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Abstract

The detection of outlier curves/images is crucial in many areas, such as
environmental, meteorological, medical, or economic contexts. In the
functional framework, outlying observations are not only those that con-
tain atypically high or low values, but also curves that present a different
shape or pattern from the rest of the curves in the sample. In this short
paper, we mention some recent methods for outlier detection in functional
data and apply a recently proposed [5] measure, the directional outlying-
ness, and the functional outlier map to detect words with outlying distance
distribution in the human genome.

1 Introduction

In the functional framework, an outlying observation is not only one that
contains atypically high or low values (“magnitude outliers”), but also a
curve that presents a different shape or pattern than the rest of the curves
of the sample (“shape outliers”) [3]. While the first might be easily de-
tected, the latter are often masked among the rest of the curves and thus
more difficult to detect.

Different methods for outlier detection in functional data have been
developed. Some of those rely on notions of functional depth ([1, 4, 6].
To visualize functional data and investigate the existence of possible out-
liers, Sun and Genton [6] proposed the functional boxplot and Arribas-Gil
and Romo [1] introduced the outliergram. Based on robust principal com-
ponent scores, Hyndman and Shang [3] proposed graphical tools for vi-
sualizing functional data and identifying functional outliers, e.g. the bag-
plot. A very recent approach to detect outlying functions was proposed by
Rousseeuw et al. [5]. They introduced the directional outlyingness (DO)
measure which assigns a robust value of outlyingness to each gridpoint
of the function domain, and proposed a procedure that allows detecting
outlying functions and outlying parts of a function.

In this work, we consider data arising from the human genome (ref-
erence assembly), more precisely, distances between consecutive occur-
rences of genomic words, and intend to detect words with atypical dis-
tance distribution. For fixed word length, the set of 4k distance distribu-
tions can be seen as a sample of curves, which may be treated as functional
data. We apply the DO measure to identify atypical distance distributions
between genomic words.

1.1 Inter-word distance distribution

Consider the alphabet formed by the four nucleotides A = {A,C,G,T},
and let s be a symbolic sequence of length N defined in A. A genomic
word, w, is a sequence of length k defined in A. Assuming that the se-
quence is read through a sliding window of length k, the inter-word dis-
tances are the differences between the positions of the first symbol of con-
secutive occurrences of that word. For example, the inter-CG distances
for the DNA sequence s = ACGTCGATCCGT G are 3 and 5.

For each word w, we can define the inter-word distance distribution,
fw, associated with a genomic sequence. In sequences generated by a
random process it is expect that distance distributions between genomic
words are well fitted by some kind of exponencial law. However, in real
genomic sequences we observe distances with peak frequencies and non-
expected behaviours.

1.2 Directional Outlyingness

Rousseeuw et al. [5] proposed a procedure to detect outlying functions or
outlying parts of a function, assigning a robust value of outlyingness to
each gridpoint of the function domain. Based on the Stahel-Donoho out-
lyingness of a point y∈R relative to a univariate sample Y = {y1, . . . ,ym},
they introduced the notion of directional outlyingness (DO), which takes
the possible skewness of the distributions into account. Quoting the au-
thors, the main idea is “to split the sample into two halfsamples and then
to apply a robust scale estimator to each of them” [5, pag.3],

DO(y;Y ) =





y−med(Y )
Sa(Y )

if y≥ med(Y )
med(Y )−y

Sb(Y )
if y≤ med(Y )

, (1)

where Sa and Sb are robust scale estimates for the subsample of points
above and for the subsample of points below the median, respectively1.

The DO of a point y∈Rn relative to a n-variate sample Y= {Y1, . . . ,Ym}
is defined by means of univariate projections, applying the principle that
a multivariate point is outlying with respect to a sampleset if it stands out
in at least one dimension,

DO(y;Y) = sup
v∈Rn

DO(y′v;Y′v) , (2)

Due to the impossibility of projecting on all directions, the computation
of multivariate DO relies on approximate algorithms.

Consider a function x and a functional dataset X = {X1, . . . ,Xm},
formed by n-variate functions with univariate domain. At each domain
point, t, it is possible to compute the DO of x(t) with respect to the set of
values taken by the other functions in the same domain point. Computing
a kind of average of those values, a global outlyingness measure of x with
respect to X may be achieved. The functional directional outlyingness
(fDO) of a function x with respect to the functional dataset X , proposed
by [5], is defined as

f DO(x;X) =
T

∑
j=1

DO(x(t j);X(t j))W (t j) , (3)

where W (.) is a weight function, which sums one, and {t1, . . . , tT } is a
discrete set of points of the domain where the functions are observed.
The variability of the DO values of a function x is measured by

vDO(x;X) =
stdev j(DO(x(t j);X(t j)))

1+ f DO(x;X)
. (4)

To visualize the outliers the functional outlier map (FOM) is used, a
graphical tool firstly proposed in [2] and extended to the DO measure by
[5]. The FOM shows a scatter plot of the pairs ( f DO,vDO) associated
with each curve Yi, and a fence, drawn from a cutoff rule discussed in [5],
which allows puting outliers in evidence. Points in the lower left part of
the FOM represent regular functions, holding central positions in the data
set. Points in the upper left have low fDO and high vDO, which may be
associated with functions with local outliers. Points in the upper right part
of the FOM have high fDO and vDO, corresponding to functions which
deviate strongly from the majority of the sample.

The method may be applied to multivariate functional data, from uni-
variate curves to images and video data.

1The authors used a one-step M-estimator with Huber ρ-function, among many available
robust estimators, due to its fast computation and favorable properties [5, pag.4].
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2 Experimental Results

2.1 Data set

In this study, we used the complete DNA sequences of reference assem-
bly for human genome (GRCh38.p2) downloaded from the website of the
National Center for Biotechnology Information. We processed the as-
sembled chromosomes available as separate sequences and studied every
word formed by k consecutive nucleotides, with 1 < k ≤ 5.

We computed the inter-word distance distribution of each word, fw.
The dataset contains functions with irregular behaviour revealing sev-
eral unexpected strong peaks, as the word length increases. The rates
of change of the curves may comprise important features on the shape
of the data. The inter-word distance distributions were treated as func-
tional data and the dynamic behaviour of the curves was incorporated, by
numerically computing their first derivative. To resume, for each word
length k, we have a functional dataset formed by 4k bivariate functions,
which response is fw and its derivative. Since the domains of the curves
may be different, we define a cutoff distance, dk

max, associated with each
word length.

The computations were performed using the R language. For com-
puting DO and fOM we used R-code provided by Rousseeuw et al. at
http://wis.kuleuven.be/stat/robust/software.

2.2 Detection of outlying inter-word distance distributions

In the present context, the detection of outlier functions obviously de-
pends on the cutoff of the function domain, dk

max. In this first exploratory
study, we perform the analysis considering several cutoff distances.

For the dinucleotide case, k = 2, the dataset consists of 16 functions
defined over a discrete interval (figure 1, top left). We observe that, for
short distances, the fCG curve (red) deviates from the other curves. For
word length 3, the dataset comprises oscillating functions, but with no
evidence of strong peaks. As the word length increases, several distribu-
tions have a more expressive oscillating behaviour revealing strong and
unexpected peaks. Figure 1 (bottom) shows the fw for all words of length
k = 5, where we observe the existence of peaks along a substantial part of
the domain.
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Figure 1: Inter-word distance distributions for different word lengths:
k = 2, formed by 16 curves, d2

max = 90 (top left); k = 3, formed by 64
curves, d3

max = 150 (top right); k = 5, formed by 1024 curves, d5
max = 400

(bottom).

The FOMs in figure 2, for the k = 2 dataset, show that CG data have
both high fDO and high vDO. Indeed, for short distances, the CG curve
deviates from the other curves. However the identification of this curve as
outlier depends on the d2

max value. For k = 3, the procedure allows iden-
tifying the existence of distributions with both high fDO and high vDO
(figure 3, left), which correspond to “flat” distributions, i.e distributions
with under represented short distances. For d3

max = 150, the TCG curve
is identified as outlier (figure 1, middle, in red). Increasing d3

max, other
curves with the same behaviour are flagged as outlying functions.

The most interesting case in our analysis is the k = 5 dataset. This
functional dataset comprises a large proportion of distributions with strong
and unexpected peaks, which occur at short and long distances. Further-
more, it reveals clusters of distances where different functions reach un-
expected strong peaks. Figure 3 (right) shows the resulting FOM, which
reveals the presence of 17 outlying cases, though 10 of them are relatively

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
AA

AC

AG

AT

CA

CC

CG

CT

GA

GC

GG

GT

TA

TC

TG

TT

0.4

0.6

0.8

1.0

2 4 6
fDO

vD
O

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

AA

AC

AG

AT

CA

CC

CG

CT

GA

GC

GG

GT
TA

TC

TG

TT0.50

0.75

1.00

1 2 3 4 5
fDO

vD
O

Figure 2: FOM of the k = 2 dataset. The detection of outliers depends on
the function domain cutoff: for d2

max = 90, one point is flagged as outlier
(left); for d2

max = 80 there are no outliers (right).
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Figure 3: FOM of the inter-word distance distributions data: k = 3 data
reveal one outlier (left); k = 5 data reveal 17 outliers (right).

close to the fence. Analysing the flagged cases one by one, we conclude
that the method captures curves with peaks at subdomains where no other
peak occurs, as well as curves whose pattern strongly differs from the
majority. The two points in the middle right - CT TCG and T TCGT - cor-
respond to functions that deviate strongly from the majority of the curves,
they are “shape outliers”. Points in the upper left - AGT GC, GCACT ,
GCCGA, TCGGC - correspond to functions with low fDO but highest
vDO values, with outlying behaviour in a small part of the domain. In-
deed, the AGTGC curve shows a peak frequency around distance 210.
Despite the low peak magnitude, it is located in a interval of the do-
main with absence of peaks (figure 4, right). Figure 4 (left) confronts the
TTCGT curve with the complete set of functions, exposing an unusual
curve pattern.
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Figure 4: Outlying distributions:; a shape outlier for w = T TCGT (left);
local outlier for w = AGT GC (right).

3 Conclusions

The preliminary results indicate that the DO procedure is promising for
our problem, puting in evidence outlying inter-word distance distribu-
tions masked among the rest of the curves. In the case where the func-
tional dataset comprises a large proportion of functions with strong peaks,
spreading over a large part of the domain (e.g. k = 5 dataset), it is difficult
to detect outlying behaviours. The method was able to capture outly-
ing functions distinct from magnitude outliers, highlighting curves whose
shape strongly differs from the majority. In particular, it allowed detect-
ing functions with peaks at subdomains where no other peaks occur, as
well as functions with several strong peaks. Further analysis will be per-
formed for longer words; future work will investigate the relation between
the cutoff in the functions domain and cutoff values for outlier detection.
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