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On strong duality in linear copositive programming ∗

Kostyukova O.I.† Tchemisova T.V.‡

Abstract

The paper is dedicated to the study of strong duality for a problem of linear copos-
itive programming. Based on the recently introduced concept of the set of normalized
immobile indices, an extended dual problem is deduced. The dual problem satisfies the
strong duality relations and does not require any additional regularity assumptions such
as constraint qualifications. The main difference with the previously obtained results con-
sists in the fact that now the extended dual problem uses neither the immobile indices
themselves nor the explicit information about the convex hull of these indices.

The strong duality formulations presented in the paper have similar structure and
properties as that proposed in the works of M. Ramana, L. Tuncel, and H. Wolkovicz, for
semidefinite programming, but are obtained using different techniques.

Key words. Linear Copositive Programming, strong duality, normalized immobile index set,
extended dual problem, Constraint Qualifications, Semi-infinite Programming (SIP), Semidef-
inite programming (SDP)
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1 Introduction

Linear Copositive Programming problems can be considered as linear programs over the convex
cone of so-called copositive matrices (i.e. matrices which are positive semi-defined on the non-
negative orthant). Copositive problems form a special class of conic optimization problems
and have many important applications, including NP -hard problems. For the references on
applications of Copositive Programming see e.g. [5, 8] and others.
Linear copositive problems are closely related to that of linear Semi-Infinite Programming (SIP)
and Semidefinite Programming (SDP). Linear copositive and semidefinite problems are partic-
ular cases of SIP problems but Linear Copositive Programming deals with more challenging
and less studied problems than that of SDP. The literature on theory and methods of SIP, SDP
and Linear Copositive Programming is very interesting and quite large, we refer the interested
readers to [5, 6, 8, 11, 18, 19, 24, 25, 28], and the references therein.
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Although the concepts of co-positivity and complete positivity were originally formulated in
1952 in the paper by T. Motzkin [21], an active research in theory and methods of Linear
Copositive Programming has begun only in the recent decades in papers of I. Bomze, M, Dür,
E. de Klerk, and others (see [4, 5, 7]).
Optimality conditions and the associated duality relationships are among the central topics of
convex optimization and the importance of their study is well recognized (see e.g. [6, 26], and the
references therein). Optimality conditions are a crucial issue in the study of any optimization
problem since they allow not only to test the optimality of a given feasible solution, but also to
develop efficient numerical methods. As it is mentioned in [19], the duality plays a central role
in detecting infeasibility, lower-bounding of the optimal objective value, as well as in design
and analysis of iterative algorithms.
Often the studies on optimality conditions and duality for finite and (semi-) infinite program-
ming use certain regularity assumptions, so-called constraint qualifications (CQ). Such assump-
tions permit to guarantee in some particular cases a strong (or zero-gap) duality which means
that the optimal values of the primal and dual objective functions are equal and, hence, the
difference between these values (the duality gap) vanishes.
It is a known fact that in Linear Programming (LP), the strong duality is guaranteed without
any CQ ([6]). The duality results for LP can be generalized to some particular classes of
optimization problems. Several attempts were done to obtain CQ-free optimality and strong
duality results for different classes of convex SIP problems (see e.g. [10, 12, 14]).
In [25, 27], a CQ-free duality theory for conic optimization was developed in terms of so-called
minimal cone. Being quite general, this theory has one disadvantage in terms of its application,
namely, it is very abstract. In a number of publications, various explicit dual formulations
were obtained by applying this theory to SDP problems (see e.g. [11, 24, 26, 27]) and other
optimization problems over symmetric (i.e., self-dual and homogeneous) cones (see [23]). As it
was mentioned in [22, 23], finding a broader family of conic problems for which such explicit
dual formulations are possible, is an open problem.
Linear copositive problems belong to a wider and more complex class of linear conic problems
than that of SDP, namely, to the class of optimization problems over cones of copositive and\or
completely positive matrices that are neither self-dual nor homogeneous (see [9]). The duality
theory for these problems is not well studied yet. It is worth to mention that almost all duality
results and optimality conditions for Linear Copositive Programming are formulated under the
Slater CQ ([1, 4]).
In our papers [12, 14, 15], and others, we developed a new approach to optimality in SIP and
SDP. This approach is based on the notion of immobile indices of constraints of an optimization
problem, which refers to the indices of the constraints that are active for all feasible solutions.
In [13, 16], we have applied our approach to problems of Linear Copositive Programming and
successfully obtained new explicit CQ-free optimality conditions and strong duality results. It
is essential that to formulate our results, we used either the immobile indices ([16]), or the
vertices of the convex hull of the normalized immobile index set ([13]).
In this paper, we further develop our approach to linear copositive problems and use it to
obtain a new dual problem which we refer to here as the extended dual problem. As well as the
regularized dual problem from [13], the extended dual one is constructed using the notion and
properties of the normalized immobile indices, but in the formulation of this problem neither
these indices nor the vertices of the convex hull of the corresponding index set are present.
This permitted us to formulate the extended dual problem for linear copositive problem in an
explicit form and avoid the use of additional procedures for finding the immobile indices. The
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new extended dual problem satisfies the strong duality relations without any CQ.
One interesting property of the obtained results consists in the fact that the new dual formula-
tions for Linear Copositive Programming are closely related to the dual problems proposed in
[24, 25, 27] for SDP. This relation not only confirms the already known deep connection between
copositive and semidefinite problems but, taking into account the impact of the duality results
of M. Ramana et al. in relation to SDP, permits one to expect that the proposed here duality
results are also very promising in Linear Copositive Programming.
It is worth to mention here that at present, with exception of [13], there are no explicit strong
duality formulations without CQs for Linear Copositive Progamming. All the results presented
in the paper are original and cannot be obtained as a direct extension of any previous results.

The paper is organized as follows. Section 1 hosts Introduction. In section 2, given a linear
copositive problem, we formulate the corresponding normalized immobile index set and establish
some new properties of this set. An extended dual problem is formulated in section 3. We
prove here that the strong duality property is satisfied. In section 4, we compare the obtained
duality results with that presented in [24, 25, 27] for SDP. It is shown that the compared dual
formulations for Linear Copositive Programming and SDP are similar, being both CQ-free
and providing strong duality. Although these dual formulations were obtained using different
techniques, they almost coincide being applied to the class of linear SDP problems. The final
section 5 contains some conclusions.

2 Linear copositive programming problem

Here and in what follows, we use the following notations. Given an integer p > 1, Rp
+ denotes

the set of all p vectors with non-negative components, S(p) stays for the space of real symmetric
p× p matrices, P(p) for the cone of symmetric positive semidefinite p× p matrices, and COPp

for the cone of symmetric copositive p× p matrices

COPp := {D ∈ S(p) : t⊤Dt ≥ 0 ∀t ∈ R
p
+}. (1)

The space S(p) is considered here as a vector space with the trace inner product:

A •B := trace (AB), for A,B ∈ S(p).
Consider a linear Copositive Programming problem in the form

min
x

c⊤x s.t. A(x) ∈ COPp, (2)

where the decision variable is n−vector x = (x1, ..., xn)
⊤ and the constraints matrix function

A(x) is defined as

A(x) :=
n∑

i=1

Aixi + A0,

matrices Ai ∈ S(p), i = 0, 1, . . . , n, and vector c ∈ Rn are given. Problem (2) can be rewritten
as follows:

min
x

c⊤x s.t. t⊤A(x)t ≥ 0 ∀t ∈ R
p
+. (3)

It is well known that the copositive problem (3) is equivalent to the following convex SIP
problem:

min
x

c⊤x s.t. t⊤A(x)t ≥ 0 ∀t ∈ T, (4)
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with a p - dimensional compact index set in the form of a simplex

T = {t ∈ R
p
+ : e⊤t = 1}, (5)

where e = (1, 1, ..., 1)⊤ ∈ Rp, t = (tk, k ∈ P )⊤, P = {1, 2, ..., p}.
Denote by X the set of feasible solutions of problems (2) - (4),

X := {x ∈ R
n : t⊤A(x)t ≥ 0 ∀t ∈ R

p
+} = {x ∈ R

n : t⊤A(x)t ≥ 0 ∀t ∈ T}.

Evidently, the set X is convex.
According to the definition (see e.g. [16]), the constraints of the SIP problem (4) satisfy the
Slater condition if

∃ x̄ ∈ R
n such that t⊤A(x̄)t > 0 ∀t ∈ T, (6)

and the constraints of the copositive problem (2) satisfy the Slater condition if

∃ x̄ ∈ R
n such that A(x̄) ∈ int COPp = {D ∈ S(p) : t⊤Dt > 0 ∀t ∈ R

p
+, t 6= 0}. (7)

Here intD stays for the interior of a set D.
Evidently, problems (2), (3), and (4) satisfy or not the Slater condition simultaneously.
Following [12, 13], define the sets of immobile indices Tim and Rim in problems (4) and (3),
respectively:

Tim := {t ∈ T : t⊤A(x)t = 0 ∀x ∈ X}
and

Rim := {t ∈ R
p
+ : t⊤A(x)t = 0 ∀x ∈ X}.

It is evident that the aforementioned sets are interrelated:

Rim = {t ∈ R
p : t = ατ, τ ∈ Tim, α ≥ 0} and Tim = {t ∈ Rim : e⊤t = 1}.

From the latter relations, we conclude that the set Tim, the immobile index set for problem (4),
can be considered as a normalized immobile index set for problem (3). In what follows, we will
use mainly the set Tim, taking into account its relationship with the set Rim.
The following proposition is an evident corollary of Proposition 1 from [13].

Proposition 1 Given a linear copositive problem in the form (3), the Slater condition (6) is
equivalent to the emptiness of the normalized immobile index set Tim.

It is evident that Tim = ∅ if and only if Rim = {0}.

Proposition 2 Given a linear copositive problem (3), let {τ(i), i ∈ I} be some set consisting
of immobile indices of this problem. Then for any x ∈ X, the following inequalities take a place:

A(x)τ(i) ≥ 0, i ∈ I. (8)

The proof of the proposition follows from the definition of immobile indices and Lemma 2.6
from [3].
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Proposition 3 Given an index set {τ(i) ∈ T, i ∈ I}, the inequalities

A(x)τ(i) ≥ 0, i ∈ I, (9)

imply the inequalities
t⊤A(x)t ≥ 0 ∀t ∈ conv{τ(i), i ∈ I}. (10)

Here convS denotes the convex hull of a given set S.
The proof of the proposition is evident.

Let {τ(i), i ∈ I} ⊂ Tim be a nonempty subset of the set of normalized immobile indices in
problem (3). For this subset and for any ε > 0, denote

T (ε) := T (ε, τ(i), i ∈ I) := {t ∈ T : ρ(t, conv {τ(i), i ∈ I}) ≥ ε}, (11)

T̂ (ε) := T̂ (ε, τ(i), i ∈ I) := {t ∈ T : ρ(t, conv {τ(i), i ∈ I}) ≤ ε}, (12)

where ρ(l, B) = min
τ∈B

||l− τ || is the distance between a vector l and a set B associated with the

norm ||a|| =
√
a⊤a in the vector space Rp. Consider the sets

X = {x ∈ R
n : A(x)τ(i) ≥ 0, i ∈ I}, X (ε) = {z ∈ X : t⊤A(z)t ≥ 0, ∀t ∈ T (ε)}. (13)

The following lemma is a generalization of Lemma 2 from [13].

Lemma 1 Let {τ(i), i ∈ I} be a subset of the set of normalized immobile indices in problem
(3). Then there exists ε0 > 0 such that X (ε0) = X, the set X (ε) being defined in (13) with the
set T (ε) as in (11).

Proof. It follows from Proposition 2 that X ⊂ X (ε) for all ε > 0. To finalize the proof, it is
enough to show that there exists ε0 > 0 such that X (ε0) ⊂ X. Suppose the contrary. Then for
each ε > 0 there exist z(ε) ∈ X (ε) such that

(t(ε))⊤A(z(ε))t(ε) < 0, (14)

where t(ε) is an optimal solution of the problem

min
t∈T

t⊤A(z(ε))t. (15)

Since, by construction (see Proposition 3 and (13)), it holds

t⊤A(z(ε))t ≥ 0 ∀t ∈ T (ε) ∪ conv {τ(i), i ∈ I},

then t(ε) ∈ T̂ (ε) \ conv {τ(i), i ∈ I} for all ε > 0. Hence there exists t∗ := lim
ε→0

t(ε), t∗ ∈
conv {τ(i), i ∈ I}.
For ε > 0, let us consider the vector l(ε) := t(ε)− t∗. By construction, e⊤l(ε) = 0.
It is evident that there exists a sufficiently small ε̄ > 0 such that for k ∈ P , the following
conditions hold:

if t∗k = 0, then lk(ε̄) = tk(ε̄) ≥ 0 and if tk(ε̄) = 0, then t∗k = 0 and lk(ε̄) = 0.
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Consequently, the direction l := l(ε̄) is feasible for t∗ and t(ε̄) in the set T . Hence there exists
γ0 > 1 such that t∗ + γl = t∗ + γ(t(ε̄)− t∗) ≥ 0, e⊤(t∗ + γl) = 1 ∀γ ∈ [0, γ0].
Define the function

w(γ) := (t∗ + γl)⊤A(z(ε̄))(t∗ + γl)

= (t∗)⊤A(z(ε̄))t∗ + 2γl ⊤A(z(ε̄))t∗ + γ2l ⊤A(z(ε̄))l̄ = aγ2 + 2bγ + c,

where c := (t∗)⊤A(z(ε̄))t∗, b := l ⊤A(z(ε̄))t∗, a := l ⊤A(z(ε̄))l.

By construction, for γ∗ := 1 we have w(γ∗) = t⊤(ε̄)A(z(ε̄))t(ε̄) and it is the optimal value of
the cost function of the problem (15) with ε = ε̄. Hence

w(γ∗) = min
γ∈[0,γ0]

w(γ) = min
γ∈[0,γ0]

(aγ2 + 2bγ + c).

Since γ∗ = 1 ∈ (0, γ0) in the formula above, then 2aγ∗ + 2b = 2a + 2b = 0. Therefore −b = a,
which can be rewritten in the form −l ⊤A(z(ε̄))t∗ = l ⊤A(z(ε̄))l, wherefrom we get

(t(ε̄))⊤A(z(ε̄))t∗ = (t(ε̄))⊤A(z(ε̄))t(ε̄). (16)

Since t∗ ∈ conv {τ(i), i ∈ I}, then t∗ =
∑
i∈I

βiτ(i),
∑
i∈I

βi = 1, βi ≥ 0, i ∈ I.

Consequently, taking into account that z(ε̄) ∈ X (ε̄) and t(ε̄) ≥ 0, we have

(t(ε̄))⊤A(z(ε̄))t∗ =
∑

i∈I

βi(t(ε̄))
⊤A(z(ε̄))τ(i) ≥ 0.

But this inequality and inequality (14) contradict equality (16). The lemma is proved. �

It should be noticed that the lemma above can be considered as a generalization of Lemma 2
from [13] since it is formulated for an arbitrary subset {τ(i), i ∈ I} of Tim, while in Lemma
2 from [13] we considered the fixed subset of Tim, namely, the set of vertices of convTim.

3 An extended dual problem for Linear Copositive

Programming

In this section, we will formulate an extended dual problem for problem (2).
Given an arbitrary cone K ∈ S(p), the corresponding dual cone K∗ is defined as

K∗ := {A ∈ S(p) : A •D ≥ 0 ∀D ∈ K}.
It is known that the cone of symmetric positive semidefinite matrices P(p) is self-dual, i.e.
P∗(p) = P(p) but the cone of symmetric copositive matrices COPp defined in (1), is not.
It can be shown (see e.g. [2]) that for the cone COPp, its dual cone CPp is the cone of so-called
completely positive matrices, CPp : = conv{xx⊤ : x ∈ R

p
+}, and CPp ⊂ COPp.

For a given finite integer m0 ≥ 0, consider the following problem:

max −(U +Wm0
) • A0,

s.t. (Um +Wm−1) •Aj = 0, j = 0, 1, ..., n, m = 1, ..., m0;

(U +Wm0
) • Aj = cj, j = 1, 2, ..., n;

U ∈ CPp, W0 = Op,(
Um Wm

W⊤
m Dm

)
∈ CP2p, m = 1, ..., m0,

(17)
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where Um ∈ S(p), Dm ∈ S(p), Wm ∈ Rp×p, m = 1, ..., m0, and Op stays for the p × p null
matrix.
Notice that in the case m0 = 0, we consider that the index set {1, ..., m0} is empty and the

constraints (Um + Wm−1) • Aj = 0, j = 0, 1, ..., n,

(
Um Wm

W⊤
m Dm

)
∈ CP2p, m = 1, ..., m0, are

absent in problem (17). Hence, for m0 = 0, problem (17) takes the form

max −U • A0,

s.t. U • Aj = cj, j = 1, 2, ..., n; U ∈ CPp.
(18)

Lemma 2 [Weak duality] Let x ∈ X be a feasible solution of the primal linear copositive
problem (2) and

(Um, Wm, Dm, m = 1, ..., m0; U) (19)

be a feasible solution of problem (17). Then the following inequality holds:

c⊤x ≥ −(U +Wm0
) • A0. (20)

Proof. For m = 1, ..., m0, it follows from the condition

(
Um Wm

W⊤
m Dm

)
∈ CP2p that there exists

a matrix Bm with non-negative elements in the form

Bm =

(
Vm

Lm

)
∈ R

2p×k(m),

such that (
Um Wm

W⊤
m Dm

)
= BmB

⊤

m =

(
Vm

Lm

)
(V ⊤

m L⊤

m).

The matrix Bm above is composed by the blocks containing some matrices

Vm = (τm(i), i ∈ Im), Lm = (λm(i), i ∈ Im), (21)

where τm(i) ∈ R
p
+, λ

m(i) ∈ R
p
+, i ∈ Im, k(m) := |Im|,

Hence, for m = 1, ..., m0, the matrices Um, Wm, Dm in (17) admit representations

Um = VmV
⊤

m , Wm = VmL
⊤

m, Dm = LmL
⊤

m. (22)

Consider the first group of constraints of the dual problem (17): U1 • Aj = 0, j = 0, 1, ..., n.
Due to (21) and (22), these constraints can be rewritten in the form

∑

i∈I1

(τ 1(i))⊤Ajτ
1(i) = 0, j = 0, 1, ..., n. (23)

It follows from (23) that for any x ∈ Rn, we have

∑

i∈I1

(τ 1(i))⊤A(x)(τ 1(i)) = 0. (24)

Taking into account that for any x ∈ X , the inequalities

t⊤A(x)t ≥ 0 ∀t ∈ R
p
+, (25)
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should be fulfilled, equality (24) implies (τ 1(i))⊤A(x)τ 1(i) = 0, i ∈ I1, ∀x ∈ X.
Thus one can conclude that τ 1(i) ∈ Tim, i ∈ I1, and, consequently (see Proposition 2),

A(x)τ 1(i) ≥ 0, i ∈ I1, ∀x ∈ X. (26)

Suppose that for some m ≥ 1, it was shown that

A(x)τm(i) ≥ 0, i ∈ Im, ∀x ∈ X. (27)

Due to (21) and (22), the constraints (Um+1+Wm) •Aj = 0, j = 0, 1, ..., n, of problem (17) can
be rewritten as follows:

∑

i∈Im+1

(τm+1(i))⊤Ajτ
m+1(i) +

∑

i∈Im

(λm(i))⊤Ajτ
m(i) = 0, j = 0, 1, ..., n.

It follows from the latter equalities that for any x ∈ Rn, we have
∑

i∈Im+1

(τm+1(i))⊤A(x)τm+1(i) +
∑

i∈Im

(λm(i))⊤A(x)τm(i) = 0. (28)

By the hypothesis above, inequalities (27) are satisfied. Then, taking into account that λm(i) ∈
R

p
+, i ∈ Im, and for any x ∈ X , inequalities (25) hold, we conclude from (28) that

(τm+1(i))⊤A(x)τm+1(i) = 0, i ∈ Im+1, (λm(i))⊤A(x)τm(i) = 0, i ∈ Im, ∀x ∈ X.

Hence, τm+1(i) ∈ Tim, i ∈ Im+1, and, according to Proposition 2, it holds

A(x)τm+1(i) ≥ 0, i ∈ Im+1, ∀x ∈ X.

Now, replace m by m+ 1 and repeat the considerations for all m < m0.
Let m = m0. In this case, relations (27) have the form

A(x)τm0(i) ≥ 0, i ∈ Im0
, ∀x ∈ X, (29)

and for U =
∑
i∈I

τ(i)τ⊤(i), τ(i) ∈ R
p
+, i ∈ I, the constraints

(U +Wm0
) • Aj = cj, j = 1, ..., n,

of problem (17) can be represented as follows:
∑

i∈I

(τ(i))⊤Ajτ(i) +
∑

i∈Im0

(λm0(i))⊤Ajτ
m0(i) = cj , j = 1, ..., n. (30)

Then, evidently,
n∑

j=1

cjxj =
∑

i∈I

(τ(i))⊤A(x)τ(i) +
∑

i∈Im0

(λm0(i))⊤A(x)τm0(i)

−
(∑

i∈I

(τ(i))⊤A0τ(i) +
∑

i∈Im0

(λm0(i))⊤A0τ
m0(i)

)

=
∑

i∈I

(τ(i))⊤A(x)τ(i) +
∑

i∈Im0

(λm0(i))⊤A(x)τm0(i)− (U +Wm0
) •A0.

(31)

From (25) and (29) we conclude that

(τ(i))⊤A(x)τ(i) ≥ 0, i ∈ I; (λm0(i))⊤A(x)τm0(i) ≥ 0, i ∈ Im0
, ∀x ∈ X.

These inequalities together with equality (31) imply (20). The lemma is proved. �
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Lemma 3 [Strong duality] Let problem (2) have an optimal solution. Then there exist a number
0 ≤ m0 < ∞ and a feasible solution

(
U0
m, W

0
m, D

0
m, m = 1, ..., m0; U

0
)

(32)

of problem (17) such that for any optimal solution x0 of problem (2), it holds

c⊤x0 = −(U0 +W 0
m0

) • A0. (33)

Proof. To prove the lemma, we will algorithmically construct the number m0 and the matrices
(32).

Iteration # 0. Consider the following SIP problem:

min
(x,µ)

µ, s.t. t⊤A(x)t+ µ ≥ 0, t ∈ T, (34)

with the set T defined in (5). If there exists a feasible solution (x̄, µ̄) of this problem with
µ̄ < 0, then set m0 := 0 and GO TO the Final step.
Otherwise for any x ∈ X , the vector (x, µ0 = 0) is an optimal solution of problem (34). It
should be noticed that in problem (34), the index set T is a compact, and the constraints of
this problem satisfy the Slater condition. Hence, (see e.g. [6]), there exist indices and numbers

τ(i) ∈ T, γ(i) > 0, i ∈ I1, 1 ≤ |I1| ≤ n+ 1,

such that ∑

i∈I1

γ(i)(τ(i))⊤Ajτ(i) = 0, j = 0, 1, ..., n;
∑

i∈I1

γ(i) = 1. (35)

It follows from (35) that the set I1 is nonempty and τ(i) ∈ Tim, i ∈ I1.
Let us set β1(i) :=

√
γ(i), i ∈ I1, V 0

1 := (τ 0(i) := β1(i)τ(i), i ∈ I1), U
0
1 := V 0

1 (V
0
1 )

⊤.
Then equalities (35) take the form

U0
1 • Aj = 0, j = 0, 1, ..., n. (36)

Denote T1 := conv {τ(i), i ∈ I1} and proceed to the next iteration.

Iteration # 1. Consider the problem

min
(x,µ)

µ,

s.t. A(x)τ(i) ≥ 0, i ∈ I1, t⊤A(x)t+ µ ≥ 0, t ∈ {t ∈ T : ρ(t, T1) ≥ ε1},
(37)

where ε1 > 0 is such a number that the set of feasible solutions of problem (37) with µ = 0
coincides with the set X of feasible solutions of problem (2). According to Lemma 1, such
ε1 > 0 exists.
If there exists a feasible solution (x̄, µ̄) of problem (37) with µ̄ < 0, then STOP and GO TO
the Final step with m0 := 1.
Otherwise, (x, µ0 = 0) with any x ∈ X is an optimal solution of problem (37). In the SIP
problem (37), the index set {t ∈ T : ρ(t, T1) ≥ ε1} is compact, and the constraints satisfy the
following Slater type condition:

∃(x̂, µ̂) such that A(x̂)τ(i) ≥ 0, i ∈ I1, t
⊤A(x̂)t+ µ̂ > 0, t ∈ {t ∈ T : ρ(t, T1) ≥ ε1}.
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Hence (see [17]) there exist indices and numbers

τ(i) ∈ {t ∈ T : ρ(t, T1) ≥ ε1}, γ(i) > 0, i ∈ ∆I1, 1 ≤ |∆I1| ≤ n+ 1, (38)

and vectors λ1(i) ∈ R
p
+, i ∈ I1, such that

∑

i∈∆I1

γ(i)(τ(i))⊤Ajτ(i) +
∑

i∈I1

(λ1(i))⊤Ajτ(i) = 0, j = 0, 1, ..., n;
∑

i∈∆I1

γ(i) = 1. (39)

It follows from (39) that ∆I1 6= ∅ and for all x ∈ X , it holds

(τ(i))⊤A(x)τ(i) = 0, i ∈ ∆I1; (λ
1(i))⊤A(x)τ(i) = 0, i ∈ I1.

Hence τ(i) ∈ Tim, i ∈ ∆I1. From (35) and (39), we get

∑

i∈I2

γ(i)(τ(i))⊤Ajτ(i) +
∑

i∈I1

(λ1(i))⊤Ajτ(i) = 0, j = 0, 1, ..., n, (40)

where I2 := I1 ∪∆I1. Let us apply to the data set

{τ(i), γ(i), i ∈ ∆I1; τ(i), λ1(i), γ(i), i ∈ I1} (41)

a procedure which is described below.

Procedure DAM (Data Modification).

The Procedure starts with an initial data set

{τ(i), γ(i), i ∈ ∆I; τ(i), λ(i), γ(i), i ∈ I} (42)

such that
τ(i) ∈ Tim, τ(i) 6∈ conv{τ(i), i ∈ I}, γ(i) > 0, i ∈ ∆I;

τ(i) ∈ Tim, λ(i) ∈ R
p
+, γ(i) > 0, i ∈ I.

Set P+(i) := {k ∈ P : τk(i) > 0}, i ∈ ∆I ∪ I. If

P+(i) ∩ (P \ P+(s)) 6= ∅ ∀s ∈ ∆I ∀i ∈ I, (43)

then STOP. The Procedure DAM is complete.

If (43) is not satisfied, then find s0 ∈ ∆I and i0 ∈ I such that

P+(i0) ⊂ P+(s0). (44)

Set θ := min
k∈P

θk > 0, where θk :=

{
∞, if k ∈ P \ P+(i0),
τk(s0)/τk(i0), if k ∈ P+(i0).

Let us show that θ < 1. Suppose the contrary: θ ≥ 1. Hence θk ≥ 1 ∀k ∈ P+(i0), and
consequently, τk(s0) ≥ τk(i0) > 0, k ∈ P+(i0). Notice that since

1 = e⊤τ(i0) =
∑

k∈P+(i0)

τk(i0) ≤
∑

k∈P+(i0)

τk(s0) ≤
∑

k∈P+(s0)

τk(s0) = e⊤τ(s0) = 1,

10



we conclude that
∑

k∈P+(i0)

τk(s0) = 1,
∑

k∈P+(i0)

τk(i0) = 1, and τk(s0) ≥ τk(i0) > 0 ∀k ∈ P+(i0).

It follows from the latter conditions that τ(s0) = τ(i0) which contradicts the assumption
τ(s0) 6∈ conv{τ(i), i ∈ I}. The contradiction proves that θ < 1.

Since, by construction, θ is strictly positive, then the double inequality 0 < θ < 1 is valid.

In the data set (42), let us perform the following replacements:

τ(s0) −→ τ̄ (s0) = (τ(s0)− θτ(i0))/(1− θ) ≥ 0, e⊤τ̄ (s0) = 1, τ̄ (s0) 6∈ conv{τ(i), i ∈ I};
λ(i0) −→ λ̄(i0) = λ(i0) + 2γ(s0)θ(1− θ)τ̄ (s0) ≥ 0;

γ(i0) −→ γ̄(i0) = γ(i0) + γ(s0)θ
2 > 0;

γ(s0) −→ γ̄(s0) = γ(s0)(1− θ)2 > 0.

All other data remain unchanged.

For the modified data set, check condition (43). If it is satisfied, then STOP, the procedure
is complete. If (43) is not satisfied, then find new indices s0 ∈ ∆I and i0 ∈ I such that
inclusion (44) is valid and repeat the steps described above.

The Procedure DAM is completely described.

Let us continue proving the Lemma. Recall that we are performing the Iteration #1 of the
algorithm. Having applied the Procedure DAM to the data set (41), one obtains a new
(modified) data set in the same form (41) such that

• the indices τ(i), i ∈ I1, are the same as in the initial data set (i.e., the procedure leaved these
indices unchanged);
• the modified indices τ(i), i ∈ ∆I1, are the immobile ones in problem (3);
• for the modified indices τ(i) and numbers γ(i), i ∈ ∆I1, relations (38) are fulfilled;
• for the modified vectors λ1(i) and numbers γ(i), i ∈ I1, it holds λ

1(i) ∈ R
p
+, γ(i) > 0, i ∈ I1;

• for the modified data set (41), relations (43) with ∆I = ∆I1, I = I1 and (40) are satisfied.

Using the new data (obtained as the result of applying the Procedure DAM to the initial data
set (41)), denote:

β2(i) :=
√
γ(i), i ∈ I2, V

0
2 := (β2(i)τ(i), i ∈ I2), L

0
1 := (λ1(i)/β1(i), i ∈ I1),

U0
2 := V 0

2 (V
0
2 )

⊤, W 0
1 := L0

1(V
0
1 )

⊤, D0
1 := L0

1(L
0
1)

⊤.

Then relations (40) can be written as follows:

(U0
2 +W 0

1 ) • Aj = 0, j = 0, 1, ..., n. (45)

GO TO the next iteration.
Iteration # m, m ≥ 2. By the beginning of the iteration, the numbers βm(i) > 0, i ∈ Im, as
well as the indices, vectors and numbers

τ(i) ∈ Tim, γ(i) > 0, i ∈ Im = Im−1 ∪∆Im−1, λ
m−1(i) ∈ R

p
+, i ∈ Im−1,
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are found such that

• relations (43) with ∆I = ∆Im−1 6= ∅, I = Im−1 hold;
• the following equalities are satisfied:

∑

i∈Im

γ(i)(τ(i))⊤Ajτ(i) +
∑

i∈Im−1

(λm−1(i))⊤Ajτ(i) = 0, j = 0, 1, ..., n. (46)

Using these data, matrix

V 0
m = (βm(i)τ(i), i ∈ Im) with βm(i) > 0, i ∈ Im, (47)

was constructed.
Denote Tm := conv{τ(i), i ∈ Im} and consider the problem

min
(x,µ)∈Rn+1

µ,

s.t. A(x)τ(i) ≥ 0, i ∈ Im, t⊤A(x) + µ ≥ 0, t ∈ {t ∈ T : ρ(t, Tm) ≥ εm},
(48)

where εm > 0 is such a number that the feasible set of problem (48) with µ = 0 coincides with
the feasible set X of problem (2). According to Lemma 1, such εm exists.
If there exists a feasible solution (x̄, µ̄) of problem (48) with µ̄ < 0, then STOP and GO TO
the Final step with m0 := m.
Otherwise for any x ∈ X, vector (x, µ0 = 0) is an optimal solution of problem (48).
Since in problem (48) the index set {t ∈ T : ρ(t, Tm) ≥ εm} is compact, and the constraints
satisfy the Slater type condition, then the optimality of (x, µ0 = 0) provides that there exist
indices and numbers

τ(i) ∈ R
p
+, e

⊤τ(i) = 1, τ(i) 6∈ Tm; γ(i) > 0, i ∈ ∆Im, 1 ≤ |∆Im| ≤ n+ 1, (49)

and vectors
λ̂m(i) ∈ R

p
+, i ∈ Im, (50)

that satisfy the following equalities:

∑

i∈∆Im

γ(i)(τ(i))⊤Ajτ(i) +
∑

i∈Im

(λ̂m(i))⊤Ajτ(i) = 0, j = 0, 1, ..., n;
∑

i∈∆Im

γ(i) = 1. (51)

It follows from (51) that

(τ(i))⊤A(x)τ(i) = 0, i ∈ ∆Im; (λ̂
m(i))⊤A(x)τ(i) = 0, i ∈ Im, ∀ x ∈ X,

and, therefore, τ(i) ∈ Tim, i ∈ ∆Im.
Based on (46) and (51), one can conclude that

∑

i∈Im+1

γ(i)(τ(i))⊤Ajτ(i) +
∑

i∈Im

(λm(i))⊤Ajτ(i) = 0, j = 0, 1, ..., n, (52)

where Im+1 := Im ∪∆Im, and the vectors λm(i) ∈ R
p
+, i ∈ Im, are constructed as follows:

λm(i) =

{
λm−1(i) + λ̂m(i), i ∈ Im−1,

λ̂m(i), i ∈ ∆Im−1 = Im \ Im−1.
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Having applied the described above Procedure DAM to the data set

{τ(i), γ(i), i ∈ ∆Im; τ(i), λm(i), γ(i), i ∈ Im}, (53)

one will get the modified data set (in the same form) such that

• the indices τ(i), i ∈ Im, are the same as in the initial data set (these indices are not changed
by the Procedure DAM);
• the modified indices τ(i), i ∈ ∆Im, are the immobile ones in problem (3);
• for the modified indices τ(i) and numbers γ(i), i ∈ ∆Im, relations (49) are fulfilled;
• for the modified vectors λm(i) and numbers γ(i), i ∈ Im, it holds

λm(i) ∈ R
p
+, γ(i) > 0, i ∈ Im;

• the modified data (53) satisfy relations (43) with ∆I = ∆Im, I = Im and relations (52).

Using these new data, let us set

βm+1(i) :=
√

γ(i), i ∈ Im+1; V
0
m+1 := (βm+1(i)τ(i), i ∈ Im+1), L

0
m := (λm(i)/βm(i), i ∈ Im),

U0
m+1 := V 0

m+1(V
0
m+1)

⊤, W 0
m := L0

m(V
0
m)

⊤, D0
m := L0

m(L
0
m)

⊤,

where matrix V 0
m was defined at the previous iteration according to (47). Then relations (52)

can be written in the form:

(U0
m+1 +W 0

m) • Aj = 0, j = 0, 1, ..., n. (54)

Perform the next Iteration #(m+ 1).

Final step. It will be proved in Lemma 4 (see below) that the algorithm consists of a finite
number of iterations.
Hence, for some 0 ≤ m0 < ∞, one of the following situations will arise:

a) m0 = 0 and for problem (34) there exists a feasible solution (x̄, µ̄) with µ̄ < 0;
b) m0 > 0 and for problem (48) with m = m0 there exists a feasible solution (x̄, µ̄) with

µ̄ < 0.

In situation a) the constraints of the original problem (2) satisfy the Slater condition. Hence,
according to the well-known optimality conditions (see [1], for example), if x0 is an optimal
solution of problem (2), then there exists a matrix U0 ∈ CPp such that

U0 • Aj = cj , j = 1, 2, ..., n; U0 • A(x0) = 0.

It follows from the relations above that U0 is a feasible solution of the dual problem (18) and
equality (33) holds.
Consider situation b): m0 > 0. By the beginning of the final step, the matrices

U0
s ,W

0
s , D

0
s , s = 1, ..., m0 − 1; W0 = Op, U

0
m0

= V 0
m0

(V 0
m0

)⊤,

the immobile indices τ(i), and numbers βm0
(i) > 0, i ∈ Im0

, have been constructed.

Consider the problem

min
x

c⊤x ,

s.t. A(x)τ(i) ≥ 0, i ∈ Im0
, t⊤A(x)t ≥ 0, t ∈ {t ∈ T : ρ(t, Tm0

) ≥ εm0
},

(55)
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where εm0
> 0 is the number used when problem (48) with m = m0 was formulated. The way

the number εm0
has been chosen guarantees that the feasible set of problem (55) coincides with

the feasible set of problem (2).
Problem (55) satisfies a Slater type condition since, by construction,

A(x̄)τ(i) ≥ 0, i ∈ Im0
, t⊤A(x̄)t ≥ −µ̄ > 0, t ∈ {t ∈ T : ρ(t, Tm0

) ≥ εm0
},

and the index set {t ∈ T : ρ(t, Tm0
) ≥ εm0

} is compact.
Let x0 be an optimal solution of problem (2). Then vector x0 is optimal in problem (55) as
well. Hence, there exist indices, numbers and vectors

τ(i) ∈ R
p
+, e

⊤τ(i) = 1, τ(i) 6∈ Tm0
, γ(i) > 0, i ∈ I; λm0(i) ∈ R

p
+, i ∈ Im0

,

such that ∑

i∈I

γ(i)(τ(i))⊤Ajτ(i) +
∑

i∈Im0

(λm0(i))⊤Ajτ(i) = cj , j = 1, ..., n, (56)

(τ(i))⊤A(x0)τ(i) = 0, i ∈ I; (λm0(i))⊤A(x0)τ(i) = 0, i ∈ Im0
. (57)

Let us set
V 0 := (τ(i)

√
γ(i), i ∈ I), L0

m0
:= (λm0(i)/βm0

(i), i ∈ Im0
),

U0 := V 0(V 0)⊤, W 0
m0

:= L0
m0

(V 0
m0

)⊤, D0
m0

:= L0
m0

(L0
m0

)⊤.

Then relations (56) take the form

(U0 +W 0
m0

) • Aj = cj, j = 1, ..., n. (58)

It follows from (36), (45), (54), and (58) that the constructed set of matrices (32) is a feasible
solution of problem (17).
It was shown above that for any feasible solution x ∈ X of problem (2) and any feasible solution
(19) of problem (17), the inequality (20) holds. From the equalities (31) and (57), it follows
that the feasible solution x0 ∈ X of the primal problem (2) and the constructed above feasible
solution (32) of problem (17) turn the inequality (20) into equality. The lemma is proved. �

Lemma 4 The described in the proof of Lemma 3 algorithm is finite (i.e. it stops after a finite
number of iterations).

Proof. If the algorithm has stopped on the Iteration # 0 or the Iteration # 1, the lemma is
proved. Otherwise let us consider an Iteration # m of the algorithm for some m ≥ 2.
At the beginning of this iteration, we have the set of indices τ(i) ∈ R

p
+, i ∈ Im, where

Im = Im−1 ∪∆Im−1 = ∆I0 ∪∆I1 ∪ ... ∪∆Im−1 and ∆I0 := I1, ∆Is 6= ∅, s = 0, ..., m− 1.

As before, denote P+(i) := {k ∈ P : τk(i) > 0}, i ∈ ∆Is, s = 0, 1, ..., m− 1.
Let is be an index from the set ∆Is: is ∈ ∆Is, s = 0, 1, ..., m− 1.
For any k, 2 ≤ k ≤ m, and any s, 0 ≤ s ≤ k − 2, by construction, it holds

is ∈ Ik−1 = ∆I0 ∪∆I1 ∪ ... ∪∆Ik−2, ik−1 ∈ ∆Ik−1,

and the relations (43) are fulfilled with ∆I = ∆Ik−1 and I = Ik−1. Hence

P+(is) ∩ (P \ P+(ik−1)) 6= ∅, s = 0, 1, ..., k − 2, k = 2, ..., m,
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wherefrom we conclude

P+(is) 6⊂ P+(ik−1), s = 0, 1, ..., k − 2, k = 2, ..., m. (59)

Consequently, all the sets P+(is), s = 0, 1, ..., m− 1, are different.

Taking into account that on each Iteration # m it holds ∆Is 6= ∅, s = 0, 1, ..., m− 1, one can
conclude that the number m0 of the iterations fulfilled by the algorithm, cannot be greater than
some finite number m∗, where m∗ is the maximal number of all different subsets of the set P
satisfying (59). The lemma is proved. �

Remark 1 The main contribution of the algorithm used in the proof of Lemma 3, consists in
the justification of the existence of a finite number m0 and the corresponding feasible solution
(32) of problem (17) for which equality (33) is satisfied.
It worth to mention that it was not the aim of this paper to find a “good ”estimate of the
minimal value of the number m0.
Notice also that it is possible that someone can offer other (pehaps more complex) procedures
for finding the finite sets of matrices (32) satisfying the constraints of problem (17) and the
equality (33). Some of such procedures may provide a better (smaller than m∗) estimate of the
number m0.

Remark 2 In the case of isolated immobile indices, the set of immobile indices is finite: Tim =
{t∗(j), j ∈ J∗}, |J∗| < ∞ (see Proposition 2.5 in [14]). Then on each Iteration # m of the
algorithm it holds

∆Im 6= ∅, {τ(i), i ∈ ∆Im} ⊂ {t∗(j), j ∈ J∗},
{τ(i), i ∈ ∆Ik} ∩ {τ(i), i ∈ ∆Is} = ∅ ∀k = 1, ..., m ∀s = 1, ..., m; k 6= s,

and relations (43) are satisfied. Hence is this case one does not need to use the Procedure DAM

and has m0 ≤ |J∗|.

The main result of the paper can be formulated in the form of the following theorem which is
a consequence of Lemmas 2 and 3.

Theorem 1 There exists a finite m0 ≥ 0 such that problem (17) is dual to the original linear
copositive problem (2) and the strong duality relations are satisfied, i.e. if the primal problem
(2) admits an optimal solution x0, then the dual problem also has an optimal solution in the
form (32) and equality (33) holds.

Remark 3 In our recent paper [13], we have suggested another strong dual formulation for
Linear Copositive Programming. This formulation was based on the knowledge of the extremal
points of the set conv Tim. In the present paper, the extended dual problem for the linear coposi-
tive problem (2) is also obtained using the concept and the properties of the normalized immobile
index set, but in its final formulation, we do not use neither the elements of this set (the im-
mobile indices), nor the extremal points of its convex hull.

At the end of this section, we would like to note that as far as we know, with the exception of
the mentioned above paper [13], all previously published optimal conditions and duality results
for Linear Copositive Programming are formulated under the Slater condition. Here we do
not suppose that the Slater condition is satisfied. All of this demonstrates the importance and
novelty of the results of the paper.
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4 Linear SDP

Consider a linear SDP problem

min
x

c⊤x s.t. A(x) ∈ P(p). (60)

Following [25], let us adduce the M. Ramana et al.’ extended dual for this problem:

max −(Ũ + W̃m0
) • A0,

s.t. (Ũm + W̃m−1) • Aj = 0, j = 0, 1, ..., n, m = 1, ..., m0,

(ED-R) : (Ũ + W̃m0
) • Aj = cj , j = 1, 2, ..., n; Ũ ∈ P(p), W̃0 = Op,(

Ũm W̃m

W̃⊤
m I

)
∈ P(2p), m = 1, ..., m0. (61)

It is easy to notice that the new dual problem (17) obtained in this paper for problem (2)
has a similar structure and properties as the dual problem (ED-R) for SDP problem (60).
Nevertheless, it is worth mentioning that these dual problems were obtained using different
approaches: the dual problem (17) was formulated and its properties were established using
(implicitly) the concept of the immobile indices while the dual SDP problem (ED-R) (referred
in [25] as the regularized dual problem (DRP)) was derived using the notion of the minimal cone
which was described there as the output of a special procedure.
To compare these results, let us apply the approach, developed in this paper for Linear Copos-
itive Programming, to the SDP problem (60). Having repeated the described in Section 3
process of building the dual problem, one can obtain the extended dual to problem (60) in the
form

max −(U +Wm0
) • A0,

s.t. (Um +Wm−1) • Aj = 0, j = 0, 1, ..., n, m = 1, ..., m0,

(ED) : (U +Wm0
) •Aj = cj , j = 1, 2, ..., n, U ∈ P(p), W0 = Op,(

Um Wm

W⊤
m Dm

)
∈ P(2p), m = 1, ..., m0. (62)

The only difference in formulations (ED) and (ED-R) consists of the right lower blocks of the
matrices (61) and (62). Let us show that these problems are equivalent.

In fact, let (Ũm, W̃m, m = 1, ..., m0, Ũ) be a feasible solution of problem (ED-R). It is evident

that (Um = Ũm, Wm = W̃m, Dm = I, m = 1, ..., m0, U = Ũ) is a feasible solution of problem
(ED) with the same value of the cost function.
Now let us show that for any feasible solution

(Um, Wm, Dm, m = 1, ..., m0, U) (63)

of problem (ED) there exists a feasible solution

( Ũm, W̃m, m = 1, ..., m0, Ũ) (64)

of problem (ED-R) with the same value of the cost function.
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Notice that for m = 1, ..., m0, it follows from the inclusion (62) that there exists a matrix

Bm =

(
Vm

Lm

)
∈ R

2p×k(m) with Vm ∈ R
p×k(m) and Lm ∈ R

p×k(m),

such that (
Um Wm

W⊤
m Dm

)
= BmB

⊤

m =

(
Vm

Lm

)
(V ⊤

m L⊤

m).

Hence, for m = 1, ..., m0, matrices Um, Wm, Dm admit representations

Um = VmV
⊤

m , Wm = VmL
⊤

m, Dm = LmL
⊤

m,

with some matrices Vm, Lm.
Let (63) be a feasible solution of problem (ED). Set

Ũ := U, W̃m0
:= Wm0

, ρ(m0) := max{1, µmax(L
⊤

m0
Lm0

)},

Ũm0
:= ρ(m0)Um0

, W̃m0−1 := ρ(m0)Wm0−1.

Here µmax(Q) denotes the maximal eigenvalue of matrix Q ∈ Rp×p.
It is easy to check that, by construction, we have

(Ũ + W̃m0
) • Aj = cj, j = 1, 2, ..., n; (Ũm0

+ W̃m0−1) • Aj = 0, j = 0, 1, ..., n.

Let us show that
Ũm0

− W̃m0
W̃⊤

m0
∈ P(p), (65)

or equivalently,
t⊤ Vm0

(ρ(m0)I − L̃(m0))V
⊤

m0
t ≥ 0 ∀t ∈ R

p,

or
τ⊤(ρ(m0)I − L̃(m0))τ ≥ 0 ∀τ ∈ {τ ∈ R

p : τ = V ⊤

m0
t, t ∈ R

p} ⊂ R
p,

where L̃(m0) := L⊤
m0

Lm0
.

It is known (see [20], p. 230) that for any real symmetric matrix Q ∈ S(p), the inequality
t⊤Qt ≤ µmax(Q)t⊤t is satisfied for any t ∈ Rp. Hence

τ⊤(ρ(m0)I − L̃(m0))τ = ρ(m0)τ
⊤τ − τ⊤L̃(m0)τ ≥ (ρ(m0)− µmax(L̃(m0)))τ

⊤τ ≥ 0 ∀τ ∈ R
p.

Inclusion (65) is proved.

Suppose that for some m ≤ m0 we have constructed matrices

Ũ , Ũm0
, ..., Ũm, W̃m0

, ..., W̃m, W̃m−1,

and such a number ρ(m) > 0 that W̃m−1 = ρ(m)Wm−1 and the following relations hold:

(Ũ + W̃m0
) • Aj = cj , j = 1, 2, ..., n;

(Ũs + W̃s−1) •Aj = 0, j = 0, 1, ..., n, Ũs − W̃sW̃
⊤

s ∈ P(p), s = m0, m0 − 1, ..., m.
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Let us set
ρ(m− 1) := max{1, ρ2(m)µmax(L

⊤

m−1Lm−1)},
Ũm−1 := ρ(m− 1)Um−1, W̃m−2 := ρ(m− 1)Wm−2.

Applying the described above rules for the cases where m = m0, m0 − 1, ..., 2, we can construct
matrices Ũ , Ũm0

, ..., Ũ2, W̃m0
, ..., W̃2, W̃1 and the number ρ(2) > 0 such that W̃1 = ρ(2)W1.

Set ρ(1) := max{1, ρ2(2)µmax(L
⊤
1 L1)}, Ũ1 := ρ(1)U1.

One can check that the constructed above matrices form a feasible solution (64) of problem
(ED-R) and it holds

(Ũ + W̃m0
) • A0 = (U +Wm0

) • A0.

Hence, for the SDP problem (60), we have shown that the dual problem in the form (ED) is a
slight modification of the known dual problem (ED-R).

Now, let us compare two pairs of primal and dual problems:

(α) the linear copositive problem (2) and its dual one (17), and

(β) the SDP problem (60) and its dual one (ED).

One can see that these pairs of dual problems are constructed in spaces S(p) and S(2p) using
the same rules, but their constraints are defined with the help of different dual cones:

• in the pair of problems (2) and (17), the cone COPp is used to formulate the constraints
of the primal copositive problem and the dual cones CPp and CP2p are used to formulate
the constraints of the dual one;

• in the pair of SDP problems (60) and (ED), the cone P(p) is used to formulate the
constraints of the primal SDP problem and the dual cones P∗(p) = P(p) and P∗(2p) =
P(2p) are used for the dual formulation.

This similarity points to a deep relationship between these two classes of conic problems, Linear
Copositive Programming and SDP. At the same time, it is worth mentioning that copositive
problems are more complex and less studied when compared with that of SDP.

Remark 4 When comparing the complexity of the mentioned above procedures of constructing
the pairs of dual problems in SDP and Linear Copositive Programming, notice the following.

• For SDP problems, one has an estimate m0 ≤ min{n, p} of the number m0. This estimate
can be found using the fact that the set of immobile indices for an SDP problem is a
subspace of Rp and the properties of semi-definite matrices are well-studied [15].

• For linear copositive problems, determining a good estimate of m0 is a much more chal-
lenging task as the set of immobile indices is a union of a finite number of convex cones in
Rp. Notice that the cone of copositive matrices and its dual cone (the cone of completely
positive matrices) are not so well studied (there are many open questions here [5, 8]).

• The cones of copositive and completely positive matrices are neither self-dual nor homo-
geneous (see [9]).

As it was noticed above, finding a good estimate of the number m0 for copositive problems was
not our purpose here. We plan to devote a special paper to this issue.
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5 Conclusions and future work

The main contribution of the paper consists in developing a new approach to dual formulations
in Linear Copositive Programming. This approach permitted us to formulate a new extended
dual problem in explicit form and to close the duality gap between the optimal values of the
copositive problem and its extended dual without any CQs or other additional assumptions.
To the best of our knowledge, with the exception of our previous papers [13, 16], in Linear
Copositive Programming, there are no other known explicit strong dual formulations that do
not require CQs.
In [13, 16], the dual problems were formulated based on the explicit knowledge of the immo-
bile index set. The advantage of the dual results presented here if compare with that of the
mentioned above results consists in the fact that now there is no need to find explicitly either
the elements of the normalized immobile index set or the extremal points of its convex hull.
For linear copositive problems, the dual formulations obtained in the paper are original and
different from that published before.
The new dual formulation for Linear Copositive Programming is similar to the dual formulation
for SDP problem proposed by M.Ramana et al. [25]. This similarity and the fact that the
duality results obtained in this paper (i) do not use CQs, (ii) have explicit formulation, and
(iii) are strong, motivate us to study other applications of the developed approach based the
notion of the immobile indices.
In our future work, we are going to find a better estimate of the number m0 that is essential
for our dual formulation. To obtain this estimate, it will be necessary to study new properties
of the extended dual problem and its feasible set. We plan also to apply the results of the
paper for other classes of copositive problems with the aim to develop new explicit optimality
conditions.
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