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Mammalian cells display a broad spectrum of phenotypes, morphologies, and functional
niches within biological systems. Our understanding of mechanisms at the individual
cellular level, and how cells function in concert to form tissues, organs and systems,
has been greatly facilitated by centuries of extensive work to classify and characterize
cell types. Classic histological approaches are now complemented with advanced
single-cell sequencing and spatial transcriptomics for cell identity studies. Emerging
data suggests that additional levels of information should be considered, including
the subcellular spatial distribution of molecules such as RNA and protein, when
classifying cells. In this Perspective piece we describe the importance of integrating
cell transcriptional state with tissue and subcellular spatial and temporal information for
thorough characterization of cell type and state. We refer to recent studies making use
of single cell RNA-seq and/or image-based cell characterization, which highlight a need
for such in-depth characterization of cell populations. We also describe the advances
required in experimental, imaging and analytical methods to address these questions.
This Perspective concludes by framing this argument in the context of projects such as
the Human Cell Atlas, and related fields of cancer research and developmental biology.

Keywords: spatiotemporal localization, cell subtype classification, spatial transcriptomics, MRNA subcellular
localization, cell subtype

INTRODUCTION

Biology inherently requires classification to manage vast amounts of irreducibly complex
information. Biological systems are broken up into organs, tissues, cells and molecular pathways,
where cells make up the smallest functional units of life. Cells must thus occupy a wide range of
phenotypes and morphologies, fulfilling the functional requirements of each of their tissues and
niches. Our understanding of this diversity is facilitated by classifying cells across this spectrum as
different cell “types” carrying specific molecular signatures. However, cells also exist in dynamic
states with some functional plasticity, which presents particular challenges for a reductionist
classification approach.

There are two types of classification errors we are at risk of making: either assigning the same
identity to two cells when they are different, or conversely, labeling two cells as different when they
are functionally identical. To avoid these errors, we need to better understand the parameters that
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distinguish cells, including the relationship between cell state,
function, and identity, to be able to delineate cell sub-types
and classes with greater resolution. To illustrate our argument,
consider a hypothetical situation: two cells are adjacent to one
another in a tissue sample and possess similar levels of the same
RNA transcripts. Does this conclude that they are the same
cell type? Inversely, if they have differing levels of transcripts,
does this mean they are different, or could they simply be
in different states or stages in a process? Cells exist in flux,
across continuous spectra of differentiation and state. They
progress through irreversible processes, such as development
or differentiation; oscillatory processes such as the cell cycle
and circadian rhythms; as well as reversible transitions between
states, including nutritional or disease status. These changes
naturally manifest in a cell’s behavior, molecular composition and
subcellular organization of various components. It is intuitive
to understand processes such as development or differentiation
as progressions of cell type or identity. However, it is less clear
if cells in distinct but transitory states should be assigned to
distinct sub-categories.

As a corollary, by using current techniques that primarily
consider cells’ molecular composition (and even their
organization within a tissue) we cannot clearly determine
where in a process a given cell may be, and thus how similar or
distinct one cell identity may be from another.

SINGLE-CELL GENOMICS AS THE
STANDARD APPROACH TO IDENTIFY
CELL TYPES AND STATES

A cell’s identity is determined by its lineage, present state,
and future differentiation or functional potential, as well as its
spatial context within a tissue or system (Wagner et al., 2016).
Based on the understanding that this identity is reflected in
the molecular composition of the cell, single-cell genomics and
proteomics have become standard approaches to characterize
cell identity and state. Single-cell genomics includes measuring
gene expression, typically via RNA sequencing (RNA-seq), as well
as epigenetic states and chromatin structure, using approaches
which have been adapted to work at the single-cell level (reviewed
in Trapnell, 2015; Ludwig and Bintu, 2019; Shema et al., 2019).
Single-cell RNA-seq (scRNA-seq) has been rapidly developed and
is the most popular approach to identify cell types as it enables
classification of cells unbiasedly, based on gene expression
patterns and allows to identify novel cell types and subtypes
without prior knowledge (for example Darmanis et al., 2015;
Grün et al., 2015; Shekhar et al., 2016; Villani et al., 2017;
Schroeder et al., 2020). Typical cell-type identification by scRNA-
Seq involves dissociating single cells from tissues, followed
by isolation of their RNA, reverse transcription, amplification,
sequencing and computational analysis (Figure 1A). However,
there are several limitations to scRNA-Seq methods: (1) trade-
off between the number of cells and data quality; (2) limited
measurement of protein expression; (3) noise level and; (4) lack of
spatial and temporal information. As technical developments in
scRNA-Seq methodology, including computational methods are

well documented in other reviews (Hwang et al., 2018; Chen G.
et al., 2019; Liao et al., 2020), we discuss representative scRNA-
Seq methods and describe their advantages and limitations below.

TRADE-OFF BETWEEN NUMBER OF
THE CELLS AND DATA QUALITY

Current scRNA-Seq techniques can be classified based on the
single cell capture method: flow cytometry [e.g., Smart-Seq2,
(Picelli et al., 2013)], microfluidics [e.g., C1 CAGE (Kouno et al.,
2019)], droplets [e.g., 10x Chromium, DroNc-seq (Habib et al.,
2017)], Drop-Seq (Macosko et al., 2015), microwell [e.g., Seq
Well (Gierahn et al., 2017)], and indexing methods [e.g., sciRNA-
Seq (Cao et al., 2017)]. Flow cytometry and microfluidics-based
methods enable us to obtain additional biologically relevant
data other than gene level expression. For example, Smart-
seq detects isoform-level expression and mutations in exon
regions, and C1 CAGE quantifies even non-polyadenylated RNA
such as enhancer RNAs. Multiomics analysis techniques have
been developed for flow cytometry-based methods. For example,
scDam&T-seq can analyze RNA level and protein binding sites
simultaneously (Rooijers et al., 2019). However, these methods
can only measure a maximum amount of a few hundred cells per
experiment. As such, they are not suitable for characterization
of rare cell populations, as a large number of cells needs to be
analyzed on a single cell level in these cases. Droplets, microwell
and indexing methods sequence only parts of RNA molecules (in
most cases only the 3’ end of the RNA) reversed transcribed by
oligo dT. Thus these methods are unable to measure isoform-
level expression and non-poly(A)-containing RNAs. However,
these methods can measure over 1000 cells per experiment and,
as such, are suitable to detect rare cell populations.

LIMITED MEASUREMENT OF PROTEIN
EXPRESSION

A few recent scRNA-Seq techniques are able to measure protein
expression by using oligo conjugated antibodies. For example,
CITE-Seq uses oligo-conjugated antibodies against cell surface
markers to quantify protein expression levels (Stoeckius et al.,
2017). However, currently, CITE-seq allows the measurement
of a limited number of proteins on the cell surface. Measuring
expression of intracellular proteins by sequencing-based methods
remains challenging.

NOISE LEVEL

Compared to bulk RNA-Seq, scRNA-seq data is intrinsically noisy
and highly sparse especially due to so-called dropout events -
cases in which genes are not detected despite being expressed.
Technical variability accounts for approximately 50% of cell-cell
variation in expression measurements and affects downstream
analyses such as clustering and pseudotime reconstruction. In
fact, a large fraction of stochastic allele-specific expression can
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FIGURE 1 | Potential differential spatial distribution and clustering behavior of RNA transcripts in cells, which share the same identity based on single-cell RNA
sequencing. (A) Single-cell RNA-seq workflow, which typically yields t-SNE plots shown in (B). B Cells that are classified as belonging to the same subtype/group
based on RNA transcript count might differ in the subcellular localization of various RNA transcripts. (C) Spatially confined RNA transcripts may exhibit non-clustered
spatial distribution or localize in clusters. (D) Spatial subcellular localization of RNA transcripts may be correlated with or independent of specific cellular structures,
organelles or markers.

be explained by technical noise, especially for genes expressed
at low and moderate levels (Kim et al., 2015). Although spike-
in controls - synthetic nucleic acids used for error calibration
that aid in correcting noise, can be used (Lun et al., 2017), these
controls are not applicable for droplet-based techniques. Several
methods have been developed to denoise data by computationally
imputing missing values, including MAGIC, SAVER, scImpute,
DeepImpute and others (Huang M. et al., 2018; Li and Li,
2018; van Dijk et al., 2018; Arisdakessian et al., 2019; Luecken
and Theis, 2019). Still, it remains challenging to distinguish
technical dropout events from biological events. Additionally,
it is important to regress out biological events that are not of

interest. For example, a novel T cell population was identified
only after removal of gene expression governed by the cell cycle
(Buettner et al., 2015).

LACK OF SPATIAL AND TEMPORAL
INFORMATION

Standard scRNA-Seq methods cannot account for spatial or
temporal information, with some of the main limitations
being the requisite cell-dissociation step, which disrupts the
microenvironment and destroys all spatial relationships between
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cells, and the cell-lysis step, during which spatial information
at the subcellular level is lost. Additionally, this latter step
induces artifacts and might distort cell type identification
(Adam et al., 2017). Recent attempts to address spatial and
temporal aspects by RNA-seq have emerged. The first attempt
at preserving spatial information in single cell RNA-Seq used
in situ amplification by padlock probe and RNA sequencing
by ligation (Ke et al., 2013). In a method dubbed FISSEQ, Lee
et al. (2015) converted RNA in fixed cells and tissues into cross-
linked cDNA amplicons, followed by manual sequencing on a
confocal microscope. This allowed for enrichment of context-
specific transcripts, while preserving tissue and cell architecture.
While in situ RNA-Seq techniques provide the expression data
of highly multiplexed genes with high spatial resolution, analysis
of the whole transcriptome remains challenging. On the other
hand, non-in situ spatial sequencing techniques have been
developed. “Spatial transcriptomics” (ST) (Ståhl et al., 2016)
and high density spatial transcriptomics (HDST) (Vickovic
et al., 2019) make use of a slide printed with an array of
reverse transcription oilgo(dT) primers, over which a tissue
sample is laid. This allows for imaging, followed by in situ
untargeted cDNA synthesis and RNA-seq. Read counts can be
correlated back to the microarray spot and location within the
sample. This has a 2D spatial resolution of ∼100 and 2 µm
(or several cells, and less than 1 cell) per spot in ST and
HDST, respectively. The ST technique is now commercialized as
Visium from 10X genomics. Rodriques et al. (2019) sought to
address the question of cell-scale spatial resolution in a tissue
by developing SlideSeq. This method functions by transferring
RNA from tissue sections onto a surface covered in DNA-
barcoded beads with known positions. The positional source of
the RNA within the tissue can then be deduced by sequencing.
In addition to array-based approaches, a few pioneering methods
have been developed to obtain spatial information at cell-cell
interactions by computational inference, physical separation by
laser microdissection and gentle tissue dissociation (Satija et al.,
2015; Moor et al., 2018; Giladi et al., 2020). By combining in situ
hybridization images, Satija et al. inferred cellular localization
computationally. Although this approach is widely applicable,
it is challenging to apply to tissues where the spatial pattern
is not reproducible, such as in a tumor, or tissues where cells
with highly similar expression patterns are spatially scattered
across the tissue. While microdissection approaches achieve
higher spatial resolution compared to array-based techniques
such as Slide-Seq, these approaches only work when the source
of spatial variability has a characteristic morphological correlate.
Giladi et al. (2020) introduces a new method, PIC-seq, which
combines cell sorting of physically interacting cells (PICs) with
single-cell RNA sequencing and computational modeling to
characterize cell-cell interactions and their impact on gene
expression. This approach has a few limitations: doublets might
cause mis-identification of cell-cell interaction, and it is not
suitable for use on interacting cells that have similar expression
profiles. While these non-in situ techniques can achieve higher
detection sensitivity than in situ RNA-Seq at single-cell or nearly
single-cell resolution, we suggest that further precise spatial
information of RNAs and proteins in the cell is required to fully

understand cell state, as exemplified by P granules (see section
“Discussion” below).

To understand the transition between cell states and
differentiation stages, temporal analyses of the transcriptome
and epigenome are essential. The majority of sequencing-
based approaches provide only a “snapshot” perspective of any
sample, and do not allow us to place the information in the
temporal context. To address this limitation, over 70 methods
to reconstruct pseudotime have been developed (Reviewed
in Saelens et al., 2019; Grün and Grün, 2020), allowing for
the characterization of biological processes’ dynamics more
accurately than conventional time series of bulk RNA-Seq
(Trapnell et al., 2014; Ji and Ji, 2016; Reid and Wernisch, 2016;
Qiu et al., 2017; Chen Y. et al., 2019). For example, Monocle
(Trapnell et al., 2014), uses single-cell RNA-seq data collected
at multiple time points to characterize the temporal aspect
of gene expression. This was used to characterize differences
in gene expression in differentiation of primary human
myoblasts (Trapnell et al., 2014). TSCAN uses RNA-seq data to
computationally order cells in a heterogenous population based
on the gradual transition of their gene expression (Ji and Ji, 2016).
Additionally, SPRING is able to visualize long continuous gene
expression topologies, representing a powerful tool to visualize
complex differentiation processes such as branching topology of
hematopoietic progenitor cells and their differentiation (Weinreb
et al., 2018). Another recently developed method, RNA velocity,
reconstructs trajectory based on kinetics of nascent and mature
mRNA for more solid quantitative foundation (La Manno
et al., 2018). These pseudotime reconstruction approaches can
aid in unveiling both transitions in gene expression and the
dynamics of transcriptional regulation for characterization of
gene regulatory networks.

The elucidation of gene regulatory networks can enhance
our understanding of complex cellular processes in living cells
as a bridge connecting genotypes and phenotypes. Traditional
approaches to transcriptome profiling have been successfully
used to infer and characterize regulatory networks over time
courses such as in differentiation. A notable example is
FANTOM5 phase2, which revealed gene regulatory networks
by dense time course analyses with CAGE (Arner et al., 2015;
Baillie et al., 2017). Network construction from reconstructed
pseudotime in scRNA-Seq is challenging due to a combination
of biological variation (e.g., stochasticity or bursts) and technical
limitations, such as the inability to capture non-poly(A) RNAs.
To date, there are only small-scale efforts to derive regulatory
networks from single-cell transcriptomics data over time courses.
In principle, pseudotime reconstructed from scRNAseq data
allows inference of gene-regulatory networks (Aibar et al.,
2017). A recent study showed that combining methods for
network reconstruction with RNA velocity improves the accuracy
of network inference, thus improving the temporal coupling
measurement for more accurate reconstruction (Qiu et al., 2020).
However, as pseudotime reconstruction methods are based on
the assumption that changes in gene expression are continuous
or gradual, the approach is not able to capture either drastic
or transient changes in transcription that may occur during a
process of interest. In addition, we have to keep in mind that
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scRNA-Seq methods, especially droplet based techniques, might
capture doublets, which unless identified and removed, might be
mistaken as transient cell states (Kiselev et al., 2019). As with
conventional RNA-seq, these approaches are also unable to take
into consideration the spatial distribution of RNAs, despite the
importance of changes in RNA subcellular distribution during
processes such as development and differentiation.

SPATIAL AND TEMPORAL
INFORMATION CAN INFORM A MORE
IN-DEPTH SUB-CLASSIFICATION OF
CELLS

Although there is rapid and ongoing development of
sequencing-based technologies, their capabilities to determine
high-resolution spatial and temporal information are limited.
Emerging evidence indicates that, at a given point in time,
not only RNA and protein abundance (Cote et al., 2016), but
also differential subcellular distribution of these molecules
contributes to a cell’s state and function (for example: Moor et al.,
2017). Consider once more our hypothetical situation: can we
conclude that two cells, adjacent to one another in a tissue, which
possess similar levels of the same RNA transcripts, are the same
cell type (Figure 1B). By increasing the spatial resolution at which
we assess these samples, we may observe that although at similar
concentrations, a particular RNA species could be differentially
localized in these cells. For instance, the RNA may be dispersed
across the cytoplasm in one cell and locally clustered in the
other (Figures 1B,C). The subcellular distribution of mRNA
transcripts can determine their binding partners and influence
their rate of translation, affecting the cellular concentration and
localization of the protein product (Katz et al., 2012, 2016; Moor
et al., 2018). This, in turn, can influence the cell’s function and
capacity to respond to various environmental cues. Additionally,
we may observe spatial positioning of certain transcripts in close
association with subcellular landmarks or organelles (Savulescu
et al., 2019, reviewed in Suter, 2018; Hughes and Simmonds, 2019
and others) (Figure 1D), including membraneless organelles
such as stress granules (for example Khong et al., 2017; Padrón
et al., 2019; Wilbertz et al., 2019). This could indicate a functional
relationship between the RNA’s cellular role and broader cellular
processes, such as cell division, differentiation, polarization
etc.’ Further, this may also influence, or be influenced by, cell
state or identity.

The significance of RNA/protein subcellular distribution over
both space and time can be illustrated using the example of P
granules in C. elegans development (Brangwynne et al., 2009).
Upon polarization of a C. elegans single-cell embryo along
the anterior-posterior axis, these RNA- and protein-containing
condensates shift from a uniform distribution to localize at the
posterior half of the cell. This differential distribution determines
the germ line and somatic cell fates of the dividing embryo’s
daughter cells. Thus, although the function of P granules is not
fully understood yet, the spatial distribution of these granules
represents a cell-state transition marker (the readiness of the

cell to progress to the two-cell stage) as well as a marker
for determination of the cell fate (progenitor germ cell and
somatic sister cell). Importantly, application of current single-
cell sequencing and pseudotime reconstruction methods in this
system would not fully reveal the transition of cell state or type,
as changes inferred by RNA and protein spatial localization
in P granules and possibly additional structures would not
be detected. Similar processes involving localization of mRNA
transcripts occur in other developmental systems, including
determination of spatial patterning in the developing Drosophila
embryo (Johnstone and Lasko, 2001) and determination of cell
fate in the Xenopus oocyte (King et al., 2005). Such systems
highlight a need for technologies capable of accounting for both
the temporal and spatial aspects of single-cell genomics for
understanding cell types and states.

In a manner similar to mRNA, other species of RNA may be
subject to such spatial organization. Our understanding of long
non-coding RNA (lncRNA) function and behavior is still in its
infancy. However, the intersection of the subcellular organization
and function of long non-coding RNAs may contribute to a finer
classification of cellular identities and prove to be a particularly
interesting field of discovery in the future. Overall, subcellular
RNA distribution, as well as interactions between transcripts
and cellular structures for trafficking and packaging, may differ
between otherwise similar cells. If these differences lead to
functional distinctions between the cells, can we still consider
them to have the same identity? Expanding on this perspective,
potentially hundreds of RNA transcripts in a given experiment
may be present at the same level between cells; however
these transcripts might be differentially distributed within them.
Thus a matrix of thousands of potential combinations of RNA
localization patterns may exist, suggesting the possibility of a
large array of granularly differentiated cell subtypes that might
have previously been classified as belonging to the same group.

While the discussion here has focused on cell classification
by transcriptional data, it is important to recognize that
proteomic data and the spatial organization of a cell’s protein
repertoire could potentially contribute to cell classification
decisions. Recent large scale studies indicate that cells that appear
genetically identical display various protein levels and subcellular
localizations of proteins (Sigal et al., 2006; Breker et al., 2013; Thul
et al., 2017; Lu et al., 2018) during differentiation (Balázsi et al.,
2011; Rubakhin et al., 2013), in response to environmental stimuli
(Narayanaswamy et al., 2009; Balázsi et al., 2011; Breker et al.,
2013) or drug treatment (Tkach et al., 2012; Dénervaud et al.,
2013; Torres et al., 2016; Itzhak et al., 2017; Shaffer et al., 2017).
This could be due to local translation of differentially distributed
mRNAs, or post-translational modifications of the protein,
inferring differential interactions with binding partners. Similarly
to RNA, this phenomena may apply to multiple different protein
species. Integrated with the spatial distribution information of
RNAs, this could exponentially expand the matrix of cellular
organizations, highlighting the potential for in-depth cellular
classification for accurately resolving cell states and identities.

The classic approach to study spatial proteomics relies
on subcellular fractionation of organelles coupled with mass
spectrometry analysis. Additional spatial information at

Frontiers in Molecular Biosciences | www.frontiersin.org 5 August 2020 | Volume 7 | Article 209

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-07-00209 August 13, 2020 Time: 17:7 # 6

Savulescu et al. Pinpointing Cell Identity in Time and Space

high resolution can be obtained from approaches combining
proximity labeling mediated by engineered ascorbic acid
peroxidase (APEX) or antibody-mediated affinity purification
with mass spectrometry (for example Hein et al., 2015; Huttlin
et al., 2017; Lobingier et al., 2017; Paek et al., 2017). This allows
for the characterization of the interactome of a protein, based
on the assumption that proteins must be in close proximity
to be able to interact. As such, it is also indicative of the local
spatial proteome. However, these approaches are still in their
infancy, and in-depth coverage of the cell proteome has not
been completed to date (Reviewed in Lundberg and Borner,
2019). A complementary approach to mass spectrometry-based
methods relies on imaging of proteins on a proteome-wide
level and at single-cell resolution (Reviewed in Lundberg and
Borner, 2019). The Human Protein Atlas (HPA) initiative
aims to map the spatial subcellular distribution of all human
proteins in all cell types of the human body (Thul et al., 2017;
Uhlen et al., 2010; Uhlén et al., 2015; Uhlen et al., 2017). The
spatial distribution of an extensive number of proteins has
been determined, using antibody labeling, confocal microscopy,
and manual and computational image analysis, allowing the
detailed classification of subcellular localization of these proteins.
Ongoing research is being conducted to further characterize
the spatial distribution of proteins, making use of technological
advances in multiplexed imaging, endogenous protein tagging,
automated fluorescence microscopy and image analysis tools,
including deep neural networks (Reviewed in Lundberg and
Borner, 2019). It can reasonably be expected that similar
large-scale approaches could be applied to the study of RNA
subcellular localization, and allow the characterization of the
spatial distribution of potentially all cellular RNAs in cell lines
and tissues. This would aid in the fine grained subclassification
of cell types and states.

ANALYTICAL AND IMAGING-BASED
METHODS REQUIRED TO ANALYZE
SPATIAL INFORMATION

Given the complexity of subcellular organization, and a
cell’s inherent state of flux, we anticipate that in-depth
characterization of the subcellular organization of multiple
molecular species across large numbers of cells will require
advances in analytical imaging-based methods. Such methods
would need (1) the capacity to label multiple RNA transcripts
and proteins in a multiplexed manner; (2) acquisition of
data at both high spatial resolution and high throughput;
and (3) computational frameworks for quantitative image
analysis of large, multi-dimensional imaging data sets. The
latter would be particularly important to distinguish between
the subtle differences in spatial distribution of molecules
which could occur between cells. Further, these tools need
to be adaptable between cultured cell monolayers, large
3D cultures, including spheroids and organoids, and intact
tissue samples. This would ensure the capture of spatial
information under controlled conditions and from cells in their
native tissue context.

Several labeling and imaging modalities have been developed
to meet conditions (1) and (2). Efforts to increase the labeling
sensitivity and throughput capacity of hybridization-based
techniques have led to the emergence of several sophisticated
RNA FISH (fluorescent in situ hybridization) techniques, in some
cases paired with targeted in situ cDNA synthesis and sequencing.
Conventional single molecule FISH (smFISH) makes use of
multiple short single-stranded DNA oligonucleotide probes, each
labeled with a single fluorophore, to target and specifically label
mRNA (Raj et al., 2008). A key adaptation for increased RNA
FISH labeling capacity has been the use of sequential rounds
of multi-color labeling and imaging of the same sample. An
intuitive variation of this approach is massively multiplexed cyclic
smFISH, such as osmFISH (Codeluppi et al., 2018), which was
used to label 33 targeted gene transcripts over 13 rounds of
labeling to map the cellular architecture of the mouse neural
cortex. Labeling capacity is further boosted by the adoption
of FISH probe barcoding approaches, along with sequential
labeling, as demonstrated with multiplexed error-robust FISH
(MERFISH) (Chen et al., 2015; Moffitt and Zhuang, 2016)
and sequential FISH (seqFISH and seqFISH +) (Lubeck et al.,
2014; Eng et al., 2019). These techniques begin to approach
full-transcriptome imaging, with the capacity to label 100 to
10000 s of RNA species at single cell, subcellular (Lubeck et al.,
2014; Chen et al., 2015) or even sub-diffraction (Eng et al.,
2019) resolution. STARmap (Wang et al., 2018) uses in situ
amplification of target-specific probe barcode regions, that can
be decoded by 3D sequencing within samples converted to a
hydrogel matrix. This allows for the detection of 1000 s of
RNA species in large cell numbers in 3D tissue structures.
While these approaches can all provide great insight into
the functional cellular organization within tissues, they each
have varying limitations in the spatiotemporal resolution or
throughput available.

Many of these approaches benefit from specialized LabWare
and equipment. There is an increasing ease of access to affordable
liquid handling systems, driven by open wet-lab solutions such
as OpenLH (Gome et al., 2019) and modular Lego-based and
3D-printed injection pumps (for example Almada et al., 2019).
Such systems are essential for high-cycle sequential labeling of
tens to hundreds of molecular targets, which can be labeled in a
single sample without barcoding, as demonstrated with osmFISH
(Codeluppi et al., 2018). Automated microscopes allow increased
imaging throughput of both sample size and number, however
this is typically done at low magnification and resolution.
High-resolution visualization of molecular targets is usually
limited to the single-cell scale. A new imaging modality termed
synthetic aperture optics (i.e., Stellarvision Microscope, Optical
Biosystems) (described in Ryu et al., 2006) uses interferometry
to increase the effective resolution of low magnification imaging.
This drives significantly higher throughput (∼100 s–1000 s
of cells) of high resolution (subcellular and up to single-
molecule) imaging. Such a system, particularly if coupled
with on-line fluid handling for sequential labeling, would
be well suited for quantitative spatial characterization of the
molecular repertoire of large numbers of individual cells or
tissue sections.
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Requirement (3), the availability of computational frameworks
for quantitative image analysis of large imaging data sets
is an area of rapid ongoing development. This spans the
full post acquisition pipeline, from basic image processing
to spot detection, decoding, quantification, and classification.
Quantitative image analysis tools commonly used for image-
based phenotypic cell profiling include ways to facilitate
feature extraction, data quality control and normalization,
dimensionality reduction and clustering from large numbers of
cells (described in Caicedo et al., 2017). Many of these techniques
could be adapted for the analysis of spatial and temporal
characterization by transcriptomics. With the maturation of deep
learning technology, there is also extensive potential for the
application of artificial neural network-based approaches for
image processing and analysis. Deep learning-based approaches
are typically best-suited to the processing of large sets of
complex data with many parameters, as would be expected of
these imaging assays.

Applications of neural network-based approaches include
image denoising, segmentation and categorization. Several neural
network-based tools are already available for the restoration of
images with high noise levels (for example Weigert et al., 2018;
Batson and Royer, 2019; Krull et al., 2019). Tools for network-
based FISH spot detection have likewise started to emerge (for
example Gudla et al., 2017; Mabaso et al., 2018). A common
challenge with smFISH applications is the density of signal,
particularly in the case of abundant transcripts. This is linked
to high levels of background signal, compromising the signal-
to-noise ratio (SNR) and our ability to automatically detect and
quantify spots. Already-available network-based denoising and
spot detection tools could be further adapted for the particularly
challenging low SNR and high haze conditions commonly
encountered in smFISH. In addition to spot detection, spatially
resolved transcriptomics necessitates the ability to distinguish
individual and adjacent cells from each other, and a way to
characterize the distribution of FISH spots across individual
cells. While there are a large number of cell segmentation
tools available (reviewed in Meijering, 2012 and Vicar et al.,
2019), the automated segmentation of densely packed cells and
nuclei, either in a cultured monolayer or intact tissue sections
remains a challenge. Potential solutions to this may also lie in
machine learning and network-based approaches (for example
Al-Kofahi et al., 2018; Schmidt et al., 2018; Berg et al., 2019).
Beyond image processing, characterization of cellular FISH
spot distribution patterns, including quantification per cellular
compartment, could make use of similar approaches to those
used for localization pattern classification in spatial proteomics.
These include K-nearest neighbor classifiers, support vector
machines, artificial neural networks and decision trees (reviewed
in Lundberg and Borner, 2019).

As experimental technologies develop and generate high-
resolution spatial and temporal cell characterization datasets,
ongoing development of tools and platforms to analyze this
data will be imperative. Many of the novel image processing
and analysis tools described above require optimization for high
throughput. In addition, there is a need for development of
complete analytical pipelines and frameworks for processing and

extracting the complex information and patterns from these
imaging data sets. Early iterations of such frameworks can be seen
in emerging platforms such as DypFISH (Dynamic patterned
FISH) (Savulescu et al., 2019), and Starfish, under development
by the SpaceTx consortium in association with the Human Cell
Atlas project (described in Perkel, 2019). DypFISH is a recently
developed analytical platform for quantitative characterization
of the spatial and temporal subcellular distribution of key
biomolecules at a single cell level. This system makes use of
micropatterning to constrain the architecture of the cell, inferring
a reduction in variation of subcellular distribution of mRNA and
protein and allowing for high reproducibility. This approach was
used to quantify the correlation of mRNA and protein spatial
distributions and the MTOC (a key indicator of a cell’s polarity)
in mouse fibroblasts, revealing important spatial and temporal
differences between mRNA species, as well as within an mRNA
species during polarization. This may indicate differential cell
state-dependent spatial distribution of important biomolecules.
DypFISH may thus be a first step in establishing a more
comprehensive approach to the characterization of spatial and
temporal information in tissues and other biological systems with
high levels of complexity. The Starfish platform seeks to address
critical aspects of data handling and pre-processing, as well as
spot detection and RNA identification in a flexible manner. This
enables the platform to handle data sets from multiple techniques
already described here, and extract and compare information
across different experiments. More recently, SpatialDB (Fan et al.,
2020) has been set up as a manually curated and explorable
repository of spatially resolved transcriptomic datasets from
multiple techniques. As these analytical platforms develop, we
expect that the integration of each of these tools into a single
framework, in a modular manner, will be beneficial to researchers
seeking to understand cell identity and differences in biology.

Indeed, there is already a parallel drive for the integration
of single cell sequencing approaches with imaging-based
approaches. RNAscope, which makes use of branched DNA,
(Wang et al., 2012, marketed by ACDBio) has been shown to
be amenable to multiplexing and image-based transcriptomics,
especially when paired with approaches such as automated
liquid handling (Battich et al., 2013) and FISH probe barcoding
(Xia et al., 2019). More recently, RNAscope has been paired
with scRNA seq to demonstrate molecular heterogeneity
and cellular dynamics in epidermal wound healing (Haensel
et al., 2020). scRNA seq, combined with both ST and
targeted in situ sequencing, has been used to compile an
atlas of the developing human heart (Asp et al., 2019). In
another case, ST has been combined with scRNA seq of
portions of the same tissue sample, to characterize the tissue
architecture in pancreatic ductal adenocarcinoma (Moncada
et al., 2020). Computational approaches to allow the integration
of these distinct types of data are also rapidly developing.
Moncada et al. (2020) made use of multimodal intersection
analysis to integrate the image and sequencing data. Other
recently advanced analytical methods include the use of
probabilistic models (Andersson et al., 2019), supervised learning
approaches to mixed-data decomposition (Cable et al., 2020),
and SPOTlight (Elosua et al., 2020), which uses non-negative
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matrix factorization regression models for the deconvolution
of ST spot data.

DISCUSSION

The intricate relationship between a cell’s subcellular molecular
organization, its spatiotemporal context within a tissue and
system, and its identity and function has a significant impact
on our understanding of cell biology. The benefit of high-
resolution spatiotemporal cell type characterization, taking into
account tissue- to subcellular- scale information, is evident for a
number of research fields, including developmental biology (Asp
et al., 2019), cancer research (for example Baccin et al., 2020;
Moncada et al., 2020 and Yoousuf et al., 2020), and precision
medicine (Petitprez et al., 2018). Spatiotemporal characterization
of the tumor microenvironment, for example, can provide insight
into the composition, organization and functionality of tumor-
associated cells, and their roles in tumor development and
severity of disease (reviewed in Petitprez et al., 2018). This
kind of research also holds the potential for more sophisticated
approaches to treating malignant tumors, for example, where
cells may have previously underappreciated transitional states
that can be targeted. It may also be interesting to assess if
differential spatial and temporal distribution of key disease
biomarkers, in addition to their expression levels, could be
linked to variation in response to treatment between patients.
Recent studies at single-cell resolution indicate that subcellular
spatiotemporal transcriptomic characterization could also help
us understand the molecular basis and progression of certain
genetic disorders, such as Arrhythmogenic cardiomyopathy
(Boogerd et al., 2019) and cognitive diseases such as Alzheimer’s
Disease (Chen W.-T. et al., 2019) and Parkinson’s Disease
(Aguila et al., 2019).

The role of cell state is also increasingly appreciated in
infection and immunity (reviewed in Kunz et al., 2018),
particularly in infectious diseases where immune regulation is
key to disease outcomes. For example, the lineage and metabolic
state of macrophages can have profound effects in Mycobacterial
tuberculosis infection (Huang L. et al., 2018, reviewed in Shi et al.,
2019). Full characterization of macrophage cell types and states
may improve our understanding of, and ability to better treat,
TB disease. Transcription-based cell classification is inherent
to initiatives such as the Human Cell Atlas project. Here, too,
the incorporation of high-resolution spatiotemporal information
holds important potential for further biological insights and may
greatly enhance the translational benefits of these initiatives.
Current cell classification processes will need to be adapted to
include this higher granularity of information, and these large-
scale projects can be expected to drive the integration of novel
experimental and imaging technologies for spatiotemporally
resolved characterization. This will include new and advanced
analytical approaches and data representation methods. Such
developments can highlight and make accessible the wealth of
information available by these approaches.

Throughout this Perspective we have emphasized the
need to take into account spatiotemporal information when

characterizing cell state and identity. As we have discussed,
an increasing body of data supports the effect of variation
in mRNA/protein expression and subcellular localization in
directing cell state and identity. Nevertheless, it is important to
acknowledge that not all such variation is necessarily associated
with functional changes in cell state. Transcriptional regulation,
at a single-cell level in mammalian cells, is probabilistic and
intermittent. This leads to production of mRNA transcripts in
pulses and can contribute to cell-to-cell heterogeneity (Femino
et al., 1998; Costelloe et al., 1999, reviewed in Hume, 2000).
This, again, points to the question of how we delineate cell
state and identity, using integrated single-cell transcriptomics
and tissue-level and subcellular spatial organization data. Multi-
scale spatiotemporal information, over a large number of cells
and samples, is needed for us to quantitatively assess the extent
of variation across tissues and within cells, and to detect rare
events and cell types. Assessment of such data should take
place in the context of our increasing understanding of basic
intracellular processes, and the functions of tissues and disease
states being studied. These studies and analyses will be key in
fueling important discussions within the field. Pertinently, the
different scales of resolution that may apply to different questions
should be carefully considered. Single-cell transcriptomics and
subcellular spatiotemporal organization contribute to cell state
and identity, and can contribute to tissue function. However,
this subcellular resolution may not always be necessary to
understand the role of individual cells and how they interact
with neighboring cells in the context of their tissue. A related
discussion is necessary around what “threshold” (or multiple
situation-dependent thresholds) of the extent of spatiotemporal
variation (detection of which is resolution-dependent) may be
considered to delineate functionally distinct states or identities
to individual cells.

Accounting for the dynamic states and functional plasticity
available to cells has already emerged as important to the
classification and characterization of cell types. This will become
more widely acknowledged with the parallel development
of powerful tools and technology to produce, process and
mine the emerging information. These and other necessary
developments described here will allow accurate, high-resolution
cell classification and improved understanding of the function
of different cells in tissues. Taken together, these advancements
will provide powerful tools for advances in fundamental biology,
biomedical research and related fields.
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