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 26 

Migration decisions, such as the selection of stopover sites, is critical for the 27 

success of post-breeding movements, also affecting subsequent survival and 28 

reproductive success. Recent advances in biologging are unveiling the stopover 29 

strategies of many long-distance travelers but far less attention has been given to 30 

short-distance migrants. In this study, we investigate the stopover ecology of an 31 

endangered grassland bird, the Little Bustard, a short-distance migrant in Iberia. Using 32 

a high resolution spatial dataset, derived from GPS/GSM tracking data of 27 male Little 33 

Bustards breeding in southern Portugal and covering three years (2009 to 2011), we 34 

studied the post-breeding movements of Little Bustards using Dynamic Brownian 35 

Bridges models to identify the main stopover sites. Generalized Linear Mixed Models 36 

were then used to examine habitat selection in stopovers. During their post-breeding 37 

movements, male Little Bustards were essentially nocturnal migrants, making frequent 38 

stopovers (mean per movement = 2.5) while maintaining a relatively fast pace to reach 39 

more productive agricultural post-breeding areas. Stopovers occurred in most post-40 

breeding movements (83 %) regardless of the total distance covered (average 64.3 km) 41 

and most stopovers (84 %) lasted less than 24 hours. Land cover and topography 42 

influenced the selection of stopover sites, with birds using mostly agricultural non-43 

irrigated and irrigated croplands and avoiding other land uses and rugged terrain. 44 

There was a negative relationship between stopovers and the proximity to roads, but 45 

not to power lines. The high frequency of stopovers during post-breeding movements, 46 
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despite the short distances travelled, together with the nocturnal migratory behaviour 47 

of bustards, may impose additional risks to a bird mainly threatened by collision with 48 

power lines in non-breeding areas. We also conclude that even when dealing with 49 

short distance migrants, habitat connectivity between breeding and post-breeding 50 

areas is likely to be a key conservation concern. 51 

Key words: grassland bird, movement ecology, habitat selection, stopover selection, 52 

connectivity 53 

 54 

Post-breeding migratory movements are usually associated to a predictable 55 

seasonal change of environmental conditions and/or food availability (Dingle & Drake 56 

2007, Hedenström 2008), but are also influenced by individual factors such as sex, age 57 

or role specialization during reproduction (e.g., Palacín et al. 2009). Migratory 58 

strategies and decisions along the trajectory, such as interrupting migration at 59 

particular stopover sites for resting and/or refueling (Newton 2008), play a key role in 60 

the success of the movement and subsequent survival (Alerstam et al. 2003, 61 

Legagneux et al. 2012). Therefore, understanding migratory decisions including 62 

stopover use and habitat selection on route, is crucial to to estimate population trends 63 

and risks, predict changes in migratory behaviour and develop appropriate 64 

conservation strategies (Shuter et al. 2011). In this context, a good knowledge of 65 

migratory connectivity, which refers to the extent to which animals from the same 66 

breeding area move to the same non-breeding areas (Newton 2008), is also important, 67 

especially for species with highly selective habitat preferences (e.g., Briedis et al. 68 

2016). 69 
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Recent advances in tracking technology opened a new door for the study of 70 

avian migration (Robinson et al. 2010) and stopover ecology of a wider number of 71 

migrant species (e.g., Eraud et al. 2013, Lemke et al. 2013, Evens et al. 2017). Despite 72 

that, the knowledge on the stopover ecology of many avian groups and species, and 73 

particularly of short-distance migrants, is still very limited (but see Strandberg et al. 74 

2009, Newton et al. 2017, Röseler et al. 2017). 75 

The Little Bustard Tetrax tetrax is a medium-sized grassland bird, whose 76 

distribution is fragmented across the Palearctic range. Spain and Portugal are the 77 

stronghold of its western distribution, where the main breeding populations are 78 

mostly concentrated in the Extremadura, Castilla La Mancha (Spain) and Alentejo 79 

(Portugal) regions (De Juana & Martínez 1996, García de la Morena et al. 2006, Equipa 80 

Atlas 2008). The species has a Vulnerable conservation status in Europe, where it is 81 

mainly threatened by habitat loss and degradation (Silva et al. 2018), illegal killing and 82 

collision with power lines (Marcelino et al. 2017), and recent trends indicate a severe 83 

decline in their breeding numbers in parts of their range (Silva et al. 2018). Although 84 

Iberian Little Bustards have been considered mostly sedentary (e.g., Cramp & Simmons 85 

1980, Villers et al. 2010) a recent and comprehensive tracking study found that most 86 

populations in the region are actually migratory or partially migratory (89 % of all 87 

tracked individuals, García de la Morena et al. 2015), performing regular short or 88 

medium-distance movements to post-breeding and/or wintering sites (Silva et al. 89 

2007, García de la Morena et al. 2015). The majority of male Little Bustards engage in 90 

these migratory movements in June/July, right after the breeding season and during 91 

the Iberian summer (García de la Morena et al. 2015) when temperatures and 92 
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vegetation dryness reach their peak (Silva et al. 2007). In these post-breeding 93 

movements, birds head to northern, coastal or higher-altitude areas, where food 94 

availability and environmental conditions are expected to be more favorable (Silva et 95 

al. 2007, 2015, García de la Morena et al. 2015). Studies on stopover ecology of 96 

bustards are scarce and limited to a few long-distance bustard species/populations, 97 

such the Asian Houbara Bustard Chlamydotis macqueenii (e.g., Combreau et al. 1999, 98 

Tourenq et al. 2004, Burnside et al. 2017) or the Asian Great Bustard Otis tarda 99 

dybowskii (Kessler et al. 2013). The stopover ecology of short-distance migratory 100 

bustards, such as the Iberian Little Bustard population, is completely unknown. 101 

In the present study, we use a high-resolution tracking dataset, collected over a 102 

four-year period, to investigate the stopover ecology of Iberian Little Bustards during 103 

their post-breeding movements. Our specific aims were to characterize their migratory 104 

behaviour (route consistency) and use of stopovers (occurrence, number, duration and 105 

site-fidelity), and to study the influence of habitat structure (land cover and 106 

topography) and linear infrastructures (roads and power lines) in stopover habitat 107 

selection during post-breeding movements.  108 

 109 

Material and methods 110 

Fieldwork 111 

Capture and tagging of Little Bustards were carried out in several sites located 112 

in two main breeding areas, Castro Verde and Vila Fernando SPAs (Special Protected 113 

Areas) (Figure 1), in the early breeding period (April to early May) of three consecutive 114 

years, from 2009 to 2011 (14, 7 and 6 individuals, respectively). The capture method 115 
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was aimed at males, using snares and a female decoy (Ponjoan et al. 2010). A Solar 116 

GPS Platform Transmitter Terminal (30 g PTT; Microwave Telemetry Inc.) was deployed 117 

on 27 adult breeding males, using a full harness made of Ribbon Teflon, weighing less 118 

than 4.7 % of the birds’ mass. Transmitters were programmed to record a GPS position 119 

every 2 hours, with an accuracy of ± 18 m (Microwave Telemetry 2014). Eight of the 27 120 

birds were tracked for more than one year (in one case up to three years).  121 

Pre-analysis of tracking data 122 

Spatial data from the PTTs and cartographic data were handled with Quantum 123 

GIS 2.2.12 (QGIS Development Team 2013). Birds were considered sedentary 124 

whenever they remained within 15 km from their breeding site throughout the year 125 

(see García de la Morena et al. 2015). A quarter of the post-breeding movements (25.7 126 

%, n = 35) were preceded by a long-term permanence in pre-migratory staging areas 127 

(or secondary breeding areas) (average duration = 26.1 days, range = 10.7 - 38.9 days). 128 

These areas were close, although clearly separated from the main breeding area 129 

(average distance ± SD = 13.4 ± 4.8 km) and were not considered part of the 130 

subsequent post-breeding movement. 131 

Post-breeding movements were therefore only considered to occur when birds 132 

moved more than 15 km away from their breeding areas, between May and August. To 133 

set the limits of each individual post-breeding movement, we considered their 134 

breeding site or pre-migratory staging area as the ‘origin point’ of the migratory 135 

movement while the ‘end point’ coincided with the arrival to the main post-breeding 136 

area, the furthest location from the breeding site, where the majority of birds stayed 137 

for at least two or three months. The boundaries of the movements were the last and 138 
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first two fixes in the same position or close to each other, located in the departure and 139 

destination areas, respectively. In a few cases (n = 6) birds had more than one main 140 

post-breeding areas, and their movement was subdivided accordingly, which in all 141 

cases were two post-breeding areas. Those movements were included in all analyses, 142 

except for the estimation of arrival and departure dates, from breeding and to post-143 

breeding areas, respectively. 144 

Identification and characterization of stopovers 145 

Movements and stopovers  were characterized (occurrence, number and 146 

duration) through visual inspection of each individual movement. We considered as 147 

stopover sites, areas in which birds stayed for at least two consecutive fixes, along 148 

each individual’s post-breeding movement, excluding the departure and destination 149 

areas. Our data collection settings (see above) did not allow for the detection of 150 

stopovers with duration inferior to two hours. 151 

Habitat selection 152 

To identify the stopover locations to be included in the habitat modeling 153 

analysis, we used Brownian Bridge Movement Models (BBMMs) (Horne et al. 2007, 154 

Sawyer et al. 2009, 2011). The BBMM were used to estimate the utilization distribution 155 

(UD) of individual bustards along the movement route, incorporating the distance and 156 

elapsed time between successive fixes, as well as the location error and the Brownian 157 

motion variance (BMV) (see details in Horne et al. 2007, Sawyer et al. 2009).  158 

Since there is evidence that Little Bustards may migrate preferentially during the night 159 

(Silva et al. 2014), we assumed that their migratory behaviour was likely to differ 160 

between day and night. For that reason, we used Dynamic BBMM which is a version of 161 
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BBMM that considers changes in behaviour when moving, namely changes in speed 162 

and direction, which can be defined for different time-windows (12 h in our case, to 163 

differentiate the expected night and day periods). Within the sliding window, Dynamic 164 

BBMM calculates different BMV values and compares the model fit using one or two 165 

estimates of BMV (Kranstauber et al. 2012, Lai et al. 2015, Palm et al. 2015). UDs 166 

between 50 and 75 % were used to outline the stopover areas, as they showed a good 167 

adjustment to the stopover relocations. The decision of using 50 or 75 UD was 168 

dependent on the extension of the movement, where after visual inspection, BBMM 169 

analysis of shorter post-breeding movements generally resulted in a good adjustment 170 

with 50 % UD; while longer post-breeding movements showed better adjustments at 171 

the 75 % UD level. Departure and arrival site locations (six fixes each) were included in 172 

the movement path considered in the Dynamic BBMM analysis, as a margin of fixes is 173 

required on each end of the window, depending on window and margin sizes 174 

(Kranstauber et al. 2012). 175 

To characterize stopover habitat selection, Little Bustard fixes inside stopover 176 

areas were compared to an equal number of random points located in a region defined 177 

as a 2-km buffer outside these areas – these locations were considered pseudo-178 

absences for modelling purposes. This approach was selected for two key reasons. 179 

Firstly, the goal of this analysis was to explore stopover habitat selection in the context 180 

of the migratory corridor rather than within the stopover site and selecting potentially 181 

unused areas within the stopovers is likely to underestimate the availability of habitats 182 

in the surrounding landscape. Secondly, given that stopover areas were selected 183 

according to high UD areas and considering the time interval between relocations (2 184 
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hours), this approach also maximizes the likelihood that locations selected as pseudo-185 

absences represent unused, although available, locations. 186 

Habitat selection analysis was then carried out with presence / absence locations in 187 

relation to landscape variables known to be relevant for the Little Bustard (Silva et al. 188 

2004, 2007, 2010). Land cover data was originally obtained from CORINE Land Cover 189 

(CLC) 2012 version 18.5 (EEA 2016). Level 3 categories were reclassified into three 190 

relevant land cover categories: dry cropland, irrigated cropland, and other land uses 191 

(see Table 1 for details). Terrain ruggedness was calculated as the mean of absolute 192 

differences between the elevation of a cell and that of its surrounding cells (Wilson et 193 

al. 2007), using data from ASTER Global Digital Elevation Model (NASA 2009) and the 194 

function ‘terrain’ from the Raster package (Hijmans 2017) for R statistical software. 195 

Finally, we collected information on the distribution of the main roads from “© 196 

OpenStreetMap contributors” (classes: motorway, trunk, primary and secondary; 197 

Haklay & Weber 2008), distribution power lines for the whole study area and classified 198 

each point according to its distance to the nearest road and power line.  199 

Consistency in the use of breeding, post-breeding areas and stopovers 200 

To quantify the fidelity to breeding and post-breeding areas, we calculated the 201 

percentage of spatial overlap between consecutive years of the same individual, given 202 

by the 95 % UD (estimated by Brownian Bridges Models) in the breeding area (from 1 203 

April to departure date) and post-breeding areas (see above) in each year. Similarly, 204 

the repeated use of stopover sites by the same individual in consecutive years was 205 

assessed by quantifying the overlap between stopover areas previously identified in 206 

the post-breeding movements (delimited by the 50-75 % UD). 207 
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Statistical analyses 208 

The effects of habitat, landscape and human infrastructures were tested using 209 

the presence and absence locations at stopover sites. We calculated the Pearson 210 

correlation coefficient and the variance inflation factor (VIF) between the explanatory 211 

variables to evaluate correlation and collinearity (Zuur et al. 2009). VIF values (all < 1.2) 212 

and pairwise correlation between explanatory variables (all |r| < 0.60) were low for 213 

our dataset, so all variables were used in the analysis.  214 

Stopover habitat selection was modeled using Generalized Linear Mixed 215 

Models (GLMMs) with a binomial error distribution (Zuur et al. 2009). Bird identity was 216 

included as a random factor to address the spatial and temporal dependency of the 217 

replicated measures from each individual (Zuur et al. 2009). As we expected a 218 

response at short ranges from the linear infrastructures, we applied a log-219 

transformation (log x+1) to the variables distance to roads and distance to power lines, 220 

so that short distances were more influent in the analysis. We computed GLMMs with 221 

all possible variable combinations, resulting in a total of sixteen models. To decrease 222 

model selection uncertainty and increase robustness of parameter estimates, we 223 

performed model averaging using an information theoretical approach by computing 224 

averaged parameter estimates from the best-selected models with ΔAICc < 10 225 

(Burnham et al. 2011). Model performance was assessed through the deviance 226 

explained and conditional R2 of each selected model (Nakagawa & Schielzeth 2013, 227 

Johnson 2014). 228 

Analysis were done in R (R Core Development Team 2014), using the package 229 

usdm to calculate VIF (Naimi et al. 2014), the package lme4 to calculate GLMMs (Bates 230 
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et al. 2016) and the package MuMIn for multimodel selection and model averaging 231 

(Bartón 2013). 232 

 233 

Results 234 

Post-breeding movements 235 

From the 27 male Little Bustards tracked in the course of this study, only one individual 236 

from Vila Fernando showed a clear sedentary behaviour, remaining close to the 237 

breeding site all year round, during two consecutive years (maximum distance from 238 

the breeding site = 7.7 km). All other individuals (96.3 %) performed seasonal 239 

movements (Figure 1, mean departure date: 29 June), moving to areas further than 35 240 

km (79 % of all birds) from their breeding sites during the post-breeding period 241 

(average = 77.5 ± 65.5 km; range = 19.0 - 303.7 km). Most birds captured in Castro 242 

Verde (52 %) headed north to post-breeding areas where irrigated agriculture is the 243 

dominant land use, while other individuals flew to more distant coastal SPAs (21 %), 244 

such as the Tagus estuary and the Portuguese Southwest coast, also areas with a very 245 

high proportion of irrigated crops. Most birds from Vila Fernando moved east to the 246 

irrigated crops that surround the Guadiana river (70 %). One individual engaged in a 247 

long-distance movement (of more than 300 km) reaching a post-breeding area located 248 

north of Plasencia, Spain. The large majority of post-breeding movements occurred 249 

during the night with 78 % of these movements starting already in the night period and 250 

the remaining (22 %) in late afternoon (roughly between 17:00 and 20:00) and finishing 251 

in the first hours of daylight or late night (Table 2). No birds were recorded flying in the 252 

hottest hours of the day, between 11 and 16h (considering all periods of continuous 253 
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flight, including partial movements between stopovers and movements without 254 

stopovers, n = 124). 255 

Stopovers 256 

Stopovers occurred in more than 80 % of the post-breeding movements (Table 257 

2) and 76 % of birds made one to three stopovers during their movements. There was 258 

a significant positive relation between the distance travelled and the number of 259 

stopovers made by the birds (Pearson’s correlation: r = 0.38, d.f. = 32. p = 0.028) 260 

although the occurrence of stopovers was still high (75 %) in shorter-distance 261 

movements (< 50 km).  262 

The vast majority of stopovers (84 %) were of short duration (Figures 2 and 3), 263 

lasting less than 24 hours (see Table 2). These short stopovers lasted most of the 264 

daylight period (64 % of short stopovers), with birds arriving at late night/early 265 

morning and departing in the late afternoon or during the night (Table 2). Despite that, 266 

a substantial part of these short stopovers were carried out exclusively during night 267 

time (36 %) lasting only a few hours (88 % of these nocturnal stopovers lasted up to 4 268 

h). The distance travelled between stopovers (including departure and arrival to post-269 

breeding areas) was different in diurnal and nocturnal stopovers. While only 48 % of 270 

diurnal stopovers were followed by a stop within the following ten kilometers of the 271 

movement, over 80 % of night stopovers had a subsequent stop within the same 272 

distance (median distance travelled = 10.20 and 3.70 km, respectively; Mann-Whitney 273 

U = 445.0, n = 83, p = 0.008). 274 
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The majority of stopover locations during these post-breeding movements 275 

were located outside SPAs (82.2 %), contrasting with locations during the breeding 276 

period, mostly located within SPAs (85.4 %, this dataset).  277 

Most birds tracked over consecutive years maintained a similar migratory 278 

behaviour (Figure 5 and Table 4), using the same breeding (88 % of birds, n = 8) and 279 

post-breeding areas (63 % of birds). An exception was a bird that in the second year 280 

dispersed to a new breeding site, 87 km away from its previous breeding area. Despite 281 

the fidelity to the same post-breeding areas over consecutive years (Figure 5), there 282 

were no repetitions in the use of stopover sites by the same individuals (Table 4). 283 

Habitat selection on route  284 

The stopover habitat selection model averaging process retained 4 models 285 

(ΔAICc < 10; AIC range: 932.94 - 942.21; deviance explained: 0.11 – 0.13; r2: 0.20 – 286 

0.23). The selection of stopover sites was mostly influenced by land use and distance 287 

to roads, with the maximum relative importance of 1, followed by terrain ruggedness 288 

with 0.97 (Table 3). In their stopover sites, little bustards used mostly irrigated 289 

cropland and non-irrigated areas composed by extensive traditional farming and 290 

pastures (see Figure 4). While there were no significant differences in the selection of 291 

the above land uses, other land uses were avoided as well as the proximity of the main 292 

roads and more rugged landscapes (Table 3). The selection of stopover sites was not 293 

influenced by the distance to power lines (see Table 3). 294 

 295 

Discussion 296 

Post-breeding movements and stopovers 297 
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Although there is some evidence that Little Bustards migrate during the night 298 

(Villers et al. 2010), in contrast to other bustard species (e.g., Kessler et al. 2013), there 299 

is little information whether this is an obligatory or flexible migratory strategy. In this 300 

study, the great majority of male post-breeding movements were nocturnal or partially 301 

nocturnal (89.5 %, n = 124) and birds avoided to fly during most of the daylight period. 302 

One of the main potential advantages of nocturnal migration is to avoid predation 303 

(Alerstam 2009), but there are other compensations, such as using daylight hours to 304 

forage and refuel, minimizing load costs (e.g. Delingat et al. 2006). Furthermore, 305 

nocturnal migration has metabolic advantages, particularly for birds with an active 306 

flapping flight, as it is possible to minimize water loss (Klaassen 1996). Summer 307 

temperatures in Southern Portugal frequently exceed 35°C, particularly during midday 308 

hours  and Little Bustards are known to reduce their activity levels in response to 309 

extreme hot weather (Silva et al. 2015). For this large bird species, flying preferentially 310 

during the night period will probably help to prevent water loss and avoid overheating 311 

during migratory movements. A potential disadvantage of night migration is an 312 

increased risk of collision with anthropogenic infrastructures, such as power lines, as 313 

many avian species show a weak or slower reaction to less-visible barriers during 314 

nocturnal flights, compared to daylight time (e.g., Deng & Frederik 2001, Murphy et al. 315 

2016). 316 

During their post-breeding movements, male Little Bustards made one to three 317 

diurnal stopovers, which frequently lasted less than 24h (84 %), between nocturnal 318 

flights. Overall, the occurrence of stopovers was high (> 80 % of movements) even 319 

when the birds were covering a short migratory distance. The species is known to 320 
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perform migratory movements of 400-600 km in a single night when crossing the 321 

Pyrenees (Villers et al. 2010), which is a much larger distance than the one covered by 322 

Little Bustards in the south Portuguese plains during the post-breeding period. 323 

Additionally, with a ground flight speed of 65 km per hour (Villers et al. 2010) and no 324 

evident geographic barriers (except for one individual that crossed Sierra de Gredos, 325 

Spain), most of the tracked birds could have completed their post-breeding 326 

movements in a single nocturnal flight of a couple of hours. This raises the question: 327 

Why do male bustards make stopovers in these short-distance migratory movements?  328 

The breeding period is an extremely demanding phase for male Little Bustards. 329 

Food resources are expected to decline throughout the breeding season (Silva et al. 330 

2007) and their foraging activity is likely restricted due to high temperatures in early 331 

summer (Silva et al. 2015). In these short-distance movements birds are also likely to 332 

perform their journeys in active flapping flight mode, not flying at appropriate 333 

altitudes to take advantage of tail winds and therefore with high energy expenditure 334 

(Liechti & Schmaljohann 2007, Mateos-Rodríguez & Liechti 2011).  It is thus likely that 335 

the birds need to make stopovers to refuel and rest, even during relatively short 336 

migratory flights. By making these “obligate” diurnal stops and moving preferentially 337 

during the night, Little Bustards may avoid unnecessary costs, while resting and 338 

refueling (also minimizing load costs) to resume the migratory movement in the 339 

subsequent night.  340 

It remains uncertain whether this migratory strategy is also used by female 341 

Little Bustards, considering not only their distinct breeding phenology (females remain 342 

in breeding areas for longer periods, due to parental care duties), smaller body size, as 343 
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well as the potential higher flexibility in their migratory behaviour (e.g., Palacín et al. 344 

2009). Indeed, in the sympatric Great Bustard, who share a similar breeding phenology 345 

and habitat, females tend to remain sedentary in years when they are raising young 346 

(Palacín et al. 2009, 2011). 347 

Habitat selection during stopovers 348 

Little bustards, as other species from the Otitidae family, are extremely 349 

selective in relation to their habitat, particularly in the breeding and post-breeding 350 

seasons (e.g., Martínez 1994, Faria & Rabaça 2004, Silva et al. 2004, 2007). In southern 351 

Portugal, breeding Little Bustards tend to prefer agricultural fallow lands or extensive 352 

pastures, while in the post-breeding season birds move to more productive areas, 353 

usually occupied by irrigated fields (Silva et al. 2007). In stopover sites, dry crops and 354 

irrigated crops were both used by Little Bustards. Irrigated croplands were not 355 

significantly preferred in stopovers (compared to dry crops), which may be an 356 

indication that most birds were on the move, instead of prospecting potentially good 357 

foraging grounds or evaluating post-breeding areas. During stopovers, birds did avoid 358 

“other land uses” as well as rugged terrain. These results suggest that male Little 359 

Bustards are being less selective during short stopovers than in other periods of the 360 

year (showing a mixed preference for dry and irrigated crops), but still occupy areas 361 

that warrant a minimum protection from predators (areas with good horizontal 362 

visibility allow the early detection of predators, Metcalfe 1984) and potential foraging 363 

habitat. 364 

Linear human infrastructures, such as roads and power lines, are known to 365 

negatively impact populations of many vertebrate species through habitat loss and 366 
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degradation, barrier effect, increased human disturbance and mortality (Janss et al. 367 

2000, Benítez-López et al. 2010, Silva et al. 2010, Barrientos et al. 2012). During the 368 

breeding season, Little Bustards seem to avoid the proximity of roads and power lines 369 

(Suárez-Soane et al. 2002, Silva et al. 2010; but see Martínez 1994, Faria & Rabaça 370 

2004 for divergent results), and in the winter, when food resources are abundant, 371 

bustards have been found to avoid the proximity of roads and inhabited houses (Silva 372 

et al. 2004). In contrast, during the post-breeding period, these birds tend to use areas 373 

of intensified agriculture, moving closer to roads, which are abundant in those areas 374 

(Silva et al. 2007). Considering such variability regarding the response to linear 375 

infrastructures and human presence, it is likely that the importance of such drivers 376 

may vary according with the ecological context and individual requirements. The 377 

negative response of Little Bustards to roads suggests that during stopovers they still 378 

avoid proximity to some human infrastructures, also favoring areas with greater 379 

availability of food and cover. Nevertheless, bustards showed a lack of response to the 380 

presence of power lines and, as other heavy flight birds (e.g., Sandhill Cranes Antigone 381 

canadensis, Murphy et al. 2016), may be less able to detect the presence of these 382 

linear infrastructures during nocturnal flights.  383 

Individual consistency in migratory behaviour 384 

To our knowledge, this is the first study quantifying the fidelity of male Little 385 

Bustards to their post-breeding areas, revealing a high level of fidelity to those areas 386 

(see also García de la Morena et al. 2015). This pattern is similar to that found in other 387 

short-distance migrant steppe birds in Iberia (Great Bustard, Morales et al. 2000, 388 
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Alonso et al. 2001) and supports a strong migratory connectivity between Little 389 

Bustards breeding and non-breeding areas. Despite the similar migratory routes and 390 

high fidelity to post-breeding areas, there was no repetition by individuals in the use of 391 

stopover sites in consecutive years. Stopover site fidelity was never investigated in 392 

short-distance migrants but is known to occur in long-distance migrants that are highly 393 

selective in relation to habitat, such as waterfowl and shorebirds (e.g., Fox et al. 2002). 394 

Little bustards are highly selective in relation to their habitat but have shown to be less 395 

selective during post-breeding stopovers (see above). The short-time spent in these 396 

post-breeding migratory stopovers (less than 24 hours) and availability of potential 397 

areas with adequate habitat may influence the non-repetition of the same stopover 398 

sites, but further studies are needed to support this hypothesis. 399 

Implications for conservation 400 

A good knowledge of the spatial distribution of migrant populations across the 401 

entire annual cycle is critical for their conservation (Shuter et al. 2011). Migratory 402 

strategies and decisions of long-distance migrants are known to have important 403 

impacts on the timing and success of breeding (Klaassen et al. 2014, Hewson et al. 404 

2016) and also on survival (e.g., Klaassen et al. 2014, Lok et al. 2015). Much less is 405 

known about the impacts of migratory choices in short-distance migrants, but those 406 

are expected to be lower since the time window of the movement is relatively short 407 

and moving smaller distances decreases the risks associated to crossing large 408 

ecological barriers or the probability of facing unexpected changes in weather 409 

conditions. On the other hand, short-distance migrants tend to show more flexibility to 410 

deal with environmental changes (e.g., Newton 2008, Doxa et al. 2012, Clark et al. 411 
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2014). For migrant species that use human-associated habitats, the negative impact of 412 

human infrastructures may also increase the costs of migration, but this topic has been 413 

seldom studied (e.g., Palacín et al. 2017). 414 

We found that male Little Bustards perform frequent stopovers during their 415 

post-breeding movements, despite the short-distances travelled, moving mostly during 416 

nighttime. At the same time, Little Bustards seem to be less responsive to certain 417 

habitat features at these stopover sites, namely to power lines, when compared to 418 

other stages of the annual cycle. Moreover, stopovers were mostly located outside 419 

SPAs and individuals did not use the same stopover sites over consecutive years, 420 

despite the similar migratory routes and fidelity to post-breeding areas. Little Bustards, 421 

as most bustard species, are very prone to collision with overhead wires, particularly 422 

with power lines (Barrientos et al. 2012, Silva et al. 2014) due to their narrow binocular 423 

field of view, low flight maneuverability, gregarious behaviour and high flight speed 424 

(Martin & Shaw 2010, Barrientos et al. 2012). For a collision-prone species, this 425 

migratory strategy (short nocturnal flights interspersed with several stops) may impose 426 

additional risks during this particular stage of year, since birds may be crossing 427 

unknown areas, likely at collision-risk altitudes (see Silva et al. 2014) and under low 428 

light conditions. For the Great Bustard Otis tarda, also a short-distance migrant in 429 

Iberia and a collision-prone species, mortality is 2.4 to 3.5 times higher in migrants 430 

than in sedentary individuals, mostly due to collision with power lines (Palacín et al. 431 

2017).   432 

The maintenance of open habitats in the agricultural plains of south Portugal is 433 

determinant for the conservation of grassland bird populations. The rapid expansion of 434 
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agricultural intensification in these areas, particularly of permanent crops, has been 435 

very significant over the last decade (e.g., Ribeiro et al. 2014). This widespread change 436 

in the agricultural systems is affecting grassland birds’ populations all over Europe 437 

(Donald et al. 2006) and in Portugal, over the last decade, Little Bustards have declined 438 

ca 50 %, possibly linked to habitat loss and degradation (Silva et al. 2018). This 439 

intensification of agriculture may not only affect bustards during their breeding and 440 

post-breeding periods, but also during their migratory movements, by reducing the 441 

availability of potential stopover areas. Therefore, the preservation of open habitat 442 

areas between their main breeding sites and post-breeding areas is a key conservation 443 

measure to ensure connectivity between breeding and post-breeding areas and which 444 

should be considered in future management and conservation plans. 445 

Final considerations 446 

Nowadays, due to the fast development of human infrastructures, including 447 

power lines, the migratory strategy of this short-distance migrant, based on nocturnal 448 

flights interspersed with frequent stops, may impose additional risks to a collision-449 

prone species and possibly increase their human-induced mortality. In the near future, 450 

the development and widespread of intensive agriculture practices may also affect the 451 

availability of adequate stopover sites and non-protected post-breeding areas and 452 

overall connectivity between breeding and post-breeding areas. For a better 453 

understanding of actual population trends and its relation with migration, it will be 454 

relevant to monitor the mortality of Little Bustards associated with migratory 455 

movements, considering also factors such as age and sex, and assess the demographic 456 

effects of their migratory strategies. 457 
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Figures and Tables 650 

 651 

  652 
Figure 1 Outward post-breeding movements (n = 40) of little bustards Tetrax tetrax 653 

breeding at Castro Verde and Vila Fernando SPAs. Capture locations (breeding sites) 654 

are indicated by white stars and special protected areas with importance for grassland 655 

birds are shown in grey. 656 

 657 
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 658 

Figure 2 Number and duration (in hours) of stopovers (n = 84) during the post-659 

breeding movements (n = 40) of little bustards Tetrax tetrax. 660 

 661 

662 
Figure 3 Stopover locations of little bustards during their outward post-breeding 663 

movements. Capture locations (breeding sites) are indicated by black stars and special 664 

protected areas with importance for grassland birds are shown in grey. 665 

666 
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667 
Figure 4 Example of a post-breeding movement of a little bustard Tetrax tetrax 668 

(individual 91469_1_2009) that bred in Castro Verde in 2009: a) All fixes (black dots) 669 

during the year and post-breeding movement (black line); b) Utilization distribution 670 

(UD) during the post-breeding movement estimated from Dynamic Brownian Bridge 671 

models (stopover areas were identified using the 50 - 75 % kernel UD); c) d) e) 672 

Stopover locations and land use (Light grey – Pastures and non-irrigated crops, Dark 673 
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grey – irrigated crops, White – other land use). Star indicates breeding location. Note 674 

that the post-breeding movement was delimited between a pre-migratory/second 675 

breeding area (see methods) and the main post-breeding area. 676 

 677 

 678 

Table 1 Description and summary statistics of the predictor variables used to model 679 

the habitat selection of little bustard at stopover sites (n = 61) during post-breeding 680 

movements. Means and range are provided for the continuous variables and 681 

frequency per classes is presented for the categorical variables.  682 

Variable Description (units) Mean (SD) / 

Frequency  

Range  

Land cover Corine Land Cover 2012 classes: Dry croplands 

(non-irrigated arable land 2.1.1, pastures 2.3.1, 

natural grasslands 3.2.1); Irrigated croplands 

(permanently irrigated land 2.1.2, rice fields 

2.1.3) and Other land uses (all remaining land 

cover classes) 

Dry croplands: 620 

Irrigated croplands: 153  

Other land uses: 271 

- 

Ruggedness Terrain ruggedness (30 m spatial resolution)  -0.43 (0.31) -0.94 - 1.49 

Distance to 

power lines 

Distance to distribution power lines (m) 777.9 (666.3) 0 - 4801 

Distance to 

roads 

Distance to the main roads (m) 

(classes: motorway, trunk, primary and 

secondary of © OpenStreetMap (Haklay & 

Weber 2008) 

2581 (1940.1) 0 - 11000 

 683 



33 

 

Table 2 Description of stopovers during post-breeding movements of little bustards 684 

Tetrax tetrax. 685 

 Number of post-breeding movements 40 

Number of stopovers1 84 

Number of tracked individuals 27 

   

Movement Departure date2 179.5 ± 22.2 (184) 

Arrival date2 184.0 ± 23.4 (189) 

Duration of movements (days)3 2.4 ± 2.4 (1.4) 

Movement range (km) 64.3 ± 55.7 (41.5) 

 Time of departure 23:21 ± 03:24 (00:00) 

 Time of arrival 06:24 ± 03:47 (07:00) 

   

Stopovers Occurrence of stopovers1 83.0 % 

Number of stopovers per movement1 2.5 ± 1.4 (2.0) 

Duration of stopovers (hours) 20.5 ± 24.6 (16.0) 

 Time of departure 23:57 ± 04:09 (01:00) 

 Time of arrival 05:53 ± 03:28 (06:00) 

 Distance travelled between stops (km) 23.4 ± 27.8 (12.4) 

1 estimated from BBMM analysis and visual inspection; 2 Julian date; 3 Including stopovers; mean ± 686 

standard deviation, with median in brackets  687 

 688 

Table 3 Estimated coefficients of the model averaging procedure, indicating the 689 

relative importance of the variable and the number of containing models. 690 

(Conditional average) Estimate Std. 

Error 

z value p-value Relative 

variable 

No. of 

containing 
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importance models 

Intercept 1.623 0.584 2.774 0.006 - - 

Land cover:     1 4 

     Irrigated lands 0.219 0.255 0.855 0.392   

     Other land use -1.706 0.209 8.152 <0.001   

Ruggedness -0.839 0.287 2.924 0.003 0.97 2 

Log (Distance to power 

lines + 1) 

-0.005 0.056 0.090 0.928 0.27 2 

Log (Distance to roads + 

1) 

0.238 0.075 3.166 0.002 1 4 

The category non-irrigated lands is represented by the intercept values 691 


