α6 + α3 = 0

and so y2 = α. The recovered codeword is then v> = A[0,1]v
> = (0, 1, α | 0, α3, 0).
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The next corollary readily follows from Theorem 4 and the fact that C is a
linear time-invariant convolutional code.

Corollary 1 Assume that we have been able to correctly decode up to an instant T0−1.

Let Tf ≥ T0 and T = Tf − T0. Then, we can recover uT0
at time instant Tf if

dTCR(C) > n(T + 1)− rank(A∗[T0,Tf ]). (15)

Corollary 1 illustrates how the notion of j-th CRD captures the error correcting
capability of a rank metric convolutional code in a network with possible delays,
within a limited time interval.

4 MRD convolutional codes: A matrix characterization

A natural follow-up question is to know bounds on the j-th CRD for a given set
of parameters (n, k, δ). An upper-bound on these distances is presented next.

Corollary 2 Let C be an (n, k, δ) code. Then, for any j ≥ 0,

djCR(C) ≤ (j + 1)(n− k) + 1. (16)

Proof Note that if A[0,j] has full row rank then Aii is nonsingular for i = 0, . . . , j
and therefore H0Aii has also full row rank since H0 is full row rank (as H(D) is
basic). Thus, Htrunc(j)A[0,j] has full row rank which implies, in particular, that
any of the columns of Htrunc(j)A[0,j] is linear combination of at most (n−k)(j+1)
columns of Htrunc(j)A[0,j] in particular, one of the first n columns. Then, the result
follows from the first part of the proof (2.⇒ 1.) of Theorem 3.

Note that Singleton bound on classical rank metric codes still holds for non-
linear codes and therefore Corollary 2 would also follow directly from this fact.

Since no column distance can achieve a value greater than the Singleton-type
upper bound in (12), there must exist an integer L for which the bound (16) could
be attained for all j ≤ L and it is a strict upper bound for j > L. It is a matter of
straightforward computations to verify that this value is (see [13] for more details):

L =

⌊
δ

k

⌋
+

⌊
δ

n− k

⌋
. (17)

An (n, k, δ)-convolutional code C with every djCR(C) maximal, i.e., djCR(C) =
(n− k)(j + 1) + 1, for each j ≤ L, is called a Maximum Rank Profile (MRP) code.
The j-th column rank distances of MRP codes increase as rapidly as possible for as
long as possible. Fast growth of the column distances is an important property for
codes to be used with sequential decoding since they have the potential to correct
a maximal number of errors per time interval.

Another interesting property of MRP codes is that Theorem 4 can be strength-
ened when these codes are used. Suppose that all the packets have been recovered
up to an instant T0 − 1. In order to recover uT0

as soon as possible, the condition
of Corollary 1 is checked sequentially at T0, T0 + 1, . . . up to an instant, say Tf ,
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when the condition is finally satisfied. Then, by Corollary 1, uT0
can be recovered.

However, if MRP codes are employed in the transmission not only uT0
but the

complete vector (uT0
, . . . ,uTf ) can be actually recovered at time instant Tf . This

will be properly stated and proved next.

First we show that, as it happens with the column (Hamming) distance, the
maximality of the j-th column rank distance implies maximality of the previous
i-th column rank distances, i = 0, 1, . . . , j − 1.

Lemma 5 If djCR(C) = (j + 1)(n − k) + 1, then diCR(C) = (i + 1)(n − k) + 1 for

i = 0, 1, . . . , j − 1.

Proof It is proved by contradiction. It is enough to prove it for i = j − 1. Then,
assume that dj−1

CR (C) ≤ j(n − k), that is, there exists an A[0,j−1] as in (13) such
that one of the first n columns of Htrunc(j−1)A[0,j−1] is in the span of some other
(n− k)j − 1 columns. Note that for all A[0,j] it holds that

Htrunc(j)A[0,j] =


Htrunc(j − 1)A[0,j−1]

0
...

0

H̃j H̃j−1 · · · H̃1 H0Ajj

 ,

where H̃s =
∑s
t=0Hs−tAt+j−s j−s. As Ajj is full row rank, then so it is H0Ajj

and therefore one of the first n columns of Htrunc(j)A[0,j] is in the span of some
other (n− k)j − 1 + n− k = (n− k)(j + 1)− 1 columns of Htrunc(j)A[0,j], which,

by Theorem 3, implies that djCR(C) ≤ (j + 1)(n− k).

A characterization of MRP codes in terms of the full size minors ofGtrunc(j)A
>
[0,j]

is given next.

Theorem 6 Let C be an (n, k, δ)-convolutional code with generator matrix G(D). The

following statements are equivalent:

1. djCR(C) = drank(Ccj ) = (j + 1)(n− k) + 1;

2. every (j + 1)k× (j + 1)k full-size minor of Gtrunc(j)A
>
[0,j] formed by the columns

with indices 1 ≤ c1 < · · · < c(j+1)k where csk+1 > sn for s = 1, . . . , j, is nonzero,

where A[0,j] as in (13).

In particular, C is an MRP convolutional code if dLCR(C) = drank(CcL) = (L + 1)(n −
k) + 1, with L as defined in (17).

Proof (1⇒2): Suppose that 2. does not hold and A[0,j] as in (13) is such that

Gtrunc(j)A
>
[0,j] contains a singular square submatrix G̃ of size (j + 1)k formed by

column of Gtrunc(j)A
>
[0,j] with indices c1 < c2 < · · · < c(j+1)k, csk+1 > sn for

s = 1, . . . , j. Take (u0, . . . ,uj) such that (u0, . . . ,uj)G̃ = 0. Then,

rank(φ((u0, . . . ,uj)Gtrunc(j)A
>
[0,j])) < (n− k)(j + 1) + 1.

If u0 6= 0 then djCR(C) < (j + 1)(n− k) + 1 contradicting 1.
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Assume then that u0 = 0 and consider i > 0 such that ui 6= 0 and u` = 0 for
0 ≤ ` < i ≤ j. The last n(j − i) rows and columns of A>[0,j] is again a nonsingular
upper block triangular matrix. Then, due to the Toeplitz structure of Gtrunc(j)
and that csk+1 > sn for s = 1, 2. . . . , j, it holds that (ui, . . . ,uj)Gtrunc(j − i)A>[i,j]
has weight (and therefore rank) strictly less than (j− i+1)(n−k)+1. This implies
that dj−iCR (C) ≤ (j − i+ 1)(n− k) and by Lemma 5 djCR(C) ≤ (j + 1)(n− k).

(2⇒1): Again it is done by contradiction. Suppose that djSR(C) ≤ (j+1)(n−k)
and let ` be the first instant such that the upper bound (16) is not achieved. Hence,
there exists a (u0, . . . ,u`), u0 6= 0 and an Ā[0,`] as in (13) such that (v0, . . . ,v`) =

(u0, . . . , ,u`)Gtrunc(`)Ā
>
[0,`] with

rank(φ((v0, . . . ,v`))) ≤ (n− k)(`+ 1).

This means that there exists Â[0,`] as in (13) such that (v0, . . . ,v`)Â
>
[0,`] has at

least k(`+ 1) zeros.
Let A[0,`] = Â[0,`]Ā[0,`] and build a square matrix L by selecting the columns of

Gtrunc(j)A
>
[0,j] where (u0, . . . ,u`)Gtrunc(j)A

>
[0,j] is zero and denote these indices

by c1, . . . , c(`+1)k.

At this point we observe that as diCR(C) = (i+1)(n−k)+1, for i = 1, 2, . . . , `−1,
it follows that (u0, . . . ,ui)Gtrunc(i)A

>
[0,i] has at most k(i + 1) − 1 zeros for i =

0, 1, . . . , `−1. This, in particular, implies that csk+1 > sn for s = 1, 2, . . . , `. Extend
the square matrix L by taking the matrix formed by the last k(j − `) columns of
Gtrunc(j)A

>
[0,i], which we denote by J , and build a k(j + 1) × k(j + 1) submatrix

of Gtrunc(j)A
>
[0,j] of the form [

L

0
J

]
.

We call the indices of the selected columns c1, . . . , c(j+1)k. Clearly, the indices
satisfy csk+1 > sn, for s = 1, 2, . . . , j and has determinant equal to zero as L is
singular by construction. This means that 2. does not hold which concludes the
proof. The last statement readily follows from Lemma 5.

We are now able to prove a stronger version of Theorem 4 and Corollary 1 if
an MRP code is employed. In this case, when condition (14) is satisfied at time Tf
then we can recover the whole vector (uT0

, . . . ,uTf ). This property is particularly
useful when erased packets must be recovered within tight delay constrains as it
happens in many streaming applications.

Theorem 7 Let C = im G(D) be an MRP code. Assume that we have been able to

recover all packets up to an instant T0 and that Tf is the first instant such that the

condition (15) is satisfied. Then, the whole vector (uT0
, . . . ,uTf ) can be recovered.

Proof Denote T = Tf − T0. Let A?[T0,T0+j]
be the truncated channel matrix, 0 ≤

j ≤ T . Trying to recover uT0
unsuccessfully up to Tf − 1 using an MRP code is

equivalent to

rank(A?[T0,T0+j]) ≤ n(j + 1)− djCR(C) = k(j + 1)− 1

for 0 ≤ j < T − 1. Since condition (15) is satisfied at Tf ,

rank(A∗[T0,Tf ]) ≥ k(T + 1).
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By Corollary 1 uT0
(and obviously also vT0

) can be recovered. Now, shift one
time instant forward and consider the time window [T0 + 1, Tf ] for decoding. As
rank(A?[T0,T0]

) ≤ k − 1, it follows from the lower block triangular configuration of
A?[T0,Tf ]

that

rank(A∗[T0+1,Tf ]) ≥ kT,

and thus again Corollary 1 guarantees that uT0+1 can be computed. The same
procedure is applied sequentially to retrieve the remaining uT0+j , j = 2, 3, . . . , T .

5 Superregular matrices to build MRP codes

In this section we introduce a class of matrices that will be essential for the con-
struction of convolutional codes that possess optimal rank distance properties:
Superregular matrices. We will first explain the relation between superregular ma-
trices and MRP. We then present a concrete class of superregular matrices that
can be used to produce MRP codes. This, in particular, proves that MRP codes
exist and the bounds given above are optimal for this new rank metric.

5.1 Block Toeplitz Superregular matrices

Superregular matrices are important in coding theory as they can be used to con-
struct codes with optimal Hamming distance. Roughly speaking, this is due to the
fact that a full row rank superregular matrix has the following property: Take any
one of its rows with Hamming weight, say d. Then, any combination of this row
with t other rows yields a vector of Hamming weight ≥ d − t. In this paper we
will show that a particular class of superregular matrices can be also used to build
convolutional codes with optimal rank distance. Next, we formally introduce the
notion of superregular matrix.

Let F = [µij ] be a square matrix of order m over FqM and Sm the symmetric
group of order m. Recall that the determinant of F is given by

|F | =
∑
σ∈Sm

sgn(σ)µ1σ(1) · · ·µmσ(m), (18)

where the sign of the permutation σ, sgn(σ), is 1 (resp. −1) according as if σ can
be written as product of an even (resp. odd) number of transpositions. A trivial

term of the determinant is a term of (18), µ1σ(1) · · ·µmσ(m), equal to zero. If F is
a square submatrix of a matrix B, with entries in FqM , and all the terms of the
determinant of F are trivial we say that |F | is a trivial minor of B. We say that B
is superregular if all its non-trivial minors are different from zero.

Notice that any full size minor of Gtrunc(j)A
>
[0,j] formed by more than sk

columns in the first sn columns, with s ≤ j, is trivially zero. Indeed, if all the
entries of Gtrunc(j) are nonzero, then, it holds by Theorem 6 that the maximum
j-th column rank distance is achieved if and only if all the nontrivial full size minors
of Gtrunc(j)A

>
[0,j] are nonzero. This leads immediately to a sufficient condition to

obtain MRP codes.
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Theorem 8 Let C = im G(D) ⊂ FnqM be an (n, k, δ)-convolutional code with L as in

(17) and the entries of the coefficients Gi of G(D) all nonzero. If Gtrunc(L)A>[0,L] is

superregular for A>[0,L] as in (13), with j = L, then C is MRP.

Proof If the entries of the coefficients Gi of G(D) are all nonzero, then the condi-
tions in Theorem 6 on the column indices amounts to consider the nontrivial full
size minors of Gtrunc(j)A

>
[0,j]. By Lemma 5 it is enough to consider j = L. Finally,

the nontrivial full size minors of Gtrunc(L)A>[0,j] are nonzero as Gtrunc(L)A>[0,j] is
assumed to be superregular.

The main goal of this section is to build a G(D) that satisfies conditions of
Theorem 8. To this end we will first recall a known G(D) having the property that
Gtrunc(L) is superregular and then show that Gtrunc(L)A>[0,j] remains superregu-
lar. This last proof is not straightforward and requires the recall and modification
of several previous results.

For the purposes of this paper we propose below a type of superregular ma-
trices. This class of matrices were first introduced in the context of (Hamming)
convolutional codes with q = 2 in [2] and will bring about a new class of convo-
lutional codes with optimal rank distances. Recall that the extension field FqM is

isomorphic to the M-dimensional vector space FMq over the base field Fq. A basis
of this vector space, say α1, α2, . . . , αM ∈ FqM , is said to be normal when there

exists α ∈ FqM such that αi = α[i] = αq
i

, for all 1 ≤ i ≤ M . If so, α is called a
normal element of FqM and there is always at least one element that is both normal
and primitive (see [11]). Hence, every element ϕ of FqM can be written as a linear
combination in Fq of the elements of the basis, i.e.,

ϕ =
M∑
i=1

ϕiαi =
M∑
i=1

ϕiα
[i]. (19)

We shall make extensive use of linearized polynomials which are polynomi-
als with its monomials terms having a Frobenius power. Hence, if ϕiFq are the
coordinates of the element ϕ of FqM , as in 19, then the linearized polynomial

fϕ(x) =
∑M
i=1 ϕix

[i] satisfies fϕ(α) = ϕ.
The following result follows straightforward from the Freshman’s Rule.

Lemma 9 Let u be a positive integer and f(x) =
∑M
i=1 aix

[i] be a linearized polyno-

mial over FqM , then

f [u](x) =
M∑
i=1

aix
[i+u].

Now, let α be a primitive and normal element of a finite field FqM with qM

elements and consider G(D) =
∑ν
i=0GiD

i ∈ Fk×n
qM

(D) where each Gi, for 0 ≤ i ≤ ν,

is the k × n matrix 
α[ni] α[ni+1] · · · α[n(i+1)−1]

α[ni+1] α[ni+2] · · · α[n(i+1)]

α[ni+2] α[ni+3] · · · α[n(i+1)+1]

...
...

...

α[ni+1+k−1] α[ni] · · · α[n(i+1)+k−2]

 , (20)
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and where again we use the notation α[j] = αq
j

to denote the j-th Frobenius power
of α ∈ FqM .

Note that the entries of (20) are the values of linearized monomials evaluated
at α but the determinant is not necessarily the value of a linearized polynomial
evaluated at α. Nevertheless, the next result states that if M is sufficiently large
then Gtrunc(j) (defined in (5)) is a superregular matrix for all j ≤

⌊
δ
k

⌋
+
⌊

δ
n−k

⌋
.

Theorem 10 Let L =
⌊
δ
k

⌋
+
⌊

δ
n−k

⌋
, n ∈ N, α be a primitive and normal element

of a finite field FqM of characteristic p and consider Gtrunc(L) ∈ F(L+1)k×(L+1)n
qM

as

in (5), with Gi submatrices of (20). If M ≥ qn(L+2)−1 then the matrix Gtrunc(L) is

superregular (over FqM ).

Proof By observing that permutation of columns does not affect superregularity
and using [2, Theorem 3.2] the theorem immediately follows for a prime q. The
extension of that theorem obtained by R. Mahmood in [17] for any q = pr, where
p is prime and r is a positive integer, concludes the proof.

We are now going to obtain a result that extends this theorem and states that
the superregularity of the matrices Gtrunc(j) built from block matrices of the form
(20), remains invariant under right multiplications of A>[0,j].

In [19], the authors proved the superregularity of F = TA[0,m] with

T =


T0

T0 T1
. . .

...
...

T0 · · · Tm−1 Tm

 and A[0,m] =


A0

A1

. . .

Am

 , (21)

where the matrices Ti are given by
α[ni] α[ni+1] · · · α[n(i+1)−1]

α[ni+1] α[ni+2] · · · α[n(i+1)]

α[ni+2] α[ni+3] · · · α[n(i+1)+1]

...
...

...

α[n(i+1)−1] α[n(i+1)] · · · α[n(i+2)−2]

 , (22)

and Ai are invertible matrices, for 0 ≤ i ≤ m. To obtain their proof, they first
showed the following properties:

1. Let Fij = TiAj , for 0 ≤ i ≤ j ≤ m. Then

F =


F0m

F0(m−1) F1m

. . .
...

...

F00 · · · F(m−1)(m−1) Fmm


and

Fij =


f
[ni]
0j f

[ni]
1j · · · f

[ni]
n−1 j

f
[ni+1]
0j f

[ni+1]
1j · · · f

[ni+1]
n−1 j

...
...

...

f
[n(i+1)−1]
0j f

[n(i+1)−1]
1j · · · f [n(i+1)−1]

n−1 j

 , (23)
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where for each 0 ≤ r ≤ j ≤ n − 1, frj is the value of a linearized polynomial
evaluated at α and
(a) (f0j , f1j , . . . , fn−1 j) are linearly independent over Fq;
(b) If s′ < s, the entries of a row s of Fij are q-powers of the corresponding

entries in row s′, by the Freshman’s Rule.
(c) If i′ < i the entries of a row s of Fij are q-powers of the corresponding

entries in row s of Fi′j , by the Freshman’s Rule.
2. The q-degrees of the polynomials associated to the elements of Fij strictly

increase downwards on any fixed column, for any 0 ≤ i ≤ j ≤ m.
3. If i < i′ and s ≥ i then the q-degree of the polynomial associated to any entry

of the row r of Fis is smaller than the q-degree of of the polynomial associated
to any entry of the row r of Fi′(s+i′−i), for any 0 ≤ r ≤ n− 1 (notice that the
block matrices Fis and Fi′(s+i′−i) are in the same block row of F ).

4. If i < i′ ≤ j then the q-degree of the polynomial associated to any entry of the
column s of Fij is smaller than the q-degree of the polynomial associated to
any entry of the column s of Fi′j , for any 0 ≤ s ≤ n− 1.

5. If D is a square submatrix of F there exists an invertible matrix M such that
(a) the q-degrees of the polynomials associated with the entries of any row of

DM are strictly increasing,
(b) the q-degrees of the polynomials associated with the entries of any column

of DM are strictly increasing.

Next they used the proof of Theorem 3.2 of [2], where it is shown, when q is a
prime number, that if a matrix B satisfies properties 5 (a) and 5 (b) above then B

is invertible. This result is also valid for any q = pr, with p prime, as it was shown
in [17].

Therefore, DM is invertible and since M is invertible also D is invertible.
Therefore, F is superregular.

Based on these properties the next theorem was derived in [19].

Theorem 11 [19, Theorem 5] For any 0 ≤ t ≤ m let At ∈ Fn×nq be non-singular

matrices and let A[0,m] = diag(A0, . . . , Am). Let T ∈ Fn(m+1)×n(m+1)

qM
be of the form


T0

. .
. ...

T0 · · · Tm−1

T0 T1 · · · Tm

 .
where Ti, for each 0 ≤ i ≤ m, is given by (20).

If M > qn(m+2)−1 and α is a primitive and normal element of FqM ,then F =
TA[0,m] is superregular.

In our case instead of having a block diagonal matrix we have a block lower
triangle matrix A[0,L], but the corresponding versions of all the above properties
are still satisfied.

Theorem 12 Let C be an (n, k, δ)-convolutional code with generator matrix G(D) =∑ν
i=0GiD

i where each Gi is a k×n matrix given by (20). Let M ≥ qn(L+2)−1 and let
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α be a primitive and normal element of FqM . Furthermore, let A[0,L] be nonsingular

as described in (13), with j = L. Then

S = Gtrunc(L)A>[0,L] is a superregular matrix,

and therefore

C is an MRP convolutional code.

Proof We have,

S = Gtrunc(L)A>[0,L] =


G0 G1 · · · GL

G0 · · · GL−1

. . .
...

G0



A00 A01 · · · A0L

A11 · · · A1L

. . .
...

ALL



=


S00 S01 · · · S0L

S11 · · · S1L
. . .

...

SLL

 ,
where

Sij =

j−i∑
`=0

G`Ai+` j .

Let P be the permutation matrix corresponding to the permutation σ defined by

σ =

(
1 · · · k k + 1 · · · 2k · · · kL+ 1 · · · k(L+ 1)

kL+ 1 · · · k(L+ 1) k(L− 1) + 1 · · · kL · · · 1 · · · k

)
.

Then S is superregular if and only if PS is superregular. Define

F = PS =


F0L

F0(L−1) F1L

. . .
...

...

F00 · · · F(L−1)(L−1) FLL,


where Fij = Sj−i j .

Each element of Fij is the value of a linearized polynomial evaluated at α,
moreover, if the first row of Fij is (fij0, . . . , fij(n−1)) then, for s ≤ n, the s-th

row is (f
[s]
ij0, . . . , f

[s]
ij(n−1)

). So we obtain similar properties to 1. b) above. The

corresponding propriety 1. c) is not valid, though. In our case, if i′ < i the entries
of a row s of Fij are not q-powers of the corresponding entries in row s of Fi′j since
our Fij instead of being just the product of two matrices, are the sum of products
of matrices, so for i 6= i′, the linearized polynomials from which we construct
the entries of Fij may be completely different from the ones we use to construct
the entries of Fi′j . That is also the reason why the exponents of the linearized
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polynomials used to obtain the entries of Fij don’t depend on i, contrary to what
happened above in (23). Hence, we have

Fij =



f
[0]
ij0 f

[0]
ij1 · · · f [0]ij(n−1)

f
[1]
ij0 f

[1]
ij1 · · · f [1]ij(n−1)

f
[2]
ij0 f

[2]
ij1 · · · f [2]ij(n−1)

...
...

...

f
[n−1]
ij0 f

[n−1]
ij1 · · · f [n−1]

ij(n−1)


. (24)

As α is normal over Fq and each Aii is invertible, for 1 ≤ i ≤ n, then it holds
that (fij0, fij1, . . . , fij(n−1)) are linearly independent over Fq, which corresponds
to property 1. a) above. Clearly, The q-degrees of the polynomials associated to the
elements of Fij strictly increase downwards on any fixed column, for any 0 ≤ i ≤
j ≤ L, so we get property 2.. It is also easy to see that the proprieties corresponding
to the properties 3. 4. and 5. above are also satisfied. Hence F is superregular. The
last statement is Theorem 8.

The following example illustrates the proprieties mentioned above.

Example 3 Let k = 3, n = 4, q = 2 and δ = 1. Let M = 2048 and α a primitive and
normal element of F2M . Then L = 1 and

Gtrunc(1) =



α[0] α[1] α[2] α[3] α[4] α[5] α[6] α[7]

α[1] α[2] α[3] α[4] α[5] α[6] α[7] α[8]

α[2] α[3] α[4] α[5] α[6] α[7] α[8] α[9]

0 0 0 0 α[0] α[1] α[2] α[3]

0 0 0 0 α[1] α[2] α[3] α[4]

0 0 0 0 α[2] α[3] α[4] α[5]


.

Take

A[0,1] =



0 1 1 0 1 0 1 0
1 0 0 0 0 1 1 0
1 0 1 0 1 1 0 0
0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 1
0 0 0 0 1 1 1 0
0 0 0 0 0 1 0 1
0 0 0 0 0 1 0 0


.

Then, taking

P =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 .
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we obtain F = PS = PGtrunc(1)A>[0,1] =



0 0 0 0 α[0] + α[1] α[1] + α[2] + α[3] α[1] α[0] + α[2]

0 0 0 0 α[1] + α[2] α[2] + α[3] + α[4] α[2] α[1] + α[3]

0 0 0 0 α[2] + α[3] α[3] + α[4] + α[5] α[2] α[2] + α[4]

α[1] + α[2] α[0] α[0] + α[2] α[3] α[0] + α[2] + α[4] + α[5] α[1] + α[2] + α[5] + α[6] + α[7] α[0] + α[1] + α[5] α[3] + α[4] + α[6]

α[2] + α[3] α[1] α[1] + α[3] α[4] α[1] + α[3] + α[5] + α[6] α[2] + α[3] + α[6] + α[7] + α[8] α[1] + α[2] + α[6] α[4] + α[5] + α[7]

α[3] + α[4] α[2] α[2] + α[4] α[5] α[2] + α[4] + α[6] + α[7] α[3] + α[4] + α[7] + α[8] + α[9] α[2] + α[3] + α[7] α[5] + α[6] + α[8]


.

Now, the above proprieties can easily be checked.

6 Conclusions

We have studied rank metric convolutional codes and propose a novel metric suit-
able for networks with delays. We have fully characterized and built optimal rank
convolutional codes with respect to this metric and therefore extended previous
research in the area of multi-shot network coding. The results were investigated for
a given rate and degree allowing the field size unrestricted. Although we need an
enormous field size in the Theorem 12, these type of constructions can be used to
obtain superregular matrices in fields much smaller, but in that case these matri-
ces have to be checked individually for superregularity. This approach was already
explored in [19] and [1] and is one avenue of research we are interested to investi-
gate. Another important issue that remains open is to provide not only sufficient
(as given in Theorem 8) but also necessary conditions for a given convolutional
code to be MRP in terms of superregular matrices. We conjecture that this is
possible and would require the superregularity of a smaller matrix than Gtrunc(L)
and Htrunc(L) which would allow to build MRP over much smaller fields. These
issues require further research.
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