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Abstract
Proteolytic instability is a critical limitation for peptide-based products. Although 
significant efforts are devoted to stabilize sequences against proteases/peptidases 
in plasma/serum, such approaches tend to be rather empirical, unspecific, time-
consuming, and frequently not cost-effective. A more rational and potentially re-
warding alternative is to identify the chemical grounds of susceptibility to enzymatic 
degradation of peptides so that proteolytic resistance can be tuned by manipulation 
of key chemical properties. In this regard, we conducted a meta-analysis of literature 
published over the last decade reporting experimental data on the lifetimes of pep-
tides exposed to proteolytic conditions. Our initial database contained 579 entries 
and was curated with regard to amino acid sequence, chemical modification, terminal 
half-life (t1/2) or other stability readouts, type of stability assay, and biological appli-
cation of the study. Although the majority of entries in the database corresponded to 
(slightly or substantially) modified peptides, we chose to focus on unmodified ones, 
as we aimed to decipher intrinsic characteristics of peptide proteolytic susceptibility. 
Specifically, we developed a multivariable regression model to unravel those peptide 
properties with most impact on proteolytic stability and thus potential t1/2 predicting 
ability. Model validation was done by two different approaches. First, a library of 
peptides spanning a large interval of properties that modulate stability was synthe-
sized and their t1/2 in human serum were experimentally determined. Second, the t1/2 
of 21 selected peptides approved for clinical use or in clinical trials were recorded and 
matched with the model-estimated values. With both approaches, good correlation 
between experimental and predicted t1/2 data was observed.
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INTRODUCTION

Peptide drugs are steadily making inroads into the clin-
ics. However, poor pharmacokinetics (PKs), mainly due 
to degradation by body proteases, often critically compro-
mises the successful development of a bioactive peptide 
into a drug lead.1,2 Degradation occurs mainly in plasma 
but also in other locations, such as the gastrointesti-
nal system, the liver, and in immune cells, the outcome 
often being lifetimes so short that oral delivery is unfea-
sible, with high doses often require even for parenteral 
administration.3–5 On the face of these limitations, devel-
oping protease-resistant versions is essential if peptide 
drugs are to fulfill their promise. Moreover, development 
of such versions should ideally involve minimal alterations 
in structure, hence preferably rely on natural, unmodified 
amino acids, so that activity and cost-effectiveness are not 
compromised.

Although practically all peptides are by definition 
protease-susceptible, some sequences are sporadically found 
to be long-lived in serum, plasma, or other biological fluids. 
The determinants (e.g., composition and structure) for such 
exceptional behavior are often enigmatic, and efforts toward 
unraveling them are neither plentiful nor intense.6,7

Typically, for peptides with short bloodstream terminal 
half-lives (t1/2), peptide chemists are successfully develop-
ing strategies to increase lifespan by resorting to chemical 
modifications, such as end-group capping, D- or non-coding 
amino acid substitution, or cyclization, as well as conjugation 
to macromolecules, encapsulation, or other approaches.1,8–10 
In general, most of these modifications rely on a mixture 
of empiric and chemical intuition criteria. Nonetheless, 
knowledge-based compilation and systematization of perti-
nent data would seem a preferable course of action for inte-
grating proteolytic stability into PK improvement strategies 
for peptide drug lead optimization.

In an effort to shed light onto this problem, herein we 
report results of a meta-analysis conducted on publications 
over the last decade in which experimentally determined pep-
tide stabilities toward proteases are reported. Specifically, we 
have worked on a database built with 579 entries where each 
peptide is annotated by designation, sequence, modifications, 
stability data, stability assay, and biological application.

Whereas most entries in the database represent slightly 
or substantively modified peptides, studying the stability 
of unmodified ones is fundamental for understanding bi-
ological significance and ensuring biotechnological cost-
effectiveness. For these reasons, we focused on a subset of 
unmodified peptides and developed a multivariable regres-
sion model to identify key chemical parameters that deter-
mine t1/2 and may be used to predict peptide stability on the 
basis of a priori known physicochemical properties. The 
model has been validated by two distinct approaches. First, 

a library of 16 de novo designed peptides with sequences 
spanning a broad range of key parameters affecting peptide 
stability determined within this study was synthesized and 
the respective t1/2 in human serum were experimentally deter-
mined. Second, we selected 21 peptides already approved for 
clinical use or in clinical trials for which t1/2 were available 
from the literature. The model-predicted stabilities for these 
21 sequences were next determined and compared with the 
experimental values. Our model was shown capable of pre-
dicting the stability of the peptides with more than reasonable 
accuracy.

METHODS

Database design and data collection

Peptide-related research is published over a wide variety of 
journals. We focused our search over 33 journals providing 
a broad coverage of peptide science areas, from academic 

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON 
THE TOPIC?
Stability is a hot topic in the peptide field, as a 
frequently serious drawback in peptide drug ap-
plication. Unfortunately, knowledge on the phys-
icochemical factors affecting peptide stability is 
scarce. During the development of new therapeutic 
peptides, researchers tend to rely solely on empirical 
experience to improve peptide sequence lifetimes.
WHAT QUESTION DID THIS STUDY 
ADDRESS?
Which are the physicochemical properties affecting 
the stability of peptides?
WHAT DOES THIS STUDY ADD TO OUR 
KNOWLEDGE?
This study reveals major predictors of peptide stabil-
ity. In addition, and because the determination of ex-
perimental half-life is demanding, we have used the 
knowledge from the study to develop a multivariable 
regression model that predicts peptide stability in a 
reliable way.
HOW MIGHT THIS CHANGE CLINICAL 
PHARMACOLOGY OR TRANSLATIONAL 
SCIENCE?
Our study will help researchers improve their thera-
peutic peptide candidates more rapidly, thus contrib-
ute to decrease the number of peptide withdrawals in 
preclinical and clinical studies.
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scientific research to health applications (Table S1). A cu-
rated database of peptides with experimentally determined 
t1/2 was created by following the multistep strategy pre-
sented in Figure  1. Briefly, to detect relevant papers, we 
used the search engine of each journal webpage with “pep-
tides” and/or “characterization,” “stability,” “proteolysis,” 
“degradation,” and “cleavage” as keywords over the 2010 
to 2019 decade. To ensure relevance, the actual literature 
reference of the identified papers was also searched manu-
ally to verify that the required data were indeed included. Of 
4150 papers, 3571 were excluded from the study for lack of 
accurate quantitative or semiquantitative data on stability, 
identification of the stability assay applied, explicit peptide 
sequence, or specified sequence modifications. The com-
parison of these data is not straightforward. Most frequently, 
only semiquantitative data are reported (e.g., percentage of 
peptide that remains intact after a certain period), whereas 
the most informative stability parameter (i.e., t1/2) is not 
given.11 This lack of harmonization in published stability 
data is one of the most limiting factors hampering proper 
data comparison. Hence, a categorization of these data was 
needed (Tables S2–S3) to properly visualize the stability 
distribution within our database (Figure  2). To allow the 
building of a multivariable regression model, the remaining 
579 entries in the database had to be further refined, with 
528 being excluded for not providing precise, experimen-
tally determined t1/2 values. Thus, the regression model took 
into consideration the t1/2 values and chemical properties 
associated to the amino acid sequences of the remaining 51 
selected papers (129 peptides).

Quantitative data analysis

As mentioned above, only unmodified natural peptides with 
experimentally determined t1/2 were considered (Figure 1) to 
identify intrinsic determinants of proteolytic resistance. For 
each entry in the refined database, the following properties 
were calculated using either online tools12 or information 
available in the literature: (i) molecular weight; (ii) isoelec-
tric point (pI); (iii) UV-Vis absorption extinction coefficient 
(M−1 cm−1) at 280 nm; (iv) net charge at pH 7.0; (v) hydro-
phobicity (H); (vi) hydrophobic moment (µH); (vii) presence 
of nonpolar residues (%); and (viii) secondary structure.

As molecular weight, pI, net charge, hydrophobicity, hy-
drophobic moment, and presence of nonpolar residues are 
continuous variables, descriptive statistics was performed 
to evaluate these entries (Figure S1). They were found to be 
evenly distributed, thus requiring no further action. A scatter-
plot was then used to evaluate the correlation between each of 
the variables and peptide t 1/2s (Figures S2–S5).

Because pI was not evenly distributed through the entries 
of the database, we categorized this variable into 4 ranges: 
pI < 7; 7 < pI < 10; 10 < pI < 12; and pI > 12. Distribution 
among those groups was homogeneous (Table S4). The net 
charge was again unevenly distributed. In this case, we classi-
fied peptides as anionic (ch <0) and cationic (ch >0). As the 
second group was significantly larger than the first, we fur-
ther categorized the variable into: 0 < ch < 3; 3 < ch < 7; and 
ch > 7, which made the groups more homogenous (Table S5).

The UV-Vis extinction coefficient reports mainly the 
abundance of tryptophan (Trp; 5690 M−1 cm−1) and tyrosine 

F I G U R E  1   Multistep strategy in data acquisition. The meta-analysis followed three different steps: (1) apply search engines of the selected 
journals with the keywords: “peptides” and/or “characterization,” “stability,” “proteolysis,” “degradation,” and “cleavage” to identify relevant 
papers (output = 4150 papers); (2) the papers not reporting stability information, type of stability assay performed, or specified peptide sequence 
were excluded (output = 579 papers); (3) to develop the multivariable regression model, precise terminal half-life (t1/2) values were required; thus 
papers without this information were excluded (output = 51 papers)
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(Tyr; 1280 M−1 cm−1) residues in the sequence, with smaller 
contributions from phenylalanine (200 M−1 cm−1) and cys-
teine (120 M−1 cm−1). This is not a continuous variable and 
was also not evenly distributed. Given the different contri-
butions of Trp and Tyr, we categorized the entries for the 
presence/absence of these residues (Tables S6 and S7). The 
new groups thus defined were more homogenous.

Secondary structure is a parameter more difficult to as-
sess and the sample size within our database was too small to 
allow a proper statistical assessment (Table S8). In addition, 
the frequency of each possible secondary structure was low. 
Consequently, we excluded this variable from further analysis.

This initial statistical assessment allowed us to catego-
rize variables not homogenously distributed and to identify 
continuous variables that might correlate with t1/2. Then, for 
each variable, we performed a one-way analysis of variance 
(ANOVA) with a Bonferroni’s multiple comparison test. 
Based on these results, and to allow the development of the 
multivariable regression model, we categorized noncontinu-
ous variables as dummies (binary variables). These dummies 
were compared using an independent t-test to verify statis-
tically significant differences (α  <  0.05). Table S17 shows 
the new descriptive statistics. Next, a Spearmen correlation 
test was performed to identify the correlation between the 
variables studied and the t1/2. Finally, the variables showing a 
statistically significant correlation (α < 0.05) were included 
into the multivariable regression model.

All computational statistical analyses were performed on 
the IBM SPSS statistics version 25. All related plots were 
obtained on GraphPad Prim version 7 (GraphPad Software, 
San Diego, CA).

Peptide synthesis and purification

For experimental validation of the multivariable regres-
sion model, 16 peptides (Table  1), were synthesized in 

C-terminal carboxamide form in a Prelude automated 
synthesizer (Gyros Protein Technologies, Tucson, AZ) 
running Fmoc protocols at 0.1  mmol scale on an Fmoc-
Rink-amide ChemMatrix resin. Side chain functionalities 
were protected with tert-butyl (Tyr, Ser), NG-2,2,4,6,7-
pentamethyldihydrobenzofuran-5-sulfonyl (Arg), and 
tert-butoxycarbonyl (Trp) groups. Eight-fold excess of 
Fmoc-L-amino acids and HBTU, in the presence of a dou-
ble molar amount of DIEA, were used for the coupling 
steps, with DMF as solvent. After chain assembly, full de-
protection and cleavage was carried out with TFA/H2O/
TIS (95:2.5:2.5 v/v, 90  min, r.t.). The peptides were then 
precipitated from the cleavage solution by addition of cold 
diethyl ether, redissolved in H2O and lyophilized. They 
were checked for purity by analytical reverse-phase high-
performance liquid chromatography (RP-HPLC) and puri-
fied by preparative RP-HPLC as described below. Fractions 
of greater than 90% purity and correct mass by liquid 
chromatography-mass spectrometry (LC-MS) were pooled 
and lyophilized. Peptide stock solutions were prepared in 
sterile deionized water and stored at −20°C.

The t1/2 of the peptides was determined experimentally 
using the method described below and matched against that 
obtained by the multivariable regression model for the re-
spective amino acid sequence.

RP-HPLC and LC-MS analysis

Analytical RP-HPLC was performed on a LC-20AD instru-
ment (Shimadzu, Japan) equipped with a Luna C18 column 
(4.6 × 50 mm, 3 µm; Phenomenex, USA) using 5–60% linear 
gradients of solvent B (0.036% TFA in MeCN) into A (0.045% 
TFA in H2O) at a flow rate of 1 ml/min and UV detection at 
220 nm. For more polar peptides 2 (GSSQSSGSGSSQSSG) 
and 6 (GSSRSSGSGSSRSSG) (Table 1), a linear 0–40% B 
gradient was used. Preparative RP-HPLC was performed 

F I G U R E  2   Stability distribution of peptides within the database. The distribution of all peptides (black columns) after categorization shows 
that most peptides presented a high stability, very high stability or were considered undegradable. The existence of over 70% of modified peptides 
(dashed columns) clearly dominated the stabilities reported. Nevertheless, among the unmodified peptides (white columns), although unstable, very 
low, and low stability populations predominated, significant populations of high stability, very high stability, and undegradable peptides could also 
be found
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on an LC-8 instrument (Shimadzu) fitted with a Luna C18 
column (21.2 × 250 mm, 10 µm; Phenomenex) using linear 
gradients of solvent B (0.1% TFA in MeCN) into A (0.1% 
TFA in H2O) with a flow rate of 25 ml/min and UV detec-
tion at 220 nm. LC-MS was performed in an LC-MS 2010EV 
instrument (Shimadzu) fitted with an XBridge C18 column 
(4.6 × 150 mm, 3.5 µm; Waters, Spain), eluting with linear 
gradients of 0.08% formic acid in MeCN into 0.1% formic 
acid in H2O over 15 min at 1 ml/min. Electrospray ionization 
was performed with a detector voltage of 1.5 kV, in the posi-
tive mode, with a nebulizing gas flow of 1.5 L/min, a 1 sec 
event time and a scan speed of 2000, in the 100–2000 m/z 
mass range.

Serum stability of peptides

1 mM peptide solutions in H2O were mixed 1:1 (v/v) with 
human serum (Sigma-Aldrich, USA), and incubated at 37°C 
with gentle shaking. Then, 120-µL aliquots were taken at dif-
ferent timepoints, and protease activity was stopped with 20 
µL of 10% (v/v, in H2O) trichloroacetic acid. After 30 min 
at 4°C, samples were centrifuged at 13,000 g for 10 min to 
remove serum proteins, and the supernatants were analyzed 
by analytical RP-HPLC and LC-MS, as described above. 
Percent of intact peptide was calculated by peak integration, 
expressed as percent of the amount at t0, and data were fit-
ted to a one-phase exponential decay model using GraphPad 
Prism version 7 to estimate the t1/2.

Software tool development

A user-friendly platform freely usable to predict the t1/2 of 
any given peptide sequence was developed. In addition to the 
t1/2, other sequence-related characteristics are also available 
(Table S22). For the sake of clarity, we organized the software 
tool outputs in three different sections, namely “Basic infor-
mation,” “pH and Isoelectric Point,” and “Peptide Stability.” 
In the first section, the user can visualize the number of resi-
dues, chemical formula, molecular weight, and extinction 
coefficient. In the pH and isoelectric point section, basic in-
formation related to charge and pI are presented. Finally, the 
t1/2 and the respective categorization of peptides with regard 
to stability are presented in the last section.

The platform was programmed on JavaScript version 8, 
update 221. The respective integration and framework devel-
opment was performed on the http://elect​ronjs.org website.

Results

Multivariable regression model

We used the refined database of 51 papers on 129 unmodi-
fied peptides with experimentally determined t1/2 to identify 
determinants responsible for proteolytic resistance. As men-
tioned above, the physicochemical properties investigated 
were: (i) molecular weight; (ii) isoelectric point (pI); (iii) 
UV-Vis extinction coefficient (M−1 cm−1) at 280 nm; (iv) net 

Peptide Amino acid sequence
Molecular weight, Da, 
calculated (found)

HPLC tR 
(min)a 

Purity, 
%

1 GAAQAAGSGAAQAAG 1157.2 (1158.1) 3.187 93.4

2 GSSQSSGSGSSQSSG 1285.2 (1286.1) 3.207 94.7

3 GAARAAGSGAARAAG 1213.3 (1214.2) 5.055 95.4

4 GAAQAYGSGYAQAAG 1342.2 (1341.4) 5.068 95.0

5 GAAQAAGWGAAQAAG 1257.1 (1256.3) 4.281 97.3

6 GSSRSSGSGSSRSSG 1342.1 (1341.3) 3.175 98.7

7 GSSQSYGSGYSQSSG 1437.8 (1437.4) 3.903 98.4

8 GAARAYGSGYARAAG 1397.6 (1397.5) 5.148 97.0

9 GSSQSSGWGSSQSSG 1385.2 (1384.3) 3.289 98.9

10 GAARAAGWGAARAAG 1313.3 (1312.4) 4.764 90.0

11 GAAQAYGWGYAQAAG 1441.1 (1440.5) 6.939 96.1

12 GSSRSYGSGYSRSSG 1494.2 (1493.5) 3.901 94.3

13 GSSRSAGWGASRSSG 1409.3 (1408.4) 4.369 94.4

14 GSSQYAGWGAYQSSG 1505.1 (1504.5) 5.262 96.9

15 GAARYAGWGAYRAAG 1497.4 (1496.6) 5.212 98.8

16 GSSRYSGWGSYRSSG 1593.3 (1592.69 5.210 94.2

Abbreviation: HPLC, high-performance liquid chromatography.
aSee experimental part for details. 

T A B L E  1   Peptides synthesized to 
validate the multivariable regression model

http://electronjs.org
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charge at pH 7.0; (v) hydrophobicity (H); (vi) hydrophobic 
moment (µH); (vii) presence of nonpolar residues (%); and 
(viii) secondary structure. The selection of these variables is 
based on their highly informative nature, easy computation, 
and practical reasoning, as directly derived from amino acid 
sequence.

The molecular weight, pI, net charge, hydrophobicity, hy-
drophobic moment, and presence of nonpolar residues were 
treated as continuous variables. Among these, molecular 
weight, hydrophobicity, hydrophobic moment, and presence 
of nonpolar residues presented a homogenous distribution 
(Figure S1). A scatterplot for each variable was used to ver-
ify its correlation with peptide t1/2 (ln[t1/2]) (Figures S2–S5). 
Molecular weight (Figure S2) and hydrophobic moment 
(Figure S4) showed a random distribution (i.e., no correlation 
was observed). In contrast, hydrophobicity (Figure S3) and 
presence of nonpolar residues (Figure S5) showed a positive 
correlation.

The pI and net charge present a nonhomogenous distri-
bution. Consequently, we categorized them into groups, in 
search of homogeneity. Concerning pI, categorizing this 
variable into four groups (pI <7; 7 < pI <10; 10 < pI <12; 
and pI >12) provided a homogeneous distribution (Table 
S4), but the sample size within each group was too small. To 
overcome this limitation, we performed a one-way ANOVA 
and a box-plot to assess differences, which allowed a proper 
categorization into two homogenous groups. Figure S6 and 
Table S9 show a tendency of peptides with pI greater than 10 
to have a lower t1/2 (i.e., basic residues [high pI] decreased 
stability). On this basis, the pI variable was categorized 
into two groups, namely pI less than 10 (flagged “pI = 0”) 
and pI greater than or equal to 10 (flagged “pI = 1”), which 
were equally distributed. Next, a t-test was performed to as-
sess the existence of significant differences between groups. 
The results demonstrated a statistically significant differ-
ence (α = 0.023; Figure S7 and Table S10). Concerning net 
charge, we categorized the variable into four groups (Table 
S5). However, owing to the high heterogeneity still observed, 
the variable was excluded from the study.

The UV-Vis extinction coefficient reports mainly the 
abundance of tryptophan (Trp; 5690 M−1 cm−1) and tyrosine 
(Tyr; 1280 M−1 cm−1) residues in the sequence, with smaller 
contributions from phenylalanine (200 M−1 cm−1) and cyste-
ine (120 M−1 cm−1). This semicontinuous variable was not 
evenly distributed. Given the different contributions of Trp 
and Tyr, we categorized the entries for the presence/absence 
of these amino acid residues (Tables S6 and S7). The new 
groups were more homogenous.

Concerning Trp, we divided the entries into three catego-
ries depending on the absence, the presence of one Trp, or 
of more than one Trp. We then performed one-way ANOVA 
with a Bonferroni’s multiple comparison test. Variance anal-
ysis among these three groups demonstrated a statistically 

significant difference (α = 0.038; Figure S8 and Table S11). 
However, the multiple comparison test did not report statisti-
cally significant differences (Table S12). Nevertheless, based 
on the tendency observed on the boxplot and α values in the 
Bonferroni’s test, the absence of Trp seemed to increase pep-
tide stability. Thus, for the correlation analysis, the variable 
was further categorized as either absence (flagged “W = 0”) 
or presence (flagged “W = 1) of Trp. A t-test analysis per-
formed after this categorization showed a statistically signif-
icant difference between the new groups (α = 0.013; Figure 
S9 and Table S13).

The same procedure was applied for analyzing the effect 
of Tyr. Similar to Trp, this variable was categorized in terms 
of absence, presence of one Tyr, and presence of more than 
one Tyr. Variance analysis showed a statistically significant 
difference (α  =  0.004) among all groups (Figure S10 and 
Table S14) and multiple comparisons confirmed the initial 
assessment (Table S15). In this case, the presence of more 
than one Tyr residue increased peptide stability. The vari-
able was consequently categorized as absence or presence of 
one Tyr (flagged “Y = 0”) or of more than one Tyr (flagged 
“Y = 1”). Group analysis revealed a statistically significant 
difference (α = 0.001; Figure S11 and Table S16).

Secondary structure is a parameter more difficult to as-
sess and the sample size within our database was too small 
to allow a proper statistical analysis (Table S8). In addition, 
the frequency of each possible secondary structure was too 
low. Consequently, we excluded this variable from further 
analysis.

Table S17 shows the results of the descriptive statistics 
of the variables after categorization. Finally, a nonparametric 
correlation analysis (Spearmen correlation test) of all vari-
ables was performed (Table 2); the results demonstrated that 
hydrophobicity (ρ = 0.259; α = 0.05), % of nonpolar residues 
(ρ = 0.414; α = 0.001), pI (ρ = −0.254; α = 0.029), presence/
absence of Trp (ρ = −0.279; α = 0.016), and presence/absence 
of Tyr (ρ = 0.370; α = 0.001) correlated with peptide t1/2 s. 
Next, we assessed correlation among these variables to estab-
lish their independence from each other. A strong correlation 
(ρ = 0.821; α = 0.000) was observed between percentage of 
nonpolar residues and hydrophobicity. Considering that both 
variables are related, the strong, very significant correlation 
found was plausible and expected. To avoid redundancy, only 
percentage of nonpolar residues was used, in preference to 
hydrophobicity because it displays a higher correlation coef-
ficient. In sum, percentage of nonpolar residues, and of Tyr, 
had positive influence on proteolytic stability, whereas pI and 
presence of Trp negatively affected stability.

With the variables demonstrating correlation with pep-
tide stability, multiple regression analysis was performed. 
The analysis gave an R2  of 0.392 (Table S18) and variance 
showed a statistically significant difference (α = 0.001) with 
a Z-test of 8.715 (Table S19). An equation, reflecting the 
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statistical validation of the model, estimated peptide t 1/2 (in 
minutes) as a function of presence of nonpolar residues, pres-
ence/absence of Trp (W), presence/absence of Tyr (Y), and 
pI, as follows (Figure S12 and Table S20):

where NPresidues[%] is presence of nonpolar residues; W[0,1] is 
the absence (0) or presence of at least one Trp (1); Y[0,1] is the 
absence or presence of just one Tyr (0) or of at least two Tyr (1); 
and pI[0,1] is pI less than 10 (0) or pI greater than 10 (1).

Interestingly, according to Equation 1, the most proteolyt-
ically stable peptides are those combining pI greater than or 
equal to 10 with a high percentage of nonpolar residues, two 
or more Tyr, and not more than one Trp residue.

Experimental validation of the model

In order to validate the predictive power of the model 
(Equation 1), we followed two different but complementary 
approaches. The first relied on a library of 16 peptides espe-
cially designed to cover a wide range of NPresidues[%], W[0,1], 
Y[0,1], and pI[0,1] combinations (Table 1 and Table S21). 
The second approach made use of literature data for peptides 

of pharmacological significance (Table 3). Although the first 
approach is more robust from the statistical and conceptual 
point of view, the second constitutes a good gauge of the po-
tential applicability of the equation to “real life” situations.

Validation using a library of designed peptides

The peptide library to validate the model used as starting 
template the 15-residue peptide GAAQAAGSGAAQAAG 
(Table 1, entry 1), a palindromic sequence containing 3 types 
of “low profile”—small size, non-charged—residues such as 
Gly (neutral), Ala (hydrophobic) and Ser (mildly polar), plus 
a medium-size, relatively polar, and equally noncharged resi-
due, Gln. This initial template was modified in the subsequent 
entries on the basis of the criteria developed from the corre-
lation analysis by, for example, modifying the hydrophobic 
content (Ala Ser conversion, entry 2), increasing the cationic 
character hence the pI (Arg replacements, entries 3, 6, etc.), 
exploring the impact of Tyr (entry 4) or Trp (entry 5) replace-
ments, and judicious combinations thereof. The physicochem-
ical combinations performed are shown in Table S21.

The ln[t1/2] of the 16 peptides in human serum ranged 
from 2 to 6 (i.e., 7.4 to 403.4 min), covering a wide interval 
as anticipated (Figure  3A and Figure S13). Peptides 8 and 
11 were the most resistant (t1/2 > 100 min), followed by 3, 4, 

(1)ln
[

t1∕2

]

=2.226+0.053×NPresidues [%]−1.515×W [0, 1]

+1.290×Y [0, 1]−1.052×pI [0, 1]

T A B L E  3   Peptides approved or in clinical trials used for the validation of the model

Peptide Approval status Amino acid sequence

Aviptadil Approved (2000) HSDAVFTDNYTRLRKQMAVKKYLNSILN

Bivalirudin Approved (1999) FPRPGGGGNGDFEEIPEEYL

Corticotropin Approved (1952) SYSMEHFRWGKPVGKKRRPVKVYPNGAEDESAEAFPLEF

Enfuvirtide Approved (2003) YTSLIHSLIEESQNQQEKNEQELLELDKWASLWNWF

Exenatide Approved (2005) HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS

Glucagon Approved (1989) AQDFVQWLMNT

P−15 Approved (1999) GTPGPQGIAGQRGVV

Pramlintide Approved (2005) KCNTATCATQRLANFLVHSSNNFGPILPPTNVGSNTY

Teriparatide Approved (2002) SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF

Tesamorelin Approved (2010) YADAIFTNSYRKVLGQLSARKLLQDIMSRQQGESNQERGARARL

Tetracosactide Approved (1980) SYSMEHFRWGKPVGKKRRPVKVYP

Thymopentin Approved (1985) RKDVY

EA−230 Phase II LQGV

Ghrelin Phase II GSSFLSPEHQRVQQRKESKKPPAKLQPR

Hlf1-11 Phase I/II GRRRRSVQWCA

Dusquetide Preclinical RIVPA

R7 Phase II KLAKLAK

TAT Phase II GRKKRRQRRRPQ

PTD4 Phase II YARAAARQARA

MTS Phase II AAVALLPAVLLALLAP

MBI−226 Phase II ILRWPWWPWRRK
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and 5 (60 min < t1/2 < 100 min). Most peptides in the library 
(e.g., entries 1, 2, 7, 10, 14, and 15) had modest lifetimes in 
the 30 min less than t1/2 less than 60 min range, whereas en-
tries 6, 9, 12, 13, and 16 were more ephemeral (t1/2 < 30 min; 
Figure 3A and Figure S13).

The ln[t1/2] estimated from Equation 1, compared with 
the experimental values (Figure 3B), could be fitted to a lin-
ear regression plot from which an R2 of 0.76 was retrieved, 
demonstrating a rather suitable correlation of the model pre-
dictions with experimental data.

Validation using pharmaceutically 
relevant peptides

The t1/2 predictive potential of the model was also tested on 
“real life” unmodified peptides currently marketed by phar-
maceutical companies or at various stages of clinical trials in 
the industry pipelines. The corresponding experimental t1/2 
values were obtained from the literature and, as in the previ-
ous approach, the ln[t1/2] values calculated from Equation 1 
were matched against the experimental ones in a linear cor-
relation plot (Figure 3C) from which an R2 of 0.78 was re-
trieved, again demonstrating reasonable correlation.

DISCUSSION

Researchers report the stability of peptides in wholly different 
ways. 13  The most informative is peptide t 1/2 but most fre-
quently only semiquantitative data are reported (e.g., percentage 
of peptide that remains intact after a certain period). To com-
plicate matters further, among the 579 papers initially selected 
for our meta-analysis database, 70% had modifications. As ex-
pected in medicinal chemistry approaches, such modifications 

are very heterogeneous in nature, which makes data parametri-
zation totally impossible. 10,14  In this work, we did not address 
post-translational modifications because for artificial peptides, 
which account for most pharmacological and biotechnological 
applications, these modifications are restricted to a few niche 
studies. On the other hand, 30% of the initially selected pep-
tides in our database were unmodified and reasonably resist-
ant to proteolysis, the main cause for the low t 1/2 of peptides. 
Nevertheless, it is necessary to bear in mind that there are other 
causes for peptide instability, such as hydrolysis or oxidation. 11  
In this study, we focused on the intrinsic properties conferring 
such peptides unusually long t 1/2s, with the development of a 
multivariable regression model able to predict peptide t 1/2 from 
amino acid sequence as the main goal of our work.

From a set of sequence-dependent variables potentially 
bearing on peptide serum lifetime, four were found to impact 
significantly on t1/2, namely, the presence of nonpolar res-
idues, the presence/absence of Trp and/or Tyr, and electric 
charge as gauged by the isoelectric point, pI. High contents 
of nonpolar residues and the presence of two or more Tyr 
residues increased stability, whereas, on the other hand, the 
presence of at least one Trp residue and an elevated pI in-
creased the vulnerability of the sequence. Equation 1 is the 
result of applying a multivariable regression model using the 
properties mentioned above as independent variables. This 
equation can be used for virtually any peptide sequence to 
estimate t1/2 in an easy-to-use way.

To validate Equation 1 and ascertain its suitability for use 
in peptide therapeutics pipelines, we followed two comple-
mentary strategies. First, using a library of tailor-designed 
peptides covering a wide range of structural feature combi-
nations affecting the independent variables, experimental 
and estimated t1/2 were matched for correlation. The t1/2 in 
serum was chosen as exclusive matching parameter, as it is 
a consensual gold standard in measuring peptide resistance 

F I G U R E  3   Stability of peptides 1–16 in 50% (v/v) human serum. (a) Time course plots of peptides 1–16 in the presence of human serum 
obtained from chromatogram peak integration. The terminal half-life (t1/2 s) estimated by fitting experimental data to an exponential decay model 
and the corresponding 95% confidence interval (CI) are shown at right and are the mean of three experiments for each peptide in the library. (b) 
Linear regression plot of experimentally obtained t1/2 s of the peptide library versus values derived from the statistical prediction model (Equation 
1). (c) Linear regression plot of literature-reported experimental t1/2 s from representative therapeutic peptides compared with values obtained from 
the statistical prediction model
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to proteolysis.5,15 Human serum is a cocktail of proteins, en-
zymes, hormones, electrolytes, and other blood components, 
thus a good model for blood itself. Nevertheless, caution on 
the use of commercial human serum is advisable given lim-
itations, such as lack of homogeneity between batches giving 
rise to different activities.11 Use of specific proteases, such 
as trypsin, chymotrypsin, or proteinase K, is operationally 
simpler but constitutes a more simplistic approach. On the 
other hand, peptide clearance in vivo, although undeniably 
valuable, does reflect a complex combination of effects, such 
as enzymatic digestion, peptide biodistribution into different 
organs, and physiological elimination, all of which make spe-
cific t1/2 calculation in vivo essentially unfeasible.

Second, a similar approach was followed for a set of pep-
tides in clinical use or under assay for future clinical use. As 
in the peptide library-based instances, estimated t1/2 matched 
experimentally determined values with reasonable accuracy. 
Equation 1 is therefore not only a valid explanatory tool, but 
also shows proven predictive power for use in peptide drug 
development strategies.
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