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Abstract: Esters are organic compounds widely represented in cellular structures and metabolism,
originated by the condensation of organic acids and alcohols. Esterification reactions are also
used by chemical industries for the production of synthetic plastic polymers. Polyester plastics
are an increasing source of environmental pollution due to their intrinsic stability and limited
recycling efforts. Bioremediation of polyesters based on the use of specific microbial enzymes is
an interesting alternative to the current methods for the valorization of used plastics. Microbial
esterases are promising catalysts for the biodegradation of polyesters that can be engineered to
improve their biochemical properties. In this work, we analyzed the structure-activity relationships in
microbial esterases, with special focus on the recently described plastic-degrading enzymes isolated
from marine microorganisms and their structural homologs. Our analysis, based on structure-
alignment, molecular docking, coevolution of amino acids and surface electrostatics determined the
specific characteristics of some polyester hydrolases that could be related with their efficiency in the
degradation of aromatic polyesters, such as phthalates.
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1. Introduction

Esters are organic molecules originated by the condensation of acids and alcohols.
They are widespread in biological systems, participating in metabolism, but also being
important components of the cell structure. Considering their relative abundance in cellular
structures, carboxylic esters are the most prevalent family of these compounds. Cellular
membranes are mainly composed of phospholipids, which are esters of mono-carboxylic
fatty acids with glycerol and other alcohols [1]. Multifunctional carboxylic acids are also
used by cells to synthesize complex polymeric esters such as plant cutins, which form an
impermeable cover for leaves and other plant structures [2].

Mimicking the structure of natural polymeric esters, chemical industry produces
several polymers with plastic properties by combining di-carboxylic organic acids with al-
cohols [3]. Polyesters are the most important family of industrial polymers, being present in
all kinds of daily goods including recipients, containers, fabrics and fibers [4]. The chemical
nature of the polyester components is related with the physico-chemical and mechani-
cal properties of the polymer. Polyesters synthesized by the esterification of aliphatic
alcohols and acids produce low-melting point (50–80 ◦C) and semicristalline materials
with poor mechanical properties. Other polyesters combine aromatic acids with aliphatic
alcohols, generating plastics with improved properties, higher melting points (160–280 ◦C),
and useful for applications that involve extrusion and injection methods [5]. Among
aliphatic-aromatic polyesters, polyethylene-terephthalate (PET) is one of the most widely
used plastics for the fabrication of liquid containers, bottles and machine parts [5,6].
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The industrial production of plastics worldwide has increased exponentially in the
last years, growing from two million Tons in 1950 to 380 million Tons in 2015 [7]. As stated
in the last report of the Ellen MacArthur Foundation, the “plastic economy” has major
drawbacks due to the intrinsic stability of these polymers in the environment and the lim-
ited extend in their recycling, which can be estimated around 5–10% of the total production.
Uncontrolled disposal of PET and other terephthalate-based plastics is an important source
of environmental pollution due to their increasing accumulation rates in surface lands and
waters in the last decade [7]. Microbes and their intrinsic metabolic capabilities have been
described as a potential new strategy for the environmental remediation and valorization
of plastic wastes [8].

Strategies for the bioremediation of PET and other polyesters have gained a new
impulse since the discovery and isolation of PET-degrading enzymes from marine microor-
ganisms, exemplified by the PETase from Ideonella sakaiensis [9]. Polyester-depolymerizing
enzymes such PETase are monodomain carboxyl-esterases that belong to the hydrolase
family [10]. Carboxyl-esterases are extremely versatile enzymes since they have a relative
low substrate specificity and are widespread across all the living kingdoms [11]. They are
the result of divergent evolution of monodomain enzymes with an alpha/beta fold and
a catalytic center formed by three amino acids: Serine, asparagine and histidine [12].
Carboxyl-esterases catalyze different types of reactions; their primary catalytic activity is
hydrolysis, but depending on the substrate concentrations and other reaction conditions
they can also catalyze esterification and trans-esterification reactions [11]. The hydrolysis of
carboxyl esters is catalyzed by a two-step reaction; first a nucleophilic attack of the catalytic
serine will release the corresponding alcohol and an acetylated intermediate of the enzyme,
that it is stabilized by the help of the histidine residue in the catalytic center. In a second
step, the enzyme will return to its native state by the hydrolysis of the acyl intermediate
and the release of the carboxylic acid [13,14].

Carboxyl-esterases maybe classified using different criteria that include their sub-
strate specificity or inhibition patterns. The most complete classification was proposed
by Arpigny and Jaeger [15] which distinguish 15 different families of enzymes depending
on their substrate specificity, catalytic centers and amino acids involved in catalysis. Tak-
ing into account the structural configuration of the catalytic center, we can simplify this
classification considering two super-families of carboxyl-esterases: ester hydrolases and
lipases. The ester-hydrolase superfamily is composed by alpha/beta monomeric proteins
with catalytic activity over mono- and poly-esters, where the active center composed by
the catalytic triad Ser-Asp-His is located in a protein cleft exposed to the solvent [11]. In the
lipases, the catalytic center is covered by a small domain that limits its accessibility to
the substrates and modulates the catalytic activity of these enzymes that are specifically
designed to catalyze hydrolysis of ester bonds in hydrophobic environments [10].

Several carboxyl-esterases from bacteria including cutinases, lipases and the specific
PETases have been described to degrade plastic synthetic polymers based on phthalate un-
der laboratory conditions [9,16,17]. Even in the case of the specific PETase from I. sakaiensis,
the extension and yield of the enzymatic degradation is very limited and only possible
in amorphous polymers [18]. Highly dense PET polyesters present in bottles and other
containers are not able to maintain the growth of bacteria producing plastic-degrading
enzymes [19]. These crystalline polymers are also very inefficient substrates for isolated
carboxyl-esterases due to their intrinsic hydrophobicity and compactness, that prevent the
proper access of the enzymes to the substrate [16,20]. In consequence, the biotechnology
applications of plastic-degrading hydrolases would require a deeper knowledge about
their mechanism of action and specificity. This knowledge has been recently empowered by
the massive metagenomic approaches for the genomic characterization of environmental
microbes [9,21], and also by the molecular and structural biology techniques that allowed
precise engineering of these enzymes for improving their catalytic properties [22,23].

In this report, we analyzed the structure-activity relationships of different polyester-
hydrolases comparing their molecular structures and the surrounding environment of the
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catalytic center, including their substrate-binding site properties. The obtained results
could contribute to the directed engineering of new polyester-degrading enzymes with
improved catalytic properties.

2. Methods
2.1. Structure Comparison

The functional homologs of I. sakaiensis PETase (PDB code: 5XJH) were selected by
structure comparison with the PDB database using the FATCAT2 algorithm [24]. The struc-
tural search was performed by using a non-redundant subset of PDB database containing
51,859 structures and applying a flexible alignment mode. This search was further refined
and narrowed to the bacterial carboxyl-esterases by applying the Mustguseal algorithm [25].
The Mustguseal protocol first starts with a structure similarity search to find the relatives
of the query structure in different protein families. Each structural relative is then scanned
by sequence homology to collect functional homologues, constructing a protein family and
a multiple protein alignment [26]. In the structural alignment, the algorithm was applied
using X-ray structures from the PDB database and a lowest acceptable match for the target
structure of 70%. In the sequence similarity search, Mustguseal software parameters in-
cluded a redundancy filter threshold of 95% and a dissimilarity filter threshold of 0.5 over
the Uniprot/Swiss-Prot databases. The analysis and comparison of enzyme foldings was
performed by DALI server [27].

2.2. Residue Co-Evolution

The relationships between structure and function, and the identification of hotspots
involved in co-evolution patterns in bacterial esterase structures were identified by the vi-
sualCMAT algorithm [28]. Structural alignments obtained with Mustguseal were analyzed
by visualCMAT, using a Henikoff’s position-based weight and a profile-based adjustment
for the determination of co-evolving residues across carboxyl-esterases.

2.3. Ligand Docking

Atomic models of polyethylene-terephthalate (PET), polypropylene-terephthalate
(PPT) and polybutylene-terephthalate (PBT) were manually built with Maestro software
v.12.3 [29]. Hydrogen atoms were automatically added following the riding model and the
structures were optimized by 100 cycles of energy minimization. Molecular docking of
PET, PPT and PBT models on the surface of I. sakaiensis PETase was performed by applying
a blind-method with a previous cavity detection and flexible docking using CB-Dock and
Autodock Vina [30]. The list of docking solutions was ranked by their internal scores and
Gibb’s function.

2.4. Data Representation and Analysis

Analysis of protein sequence-structure alignments and construction of the derived un-
rooted phylogenetic trees was performed by Jalview [31]. The corresponding phylogenetic
trees were graphically represented with iTOL v.5 software [32]. Protein structures were
analyzed and represented with PyMOL [33] and Protein Imager [34]. Surface electrostatics
in PETase and other esterase structures were calculated by the Adaptive Poisson-Boltzman
method (APBS) implemented as a plugin within PyMOL [35]. The analysis and comparison
of electrostatic properties of ester-hydrolases was performed by the PIPSA algorithm [36]
implemented in the web portal webPIPSA [37].

3. Results
3.1. Carboxyl-Esterase Fold Is Widespread in Prokaryotic and Eukaryotic Proteomes

Polyester-depolymerizing enzymes are carboxyl-esterases, belonging to the super-
family of alpha/beta hydrolases [11]. The structure of these enzymes is very compact,
and includes a beta-sheet core formed by eight or nine strands, which is surrounded by
alpha helices. The catalytic center is typically constituted by three amino acids, Asp (D),
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His (H) and Ser (S), which are located in the walls of a deep surface pocket [38]. Ser (S) is
generally at the center of the peptapeptide motif GXSXG, where X is any residue [15]. To de-
termine the extension of this catalytic folding across the already characterized structures,
we used the atomic coordinates of PETase from I. sakaiensis (PDB code: 5XJH) to perform a
homology search in an extended subset of non-redundant PDB structures. The results ob-
tained by the application of the FATCAT2 algorithm showed a total of 293 protein structural
homologues with p-value < 10−5 (Supplementary Table S1). The 137 protein structures
with p-value < 10−8 were used to construct an unrooted phylogenetic tree derived from
corresponding structure-based sequence alignment (Supplementary Figure S1). Analyzing
the structural comparisons, we can conclude that the polyester-hydrolase fold is extended
in several enzymes isolated from plants, mammals, bacteria, fungi and archaea with
metabolic functions related with the hydrolysis of ester bonds in different biomolecules,
including lipids and other natural and synthetic polymers. Interestingly, a significant
proportion of alignment hits belong to uncharacterized bacteria samples isolated from
metagenomic projects. The results also demonstrate the close structural similarity of PETase
from I. sakaiensis with bacterial esterases, lipases, cutinases and hydrolases.

Despite the inclusion of a flexible alignment algorithm in FATCAT2 that takes into
account the possible structural rearrangements in homologous foldings, the construction
of a structure-based sequence alignment has clear drawbacks, especially when the ana-
lyzed subset of proteins is very heterogeneous in sequence [39]. The algorithms where the
structural alignment is improved by including sequence information are more efficient,
reliable and produce better results as stated in recent benchmark studies [40]. To generate
a core structural alignment combining sequence and structure information we applied the
Mustguseal method [25]. Atomic coordinates of the PETase from I. sakaiensis were used
as a seeding model to scan non-redundant PDB entries and Uniprot-Swissprot protein
sequences simultaneously. We used the structural alignment to build a distance phyloge-
netic tree and the selected core homologs to perform a statistical analysis of their structure
similarities (Figure 1a). The core alignment members harboring the carboxyl-esterase fold
could be organized into five main clusters considering the homology score determined
by the DALI algorithm and a principal component analysis (Figure 1c,d). The cluster that
includes PETase from I. sakaiensis also contains three additional members: an alkaline lipase
from Pseudomonas mendocina (PDB code: 2FX5) [41], a cutinase from Saccharomonospora
viridis (PDB code: 4WFK) [42], and a polyester hydrolase isolated from Pseudomonas aestus-
nigri (PDB code: 6SCD) [18]. The cutinase from S. viridis is a calcium-dependent enzyme
with esterase activity and able to depolymerize PET [16]. Calcium ions are essential for
inducing structural transitions in the enzyme that are related not only with its catalytic
activity but also with its thermal stability [42]. The polyester-hydrolase isolated from the
marine bacterium P. aestusnigri is structurally close to the I. sakaiensis PETase, but it showed
decreased performance in the degradation of commercial PET films and containers [18].
The alkaline lipase from P. mendocina was employed as one of the components of an enzyme
mixture used for the bleaching of lignin and phenolic-derived polymers [43].
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Figure 1. Functional and structural categories of prokaryotic ester-hydrolases showing homology with PETase from
I. sakaiensis. (a) Unrooted phylogenetic tree obtained from the core structural alignment of the 32 bacterial hydrolases with
significant homology with the I. sakaiensis PTEase (PDB code: 5XJH) by the Mustguseal algorithm, showing the different
categories of enzymatic activities represented in the group [26]; (b) aligned representative structures for each catalytic group
in a ribbon representation and a rainbow gradient coloring (blue to red, from N-terminus to C-terminus); (c) principal
component analysis of the group of the 32 selected bacterial ester-hydrolases after alignment with DALI algorithm [27];
(d) distance matrix of DALI homology scores that clearly depict the clustering of structures with increased folding homology.
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3.2. Coevolution of Catalytic and Structural Residues in Polyester-Hydrolases

The potential applications of polyester hydrolases in bioremediation and enzyme
catalysis would benefit from the detailed knowledge of functional and structural relation-
ships among the amino acid residues found in this family of enzymes. Protein coevolution
at the residue level is imposed by structural and functional constraints, and constitutes
an important area of study to determine the functional and structural connections among
amino acids composing a family of closely-related proteins [44]. To understand the internal
residue connections in the selected group of bacterial ester hydrolases, we have performed
a residue-based coevolution study by applying the visualCMAT [28] algorithm to their
structure alignments. The results of the analysis used the structure of I. sakaiensis as a
representative structure, serving as a scaffold for depicting the relationships among amino
acids (Figure 2).
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Figure 2. Functional structure and co-evolving residues in bacterial polyester-hydrolases depicted
over the structure of PETase from I. sakaiensis. The catalytic triad is formed by the central Ser160 and
the Asp206 and His237 (blue ball-stick amino acids). The use of visualCMAT algorithm [28] for the
study of coevolving amino acid residues across all the bacterial polyester-hydrolases allowed to
determine four amino acids pairs that are related by coevolution events (light green ball-stick amino
acids and connecting dotted lines). Interestingly, the catalytic center of PETase from I. sakaiensis is
flanked by two tryptophan residues, Trp159 and Trp185 (magenta ball-stick amino acids), which
ensure a local hydrophobic environment. The figure was prepared with Protein Imager [34].

The score ranking of all the coevolving positions clearly showed that Ser160, the main
catalytic residue of esterases, has the higher tendency to participate in coevolving rela-
tionships with other amino acids (Supplementary Tables S1 and S2). Interestingly, in the
core alignment of 32 bacterial carboxyl-esterases, catalytic Ser160 establishes coevolution
relationships with two hydrophobic residues located in the molecular boundaries of the
catalytic pocket, Ile208 and Gly86 (Figure 2). These results are compatible with the pre-
vious observations indicating that site directed mutagenesis of the amino acids located
in the boundaries of the active center have an important effect on the catalytic activity of
I. sakaiensis PETase over small organic esters [45]. There is no evidence for coevolution
involving the remaining elements of the catalytic triad, Asp206 and His237.
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Far from the catalytic center, two other pairs of coevolving residues were determined:
Tyr63-Val57 and Ala130-Val134. Both pairs of hydrophobic residues are located in the
interface between a beta-strand and an alpha helix, opposite to the active center.

3.3. Substrate Binding and Surface Electrostatics

The hydrolase alpha/beta fold is widespread in nature and produces enzymes that
have an extended range of catalytic activities and substrates. However, the specificity and
catalytic efficiency of some microbial esterases over plastic polymers is still an intriguing
observation. The structural and functional elements present in microbial plastic-hydrolases
such as PETases or polyester hydrolases that are responsible for their catalytic specificity,
remain largely uncharacterized. Previous studies, based on protein sequence homology
and site directed mutagenesis, showed that the catalytic activity of PETases is influenced
by two subdomains involved in substrate binding and protein compactness [20,46]. These
subdomains are also useful to classify the different bacterial PETases in three families:
type I, type IIa and type IIb [46]. Type II enzymes are more efficient in the degradation of
PET and other synthetic polyesters, and have two distinct features that distinguish them
from the type I PETases: the presence of an additional disulfide bridge between cysteines
203 and 239, and the existence of an extended amino acid loop in the C-terminal region of
the protein comprising residues 242 to 247 [46].

The analysis of the surface electrostatics of I. sakaiensis PETase by the adaptive Poisson-
Boltzman method showed the presence of an asymmetrical pattern of surface charge
distribution that divides the protein into two halves with opposite electrostatic charges,
being the catalytic cleft in the border of both regions (Figure 3a). We hypothesized regarding
the possible implications of this charge distribution in the substrate binding mechanism of
the enzyme, its catalytic efficiency and substrate specificity. To study the surface patches
involved in substrate binding, we performed molecular docking experiments using three
different models of synthetic polyesters: Polyethylene-terephthalate (PET), polypropylene-
terephthalate (PPT) and polybutylene-terephthalate (PBT). For the docking experiments
we used short polymeric structures composed by three monomers in each case, applying a
flexible docking protocol for the ligand and the protein using the CB-Dock algorithm [30].
Together with the inclusion of a flexible atomic model, the CB-Dock algorithm has the
additional advantage of being a totally blind method by which the protein surface is firstly
scanned for the presence of cavities where the ligand will be docked.

The results of the docking analysis depicted in Figure 3 are in agreement with previous
molecular modelling studies for the interaction of PETase with PET polymer [20,47]. All the
polyester models are predicted to interact with the catalytic cleft, formed by the Ser160,
Met161 and the conserved Trp185. This last residue is conserved in all PETase families and
ensures a hydrophobic interaction platform for their substrates. Interestingly, polymers
formed with propyl and butyl spacers (PPT and PBT) appear to have slightly different
binding properties. The presence of three and four carbon atoms between the phthalate
groups extended the contact of the polymer with the surface of the protein (Figure 3a).
These extended molecular contacts for PPT and PBT are based on cation-pi interactions
between the aromatic ring of the phthalate group of the plastic monomers and the positive
charged protein surface residues (Asn233, His237, Asn244, Asn246 and Arg280) (Figure 3b).

The detailed analysis of the docking and electrostatics results on PETase from I. sakaien-
sis opened several questions related to the degree of conservation of this electrostatic
surface pattern in other polyester hydrolases and the inferred structure activity relation-
ships. To compare the electrostatic surface distribution in other polyester hydrolases,
we selected the previously set of bacterial ester hydrolases and analyzed it by the PIPSA
algorithm [36,37]. The global electrostatic potential in every structure was compared by
the calculation of the individual electrostatic distances, and the numeric matrix used for
the construction of a heatmap (Figure 4a). The hierarchical clustering analysis of the data
showed the presence of four different clusters of enzymes according to their electrostatic
surface profiles, where the I. sakaiensis PETase (PDB code: 5XJH) appeared to be closely
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related only with the P. mendocina lipase (PDB code: 2FX5). In a closed view, the electrostatic
potential over the PETase surface resembles those observed in the cutinase from S. viridis
(PDB code: 4WFK) and the lipase from P. mendocina. Interestingly, the surface charge distri-
bution differs from the observed in another polyester hydrolase isolated from the marine
bacterium P. aestusnigri (PDB code: 6SCD), that shows a negatively charged patch close to
the catalytic cleft (Figure 4b). The polyester hydrolase from P. aestusnigri was already char-
acterized as a PET-degrading enzyme, but its catalytic efficiency exclusively demonstrated
the depolymerization of amorphous PET, being unable to degrade high-density variants of
the polymer like those used for the production of plastic bottles [18].

Int. J. Mol. Sci. 2021, 22, 2332 8 of 14 
 

 

 

Figure 3. Electrostatics and binding of synthetic polyesters in the surface of PETase from I. sakaiensis. (a) The results of the 

molecular docking analysis of three synthetic polyesters (PET, PPT and PBT) onto the surface of PETase protein. The 

molecular surface is colored by its electrostatic potential as calculated by the APBS algorithm, using the color ramp scale 

depicted at the bottom of the panel. The electrostatic surface demonstrates the presence of a positive-charged patch of 

amino acids that could help to the interaction of the aromatic monomers of the polyesters. (b) Interaction map showing 

the amino acids involved in the binding of PETase with PBT and all the putative chemical interactions. The protein surface 

amino acids involved in this interaction are mainly hydrophobic and with a residual positive charge (Asn233, His237, Asn 

244, Asn246 and Arg280). This surface charge distribution forms a positive-charged hinge that will favor the cation-pi 

interactions with the aromatic residues present in the phthalate-based plastic polymers. 

The detailed analysis of the docking and electrostatics results on PETase from I. sa-

kaiensis opened several questions related to the degree of conservation of this electrostatic 

surface pattern in other polyester hydrolases and the inferred structure activity relation-

ships. To compare the electrostatic surface distribution in other polyester hydrolases, we 

selected the previously set of bacterial ester hydrolases and analyzed it by the PIPSA al-

gorithm [36,37]. The global electrostatic potential in every structure was compared by the 

calculation of the individual electrostatic distances, and the numeric matrix used for the 

construction of a heatmap (Figure 4a). The hierarchical clustering analysis of the data 

showed the presence of four different clusters of enzymes according to their electrostatic 

surface profiles, where the I. sakaiensis PETase (PDB code: 5XJH) appeared to be closely 

related only with the P. mendocina lipase (PDB code: 2FX5). In a closed view, the electro-

static potential over the PETase surface resembles those observed in the cutinase from S. 

viridis (PDB code: 4WFK) and the lipase from P. mendocina. Interestingly, the surface 

charge distribution differs from the observed in another polyester hydrolase isolated from 

the marine bacterium P. aestusnigri (PDB code: 6SCD), that shows a negatively charged 

patch close to the catalytic cleft (Figure 4b). The polyester hydrolase from P. aestusnigri 

was already characterized as a PET-degrading enzyme, but its catalytic efficiency exclu-

sively demonstrated the depolymerization of amorphous PET, being unable to degrade 

high-density variants of the polymer like those used for the production of plastic bottles 

[18]. 

Figure 3. Electrostatics and binding of synthetic polyesters in the surface of PETase from I. sakaiensis. (a) The results
of the molecular docking analysis of three synthetic polyesters (PET, PPT and PBT) onto the surface of PETase protein.
The molecular surface is colored by its electrostatic potential as calculated by the APBS algorithm, using the color ramp
scale depicted at the bottom of the panel. The electrostatic surface demonstrates the presence of a positive-charged patch of
amino acids that could help to the interaction of the aromatic monomers of the polyesters. (b) Interaction map showing the
amino acids involved in the binding of PETase with PBT and all the putative chemical interactions. The protein surface
amino acids involved in this interaction are mainly hydrophobic and with a residual positive charge (Asn233, His237,
Asn 244, Asn246 and Arg280). This surface charge distribution forms a positive-charged hinge that will favor the cation-pi
interactions with the aromatic residues present in the phthalate-based plastic polymers.
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4. Discussion

Plastic polyesters are widely used polymers for the manufacturing of daily objects
and their accumulation in the environment is a relevant problem. The currently imple-
mented valorization measures are clearly insufficient to give a timely answer to plastic
pollution in earth and aquatic environments. In this context, the importance of plastic
bioremediation processes by microorganisms or microbial enzymes has been increased
in the last decade [48]. The first evidence for the microbial degradation of polyester plas-
tics such as PET was described in Thermobifida fusca, a thermophilic bacterium isolated
from decaying organic matter [49]. The enzyme responsible for this degrading activity
was characterized as a serine hydrolase, functionally related to triacylglycerol lipases [50].
In the following years, several microorganisms and enzymes able to degrade PET and
other polyesters were described [42,47,51]. The most well studied system is the PETase
isolated from the marine bacterium I. sakaiensis, which showed an increased degradation
yield when compared with other similar enzymes [20]. However, the number and diversity
of polyester-degrading enzymes is expected to be expanded in the following years with
the onset of the high-throughput metagenomic analysis of natural samples [21,52].

PETases and other plastic-degrading enzymes belong to the serine-hydrolase family,
a widely distributed group of catalysts characterized by their relatively low substrate
specificity and plethora or different activities [11,13]. Despite this catalytic diversity, their
molecular structure is strongly conserved and, in many cases, shows no clear features that
could classify a particular protein into a specific catalytic group. In this work, we performed
a structure-based analysis of polyester hydrolases using the PETase from I. sakaiensis as a
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reference, with the objective of finding structural features that could be related with the
protein function. The generated knowledge could be applied, either for the screening and
discovery of new members of the protein family or for the engineering and improvement
of already known enzymes.

Our data generated by structure-based search, concluded that the alpha/beta fold
observed in PETase is distributed across different proteomes. However, this particular
folding is more associated with hydrolytic enzymes that act over branched polyesters in the
form of high-molecular weight polymers. This group includes the bacterial cutinases and
lipases, together with the already characterized polyester-hydrolases [53]. Among them,
the lipase from P. mendocina has a particular interest, since it has been already characterized
as active over polymeric complexes such as lignin for enzymatic bleaching [43]. This bac-
terial alkaline lipase has an unusual structure, without the characteristic lid domain that
covers the catalytic center [23]. Other interesting structural homologs are represented by
the family of cutinases, where the thermostable calcium-dependent cutinase from S. viridis
is the most relevant example. Despite its non-canonical mechanism and structure, the PET
hydrolytic activity of this enzyme has been demonstrated over a wide range of low-density
PET polymers [16,42]. Comparing the structural homologs and their enzymatic activity we
can conclude that polyester hydrolases active over synthetic PET and other polymers would
require the presence of an open active center with direct contact to the solvent [10]. These
results justify the low PET degradation efficiencies observed in canonical lipases where the
active center is not directly accessible to the solvent. However, recent evidences showed
that this catalytic limitation for lipases in PET degradation could be circumvented by
synergistic associations with other enzymes, exemplified by a natural consortium formed
by five species of Bacillus and Pseudomonas which is able to growth on PET as a sole source
of carbon [54].

PET-degrading enzymes are the result of a divergent evolution of hydrolases that,
due to their relative substrate promiscuity, have been specialized to degrade very different
ester polymers [12]. At this point, it is difficult to state if the existence of specific PET-
degrading enzymes, as the one isolated from I. sakaiensis, is a result of environmental
pressure or just an adaptation to a wide range of substrates. To infer the importance of
amino acid coevolution in this group of enzymes, we performed an analysis with a selected
group of PETase structural homologs. The problems derived from covariance models when
protein sequences are analyzed, were minimized by the application of the visualCMAT
algorithm that detectcs coevolution pairs in structure-based sequence alignments [28].
Our results showed that with the exception of the catalytic Serine residue, the remaining
coevolution pairs among the analyzed structures were amino acids located within structural
elements, and located at distances not compatible with a molecular interaction. This fact is
in agreement with the previous observations obtained in a large cohort of protein domains
extracted from the PFAM database [55]. Using the I. sakaiensis PETase as representative
structure, two coevolving residue pairs Ser160-Gly86 and Ser160-Ile208 were located in
the boundaries of the catalytic pocket. Both coevolutionary pairs constitute a network
which is spatially close and statistically coupled, suggesting an important role in the
structure and function of the esterase center [56]. However, no coevolution signal was
detected between the residues involved in the catalytic triad, Ser160, Asp206 and His237.
Since this triad is directly involved in the protein function and any variance could modify
the catalytic properties of the enzyme, this constitutes a constraint that does not allow
any variation and thus does not allow any covariation [57]. Interestingly the remaining
coevolving pairs Val57-Tyr63 and Ala130-Val134 are located in a region opposite to the
catalytic center and involved in the structural alpha-beta packing of the enzyme. These
coevolution pattern suggest a structural constraint in the alpha/beta fold that stabilizes the
protein core without modifying the catalytic center, as already has been observed in other
proteins such as synthetases or transcription factors [57,58].

However, it is still not clear what are the structural features that make PETase from
I. sakaiensis so efficient and unique in the PET degradation when compared with other
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similar enzymes with polyester hydrolase activity. These features are not related to the
amino acids involved in enzyme activity or with the protein folding, since they are well
conserved in other esterases [11,13]. We postulated regarding the involvement of the
surface electrostatics in the interaction with polymeric substrates and in the overall catalytic
yield. The comparison of the electrostatic potential function at the surface of the selected
group of carboxyl esterases showed that PETase has a unique profile, measured as the
electrostatic distance with other enzymes. This profile is partially shared with the bacterial
cutinase from S. viridis and the lipase-like enzyme from P. mendocina. Combining the
electrostatic information with the docking experiments, we clearly connected the presence
of a positively-charged hinge in the surface of PETase structure (Asn233, His237, Asn 244,
Asn246 and Arg280 residues) with the putative substrate-binding site (Figures 3 and 4).
Based on an analysis of the results, we proposed that the increased efficiency of I. sakaiensis
in the degradation of PET and other polymers is related with the enhanced affinity of the
substrate for the protein surface. The substrate-enzyme interaction is mediated by the
establishment of a stretch of cation-pi interactions between the aromatic rings of phthalate
groups and the positive charged hinge along the protein surface. The positively charged
surface hinge is absent in less efficient enzymes, such as the polyester hydrolase from P.
aestusnigri, and only partially present in the P. mendocina lipase and S. viridis cutinase. In the
P. aestusnigri polyester hydrolase, experimental evidence showed the inefficiency of the
enzyme to depolymerize high-density PET, and the limited activity over the amorphous
polymer [18]. The absence of the positively charged hinge in this enzyme suggests a limited
substrate interaction when compared with I. sakaiensis PETase, which is more evident in
the case of crystalline PET.

Since the discovery of PET hydrolases, protein engineering has been applied to the
improvement of their catalytic properties. Structural biology data combined with computer
methods for protein design have been mainly focused in the improvement of protein
stability. Son and coworkers applied a rational protein engineering method based on
sequence homology to design a I. sakaiensis PETase mutant (S121E-D186H-S242T-N246D)
that showed prolonged enzymatic activity over 20 days [59]. Moreover, Cui and coworkers
developed a computational strategy for the mutational analysis of PETase and the design
of a multiple mutant with enhanced thermostability when compared with the wild-type
protein. This mutant designated as “duraPETase” contains the substitutions S214H-I168R-
W159HS188Q-R280A-A180I-G165A-Q119Y-L117F-T140D, and it was able to degrade amor-
phous PET, but also longer polymers such as PBT with an optimum reaction temperature
of 40 ◦C [60]. However, both engineered PETase mutants showed low efficiency in the
degradation of crystalline high-density polymers, suggesting that the compactness of
the material limits the protein access to the free chemical groups. To solve this problem,
some authors have proposed the use of enzyme cocktails. The rate of PETase hydrolysis
could be significantly increased in the presence of proteins such as hydrophobin RolA [61].
Hydrophobins represent a class of small fungal protein that has a high surface-active
substance and can spontaneously self-assemble at hydrophilic-hydrophobic interfaces,
increasing the exposure interface [61].

Our results suggest that the interaction between the enzyme and the substrate could
be improved by rational design of the binding interface, since the polyester hydrolases
showing a higher PET degradation efficiency contain an interaction surface hinge with
a positive charge (Figure 4). This strategy could be useful for the degradation of high-
density polyesters harboring aromatic residues, but also can open a new avenue for de
novo design of more efficient depolymerases, based on the structural chassis of bacterial
PETases and lipases.

Supplementary Materials: The following are available online at https://www.mdpi.com/1422-0
067/22/5/2332/s1, Figure S1: Unrooted phylogenetic tree obtained from the structure-based align-
ment of carboxylic-ester-hydrolases and their structural neighbors using the FATCAT 2.0 algorithm,
Figure S2: Secondary structure cartoons of selected plastic-degrading bacterial carboxyl esterases
represented by Pro-origami, Table S1: Output from visualCMAT coevolution analysis, including
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the list of predicted correlated aminoacid pairs and their scores, considering the representative
structure of the group (PETase from I. sakaiensis, PDB code: 5XJH), Supplementary Table S2: Output
from visualCMAT coevolution analysis, showing the sum of predicted correlation scores per each
aminoacid considering the representative structure of the group (PETase from I. sakaiensis, PDB
code: 5XJH).
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