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 23 

Passive acoustic monitoring (PAM) is emerging as a cost-effective non-intrusive 24 

method to monitor the health and biodiversity of marine habitats, including the 25 

impacts of anthropogenic noise on marine organisms. When long PAM recordings 26 

are to be analysed, automatic recognition and identification processes are invaluable 27 

tools to extract the relevant information. We propose a pattern recognition 28 

methodology based on hidden Markov models for the detection and recognition of 29 

acoustic signals from marine vessels passages and test it in two different regions, the 30 

Tagus estuary in Portugal and the Öresund strait in the Baltic Sea. Results show that 31 

the combination of hidden Markov models with PAM provides a powerful tool to 32 

monitor the presence of marine vessels and discriminate different vessels like small 33 

boats, ferries and large ships. Improvements to enhance the capability to discriminate 34 

different types of small recreational boats are discussed. 35 

  36 



I. Introduction 37 

Underwater noise has been increasing during the last decades (Markus & Sánchez, 2018), 38 

altering soundscapes throughout most aquatic environments (Watts et al., 2007; 39 

Normandeau Associates Inc., 2012). Consequently, anthropogenic noise is now 40 

recognised as a pollutant under the international legislation (e.g. descriptor 11 on the 41 

European Commission Marine Strategy Framework Directive, MSFD, 2008/56/EC, 42 

inclusion in the US National Environment Policy Act, and as a permanent item on the 43 

International Maritime Organization Marine Environmental Protection Committee 44 

agenda). Although recent studies have demonstrated that boat noise can affect the 45 

behaviour and physiology of various aquatic species (e.g. Graham & Cooke, 2008; 46 

Picciulin et al., 2012; Bruintjes & Radford, 2013; Castellote et al., 2012; Rolland et al., 47 

2012; Holles et al., 2013; Voellmy et al., 2014; Nedelec et al., 2015; Edmonds et al., 48 

2016; Marley et al., 2017; Putland et al. 2018) present knowledge on the prevalence of 49 

man-made noise is still limited. 50 

Single hydrophone passive acoustic monitoring (PAM) coupled with automatic 51 

recognition methods is a promising tool for continuous assessment of anthropogenic noise 52 

in the marine environment. This is particularly important in the case of marine vessel 53 

noise, the main source of continuous man-made ocean noise (McDonald et al. 2006). The 54 

main sources of vessel noise are machinery, cavitation by the propeller and other 55 

structures, and hydrodynamic processes. The recorded noise can vary depending on 56 

vessel conditions such as speed, orientation, manoeuvring, and distance to the 57 

hydrophone, especially at low depths (Trevorrow et al., 2008; Zak 2008; Averbuch et al., 58 

2011; Traverso et al. 2015). PAM has been recently used for the determination of boat 59 

visits to artificial and natural reefs off Florida (Simard et al., 2016) and boat passages in 60 

a river (Averbuch et al., 2011). Capacity to discriminate noise from vessels of different 61 

size, hull-material and engine type has been documented (table 1), as well as the use of 62 

Coherent Hydrophone Arrays to detect and track ships (Huang et al. 2017, Zhu et al., 63 

2018; table 1). However, widespread usage of PAM for monitoring boat traffic has 64 

remained limited in part due to difficulties in analysing the large acoustic datasets 65 

generated by long term acoustic monitoring. 66 

Several approaches have been attempted to study extensive acoustic recordings. 67 

The simpler and more commonly employed methods involve automatic detection that 68 

make use of e.g. energy thresholds or a matched filter to locate the chosen acoustic pattern 69 

in the recordings (table 1). Such methods are sometimes followed by common procedures 70 

of multivariate statistical analysis to categorize sound types (e.g. discriminant function 71 



analysis; Averbuch et al., 2011). With the improvement of models and techniques for 72 

automatic speech recognition in the past few decades, the recognition of acoustic patterns 73 

has become increasingly faster, more accurate, and robust. Robust methods using 74 

machine learning, such as Gaussian mixture models (GMMs; Reynolds and Rose, 1995), 75 

artificial neural networks (ANN; Lippmann, 1988; Yu et Oh, 1997), and hidden Markov 76 

models (HMMs; Baker, 1975; Jelinek, 1976; Jelinek et al., 1975; Rabiner, 1989; Young 77 

and Bloothooft, 1997) have been successfully used to recognize and classify human 78 

speech, other animals’ vocalizations (Somervuo et al., 2006; Scheifele et al., 2015; Vieira 79 

et al., 2015; Putland et al., 2017; Ranjard et al., 2017, Vieira et al., 2019) and 80 

anthropogenic noise (Feroze et al., 2018). Methods used in speech and scene recognition 81 

(e.g. HMMs, ANN) are capable of dealing with extensive recordings permitting 82 

recognition and classification of each sound. In particular, HMMs can be used to 83 

statistically model both temporal and spectral variations of acoustic patterns through 84 

robust algorithms allowing optimization of relevant mathematical criteria. Furthermore, 85 

due to the extensive research on speech recognition, this method is currently available in 86 

several freeware applications (Young et al., 2006). 87 

In aquatic environments, HMMs have been mainly adapted and successfully 88 

applied to the recognition of vocalizations of marine mammals and fish (marine 89 

mammals: Pace et al., 2012; Putland et al., 2017; fish: Vieira et al., 2015; Vieira et al., 90 

2019). Given that HMM methods are based on temporal and spectral variations, and since 91 

these disparities are also known to occur among marine vessel noise, it is plausible to 92 

adapt HMMs to recognize the passages of marine vessels. To date, however, HMMs have 93 

not been applied for detecting and classifying marine vessels possibly because this 94 

method was not initially developed for classification of stationary signals. Temporal 95 

variations of sounds from marine vessels occur but are mainly related to sound 96 

propagation. Table 1 shows some of the few studies on marine vessels sound detection 97 

and classification (table 1).  98 

In this paper we developed a HMMs-based automatic recognition method to detect and 99 

recognize different vessel types and test it in two case studies: (1) recognition of small 100 

boats recorded as acoustic snapshots at several marinas across the Öresund strait 101 

(Sweden); and (2) recognition of different types of marine vessels recorded with PAM in 102 

a channel of the Tagus estuary (Portugal) with boat passages to a nearby ferryboat 103 

terminal. 104 

Our specific goal with the Öresund strait case-study was to test the association of PAM 105 

and HMM for the recognition and quantification of boats circulating at the entrance of 106 



several marinas. The counting of boat passages can be particularly useful in, e.g., 107 

recreational fisheries surveys where direct estimates of fishing effort are frequently 108 

needed (Hyder et al. 2018) but very difficult to obtain (e.g. number of fishing trips, 109 

Pollock et al. 1994). We tested discrimination of boat types to separate the number of 110 

trips per boat type. This is especially relevant since the relative importance of each boat 111 

type to the recreational fishing differs (e.g. open deck private boats are used much more 112 

often for recreational fishing than sail boats). 113 

In the Tagus estuary case-study our aim was to create an automatic recognition system 114 

capable of identifying the presence of noise of some marine vessels. This system could 115 

be useful to evaluate the impacts of the marine vessels passages on the vocal activity of 116 

soniferous fish, such as the Lusitanian toadfish and the meagre (Amorim et al., 2006 117 

Prista, 2014) and other aquatic organisms, or to monitor its impact on aquatic 118 

soundscapes. 119 

 120 

II. METHODS 121 

A. Data collection 122 

A.1 Öresund strait (Sweden) 123 

Acoustic recordings were made from 4 to 7 of July 2017 in thirteen marinas along the 124 

Öresund strait (Sweden, figure 1): Domsten, Vikingstrand, Helsingborg, Knähaken, Råå, 125 

Borstahusen, Landskrona, Lindeshamn, Lomma, Malmö Västra Hamnen, Limhamn, 126 

Klagshamn and Strandhem. Sounds were registered with a High Tech 94 SSQ 127 

hydrophone (sensitivity of –165 dB re 1 V/µPa, flat frequency response up to 6 kHz ± 1 128 

dB) and a Tascam DR-40 Portable Digital Recorder (48 kHz, 16 bit resolution). The 129 

hydrophone was deployed at a water depth of 0.6 - 1.2 m, depending on the marina. Each 130 

recording was accompanied by photos of the boat involved so that sounds and boat type 131 

could later be matched. Overall, the acoustic recordings lasted 1 to 6 hours depending on 132 

the boat traffic intensity and contained sounds from boats with different characteristics 133 

(table 2; figure 2 and photos in figure S-2). The soundscapes of these ports and marinas 134 

were dominated by boat noise, with almost no other sound either from biological or non-135 

biological origin. 136 

A.2 Tagus estuary (Portugal) 137 

The data set consisted of ca. 6 days round-the-clock recordings of sounds obtained from 138 

15 to 20 of May 2017, in the Tagus estuary (Air Force Base 6, Montijo, Portugal; 38º42'N, 139 



8º58'W). Water depth varied approximately between 3 - 6 m, depending on tide. The 140 

signal from a High Tech 94 SSQ hydrophone was recorded (4 kHz, 16 bit resolution) by 141 

a 16 channel stand-alone data logger (Measurement Computing Corporation LGR-5325, 142 

Norton, Virginia, USA). The hydrophone was anchored at about 20 cm from the bottom 143 

to a stainless steel holder projecting from a concrete base where the cable was attached to 144 

minimise current-induced hydrodynamic noise, 145 

Recordings contained sounds from different types of vessels passing the recording site. 146 

Each vessel was manually classified into 3 broader categories according to their acoustic 147 

properties (duration and Lloyd's mirror effect; Carey, 2009; figure 3, and photos in figure 148 

S-3) previously subjected to visual identification. Ferries passages had a bigger duration 149 

than the smaller private boats and were also confirmed using their departure schedule. 150 

The soundscape of this estuary channel was dominated by vessel noise and sounds from 151 

biological origin (e.g. fish choruses). 152 

B. Pattern recognition 153 

The proposed noise recognition systems were adapted from those described in Vieira et 154 

al. (2015) and Young et al. (2001) using HMMs. The overall flowchart of the method is 155 

shown in figure 4. 156 

B.1. Signal processing  157 

The first stage in the signal processing splits the waveform signal into a sequence of 158 

elementary segments according to a predefined window duration (see figure 4). This 159 

window should be longer than a cycle of the lower relevant frequency but short enough 160 

to provide temporal resolution while also assuring stable properties. After some 161 

preliminary tests, we chose a window of 200 ms with a 50% overlap to avoid losing 162 

information on the transition between two consecutive elementary segments 163 

(O’Shaughnessy, 1987). To try to extract the most relevant information from the signal, 164 

we selected the following features: cepstrum, Mel-frequency cepstral (MFC), delta, and 165 

acceleration coefficients (more information about these features in Table S-3). 166 

B.2. The HMM time alignment structure 167 

Each sound type has an average expected duration that is directly related to the number 168 

of states. For example, a human phoneme is usually modelled by three states (McDermott 169 

et al., 1990). However, because there are no phonemes in marine vessels noises, we 170 

assumed that the number of states should be equal to or higher than the number of 171 



different consecutive stable parts of the sound, taking into account the stochastic 172 

variability and the median duration of these sounds. Note that we used models with a 173 

linear topology in which all the states could transit to the same state, to the next or to the 174 

following one (except the initial and final states where self-transitions are meaningless as 175 

they only serve as signal boundary markers; figure 4). This type of transitions between 176 

states should give enough flexibility to each model to reflect the vessels noise variations 177 

(e.g. different durations of stable noise caused by different speed). After some preliminary 178 

tests (figure S-1), we considered 224 states for marine vessels sounds and 5 for 179 

background noise (silence) models. To analyse the Tagus estuary dataset we added extra 180 

models with 224 states for modelling non-biological patterns with high energy and 181 

duration (e.g. consecutive non-biological pulses with high energy), and biological 182 

patterns (e.g. some fish choruses; see figure 3). 183 

For each sound type, a representative subset of samples (e.g. passages of a particular class 184 

of boats) was used to train the HMMs. The transition probabilities and the elementary 185 

segment probability densities of each state were estimated with the Baum–Welch 186 

algorithm (Baum et al., 1970; figure 4). 187 

In the recognition phase, each vessel noise was matched against the estimated HMM for 188 

each sound type. This was achieved by using a Viterbi algorithm (Forney, 1973) that 189 

produced a likelihood measure for each HMM. The vessel noise was assigned to the sound 190 

type corresponding to the HMM with the highest likelihood. 191 

For computations we used the HMM Toolkit (HTK, University of Cambridge, UK), a 192 

group of modules written in C to create automatic recognition systems for human speech 193 

(Young et al., 2006).  194 

B.3. Automatic recognition systems  195 

B.3.1 Öresund strait (Sweden) 196 

Automatic HMM-based systems were prepared to (1) recognise boat noise (without 197 

discrimination of boat type), (2) recognise each boat type and additionally a system to (3) 198 

discriminate boats arriving and boats leaving the port. To take full advantage from the 199 

available data and overcome the variability caused by bias in training data selection, a 200 

resampling method was used based on a random subsampling validation (Efron, 1981). 201 

Details the resampling procedure are described below. All trials were repeated 100 times. 202 

1 - The boat noise recognition system (without discrimination of boat type) was based on 203 

one HMM that considered all registered boat types (table 2). Each training set used to 204 



produce a recognition system included 20 boat sounds randomly selected from the overall 205 

dataset. This procedure was repeated 100 times. Note that some boat types had small 206 

sample size with less than 15 recorded sounds (table 2). The system was tested with the 207 

field recordings (each with a different duration between 5 and 75 min) and optimised by 208 

testing different frequency bandwidths adjusted to the spectrum of the boat noises 209 

recorded in the field. The preliminary tests considered different frequency cut-offs; low 210 

(0, 20, 200, 500, and 1000 Hz) and high (1000, 5000, 10000 and 20000 Hz). Here we 211 

show the results using different low (20, 500, and 1000 Hz) and high (2000, 10000 and 212 

20000 Hz) frequency cut-offs. 213 

2 - The boat type recognition system was created using a different HMM for each of 12 214 

boat types (commercial fishing boat, recreational fishing tour boat, open deck private 215 

boats with outboard engine, open deck private boats with inboard engine, rigid inflatable 216 

boats (RIB), sail boat with inboard engine, sail boat with outboard engine, jetski, small 217 

yacht with inboard engine, small yacht with outboard engine, double ender boat, medium 218 

to large yacht; figure S-2) and using a total of 208 boat sounds. These categories were 219 

selected to monitor how many boats of each type transited in this area as a proxy to the 220 

recreational fishing effort. From these, four sounds were randomly sampled and included 221 

in the training set for each boat type. Sounds used in the training set were included in the 222 

testing set. A full system, involving all boat types showed low identification rate possibly 223 

because of the low number of samples. Consequently, we developed a system using only 224 

the most common boat types (open deck boat with outboard engine and sail boat with 225 

inboard engine) using the same protocol except that sounds used in the training set were 226 

not included in the testing set. Training sets using 4 and 8 sounds were tested. We present 227 

the results of the best classification system we obtained after a range of other alternatives 228 

were tested. This system involves using 1 second segments of the recordings centred in 229 

the maximum sound pressure level of each boat sound.  230 

3 - The automatic recognition system to discriminate sound of boats arriving and leaving 231 

the ports was trained for each boat noise type using sounds from the most common boat 232 

(open deck private boats with outboard engine). A total of 49 boat noise samples were 233 

used. From these, four sounds were randomly resampled and included in the training set 234 

for both HMMs (boats arriving or leaving). Sounds used in the training set were not 235 

included in the testing set. 236 

B.3.2 Tagus estuary (Portugal) 237 



An automatic HMM-based system was prepared to recognise marine vessel types. This 238 

procedure included the noise produced by small private boats without AIS (mostly open 239 

deck private boats with outboard engine), ferries, and other anthropogenic unknown 240 

source (possibly large ships at distances higher than 1 km). We considered "small boats" 241 

as vessels with less than 12 m (mostly open deck private boats with one outboard engine) 242 

and ferries as the ca. 50 m long passenger vessels that connect the localities of Lisbon and 243 

Montijo (figure S-3). 244 

The marine vessels’ type recognition system was trained for each sound type using sounds 245 

from the two first recording days (sounds from 142 passages were used). The ferries and 246 

other type of anthropogenic noise of unknown origin classes were subdivided into two 247 

models each, to reduce the diversity between each model and increase the overall 248 

identification rate. The small boats class was represented only by one HMM. 249 

Additionally, we used 13 sounds (with low energy noise with no obvious abiotic or biotic 250 

sources) for the background noise model, 13 sounds for modelling non-biological patterns 251 

with high energy, and 77 sounds for the biological pattern models, namely the fish 252 

choruses (figure 3). 253 

The system was tested with the recordings of the subsequent four days (a total of 96 hours 254 

with 286 vessels sounds). Several frequency bandwidths were tested (0 to 2000 Hz, 1000 255 

to 2000 Hz, 1200 to 2000 Hz). We only present results using 1200 to 2000 Hz since this 256 

bandwidth showed the best results as it avoided the interference of fish choruses (see 257 

examples of choruses in figure 5). 258 

B.4. Evaluation of the recognition system 259 

For each optimal alignment, the number of substitution errors (i.e., when one signal type 260 

is recognised as another signal type, S), deletion errors (i.e., when a sound type occurs 261 

but is not detected by the system – a false negative, D), insertion errors (i.e., when a signal 262 

is detected by the system but it did not occur - a false positive, I) the total number of labels 263 

in the reference transcriptions (N) were determined (Young et al. 2000). The performance 264 

of the recognition systems was then evaluated by computing the percentage of correctly 265 

recognized sounds (identification rate) using:  266 

Identification rate (%)  =
N − D − S

N
× 100, 267 

or by computing the recognition accuracy using: 268 



Accuracy (%)  =
N − D − S − I

N
× 100. 269 

Additionally, we calculated the ratio between vessel hits (number of sounds events 270 

identified by the system) presented by the recognition system and the total number of 271 

vessels passages in each file. This can be relevant to verify if the number of hits can be 272 

used as a proxy of the number of vessels that passed by. 273 

III. RESULTS 274 

A. Sound Properties  275 

A.1 Öresund strait (Sweden) 276 

Over 10 vessel types were recorded in the Swedish ports and marinas during the field 277 

work. Most sounds came from boats with less than 10 m long (table 2). Power spectral 278 

density (PSD) plots of the noise produced by each boat type are represented in figure 2. 279 

Overall, dominant frequencies of noises from several boats were within the range 200-280 

2000 Hz. Although the PSD mean values varied among boat types (figure 2), the large 281 

overlap difficulted the distinction of boat types. There was some variation among the 282 

background noise recorded at each port, but it was on average 20.7 ± 4.6 dB below boat 283 

noise. The duration of the vessel sounds presented a high variability that can be related to 284 

different underwater seascapes (topography, presence of sound propagation barriers, 285 

water depth, etc), boat velocity, engine sound intensity, distance to the hydrophone, and 286 

some vessel manoeuvres (table 2). None of the recorded boats showed a noticeable 287 

Doppler effect, but almost all showed a Lloyd's mirror effect. Doppler effect causes a 288 

frequency shift on the sound wave emitted as a result of the motion of the emitter, shifting 289 

from higher to lower frequencies with the approach and then departure of the boat from 290 

the recording hydrophone (Urick, 1983). The Lloyd's mirror effect is the result of out-of-291 

phase reflections of the sound. This effect also shows a shift on the frequencies observed 292 

according to the distance of the source, but is usually symmetrical between approach and 293 

departure (Carey, 2009). Only some boats parking or starting the engine near the entrance 294 

of the port (where the hydrophone was deployed) showed acoustic signature that could 295 

be related to the manoeuvres (figure 5). 296 

A.2 Tagus estuary (Portugal) 297 

There were three types of anthropogenic noises detected during the recordings: small 298 

private boats without AIS, ferries, and anthropogenic sounds of unknown source. Most 299 

traffic was from ferries. Power spectral density (PSD) plots of each sound type are 300 

represented in figure 3. The duration of vessel passage sounds varied from ca. 20 s for 301 



small boats, to ca. 50s for ferries, while the noise from an anthropogenic unknown source 302 

presented a high variation (from 20 s to several min). The latter include engine-type noises 303 

apparently stationary, most probably large transport ships located very distant from the 304 

recorder device. Lloyd’s mirror effect was evident on most ferries’ recordings (see figure 305 

3), while only some small boats showed clearly this effect. None of the recorded noises 306 

from an anthropogenic unknown source exhibited a noticeable Doppler and Lloyd's 307 

mirror effect. We detected choruses produced by fish species (see figure 3 and figure 5), 308 

namely Lusitanian toadfish (Amorim et al., 2008), Meagre's long grunts (Lagardère et 309 

Mariani, 2006), and series of isolated pulses (Pereira, 2019). The sounds produced by 310 

these species were only detected between ca. 50 -1200 Hz. 311 

B. Vessels recognition 312 

B.1 Öresund strait (Sweden) 313 

Automatic HMM-based systems were prepared to (1) recognise boat noise (without 314 

discrimination of boat type), (2) recognise each boat type and (3) discriminate boats 315 

arriving and boats leaving the port. 316 

1 - The recognition systems considering all boats as one class (without discrimination of 317 

boat type), presented correct identification rates ranging from 75 to 100% (table S-1). 318 

Accuracy ranged from 25 to 86%, being highly affected by the randomly selected training 319 

data (table S-1). Each recognition system segmented the boat sounds differently, 320 

sometimes one boat was segmented in several hits, leading to lower accuracy value 321 

calculated using HTK algorithm (Young et al. 2000; see figure 4). Different frequency 322 

bandwidths (figure 6 and figure S-4) were tested. Increasing the lower frequency of the 323 

filter bandwidth led to an increase in the number of segments generated by the recognition 324 

system, which proved useful in cases where the sound from different boats was partially 325 

overlapped. On the other hand, decreasing the bandwidth’s lower frequency had an 326 

opposite effect that could be useful to count boats in case of repeated variations of boat 327 

velocity (including repeated turning off and on of the engine; figure 5B). As expected, a 328 

reduced number of hits, was found when boat noises overlapped. Figure 5A shows an 329 

example of the output of the boat noise recognition system applied to a 15 min long 330 

recording using a 20-10000 Hz frequency bandwidth. The number of hits varied from an 331 

underestimation of the real boat passages of 83% to an overestimation of 110% (figure S-332 

5). 333 

2 - Several frequency bandwidth combinations were tested to create identification 334 

systems for each boat type. The 20-5000 Hz bandwidth produced the best output, resulting 335 



in an overall mean identification rate of 15.9 ± 3.4 % (mean ± standard deviation; 336 

accuracy with the same value). Notice that the overall mean identification rate is obtained 337 

by averaging 100 outputs simulated with the identification system. Each boat type was 338 

thus poorly recognized by the system. 339 

Because the low identification rate could be due to the small number of samples available 340 

for some boat types, we tested a simplified system considering only the two most common 341 

boats: open deck with outboard engine and sail boat with inboard engine. Using the same 342 

20–5000 Hz bandwidth the overall mean identification rate of these two boat types 343 

improved to 62.6 ± 5.8% using 4 sounds in the training set (accuracy with the same value, 344 

table S-2), and 63.0 ± 7.4% using 8 sounds in the training set. This identification rate was 345 

above the value expected by chance alone (50%), despite the overlapping characteristics 346 

of the sounds produced by these two boat types (figure 2, figure S-6). 347 

3 - The classification according to the direction of the boat (arriving or leaving the port) 348 

achieved an identification rate of circa 50% (51.0 ± 7.7%), a value that could be expected 349 

by chance alone.  350 

B.2 Tagus estuary (Portugal) 351 

The 1200–2000 Hz bandwidth allowed the best results by the marine vessel noise type 352 

automatic recognition system. A mean identification rate of 90.9 ± 8.2 % (and an accuracy 353 

with the same value) was obtained for all vessels using recordings from four days. This 354 

system achieved a higher identification rate when considering only the ferryboats (95%), 355 

while small boats and anthropogenic unknown sources were recognized with mean 356 

identification rates of 67 % and 86 %, respectively. Some mistakes in the classification 357 

of small boats were due to misidentifications with a ferry. Note that the small boats were 358 

less common, with only 24 detectable passages during the four days in contrast to 169 359 

ferries passages. Table 3 represents the mean confusion matrix. The total number of hits 360 

on the four days tested varied from an underestimation of vessel passages of 71 % to a 361 

small underestimation of 95 % (due to some substitution errors). Although the 362 

anthropogenic unknown source had a high correct classification of sound events, the 363 

number of hits should not be interpreted has number of passages or number of sound 364 

sources, because it appears to be a unique stationary source. 365 

Figure 7 illustrates the presence of marine vessels at the passive acoustic monitoring 366 

station in the Tagus estuary (Portugal), estimated using the automatic recognition system. 367 

Figure 7A shows the quantification of vessels by the number of hits, while figure 7B 368 



represents the total time per 2 hours where a marine vessel sound was detected. As 369 

expected, ferries start passing by at 6 am on working days, and the peak traffic periods 370 

are 6-10 am and 6-10 pm. On a Saturday (20 may 2017) the number of ferries reduces. 371 

Comparing Fig. 7A and 7B, we can observe that small boats had a smaller duration due 372 

to higher velocity and/or less source noise intensity than ferries. Note that if a vessel stays 373 

stationary during a long period of time and/or changes engine power significantly it could 374 

cause an overestimation of the number of vessels.  375 

IV. Discussion 376 

We show that automatic recognition methods based on hidden Markov models coupled 377 

with PAM is a valid and easible option for monitoring the presence of different types of 378 

marine vessels in a variety of aquatic systems (e.g., port channels, Marine Protected 379 

Areas). These tools rendered good vessel identification rates being both cost- and time-380 

effective while free of privacy-related issues associated with other alternatives (e.g., video 381 

surveillance). Furthermore, this kind of automatic recognition systems can have other 382 

applications, from monitoring of biological activity to characterization of background 383 

noise levels and disturbances due to human activities. Although this method can be 384 

effective for detection and classification of vessels in specific estuaries and marinas, it 385 

would probably not provide a universal recognition system. Each system should be 386 

trained using a library of sounds collected in the locations under study and conditions. 387 

A. Öresund strait (Sweden) 388 

Our specific goal with the Öresund strait case-study was to test PAM and HMM in the 389 

recognition, classification and quantification of boat passing the entrance of several 390 

marinas (map in figure 1 and boat types in figure 2). The counting of boat passages can 391 

be particularly useful in e.g. recreational fisheries surveys, where it is frequently 392 

necessary to sample and estimate (or validate) total effort (number of fishing trips) carried 393 

out by private boats (Pollock et al. 1994).  394 

The automatic recognition system developed in the present study was able to detect the 395 

presence of boats on recordings of underwater sounds. The system featured a combination 396 

of cepstrum, Mel-frequency cepstral (MFC), delta, and acceleration coefficients and 397 

reached an identification rate above 95%, being little influenced by the different 398 

frequency bandwidths tested (20-2000 Hz, 500-2000 Hz, 1000-2000 Hz, 20-10000 Hz, 399 

500-10000 Hz, 1000-10000 Hz, 20-20000 Hz, 500-20000 Hz and 1000-20000 Hz). The 400 

use of different bandwidths caused only a small variation in the detection rate generated 401 



by the boat recognition system (cf. figure 5 and figure S-4). Nevertheless, some 402 

inaccuracies do exist such as multiple recognitions of the same boat mostly due to 403 

variations on velocity (including turning the engine off and on) common at the entrance 404 

of ports and marinas, which may cause an overestimation of boat passages. Future work 405 

should consider a step to join sequential hits which would minimize this type of 406 

overestimation. Another issue was the overlapping of noise from two different boats that 407 

could sometimes be identified as a single boat thus causing an underestimation of vessel 408 

counts. The improvement of the algorithm accuracy warrants longer term recordings (to 409 

obtain a more complete set of reference boat types) and testing. 410 

The development of an automatic recognition system capable to differentiate boat types 411 

(table 2) could be a considerable advantage in the context of recreational fishing effort 412 

estimation because some boat types are more likely to be used for recreational fishing 413 

(e.g., recreational fishing tour boats, open deck vessels) than others (e.g., commercial 414 

fishing vessels, sail boats). Testing such ability was the focus of the second system 415 

developed in the Öresund case-study. In the trials where we discriminated all 12 visually 416 

identified boat types, the recognition system reached a low identification rate, only barely 417 

surpassing the value expected by chance alone (for 12 possible choices it is expected a 418 

probability of approximately 8 %, or 1/12). This result was likely due to the small sample 419 

size for most boat types. The current categorization based mostly on the size and use of 420 

the vessels could also be responsible for the poor performance, although the mean 421 

confusion matrix did not reveal clear patterns of recurrent misclassification. When the 422 

HMM was developed with the two most common boats (open deck boat with outboard 423 

engine and sail boat with inboard engine), sample sizes were larger and so was the 424 

discrimination capability of the automatic recognition system (a mean identification rate 425 

of 62.6 ± 5.8 % was obtained, despite the spectral similarities of the noise produced by 426 

those boats). This suggests that it should be possible to develop a system with a reasonable 427 

number of boats, provided that an initial large dataset is used, offering exciting 428 

opportunities to monitor the activity of different boats. Considering the present 429 

difficulties of quantifying recreational fishing effort in many regions of the world, even a 430 

very simple and autonomous system with only two boats types (such as the one developed 431 

here) would bring significant improvements to the understanding of the impacts and 432 

dynamics of those fisheries. In this experiment we used 1 second recordings that also 433 

limit the Lloyd’s mirror effect on the HMM’s recognition abilities. The temporal 434 

characteristics of the Lloyd’s mirror effect depends on several factors (e.g. boat velocity 435 

and source level), an additional information that, if available, could help better distinguish 436 



vessels passages. In the Tagus estuary the Lloyd’s mirror effect was a key information to 437 

distinguish marine vessels classes. 438 

An additional perspective on the capabilities of the PAM-HMM system is given by the 439 

third system developed in the Öresund strait. Here our goal was to test the capabilities 440 

of the method to distinguish between outgoing and incoming vessels. Such distinction 441 

could be useful to assess circadian rhythms of fishing effort in particular and marina 442 

usage in general. The majority of the boat sounds recorded did not exhibit a detectable 443 

difference regarding the direction of the movement at the entrance of the marinas, where 444 

the speeds are very low and therefore no clear Doppler effect is expected. Only boats 445 

parking or starting the engine near the entrance of the port (where the hydrophone was 446 

deployed) showed a signature as reported by Averbuch et al. (2010). Averbuch et al. 447 

(2010), presented an algorithm based on the combination of the Linear Discriminant 448 

Analysis (LDA) and the Classification and Regression Trees (CART) to detect the 449 

arrival and mooring, and departure of passengers’ vessels, in cases where the sound 450 

shows a clear sequence of expected manoeuvres. This restricts the use of such a system 451 

to specific conditions where it is possible to record the mooring and the engine start of 452 

all the vessels thus calling for a more comprehensive recognition system. 453 

 454 

B. Tagus estuary (Portugal) 455 

Here the usefulness of HMM-based automatic recognition systems to extensively 456 

recognise marine vessels in relatively noisy estuary conditions is demonstrated. In fact, 457 

the sounds used in the present study were registered in a complex natural estuarine 458 

environment not only presenting fluctuations of environmental parameters affecting 459 

sound (e.g. current speed, wind, temperature, turbidity, salinity) but also of biological 460 

sounds such as fish choruses. 461 

The results of the HMM-based recognition system using as features a combination of 462 

cepstrum, Mel-frequency cepstral (MFC), delta, and acceleration coefficients and a 463 

frequency bandwidth of 1200-2000 Hz, showed a good performance. In this case we 464 

restricted the sound frequency bandwidth to 1200-2000 Hz to avoid overlapping with fish 465 

choruses (see figure 4 for an example of overlap between the frequency range 466 

encompassing marine vessels noise and fish vocalizations). This system achieved a high 467 

identification rate when considering only the ferryboats (ca. 95 %). As shown by Vieira 468 

et al. (2015), a larger number of sounds used in the training phase usually improves the 469 

model’s recognition ability, an advantage of the large data set available. Extending the 470 



bandwidth to lower frequencies in locations without the presence of such biological 471 

sounds may further improve vessels passages detection. 472 

In the case of the anthropogenic noise of unknown origin, which may include distant 473 

stationary or passing vessels, the system showed a good performance in recognizing the 474 

sounds. However, the number of hits must be considered with care since it might not be 475 

a good proxy to the number of sources, that can be under- or overestimated. Nevertheless, 476 

the high precision of the automatic system in detecting this noise allowed measuring its 477 

total duration. Assessing the presence/duration of unidentified anthropogenic noise may 478 

be useful to characterise soundscapes and human impact. 479 

Future work using this system may allow evaluating the effects of the presence of vessels 480 

in fish behaviour, especially relevant in fish breeding and nursery areas such as estuaries. 481 

This is especially important since marine vessel noise components under 1 kHz overlap 482 

with the fish hearing range, affect fish larval stages, induce stress-responses, interfere 483 

with communication and with the detection of predators and prey (Vasconcelos et al. 484 

2007, 2011; Picciulin et al. 2012; Voellmy et al. 2014; Nedelec et al. 2015) In fact, marine 485 

vessels noise components within 20 - 1000 Hz, overlap with the hearing range of both the 486 

Lusitanian toadfish (Vasconcelos et al., 2007, 2011) and the meagre (M. Beauchaud and 487 

P. J. Fonseca, unpublished results), and may interfere with fish communication.  488 

C. Comparison between Öresund strait (Sweden) and Tagus estuary (Portugal)  489 

Monitoring the general increase of boating activity can take advantage from PAM allied 490 

to automatic recognition methods, especially if focussed on private boats not required to 491 

use AIS (Automated Identification System). In fact, in contrast with large scale fishing 492 

vessels that are monitored though the Vessel Monitoring System (VMS), the presence of 493 

small boats may be difficult to monitor (Pollara et al., 2017) since they are usually not 494 

equipped with AIS and, due to their size, they are not generally well detected by radar. 495 

Therefore, the development of small boats’ detection systems is a most needed but 496 

relatively unexplored research field (table 1). In fact, although some work exists on 497 

characterization of sounds produced by boats and on the categorization of anthropogenic 498 

noise (table 1), only limited attempts have been made to automatically recognize private 499 

boats, and to separate boats and what appears to be noise from large ships . 500 

HMM-based boat recognition methods together with PAM could be an important tool to 501 

monitor the presence of small scale and recreational fishing activity on marine parks with 502 

restriction areas. The automatic recognition systems in this study were not entirely 503 

successful in discriminating amongst boats recorded in the Öresund strait. Several boat 504 



types produced rather similar waterborne noise. Nevertheless, the recognition system 505 

proved reliable to discriminate between groups of less similar vessels (small boats, ferries 506 

and anthropogenic noise of unknown source) in the Tagus estuary. An important 507 

difference between the two studied areas relate to the place where boats were recorded. 508 

While at the Öresund strait the recordings were made at the entrance of marinas, where it 509 

was common to observe boats manoeuvring and many recordings overlapped two or more 510 

boat noises, at the Tagus estuary almost all small boats and ferries passed by at a constant 511 

velocity and there were almost no overlaps of vessel noises. In order to use PAM as a 512 

proxy for estimating number of boat passages one should avoid sites where manoeuvring 513 

boats are expected to occur.  514 

V. Conclusion 515 

The increase in the use of small recreational boats together with the need to monitor and 516 

manage protected areas and fisheries call for an operationally reliable and cost-efficient 517 

tool to be used on a continuous basis to monitor and recognize passing boats. In addition, 518 

our knowledge regarding the impact of boat noise on aquatic organisms is still limited 519 

and could greatly benefit from such a tool. Automatic recognition methods of AIS non-520 

trackable boats coupled with PAM can offer such a tool but is a relatively unexplored 521 

research field (table 1). Here we present an automatic recognition system able to pinpoint 522 

the passage of marine vessels in one environment with a soundscape characterized by the 523 

presence of biological sounds (Tagus estuary) and in environments with almost no 524 

biological sounds (several marinas at Öresund strait). Despite the difficulties in 525 

differentiating boat types, it demonstrates the capability to recognise boats from ferries 526 

and stationary anthropogenic of unknown source with high accuracy. Therefore, this 527 

recognition system, which adapts a free and established system for human speech 528 

recognition (HTK, Young et al., 2000), can be an accessible and important tool in studies 529 

where long-term monitoring of boating and shipping is required. The performance and 530 

efficacy of this recognition method would be better exploited on local dimensions, by 531 

training the system with typical signal types (and propagation characteristics) of each 532 

specific location, including common sounds of geophony and biophony. 533 
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 729 
Table 1 Examples of relevant articles on recognition and detection of marine 

vessels through the underwater noise produced.  

 Objective System Feature Reference 

Extraction of small boat harmonic 

signatures from passive sonar 
c  HEAT 

Ogden et 

al., 2011 

DEMON-type algorithms for 

determination of hydro-acoustic 

signatures of surface ships and of 

divers 

c - DEMON 
Slamnoiu 

et al., 2016 

Ship noise extends to frequencies 

used for echolocation by 

endangered killer whales 

c - - 
Veirs et al. 

2016 

Passive acoustic methods of small 

boat detection, tracking and 

classification 

c - DEMON 
Pollara et 

al. 2017 

Continental shelf-scale passive 

acoustic detection and 

characterization of diesel-electric 

ships using a coherent hydrophone 

array. 

c, D - POAWRS 
Huang et 

al. 2017 

Detection, Localization and 

Classification of Multiple 

Mechanized Ocean Vessels over 

Continental-Shelf Scale Regions 

with Passive Ocean Acoustic 

Waveguide Remote Sensing 

c, D - POAWRS 
Zhu et al. 

2018 

Quantification of Boat Visitation 

Rates at Artificial and Natural Reefs 

in the Eastern Gulf of Mexico Using 

Acoustic Recorders 

D ** b Simard et 

al., 2016 

Ships classification basing on 

acoustic signatures 
I(5) ANN  Zak 2008 

Acoustic detection and 

classification of river boats 
T(2) 

LDA 

CART 
 

Averbuch 

et al., 2010 

An Automated Approach to Passive 

Sonar Classification Using Binary 

Image Features 

T(4)* ANN  
Vahidpour 

et al., 2015 

Vessel radiated noise recognition 

with fractal features 
T(6) *** a Yang 2000 

ANN, artificial neural network; c, ship noise characterization; CART, Classification and Regression 

Trees; D, boat detection with no categorization; DEMON, Detection of Envelope Modulation on Noise 

algorithm; HEAT, Harmonic Extraction and Analysis Tool; LDA, Linear Discriminant Analysis; I(n), 

individual ship recognition system with n different ships; POAWRS, Passive ocean acoustic waveguide 

remote sensing technique using an array of hydrophones; T(n), marine vessel type recognition system 

with n categories; a, Fractional Brownian motion feature and Fractal dimension feature; b, to each sound 

was calculated the FFT average (fast Fourier transform, to produce an averaged power spectrum of 

file), the peak identification (to identify harmonics typical of boat noise within averaged power 

spectrum), and the amplitude threshold; *distinction of boat and ships (with weight of 1 248, 2 592, 3 

660 t and 35 573 tons); ** The algorithm operated using five steps: median filter, band-pass filter, FFT 

average, peak identification, and amplitude threshold to determine if the overall root mean-square 

amplitude of the 10-second acoustic file was a threshold level above that of surrounding files.*** 

Fractal dimension features. 
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Table 2 Different types of boat recorded at the port and marinas of the Öresund strait (Sweden); according to shape of the boat, hull material, 731 

type of engine, and number of engines. We defined boats as all small vessel for travelling on water, propelled by an engine. The term 732 

“vessels” was used to include boats, ferries and ships.  733 

Type of boat Hull material Size 
Type of 

Engines 

Number 

engines 

Recreational 

Fishing 
Number of boats Duration 

E.g., Recreational: sail, yacht, 

open deck; Commercial: 

fishing, cruise; ferry, other 

E.g., wood, 

metal, other? 

In 

meters 

Inboard (i), 

outboard 

(o) 

e.g., 1 or 2, 

unknown (?) 

Can be used on 

recreational 

fishing? 

Number of boats 

passages sounds 

recorded without 

overlap 

Number of 

boats 

recorded 

Approximate range of 

sound durations 

recorded. 

commercial fishing boat 

metal  i 1 No 

8 8 40 s – 3 min plastic 10-15 i 1 No 

wood  i 1 No 

recreational fishing tourboat 
wood 

15-20 
i ?(1) Yes 3 3 35 s – 3 min 

plastic i 1 Yes    

open deck private boats 

plastic  o 1 Yes 

55 49 40 s – 2 min plastic 7-12 o 2 Yes 

aluminium  o 1 Yes 

open deck private boats plastic 7-12 i 1 Yes 4 4 40 – 60 s 

RIBs 
plastic 

5-10 
o 1 No 

13 11 25 – 90 s 
plastic o 2 No 

sail boat plastic 10-20 i 1 No 55 53 1 – 2 min 

sail boat plastic 10-20 o 1 No 11 11 1 – 3 min 

jetski plastic 3-4 i 1 No 5 3 30 s – 1 min 

small yacht plastic 7-12 i 1 Yes 25 23 40 s – 2 min 

small yacht plastic 7-12 o 1 Yes 9 9 40 s – 2 min 

double ender boat plastic 7-12 i 1 Yes 9 9 30 s – 2 min 

medium to large yacht plastic 12-30 i ?(1) Yes 11 11 30 s – 2 min 

734 
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 737 

Figure 1. Recording locations: (1) the several marinas across Öresund strait (Sweden); 738 

and (2) the passive acoustic monitoring station in Tagus estuary (Portugal). 739 

  740 



 741 

Figure 2. Power spectral density (PSD) of boat noises and background noise 742 

received levels for the full sampled period from 4 to 7 of July 2017 on several 743 

marinas of the Öresund strait (Sweden). The black line represents the mean 744 

power spectral density (averaging of dB values) and the blue and red lines 745 

depict 5, 25, 75 and 95 percentiles. The green line represents the mean power 746 

spectral density of the background noise. PSDs were calculated with the 747 

Welch’s power spectral density estimate algorithm on MATLAB using a 748 

frequency bandwidth up to 2000 Hz (1024 point FFT). We defined boats as all 749 

small vessels for travelling on water, propelled by an engine. 750 



 751 

 752 

Figure 3. Power spectral density (PSD) of received levels of marine vessels 753 

noises, biological sounds and background noise measured as full bandwidth  for 754 

the data set consisted of ca. 2 day round-the-clock recordings of the sounds 755 

from 15 to 16 of May 2017, in the Tagus estuary (Portugal) . The black line 756 

represents mean power spectral density (averaging of dB values) with blue and 757 

red lines depicting 5, 25, 75 and 95 percentiles.  The green line represents the 758 

mean power spectral density of the background noise.  PSDs were calculated 759 

with the Welch’s power spectral density estimate algorithm on MATLAB using 760 

a frequency bandwidth up to 2000 Hz (1024 point FFT). The term “vessels” was 761 

used to include boats, ferries and ships.  762 

 763 

 764 
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 766 
Figure 4. Workflow of the HMM recognition system using the HMM ToolKit  767 

(HTK, diagram based on Young et al., 2006). The use of Markov models for 768 

classification of acoustic signals in the time domain is naturally associated with 769 

linear topologies. Each state in a HMM can then be compared to a human 770 

language phoneme. Each word, as each phoneme, has an average expected 771 

duration that is directly related to the number of states. However, because we 772 

do not have a phoneme set for vessels noise, we assumed a window of 200 ms 773 

and a high number of states to represent the boat noises. The probability of 774 

sound being represented by each Markov model (representing each sound type) 775 

is calculated as the product of the transition probabilities and the output 776 

probabilities (extracted from the probability density of each state). However, in 777 

practice, only the observation sequence is known and the underlying state 778 

sequence is hidden. The signal represents an oscillogram of a boat noise.  779 

  780 



 781 

 782 

Figure 5. During the present study we recorded ca. 18 hours across Öresund strait 783 

(Sweden) and ca.144 hours in the Tagus estuary (Portugal). Spectrograms (FFT 1024 784 

points) and oscillograms illustrate marine vessels noises. Horizontal black bars at the 785 



top of each spectrogram show examples of the output given by the automatic 786 

recognition systems. (A,B) show the results of boat noise automatic recognition system 787 

using boats noises recorded at several marinas across Öresund strait (Sweden) using a 0-788 

10000 Hz frequency bandwidth; (B) also represents an example of one boat noise 789 

segmented due to manoeuvres using the engine. (C,D,E) illustrates the results of the 790 

marine vessel recognition system using sounds recorded by a passive acoustic 791 

monitoring station in Tagus estuary (Portugal); Lloyd’s mirror effect was evident on 792 

most ferries’ recordings (see e.g. first ferry sound on C). We encountered choruses 793 

produced by fish species, namely Lusitanian toadfish (C and D; Amorim et al., 2008), 794 

and Meagre's series of isolated pulses (D; Pereira, 2019) and long grunts (E; Lagardère 795 

et Mariani, 2006). Arrows point to the presence of biological sounds.   796 
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 798 

Figure 6. Mean number of hits of hidden Markov model recognition systems 799 

computed on the MFC with cepstrum, delta, acceleration coefficients, and 9 800 

different frequency bandwidths for Öresund strait (Sweden). Each mean 801 

represents 100 iterations using 20 boat sounds randomly selected from the 802 

dataset in each training set. Overall depicted data consider circa 20 hours of 803 

continuous recordings. Boat passages represent the number of boats that passed 804 

by the entrance of the marina during the recorded period confirmed by visual 805 

observations.  806 



 807 

 808 

Figure 7. Presence of marine vessels at the passive acoustic monitoring station in the 809 

Tagus estuary (Portugal) from 17 to 20 of May 2017 (Wednesday to Saturday), 810 

estimated using the automatic recognition system: (A) shows the number of hits per 2 811 

hours; (B) represents the total time per 2 hours where a marine vessel sound was 812 

detected. Each bar represents a 2 hour period. Note that a vessel that stays near the 813 

recording place and or change significantly the engine power could cause a higher 814 

number of hits and an overestimation of the number of vessels while the overlapping of 815 

noise from two different boats could cause an underestimation.   816 



Table 3. Mean confusion matrix from the hidden Markov model classification 817 

computed on the MFC with cepstrum, delta and acceleration coefficients with a 818 

frequency bandwidth of 1200 Hz to 2000 Hz, for the Tagus estuary. The model 819 

was trained with 142 boat sounds from the first two recorded days, and tested 820 

with the remaining four days (a total of 96 hours with 286 boat sounds). 90,87 ± 821 

8,17 % (mean identification rate of the four days ± SD) of tested sounds were 822 

correctly classified, with an accuracy with the same value. 823 

 Predicted group membership  

Boat/Vessel noise type 
Small 

boat 
Ferry AUS 

False 

negative 

identification 

rate (%) 

Small boat 4 2 0 0 66,7 

Ferry 0 40 2 0 95,2 

Anthropogenic unknown 

source (AUS)  
0 3 19 1 86,4 

False positive 0 0 0   

Overall mean      90,87 ± 8,17 

 824 

 825 


