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Abstract: In this paper, further research is conducted for a synergetic model that describes the
state of the material surface in the process of laser irradiation. Namely, the previously studied
approach of mutually coordinated behavior of the relaxation field, concentration of relaxation zones,
and field of stress is supplemented with a nonlinear term. It is shown that, using this model,
we can describe the behavior of different types of systems. During the analysis, five stationary
states were found which correspond to different modes of formation of relaxation areas on the
surface. The regions of parameters are found at which one or another mode of the system behavior is
established. Phase portraits are constructed for each mode and the kinetics of the system is described.
The obtained results qualitatively coincide with the experimental data.
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1. Introduction

Various methods for obtaining nanoscale structural objects on the surface of solids are of great
interest for mechanics, metallurgy, chemistry, and solid state physics. Often such structures are
generated during laser irradiation of the material, they are usually localized in the surface layer of
solids, but mainly affect the various properties of the material [1]. Such nanocoatings are widely used in
different fields of technology and science for a variety of tasks [2]. In electronics, electrical engineering,
spectroscopy, and optics, such tasks are reduced to the improvement of thermal, absorbing, radiating,
and electric properties of materials. For example, [3] discusses centimeter-sized chemical vapor
deposition synthesis with a laser of a free-standing, continuous and stable single-layer amorphous
carbon, topologically different from disordered graphene. In the chemical industry, they boil down
to the initiation of catalytic capabilities of the material or to the change of surface wetting properties.
The increasing of the wear resistance by applying nanocoating on the walls of metals and ceramics,
that work in conditions of severe corrosion, improves the performance of various devices and
reduces friction between individual parts. Thus, the development of new approaches to the physical
foundations of structuring, which lead to the formation of nanoscale reliefs on the surface of superhard
ceramic materials, diamond films, metals and alloys, polymers, and biomaterials, becomes relevant.

Typically, for nanostructuring by laser radiation, one can use the interference effect of two or more
laser beams or templates projected onto a surface. The result is a spatial modulation of the distribution
of the incident radiation intensity with characteristic nanoperiods [1]. Unlike methods where electron
or ion beams are used for the process of material nanostructuring, laser processing methods do not
require placing the beam and the irradiated sample in a special vacuum chamber. Therefore, we will
consider further the creation of surface nanostructures with a simpler method, i.e., using a laser beam.
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The structural states obtained after laser treatment are very diverse, but for any region, its shape
changes after the transformation of the old phase of the region into a new one. As a result, a characteristic
relief appears on the flat surface of the sample with individual parameters of macroscopic strain for each
type of transformation. The method of creating nanostructured objects on the surface of material by a
single laser beam is called the method of direct laser nanostructuring. Compared to other methods, it is
more flexible and easy to implement. When using a single laser beam of a small size, the high locality
of action is achieved; it is fixed by the size of one beam and the step of its scanning on the surface.
The process of scanning the surface using radiation with a high frequency of repetitive pulses makes it
possible to process large surfaces with a sufficiently high value of spatial resolution.

As the experimental data show, the method of direct laser nanostructuring consists of multiple
exposures to one laser beam on the sample under study. Irradiation of the material can be carried out
both with a stationary laser beam and with its movement along the surface at a given speed. To simulate
the processes of nanostructuring of matter under the action of short laser pulses on the surface of a
solid, it is necessary to understand the arising physical processes [1–8]. Since these processes take
place in extremely small volumes and time intervals, high heating and cooling rates appear, as well as
large spatial temperature gradients. This leads to various phase transitions (melting, evaporation),
thermionic emission, gas desorption, thermomechanical effects (thermal expansion, thermal stress),
and structural changes [1,5–8]. Understanding which of these processes is predominant, it is possible
to develop a model for estimating the characteristic parameters of the resulting nanostructures.

Many processes (for example, melting of a material by continuous laser radiation) are well
described theoretically. It was found experimentally for the melting regime that the involved
mechanism is thermal. For example, in [8], nanostructures are presented in the form of bulges with
rounded tops on the germanium surface. These structures were obtained by irradiating the sample
with an ArF laser at a total energy density in the center of the spot of about 4 J/cm2, the number
of pulses is 20, and a repetition rate of 2 Hz. The period of the structures is from 40 to 120 nm,
their amplitude is 40–70 nm. The rounded shape of the obtained nanoreliefs indicates the surface
melting by laser radiation and further crystallization. As a result, the final structure of the material
surface, on the one hand, is determined by the dynamics of the melt movement, and on the other,
by the kinetics of the crystallization process. Moreover, a theoretical description of the kinetics of
such processes is insufficient. The most general theoretical approach is based on the analysis of the
distribution function of the number of particles of the crystalline phase.

For other examples, the characteristic formation of cracks or protruding points on the surface
indicates deformation of the material due to phase and structural transformations. A similar experiment
is described in [4,7,8], where an ArF laser with a laser energy density of 0.18 J/cm2 was used. As a
result, cracking of the surface layer and features of the relief in the form of protruding points with
sizes from 1 to 5 µm were found. Since, in this case, under the influence of laser radiation material has
a high thermal stress, the deforming process under these conditions is accompanied by residual strain.
The appearance of the residual deformation is due to inelastic effects and rearrangement of crystal
defect structure. In this case, the mechanism of absorption of laser radiation by a metal surface during
the formation of surface nanostructures is nonlinear and has a heterogeneous character [4,6,7].

Recently, studies [4,7,9] give gradual progress in describing the basics and patterns of formation
of real surface structures. The current state of this research requires: firstly, the accumulation of much
more practical experience in studying the mechanisms and processes of the nanostructures formation;
secondly, the creation of new theories that help to explain the operation of such mechanisms [2,10–17].

Along this line, the governing evolution equations of the Lorenz-type for relaxation and stress
fields, as well as concentration of relaxation zones are determined in Section 2. The model permits to
describe the nanostructuring processes of material surface under influence of laser radiation. In contrast
to the previous approaches, here nonlinear effects in the mechanism of nanostructure formation are
considered using a nonlinear relationship between the relaxation and stress fields with the rate of
change of the relaxation field. Section 3 represents steady-state analysis of the basic relations in terms
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of effective energy that allows us to depict the formation of stationary nanostructures. The description
of the resulting nanostructured objects is carried out using the adiabatic approximation taking into
account that evolution of stresses and concentration of relaxation zones follow changes of relaxation
field. The diagram is built determining residual stress established due to relaxation, ratios of relaxation
times of basic parameters and coupling constants, and specifying the types of the stationary modes.
In Section 4, the expressions for Lyapunov exponents are obtained, which define the stability of steady
states and the phase dynamics of nanostructuring processes. Using the three-dimensional phase
portraits, formation mechanisms of different nanostructures are described. Section 5 is devoted to
brief conclusions.

2. Phenomenological Model

At a sufficiently high stress, the process of deformation of a solid is accompanied by residual
strain, the appearance of which relates to the rearrangement of the defective crystal structure and with
inelastic effects. Stress relaxation can be localized through the formation of the relaxation zones and
zones of a new structure [4]. These processes are associated with the collective behavior of the excited
interacting atoms, making the relaxation process nonlinear.

Exposing a solid to the high mechanical stresses caused by a laser beam can excite many atoms.
In an excited state, an atom travels a lattice parameter distance during the Debye time. As a result,
the position of the atom, averaged over a macroscopically small time, cannot be associated to a
particular site. Then, due to nucleation of new structure and relaxation zones, the relaxation of
this excited state can occur. Depending on the external conditions and the stage of the deformation
process development, the relaxation zones can be assigned to: groups of dislocations or disclinations;
groups of atoms, forming the clusters; groups of vacancies, forming the dislocation loops; micropores;
microcracks, etc.

Thus for a deformable solid the thermodynamic potential can be written [1,4] as

dΦ = −SdT +
N1

∑
k

Akdak +
N2

∑
k

xkdξk, (1)

where S is the entropy that characterizes the unbalanced (disordered) state of the system, ak are the
external parameters determining the solid state; Ak are the general forces associated with the external
parameters ak; ξk are the internal parameters characterizing the solid state with given temperature T
and external parameters ak; parameters xk determine the internal field; N1 and N2 are the corresponding
number of external and internal parameters, respectively.

The disordered state of an elastically deformed solid is characterized by the strain tensor εik,
the stress tensor σik, the temperature T, and additional internal parameters of the state ψ

(1)
ik , ψ

(2)
ik , . . . ,

ψ
(N)
ik , which determine the deviation degree of the system state from the order for given T and εik.

The number of internal state parameters ψ
(η)
ik together with T and εik can completely determine the

system state. Using the equation [1] where the process rate depends linearly on the thermodynamic
force, one can determine the rate of change for the relaxation tensor ψ̇

(η)
ik :

∂Φ

∂ψ
(η)
ik

= ∑
θ

h(η,θ)
iklm ψ̇

(θ)
lm , (2)

where Φ is the density of the thermodynamic potential for the deformable solids; h(η,θ)
ikim are the material

constants. In such equation the stationary states, corresponding to different spatial forms, are stable [1].
Analyzing the deformed solid behavior, the set of relaxation parameters ψ

(η)
ik is presented as one

parameter through the residual strain ε0
ij(r, t). So, the field of the relaxation process is determined by

the mesoscopic relaxation parameter:
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ϕik(r, t) =
1

V0

∫
V0

ε0
ij(r, t)dV, (3)

where V0 is the volume, on which the averaging is performed.
Thus, the structural state transitions for a solid surface under laser treatment can be represented

by the self-consistent behavior of the parameters: the field of the relaxation process, which is specified
by the parameter ϕik(r, t), field of stress (or external load) σik(r, t), and the concentration of relaxation
zones n(r, t). The resulting time dependencies for ϕik(r, t), n(r, t), σik(r, t) correspond to the system of
three nonlinear differential equations

∂ϕik
∂t

= − ϕik
τϕ

+ aϕn− aϕσ ϕikσ2
ik, (4)

∂n
∂t

= − n
τn

+ an ϕikσik, (5)

∂σik
∂t

=
σ0 − σik

τσ
− aσ ϕikn. (6)

Similarly to the Lorenz system [18–26] in the Equations (4)–(6), the relaxation field ϕik(r, t) acts as
order parameter. For the disordered state ϕik = 0, that is, there is no relaxation field. The concentration
of relaxation zones n is a field conjugated to order parameter. In this case the role of third (control)
parameter is played by the stress field σik(r, t). The relaxation times for the specified parameters
correspond to τϕ, τn, τσ; aϕ, aϕσ, an, aσ are the positive coupling constants. The applied external load
is determined by value σ0 = const and corresponds to the residual stress that is established due to
relaxation process.

The first terms in the right-hand sides of the Equations (4)–(6) describe, respectively, the process
of relaxation damping, the relaxation zones collapse and stress relaxation in the linear approximation,
when the mutual influence of the parameters is not taken into account. The second and third terms
illustrate linear and nonlinear relations during the relaxation. For the first equation, for example,
this relates to the relaxation field generation because of relaxation zones formation and reverse
nonlinear influence of stress field. In the second one, it consider the effect of the relaxation ϕik(r, t)
and stress fields σik(r, t) on the origin of the relaxation zones. For the third equation, it reflects the
influence of the relaxation field and concentration of relaxation zones on changes of the stress field. In
contrast to works [1,6,7] in our model, the Equation (4) takes into account the nonlinear relationship
between the rate of change in the relaxation field (associated with residual strain) and the stress field.

Because of large number of constants in the system (4)–(6), it is convenient to use dimensionless
quantities for basic parameters: time, relaxation field (order parameter), concentration of relaxation
zones (conjugate field) and stress (control parameter). We used parameters of the original system to
define the scales. For time it is possible to use the following scale

ts = τϕ. (7)

For the control parameter (field of stress) we have the scale

σs = (τϕaϕτnan)
−1. (8)

For the order parameter (field of relaxation) we select the following scale

ϕs = (aστσanτn)
−1/2. (9)

Scale for the conjugate field (concentration of relaxation zones) is determined by

ns = (aϕτϕ
√

aστστnan)
−1. (10)
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Hereinafter, as the basic parameters of the system (relaxation field, concentration of relaxation
zones and stress) we have in mind their dimensionless analogues. As a result, the dimensionless
synergetic system of three equations allows to present in a self-consistent way the transition between
different solid surface states under the laser radiation treatment. It reads as follows

dϕik
dt

= −ϕik + n− αϕikσ2
ik, (11)

δ
dn
dt

= −n + ϕikσik, (12)

γ
dσik
dt

= σ0 − σik − ϕikn, (13)

where we have introduced the relations between the relaxation times of main parameters

δ =
τn

τϕ
, γ =

τσ

τϕ
(14)

and positive constant

α =
aϕσ

τϕ(τnanaϕ)2 . (15)

3. Steady State Analysis

It is known from the experiment that order parameter (relaxation parameter ϕik) usually has the
greatest relaxation time. Thus field conjugated to order parameter (or concentration of relaxation zones
n) and the control parameter (field of stress σik) follow the changing of the order parameter ϕik. As a
result, we get the so-called adiabatic approximation

τϕ � τn, τσ (16)

or
δ, γ� 1. (17)

Using approximation (17) we can neglect the time derivatives in the left-hand sides of the second and
third equations of system (11)–(13). As a result, we get dependence of the stationary stress on the
relaxation field

σik =
σ0

1 + ϕ2
ik

. (18)

For different values of the external load the corresponding dependence is shown in Figure 1a.
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Figure 1. Dependence of the loads field (a) and concentration of relaxation areas (b) on the relaxation
field for various values of σ0.
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For the relaxation zones concentration we get the stationary dependence

n =
σ0 ϕik

1 + ϕ2
ik

. (19)

Similar dependence of concentration of relaxation zones for different values of external load is shown
in Figure 1b. Figure 1 shows that increase in the value of the relaxation parameter in the interval
limited by the maximum value ϕs leads to increase in the concentration of relaxation areas and the
decrease in the value of the stress field below the level σ0 defined by the applied external stress.

Inserting Equation (19) into the first formula of the basic system (11) we obtain

dϕik
dt

= −ϕik − αϕikσ2
ik +

σ0 ϕik

1 + ϕ2
ik

. (20)

Thus, we arrive to the resulting differential equation in the Landau-Khalatnikov form

dϕik
dt

= − ∂E
∂ϕik

, (21)

where E is the effective energy which characterizes the system state. The minimum of this energy
corresponds to the stationary state of the system. Then, at zero value of the parameter ϕik the minimum
is realized. It is responsible to the absence of the relaxation zones on the surface. In the final form,
we get an effective energy

E =
1
2

{
ϕ2

ik −
ασ2

0
1 + ϕ2

ik
− σ0 ln(1 + ϕ2

ik)

}
. (22)

Analyzing the minima for the effective energy at non-zero values of the parameter ϕik, we find
the stationary values of the relaxation parameter. They correspond to the states of the relaxation zones
formation on the solid surface under the treatment of laser radiation

ϕik|1 = 0,

ϕik|2,4 = ±
√

σ0

2

[
1 +
√

1− 4α
]
− 1, (23)

ϕik|3,5 = ±
√

σ0

2

[
1−
√

1− 4α
]
− 1.

The corresponding stationary values of the concentration of relaxation areas and loads are calculated
by substituting (23) into the Equations (18) and (19).

As can be seen from the Equations (23), the last four states are realized only when the parameter
α is less than the value 1/4. The condition for the existence of points ϕik|2,4 is written as

σ0 >
2

1 +
√

1− 4α
. (24)

Moreover, points ϕik|3,5 are realized only in the region

σ0 >
2

1−
√

1− 4α
. (25)

The phase diagram, indicating the regions of the existence of energy minima (23), is shown
in Figure 2. Region a in the phase diagram corresponds to the existence of only one minimum
ϕik|1. In region b more minima ϕik|2,4 appear, but in region c all possible solutions (23) are realized.
The corresponding points on the phase diagram denote the sets of parameters α, σ0 for which the
energy of the system was plotted for each of the regions (see Figure 3).
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For region a (see Figure 3a) this energy has only zero minimum and monotonically increasing
form. This is the case of absence of the relaxation zones. For region b, the nonzero minima are realized
(see Figure 3b). Thus, there are solutions ϕik|2,4, which correspond to the formation of relaxation
areas on the surface of the material irradiated with laser light. In this case, the zero solution becomes
unstable (maximum on the corresponding dependence). Figure 3c (intermediate state) characterizes
the coexisting of two stable states. This means that relaxation zones are formed discontinuously by
analogy with a first-order phase transition.
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0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

a

b

c0

Figure 2. Phase diagram of the system.
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Figure 3. Effective system energy. (a–c) are constructed for the parameters indicated by points in the
phase diagram (see Figure 2).
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4. Phase Portraits

We will seek a solution of the system of differential equations near a stationary state in
the form [26,27]

ϕik = ϕ0 + aeλt, (26)

n = n0 + beλt, (27)

σik = σ00 + ceλt, (28)

where λ is an unknown Lyapunov exponent, ϕ0, n0, σ00 are the stationary state values for the relaxation
parameter, concentration, and stress, respectively. The amplitudes a, b and c correspond to the small
deviations from the stationary state. Inserting (26)–(28) into (11)–(13) we get the system of equations

aλeλt = −ϕ0 − aeλt − αϕ0σ2
00 − ασ2

00aeλt − 2αϕ0σ00ceλt + n0 + beλt, (29)

δbλeλt = −n0 − beλt + ϕ0σ00 + aσ00eλt + ϕ0ceλt, (30)

γcλeλt = σ0 − σ00 − ceλt − ϕ0n0 − n0aeλt − ϕ0beλt, (31)

which are obtained for the first order for a, b, and c � 1 (for zero-order a, b, c � 1 equations give
stationary values).

Let us analyze the first stationary state

ϕ0 = n0 = 0, σ00 = σ0, (32)

which corresponds to the absence of the formation of relaxation areas on the surface of the material
after laser treatment. Then, the system (29)–(31) takes the form

0 = (λ + 1 + ασ2
0 )a− b, (33)

0 = −σ0a + (δλ + 1)b, (34)

0 = (γλ + 1)c. (35)

The condition for solving the system (33)–(35) is the equality to zero of its determinant:

(γλ + 1)
[(

λ + 1 + ασ2
0

)
(δλ + 1)− σ0

]
= 0. (36)

The three roots of the Equation (36) have the form

λ1 = −1/γ,

λ2,3 =
1
2δ

{
−(1 + δ + αδσ2

0 )±
√
(1 + δ + αδσ2

0 )
2 − 4δ(1− σ0 + ασ2

0 )

}
. (37)

Moreover, the first root λ1 is always negative. The remaining two complex-conjugate roots also have a
negative real part. The type of stability of a stationary point depends on the type of roots.

In the case of formation of relaxation zones on the surface of the material, the stationary values
ϕik|2,3,4,5 from (23) are realized. If these values are substituted into the system (29)–(31), and the
corresponding determinant is equated to zero, then we obtain the cubic equation

λ3 + Aλ2 + Bλ + C = 0, (38)

where the factors are given by the ratios
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A = 1 +
4α

(1±
√

1− 4α)2
+

δ + γ

δγ
,

B =
1

δγ

{
δ + γ +

σ0(1±
√

1− 4α)

2
+

4α(3δ + γ)

(1±
√

1− 4α)2
− 2γ + 4αδσ0

1±
√

1− 4α

}
, (39)

C =
1

δγ

{
σ0 +

σ0(1±
√

1− 4α)

2
− 4 + 6ασ0

1±
√

1− 4α
+

16α

(1±
√

1− 4α)2

}
.

In this case, the discriminant of the Equation (38) is given by the standard expression

∆ = −4A3C + A2B2 − 4B3 + 18ABC− 27C2. (40)

If ∆ > 0, the Equation (38) has three different real roots. Equality to zero of discriminant means
that two of the real roots coincide. In the situation ∆ < 0, we have one real and two complex-conjugate
roots. The existence of a complex part and the sign of λi determines the type of a singular point for a
given set of parameters σ0, α, δ, γ. That is, the type of stationary mode with fixed model parameters
can sometimes be determined in advance by the values of λi.

Let us analyze possible modes of behavior of the system on the basis of phase portraits [25–27].
To do this, we first find the coordinates of the singular points corresponding to the extremums of the
effective energy in Figure 3 (see Table 1).

The corresponding phase portraits are shown in Figure 4. As can be seen from Figure 4a, with such
a set of parameters, only a disordered state is realized, i.e., no relaxation zones are formed. In this
case, the type of stability of a single point O corresponds to a stable node. In Figure 4b point O turns
into a saddle, but at the same time, two stable nodes R± appear. They characterize an ordered state,
i.e., processes of formation of relaxation zones on the surface of the material. Figure 4c describes a
more specific regime where three points O, R± become stable, but two saddles M± separate them.
That is, such a case is characterized by a situation of coexistence of two states (ordered and disordered).
In addition, as can be seen from the figure (points R± are stable focuses), the processes of formation of
relaxation zones on the surface of the material are of an oscillatory nature.
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Figure 4. Phase portraits of the system. (a–c) are constructed for the parameters indicated by points in
the phase diagram (see Figure 2).
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Table 1. Singular points of the system for δ = 1, γ = 1, α = 0.2.

σ0 Point O Points M± Points R±

1 0; 0; 1 – –

1.5 0; 0; 1.5 – ±0.29;±0.4; 1.38

5 0; 0; 5 ±0.62;±2.24; 3.62 ±1.62;±2.24; 1.28

5. Conclusions

Based on the synergetic system of three differential equations, the transitions between different
states of the solid surface after the nanostructuring by laser radiation were analyzed within modified
theoretical model. As the order parameter, the relaxation field, which is characterized by the residual
strain, was chosen. The role of the field conjugated to the order parameter is played by the concentration
of the relaxation zones on the solid surface. The control parameter was found to be the stress field.
As a result, the phase diagram was built, and the effective energy of the system was found. Analysis of
different external loads, which correspond to the different intensities of laser radiation, has shown the
existence of different regimes of phase transition. Based on phase portraits the mechanisms of transition
between different conditions were considered. Indeed, the approach is general, so some broad
assumptions are made about relaxation and couplings. However, in the context of the assumptions,
the solutions are pointed out whose behavior depends on the intensity of laser radiation. In the long
run, such dependencies may give rise to useful verification by experiment, since laser intensity is an
easily adjustable experimental parameter.
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