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Bispectral analysis of nonlinear interaction,
predictability and stochastic modelling with

application to ENSO

By CARLOS A. L. PIRES1�, and ABDEL HANNACHI2, 1Instituto Dom Luiz (IDL), Faculdade de
Ciências, Universidade de Lisboa, Lisbon, Portugal; 2Department of Meteorology, Stockholm

University, Stockholm, Sweden

(Manuscript Received 26 August 2020; in final form 16 December 2020)

ABSTRACT
Non-Gaussianity and nonlinearity have been shown to be ubiquitous characteristics of El Ni~no Southern
Oscillation (ENSO) with implication on predictability, modelling, and assessment of extremes. These topics
are investigated through the analysis of third-order statistics of El Ni~no 3.4 index in the period 1870–2018,
namely bicovariance and bispectrum. Likewise, the spectral decomposition of variance, the bispectrum
provides a spectral decomposition of skewness. Positive and negative bispectral contributions identify modes
contributing respectively to La Ni~nas and El Ni~nos, mostly in the period range 2–6 years. The ENSO
bispectrum also shows statistically significant features associated with nonlinearity. The analysis of
bicovariance reveals a nonlinear correlation between the Boreal Spring and following Winter, coming from
an asymmetry of the persistence of El Ni~no, contributing hence to a reduction of Spring Predictability
Barrier. The positive skewness and main features of the ENSO bicovariance and bispectrum are shown to be
well reproduced by fitting a bilinear stochastic model. This model shows improved forecasts, with respect to
benchmark linear models, especially of the amplitude of extreme El Ni~nos. This study is relevant, particularly
in a changing climate, to better characterize and predict ENSO extremes coming from non-Gaussianity and
nonlinearity.

Keywords: ENSO spring predictability barrier, bispectrum, El Ni~no skewness, nonlinear predictability,
bilinear models

1. Introduction

Earth’s weather and climate vary on a wide range of spa-
tio-temporal scales. Whereas external orbital variations
are believed to be the dominant driving force for macro-
climate (on millennial time scales), weather, macro-wea-
ther (Lovejoy, 2018) and climate variations (on shorter
time scales) are mainly the result of complex nonlinear
interactions between very many degrees-of-freedom (Sura
and Hannachi, 2015) and also due to many climate sub-
components with different time scales The atmospheric
(and climate) system is an excellent example of high-
dimensional and highly complex dynamical system. One
outstanding and ubiquitous feature of the large scale (and
low frequency) atmospheric (and climate) variability is
non-Gaussianity (Franzke et al., 2007; Proistosescu et al.,
2016; Pires and Hannachi, 2017; Hannachi and Iqbal,

2019). For instance, Sura and Sardeshmukh (2008) show
that sea surface temperature (SST) has non-Gaussian
probability distribution function (PDF) with particular
tail extrema. Many processes, e.g. subgrid scales, large-
scale teleconnections and nonlinearity can lead to various
kinds of uncertainties, which can affect the accuracy of
our understanding, such as forecasts. Stochastic model-
ling can help overcome some of the previous problems
and improve accuracies (Berner et al., 2017).

Although non-Gaussianity and nonlinearity can be
considered as two distinct aspects of weather, macro-wea-
ther and climate (e.g., Sura and Sardeshmukh, 2008; Sura
and Hannachi, 2015), observations do suggest that these
are two inter-related characteristic features of the system
(e.g., Woollings et al., 2010; Hannachi et al., 2017; and
references therein). Some systems can exhibit weak (deter-
ministic) nonlinearity, but with strong non-Gaussian sta-
tistics, which may be explained by a multiplicative or�Corresponding author. e-mail: clpires@fc.ul.pt
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state-dependent noise as detailed, e.g. in Sura and
Sardeshmukh (2008), Sardeshmukh and Sura 2009, see
also Hannachi et al. (2017) for a review. In contrast, non-
Gaussianity can also result from systems with strong non-
linearity and additive noise, see e.g., Hannachi et al.
(2017) for a review and further references.
Notwithstanding this link between nonlinearity and non-
Gaussianity, it is sometimes helpful to disentangle the
contributions of nonlinearity and stochastic noise to the
system PDF. There is a general consensus that under-
standing non-Gaussian statistics of weather and climate is
important for a number of reasons, not least for weather
and climate prediction, planning and risk assessment.
Extreme events, for instance, which are important in
planning and risk assessment, depend closely on the
structure of the non-Gaussian PDF. Various sources
exist, which contribute to the non-Gaussianity. Sura and
Hannachi (2015) provide a detailed account of the differ-
ent sources and mechanisms contributing to the observed
non-Gaussianity of the atmospheric large-scale and low-
frequency variability. They discussed, in particular, non-
linear regime dynamics, multiplicative noise, cross-fre-
quency coupling, jet stream meandering and nonlinear
boundary layer drags. They investigated specifically non-
Gaussianity in geopotential heights, jet stream latitude
and SST fields, with particular focus on skewness and
kurtosis. Skewness and kurtosis are simple measures of
non-Gaussianity, in the time domain, that does not dir-
ectly reflect frequencies. A convenient way to examine
nonlinearity and/or non-Gaussianity is to use high (e.g.,
third and fourth) order statistics in the frequency domain,
namely, e.g. bispectrum and trispectrum (e.g. Brillinger
and Rosenblatt, 1967; Nikias and Raghuveer, 1987).
Spectral analysis of stationary time series is well rooted in
the study of time series x tð Þ, t ¼ 0, 1, 2::: (supposed to be
zero-mean and unit variance for simplicity) from weather
and climate and other fields. The duality between the
time and spectral domains allows to investigate the distri-
bution of, e.g. variance and skewness, as a function of
spectral bins. For example, the duality between the
second-order cumulant, or autocovariance function cx �ð Þ
and the power spectrum Cx fð Þ reveals that the integral of
the latter is precisely the variance of the time series, i.e.,

E x2ð Þ ¼ cx 0ð Þ ¼
ð1

2

�1
2

Cx fð Þdf :

This means, in particular, that the power spectrum can
be viewed as a decomposition of the variance by fre-
quency bins. Likewise, the duality between the bispectrum
C3, x f1, f2ð Þ and the third-order moment or bicovariance
cx s1, s2ð Þ � E x tð Þx tþ s1ð Þx tþ s2ð Þ� �

means that the skew-

ness is the integral of the bispectrum,

E x3ð Þ ¼ cx 0, 0ð Þ ¼
ð1=2
�1=2

ð1=2
�1=2

Re½C3, xðf1, f2Þ�df1df2:

This also implies that the bispectrum can be viewed as a
decomposition of the skewness by bins of frequency pairs.
This can be used to identify nonlinearly interacting pairs
of spectral bins contributing to the skewness which are
often attributed to phase locking between components at
frequency triplets f1, f2, f1 þ f2 producing triadic reson-
ance (Pires and Perdig~ao, 2015).

Bispectral analysis has been used in signal processing
to study nonlinearity detection and bicoherency in a num-
ber of different fields including econometry (Ashley et al.,
1986; Rusticelli et al., 2008), acoustics (Richardson and
Hodgkiss, 1994), and Earth Sciences (M€uller, 1987;
Biswas et al., 1995; Hocke and K€ampfer, 2008).

Here we focus on the bispectral analysis of El Ni~no
Southern Oscillation (ENSO), the main atmosphere–o-
cean interannual mode (Neelin et al., 1998; Wang et al.,
2016). ENSO aspects, like nonlinearity and complexity
(Timmermann, 2003; Frauen et al., 2014; Berner et al.,
2018; Bianucci et al., 2018), non-Gaussianity (Burgers
and Stephenson, 1999; Chunzai, 2018; Boucharel et al.,
2009; Hannachi et al., 2017) and also its modelling
(Kondrashov et al., 2005) have been extensively studied,
both from a physical and signal-processing perspective. In
particular, some ENSO bispectral analysis was performed
by Timmermann et al. (2001, 2018), to fit a low-order
nonlinear dynamical model of El Ni~no index and by
Schulte et al. (2020) to compute the cross-bi-coherency
and synchronization with the Indian Monsoon.

The present study aims to perform a systematic and
thorough analysis of third-order statistics, both in the
time and spectral domains to infer and improve the
understanding of ENSO non-Gaussianity through skew-
ness, nonlinearity (e.g. Hinich, 1982; Cox, 1991), and
nonlinear predictability on time scales ranging from sea-
sons to years. We will emphasize, in particular, the role
of nonlinear lagged correlation with the intra-annual time
scale in overcoming of the Spring predictability barrier of
ENSO (Duan and Wei, 2013). The bispectrum of El Ni~no
index and its statistical significance are thus computed,
looking for the most relevant wave-triad contributing to
the skewness, which are associated with ENSO extremes
by a phase synchronization, see e.g. Jajcay et al. (2018).
Then, we check how simple stochastic models driven by
lagged correlated additive multiplicative (CAM) noise
(Monahan, 2020) can produce the main bispectral fea-
tures of ENSO and El Ni~no/La-Ni~na asymmetry
(Martinez-Villalobos et al., 2019).

The manuscript starts with data description with a
synthesis of exploratory statistics (Section 2). Then the
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autocorrelation function and spectrum (Section 3) are
shown. In Section 4, we present the tests of nonlinearity
and non-Gaussianity based on the bicovariance function.
Section 5 details the bispectrum properties and its estima-
tion and statistical significance applied to ENSO. Section
6 develops a minimal bilinear stochastic model fitting
data. A summary and conclusion are given in the last sec-
tion. Most of the technical details and symbols are put in
appendices. The details presented in the main text and
appendices, some of them conventional, make the paper
convenient particularly for didactive purposes and ready
to apply to other time-series beyond ENSO.

2. Data

The raw data used are monthly anomalies (with respect to
the 1981–2010 period) of El Ni~no 3.4 sea surface tempera-
ture (SST) Index, obtained by area averaged SST in the
geographical region 5S–5N by 170–120W, taken in the
119-year period 1870–2018 and extracted from the periodic-
ally updated website https://www.esrl.noaa.gov/psd/gcos_
wgsp/Timeseries/Data/nino34.long.anom.data (Rayner
et al., 2003). Raw data exhibit a positive trend of 0.19 �C/
century, associated to oceanic global warming. It reveals
also a decadal-scale variability (observed in the 50 yr run-
ning means) in phase with the Pacific Decadal Oscillation
(PDO), also known as a long-lived El Ni~no pattern (Zhang
et al., 1997). After the removal of the linear trend, we get a
detrended zero-centred time-series xcent of the index, with a
standard deviation rðxcentÞ ¼ 0:77�C: The skewness is
sk xcentð Þ ¼ 0:44, associated to the prevalence of El Ni~nos
to La Ni~nas (Burgers and Stephenson, 1999) and an excess
kurtosis (ekurt) of 0:46: The monthly dependence of statis-
tics is particularly striking in the skewness and excess kur-
tosis, ranging from a positively skewed leptokurtic
probability distribution function (PDF) in NH winter
(sk ¼ 1:81, ekurt ¼ 2:93 in January), favouring extreme El
Ni~nos, up to a platykurtic, nearly unskewed PDF in the
NH Spring (sk ¼ �0:01, ekurt ¼ �0:65 in May). Spring
has weaker extreme El Ni~nos compared to Winter, and the
extrapolation of the Spring’s El Ni~no state to the next
Winter is rather unskilful i.e. the Spring predictability bar-
rier (Duan and Wei, 2013). The intra-seasonal variability is
quite small, compared to the inter-seasonal and interannual
variability. Short-range persistence is quite high leading to
1- and 2-month lag-correlations of 0.92 and 0.85. Three-
monthly seasonal averages (JFM, AMJ, JAS, OND) are
constructed with an overall std r ¼ 0:74�C, sk ¼ 0:46 and
ekurt ¼ 0:41, peaking again during the NH or Boreal
Winter’s (sk ¼ 1:04, ekurt ¼ 1:35 in JFM) (Stuecker et al.,
2013; Stein et al., 2014). The statistics are quite similar to
those obtained with more commonly used trimesters (e.g.
for DJF, we get sk ¼ 1:07, ekurt ¼ 1:68: The remaining

three seasons are much less skewed with sk 2 ½0:25, 0:28�
and a rather small ekurt except for the platykurtic behav-
iour in Boreal Spring (AMJ), with ekurt ¼ �0:51: All the
analysis that follows is performed on the standardized time
series, hereafter denoted as x tð Þ, with sample size N ¼ 596
trimesters (trm), being shown in Fig. 1.

3. Autocorrelation and spectrum

3.1. Autocorrelation function

We start by evaluating second-order lagged moments of

the time series. The autocorrelation function Cx sð Þ �
1

N�s

PN�s�1
t¼0 x tð Þx tþ sð Þ is shown in Fig. 2. It has oscilla-

tory behaviour with typical ENSO timescales (3–4 years).
In order to test the null hypothesis H0 of a vanishing
autocorrelation, taking into account the serial correlation,

we use an approximate effective sample size Neff �
N 1�Cx 1ð Þ½ �
1þCx 1ð Þ½ � � 66 (Wilks, 2011). Then, H0 is rejected if

jCx sð Þj2 > qa
2
ðNeff Þ�2= qa

2
ðNeff Þ�2 þNeff � 2

h on�
(von

Storch and Zwiers, 1999) where qa
2
Neffð Þ is the a

2-th quan-

tile of a t-Student PDF with Neff degrees of freedom.
From Fig. 2, some local extremes and significant correla-
tions appear also at decadal lags.

3.2. The spectrum and its estimation

A regularly sampled stationary time-series x tð Þ can be
decomposed using discrete Fourier transform (DFT) as:

Xxðf Þ ¼
PN�1

t¼0 x tð Þ exp ð�2piftÞ, for every frequency f in
cycles per sampling period and can be reconstructed

through the inverse Fourier transform (FT) as xðtÞ ¼
1
N

PN
2

K¼�N
2
Xx

k
N

� �
exp 2pi kN t

� �
(for N even). The sample

spectrum or periodogram is the DFT of the autovariance
function:

Sx fð Þ ¼ 1
N

Xx fð Þj j2 ¼
XN�1

s¼� N�1ð Þ Cx sð Þ exp ð�2pif sÞ 	 0

(1)

whereas the asymptotic spectrum is given by:

Cxðf Þ ¼ lim
N!1

E½Sxðf Þ� (2)

where Eð�Þ is the expectation operator over realizations of
the stochastic process. According to the Wiener–Khintchine
theorem (2) is the FT of the autocovariance function i.e.:

cx sð Þ ¼
ð1

2

�1
2

Cxðf Þ exp ð2pif sÞdf : (3)
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Equation (3) yields, in particular, the variance of the time
series

cx 0ð Þ ¼
ð1

2

�1
2

Cxðf Þdf � 1
N

�
Sx 0ð Þ þ 2

XN
2

k¼1
Sx

k
N

� �	
,

(4)

where Cxðf Þdf in (4) provides the contribution from the
spectrum to the time series variance within the frequency
interval f , f þ df½ �:

For a stationary process, the DFTs Xxðf Þ, estimated
at different frequencies are nearly uncorrelated (von
Storch and Zwiers, 1999), and the periodogram (1), is
known to be inconsistent, and hence a smoothed estima-
tor is often used:

Ŝxðf Þ ¼
XN�1

s¼� N�1ð Þ
Cx sð Þk

�
s
�
exp ð�2pif sÞ (5)

where k sð Þ � k̂ s
M


 �
where k̂ð�Þ is a symmetric standardized

positive lag window function (Priestley, 1981), character-

ized by a standardized bandwidth b1 � 1Ð1
�1 k̂ uð Þ2du : The

window scale length M is chosen, based on a trade-off
between spectral resolution ðb1=MÞ, low values of the

variance ðvar½Ŝxðf Þ� 
 Cx fð Þ2M
Nb1

h i
Þ and bias ðE Ŝx fð Þ

h i
�

Cx fð Þ 
 �k̂
00
0ð ÞC00

x fð Þ
4p2M2 Þ of (5) (Jenkins and Watts, 1968),

where double apostrophe represents second derivatives.
The 90% confidence interval of Cx fð Þ is given by

Ŝxðf Þ�
q95% v2�ð Þ ,

Ŝxðf Þ�
q5% v2�ð Þ

� 	
, where � ¼ 2Nb1

M is the number of

degrees of freedom of the v2�:
We have also computed, the maximum entropy estima-

tor of the spectrum by fitting an autoregressive (AR)
model of generic order p, via the Yule–Walker equations.
The order is chosen by minimizing the Akaike
Information Criterion, AIC (Akaike, 1974). The goal of
computing the theoretical maximum entropy spectrum is
to build a null hypothesis spectrum Cx, 0 fð Þ: Therefore, in
order to objectively check if the spectral peaks of (1) and
(5) are truly distinguishable and significantly larger than
those of Cx, 0 fð Þ, at a significance level a, the estimated

Fig. 1. Detrended and standardized time series in the period 1870–2018, of the three-monthly average anomalies (with respect to the
annual cycle) of El Ni~no 3.4 index (black) and its low-pass (red) and high-pass (green) components with a cutoff frequency of 0.08
cycles per trimester roughly corresponding, respectively, to inter- and intra-triennial timescales variability.
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spectra (1,5) have to be compared to the threshold
Cx, 0 fð Þq1�a v2�ð Þ

� (Wilks, 2011) with � ¼ 2Nb1
M for (5) and � ¼ 1

for (1) corresponding to M ¼ N, and a standardized
bandwidth equal to the Nyquist frequency.

3.3. El Ni~no index spectrum

3.3.1. Periodogram and smoothed spectrum. The perio-
dogram (1) of the time series is shown in Fig. 3. There is
evidence of sharp and well separated peaks near the fre-
quencies 0.021, 0.045, 0.071, 0.087, 0.105, and 0.168
cycles per trimester (cpt), corresponding (in the same
order) to periods of 12.2 years, linked to decadal variabil-
ity (Sun and Yu, 2009; Kravtsov, 2012), 5.62 years (Kim,
2002), and 3.53, 2.87, 2.38 and 1.49 years in the range of
the ‘Quasi-quadrennial and quasi-biennial variability’
(Jiang et al., 1995). These peaks are also found by Deser
et al. (2010) that are responsible for variations in the
ENSO frequency, intensity, propagation, and predictabil-
ity (e.g., An and Wang, 2000; Fedorov and Philander,
2000; Timmermann, 2003; An and Jin, 2004; Yeh and
Kirtman, 2004; Wang, 2018).

For the smoothed spectrum (5), we chose the

Bartlett–Priestley window-lag function: k̂ uð Þ ¼
3

ðpuÞ2
sin ðpuÞ
pu � cos ðpuÞ

h i
u 6¼ 0ð Þ; k̂ 0ð Þ ¼ 1 (Priestley, 1981)

for which b1¼0.855 and k̂
00
0ð Þ ¼ �1:97: In order to

resolve the main spectral peaks, the bandwidth b1
M must

be smaller than the minimum difference between consecu-

tive leading frequencies, i.e. b1
M < 0:016 cpt, hence M >

b1
0:016 
 52 trimesters. To further increase spectral reso-

lution, we show in Fig. 3 the estimator (5) using
M ¼ 80 (20 years), corresponding to � 
 13: In this case,
the standard deviation of the filtered estimator is about
39% of the true spectrum. The 90% confidence interval

for Cx fð Þ is 0:52Ŝxðf Þ, 2:62Ŝxðf Þ
h i

which is quite large, a

consequence of the high window length M: The local
maxima of the filtered estimator lie close to the high
spikes. Moreover, the periodogram lies well within the
95% confidence interval of the true spectrum (see thin
black lines of Fig. 3).

3.3.2. Maximum entropy spectrum. An AR(5) model
(see the AIC in Table 1) is fitted here:

~x tð Þ ¼ 1:18~x t� 1ð Þ�0:46~x t� 2ð Þ�0:09~x t� 3ð Þ
þ 0:17~x t� 4ð Þ�0:12~x t� 5ð Þ þ 0:524w tð Þ, (6)

where w tð Þ is a standard Gaussian white noise. The auto-
correlation function of the AR(5) model (Fig. 2) closely
captures the empirical one for lags up to 12–20 trm but
misses low-frequency oscillations. The corresponding (the-
oretical) maximum entropy spectrum is shown in Fig. 3
showing a spectral bump in the range (3–5 years period)
and with no other spectral peaks. Figure 3 also shows the
thresholds of significance (at a¼ 10%) for the periodo-
gram and for the smoothed spectrum.

Fig. 2. Autocorrelation function of El Ni~no 3.4 index (solid black) along with the 95% (dashed black) and 90% (dotted black)
confidence interval. The autocorrelation function of the AR(5) model fitting data is also shown (solid red).
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The peaks with periods 5.62, 3.53, and 1.49 years are
significant, both in the periodogram (1) and the smoothed
spectrum (5) whereas the peak 2.87 years is significant in
the periodogram (1) but only marginally significant in the
smoothed spectrum (5).

4. Bicovariance, non-Gaussianity and
nonlinearity

4.1. General properties

The bicovariance function cx s1, s2ð Þ is a generalization of

the autocovariance function, given by third-order cumu-
lants between lagged values of x tð Þ, which for a zero
mean stationary process writes as cx s1, s2ð Þ ¼ E x tð Þ½
x tþ s1ð Þx tþ s2ð Þ� and is estimated here, for s1, s2 	 0 as:

Cx s1, s2ð Þ ¼ 1
N �maxðs1, s2Þ

XN�maxðs1, s2Þ�1

t¼0

x tð Þx tþ s1ð Þx tþ s2ð Þ:

(7)

Stationarity implies time invariance of lagged statistics
leading to several identities reflecting the symmetry of the
bicovariance (Rao and Gabr, 1984), namely:

cx s1, s2ð Þ ¼ cx s2, s1ð Þ ¼ cx �s1, s2 � s1ð Þ ¼ cx �s2, s1 � s2ð Þ
¼ cx s2 � s1, � s1ð Þ ¼
¼ cx s1 � s2, � s2ð Þ

(8)

leading to the partition into 6 sectors of the plane s1, s2ð Þ
as illustrated in Fig. 4a. We stress here that the origin of
a non-vanishing bicovariance is the non-Gaussianity of
the process x tð Þ: In fact, for a Gaussian, (necessarily lin-
ear) process, the bicovariance vanishes because cumulants
of order 3 (the equivalent to lagged skewness) or higher
vanish. For finite time series, Gaussianity is rejected if
the absolute value of skewness is large enough.

For a nonvanishing third-order cumulant, the bicorre-
lation provides a measure of predictability (for lags
D 	 0), coming from nonlinear correlation:

Fig. 3. Empirical periodogram (thin green); Smoothed spectrum (thick black) and corresponding 95% confidence interval (thin black);
theoretical AR(5) spectrum (red), and 10% significance level for the periodogram (red dashed) and for the smoothed spectrum (red
dotted). Units are (�C)2/cpt. The top axis presents periods in years.

Table 1. Values of the Akaike Information Criterium AICðpÞ ¼ Nlnð2per2w, pÞ þ 2p, where r2w, p is the residual noise variance of an
AR(p) model fitting.

p 0 1 2 3 4 5 6

AICðpÞ 1691.4 1085.2 939.9 941.9 943.4 936.6 937.6

6 C. A. L. PIRES AND A. HANNACHI



cor x tþ Dð Þ,x tð Þx t� s1ð Þ� � ¼ Cx s1, s1 þ Dð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var½xðtÞxðtþ s1Þ�

p : (9)

Local maxima and minima of bicorrelation can thus pro-
vide sources of predictability due to non-Gaussianity and/
or nonlinearity. However, we must note that part of the
nonlinear correlation (9), in particular at s1 ¼ 0, is due
to skewness, and hence to eliminate that contribution, we
must consider the nonlinear component or residual

xnlðtÞ ¼ xðtÞ2 � ½skx x tð Þ þ 1�, of the predictor xðtÞ2 after
removing the linear regression with x tð Þ, where skx is a
regression constant equal to the skewness of x:

Another useful advantage of bicorrelation is the Cox
(1991) test of nonlinearity, that we will apply bellow, also
based on skewness. More general tests exist, which ana-
lyse nonlinear predictability originating from a set of past
values (Granger and Anderson, 1978). Under the null
hypothesis of linearity, the test TCoxðDÞ � cor½xðtþ DÞ,
xnlðtÞ�2 must vanish for all lags. Threshold values of TCox

under an inexistent predictability hypothesis are obtained
by randomly shuffling x tð Þ and xnl tð Þ (10,000 times) and
then computing the 95% quantile (denoted as TCox�95%)

of the sorted values of TCox 0ð Þ: Nonlinearity of El Ni~no

is thus accepted if TCox Dð Þ > TCox�95% at a 5% signifi-
cance level.

4.2. Results for El Ni~no index

4.2.1. Bicorrelation. The bicorrelation (Fig. 4b), exhibits
fluctuations of the order of 12–20 trimesters similar to

the autocorrelation (Fig. 2). The maximum value of the
bicorrelation coincides with the skewness: Cx 0, 0ð Þ ¼ 0:46:

In order to test the departure of the bicorrelation from
the Gaussian hypothesis, we have generated 10,000,
N-sized simulations with the AR(5) and computed uncer-
tainties. The 90% (95%) quantiles of jC~x 0, 0ð Þj are equal
to 0.24 (0.29), which are both below the observed skew-
ness 0.46, hence the null hypothesis of Gaussianity is
rejected at the 5% significance level. For s1 
 s2 (diago-
nals of the bicovariance graph) or (s1 
 0 and/or
s2 
 0), the 95% (90%) quantiles are 
0.14 (0.16) and
0.10 (0.12) elsewhere. The rejection regions rejecting of
the null hypothesis (at the 5% significance level) appear
within thick black contours in Fig. 4b.

From inspection of Fig. 4b, we verify that the deepest
bicovariance minimum Cx 0, 4ð Þ ¼ �0:40, is significant at
the 5% significance level, corresponding to a nonlinear

correlation (Eq. (9)) of cor½xðtþ 4Þ,xðtÞ2� ¼ �0:24 with
s1 ¼ 0,D ¼ 4 trm: This implies that an extreme El Ni~no

or La Ni~na (high xðtÞ2 than average) favours the occur-
rence of La Ni~na occurrence four trimesters later (nega-
tive x tþ 4ð ÞÞ, whereas mild conditions favour El Ni~no.
Another local bicorrelation minimum Cx 8, 8ð Þ ¼ �0:15
(10% significance level) implies that La Ni~na event
favours a strong El Ni~no or La Ni~na 2 years
later (8 trm).

4.2.2. Linear and nonlinear predictability. As regards
El Ni~no predictability skill, Fig. 5a shows the linear

and nonlinear correlations: cor x tþ Dð Þ, x tð Þ� �
and

Fig. 4. Symmetries (a) of the bicovariance function in the delay plan (adapted from Rao and Gabr, 1984) and bicorrelation of El
Ni~no 3.4 index (b). Thick black contours show the 5% significance level.
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cor x tþ Dð Þ,½ xnl tð Þ�, with xnl tð Þ defined in Section 4.1 and
for forecast lags D up to 20 trm. The linear correlations of
El Ni~no 3.4 are significant at 10% level for lags D � 3 trm
(Fig. 5a thick black line) whereas the nonlinear correlations
show significant values for lags 3 trm � D � 5 trm (Fig. 5a
thick red line). Those correlations are also evaluated for the
stronger El Ni~no season i.e., the JFM trimester (tþ D in
JFM) (Fig. 5a thin black line for linear and thin red line for
nonlinear correlations respectively). We note here the pres-
ence of the Spring predictability barrier of El Ni~no (Duan
and Wei, 2013) i.e., the barely weak linear extrapolation (i.e.
persistence) of El Ni~no index from current Spring (AMJ) to
the next Winter (JFM), as shown by the small value (
0.05)

of cor x tþ Dð Þ, x tð Þ j tþ D ¼ JFM
� �

where j means
’conditionated to’ and D ¼ 3: However, the Spring barrier is
reduced if we include the nonlinear term in the forecast. In
fact, the nonlinear correlation evaluated at JFM (Fig. 5a
thin red line) for forecast lags D ¼ 3� 5 trm (–0.25 to
�0.4) is statistically significant, e.g. a negative value of

cor x tþ 3ð Þ, x tð Þ2 j t ¼ AMJ, tþ 3 ¼ JFM
h i

between

x tð Þ in Spring and x tþ 3ð Þ in next Winter (see Fig. 5b).
This is corroborated by the conditional expectations of

the Winter signal conditioned to the previous Spring signal.

First, we have E x tþ 3ð Þ j x tð Þ < �1
� � ¼ �0:38 (see left

sector of Fig. 5b). We argue that strong trade-winds (or
persistent eastern wind bursts in the Eastern Pacific),
favouring strong La Ni~na Spring conditions tend to persist
over some trimesters eventually reaching the next Winter
season (e.g. JFM of years 1989, 1974, and 2011).

On the other hand, we have E x tþ 3ð Þ j � 1
�

< xðtÞ <
1�¼ 0:12 (central sector of Fig. 5b) corresponding to
(Spring) near climatological conditions in the Eastern
Pacific. Here, the tendency is to favour a Winter with El
Ni~no predominance in agreement with Boreal Winter phase-
locking. In particular, strong Winter El Ni~nos (e.g. 1983,
1998, and 2016) were preceded by quite mild Spring condi-

tions. Finally, from E x tþ 3ð Þ j x tð Þ > 1
� � ¼ �0:19,

strong El Ni~no Spring conditions (associated with westerly
winds anomalies) tend to reverse in the next trimesters. This
suggests that the nonlinear predictability is a consequence of
the asymmetric persistence of El Ni~no signal and Pacific
trade winds in Spring, as a function of their intensity and
phase. A possible mechanism for this is seasonal growth rate
dependence on the ENSO regime and feedbacks controlling
SST (Yishuai et al., 2020), and the seasonal dependence of
easterly wind bursts from Spring to Autumn (Fan
et al., 2019).

Finally, we compute the nonlinear forecast score

TCox Dð Þ for lags up to 80 trm (Fig. 5c). Clearly, the non-
linearity is especially significant at certain lags (4–8, 28,

36, 52, 72, 80 trm) where TCox Dð Þ is even larger than the

Fig. 5. (a) Linear (thick black) and nonlinear (thick red)

correlations (cor x tþ Dð Þ, x tð Þ
� �

and cor x tþ Dð Þ,xnl tð Þ
� �

respectively) of El Ni~no 3.4 index. The same correlations
restricted to forecast trimester JFM (black thin and red thin
respectively). Horizontal dashed lines show the 10% significance

level interval � 1:64ffiffiffiffiffiffiffiffiffiffiffi
Neff�3

p , 1:64ffiffiffiffiffiffiffiffiffiffiffi
Neff�3

ph i
: (b) AMJ versus following year

JFM El Ni~no and best quadratic fitting. (c) Cox test TCox Dð Þ
(thick) and the 95% (dotted) and 99% (dashed) confidence level
threshold of nonrejection of the linearity hypothesis.
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quantile TCox�99% of nonrejection of the linearity hypoth-
esis. Those lags are related to phase synchronization
between Fourier frequencies, namely those with periods
s1 and s2 ¼ 2s1: Lags are generally close to multiples of
the half-period of the shorter oscillation, i.e. D ¼
ns1
2 , n�N: For instance, from Fig. 3, the Fourier spectral

peaks at periods s1 ¼ 1
0:087 ¼ 11:5 trm and s2 ¼ 1

0:045 � 2s1
justify the peak of TCoxðDÞ at lag D ¼ 5s1

2 � 29 trm : This
frequency relationship is known as quadratic phase cou-
pling (Biswas et al., 1995) and examples in relation to
decadal variability of ENSO are given in
Timmermann (2003).

5. Bispectrum

5.1. General properties

5.1.1. Bispectrum background. The bicovariance of El
Ni~no time series (Fig. 4b) exhibits certain features and
periodicities in the lag-time domain. Therefore, the two-
dimensional Fourier transform of the bicovariance, i.e.
bispectrum (Brillinger and Rosenblatt, 1967), can provide
a dual complementary information about the most rele-
vant spectral interactions contributing to the bicovariance
and skewness of the time series making easier the physical
interpretation of such interactions.

The bispectrum is the two-dimensional version of poly-
spectra (Brillinger, 1965), providing relevant information
on non-Gaussian processes. The bispectrum C3, x f1, f2ð Þ
is given by:

C3, x f1, f2ð Þ �
X1

s1¼�1

X1
s2¼�1

cx s1, s2ð Þ exp ½�2piðf1s1 þ f2s2Þ�,

(10)

where its real and imaginary parts are discrete Fourier
transforms (DFT) of the symmetric and antisymmetric
parts of the bicovariance, respectively, with the last one
vanishing if the underlying stochastic process is reversible
(Weiss, 1975).

For the simplest case of a purely random noise w tð Þ,
the bicovariance is a spike at the origin i.e. cw s1, s2ð Þ ¼
E w3ð Þd s1ð Þd s2ð Þ where d �ð Þ is the Kronecker delta,
yielding a flat, constant and real bispectrum C3,w

f1,ð f2Þ¼ E w3ð Þ:

5.1.2. Bispectrum and spectral components. The asymp-
totic bispectrum of a N-sized time series writes in terms
of DFTs Xx �ð Þ of the time series, taken at triplets of fre-

quencies (multiples of the minimum frequency 1
N) (Hinich,

1982) at f1, f2 and f3 ¼ f1 þ f2 þ 1
2

� �
mod 1ð Þ � 1

2

h i
as:

C3, x f1, f2ð Þ ¼ lim
N!1

1
N
E Xxðf1ÞXxðf2ÞXxðf3Þ�
� �

(11)

where (�) stands for conjugate complex. Eq. (11) shows
that the bispectrum comes from the interaction between
Fourier components at three frequencies f1, f2 and f3 ¼
f1 þ f2 < 1=2 in the area outside of the aliasing region,
i.e. lower than the Nyquist frequency. When f1 þ f2 >
1=2, then f3 ¼ 1�ðf1 þ f2Þ becomes an aliased frequency
(Hinich and Wolinsky, 1988).

Equation (11) can still be interpreted in terms of the
amplitude and phase of the DFT in polar form, i.e.

Xx fð Þ � Axðf Þe½iHxðf Þ� : By denoting Ax f1ð ÞAx f2ð ÞAx f3ð Þ �
Ax, 123, and ei½Hx f1ð ÞþHx f2ð Þ�Hx f3ð Þ� � eiHx, 123 , and applying
the product expectation decomposition to (11), we get
(Kovach et al., 2018):

C3, x f1, f2ð Þ ¼ lim
N!1

1
N
E Ax, 123½ �E eiHx, 123½ �

þ lim
N!1

1
N
cov Ax, 123, eiHx, 123

 �

,
(12)

where the first r.h.s. term of (12) depends on phase syn-
chronization of the three Fourier components and the
second term is a covariance between amplitudes and
phases, vanishing for linear processes. In fact, the
Volterra representation of a linear process writes as a

convolution: x tð Þ ¼Pk a kð Þw t� kð Þ, where wðtÞ is a
purely random noise. Its DFT is Xx fð Þ ¼ Xa fð Þ Xw fð Þ ¼
Xa fð Þ Awðf Þe½iHwðf Þ� where Xa fð Þ,Xw fð Þ are DFTs,
respectively of the sequence a �ð Þ and of the noise. The

independence between Aw fð Þ and Hwðf Þ yields

C3, x f1, f2ð Þ ¼ Xa f1ð Þ Xa f2ð Þ Xa f3ð Þ� E w3ð Þ, restricted to
the synchronization term (Nikias and Raghuveer, 1987),

where E w3ð Þ¼ limN!1 1
NE Aw,123½ �E eiHw,123½ �, showing hence

the intrinsic nonlinear origin of the covariance term of (12).

5.1.3. Properties of the bispectrum. Like the spectrum,
the bispectrum of a real signal satisfies C3, x �f1,�f2ð Þ ¼
C3, x f1, f2ð Þ�, and (11) leads to 5 identities of symmetry,
namely:

C3, x f1, f2ð Þ ¼ C3, x f2, f1ð Þ ¼ C3, x f1, � f1 � f2ð Þ ¼ C3,x �f1 � f2, f2ð Þ
¼ C3, x �f1 � f2, f1ð Þ ¼ C3, x f2, � f1 � f2ð Þ:

(13)

This allows for a partition of the bispectrum domain
(BD) into 12 polygonal regions in which the bispectrum
can be reproduced from the Principal Domain (PD): the
triangle of vertices (0,0), (0,1/2) and (1/3,1/3) (shown by
triangle 1 in Fig. 6a). The periodicities are evident in the
theoretical bispectrum in Fig. 6b (real part) and Fig. 6c
(imaginary part) of a non-Gaussian AR(5) model of El
Ni~no (presented later in Section 5.3.1).
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The reconstruction of bicovariance is obtained through
the inverse FT of (10):

cx s1, s2ð Þ ¼
ð1

2

�1
2

ð1
2

�1
2

C3,x f1, f2ð Þ exp ½2pi f1s1 þ f2s2ð Þ�df1df2,

(14)

which leads to the skewness decomposition in terms of
positive or negative contributions given by the real parts
along the PD:

E x3ð Þ ¼ cx 0, 0ð Þ ¼ 12
ð ð

PD
Re½C3,xðf1, f2Þ�df1df2: (15)

It is important to note here that, like the power spectrum
(4), (15) implies that the element of the bispectrum Re½C3, x

ðf1, f2Þ�df1df2 provides the contribution to the skewness

E x3ð Þ from the bi-spectral bin f1, f1 þ df1½ �� ½f2, f2 þ df2�:
Finally, since the square correlation is a predictability

measure coming from third-order moments (see Eq. (9)),
its overall sum can be distributed over the bispectral
domain through the Parseval relationship:

X
s1

X
s2
½cx s1, s2ð Þ�2 ¼

ð1
2

�1
2

ð1
2

�1
2

jC3, xðf1, f2Þj2df1df2

¼ 12
ð ð

PD
jC3, xðf1, f2Þj2df1df2:

(16)

5.2. Bispectrum estimation

The estimation of bispectrum has been addressed by
many authors (e.g. Brillinger and Rosenblatt, 1967;
Raghuvver and Nikias, 1986; Nikias and Raghuveer,
1987). The empirical bispectrum or biperiodogram of a
finite sample of length N is the two-dimensional DFT of
the sampled bicovariance, which can also be expressed in
terms of DFTs of the signal (see Section 3.1):

S3, x f1, f2ð Þ �
XN�1

s1¼� N�1ð Þ

XN
s2¼� N�1ð Þ

Cx s1, s2ð Þ

� exp ½�2pi f1s1 þ f2s2ð Þ� ¼ 1
N
Xx f1ð ÞXx f2ð ÞXxðf3Þ�

(17)

where f3 ¼ f1 þ f2 þ 1
2

� �
mod 1ð Þ � 1

2 : The inverse FT of

Eq. (17) yields the empirical bicovariance:

Cx s1, s2ð Þ ¼ 1
N2

XN
2

k1¼�N
2

XN
2

k2¼�N
2

S3,x
k1
N

,
k2
N

� �

� exp
�
2pi

k1
N

s1 þ k2
N

s2

� �
�

(18)

Like the periodogram (1), the estimator (17) is not con-
sistent, which can be overcome by (i) smoothing the sam-
ple bispectrum (Hinich, 1982) or dividing the sample into

pieces and then averaging and smoothing bispectra (Lii
and Rosenblatt, 1982); (ii) using multi-tapers (Birkelund
and Hanssen, 1999, 2000) or (iii) smoothing the bicovar-
iance function (indirect-method) (Rao and Gabr, 1984),
which we use here.

The smoothed bispectrum is:

Ŝ3, xðf1, f2Þ ¼
XN

s1¼�N

XN
s2¼�N

Cx s1, s2ð ÞK s1, s2ð Þ

� exp ½�2piðf1s1 þ f2s2Þ�
(19)

where the 2D-lag window Kð�Þ satisfies similar properties
of symmetry as the bicovariance (8) and is taken to be

K s1, s2ð Þ ¼ k̂ s1
M2


 �
k̂ s2

M2


 �
k̂ s1

M2
� s2

M2


 �
where k̂ð Þ is the lag

window function and M2 is the window length. The

equivalent to bandwidth is given by b2
M2

2
where b2¼

1=
Ð�1
�1
Ð1
�1 k̂ uð Þk̂ vð Þk̂ u�vð Þ
h i2

du dv¼1:19 (Appendix A).

5.3. Bispectrum estimation of El Ni~no index

5.3.1. Null hypothesis bispectrum. To reproduce the
observed skewness, we can construct an AR process
driven by a non-Gaussian noise as a null hypothesis H0:

The model we wish to fit is like model (6) ~x tð Þ ¼Pp
s¼1 a kð Þ~x t� kð Þ þ rww tð Þ, but with a non-Gaussian

w tð Þ white noise, r2w ¼ E x2ð ÞÐ 1
2
�1
2

A fð Þj j�2df
and A fð Þ ¼ 1�

Pp
s¼1 a kð Þe �2pisfð Þ: The bispectrum of such a linear

process (Nikias and Raghuveer, 1987) is:

C3, ~x f1, f2ð Þ ¼ r3wE w3ð Þ
A f1ð ÞA f2ð ÞA f1 þ f2ð Þ� , (20)

with:

E w3ð Þ ¼ E x3ð Þ
r3w
Ð 1

2

�1
2

Ð 1
2

�1
2
A f1ð ÞA f2ð ÞA f3ð Þ�� ��1

df1df2
(21)

By using the coefficients of the AR(5) model (6), we get

the approximations r2w ¼ 0:275 and E w3ð Þ ¼ 0:895, hence

r3wE w3ð Þ ¼ 0:129: This null H0 is hereafter desig-
nated NGAR(5).

Figure 6 shows (Fig. 6b) and imaginary (Fig. 6c) parts
of the bispectrum (20) of the NGAR(5) model over the
global bifrequency domain. The real part is mostly posi-
tive whereas the imaginary part is formed by dipolar
structures. Both parts reflect the symmetry shown in (13)
and exhibit a positive band of maximum absolute values
in the region near f1 þ f2 
 0:09 cpt and f1, f2 2
½0:02, 0:08� cpt, coinciding with the frequency range where
the power of the AR(5) model (6) exceeds 3 (�C)2/cpt as
seen in Fig. 3.
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5.3.2. Empirical smoothed bispectrum. To estimate the
empirical bispectrum using the smoothed estimator (19),
we start by identifying the ideal window function M2,
according to (A4) in Appendix A. The values of the bis-
pectral fluctuations rŝ3,x and the average confidence inter-

val half-size (cihs) of the bispectrum (given by the square
root of the l.h.s. of (A4)) are given in Table 2 for several
values of M2: In order to separate peaks, the condition

rŝ3,x > cihs must be satisfied. As expected, smaller band-

widths (larger M2) lead to larger bispectral fluctuations
and larger bispectrum estimation errors via cish. From
Table 2, the largest M2 around which rŝ3, x > cihs is M2 

30, which is used below.

Figure 7 shows the real (Fig. 7a) and imaginary (Fig. 7b)
parts of the smoothed bispectrum of the 3.4 El Ni~no index
for the most relevant part of the first quadrant.

Fig. 6. Principal domain (triangle 1) in the spectral plane and its symmetric replicas (a) (adapted from Rao and Gabr (1984). Real (b)
and Imaginary (c) parts of the bispectrum of the NGAR(5) model. Note the symmetries associated with the 12 sectors shown in
panel a).
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Both parts show several peaks. In particular, both pre-
sent high absolute values for f1, f2 2 0:04, 0:07½ � cpt, as
for null NGAR(5) model (Fig. 6) but with much larger
amplitude. As expected, the average diameter of peaks is

of the order of
ffiffiffiffi
b2

p
M2

¼ 0:036 cpt: The integral of ReðŜ3, x)

(Fig. 7a) is the estimated skewness as Eq. (15). According
to Eq. (11), the superposition of Fourier components
along the triplet of frequencies f1, f2, f3 ¼ f1 þ f2 where
ReðÞ is positive (negative), will mostly generate extreme

positive (negative) values, i.e. El Ni~no (La Ni~na) events.

The integral of positive and negative values of ReðŜ3, x)
over the frequency domain is 0.54 and �0.08 respectively
(adding up to the observed skewness 0.46). The local
maxima of the real part, mostly contributing to El Ni~no
extremes, lie near the frequency triplet ðf1 ¼ f2 ¼
0:05, f3 ¼ 0:1 cptÞ and the band ðf1 þ f2 ¼ f3 ¼
0:165 cptÞ, corresponding to local maxima of the power
spectrum (Fig. 3), (e.g. quadratic phase synchronization
Jajcay et al., 2018). On the other hand, the local minima
of the real part, mostly contributing to La Ni~na extremes,
lie near the frequency triplets ðf1 ¼ f2 ¼ 0:018, f3 ¼
0:036 cptÞ and ðf1 ¼ 0:05, f2 ¼ 0:018, f3 ¼ 0:063 cptÞ,
which are again close to relative power maxima (see Fig. 3).

Figure 7c shows the squared bispectrum amplitude,
providing the bispectral contribution to the predictability
through (16), which agree quite well with Timmermann
(2003). Its maxima occur near the local extremes of the

Table 2. Average fluctuations rŝ3,x of the bispectrum and the
average confidence interval half-size (CIHS) for several values of
the window length M2 (Eq. (A4)).

M2 10 20 30 40 80

rŝ3,x 1.16 1.67 2.00 2.27 3.69
CIHS 0.70 1.37 2.09 2.79 5.59

Fig. 7. Real (a) and Imaginary (b) part of the empirical bispectrum using a window lag (M2 ¼30). Squared amplitude of the
smoothed bispectrum (c). In figures a–c, significant regions at 20% significance level (or lower) appear within thick contours. Real (d)
and imaginary (e) parts of the standardized bispectrum deviation Tx, ~x f1, f2ð Þ of El Ni~no index, and corresponding sum of the squared
real and imaginary parts (f). Bifrequencies for which the null hypothesis H0 is rejected at 20% significance levels (or lower) are color-
shaded ( Tx, ~x Þ

  > 1:3 for each part). Values are restricted to the most significant part of bispectrum.
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real or imaginary parts of Ŝ3,x (Fig. 7a,b). The most rele-
vant region for nonlinear predictability occurs for fre-
quencies satisfying f1 þ f2 2 ½0:07, 0:1� cpt. Another
maximum is observed for f1 þ f2 2 ½0:16, 0:18� cpt, pro-
ducing oscillations with periods of 5–6 trimesters, and
suggests possible source of the high nonlinear predictabil-
ity for lags 5–6 trm, as diagnosed by Cox test in Fig. 5c.

5.3.3. Bispectrum and bicovariance near the origin. The
bispectrum is relevant for the bicovariance behaviour
near the origin. In fact, cx s1, s2ð Þ can be approximated by

a Taylor expansion:

cx s1, s2ð Þ ¼ cx 0, 0ð Þ þ
X
p¼1, 2

@cx
@sp

sp þ 1
2

X
p, q¼1, 2

@2cx
@sp@sq

spsq

þ 1
6

X
p, q, r¼1, 2

@3cx
@sp@sq@sr

spsqsr þO sa1s
b
2

� �
; aþ b ¼ 4

(22)

where derivatives are computed at s1 ¼ s2 ¼ 0: Using
Eq. (14), we get:

@cx
@sp

¼ �
ð ð

BD
Im½C3, xðf1, f2Þ�2pfpdf1df2 (23)

@2cx
@sp@sq

¼ �
ð ð

BD
Re½C3, xðf1, f2Þ�ð2pÞ2fpfqdf1df2 (24)

@3cx
@sp@sq@sr

¼
ð ð

BD
Im½C3, xðf1, f2Þ�ð2pÞ3fpfqfrdf1df2: (25)

where bicovariance symmetries lead to symmetries at

the origin: @cx
@sp

¼ 0, i.e. a local bicovariance extreme

(see Fig. 4b) and @2cx
@s1@s1

¼ @2cx
@s2@s2

, @3cx
@s1@s1@s1

¼
@3cx

@s2@s2@s2
, @3cx

@s1@s1@s2
¼ @3cx

@s2@s2@s1
:

The partial derivatives at the origin, estimated with the

smoothed El Ni~no bispectrum yield @2Cx
@sp@sp

¼
�0:264 p ¼ 1, 2ð Þ, which explains most of the symmetric
decrease of Cxðs1, s2Þ near the origin (see Fig. 4b). The

term @3Cx
@sp@sp@sp

¼ �0:114, however explains the asymmetry

of that decrease, which is stronger for positive than
negative lags yielding the bicovariance min-
imum Cx 0, 4ð Þ ¼ �0:4:

5.3.4. Bispectrum from frequency-band partitions. A
coarse-grained description of the bispectrum can be
achieved by classifying the triplets f1, f2, f3 ¼ f1 þ f2 into
sets of frequencies forming a partition of ½0, 1=2�: Each
triplet is then characterized by the number of frequencies
in each set. We consider the simple partition of the fre-
quency interval using a cutoff frequency 0<fcut<1/2, sepa-
rating low (S) and high (F) frequencies, with the
corresponding decomposition x tð Þ ¼ s tð Þ þ f ðtÞ (see

Fig. 1). Figure 8a shows the 4 obtained subdomains
namely, SSS, SSF, SFF and FFF, yielding an expansion
into 4 terms of third-order statistics, e.g.,

E x3ð Þ ¼ E s3ð Þ þ 3E s2f

 �

þ 3E sf 2

 �

þ E f 3

 �

¼ SSS þ SSF þ SFF þ FFF, (26)

Figure 8b shows the terms in the r.h.s. of Eq. (26) as a
function of fcut: A reasonable criterion of discrimination
among the different components is to choose fcut that
maximizes the sum SSSj j þ jSSFj þ jSFFj þ jFFFj, which
takes place at fcut ¼ 0:082 cpt (3.04 years). This yields
inter- (slow S) and intra-triennial (fast F) variations with
respective 82% and 38% explained variance, with a well-
marked scale separation lying at a local minimum of the
smoothed power spectrum (see Fig. 3), and a minimum

value of E s3ð Þ (–0.066).
To see the impact of spectral decomposition on the dif-

ferent terms of skewness, we compare in Table 3 the
terms of Eq. (26), derived directly from the time series to
those obtained from the partial integrals of the smoothed
bispectrum (Fig. 7a). Table 3 shows that the values are

quite close, except for the negative value of E s3ð Þ: The
underestimation obtained from the smoothed bispectrum
is suggested to be due to the weak resolution of low
frequencies.

Extremes are classified according to the dominant term
(SSS, SSF, SFF or FFF). From Table 3, extreme events
of La Ni~na must be explained by the slow component
s tð Þ (e.g. 1887, 1917, 1956, 2000) or by phase synchron-
ization of s tð Þ and f tð Þ (mostly of SFF type, e.g. 1973,
1988, 2008, and 2011) (Fig. 1). On the other hand,
extreme events of El Ni~no, are mainly due to slow-fast
component interactions, namely of SSF type (e.g. 1877,
1918, 1930, 1958, 2015) and SFF type (e.g. 1926, 1951,
1965, 1972, 1982–83, 1992, 1997, 2002) or from fast com-
ponents only (FFF type) (e.g. 1923, 1977, 2006, 2009).
However, some El Ni~no events (e.g. 1905, 1940,
1986–87), have occurred due to long persistence of the
slow component (SSS type) (Fig. 1). Note also that there
are few cases of phase polarity between fast and slow
components (e.g. 1974) that lead to weak El Ni~no index.

In order to determine temporal changes of the bispec-
trum, we assess the third moment and its decomposition,
Eq. (26), both in the full period (FULL) and along the
three half-centuries: 1870–1919 (HC1), 1920–1969 (HC2
and 1970–2018 (HC3) (Fig. 1). Moreover, we evaluate the
above statistics during El Ni~nos ðx tð Þ > 0Þ and La
Ni~nas ðx tð Þ < 0Þ to examine the variability of extremes
and corresponding spectral contributions. For a given
term in Eq. (26), for instance, SSS, its average E SSSð Þ
decomposes as: E SSSð Þ ¼ EðSSSÞþ þ EðSSSÞ�, where
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EðSSSÞþ ¼ E SSS j x > 0ð Þprobðx > 0Þ and EðSSSÞ� ¼
E SSS j x � 0ð Þprobðx � 0Þ, giving the contributions to

E SSSð Þ during El Ni~nos and La Ni~nas, respectively.
Table 4 summarizes the results.

First, the most recent half century (HC3) has on average,
the most extreme episodes of La Ni~na and El Ni~no, as
observed from the high absolute values of sk� and skþ: The
amplification of La Nin~as comes mostly from a clear
increase of self-slow interaction SSS¼–0.06 and cross inter-
action SFF¼–0.4 whereas amplification of El Ni~nos comes
from the enhancement of the SFF term (0.6), as compared
to the previous two half centuries. This suggests changes
and decadal variability of the ENSO skewness, its bicovar-
iance and bispectrum (Wu and Hsieh, 2003), associated to
changes in the preferential Fourier phase couplings
(Schulte et al., 2019). This was accompanied by an ENSO

regime shift, near 1970 towards more nonlinearity (An and
Wang, 2000; An and Jin, 2004; An, 2009).

5.3.5. Statistical significance of the empirical bispectrum.
It is important to check the acceptance or rejection of the
null bispectrum H0 of NGAR(5) (Fig. 6b,c). The spectral
method used here is based on a variation of the Hinich
(1982) test of linearity. We anticipate that both the local
(A6) and the integrated (A7) spectral-based tests of nonli-
nearity in the bi-frequency domain reject the null H0 in
consistency with the nonlinearity Cox test in the time
domain (see Section 4.2.2) and hence other sources of
non-Gaussianity (e.g. deterministic nonlinearity and
multiplicative noise) shall be necessary. Furthermore, as
shown in Appendix A the asymptotic bias (A2), variance
(A3) as well as the asymptotic Gaussian PDF (Rao and
Gabr, 1984) of the smoothed estimator are not good
approximations because of the small number of degrees
freedom ðNeff ¼ 66Þ of the time series and hence cannot
be used to test the null H0: This could be alleviated by
using, e.g. a very long run of a climate model simulation.
We use a Monte-Carlo strategy by computing the statis-
tics of bispectrum by generating 10,000 surrogates of the
NGAR(5) model forced by a noise prescribed by its first
three moments. In order to easily obtain noise realiza-
tions, we consider noises produced by polynomial inde-
pendent standard Gaussian noises, by relating the
coefficients of monomial expectations to the imposed
noise moments. For instance, the first trial noise:

rww tð Þ ¼ aw1 tð Þ þ b w2
1 tð Þ � 1

� �
where w1 is a standard

Fig. 8. (a) Subdomains SSS, SSF, SFF and FFF obtained from a frequency partition using a cut-off frequency fcut ¼ 0:08 cpt
(
3 years). (b) Contributing terms to El Ni~no 3.4 index skewness (Eq. (26)).

Table 3. Contributing terms to skewness, Eq. (26), obtained
from time series and from partial integrals of the smoothed
bispectrum: total, negative and positive contributions. The most
relevant integral positive (negative) contributions are marked in
bold, representing the most relevant types of interaction
contributing to extreme El Ni~no (La Ni~na) events.

SSS SSF SFF FFF

Time series –0.066 0.263 0.185 0.071
ReðŜ3,xÞ –0.023 0.216 0.212 0.052

Re Ŝ3, x

� �
< 0 –0.037 0.000 –0.031 –0.012

Re Ŝ3, x

� �
> 0 0.014 0.216 0.243 0.063
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Gaussian white noise, leads to r2w ¼ a2 þ 2b2 ¼ 0:275 and

r3wE w3ð Þ ¼ 8b3 þ 6a2b ¼ 0:129, yielding a ¼ 0:5122, and
b ¼ 0:0794, and its excess kurtosis is 1.073.

Here, we choose: rww tð Þ ¼ aw1 tð Þ þ b w2
2 tð Þ � 1

� �
where

w1,w2 are independent standard Gaussians with r2w ¼
a2 þ 2b2 ¼ 0:275 and r3wE w3ð Þ ¼ 8b3 ¼ 0:129, yielding
a ¼ 0:3840, and b ¼ 0:2525 and a excess kurtosis of
2.475. The results are quite robust to changes in the noise
model. Other possible, though less practical, noises are
generated by maximum entropy constrained by the four
first moments (Pires et al., 2010). We then compute the

Monte-Carlo ensemble average E Ŝ3, ~x

h i
and variance

var½Ŝ3, ~x �, of the real and imaginary parts of the
smoothed bispectrum. Noise high-order moments (greater
than 2) appear only to influence the high-order moments
of the smoothed spectrum (e.g. skewness and kurtosis)
which are not relevant for the linearity test devised here.

The deviation of El Ni~no smoothed bispectrum

Ŝ3, x f1, f2ð Þ (Fig. 7a,b) from that of NGAR(5) model is
assessed by the test statistic (standardized deviation)

(Eq. (A6)): Tx, ~x f1, f2ð Þ � Ŝ3, x f1, f2ð Þ�E½Ŝ3, ~x �
ðvar½Ŝ3, ~x �Þ1=2

: Under H0, its real

and imaginary parts are approximately standard Gaussian.
We also limited the tests to frequencies with higher bispec-
trum amplitude, roughly corresponding to f1j j, jf2j < 0:2 (as
in Fig. 7a,c). Figure 7 shows the real (Fig. 7d) and imaginary
(Fig. 7e) parts of Tx, ~x f1, f2ð Þ where significant regions (at
a ¼ 20% significance level). are color-shaded. Fig. 7d shows

that most peaks of ReðŜ3, xÞ (Fig. 7a) are significant. In par-
ticular, the low-frequency region (SSS type), producing La
Ni~na events for f1j j, jf2j, jf3j < 0:06 cpt, is significant (i.e.
rejecting H0). The other positive and negative bispectrum
extremes discussed in Section 5.3.2 are also significant at
a ¼ 10%. The imaginary part of the test (Fig. 7e) and the
squared amplitude (Fig. 7f) are also highly significant in
most of the relevant regions of the bispectrum with signifi-
cance levels reaching 5%. The most significant region of
nonlinear predictability holds approximately for f1 þ f2
within 0:16, 0:18½ � cpt where bispectrum is significant at
a ¼ 5%, producing oscillations with periods of the order

5–6 trimesters. This suggests a possible source of the high
nonlinear predictability for lags 3–6 trm, as diagnosed by
Cox test (Fig. 5c), and for the nonlinear curtailing of El
Ni~no Spring barrier (see Fig. 5a).

The local test Tx, ~x f1, f2ð Þ computed on a frequency
basis may lead, ambiguously, either to the rejection or to
the acceptance of linearity, depending on f1, f2 (see
Fig. 7d–e). This is suggested by the fact that finite N-
sized samples generated by the non-Gaussian NGAR(5)
model led to local frequency tests T~x, ~x f1, f2ð Þ where lin-
earity is falsely rejected (not shown). Therefore, in order
to overcome this difficulty and enhance test robustness,
we propose the integrated test of nonlinearity (A7) given

by Tint x, ~x �P f1, f2ð Þ2L jTx, ~x f1, f2ð Þj2 over a representative

lattice L (Fig. A3). We found that nonlinearity cannot be
rejected (at 5% level), thanks to the highly significant
regions of El Ni~no bispectrum (Fig. 7d–e and 7a–c).

5.3.6. Normalized bispectrum and bicoherency. An inde-
pendent test of linearity, beyond that of previous section
and diagnostic of phase synchronization comes from the
normalized bispectrum or bicoherence spectrum (Kim
and Powers, 1979; Nikias and Raghuveer, 1987; Hinich
and Wolinsky, 2005; Rao et al., 2012). It is obtained by
prewhitening x tð Þ to yield a non-Gaussian white noise

y tð Þ, and reconstructed by inverse FT of Xy fð Þ � Xx fð Þ
Cx fð Þ½ �12

¼ffiffiffiffi
N

p
ei½Hxðf Þ�: The test is then:

C3, y f1, f2ð Þ � C3,x f1, f2ð Þ
Cx f1ð ÞCx f2ð ÞCx f3ð Þð Þ12

(27)

We stress that the phases of Xy fð Þ and Xx fð Þ are the
same (i.e. Hx fð Þ), leading to a nonvanishing correl-

ation cor x, yð Þ ¼ r�1
x

Ð 1
2

�1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cxðf Þ

p
df :

A linear process i.e. x tð Þ ¼Pk a kð Þw t� kð Þ where w is

a white noise yields Cx fð Þ ¼ j Xa fð Þj2E w2ð Þ: By using the
result of Section 5.1.2, the normalized bispectrum (27)

becomes C3, y f1, f2ð Þ ¼ sk wð Þei½Ha f1ð ÞþHa f2ð Þ�Ha f3ð Þ� where

Ha �ð Þ is the phase of the DFT of sequence a kð Þ:
Therefore, the amplitude of C3, y is uniform,

Table 4. Expected values (yellow) of the third moment of the normalized El Ni~no 3.4 index (denoted as sk) and its contributions SSS,
SSF, SFF and FFF, as detailed in Eq. (26) for the full period and for the three half centuries 1870–1919 (HC1), 1920–1969 (HC2) and
1970–2018 (HC3). The expectations and their bispectral contributions are further decomposed into contributions conditioned to La
Ni~nas (blue) and conditioned to El Ni~nos (red). Note that sk ¼ skþ þ sk� (idem for skewness terms).

sk SSS SSF SFF FFF sk– SSS– SSF– SFF– FFF– skþ SSSþ SSFþ SFFþ FFFþ
FULL 0.5 –0.1 0.2 0.2 0.1 –0.6 –0.4 0 –0.2 –0.1 1.1 0.3 0.2 0.4 0.2
HC1 0.7 0.1 0.2 0.3 0.1 –0.5 –0.3 0 –0.1 –0.1 1.2 0.4 0.2 0.4 0.2
HC2 0.2 0 0.1 0.3 0 –0.3 –0.2 0 –0.1 –0.1 0.5 0.2 0.1 0.4 0.1
HC3 0.5 –0.3 0.5 0.2 0.1 –1.0 –0.6 0.2 –0.4 –0.2 1.5 0.3 0.3 0.6 0.3
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i.e. C3, y f1, f2ð Þ  ¼ sk wð Þ which is precisely the Hinich
(1982) null hypothesis of linearity.

In the case of El Ni~no, we get an estimated prewhit-
ened non-Gaussian noise y tð Þ by using the more reliable
theoretical maximum entropy NGAR(5) spectrum for the
normalization in (27), instead of the empirical smoothed
spectrum. The lag correlation of the resulting noise y tð Þ is
very close to zero and thus can be considered a white
noise. Its skewness is 0:282 and the excess kurtosis is
0:531: The correlation with the signal x tð Þ is quite high:
0.75, coming mainly from extreme events.

The smoothed normalized bispectrum, using the same

window length M ¼ M2 ¼ 30, is hereby denoted Ŝ3, y:

Significant peaks (at 20% significance level) of Ŝ3, y, both
of the real (Fig. 9a) and imaginary (Fig. 9b) parts are
located nearly at the same bifrequencies as the non-nor-

malized bispectrum Ŝ3, x (Fig. 7a,b) though peaks are
attenuated by normalization and a new peak appears at
higher frequencies f1 ¼ f2 ¼ 0:18 (2.5 years), ðf3 ¼ 0:36Þ
cpts (2.8 years). The squared bicoherency jŜ3, y f1, f2ð Þj 2

(Fig. 9c) is clearly nonuniform, showing regions of nonac-
ceptance of the null bispectrum of NGAR(5) and hence
rejecting the linearity hypothesis.

6. Stochastic modelling

6.1. The method

6.1.1. The motivation. ENSO has been extensively
studied to look for a deeper understanding of the under-
lying physics and complexity (see recent reviews of
Chunzai, 2018; Timmermann et al., 2018 and references
therein), improve predictability (see the review of Tang
et al., 2018), as well as to get accurate statistics (e.g. pdf,
extremes etc.). This was done through different dynamical

models (physical-based deterministic models), statistical
models (e.g. linear inverse modelling by Penland (1996)
and Privalsky and Muzylev, 2013) and models based on
machine learning (Dijkstra et al., 2019).

However, even complex models may exhibit biases of
various statistics. The present top-down approach of fit-
ting simple stochastic models to observations, attempts
learn signal-noise relationships from models, enabling
parametrizations of the nonlinear and complex effects of
nonobserved variables and hence reproducing a set of
relevant stochastic properties (e.g. spectrum, bispectrum).

A number of stochastic univariate models of ENSO have
been fitted such as: smooth transition autoregressive
(STAR) models (Hall et al., 2001; Ubilava and Helmers,
2013), autoregressive conditional heteroscedasticity type
models (ARCH) (Ahn and Kim, 2005), and threshold AR
models (De Gooijer, 2017). This section aims at fitting a
minimal univariate stochastic model for El Ni~no 3.4. index
driven by a multiplicative Gaussian delayed noise, able to
reproduce the observed empirical spectrum, skewness and
bispectrum as well as assess the impact it has on predictabil-
ity, compared to benchmark linear models.

6.1.2. The model formulation. The models fitted here,
belong to a class in which the simulated scalar state ~x tð Þ,
at integer t, is driven by a noise u tð Þ ¼ rww tð Þ where wðtÞ
is a standard Gaussian white noise and rw is a positive
constant. The simulated state ~x tð Þ depends (through a
function F) on: a) the simulated previous state values at
t < 0, represented in delay coordinate (Takens et al.,

1981) by ~x t� 1ð Þ � ½:::~x t� 2ð Þ, ~x t� 1ð Þ�T ; b) the previous

noise values at t < 0 : u t� 1ð Þ � ½:::u t� 2ð Þ, u t� 1ð Þ�T and
c) a parameter vector h: Throughout this section bold let-
ters refer to vectors and italic to scalars. The model writes
thus as:

Fig. 9. Real (a) and Imaginary (b) parts of the normalized smoothed bispectrum of El Ni~no index, (M2¼30) and its squared
amplitude (c). Regions statistically significant at 20% level are colour-shaded.
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~x tð Þ ¼ F ½~x t� 1ð Þ, u t� 1ð Þ, h� þ u tð Þ (28)

The model (28) will also be used in forecast mode, and
the s-lag s 	 1ð Þ forecast valid at time at t, x t, sð Þ, is
given by:

x t, sð Þ ¼ F½x t� 1, s� 1ð Þ, � t� 1, sð Þ, h�, (29)

where x t� 1, s� 1ð Þ � ½:::, x t� 2, s� 2ð Þ, x t� 1,ð s�
1Þ�T , with x t0, sð Þ ¼ x t0ð Þ for s � 0: The noise vector in

(29) becomes � t� 1, sð Þ � ½:::, e t� 2, s� 1ð Þ, e t� 1, sð Þ�T
with e t0,s0ð Þ � x t0,s00 � 1ð Þ�x t0,s00ð Þ, where s00 ¼
max 1,s0ð Þ: For instance the one-step forecast is x t,1ð Þ ¼
F½x t� 1,0ð Þ, � t� 1,1ð Þ, h� where x t� 1,0ð Þ ¼ x t� 1ð Þ �
:::,x t� 2ð Þ,x t� 1ð Þ� �T

and � t� 1,1ð Þ ¼ � t� 1ð Þ ¼ ½:::, e
t� 2ð Þ, e t� 1ð Þ�T with e t0ð Þ � x t0ð Þ�x t0,1ð Þ is the one-step
error forecasts, being thus consistent with (28).

The models of form (28) include AR linear models, fit-
ted in Section 3.3.2. However, in order to reproduce non-
linear and non-Gaussian ENSO behaviour, we have
considered bilinear models (Haggan and Oyetunji, 1980;
Rao and Gabr, 1984; Rao 1981), which differ from AR
processes by the addition to them of lagged bilinear (BL)
terms, denoted ARBL(p1, p2):

F ~x t� 1ð Þ, u t� 1ð Þ, h
� �

¼
Xp1

k¼1
ak~x t� lkð Þ

þ
Xp2

k¼1
bk~x t� rkð Þu t� skð Þ þ a,

(30)

characterized by its correlated-additive–multiplicative
(CAM) noise (Usoro, 2015), where lk, rk, sk 	 1 are lags,
with h � a1, :::, ap1 , b1, :::, bp2 , a


 �
: These models can pro-

duce non-Gaussian statistics and nonvanishing bicovar-
iances and bispectra (Rao and Gabr, 1984). Note that the
restricted case of lags rk ¼ 0, sk ¼ 0 (Monahan, 2020) are
excluded from model of Eq. (30), to allow inverting u tð Þ
from past values for forecasting. Note also that the case
rk > sk leads to sub-diagonal bilinear models whereas the
case rk � sk corresponds to diagonal/super-diagonal bilin-
ear models. In the former case, for example, the interven-
ing noise is independent of the most recent state whereas
the latter case corresponds to nonlinear feedbacks, having
in general nonvanishing time averages due to correlation
between states and past noises. We stress that models
(30) have a nonlinear Volterra development in terms of
lagged noises, which in a certain way parametrizes nonli-
nearities which are not present in a deterministic form in
function F: However, other type of models could be fit-
ted, e.g. adding quadratic terms in the deterministic forc-
ing but which can lead to instabilities in simulations.
Another difficulty with nonlinear deterministic part, is
the very wide class of nonlinearity: which nonlinearity: if

polynomial-what degree? However, we investigate it in
another study.

6.1.3. Model fitting. In order to optimize predictability
and reproduce data statistics, we apply a hybrid fitting
algorithm that minimizes a cost function Jhyb which is
the weighted sum of the normalized one-step forecast
residuals Jfitt and the normalized squared distance
between a set of observed and simulated statistics (aver-
age, autocovariance and bi-covariance) Jstat :

Jhyb hð Þ ¼ cfittJfitt hð Þ þ cstatJstat h, rwðhÞð Þ (31)

where cfitt and cstat are positive weights and rw hð Þ ¼
rx Jfitt hð Þ
 �1=2

is the RMS of the forecast residuals for a
model using parameters h with rx ¼ 1 (observations are
standardized).

The term Jfitt is given by the one-step forecast error:

Jfitt hð Þ ¼ 1
ðN �NcÞr2x

XN�1

t¼Nc

x tð Þ � F½x t� 1ð Þ, � t� 1ð Þ, h�� �2
(32)

where Nc � maxk, k0 ðlk, rk0 , sk0 Þ:
Iterative minimization algorithms of Jfitt hð Þ for general

bilinear models are discussed in Pham and Tran (1981),
(Rao and Gabr 1984), Grahn 1995, Guegan and Pham
(1989), Gabr 1998 and Falguerolles and Francis (1992).
Traditionally, the method of moments is used to obtain
implicit relationships between the parameters and lagged
moments (e.g. Sesay and Rao, 1988; Tang and Mohler,
1988; Kim et al., 1990), where, in most cases parameters
are difficult to be expressed as a function of moments.
Here we apply a method where statistics are estimated
from a long simulation of (Eq. (28)) with initial conditions:
~x tð Þ¼w tð Þ¼0; t¼�Npast, :::,�NpastþNc, and w tð Þ

N 0,1ð Þ;t¼ �NpastþNcþ 1,…, Nsim: Statistics are com-
puted for t¼1, :::,Nsim with Nsim¼30,000 and the initial
Npast¼1000 values are discarded from statistics as spin-up.

The term Jstat, involving the mean, autocovariance and
bicovariance from observations, (Sobs,Cobs �ð Þ, and
Bobs �, �ð Þ), and simulations (Ssim, Csim �ð Þ, and Bsim �, �ð ÞÞ,
is

Jstat h,rwð Þ ¼ JS h,rwð Þ þ JC h, rwð Þ þ JB h, rwð Þ, (33)

where

JS h, rwð Þ ¼ Ssim � Sobsð Þ2
r2x

JC h,rwð Þ ¼
X
sj j�smax

Csim sð Þ � Cobs sð Þ½ �2 b1k sð Þ2
smaxr4x

(34)


 b1
smaxr4x

ð1=2
�1=2

Ŝ2, ~x fð Þ�Ŝ2, x fð Þ
h i2

df , (35)
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and

JB h,rwð Þ
X

s1j j, js2 j�smax

Bsim s1, s2ð Þ�Bobs s1, s2ð Þ� �2 b2k s1, s2ð Þ2
s2maxr

6
x


 b2
s2maxr

6
x

ð1=2
�1=2

ð1=2
�1=2

Ŝ3, ~x f1, f2ð Þ�Ŝ3, x f1, f2ð Þ
h i2

df1df2,

(36)

with smax ¼ 16:
The used window lag functions kðsÞ and kðs1, s2Þ are

scaled by M ¼ M2 ¼ smax: The Parseval Theorem applied
to (35–36), shows that minimizing JC h,rwð Þ, JB h,rwð Þ
leads also to minimizing errors in the spectral domain.

In the analysis we compare two situations: cfitt ¼ 1,

cstat ¼ 0 (simple fitting) and the hybrid fitting where
cfitt ¼ 1; cstat ¼ DJfitt/DJstat, given by the ratio of typical

variations of Jfitt and Jstat (hybrid fitting). The optimal
parameters issued from simple and hybrid fittings are
hereby denoted hfitt and hhyb, respectively. Note that the
term cstatJstat reduces overfitting and the domination of
one term over the other, see Appendix B for the descrip-

tion of the minimization of Jhyb hð Þ: We compare both fit-

tings in terms of Jfitt and Jstat for the AR(p1) model and

several ARBL(p1, p2) models. The statistical significance
is given through the normalized Akaike Information
Criterion: NAIC ¼ logðJfittÞ � 2dimh=ðN �NcÞ that penal-
izes the number of model terms.

6.2. Results for El Ni~no index

6.2.1. Fitting statistics. We analyse and evaluate a
sequence of models (Eq. (30)), for p1 ¼ 5, lk ¼ k; k ¼
1, :::, p1, with various p2 values using lags rk � 6, sk � 6
(Table 5) with every new lag pair producing the largest
Jfitt decrease.

Table 5 shows that the mean residual squares Jfitt
decreases with increasing model complexity. For hybrid,
NAIC decreases with increasing complexity (i.e., no over-
fitting). Moreover, the hybrid fitting is able to get
improved statistics compared to that from the simple fit-
ting ðJstat hhyb


 �
< Jstat hfitt


 �Þ, with reductions up to about

one fifth for the ARBL(5,5) model. That reduction entails
very tiny increments in the sum of residuals, i.e.
Jfitt hhyb

 �

> Jfitt hfitt

 �

, of the order of 1%, but still keep-

ing significant NAIC values.
The estimated of the ARBL(5,5) model are shown in

Table 6 and a,rwð Þ ¼ ð0:0626, 0:5102Þ:

6.2.2. Simulated autocovariance and spectrum. We note
that the autoregressive part of the ARBL(5,5) model is
quite similar to that of AR(5) model (Eq. (6)). The bilin-
ear coefficients have smaller amplitude than the autore-
gressive coefficients. ARBL(5,5) contains two feedback
terms corresponding to ðrk, skÞ ¼ 2, 4ð Þ and 1, 3ð Þ whose
nonzero mean values come from white noise squares and
leading to a nonvanishing constant a: This parametrizes
partially the bicovariance at the interseasonal scales
which is at the origin of the nonlinear reduction of the
Spring Predictability Barrier (see Section 4.2.2). The
model recovers quite well the empirical autocovariance
function (not shown), and also the smoothed spectrum
(Fig. 10) using the window lag M ¼ 30, with particularly
similar peak in the band f 
 0:05� 0:07 cpt.

6.2.3. Simulated bicovariance and bispectrum. Most
(
80%) uncertainty in Jhyb hhyb


 �
comes from the bicovar-

iance uncertainty through JB h,rwð Þ: The simulated bico-
variance (Fig. 11) reproduces very well the same pattern

Table 5. Statistics of the AR(5) and bilinear ARBL(5,1),… ,ARBL(5,5) models with the corresponding bilinear-term lags ðrp2 , sp2 Þ
along with the terms Jfitt and Jstat for simple and hybrid fitting in addition to the normalized AIC relative to hybrid fitting.
Correlation skills cors are also shown at lags s ¼ 1, 2, 3 trimesters, assessed over the period 1970–2018 for models obtained by hybrid
fitting calibrated in the period 1870–1969.

Model ðrp2 , sp2 Þ JfittðsimpleÞ Jstat simpleð Þ JfittðhybridÞ Jstat hybridð Þ NAIC cor1 cor2 cor3

AR(5) 0.2779 0.0199 0.2784 0.0192 –1.268 0.855 0.552 0.261
ARBL(5,1) (2,1) 0.2742 0.0211 0.2754 0.0145 –1.277 0.859 0.579 0.309
ARBL(5,2) (2,4) 0.2708 0.0109 0.2738 0.0055 –1.282 0.864 0.607 0.379
ARBL(5,3) (1,3) 0.2645 0.0138 0.2693 0.0062 –1.296 0.864 0.609 0.382
ARBL(5,4) (6,3) 0.2601 0.0146 0.2639 0.0047 –1.315 0.865 0.598 0.333
ARBL(5,5) (5,1) 0.2566 0.0151 0.2604 0.0034 –1.327 0.867 0.618 0.349

Table 6. Coefficients and lags of the autoregressive and bilinear
terms of the ARBL(5,5) model of El Ni~no index, obtained by
hybrid fitting over the full period. The independent constant
a ¼ 0:0626 and the additive driving noise is u tð Þ ¼ 0:5102 w tð Þ:

k ak bk ðrk , skÞ
1 1.130 0.289 (2,1)
2 –0.384 –0.154 (2,4)
3 –0.072 –0.114 (1,3)
4 0.159 0.100 (6,3)
5 –0.139 –0.108 (5,1)
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of the bicovariance inferred from observations (Fig. 4b),
at least up to lags 12 trimesters. The simulation yields a
skewness equal to 0.26, which is comparable with the
observed skewness (0.46). Any simpler model with only
one bilinear term is unable to yield positive skewness and
negative bicovariances C~x 0, 3ð Þ, C~x 0, 4ð Þ, which are fun-
damental to get skillful El Ni~no predictions from Spring
to the next Winter.

The smoothed bispectrum of the ARBL(5,5) simula-
tion, using a window lag M2 ¼ 30, is shown in Fig. 12a
(real part) and Fig. 12b (imaginary part), to be compared
with the empirical one (Fig. 7a,b). The real part (Fig. 7a)
is quite well reproduced, with negative values in the low-
frequency band f1 þ f2j j < 0:06, and positive local max-
ima near f1 ¼ f2 ¼ 0:045 cpts and f1 ¼ f2 ¼ 0:085 cpts
(Fig. 12a). The decomposition of skewness (Eq. (26)),
(with fcut ¼ 0:06) yields the values �0.036, 0.062, 0.154
and 0.082 respectively for the SSS, SSF, SFF and SSS
contributions, which agree approximately with observa-
tions (Table 3). The imaginary part of the simulated bis-
pectrum (Fig. 12b) is also roughly well reproduced,
showing negative values within the region f1 þ f2 < 0:06
(Fig. 7b) and positive elsewhere. The maximum is near
f1 ¼ f2 
 0:07 cpts. Note that the existence of a single
peak is related to the simulated single-peak spectrum.

We shall remark that the bilinear models chosen here,
have a linear deterministic part with nonlinearity coming
indirectly through the CAM noise. However, other type
of models could be fitted, e.g. adding quadratic terms in
the deterministic forcing but which can lead to other

difficulties like instabilities and chaotic behaviour in
simulations.

6.2.4. Predictability. In order to assess the predictability
impact of the inclusion of bilinear terms in ARBL mod-
els, compared to the AR(5) model, we compute the cor-
relation skill cors, (Table 5) between observations and
predictions for lags for s ¼ 1, 2, 3 trimesters. Models are
optimized by hybrid fitting in the training period
1870–1969 (100 years) and predictions are evaluated in
the validation period 1970–2018 (49 years), where the
most intense La Ni~nas and El Ni~nos have been observed
(see Section 5.3.4). All the tested models’ predictions are
skillful (cors>0.5) for lags up to two trimesters.

Table 5 shows that, in general correlation skills
increase with increasing complexity. For instance, the cor-
relation skill of model ARBL(5,5) is about 2%, 7% and
9% larger than AR(5), respectively for lags of 1, 2 and 3
trimesters. The presence of at least two bilinear terms
suggests the reason behind the improvement of the 2-tri-
mester forecasts by ARBL(5,5), with respect to AR(5),
for which some extreme El Ni~nos (e.g. 1973, 1983, 1998,
2016) are more accurately predicted. The ARBL(5,5)
model has no explicit deterministic nonlinearities, which
are common to physically-based models. Here, nonlinear-
ities are parametrized through the bilinear terms. Despite
the simplicity of the ARBL(5,5) model, its correlation
skills ðcor1 ¼ 0:87, cor2 ¼ 0:62Þ are not dramatically
smaller, in the same period than those of physically-based
models ðcor1 ¼ 0:85� 0:91, cor2 ¼ 0:68� 0:80Þ and to

Fig. 10. Smoothed empirical (black) and ARBL(5,5) simulated (red) spectra using a window lag M¼ 30.
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those of a much more complex neural-network based
model ðcor1 ¼ 0:92, cor2 ¼ 0:80Þ as observed in Fig. 2a
of (Ham et al., 2019).

7. Discussion and conclusion

El Ni~no Southern Oscillation (ENSO) is one of the most
important coupled atmosphere–ocean system, exhibiting
time scales ranging from seasons to decades and beyond,
with a particularly worldwide teleconnection. Using dif-
ferent stochastic and/or dynamic approaches, most stud-
ies have emphasized and shown its intrinsic complexity,
nonlinearity and non-Gaussianity. Most of those studies
limited their investigations to the second order statistics
in addition to skewness and/or kurtosis.

Here, we follow the same line of research by perform-
ing a data-driven systematic study of the third-order sto-
chastic moments, both in the time and spectral domains,
applied to the standardized trimonthly-average El Ni~no
3.4 index with a trimester sampling. Within the time
domain, this comprises the bicovariance cx s1, s2ð Þ ¼
E x tð Þx tþ s1ð Þx tþ s2ð Þ� �

, in addition to nonlinear corre-
lations for testing nonlinearity and nonlinear predictabil-
ity for forecasting horizons from seasons up to a few
years. The study uses a 149-year period (1870–2018) time
series with its statistically significant skewness of 0.46,
peaking mostly at the boreal winter (1.04). The analysis
of bicovariance maxima reveals high negative nonlinear
correlation, implying that El Ni~no or La Ni~na extremes
are likely to be followed by La Ni~na one year later,
whereas mild conditions, on the other hand, favour El
Ni~no occurrence.

The analysis of the nonlinear predictability, on sea-
sonal time scales, shows that such nonlinear correlation is

enhanced further when forecasts are issued at the NH
Spring season (AMJ). This is linked to the persistence of
many La Ni~nas starting in Spring up to next Winter and
to the fact that strong Winter El Ni~nos have only
occurred under close climatological conditions in the pre-
vious boreal Spring. This strongly suggests that nonli-
nearity in the inter-seasonal timescale can contribute
significantly to reduce the so-called El Ni~no Spring pre-
dictability barrier. Another equally important aspect is
the fact that ENSO nonlinearity allows for the extension
of predictability skill even for forecasting time of a few
years, particularly when these forecasting time intervals
satisfy phase synchronization and quadratic phase locking
with certain dominant Fourier frequencies.

Similarly, within the spectral domain the bispectrum
and bicoherence have been computed. As with power
spectrum and variance, the bispectrum provides, in par-
ticular, the contribution of each bi-frequency bin to the
observed skewness and squared bicovariance. This war-
rants the detection of combinations of El Ni~no Fourier
components that mostly contribute to ENSO extremes by
phase synchronization. The bispectrum also permits a test
of nonlinearity in the spectral domain. The bispectrum
has been estimated by a smoothed estimator using a win-
dow lag of 30 trimesters ¼ 7.5 years, obtained from a
trade-off between bispectrum bias, variance, and spectral
resolution. To estimate the statistical significance of
peaks, a conservative test has been adopted. The bispec-
trum of a non-Gaussian autoregressive null-hypothesis
model NGAR(5) is tested and rejected at 5% significance
level. We first obtained the coarse-grained spectral parti-
tion of the skewness by splitting the full signal into a
slow component s tð Þ (with periods larger than 3 years)
and a fast component f tð Þ: The skewness is then decom-
posed into 4 components, namely SSS ¼ �0:066, SSF ¼
0:263, SFF ¼ 0:185 and FFF ¼ 0:071, implying, in par-
ticular, that most El Ni~nos result from interaction
between inter- and intra-triennial timescales. Some dec-
adal tendency towards SFF-type El Ni~nos is apparent
from the time series, which is consistent with the observed
ENSO decadal variability. Note that if a maximum of the
bispectrum real part is observed at ðf1, f2Þ then a peak in
the power spectrum is observed approximately at f3 ¼
f1 þ f2: In particular, the leading bispectral maxima con-
tributing to El Ni~no occurs at f1 ¼ f2 ¼ 0:05, f3 ¼ 0:1 cpt
cpt (periods of 5 and 2.5 years inside the SSF region) and
near the band f1 þ f2 ¼ 0:165 cpt, crossing the SFF and
FFF regions, with a maximum at f1 ¼ f2 ¼ 0:082, f3 ¼
0:165 cpt (periods of 2.9 and 1.5 years). On the other
hand, minima contributing mostly to La Ni~na extremes,
lie near f1 ¼ f2 ¼ 0:018, f3 ¼ 0:036 cpt (periods of 14
and 7 years) and ðf1, f2Þ ¼ ð0:05, 0:018Þ, f3 ¼ 0:063 cpt
(periods of 5, 7 and 4 years), both inside the SSS region.

Fig. 11. Bicorrelation of the ARBL(5,5) model, approaching
the empirical bicorrelation of El Ni~no index (to be compared
with Fig. 4b).
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Lastly, a minimal stochastic model was constructed,
which was able to reproduce the main features of the
spectrum and bispectrum, and yielded robust improve-
ment of the predictability skill, compared to an autore-
gressive AR(5) model. The model was selected from a
large class of bilinear models with correlated-additive–-
multiplicative lagged noise. To gain predictability skill
with the right stochastic properties, a hybrid fitting
approach is used by minimizing a combination of fore-
casting squared residuals and squared deviations from
empirical third-order statistics. The bilinear model yields
forecast improvements, particularly at lags of 1, 2 and 3
trimesters with 2%, 7% and 9% of correlation skill incre-
ment respectively, suggested to be linked to the attenu-
ation of El Ni~no predictability Spring barrier and to the
more accurate prediction of super El Ni~nos.

This study contributes to the understanding of ENSO
predictability and modelling from the perspective of the
bispectrum and phase synchronization. In a changing cli-
mate, this is especially relevant for the study and predict-
ability of ENSO extremes resulting from resonant-type
interaction. The study also provides the possibility to
investigate other ENSO indices such as El-Nino Modoki
or other Nino indices, and check whether other processes
are at play. In particular, forecast skill of ENSO, based
on the developed models are of great importance for sea-
sonal (and longer) timescales forecasting. A systematic
analysis of these topics is beyond the scope of this manu-
script and is left for future research.
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Appendix A: Statistics of the smoothed
bispectrum estimator

Let us denote the error of the smoothed bispectrum
estimator (19) as:

dŜ3, x f1, f2ð Þ � Ŝ3,x f1, f2ð Þ � C3, x f1, f2ð Þ: (A1)

Equation (A1) follows (for large N,M2,N=M2
2 ), a

complex Gaussian PDF (Brillinger, 1965) with
independent real and imaginary parts. The estimator’s
bias is approximately given by:

E dŜ3, x f1, f2ð Þ
h i


 �k̂
00
0ð Þ

4p2M2
2

@2C3, x

@f21
þ @2C3, x

@f22
� @2C3, x

@f1@f2

 !
, (A2)

Asymptotically, the real and imaginary parts of the
estimator (19) have equal variances (Rao and Gabr,
1984), for different f1, f2, f3, given by

var ReðŜ3, xÞÞ
h i

¼ var ImðŜ3,xÞÞ
h i

¼ 0:5
M2

2

Nb2
Cx f1ð ÞCx f2ð ÞCx f3ð Þ

(A3)

which decreases both with N and the two-dimensional

bandwidth
ffiffiffi
b2

p
M2

where 1
b2
¼Ð�1

�1
Ð1
�1 k̂ uð Þk̂ vð Þk̂ u�vð Þ
h i2

du dv,

and hence larger spectral resolution implies larger variance.
The optimal value of M2 minimizing the bispectrum

MSE is frequency dependent (Rao and Gabr, 1984).
Instead, we use an overall criterion such that typical
bispectrum fluctuations rŜ 3,x

are larger than the average

confidence interval half-size (cish), which writes as:
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rŜ 3, x
2 � max Re Ŝ3,x � sk xð Þ3

� �2
, Im Ŝ3, x

� �2" #

> ðU1�a
2
Þ2 M

2
2

Nb2
Cx f1ð ÞCx f2ð ÞCx f3ð Þ ¼ cish2 (A4)

where the overbar means integration over the domain of
bifrequencies, and Uqð�Þ is qth quantile of the standard

normal. Then, for the best bispectral resolution we chose
the largest M2 satisfying (A4).

Here, we are looking for a statistical test of the null
bispectrum of NGAR(5). For that, we need good bias
and variance approximations of the smoothed
bispectrum. To achieve this, even for a reduced number
of temporal degrees of freedom (the case here), we have
generated 10,000 Monte-Carlo N-sized time series or

Fig. A1. Real (a) and imaginary (b) parts of bias E dŜ3, ~x

h i
: Real (c) and imaginary (d) values of the ratio varrat Ŝ3, ~x

� �
between

empirical variances varðŜ3,xÞ and total asymptotic variance.
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surrogates ~xðtÞ based on the null H0, and construced
ensemble statistics. The bispectrum error is

dŜ3, ~x f1, f2ð Þ ¼ Ŝ3, ~x f1, f2ð Þ � C3, ~x f1, f2ð Þ with bias

E dŜ3, ~x

h i
¼ E½Ŝ3, ~x � � C3, ~x : Monte-Carlo biases of the

NGAR(5) bispectrum (Fig. A1a,b) are positive (negative)
near the local bispectrum minima (maxima) (see
Figs. 7a,b), in agreement with the asymptotic bias (A2).
Exception holds near the origin due possibly to under
sampling of low frequencies.

The deviation between the asymptotic variance (A3)

and the Monte-Carlo variance var Ŝ3, ~x

h i
(for the real and

imaginary parts) is assessed through the ratio:

varrat Ŝ3, ~x

� �
� varðŜ3, ~xÞ

M2
2

Nb2
C~x f1ð ÞC~x f2ð ÞC~x f3ð Þ

, (A5)

shown in Fig. A1c,d. It can be verified from this figure
that when the distance to the principal domain edges or

vertices slightly surpasses the bandwidth
ffiffiffi
b2

p
M2

¼ 0:036 cpt,

then the ratio is nearly constant, varying in the range
0.65–0.80, which is larger than the value 0.5 observed in
asymptotic conditions, and hence (A3) underestimates the
estimator’s variance (due to sampling (Neff  N)).

In order to evaluate the distance between the estimated

Ŝ3,x f1, f2ð Þ and the H0 bispectrum, we compute the
standardized error (real and imaginary parts):

Tx, ~x f1, f2ð Þ � Ŝ3,x f1, f2ð Þ�E½Ŝ3, ~x �
½var Ŝ3, ~x

� �
�1=2

(A6)

Asymptotically, under H0, both real and imaginary parts
of T~x, ~x are independent standard Gaussian, and

jT~x, ~x j2 � ReðTx, ~xÞ2 þ ImðTx, ~xÞ2 
 v22: However, for
finite samples, T~x, ~x tends to be non-Gaussian and

leptokurtic and hence the diagnostic Y~x � varð jT~x , ~x j2Þ
2Eð jT~x , ~x j2Þ

gets values larger than 1. For the purpose of H0 tests, we

also compute the Monte-Carlo quantiles qpð jT~x, ~x j2).
Therefore, the H0 bispectrum is rejected at the frequency

pair f1, f2ð Þ if Tx, ~x f1, f2ð Þ or jTx, ~x j2 fall outside their H0

nonrejection intervals.
The non-Gaussianity assessment of T~x, ~x is presented

in Fig. A2, showing Y~x versus 1
2 qp jT~x , ~x j2
� �

, for

p ¼ 50%, 75%, 90%, 95% and 99%, of the local test

jT~x, ~x j2: The leftmost points in Fig. A2 are set to the

Gaussian case (Y~x ¼ 1) and quantiles are those of 1
2 v

2
2:

Moreover, quantiles are well adjusted by a linear fitting
of Y~x : Quantiles up to p ¼ 95% are well approximated

by those of 1
2 v

2
2, but less for the whereas the 99%.

Consequently, to test H0 by using Tx, ~x and jTx, ~x j2,
with 5% significance or larger, we can use the v22:

The local test (A6) used in Section 5.3.5 is not very
powerful because H0 can be rejected at random frequencies

Fig. A2. Values of the non-Gaussianity diagnostic Y~x (equal to 1 under Gaussianity) versus the 50%, 75%, 90%, 95% and 99% half-
quantiles 1

2 qp jT~x , ~x j2
� �

of the squared bispectrum normalized error, collected over all the 173 bifrequencies of lattice L: A linear
adjustment is shown for each quantile.
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even for finite H0 samples. To overcome this an integrated
test is used based on the total squared amplitudes:

Tint x, ~x �
X

f1, f2ð Þ2L
jTx, ~x f1, f2ð Þj2, (A7)

along nL bifrequencies of a regularly sampled lattice L,

with frequency step, Df ¼ 5
N ¼ 0:0084 cpm, i.e. 1

4 of

the two-dimensional (2D) bandwidth
ffiffiffi
b2

p
M2

to get a

good bispectrum representation. Tx, ~x values become
uncorrelated when the distance between bifrequencies is
typically greater than the 2D bandwidth. The lattice L

(Fig. A3) covers the significant region, where
C~x f1ð ÞC~x f2ð ÞC~x f3ð Þ

MaxPDðC~x f1ð ÞC~x f2ð ÞC~x f3ð Þ 	 eL ¼ 0:01, yielding nL ¼ 173

bifrequencies.
Under H0, the test (A7) has an average 2nL ¼ 346 and

variance equal to 16527, much larger than

var v22nL

� �
¼ 692, due to correlated bispectrum errors and

due to sampled bispectra very far from the theoretical
bispectrum. The upper quantiles of Tint~x , ~x for
probabilities 80%, 95%, 99% and 99.5% are 489, 563, 804
and 903 respectively, which are the rejection thresholds of
NGAR(5) H0 bispectrum, used in Section 5.3.5.

Appendix B: Minimization of the cost function
of the hybrid fitting

B.1. Method
The minimization of Jhyb hð Þ is based on a

Quasi–Newton method, and to prevent bad-conditioning,

the guess correction is performed along the low-rank
subspace spanned by the leading eigenvectors of the
Hessian matrix H :

hkþ1 ¼ hk � d HlrðJhyb hkð ÞÞ� ��1gradlrðJhyb hkð ÞÞ (B1)

where d 2�0, 1� weights the iteration step, Hlr ¼ RlrDlrR0
lr

is the low-rank Hessian diagonalisation, and gradlr ¼
Rlrgrad is the low-rank gradient. The iterative procedure
stops when the relative difference between consecutive
values is less than 10–6. The gradient and the Hessian
matrix are obtained by time-averages of auxiliary linear
models that we describe bellow.

B.2. Gradient of the cost function
The cost function (Eq. (37)) of the hybrid fitting is:

Jhyb hð Þ ¼ cfittJfitt hð Þ þ cstatJstat h,rwðhÞð Þ (B2)

where rwh ¼ rx Jfitt hð Þ
 �1=2
and h ¼ ðh1, :::, hdimhÞ0: The

partial derivative of Jhyb with respect to hi is

@Jhyb
@hi

¼ cfitt
@Jfitt
@hi

þ cstat
@Jstat
@hi

þ @Jstat
@rw

@rw
@hi

� �
(B3)

where @rw
@hi

¼ rw
2Jfitt

@Jfitt
@hi

: The derivatives of Jfitt are

@Jfitt
@hi

¼ 2
N �Ncð Þr2x

XN�1

t¼N�Nc

e tð Þ @e tð Þ
@hi

, (B4)

Fig. A3. Position of bifrequencies in the set L used in the integral test of linearity.
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where � tð Þ ¼ x tð Þ � F x t� 1ð Þ, e t� 1ð Þ, h
� �

and @eðtÞ
@hi

¼ � @F
@hi

þ @F
@e t�1ð Þ � @e t�1ð Þ

@hi

� �
with the dot standing for inner product

along all components of the vector e t� 1ð Þ of past innovations. Those derivatives are random variables governed by

an AR linear model whose random coefficients depend on the time-series values. Therefore @Jfitt
@hi

is approximated by a

time average of a product containing the derivative @e tð Þ
@hi

:

The derivatives of Jstat are

@Jstat
@hi

¼ 2 Ssim � Sobsð Þ
r2xNsim

XNsim

t¼1

@~x tð Þ
@hi

þ 2b1
smaxr4x

X
sj j�smax

k sð Þ2 Csim sð Þ � Cobs sð Þ½ � @Csim sð Þ
@hi

þ 2b2
s2maxr

6
x

X
s1j j, js2j�smax

k s1, s2ð Þ2 Bsim s1, s2ð Þ � Bobs s1, s2ð Þ� �@Bsim s1, s2ð Þ
@hi

(B5)

with

@Csim sð Þ
@hi

¼ 1
Nsim � s

XNsim�s

t¼1

~x tð Þ @~x tþ sð Þ
@hi

þ ~x tþ sð Þ @~x tð Þ
@hi

� 	
(B6)

@Bsim s1, s2ð Þ
@hi

¼ 1
N �maxðs1, s2Þ

XN�maxðs1, s2Þ

t¼1

~x tð Þ~x tþ s1ð Þ @~x tþ s2ð Þ
@hi

þ ~x tð Þ~x tþ s2ð Þ @~x tþ s1ð Þ
@hi

þ ~x tþ s1ð Þ~x tþ s2ð Þ @~x tð Þ
@hi

� 	
(B7)

where ~x tð Þ ¼ F ~x t� 1ð Þ, u t� 1ð Þ, h
� �

þ rww tð Þ ,u t� 1ð Þ ¼ rww t� 1ð Þ and @~x tð Þ
@hi

¼ @F
@hi

þ @F
@~x t�1ð Þ � @~x t�1ð Þ

@hi

� �
applied to a

generic time. An identical formula applies to @Jstat
@rw

, depending on partial derivatives

@~x tð Þ
@rw

¼ @F
@u t�1ð Þ � w t� 1ð Þ þ @F

@~x t�1ð Þ � @~x t�1ð Þ
@rw

� �
þ w tð Þ where dot stands for inner products along components of the standard

Gaussian past innovations w t� 1ð Þ and components of the past states ~x t� 1ð Þ: Finally, we must see that @Jstat
@hi

is made

by time-averages along the simulation period of a sum of products containing the random derivatives @~x tð Þ
@hi

:

The particular form of the derivatives @uðtÞ
@hi

, @~x tð Þ
@hi

, @~x tð Þ
@rw

depend on the stochastic model. In the case of bilinear
models (Eq. (29)), Rao and Gabr (1984) have obtained similar formulas, for t ¼ 0, :::,N � 1 :

@uðtÞ
@ak

¼ � x t� lkð Þ þ
Xp2
i¼1

bix t� rið Þ @u t� sið Þ
@ak

 !
(B8)

@uðtÞ
@bk

¼ � x t� rkð Þu t� skð Þ þ
Xp2
i¼1

bix t� rið Þ @u t� sið Þ
@ak

 !
(B9)

@uðtÞ
@a

¼ � 1þ
Xp2
i¼1

bix t� rið Þ @u t� sið Þ
@a

 !
, (B10)

using initial conditions as pseudo-observations , x tð Þ ¼ u tð Þ ¼ @u tð Þ
@hi

¼ 0 for , t ¼ �Nc � 1, :::, � 1: The derivatives of

the states are, for t ¼ 0, :::,Nsim :

@~x tð Þ
@ak

¼ x t� lkð Þ þ
Xp1
i¼1

ai
@~x t� lið Þ

@ak
þ
Xp2
i¼1

rwbi
@~x t� rið Þ

@ak
w t� sið Þ (B11)

@~x tð Þ
@bk

¼ rwx t� rkð Þw t� skð Þ þ
Xp1
i¼1

ai
@~x t� lið Þ

@bk
þ
Xp2
i¼1

rwbi
@~x t� rið Þ

@bk
w t� sið Þ (B12)

@~x tð Þ
@a

¼ 1þ
Xp1
i¼1

ai
@~x t� lið Þ

@a
þ
Xp2
i¼1

rwbi
@~x t� rið Þ

@a
w t� sið Þ (B13)

@~x tð Þ
@rw

¼ w tð Þ þ
Xp1
i¼1

rwai
@~x t� lið Þ

@rw
þ
Xp2
i¼1

rwbi
@~x t� rið Þ

@rw
w t� sið Þ, (B14)

using initial conditions as pseudo-observations , ~x tð Þ ¼ a; w tð Þ ¼ @~x tð Þ
@hi

¼ 0 , @~x tð Þ
@a ¼ 1 for , t ¼ �Npast, :::, 0, and the

derivatives are then substituted into the derivatives of Jstat:
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B.3. Hessian matrix of the cost function
The Hessian matrix is obtained from:

@2Jhyb
@hi@hj

¼ cfitt
@2Jfitt
@hi@hj

þ cstat
@2Jsta
@hi@hj

þ @Jstat
@rw

@2rw
@hj@hi

þ @rw
@hi

@2Jstat
@hj@rw

þ @rw
@hj

@2Jstat
@hi@rw

þ @rw
@hi

@rw
@hj

@2Jstat
@rw@rw

" #
(B15)

where @2rw
@hj@hi

¼ rw
2Jfitt

@2Jfitt
@hi@hj

� rw
4J2

fitt

@Jfitt
@hi

@Jfitt
@hj

: Because the functions involved are sums of squares, we use the approximation of

Marquardt (1963), i.e., products of first derivatives. The second derivatives of Jfitt are the approximated as

@2Jfitt
@hi@hj


 2
N �Ncð Þr2x

XN�1

t¼N�Nc

@u tð Þ
@hi

@u tð Þ
@hj

(B16)

The second derivatives of Jstat are then approximated as:

@2Jstat
@hi@hj


 2
r4xN

2
sim

XNsim

t¼1

@~x tð Þ
@hi

" # XNsim

t0¼1

@~x t0ð Þ
@hj

" #
þ 2b1
smaxr4x

X
sj j�smax

k sð Þ2 @Csim sð Þ
@hi

@Csim sð Þ
@hj

þ 2b2
s2maxr

6
x

X
s1j j, js2j�smax

k s1, s2ð Þ2 @Bsim s1, s2ð Þ
@hi

@Bsim s1, s2ð Þ
@hj

(B17)

The same formula applies for mixed derivatives with respect to rw:

Appendix C: Symbols and acronyms (by order of appearance)

xraw ¼ Raw time series
xcent ¼ Detrended and centered time series
r xð Þ sk xð Þ ekurtðxÞ ¼ Standard deviation, skewness and excess kurtosis of signal x
xðtÞ ¼ Standardized time series
s tð Þ, fðtÞ ¼ Slow and fast components of the standardized time series
N ¼ Time series size
E �ð Þ ¼ Expectation operator
Neff ¼ Number of effective degrees of freedom
Cx sð Þ ¼ Empirical autocovariance
Xx fð Þ � AxðfÞe½iHxðfÞ � ¼ DFT of the signal xðtÞ and its polar form
SxðfÞ ¼ Periodogram
CxðfÞ ¼ Exact spectrum
cx sð Þ ¼ Exact autocovariance
ŜxðfÞ ¼ Smoothed spectrum
kðsÞ ¼ Window function
k̂ uð Þ ¼ Standardized window function
M ¼ 1D window length
b1 ¼ Standardized 1D bandwidth
� ¼ Degrees of freedom of the qui-square
qp �ð Þ ¼ Quantile por probability p and PDF �ð Þ
w tð Þ ¼ Zero centered white noise (not necessarily Gaussian nor purely random)
rw ¼ Standard deviation of the noise
r2w, p ¼ Noise variance from fitting data with an AR(p) model
cx s1, s2ð Þ ¼ Exact bicovariance
Cx s1, s2ð Þ ¼ Empirical bicovariance
D ¼ Forecast lag in unit time steps
xnlðtÞ ¼ Nonlinear component of xðtÞ
TCox D Cox test for lag D and quantile 95% under the linearity hypothesis
TCox – 95 %
d �ð Þ Kronecker delta
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C3,w f1, f2ð Þ ¼ Exact bispectrum
C3, y f1, f2ð Þ ¼ Normalized exact bispectrum
S3, x f1, f2ð Þ ¼ Bi-periodogram
K s1, s2ð Þ ¼ 2D window function used in the smoothed bispectrum
Ŝ3,x ¼ Smoothed bispectrum
Ŝ3n,x Smoothed normalized bispectrum
dŜ3, x ¼ Error of the smoothed bispectrum estimator
varar ¼ Total smoothed bispectrum error variance under asymptotic conditions
ð�Þ ¼ Average over the bifrequency domain
rŜ 3,x

¼ Typical bispectrum fluctuations
~xðtÞ ¼ Null hypothesis model process
H0 ¼ Null hypothesis or the null hypothesis model
U� ¼ Standard Gaussian quantile function
Tx, ~x f1, f2ð Þ ¼ Standardized bispectrum difference between a model x and ~x

varratðŜ3, ~xÞ ¼ Ratio between empirical and total asymptotic bispectrum variance
Tint x, ~x ¼ Sum of squared amplitudes of Tx, ~x over a certain set L , used to test H0 Df
Df ¼ Frequency step used in the lattice set L
eL ¼ Minimum threshold fraction of the asymptotic error variances accepted in L

nL ¼ Cardinal of L
A fð Þ ¼ Frequency function intervening in the AR model
fcut ¼ Cutoff frequency
Y~x ¼ Diagnostic of non-Gaussianity of bispectrum errors
~x tð Þ ¼ Simulated state at time t

u tð Þ ¼ Driving noise of a simulating model
~x t� 1ð Þ ¼ Vector of past simulated states
u t� 1ð Þ ¼ Vector of past driving noises or innovations
Jfitt hð Þ ¼ Sum of the squared residuals as function of parameters in vector h
e tð Þ ¼ forecasting error at lag 1
e t� 1ð Þ ¼ Vector of past forecasting errors
Npast Size of the trail sector of a simulating time series
Nc ¼ Maximum lag used in a simulating model
Nsim ¼ Size of the sector of a simulating time series, used to compute statistics
Sobs Ssim ¼ Averages from the observed (obs) and simulated (sim) time series
Cobs sð Þ Csim sð Þ ¼ Noncentered lagged moments of second order for obs. and sim. data
Bobs (T1, T2) Noncentered lagged moments of third order for obs. and sim.
Bsim (T1, T2)
JS , JC , JB ¼ Normalized squared deviation between the obs. and sim. statistics: average, lagged moments

of second and third order respectively
Jstat ¼ Weighted sum of JS , JC , JB assessing the average deviations between obs. and

sim. statistics.
Jhyb ¼ Weighted sum of Jfitt and Jstat with weights cfitt and cstat , to minimize in the hybrid fitting
corlag ¼ Correlation skill between observations and predictions at a certain lag
cpt Cycles per trimester
PD Principal domain, i.e. the triangle of vertices (0,0), (0,1/2) and (1/3,1/3) in the

bifrequency domain.
NGAR(5) Non-Gaussian autoregressive model or order 5, used to build the null hypothesis bispectrum
NAIC Normalized Akaike Information Criterion
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