Population genomics of Bombus terrestris reveals high but unstructured genetic diversity in a potential glacial refugium

Sara E. Silva ${ }^{1}$, Sofia G. Seabra ${ }^{1}$, Luísa G. Carvalheiro ${ }^{1,2}$, Vera L. Nunes ${ }^{1}$, Eduardo Marabuto ${ }^{1}$, Raquel Mendes ${ }^{1}$, Ana S. B. Rodrigues ${ }^{1}$, Francisco Pina-Martins ${ }^{1}$, Selçuk Yurtsever ${ }^{3}$, Telma G. Laurentino ${ }^{4}$, Elisabete Figueiredo ${ }^{5}$, Maria T. Rebelo ${ }^{6}$, Octávio S. Paulo ${ }^{1}$
${ }^{1}$ Centre for Ecology, Evolution and Environmental Changes (cE3c), Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
${ }^{2}$ Department of Ecology, Universidade Federal de Goiás, Goiânia, Brazil. ${ }^{3}$ Biology Department, Science Faculty, Trakya University, Edirne, Turkey. ${ }^{4}$ Zoological Institute, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland.
${ }^{5}$ Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal.
${ }^{6}$ Centre for Environmental and Marine Research (CESAM), Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.

Running title

Population genomics of an Iberian bumblebee.

Citation:

Sara E Silva, Sofia G Seabra, Luísa G Carvalheiro, Vera L Nunes, Eduardo Marabuto, Raquel Mendes, Ana S B Rodrigues, Francisco Pina-Martins, Selçuk Yurtsever, Telma G Laurentino, Elisabete Figueiredo, Maria T Rebelo, Octávio S Paulo, Population genomics of Bombus terrestris reveals high but unstructured genetic diversity in a potential glacial refugium, Biological Journal of the Linnean Society, Volume 129, Issue 2, February 2020, Pages 259-272, https://doi.org/10.1093/biolinnean/blz182

Abstract

Ongoing climate change is expected to cause temperature rise and reduction of precipitation levels in the Mediterranean region, which might cause changes in many species' distribution. These effects negatively impact species' gene pools, decreasing genetic variability and adaptive potential. Here we use mitochondrial DNA and RADseq to analyse population genetic structure and genetic diversity of the bumblebee species Bombus terrestris (subspecies B. terrestris lusitanicus), in the Iberian Peninsula. While this subspecies shows a panmictic pattern of population structure across Iberia and beyond, we found differentiation between subspecies lusitanicus and subspecies africanus, likely caused by the existence of barriers to gene flow between Iberia and North Africa. Furthermore, results revealed that the Iberian Peninsula harbours a large fraction of B. terrestris intraspecific genetic variation, with the highest number of mitochondrial haplotypes found when compared to any other region in Europe studied so far, suggesting a potential glacial refugium role for the Iberian Peninsula. Our findings strengthen the idea that Iberia is a very important source of diversity for the global genetic pool of this species, as rare alleles may play a role in population resilience against human or climate-mediated changes.

Keywords

Buff-tailed bumblebee, Iberian Peninsula, mtDNA, phylogeography, RADseq.

Introduction

As a consequence of several human-driven environmental changes (e.g. habitat loss, agricultural intensification, use of pesticides, the introduction of new parasites and climate change), insect pollinators have purportedly declined dramatically in recent decades (reviewed in Potts et al., 2010). Moreover, the massive use of managed and commercial bees for crop pollination and honey production (e.g. Apis mellifera, Bombus terrestris) facilitate the introduction and spread of diseases and parasites (Goulson, 2010), and interfere with the genetic composition of natural populations through hybridization (Jaffé et al., 2016; Seabra et al., 2019).

Bumblebees (Bombus spp.) have been particularly affected worldwide by the above mentioned problems. Several species have endured dramatic changes in their distribution or became locally extinct in developed regions, such as central and western Europe and North America (Goulson et al., 2008; Bommarco et al., 2012). Although several studies have reported high levels of gene flow among European populations (Woodard et al., 2015; Lecocq et al., 2017), some species have experienced a decline on genetic diversity at a local scale (Woodard et al., 2015), which might increase the risk of inbreeding and hinder population's ability to cope with environmental change (Goulson et al., 2008; Maebe et al., 2015).

Populations that have persisted in glacial refugia are expected to show higher levels of intraspecific genetic variation comparing to populations outside these regions, due to long-term population persistence and isolation (Hewitt, 1999). The Iberian Peninsula was one of the largest Mediterranean refugia during the Quaternary (2.6 Mya - present) glaciations, and is also at the southernmost latitude limit (rear edge) for many continental species ranges (Hewitt, 2000; Arias et al., 2006). Therefore, many species in Iberia present geographically structured genetic lineages (Miraldo et al., 2011; Rodrigues et al., 2014; Chávez-Galarza et al., 2015). Additionally, the proximity of Iberia to Africa, especially at the Strait of Gibraltar and with episodic bridges between the two continents, enabled occasional dispersal of the more vagile organisms, particularly during periods of glacial southern contraction or of postglacial northern expansion (Pinto et al., 2013). However, according to Rasmont et al. (2015), the Iberian Peninsula is expected to experience major reductions of bumblebee suitable climatic conditions within the forthcoming decades, alongside other southern European regions. Intensive land-use regimes and degradation of semi-natural areas might be already impacting species richness patterns for many taxa across the peninsula (Martins et al., 2014; Newbold et al., 2015). Moreover, the use of commercial bumblebees for crop pollination, which is a
common practice in several parts of the peninsula, may negatively impact native natural populations through pathogen spillover and introgression of maladaptive alleles (Murray et al., 2013; Seabra et al., 2019).

The buff-tailed bumblebee Bombus terrestris (Linnaeus, 1758) (Hymenoptera, Apidae) presents a wide distribution in the West Palearctic region (Rasmont et al., 2008), and has been deliberately introduced as a crop pollinator into several areas worldwide (Ings et al., 2005; Goulson, 2010). Nine subspecies were described based on morphology, particularly in coat colour variation, with additional differences in behaviour, phenology, physiological traits and resistance to parasites (see Figure 1; Rasmont et al., 2008). Mitochondrial and microsatellite variation studies have shown a clear differentiation of northern African and islander B. terrestris populations from European mainland ones, with no differentiation amongst the latter. In fact, mainland populations are largely homogeneous with nearly panmixia patterns (Estoup et al., 1996; Widmer et al., 1998; Lecocq et al., 2013b; 2016; Woodard et al., 2015). Genetic cohesiveness found across broad geographical scales has been attributed to the absence of effective barriers to gene flow and bumblebees' great dispersal capability (Estoup et al., 1996; Woodard et al., 2015; Lecocq et al., 2016). Flight radius of Bombus terrestris males, for example, varies between 2.6 and 9.9 km (Kraus et al., 2009). Queen dispersal in B. terrestris is unknown but estimates for Bombus pascuorum (Scopoli, 1763) and Bombus lapidarius (Linnaeus, 1758) queens show they are able to disperse by at least three and five km , respectively, during their lifetime (Lepais et al., 2010). In the case of B. terrestris, two hypotheses have been suggested to explain the genetic homogeneity in European mainland: (1) a recent population expansion from a single glacial refuge, although low sampling efforts hinder definite conclusions (Lecocq et al., 2016); (2) the erosion of past population structure due to genetic homogenisation linked to translocations of commercial B. terrestris, but this is unlikely since the same pattern of genetic homogenisation was found in the early 1990s, when bumblebee commercialization was barely a practice (Estoup et al., 1996). Unfortunately, studies on B. terrestris largely undersampled the Iberian Peninsula (see Estoup et al. (1996), Widmer et al. (1998), Moreira et al. (2015) and Lecocq et al. (2016)), despite the importance of this area as a potential glacial refuge for the species and its present location at the south-western edge of B. terrestris mainland distribution.

To address this gap, we explore the role of the Iberian Peninsula in the differentiation dynamics of B. terrestris, by assessing if (1) Iberian B. terrestris lusitanicus (Krüger, 1956) is panmictic with the rest of the B. terrestris' distribution, and (2) if Iberian populations of B. terrestris harbour standing genetic variation in order to adapt to the currently changing environment. We will address these questions by determining: (i) the
level of genetic differentiation between B. t. lusitanicus and other recognised subspecies of B. terrestris; (ii) the population genetic structure within the Iberian Peninsula and (iii) the levels of genetic diversity within B. t. lusitanicus. We contrast the use of mitochondrial Cytochrome Oxidase I (COI) marker, which has been commonly used to study inter- and intraspecific relationships in bumblebees (Lecocq et al., 2013a, 2016; Dellicour et al., 2015; Moreira et al., 2015), with a novel genome-wide dataset of restriction site-associated DNA sequencing (RADseq). This method readily provides thousands of SNPs and has proven to be effective in biogeography, adaptation, association and conservation studies, even when individual and population sampling is limited (Lozier, 2014; Woodard et al., 2015; Lozier \& Zayed, 2016). With RADseq we obtained the first comprehensive dataset of nuclear loci from B. t. lusitanicus and evaluated its population structure at a finer scale resolution. This is the first step to investigate the spatial patterns of population structure and genetic diversity on a bumblebee species within the Iberian Peninsula and to identify the main priorities for future research on the Iberian bumblebees' conservation, evolution and environmental adaptation.

Material and Methods

Sampling and DNA extraction

A total of 198 individuals of B. t. lusitanicus were collected from six regions within the Iberian Peninsula, covering most of B. t. lusitanicus' Iberian distribution and habitat heterogeneity. To minimize the probability of sampling individuals from the same colony, individuals were caught from locations separated by at least one km, within each region, whenever possible (Figure 1B; Table S1, Supporting Information). Additional samples from other subspecies of B. terrestris were collected: one B. t. terrestris from Switzerland, from Germany and from France, one B. t. dalmatinus from Turkey, one B. t. audax from Great Britain and four B. t. africanus from Morocco (Figure 1A; Table S1, Supporting Information). We focused on diploid individuals (females, mainly workers) for the genetic analyses, so that we would better capture the genetic variation in the populations. The only exception was one male from France, from where we did not collect females.

For the genetic analyses, B. t. lusitanicus' samples were grouped according to the six defined regions, while samples from other subspecies were grouped according to the country where they were collected (Table S1, Supporting Information). Thirteen females from closely related species were collected to serve as outgroup: one individual of Bombus hortorum (Linnaeus, 1761), three of B. lapidarius, three of Bombus
lucorum (Linnaeus, 1761), four of B. pascuorum and two of Bombus ruderatus (Fabricius, 1775). Samples were preserved for DNA extraction either in absolute ethanol and stored at $-20^{\circ} \mathrm{C}$, or dried and preserved at $80^{\circ} \mathrm{C}$. Total genomic DNA was extracted from fore and mid legs, the head, and for smaller individuals, a portion of the thorax was also used. DNA was isolated with the DNeasy Blood \& Tissue extraction kit (Qiagen), following the manufacturer's standard protocol. To maximize DNA yield, some samples were eluted in lower volume of buffer AE (minimum of $60 \mu \mathrm{l}$), and the eluted volume was transferred again to the silica column of the kit for a second elution and incubation times with buffer AE were extended up to 30 \min.

COI amplification, RAD libraries construction and sequencing

For all samples, a fragment from the mitochondrial Cytochrome Oxidase I gene (COI) was amplified by Polymerase Chain Reaction (PCR) with the primer set LepF/LepR (Hajibabaei et al., 2006). PCR amplifications were carried out in $20 \mu \mathrm{~L}$ volumes containing approximately $10-45 \mathrm{ng}$ of template DNA, 1 x reaction buffer, 1.8 mM of $\mathrm{MgCl} 2,1.0 \mathrm{mM}$ dNTPs, 0.04 units of GoTaq Flexi DNA polymerase and $0.4 \mu \mathrm{M}$ of each primer. The thermocycling profile consisted of one cycle of one min at $94^{\circ} \mathrm{C}$, five cycles of 30 s at $94^{\circ} \mathrm{C}$, one min at $45^{\circ} \mathrm{C}$, and one \min at $72^{\circ} \mathrm{C}$, followed by 30 cycles of one min at $94^{\circ} \mathrm{C}$, one min and 30 s at $50^{\circ} \mathrm{C}$, and one min at $72^{\circ} \mathrm{C}$, with a final step of five min at $72^{\circ} \mathrm{C}$. All PCR products were purified with SureClean (Bioline) purification kit and sequenced in the forward direction on an ABI3730XL by Macrogen Europe. DNA sequences were quality controlled with Sequencher version 4.0.5 (Gene Codes Corporation).

A subset of 55 individuals, including 37 individuals of $B t$. lusitanicus from the six defined Iberian regions, five individuals from other B. terrestris subspecies and 13 individuals from outgroup species (see Figure 1 A and B ; Table S , Supporting Information) was used for RAD sequencing analyses. RADseq libraries for Illumina paired-end sequencing were prepared following the protocol by Etter et al. (2011) available at https://www.wiki.ed.ac.uk/display/RADSequencing/Home, with some minor modifications as reported in Seabra et al. (2019). We used the restriction enzyme PstI-HF (New England Biolabs).

Sequencing took place on a Illumina HiSeq 2000/2005 at Edinburgh Genomics, Ashworth Laboratories. The 55 individuals were run together with other 53 samples from another study (Seabra et al., 2019), over two lanes.

COI data analysis

Mitochondrial COI sequences obtained in this study were deposited in GenBank (Acession numbers MN652675 - MN652877; Table S1a, Supporting Information). We also included 17 sequences from our previous study (Seabra et al., 2019) and we followed the designation of haplotypes in that same study (Table S1a, Supporting Information). In order to extend our B. terrestris COI dataset (207 sequences) into the species' geographical range, we downloaded from GenBank five additional sets of COI sequences from previous studies, namely Coppée (2010), Williams et al. (2012a, b), Moreira et al. (2015) and Schmidt et al. (2015) (see Figure 1; see Table S1b, Supporting Information, for GenBank accession numbers). In this way, a total of 233 COI sequences were added to our dataset, totalizing 441 sequences. Sequences related to commercially reared or introduced populations were not considered.

COI dataset of B. terrestris was aligned in MAFFT version 7.271 (Katoh \& Standley, 2013) using default settings. The final alignment was checked for accuracy and sequences were trimmed to the same length (597 bp) to eliminate missing data, using BioEdit version 7.2.5 (Hall, 1999). Median-joining haplotype networks were constructed in PopART version 1.7 (Bandelt et al., 1999; Leigh \& Bryant, 2015), in order to visualise the relationship among B. terrestris haplotypes. We used Arlequin version 3.5.2.2 (Excoffier \& Lischer, 2010) and only the individuals from the Iberian Peninsula to perform a standard analysis of molecular variance (AMOVA) with 10,000 permutation steps and calculate haplotype (h) and nucleotide (π) diversities. We also calculated haplotype and nucleotide diversities for the individuals of the remaining B. terrestris distribution range in order to compare with the Iberian Peninsula. File format conversion for PopART and Arlequin were performed using PGDSpider version 2.1.0.3 (Lischer \& Excoffier, 2012).

RADseq data analysis

RADseq data obtained in this study are available at Sequence Read Archive (PRJNA578045). All console commands used for RADseq data filtering, SNP discovery and subsequent analyses are available in Appendix 2. Quality control of the RADseq raw read data was performed using FastQC version 0.11.3 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The script process_radtags implemented in Stacks version 1.29 (Catchen et al., 2013) was used (with default settings) to remove low quality (with a phred quality score below 33) and unidentifiable reads as well as to demultiplex the data. Bowtie2 version 2.1.0 (Langmead \& Salzberg, 2012) was used to trim the last three bases from the 3' end of each read before
alignment, as this region is richer in low-quality base calls, and to align each sample's reads to the assembled reference genome of B. terrestris (NCBI Assembly GCA_000214255.1) with the "sensitive" option. SAMtools version 0.1 .19 (Li et al., 2009) was used to remove low quality alignments (mapping quality below 20) and any unmapped reads.

After data filtering, RAD loci were identified and SNPs called using the Stacks pipeline 1.45 (Catchen et al., 2013). In order to minimize the impact of differences among taxa in the number of SNPs obtained and the amount of missing data, three datasets were created from the initial 55 individuals for different analyses (see Table S1, Supporting Information): (1) BT_OUT: includes all the studied subspecies (all B. terrestris) as well as the outgroup species; (2) BT_SSP: includes all B. terrestris subspecies and does not include the outgroup species; (3) BT_BTL: includes the Iberian B. t. lusitanicus only.

Preliminary tests were carried out to identify optimal Stacks parameters (Appendix 1, Figures S3, S4, S5, Supporting Information). In pstacks, minimum stack depth was set to six; in cstacks, maximum number of mismatches allowed when building catalog loci was two; in populations, individuals were grouped into putative locations based on geographical region (see Table S1, Supporting Information) and one random SNP per RAD locus was used to avoid confounding signals of linkage disequilibrium. SNPs were only retained if they were present in 50% of individuals in at least $\mathrm{n}-1$ (where n is the number of geographic regions) in all datasets. To test for differences among outputs with different randomly selected SNPs, module populations was run several times, but no significant differences were obtained in the final results (data not shown).

Finally, we performed an additional filtering step to remove loci with minor allele frequencies <0.05 and more than 25% of missing data across all samples using VCFtools version 0.1.15 (Danecek et al., 2011). VCFtools was also used to obtain the mean coverage per site per individual. The resulting SNP datasets were then used in subsequent population genomic and phylogeographic analyses: dataset BT_OUT to check for differentiation between B. terrestris and outgroup species; dataset BT_SSP to determine differentiation between B. t. lusitanicus and the other subspecies; dataset BT_BTL to determine population genetic structure and genetic diversity of B. t. lusitanicus within the Iberian Peninsula.

Principal component analyses (PCA) of the three RADseq datasets were performed using the package SNPRelate version 1.12.0 (Szulkin et al., 2016) as implemented in the R script snp_pca_static. R (https://github.com/CoBiG2/RAD_Tools) as of commit "bb2fc45". To test for differentiation between B. t. lusitanicus and the other subspecies and within B. t. lusitanicus, clustering analyses of population structure
were performed using the datasets BT_SSP and BT_BTL and MavericK version 1.0.4 (Verity \& Nichols, 2016). As the model used by MavericK assumes that markers are neutral (Verity \& Nichols, 2016), we first performed an outlier analysis of both datasets to identify and remove non-neutral markers, using both BayeScan version 2.1 (Foll \& Gaggiotti, 2008) and SelEstim version 1.1.7 (Vitalis et al., 2014). BayeScan was run using a matrix of SNP genotypes, with prior odds for the neutral model turned to five and assuming a detection threshold of 0.05 . The remaining parameters were set to default values. Plots and convergence were checked using the R script plot_R.r available within the BayeScan package, and the package CODA version 0.19-1 (Plummer et al., 2006). SelEstim was run after randomizing the reference allele for each locus (using the R script SelEstim. R available within SelEstim package) and using 50 pilot runs of 1 K length, followed by a main run of 1 M length with a burnin of 100 K , a thinning interval of 20, and a detection threshold of 0.01 . The R script SelEstim. R was also used to obtain the list of outliers and check for convergence. The total number of outliers identified by BayeScan and SelEstim were removed from the datasets using the Python script outlier_removal.py (https://github.com/CoBiG2/RAD_Tools) as of commit "ba731f2". Datasets with only neutral markers were analysed using MavericK version 1.0.4 (Verity \& Nichols, 2016), wrapped under Structure_threader version 1.2.4 (Pina-Martins et al., 2017) for values of "K" between one and five for dataset BT_SSP, and values between one and four for the dataset BT_BTL. We first performed a single "pilot" run of 5,000 iterations, with a burnin of 500 using an admixture model, a free alpha parameter of one with a standard deviation of the normal proposed distribution of 0.10 and "thermodynamic integration" (TI) turned off. Posterior median and posterior standard deviation of alpha were obtained from the "pilot" run and used in a "tuned" run as parameters for the admixture model as follows: alpha was set to 10 times the posterior median and alphaPropSD to five times the posterior SD. This "tuned" run was comprised of five runs of 10,000 iterations, with a burnin of 2000, with TI turned on and another set of 20 rungs of 10,000 samples with a burnin of 2000 . The most suitable value of " K " was calculated for both datasets using the TI method. The R script MavericK1.0 functions. R available within the MavericK package was used to produce diagnostic plots in order to check for convergence and autocorrelation, and the Qmatrix plots.

Finally, a locus-by-locus AMOVA was performed in Arlequin with RADseq dataset BT_BTL, which includes all the SNPs, in order to examine the variance within and among geographical regions, and significance was calculated using 10,000 permutation steps. Genome-wide measures of genetic diversity,
including per-SNP nucleotide diversity (π_{SNP}), and the mean per-individual observed and expected heterozygosities $\left(H_{\mathrm{O}}\right.$ and $\left.H_{\mathrm{E}}\right)$ were calculated using VCFtools and the same dataset.

File format conversions for BayeScan, MavericK and Arlequin were performed using PGDSpider whereas file format conversion for SelEstim was performed with the bash script GESTE2SelEstim.sh (https:// github.com/Telpidus/omics_tools) as of commit " f 74 f 66 b ".

Results

The final alignment of the mitochondrial COI dataset included no indels, and consisted of a total of 26 variable sites, of which nine were parsimony-informative. A total of 16 haplotypes were found (Table S1a and S1b, Supporting Information; Figure 2).

After Illumina sequencing of RAD libraries for 55 individuals, we obtained an average of 7.7 M paired end reads of 125 bp , per individual. Of those, an average of 7.4 M were retained after filtering with process_radtags, representing approximately 8.18% of the genome sequenced. Quality scores of the retained reads ranged from 36 to 37 , with a GC content of $\sim 40 \%$. An average of 52.69% of the quality-filtered reads aligned to the B. terrestris genome. Of the 55 sequenced individuals, nine were excluded from further analyses (six B. t. lusitanicus from four of the Iberian defined regions and three representatives of the outgroup species) due to lower mean coverage per individual $(\leq 12 x)$. Missing data of the remaining samples averaged 5.4%. Information concerning the output of RADseq filtering steps for each sample (number of initial and mapped reads, coverage, datasets at which samples belong and missing data) are provided in Table S1 (Supporting Information). Final individual counts and statistics per dataset after filtering were as follows: BT_OUT dataset comprises 46 individuals and 5,357 SNPs (aprox. 22.7 markers/ Mb) with a mean coverage of 57.7X per site, per individual; BT_SSP dataset comprises 36 individuals and 10,765 SNPs (aprox. 45.6 markers/ Mb) with a mean coverage of 52.3X per site, per individual; BT_BTL dataset comprises 31 individuals and 11,369 SNPs (aprox. 48.2 markers/ Mb) with a mean coverage of 56.6 X per site, per individual.

Differentiation of Bombus terrestris lusitanicus

Seven of the 16 B. t. lusitanicus'COI haplotypes are present in the Iberian Peninsula. The most common haplotype (H1) is common to the entire Peninsula and to the remaining European mainland regions analysed
whereas H2 is shared with central Europe (Switzerland) and Ireland (Figure 2). The other five haplotypes found in Iberia are exclusive to this peninsula (Figure 2). No shared haplotypes were detected between the Iberian Peninsula and North Africa. Haplotypes H9 and H16 are exclusive of North Africa and H14 is shared between this region and Italy. Some haplotypes found in Great Britain, Sardinia, Corsica and Canary Islands are also exclusive from these regions (Figure 2A). Most of the haplotypes differ from H1 in only one or two mutational steps, with the exception of the haplotypes found only in islands or in North Africa, the haplotypes from Sardinia and Morocco being the most differentiated (Figure 2C).

PCA of RADseq dataset BT_OUT revealed a clear separation between B. terrestris and the outgroup species, with the exception of B. lucorum which is the closest to B. terrestris (Figure 3A). PCA using dataset BT_SSP, with B. terrestris samples only, revealed a very narrow separation between samples from the Iberian Peninsula and those from Great Britain and Germany across EV2 (EV2 explains 3.08% of the variance). On the other hand, individuals from Morocco show a greater separation across EV1 from the remaining samples (EV1 explains 10.14% of the variance; Figure 3B). Outlier tests of dataset BT_SSP revealed that a total of 44 SNPs were non-neutral: 43 SNPs (0.40% of the total SNPs) when using SelEstim, and two SNPs (0.02% of the total SNPs) when using BayeScan (one SNP was identified by both softwares). Clustering analyses of the dataset BT_SSP with non-neutral loci removed, using MavericK, determined the existence of two groups $(K=2)$ as the most likely scenario (Figure 3C). These two groups correspond to i) the individuals from the Iberian Peninsula, Great Britain and Germany, and ii) individuals from Morocco, which is consistent with what was observed in the PCA (Figure 3B).

Iberian populations genetic structure

The most common COI haplotype H 1 is present in 95% of the B. terrestris sampled in the Iberian Peninsula. H2 is present in three samples from IP-NO and IP-WE regions, while H3 is only present in two samples from southern locations, one IP-SE and another from IP-SW, respectively. All the remaining Iberian COI haplotypes (H4-H7) are represented by a single sample (Figure 2B). The Iberian region with the highest haplotype diversity is IP-SE with five haplotypes (Figure 2B and Table S2, Supporting Information). The haplotype network did not show a structured phylogeographic pattern, with the most common haplotype being shared among geographically distant regions, and the less frequent and unique haplotypes being closely related to H1, in a 'star-like' configuration (Figure 2C).

PCA of RADseq dataset BT_BTL showed no clear separation between any Iberian geographic regions (EV1 and EV2 only explain 3.75% and 3.67% of the variation, respectively; Figure 3D). The most segregated individuals are BTL_075 (IP-NW) and BTL_136 (IP-SE) along EV1, and BTL_306 (IP-WE) along EV2. Missing data values for these individuals does not explain their separation from the remaining $(3.7 \%, 5.7 \%$ and 10.6% respectively), and their COI haplotype is the most common one, H1. Outlier tests of dataset BT_BTL revealed a total of 31 non neutral SNPs: 29 (0.26% of the total SNPs) when using SelEstim, and two SNPs (0.02% of the total SNPs) when using BayeScan. Clustering analyses of the dataset BT_BTL with non-neutral loci removed, using MavericK, determined the existence of one group ($\mathrm{K}=1$) as the most likely scenario (data not shown), which is concordant with the PCA results.

Genetic diversity

AMOVA results revealed an absence of genetic structure for B. terrestris COI dataset, suggesting that the overall source of variation was within geographical regions instead of among these (Table 1). Measures for haplotype (h) and nucleotide (π) diversities calculated using B. terrestris COI dataset for the total Iberian Peninsula were 0.08470 and 0.00018 , respectively (Table 2). More than 43% (7 in 16) of the haplotypes found were present in the Iberian Peninsula, and 31% (5 in 16) were exclusive of this area and no other European region showed such a high number of haplotypes. It is important to note, however, that sample sizes differ substantially (Figure 2 and Table 2).

AMOVA results using the RADseq dataset BT_BTL mirror those of the COI dataset, with an absence of genetic structure, indicating that the overall source of variation is within and not among geographical regions (Table 1). Measures of per-SNP nucleotide diversity and mean per-individual observed and expected heterozygosities for the total Iberian Peninsula were $0.2780,0.2326$ and 0.2773 , respectively (Table 2).

Discussion

We conducted a population genetic study, with mitochondrial and nuclear genome-wide markers, to measure differentiation of B. t. lusitanicus from other B. terrestris' subspecies, and to investigate this subspecies' population structure and genetic diversity within the Iberian Peninsula. We found no evident differentiation pattern on mitochondrial DNA between B. t. lusitanicus and the other European mainland subspecies B. t. terrestris, B. t. dalmatinus and B. t. calabricus. On the other hand, we found a clear
differentiation of North African B. t. africanus from the remaining subspecies, including the geographically close B. t. lusitanicus, which is in accordance with previous studies (Coppée, 2010; Lecocq et al., 2016) and confirmed here with samples from southern Iberia, where any evidence of admixture with B. t. africanus would be more likely to occur. Considering the genetic diversity of B. terrestris at the species level, it is homogeneous across mainland populations, while subspecies from the islands and North Africa appear to be more differentiated, although with evidence of some admixture, particularly between the British and continental populations (as previously reported by Moreira et al., 2015). The presence of the same haplotype in both Algeria and central Italy could also indicate some admixture in this region. Our study corroborates those of Estoup et al. (1996), Widmer et al. (1998), Moreira et al. (2015) and Lecocq et al. (2016) based on mitochondrial and microsatellite markers. Our genome-wide analyses with RAD sequencing show very slight distinction of B. t. lusitanicus from B. t. terrrestris (Germany) and B. t. audax (Great Britain) samples in the PCA, although not supported by Maverick results, but corroborates the clear differentiation from B. t. africanus. However, larger sample sizes of B. t. terrestris and B. t. audax are needed to better evaluate this small differentiation at the genomic level.

The lack of differentiation of B. t. lusitanicus from other European mainland subspecies can be explained by: (1) a common origin with subsequent local differentiation, which is supported by the star-like pattern in the mitochondrial COI network with rarer haplotypes deriving from a single ancestral haplotype (H1); (2) high dispersal ability of these insects across large distances (Kraus et al., 2009; Lepais et al., 2010) and extensive mountain ranges such as the Pyrenees; or (3) erosion of genetic differentiation caused by hybridization with commercial hives from allochthonous origin which are used in several areas in Europe for crop pollination (commercial stocks used in the Iberian Peninsula include mostly subspecies B. t. terrestris and B. t. dalmatinus (Lecocq et al., 2016; Velthuis \& van Doorn, 2006)). Putative hybrids with commercial hives in the western Iberian Peninsula were already detected (Seabra et al., 2019), but a widespread genetic erosion is not expected because the transfer of colonies of this species across Europe for crop pollination is a relatively recent phenomena (Estoup, 1996).

On the other hand, the differentiation found between B. t. lusitanicus and B. t. africanus suggests that gene flow between the Iberian Peninsula and North Africa is much lower than to elsewhere in mainland Europe. The number of accumulated differences on mitochondrial DNA also suggests these two subspecies probably started to diverge earlier than the others. The Mediterranean sea thus seem to be an effective barrier
to gene flow, even though the two continents are geographically very close at the Strait of Gibraltar ($<15 \mathrm{~km}$ at the closest point) and despite the good dispersal capability of bumblebees. According to the information retrieved from http://www.atlashymenoptera.net/, B. terrestris is currently present right up to the coast on both sides of the Strait. Both Moreira et al. (2015) and Estoup et al. (1996) reported evidence of B. terrestris migrating over sea, across the English Channel and between the Isle of Man and Ireland, though at recognisably very low rates. Also other bumblebee species, such as Bombus jonellus (Kirby, 1802) was found to be able to disperse over sea barriers up to 30 km (Darvill et al., 2010). As bumblebees are known to disperse such large distances, two hypothesis might explain this result: 1) migration is conditioned by the prevailing wind conditions, characterised by strong winds from easterly or westerly directions, which are known to have an important role in dispersion patterns of several species (e.g. moth Cornifrons ulceratalis (Dantart et al., 2009); 2) migration occurs between both continents, but local differences in environmental conditions, and/or sexual selection, may be acting against migrants and preventing effective gene flow. The Strait of Gibraltar seems to hinder the dispersal of other flying species between North Africa and Iberian Peninsula (e.g. the butterfly Pararge aegeria (Weingartner et al., 2006)) while acted as a route of dispersal for others, mainly during lower sea level periods (e.g. the Iberian honey bee Apis mellifera iberiensis (Chávez-Galarza et al., 2015).

We did not find population genetic structure within B. t. lusitanicus across the Iberian Peninsula, contrarily to what was reported for the Iberian honey bee A. m. iberiensis (Chávez-Galarza et al., 2015). In this latter species, two highly divergent genetic lineages are observed which form a northeasternsoutheastern cline, better explained by secondary contacts between divergent populations from distinct and isolated glacial refugia (Chávez-Galarza et al., 2015). The panmictic pattern of B. t. lusitanicus within Iberia is likely due to B. terrestris' long-distance flights capability, coupled with the absence of effective geographical barriers to its dispersal. Long-distance flights of queens and males contribute towards regular gene flow and were suggested to be sufficient to maintain genetic cohesion of common bumblebees' species over large areas (Lepais et al., 2010). Also, the fact that B. terrestris is a short-tongued generalist bumblebee (Chapman et al., 2003), having a large foraging range (Walther-Hellwig \& Frankl, 2000), probably increases its capacity to find suitable habitats under a variety of conditions. In addition, this species is tolerant to a broad range of climates (Penado et al., 2016), from Mediterranean beaches under high temperatures to high mountains of crio-oromediterranean regimes. Thus, individuals are more capable to disperse and occupy a
vast majority of habitats when compared to other species, contributing to the observed large-scale connectivity. The already referred hypothesis of a recent population expansion from a single periglacial refuge in the Iberian Peninsula could also explain not only the observed pattern of homogeneity but also the star-like pattern in the mitochondrial COI network. This refuge may have existed in the Iberian Peninsula or elsewhere in Europe (as also referred by Estoup et al., 1996), as the most common haplotype H1 is widespread across the continent. Nonetheless, some rarer haplotypes could have evolved in a smaller refuge in the Betic ranges of southern Spain ('refugia within refugia' paradigm of Gómez \& Lunt (2007)), which might explain the higher genetic diversity found in mitochondrial DNA for the region IP-SE (Figure 2B; Table S2). This region is characterized by semi-arid low-lands drastically contrasting with steep changes in vegetation and climate along an altitudinal cline. It is considered as a hotspot for Mediterranean biodiversity, harbouring many endemic species or lineages, and so the high genetic diversity found in this region (five haplotypes from a total of 10 in continental Europe) is not unexpected (Hewitt, 2011; Nunes et al., 2014). The hypothesis of admixture between this region and North Africa is unlikely because there are no haplotypes shared between both regions as referred before. The use of commercial hives of B. terrestris for crop pollination in Southeast of Spain (IP-SE), and in IP-SW and IP-WE, is a common practice (Cejas et al., 2018). In these regions, commercial bumblebees have been found foraging outside greenhouses and on natural habitats, and introgression between commercial and native bumblebees was detected (Cejas et al., 2018, 2019; Seabra et al., 2019; Trillo et al., 2019). Thus some of the variation found in IP-SE could have been artificially introduced. We found one COI haplotype (H3) in regions IP-SE and IP-SW which is also relatively common in commercial stocks and in individuals collected from greenhouse areas investigated by Seabra et al. (2019). This haplotype was found in two specimens: one collected from about 300 km from the area where Cejas et al. $(2018,2019)$ detected potential hybrids between commercial and native populations, based on morphological and mitochondrial 16 S data; one collected from about 30 km from the area where Seabra et al. (2019) also detected potential introgression between both and escaped individuals, based on RADseq data. None of the other unique haplotypes from IP_SE were found within the commercial samples analysed by Seabra et al. (2019). Moreira et al. (2015) found that commercially reared populations were differentiated from the majority of the wild populations from Ireland, having the highest number of private microsatellite alleles. Thus the introduction of non-native specimens can lead to changes in the genetic structure of the native ones, and ultimately, increase the risk of displacement and the consequent loss of rare
beneficial alleles, especially in populations with low genetic diversity. In this way, we cannot underestimate the potential impact of the use of allochthonous commercial bumblebees for local crop pollination, independent of its origin.

The extended sampling in the Iberian Peninsula revealed this region as one of the richest in genetic diversity for B. terrestris, with the highest number of mitochondrial COI haplotypes than any other region in Europe studied so far (though some mainland regions remain undersampled). Iberia seems to be an important source of diversity for the global genetic pool of this species, as rare alleles may play a role in population resilience against human or climate-mediated changes (Barret \& Schluter, 2007), especially at the extremes of the species range. Since this is the first study evaluating population genetic diversity in B. terrestris with RADseq, we were not able to compare our results with other regions in Europe regarding the diversity at the genomic level. When comparing with North American Bombus species (Lozier, 2014; Jackson et al., 2018), despite the different RADseq markers used, B. t. lusitanicus from the Iberian Peninsula showed similar or higher diversity values, even when comparing with Bombus impatiens Cresson, 1863, a common species in eastern North America.

Further ecological studies comparing habitats, phenology and phenotypic characteristics of B. terrestris from the south of the peninsula with those from North Africa could help to describe barriers to dispersion and to gene flow within this species in more detail. Also, the absence of population genetic structure will facilitate the analyses of the adaptive potential of B. t. lusitanicus to environmental changes within the Iberian Peninsula, by finding adaptive genetic diversity and by modelling species response to future land-use and/or climatic changes. Ecological and genetic studies focusing in arid regions or in other Mediterranean peninsulas are also needed, in order to understand how environmental change is affecting natural populations of B. terrestris. It could also help to evaluate impacts of global warming on crop pollination efficiency of commercial hives at the extremes of this species range and in economically important regions.

Acknowledgements

This work was funded by national funds through FCT - Fundação para a Ciência e a Tecnologia (project
UID/BIA/00329/2013 (2015-2018); UID/AGR/04129/2013; grant PD/BD/113548/2015, under the PhD program "Biology and Ecology of Global Changes", Univ. Aveiro \& Univ. Lisbon, Portugal, attributed to S.E.S.; grant SFRH/BPD/108413/2015, attributed to S.G.S.) and through ProDer - Programa de

Desenvolvimento Rural (Project ref. ProDeR 4.1. 46221-3). Thanks are due for the financial support also to CESAM (UID/AMB/50017/2019), to FCT/MCTES through national funds, and the co-funding by the FEDER, within the PT2020 Partnership Agreement and Compete 2020. We thank Edinburgh Genomics, particularly Karim Gharbi, for their assistance with RAD sequencing and Moises Mallo (IGC) for the use of Bioruptor. We also thank the anonymous referees for helpful comments on an earlier version of the manuscript.

Author's contributions

SES, SGS, LGC and OSP designed the study. SES, VLN, RM, ASB, EM, SY, TGL, EF, JM, MTR and OSP were responsible for sampling. SES, SGS and VLN were responsible for DNA extraction and mitochondrial DNA amplification. VLN constructed RAD libraries. SES and SGS performed the bioinformatic analyses, with important contributions from VLN, FPM and OSP. SES wrote the manuscript with contributions from all the other authors.

References

Arias MC, Rinderer TE, Sheppard WS. 2006. Further characterization of honey bees from the Iberian Peninsula by allozyme, morphometric and mtDNA haplotype analyses. Journal of Apicultural Research 45: 188-196.

Bandelt H-J, Forster P, Rohl A. 1999. Median-Joining networks for inferring intraspecific phylogenies. Molecular Biology 16: 37-48.

Barret RDH, Schluter D. 2008. Adaptation from standing genetic variation. Trends in Ecology and Evolution 23: 38-44.

Bommarco R, Lundin O, Smith HG, Rundlof M. 2012. Drastic historic shifts in bumble-bee community composition in Sweden. Proceedings of the Royal Society B: Biological Sciences 279: 309-315.

Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA. 2013. Stacks: An analysis tool set for population genomics. Molecular Ecology 22: 3124-3140.

Cejas D, López-López A, Muñoz I, Ornosa C, De la Rua P. 2019. Unveiling introgression in bumblebee (Bombus terrestris) populations through mitogenome-based markers. Animal Genetics.

Cejas D, Ornosa C, Muñoz I, De la Rua P. 2018. Searching for molecular markers to differentiate Bombus terrestris (Linnaeus) subspecies in the Iberian Peninsula. Sociobiology 65: 558-565.

Chapman RE, Wang J, Bourke AFG. 2003. Genetic analysis of spatial foraging patterns and resource sharing in bumble bee pollinators. Molecular Ecology 12: 2801-2808.

Chávez-Galarza J, Henriques D, Johnston JS, Carneiro M, Rufino J, Patton JC, Pinto MA. 2015. Revisiting the Iberian honey bee (Apis mellifera iberiensis) contact zone: Maternal and genome-wide nuclear variations provide support for secondary contact from historical refugia. Molecular Ecology 24: 29732992.

Coppée A. 2010. Bombus terrestris (L. 1758): A complex species or a species complex? Intraspecific pheromonal and genetic variations of Bombus terrestris (L.). Impacts on the speciation. PhD thesis. Université de Mons, Laboratoire de Zoologie.

Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R, 1000 Genomes Project Analysis Group. 2011. The variant call format and VCFtools. Bioinformatics 27: 2156-2158.

Dantart J, Stefanescu C, Àvila A, Alarcón M. 2009. Long-distance wind-borne dispersal of the moth Cornifrons ulceratalis (Lepidoptera: Crambidae: Evergestinae) into the northern Mediterranean. European Journal of Entomology 106: 225-229.

Darvill B, O’Connor S, Lye GC, Waters J, Lepais O, Goulson D. 2010. Cryptic differences in dispersal lead to differential sensitivity to habitat fragmentation in two bumblebee species. Molecular Ecology 19: 53-63.

Dellicour S, Michez D, Mardulyn P. 2015. Comparative phylogeography of five bumblebees: impact of range fragmentation, range size and diet specialization. Biological Journal of the Linnean Society 116: 926-939.

Estoup A, Solignac M, Cornuet JM, Goudet J, Scholl A. 1996. Genetic differentiation of continental and island populations of Bombus terrestris (Hymenoptera: Apidae) in Europe. Molecular Ecology 5: 1931.

Etter PD, Bassham S, Hohenlohe PA, Johnson EA, Cresko WA. 2011. SNP Discovery and genotyping for evolutionary genetics using RAD sequencing. Methods in Molecular Biology 772: 157-178.

Excoffier L, Lischer H. 2010. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10: 564-567.

Foll M, Gaggiotti O. 2008. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: A Bayesian perspective. Genetics 180: 977-993.

Gómez A, Lunt DH. 2007. Refugia within refugia: patterns of phylogeographic concordance in the Iberian Peninsula. In: Weiss S, Ferrand N, eds. Phylogeography of southern European refugia. The Netherlands: Springer, 155-188.

Goulson D. 2010. Impacts of non-native bumblebees in Western Europe and North America. Applied Entomology and Zoology 45: 7-12.

Goulson D, Lye GC, Darvill B. 2008. Decline and conservation of bumble bees. Annual Review of Entomology 53: 191-208.

Hajibabaei M, Janzen DH, Burns JM, Hallwachs W, Hebert PDN. 2006. DNA barcodes distinguish species of tropical Lepidoptera. Proceedings of the National Academy of Sciences 103: 968-971.

Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95-98.

Hewitt GM. 1999. Post-glacial re-colonization of European biota. Biological Journal of the Linnean Society 68: 87-112.

Hewitt G. 2000. The genetic legacy of the Quaternary ice ages. Nature 405: 907-913.

Hewitt GM. 2011. Mediterranean peninsulas: the evolution of hotspots. In: Zachos FE, Habel JC, eds. Biodiversity hotspots. Amsterdam, The Netherlands: Springer, 123-147.

Ings TC, Schikora J, Chittka L. 2005. Bumblebees, humble pollinators or assiduous invaders? A population comparison of foraging performance in Bombus terrestris. Oecologia 144: 508-516.

Jackson JM, Pimsler ML, Oyen KJ, Koch-Uhuad JB, Herndon JD, Strange JP, Dillon ME, Lozier JD. 2018. Distance, elevation and environment as drivers of diversity and divergence in bumble bees across latitude and altitude. Molecular Ecology 27: 2926-2942.

Jaffé R, Pope N, Acosta AL, Alves DA, Arias MC, De la Rúa P, Francisco FO, Giannini TC, GonzálezChaves A, Imperatriz-Fonseca VL, Tavares MG, Jha S, Carvalheiro LG. 2016. Beekeeping practices and geographic distance, not land use, drive gene flow across tropical bees. Molecular Ecology 25: 5345-5358.

Katoh K, Standley DM. 2013. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in performance and usability. Molecular Biology and Evolution 30: 772-780.

Kraus FB, Wolf S, Moritz RFA. 2009. Male flight distance and population substructure in the bumblebee Bombus terrestris. Journal of Animal Ecology 78: 247-252.

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods 9: 357-359.

Lecocq T, Coppée A, Michez D, Brasero N, Rasplus J-Y, Valterová I, Rasmont P. 2016. The alien’s identity: consequences of taxonomic status for the international bumblebee trade regulations. Biological Conservation 195: 169-176.

Lecocq T, Dellicour S, Michez D, Lhomme P, Vanderplanck M, Valterová I, Rasplus J-Y, Rasmont P. 2013a. Scent of a break-up: phylogeography and reproductive trait divergences in the red-tailed bumblebee (Bombus lapidarius). BMC Evolutionary Biology 13: 263.

Lecocq T, Gérard M, Michez D, Dellicour S. 2017. Conservation genetics of European bees: new insights from the continental scale. Conservation Genetics 18: 585-596.

Lecocq T, Vereecken NJ, Michez D, Dellicour S, Lhomme P, Valterová I, Rasplus J-Y, Rasmont P. 2013b. Patterns of genetic and reproductive traits differentiation in mainland vs. Corsican populations of bumblebees. PLoS ONE 8: e65642.

Leigh JW, Bryant D. 2015. PopART: Full-feature software for haplotype network construction. Methods in Ecology and Evolution 6: 1110-1116.

Lepais O, Darvill B, O’Connor S, Osborne JL, Sanderson RA, Cussans J, Goffe L, Goulson D. 2010. Estimation of bumblebee queen dispersal distances using sibship reconstruction method. Molecular Ecology 19: 819-831.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078-2079.

Lischer HEL, Excoffier L. 2012. PGDSpider: An automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics 28: 298-299.

Lozier JD. 2014. Revisiting comparisons of genetic diversity in stable and declining species: assessing genome-wide polymorphism in North American bumble bees using RAD sequencing. Molecular Ecology 23: 788-801.

Lozier JD, Zayed A. 2017. Bee conservation in the age of genomics. Conservation Genetics 18: 713-729.

Maebe K, Meeus I, Ganne M, De Meulemeester T, Biesmeijer K, Smagghe G. 2015. Microsatellite analysis of museum specimens reveals historical differences in genetic diversity between declining and more stable Bombus species. Plos One 10: e0127870.

Martins IS, Proença V, Pereira HM. 2014. The unusual suspect: Land use is a key predictor of biodiversity patterns in the Iberian Peninsula. Acta Oecologica 61: 41-50.

Miraldo A, Hewitt GM, Paulo OS, Emerson BC. 2011. Phylogeography and demographic history of Lacerta lepida in the Iberian Peninsula: multiple refugia, range expansions and secondary contact zones. BMC Evolutionary Biology 11: 170.

Moreira AS, Horgan FG, Murray TE, Kakouli-Duarte T. 2015. Population genetic structure of Bombus terrestris in Europe: Isolation and genetic differentiation of Irish and British populations. Molecular Ecology 24: 3257-3268.

Murray TE, Coffey MF, Kehoe E, Horgan FG. 2013. Pathogen prevalence in commercially reared bumble bees and evidence of spillover in conspecific populations. Biological Conservation 159: 269-276.

Newbold T, Hudson LN, Hill SLL, Contu S, Lysenko I, Senior RA, Börger L, Bennett DJ, Choimes A, Collen B, Day J, De Palma A, Díaz S, Echeverria-Londoño S, Edgar MJ, Feldman A, Garon M, Harrison MLK, Alhusseini T, Ingram DJ, Itescu Y, Kattge J, Kemp V, Kirkpatrick L, Kleyer M, Correia DLP, Martin CD, Meiri S, Novosolov M, Pan Y, Phillips HRP, Purves DW, Robinson A, Simpson J, Tuck SL, Weiher E, White HJ, Ewers RM, Mace GM, Scharlemann JPW, Purvis A. 2015. Global effects of land use on local terrestrial biodiversity. Nature 520: 45-50.

Nunes VL, Mendes R, Marabuto E, Novais BM, Hertach T, Quartau JA, Seabra SG, Paulo OS, Simões PC. 2014. Conflicting patterns of DNA barcoding and taxonomy in the cicada genus Tettigettalna from southern Europe (Hemiptera: Cicadidae). Molecular Ecology Resources 14: 27-38.

Penado A, Rebelo H, Goulson D. 2016. Spatial distribution modelling reveals climatically suitable areas for bumblebees in undersampled parts of the Iberian Peninsula. Insect Conservation and Diversity 9: 391401.

Pina-Martins F, Silva DN, Fino J, Paulo OS. 2017. Structure_threader: An improved method for automation and parallelization of programs Structure, fastStructure and MavericK on multicore CPU systems. Molecular Ecology Resources 17: e268-e274.

Pinto MA, Henriques D, Neto M, Guedes H, Muñoz I, Azevedo JC, De La Rúa P. 2013. Maternal diversity patterns of Ibero-Atlantic populations reveal further complexity of Iberian honeybees. Apidologie 44: 430-439.

Plummer M, Best N, Cowles K, Vines K. 2006. CODA: Convergence diagnosis and output analysis for MCMC. R News 6: 7-11.

Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE. 2010. Global pollinator declines: Trends, impacts and drivers. Trends in Ecology and Evolution 25: 345-353.

Rasmont P, Coppée A, Michez D, De Meulemeester T. 2008. An overview of the Bombus terrestris (L. 1758) subspecies (Hymenoptera: Apidae). Annales de La Société Entomologique de France (N.S.) 44: 243250.

Rasmont P, Franzén M, Lecocq T, Harpke A, Roberts SPM, Biesmeijer K, Cederberg B, Dvorák L, Fitzpatrick Ú, Gonseth Y, Haubruge E, Mahé G, Manino A, Michez D, Neumayer J, Ødegaard F, Paukkunen J, Pawlikowski T, Potts SG, Reemer M, Settele J, Straka J, Schweiger O. 2015. Climatic risk and distribution atlas of European bumblebees. BioRisk 10: 1-236.

Rodrigues ASB, Silva SE, Marabuto E, Silva DN, Wilson MR, Thompson V, Yurtsever S, Halkka A, Borges PAV, Quartau JA, Paulo OS, Seabra SG. 2014. New mitochondrial and nuclear evidences support recent demographic expansion and an atypical phylogeographic pattern in the spittlebug Philaenus spumarius (Hemiptera, Aphrophoridae). PLoS ONE 9: e98375.

Seabra SG, Silva SE, Nunes VL, Sousa VC, Martins J, Marabuto E, Rodrigues ASB, Pina-Martins F, Laurentino TG, Rebelo MT, Figueiredo E, Paulo OS. 2019. Genomic signatures of introgression between commercial and native bumblebees, Bombus terrestris, in western Iberian PeninsulaImplications for conservation and trade regulation. Evolutionary Applications 12: 679-691.

Schmidt S, Schmid-Egger C, Morinière J, Haszprunar G, Hebert PD. 2015. DNA barcoding largely supports 250 years of classical taxonomy: identifications for Central European bees (Hymenoptera, Apoidea partim). Molecular Ecology Resources 15: 985-1000.

Szulkin M, Gagnaire P-A, Bierne N, Charmantier A. 2016. Population genomic footprints of fine-scale differentiation between habitats in Mediterranean blue tits. Molecular Ecology 25: 542-558.

Trillo A, Montero-Castaño A, González-Varo JP, González-Moreno P, Ortiz-Sánchez FJ, Vilà M. 2019. Contrasting occurrence patterns of managed and native bumblebees in natural habitats across a greenhouse landscape gradient. Agriculture, Ecosystems and Environment 272: 230-236.

Verity R, Nichols RA. 2016. Estimating the number of subpopulations (K) in structured populations. Genetics 203: 1827-1835.

Velthuis HHW, van Doorn A. 2006. A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination. Apidologie 37: 421-451.

Vitalis R, Gautier M, Dawson KJ, Beaumont MA. 2014. Detecting and measuring selection from gene frequency data. Genetics 196: 799-817.

Walther-Hellwig K, Frankl R. 2000. Foraging habitats and foraging distances of bumblebees, Bombus spp. (Hym., Apidae), in an agricultural landscape. Journal of Applied Entomology 124: 299-306.

Weingartner E, Wahlberg N, Nylin S. 2006. Speciation in Pararge (Satyrinae: Nymphalidae) butterflies - North Africa is the source of ancestral populations of all Pararge species. Systematic Entomology 31: 621-632.

Widmer A, Schmid-Hempel P, Estoup A, Scholls A. 1998. Population genetic structure and colonization history of Bombus terrestris s.l. (Hymenoptera: Apidae) from the Canary Islands and Madeira. Heredity 81: 563-572.

Williams PH, An J, Brown MJF, Carolan JC, Goulson D, Huang J, Ito M. 2012a. Cryptic bumblebee species: Consequences for conservation and the trade in greenhouse pollinators. PLoS ONE 7: e32992.

Williams PH, Brown MJF, Carolan JC, An J, Goulson D, Aytekin AM, Best LR, Byvaltsev AM, Cederberg B, Dawson R, Huang J, Ito M, Monfared A, Raina RH, Schmid-Hempel P, Sheffield CS, Šima P, Xie Z. 2012b. Unveiling cryptic species of the bumblebee subgenus Bombus s. str. worldwide with COI barcodes (Hymenoptera: Apidae), Systematics and Biodiversity 10: 21-56.

Woodard SH, Lozier JD, Goulson D, Williams PH, Strange JP, Jha S. 2015. Molecular tools and bumble bees: revealing hidden details of ecology and evolution in a model system. Molecular Ecology 24: 2916-2936.

Figures and Tables

Figure 1. Sampling locations of samples used in this study. A) Geographic distribution of each B. terrestris' subspecies, according to Lecocq et al. (2016), here represented by different colours; geographic location of collected samples of B. t. terrestris, B. t. dalmatinus, B. t. audax and B. t. africanus, as well as of COI sequences (from previous studies of Coppée (2010), Williams et al. (2012a, b), Moreira et al. (2015) and Schmidt et al. (2015)) downloaded from GenBank. B) Sampling locations of collected samples of B. t. lusitanicus across the Iberian Peninsula (IP-NW: Iberian Peninsula, Northwest; IP-WE: Iberian Peninsula,

West; IP-SW: Iberian Peninsula, Southwest; IP-NO: Iberian Peninsula, North; IP-CE: Iberian Peninsula, Centre; IP-SE: Iberian Peninsula, Southeast). B is a zoom-in of the black square in A. Sampling locations are represented as follows: orange dots - samples used for COI analyses; yellow stars - samples used for both COI and RAD analyses; black dots - COI sequences downloaded from GenBank.

Figure 2. Geographic distribution and frequency of mtDNA COI haplotypes. A) Map of haplotype frequencies for B. terrestris across Europe and North Africa. B) Map of haplotype frequencies for each Iberian geographic region. B is a zoom-in of the black square in A. C) Median-joining network representing relationship among haplotypes, coloured by haplotype. Sequences from Coppée (2010), Williams et al. (2012a, b), Moreira et al. (2015) and Schmidt et al. (2015) were also included. The size of the pie charts in A, B and of the circles in C is in proportion to the haplotype frequencies. Each haplotype is represented by the respective colour and designation (H1-H9 and H11-H17).

Figure 3. Principal components (PCA) and MavericK analyses of RADseq data. A) PCA of dataset BT_OUT, comparing B. terrestris with other species; B) PCA of dataset BT_SSP comparing B. t. lusitanicus samples with samples of other B. terrestris' subspecies; C) MavericK clustering plot of dataset BT_SSP, for $\mathrm{K}=2$; D) PCA of dataset BT_BTL comparing B. t. lusitanicus among Iberian geographical regions. In MavericK results, estimated membership of each individual to each cluster are shown by vertical bars with the clusters represented by different shades of grey.

Table 1. Results of the analyses of molecular variance (AMOVA) considering mitochondrial DNA COI data and RADseq data.

Table 2. The sample size and diversity indices across B. t. lusitanicus samples from the Iberian Peninsula considering mitochondrial DNA COI data and RADseq data, along with data for other populations of B. terrestris or for other species (from Lozier, 2014 and Jackson et al., 2018). Note that for RADseq markers, it was also indicated the restriction enzyme used and the number of SNPs obtained.

Supporting Information

Table S1. List of samples used in this study: Table S1a: List of collected samples; Table S1b: List of samples with sequences downloaded from GenBank.

Table S2. The sample size and diversity indices across B. t. lusitanicus samples by Iberian region considering mitochondrial DNA COI data and RADseq dataset BT_BTL.

Appendix 1. Preliminary tests to identify optimal Stacks parameters: Figure S1: Results of parameter tests for the Stacks module pstacks; Figure S2: results of parameter tests for the Stacks module ctsacks and sstacks; Figure S3: results of parameter tests for the Stacks module populations.

Appendix 2. List of command line commands used for RADseq dataset analyses.

Figure 1

Figure 2

Figure 3

Table 1

DNA marker	Source of variation	Sum of squares	Variation components	Percentage of variation
COI	Within geographical regions	19.62	0.06	100.03
	Among geographical regions	0.27	-0.00002	-0.03
RAD seq	Within geographical regions	79454.05	1532.05	97.81
	Among geographical regions	9121.49	34.29	2.19

Table 2

Species	Geographic region	Reference	Sample size	DNA marker	\boldsymbol{h} (n^{o} of haplotypes)	π	$\pi_{\text {SVP }}$	$H_{\text {O }}$	$\boldsymbol{H}_{\text {E }}$
B. t. lusitanicus	Iberian Peninsula	this study	208	COI	0.08470 (7 hap.)	0.00018	-	-	-
Bombus terrestris	Europe (continental)	this study	340	COI	0.09740 (10 hap.)	0.00034	-	-	-
Bombus terrestris	Europe (continental + islands) \& north Africa	this study	441	COI	0.39900 (16 hap.)	0.00209	-	-	-
B. t. lusitanicus	Iberian Peninsula	this study	31 아	$\begin{aligned} & \text { RAD seq, PstI } \\ & (10,938 \text { SNPs }) \end{aligned}$	-	-	0.278	0.233	0.277
Bombus impatiens	eastern U.S.A.	Lozier et al. (2014)	24 ¢	$\begin{aligned} & \text { RAD seq, SgrAI } \\ & (2,387-9,148 \text { SNPs }) \end{aligned}$	-	-	0.136-0.289	n.d.	n.d.
Bombus pensylvanicus	eastern U.S.A.	Lozier et al. (2014)	24 ¢	$\begin{aligned} & \text { RAD seq, SgrAI } \\ & (3,240-9,376 \text { SNPs }) \end{aligned}$	-	-	0.135-0.276	n.d.	n.d.
Bombus bifarius	mountain regions of western U.S.A.	Jackson et al. (2018)	383 아	$\begin{aligned} & \text { RAD seq, PstI } \\ & (598-37,474 \text { SNPs }) \end{aligned}$	-	-	0.122-0.140	n.d.	n.d.
Bombus vosnesenskii	mountain regions of western U.S.A.	Jackson et al. (2018)	587 ¢	$\begin{aligned} & \text { RAD seq, PstI } \\ & (356-18,700 \mathrm{SNPs}) \end{aligned}$	-	-	0.105-0.116	n.d.	n.d.

h, haplotype diversity; π, nucleotide diversity; $\pi_{\text {SNP }}$, per-SNP nucleotide diversity; H_{0}, mean per-individual observed heterozygosity; H_{E}, mean per-individual expected heterozygosity. "-" indicates "non-applicable"; "n.d." indicates "no data".

Table S1a. List of collected samples with information concerning: sampling (taxa, sex, country, number of samples, geographic groups, origin, date of collection and respective collectors); outputs of mitochondrial COI analyses (haplotype mapped reads, coverage, datasets at which belongs and missing data).

Sample Code	Taxa	Sex	n	Country / Island	Geographic region	Sampling Location	Latitude	Longitude	Date of collection	Collector(s)	mtDNA analysis	Col haplotype	GenBank accession no.
BOM_GEH_002	B. t. I usitanicus	F	1	Portugal	IP-NW	Montalegre	41.72247	-7.68883	03/07/2017	S.E. Silva \& R. Mendes	x	H1	MN652675
BOM_GEH_003	B. .t.lusitanicus	F	1	Portugal	Iberian Peninsula, northwest	Montalegre	41.72247	-7.68883	03/07/2017	S.E. Silva \& R. Mendes	\times	H1	MN652676
BOM_GEH_006	B. .t.lusitanicus	F	1	Portugal		Montalegre, Parafita	41.75589	-7.84843	03/07/2017	S.E. Silva \& R. Mendes	\times	H1	MN652677
BOM_GEH_009	B. .t.lusitanicus	F	1	Portugal		Montalegre, Parafita	41.75589	-7.84843	03/07/2017	S.E. Silva \& R. Mendes	\times	H1	MN652678
BOM_GEH_028	B. .t.lusitanicus	F	1	Portugal		P.N. Peneda-Gerês, Vilar da Veiga	41.73505	-8.159281	15/05/2014	T.G. Laurentino \& O.S. Paulo	\times	H1	MN652679
BTL_064	B. .t.lusitanicus	F	1	Portugal		P.N. Peneda-Gerês, Vilar da Veiga	41.73505	-8.159281	15/05/2014	T.G. Laurentino \& O.S. Paulo	\times	H1	MN652680
BTL_065	B. t. lusitanicus	F	1	Portugal	($\mathrm{n}=24$)	P.N. Peneda-Gerês, Vilar da Veiga	41.73505	-8.159281	15/05/2014	T.G. Laurentino \& O.S. Paulo	\times	H1	MN652681
BTL_060	B. t. lusitanicus	F	1	Portugal		P.N. Montesinho, Pinheiro Novo	41.935667	-7.114667	13/05/2014	T.G. Laurentino \& O.S. Paulo	\times	H1	MN652682
BTL_061	B. t. lusitanicus	F	1	Portugal		P.N. Montesinho, Pinheiro Novo	41.935667	-7.114667	13/05/2014	T.G. Laurentino \& O.S. Paulo	\times	H1	MN652683
BTL_062	B. .t. lusitanicus	F	1	Portugal		P.N. Montesinho, Pinheiro Novo	41.937944	-7.108444	13/05/2014	T.G. Laurentino \& O.S. Paulo	\times	H1	MN652684
BOM_GEL_002	B. t. lusitanicus	F	1	Spain		Pontevedra, Pazos de Borbén	42.277028	-8.525778	02/07/2016	S.E. Silva, R. Mendes \& M.J.J. Dores	\times	H1	MN652685
BOM_GEL_010	B. t. lusitanicus	F	1	Spain		Pontevedra, Pazos de Borbén	42.302028	-8.546667	02/07/2016	S.E. Silva, R. Mendes \& M.J. Dores	\times	H1	MN652686
BOM_GEL_016	B. t. lusitanicus	F	1	Spain		Pontevedra, Soutomaior	42.331472	-8.563556	02/07/2016	S.E. Silva, R. Mendes \& M.J.J. Dores	\times	H1	MN652687
BOM_GEL_021	B. t. lusitanicus	F	1	Spain		Pontevedra, Soutomaior	42.308389	-8.5495	02/07/2016	S.E. Silva, R. Mendes \& M.J. Dores	\times	H1	MN652688
BOM_GEL_026	B. t. lusitanicus	F	1	Spain		Pontevedra, Soutomaior	42.339139	-8.471333	02/07/2016	S.E. Silva, R. Mendes \& M.J. Dores	\times	H1	MN652689
BOM_MLL_001	B. t. lusitanicus	F	1	Spain		Monforte de Lemos, Canabal	42.48316	-7.59038	04/07/2017	S.E. Silva \& R. Mendes	\times	H1	MN652690
BOM_MLL_003	B. t. lusitanicus	F	1	Spain		Monforte de Lemos, Pantón	42.48619	-7.59861	04/07/2017	S.E. Silva \& R. Mendes	\times	H1	MN652691
BOM_MLL_010	B. t. lusitanicus	F	1	Spain		Monforte de Lemos, Pantón	42.51736	-7.67458	04/07/2017	S.E. Silva, R. Mendes \& M.J. Dores	\times	H1	MN652692
BOM_MLL_011	B. t. lusitanicus	F	1	Spain		Lugo, Monforte de Lemos	42.54425	-7.603667	03/07/2016	S.E. Silva, R. Mendes \& M.J. Dores	\times	H1	MN652693
BOM_MLL_026	B. t. lusitanicus	F	1	Spain		Lugo, Monforte de Lemos	42.549833	-7.612667	03/07/2016	S.E. Silva, R. Mendes \& M.J. Dores	\times	H1	MN652694
BTL_075	B. t. lusitanicus	F	1	Spain		Ourense, Serra da Enciña da Lastra	42.486833	-6.860333	12/05/2014	E. Marabuto	\times	H1	MN652695
BTL_076	B. t. I usitanicus	F	1	Spain		Ourense, Serra da Enciña da Lastra	42.486833	-6.860333	12/05/2014	E. Marabuto	\times	H1	MN652696
BOM_MLH_010	B. t. lusitanicus	F	1	Spain		Ourense, A Veiga	42.232389	-6.941028	03/07/2016	S.E. Silva, R. Mendes \& M.J. Dores	x	H1	MN652697
BOM_MLH_016	B. t. lusitanicus	F	1	Spain		Ourense, Serra da Enciña da Lastra	42.486833	-6.860333	12/05/2014	E. Marabuto	x	H4	MN652698
BOM_SMH_003	B. .t.lusitanicus	F	1	Portugal	Iberian Peninsula, west	Serra de São Mamede	39.310361	-7.380139	23/04/2017	S.E. Silva	x	H1	MN652699
BOM_SMH_004	B. t. I usitanicus	F	1	Portugal		Serra de São Mamede	39.310361	-7.380139	23/04/2017	S.E. Silva	\times	H1	MN65270
BOM_SMH_005	B. .t.lusitanicus	F	1	Portugal		Serra de São Mamede	39.308694	-7.393694	23/04/2017	S.E. Silva	\times	H1	MN65270
BOM_SMH_006	B. .t.lusitanicus	F	1	Portugal		Serra de São Mamede	39.308694	-7.393694	23/04/2017	S.E. Silva	\times	H1	MN65270
BOM_SMH_013	B. .t.lusitanicus	F	1	Portugal		Serra de São Mamede	39.312944	-7.359917	19/06/2016	S.E. Siva	\times	H1	MN652703
BOM_SML_001	B. .t.lusitanicus	F	1	Portugal		Portalegre, Gaféte	39.412861	-7.651167	23/04/2017	S.E. Silva	\times	H1	MN652704
BTL_306	B. .t.lusitanicus	F	1	Portugal	($\mathrm{n}=56$)	Abrantes, Mouriscas	39.508733	-8.103575	08/04/2012	E. Figueiredo	\times	H1	MN652705
BTL_048	B. t. lusitanicus	F	1	Portugal		Coimbra, Larçã	40.327167	-8.409417	066/05/2014	E. Marabuto	\times	H1	MN652706
BTL_050	B. t. lusitanicus	F	1	Portugal		Coimbra, Rabaçal	40.031833	-8.435833	05/05/2014	E. Marabuto	\times	H1	MN652707
BOM_CML_001	B. .t. lusitanicus	F	1	Portugal		Mealhada, Pampilhosa do Botão	40.322861	-8.441917	21/05/2017	S.E. Silva	\times	H1	MN652708
BOM_CML_002	B. .t.lusitanicus	F	1	Portugal		Mealhada, Pampilhosa do Botão	40.331306	-8.423778	21/05/2017	S.E. Silva	\times	H1	MN652709
BOM_CML_003	B. .t. lusitanicus	F	1	Portugal		Mealhada, Pampilhosa do Botão	40.331306	-8.423778	21/05/2017	S.E. Silva	\times	H1	MN652710
BOM_CML_006	B. t. I usitanicus	F	1	Portugal		Mealhada, Pampilhosa do Botão	40.328694	-8.40275	21/05/2017	S.E. Silva	\times	H1	MN652711
BOM_CML_007	B. t. lusitanicus	F	1	Portugal		Mealhada, Pampilhosa do Botão	40.328694	-8.40275	21/05/2017	S.E. Silva	\times	H1	MN652712
BOM_CMH_006	B. t. lusitanicus	F	1	Portugal		Serra do Caramulo	40.573694	-8.157056	21/05/2017	S.E. Silva	\times	H1	MN652713
BOM_CMH_009	B. t. lusitanicus	F	1	Portugal		Serra do Caramulo	40.554528	-8.195139	21/05/2017	S.E. Silva	\times	H1	MN652714
BOM_CMH_011	B. t. lusitanicus	F	1	Portugal		Serra do Caramulo	40.554528	-8.195139	21/05/2017	S.E. Silva	\times	H1	MN652715
BOM_CMH_012	B. t. lusitanicus	F	1	Portugal		Serra do Caramulo	40.548806	-8.202083	21/05/2017	S.E. Silva	\times	H1	MN652716
BOM_CMH_015	B. t. lusitanicus	F	1	Portugal		Serra do Caramulo	40.554167	-8.198556	01107/2016	S.E. Silva, R. Mendes \& M.J. Dores	\times	H1	MN652717
BTL_316	B. t. lusitanicus	F	1	Portugal		Oliveira de Frades, Reigoso	40.67725	-8.274169	16/06/2013	E. Figueiredo	\times	H1	MN652718
BOM_SEL_001	B. t. I usitanicus	F	1	Portugal		Penalva do Castelo	40.644139	-7.713361	04/07/2016	S.E. Silva, R. Mendes \& M.J. Dores	\times	H1	MN652719
BOM_SEL_002	B. t. lusitanicus	F	1	Portugal		Penalva do Castelo	40.644139	-7.713361	04/07/2016	S.E. Silva, R. Mendes \& M.J. Dores	\times	H2	MN652720
BOM_SEL_008	B. t. lusitanicus	F	1	Portugal		Penalva do Castelo	40.663583	-7.683472	04/07/2016	S.E. Silva, R. Mendes \& M.J. Dores	\times	H1	MN652721
BOM_SEL_013	B. t. lusitanicus	F	1	Portugal		Penalva do Castelo	40.671056	-7.641194	04/07/2016	S.E. Silva, R. Mendes \& M.J. Dores	\times	H1	MN652722
BOM_SEL_026	B. .t. lusitaricus	F	1	Portugal		Penalva do Castelo	40.665444	-7.657806	04/07/2016	S.E. Siva, R. Mendes \& M.J. Dores	\times	H1	MN652723
BTL_203	B. .t. lusitanicus	F	1	Portugal		Serra da Estrela	40.431731	-7.51575	11/06/2014	T.G. Laurentino	\times	H1	MN652724
BTL_213	B. .t. lusitaricus	F	1	Portugal		Serra da Estrela	40.365167	-7.642167	11106/2014	E. Marabuto	\times	H1	MN652725

BTL_217	B. .t. lusitanicus	F	1	Portugal
BTL_220	B. .t. lusitanicus	F	1	Portugal
BOM_SEH_002	B. .t. lusitanicus	F	1	Portugal
BOM_SEH_007	B. .t. lusitanicus	F	1	Portugal
BOM_SEH_010	B. .t. lusitanicus	F	1	Portugal
BOM_SEH_027	B. t. Iusitanicus	F	1	Portugal
BOM_SEH_029	B. .t lusitanicus	F	1	Portugal
BTL_001	B. t. lusitanicus	F	1	Portugal
BTL_297	B. .t. lusitanicus	F	1	Portugal
BTL_021	B. .t. lusitanicus	F	1	Portugal
BTL_037	B. .t. lusitanicus	F	1	Portugal
BTL_059	B. .t. lusitanicus	F	1	Portugal
BTL_324	B. .t. lusitanicus	F	1	Portugal
BTL_278	B. t. lusitanicus	F	1	Portugal
BTL_281	B. .t. Iusitanicus	F	1	Portugal
BTL_282	B. t. lusitanicus	F	1	Portugal
BTL_283	B. t. Iusitanicus	F	1	Portugal
BTL_288	B. t. lusitanicus	F	1	Portugal
BOM_SAL_002	B. t. lusitanicus	F	1	Portugal
BOM_SAL_003	B. t. lusitanicus	F	1	Portugal
BOM_SAL_004	B. t. lusitanicus	F	1	Portugal
BOM_SAL_005	B. .t lusitanicus	F	1	Portugal
BOM_SAL_018	B. .t Iusitanicus	F	1	Portugal
BTL_201	B. .t. lusitanicus	F	1	Portugal
BOM_SAH_006	B. .t. lusitanicus	F	1	Portugal
BOM_SAH_008	B. .t. lusitanicus	F	1	Portugal
BOM_SAH_009	B. .t. lusitanicus	F	1	Portugal
BOM_SAH_013	B. .t. lusitanicus	F	1	Portugal
BOM_SAH_014	B. .t. lusitanicus	F	1	Portugal
BOM_MOH_001	B. .t. lusitanicus	F	1	Portugal
BOM_MOH_002	B. .t. lusitanicus	F	1	Portugal
BOM_MOH_008	B. .t. lusitanicus	F	1	Portugal
BTL_200	B. .t. lusitanicus	F	1	Portugal
BTL_356	B. .t. lusitanicus	F	1	Portugal
BTL_357	B. .t. Iusitanicus	F	1	Portugal
BTL_358	B. .t. lusitanicus	F	1	Portugal
BTL_346	B. .t. lusitanicus	F	1	Portugal
BTL_347	B. .t. lusitanicus	F	1	Portugal
BTL_349	B. .t. lusitanicus	F	1	Portugal
BOM_MOL_001	B. .t. lusitanicus	F	1	Portugal
BOM_MOL_005	B. .t. lusitanicus	F	1	Portugal
BOM_MOL_007	B. t. Iusitanicus	F	1	Portugal
BOM_CAH_002	B. t. Iusitanicus	F	1	Portugal
BOM_CAH_004	B. t. lusitanicus	F	1	Portugal
BOM_CAH_006	B. t. lusitanicus	F	1	Portugal
BOM_CAL_001	B. t. lusitanicus	F	1	Portugal
BOM_CAL_003	B. t. lusitanicus	F	1	Portugal
BOM_CAL_009	B. t. lusitanicus	F	1	Portugal
BTL_235	B. .t. lusitanicus	F	1	Portugal
BOM_PIL_001	B. .t Iusitanicus	F	1	Spain
BOM_PIL_008	B. .t Iusitanicus	F	1	Spain
BOM_PIL_009	B. .t. lusitanicus	F	1	Spain
BOM_PIL_011	B. .t. lusitanicus	F	1	Spain
BOM_PIL_012	B. .t. lusitanicus	F	1	Spain
BOM_PIH_021	B. .t. lusitanicus	F	1	Spain
BOM_NAV_002	B. .t. lusitanicus	F	1	Spain
BOM_NAV_004	B. .t. lusitanicus	F	1	Spain
BTL_077	B. .t. lusitanicus	?	1	Spain
BTL_078	B. .t. lusitanicus	F	1	Spain
BTL_092	B. .t. lusitanicus	F	1	Spain

	Serra da Estrela	40.410833	-7.671833	11106/2014	E. Marabuto	x	H1	MN652726
	Serra da Estrela	40.365167	-7.642167	11106/2014	E. Marabuto	\times	H1	MN652727
	Serra da Estrela	40.408528	-7.663583	04/07/2016	S.E. Sivv, R. Mendes \& M.J. Dores	\times	H1	MN652728
	Serra da Estrela	40.406306	-7.566139	04/07/2016	S.E. Silva, R. Mendes \& M.J. Dores	\times	H1	MN652729
	Serra da Estrela	40.398917	-7.552556	04/07/2016	S.E. Silva, R. Mendes \& M.J. Dores	\times	H1	MN652730
	Serra da Estrela	40.410833	-7.671833	11/06/2014	E. Marabuto	\times	H1	MN652731
	Serra da Estrela	40.365167	-7.642167	11106/2014	E. Marabuto	\times	H1	MN652732
	Oeiras, Lage	38.709267	-9.311717	10/04/2014	E. Marabuto	\times	H1	MHO18622
	Oeiras	38.690789	-9.313989	25/07/2014	V.L. Nunes	\times	H1	MHO18657
	Cascais	38.743	-9.4307	2704/2014	E. Marabuto	\times	H1	MHO18623
	Lisboa, near the airport	38.768117	-9.148017	01/05/2014	V.L. Nunes	\times	H1	MHO18626
	Lisboa, near the airport	38.768117	-9.148017	13/05/2014	V.L. Nunes	\times	H1	MHO18627
	Lisboa, Tapada da Ajuda	38.707639	-9.182306	13/04/2014	E. Figueiredo	\times	H1	MHO18660
	Bombarral, Portela	39.244861	-9.134778	17107/2014	O.S. Paulo, S.E. Silva \& A.S. Rodrigues	\times	H1	MHO18652
	Cadaval	39.240472	-9.099444	17107/2014	O.S. Paulo, S.E. Silva \& A.S. Rodrigues	\times	H1	MHO18653
	Cadaval, Vilar	39.188861	-9.112944	17107/2014	O.S. Paulo, S.E. Silva \& A.S. Rodrigues	\times	H1	MHO18654
	Alenquer, Vila Verde dos Francos	39.153389	-9.112583	17107/2014	O.S. Paulo, S.E. Silva \& A.S. Rodrigues	\times	H1	MHO18655
	Alenquer, Vila Verde dos Francos	39.153389	-9.112583	17107/2014	O.S. Paulo, S.E. Silva \& A.S. Rodrigues	\times	H1	MHO18656
	Alenquer, Abrigada	39.136833	-9.019722	16/04/2017	S.E. Silva	\times	H1	MN652733
	Alenquer, Abrigada	39.136833	-9.019722	16/04/2017	S.E. Silva	\times	H1	MN652734
	Alenquer, Abrigada	39.143333	-9.038556	16/04/2017	S.E. Silva	\times	H1	MN652735
	Alenquer, Abrigada	39.143333	-9.038556	16/04/2017	S.E. Siva	\times	H1	MN652736
	Alenquer, Ota	39.10375	-9.0115	26/06/2016	S.E. Silva	\times	H1	MN652737
	Foz do Arelho	39.429139	-9.223472	11/06/2014	B. Costa	\times	H1	MHO18630
	Serra de Aire e Candeeiros	39.457528	-8.900222	26/06/2016	S.E. Silva	\times	H2	MN652738
	Serra de Aire e Candeeiros	39.471139	-8.904333	26/06/2016	S.E. Siva	\times	H1	MN652739
	Serra de Aire e Candeeiros	39.471139	-8.904333	26/06/2016	S.E. Silva	\times	H1	MN652740
	Serra de Aire e Candeeiros	39.478861	-8.888917	26/06/2016	S.E. Silva	\times	H1	MN652741
	Serra de Aire e Candeeiros	39.503083	-8.872111	26/06/2016	S.E. Silva	\times	H1	MN652742
IP-SW	Serra de Monchique	37.321593	-8.5957798	18/03/2017	S.E. Silva, A.S.B. Rodrigues \& O.S. Paulo	\times	H1	MN652743
	Serra de Monchique	37.321593	-8.5957798	18/03/2017	S.E. Silva, A.S.B. Rodrigues \& O.S. Paulo	\times	H1	MN652744
Iberian	Serra de Monchique	37.317333	-8.583278	18/03/2017	S.E. Silva, A.S.B. Rodrigues \& O.S. Paulo	\times	H1	MN652745
	Silves, Armação de Pêra	37.102358	-8.368486	08/06/2014	V.L. Nunes	\times	H1	MN65274
south	Sines, Porto Covo	37.854286	-8.793353	16/06/2014	E. Figueiredo	\times	H1	MHO18670
	Sines, Porto Covo	37.854286	-8.793353	16/06/2014	E. Figueiredo	\times	H3	MHO18671
	ines, Porto Covo	37.854286	-8.793353	16/06/2014	E. Figueiredo	\times	H1	MHO18672
($\mathrm{n}=20$)	Odemira, Zambujeira do Mar	37.534159	-8.785925	16/06/2014	E. Figueiredo	\times	H1	MN652747
	Odemira, Zambujeira do Mar	37.534159	-8.785925	16/06/2014	E. Figueiredo	\times	H1	MN652748
	Odemira, Zambujeira do Mar	37.534159	-8.785925	16/06/2014	E. Figueiredo	\times	H1	MN652749
	Odemira, Luzianes	37.5911472	-8.488128	18/03/2017	S.E. Silva, A.S.B. Rodrigues \& O.S. Paulo	\times	H1	MN652750
	Odemira, Azinhaga do Calvário	37.514778	-8.476028	18/03/2017	S.E. Silva, A.S.B. Rodrigues \& O.S. Paulo	\times	H1	MN652751
	Odemira, Santa Clara a Velha	37.513111	-8.471389	18/03/2017	S.E. Silva, A.S.B. Rodrigues \& O.S. Paulo	\times	H1	MN652752
	Serra do Caldeirão, Alcaria do Cume	37.204217	-7.687183	2205/2016	S.E. Silva, A.S.B. Rodrigues \& O.S. Paulo	\times	H1	MN652753
	Serra do Caldeirão, Alcaria do Cume	37.219033	-7.705183	2205/2016	S.E. Silva, A.S.B. Rodrigues \& O.S. Paulo	\times	H1	MN652754
	Serra do Caldeirão, Alcaria do Cume	37.244667	-7.742817	2205/2016	S.E. Silva, A.S.B. Rodrigues \& O.S. Paulo	\times	H1	MN652755
	Mértola, Corte de Gafo de Cima	37.7194141	-7.7067368	19/03/2017	S.E. Silva, A.S.B. Rodrigues \& O.S. Paulo	\times	H1	MN652756
	Almodôvar	37.5124	-8.057394	19/03/2017	S.E. Silva, A.S.B. Rodrigues \& O.S. Paulo	\times	H1	MN652757
	Almodôvar	37.5127963	-8.0692471	19/03/2017	S.E. Silva, A.S.B. Rodrigues \& O.S. Paulo	\times	H1	MN652758
	Beja, Beringel	38.055417	-7.9973	08/07/2014	R. Mendes	\times	H1	MN652759
IP-NO	Navarra, Caparroso	42.300444	-1.650056	11/06/2017	S.E. Silva, R. Mendes \& A.S.B. Rodrigues	\times	H1	MN652760
	Navarra, Mélida	42.360944	-1.546083	11106/2017	S.E. Silva, R. Mendes \& A.S.B. Rodrigues	\times	H1	MN652761
Iberian	Navarra, Mélida	42.360944	-1.546083	11/06/2017	S.E. Silva, R. Mendes \& A.S.B. Rodrigues	\times	H1	MN652762
Peninsula	Navarra, Carcastillo	42.371722	-1.457694	11/06/2017	S.E. Silva, R. Mendes \& A.S.B. Rodrigues	\times	H1	MN652763
	Navarra, Carcastillo	42.371722	-1.457694	11/06/2017	S.E. Silva, R. Mendes \& A.S.B. Rodrigues	\times	H1	MN652764
	Navarra, Abaurregaina	42.902528	-1.187833	12/06/2017	S.E. Silva, R. Mendes \& A.S.B. Rodrigues	\times	H1	MN652765
	Navarra, Pamplona	42.797	-1.627778	29/06/2014	E. Figueiredo	\times	H1	MN652766
($\mathrm{n}=28$)	Navarra, Pamplona	42.797	-1.627778	29/06/2014	E. Figueiredo	\times	H1	MN652767
	Cantabria, Vega de Liébana	43.120833	-4.626	14/05/2014	E. Marabuto	\times	H1	MN652768
	Cantabria, Vega de Liébana	43.120833	-4.626	14/05/2014	E. Marabuto	\times	H1	MN652769
	Cantabria, Vega de Liébana	43.086333	-4.7245	14/05/2014	E. Marabuto	\times	H1	MN652770

BTL_094	B. .t. lusitanicus	F	1	Spain
BTL_099	B. .t. lusitanicus	F	1	Spain
BOM_CTL_002	B. .t lusitanicus	F	1	Spain
BOM_CTL_003	B. .t lusitanicus	F	1	Spain
BOM_CTL_010	B. t. lusitanicus	F	1	Spain
BOM_CTH_002	B. .t lusitanicus	F	1	Spain
BOM_CTH_003	B. .t lusitanicus	F	1	Spain
BOM_PEH_001	B. .t lusitanicus	F	1	Spain
BOM_PEH_002	B. .t. lusitanicus	F	1	Spain
BOM_PEH_003	B. .t lusitanicus	F	1	Spain
BOM_PEH_010	B. .t. lusitanicus	F	1	Spain
BOM_PEH_013	B. .t lusitanicus	F	1	Spain
BOM_PEL_002	B. .t lusitanicus	F	1	Spain
BOM_PEL_006	B. .t lusitanicus	F	1	Spain
BOM_PEL_007	B. t. lusitanicus	F	1	Spain
BOM_PEL_010	B. t. lusitanicus	F	1	Spain
BOM_PEL_011	B. t. lusitanicus	F	1	Spain
BOM_GDH_001	B. . I lusitanicus	F	1	Spain
BOM_TOL_001	B. .t lusitanicus	F	1	Spain
BOM_TOL_002	B. .t lusitanicus	F	1	Spain
BOM_TOH_010	B. .t lusitanicus	F	1	Spain
BOM_TOH_011	B. .t lusitanicus	F	1	Spain
BOM_TOH_015	B. .t lusitanicus	F	1	Spain
BOM_TOH_025	B. t. lusitanicus	F	1	Spain
BOM_TOH_028	B. t. lusitanicus	F	1	Spain
BOM_GUH_003	B. t. lusitanicus	F	1	Spain
BOM_GUH_004	B. t. lusitanicus	F	1	Spain
BOM_GUH_006	B. t. lusitanicus	F	1	Spain
BOM_GUH_016	B. t. lusitanicus	F	1	Spain
BOM_GUH_017	B. t. lusitanicus	F	1	Spain
BTL_150	B. .t. lusitanicus	F	1	Spain
BTL_144	B. .t lusitanicus	F	1	Spain
BTL_145	B. .t lusitanicus	F	1	Spain
BTL_148	B. .t. lusitanicus	F	1	Spain
BTL_301	B. .t. lusitanicus	F	1	Spain
BOM_GRH_002	B. .t lusitanicus	F	1	Spain
BOM_GRH_004	B. .t. lusitanicus	F	1	Spain
BOM_GRH_008	B. .t lusitanicus	F	1	Spain
BOM_GRH_009	B. .t. lusitanicus	F	1	Spain
BOM_GRH_023	B. .t lusitanicus	F	1	Spain
BOM_GRL_002	B. .t lusitanicus	F	1	Spain
BOM_GRL_003	B. .t lusitanicus	F	1	Spain
BOM_GRL_004	B. .t lusitanicus	F	1	Spain
BOM_GRL_009	B. .t lusitanicus	F	1	Spain
BOM_GRL_010	B. .t lusitanicus	F	1	Spain
BTL_086	B. .t lusitanicus	F	1	Spain
BTL_089	B. .t lusitanicus	F	1	Spain
BTL_090	B. .t lusitanicus	F	1	Spain
BTL_097	B. .t lusitanicus	F	1	Spain
BOM_ESH_003	B. .t. lusitanicus	F	1	Spain
BOM_ESH_010	B. .t lusitanicus	F	1	Spain
BOM_ESH_013	B. .t. lusitanicus	F	1	Spain
BTL_115	B. .t. lusitanicus	F	1	Spain
BTL_118	B. .t. lusitanicus	F	1	Spain
BTL_121	B. .t. lusitanicus	F	1	Spain
BTL_123	B. .t. lusitanicus	F	1	Spain
BTL_124	B. .t. lusitanicus	F	1	Spain
BTL_125	B. .t. lusitanicus	F	1	Spain
BTL_109	B. .t lusitanicus	F	1	Spain
BTL_110	B. .t lusitanicus	F	1	Spain

	Cantabria, Vega de Liébana	43.086333	-4.7245	14/05/2014	E. Marabuto	\times	H1	MN652771
	Cantabria, Vega de Liébana	43.086333	-4.7245	14/05/2014	E. Marabuto	x	H1	MN652772
	Navarra, Mendaza	42.684667	-2.270778	12/06/2017	S.E. Silva, R. Mendes \& A.S. . Rodrigues	\times	H1	MN652773
	Navarra, Mendaza	42.684667	-2.270778	12/06/2017	S.E. Silva, R. Mendes \& A.S.B. Rodrigues	\times	H1	MN652774
	Álava, Bernedo	42.627278	-2.504111	12/06/2017	S.E. Silva, R. Mendes \& A.S.B. Rodrigues	\times	H1	MN652775
	Burgos, Merindad de Cuesta	42.858028	-3.4275	13/06/2017	S.E. Silva, R. Mendes \& A.S.B. Rodrigues	\times	H1	MN652776
	Burgos, Merindad de Cuesta	42.858028	-3.4275	13/06/2017	S.E. Silva, R. Mendes \& A.S.B. Rodrigues	\times	H1	MN652777
	Cantabria, Allende	43.21725	-4.593722	13/06/2017	S.E. Silva, R. Mendes \& A.S.B. Rodrigues	\times	H1	MN652778
	Cantabria, Allende	43.21725	-4.593722	13/06/2017	S.E. Silva, R. Mendes \& A.S.B. Rodrigues	\times	H1	MN652779
	Cantabria, Allende	43.21725	-4.593722	13/06/2017	S.E. Silva, R. Mendes \& A.S.B. Rodrigues	\times	H1	MN652780
	Léon, Boca de Huérgano	42.984167	-4.907944	13/06/2017	S.E. Silva, R. Mendes \& A.S.B. Rodrigues	\times	H1	MN652781
	Léon, Boca de Huérgano	42.984167	-4.907944	13/06/2017	S.E. Silva, R. Mendes \& A.S.B. Rodrigues	\times	H1	MN652782
	Léon, Cistierna	42.748556	-5.140139	13/06/2017	S.E. Silva, R. Mendes \& A.S. . Rodrigues	\times	H1	MN652783
	Léon, Cubillas de Rueda	42.7285	-5.1455	13/06/2017	S.E. Silva, R. Mendes \& A.S.B. Rodrigues	\times	H1	MN652784
	Léon, Cubillas de Rueda	42.7285	-5.1455	13/06/2017	S.E. Silva, R. Mendes \& A.S. . Rodrigues	\times	H2	MN652785
	Léon, Cubillas de Rueda	42.676	-5.169167	13/06/2017	S.E. Silva, R. Mendes \& A.S.B. Rodrigues	\times	H1	MN652786
	Léon, Cubillas de Rueda	42.676	-5.169167	13/06/2017	S.E. Silva, R. Mendes \& A.S. . Rodrigues	\times	H1	MN652787
IP-CE	Avila, Sierra de Gredos, Cuevas de Valle	40.309167	-5.016778	10/06/2017	S.E. Silva, R. Mendes \& A.S.B. Rodrigues	\times	H1	MN652788
	Ciudad Real, Santa Quiteria	39.257099	-4.3604809	03/04/2017	S.E. Silva, R. Mendes \& O.S. Paulo	x	H1	MN652789
Iberian	Ciudad Real, Santa Quiteria	39.257099	-4.3604809	03/04/2017	S.E. Silva, R. Mendes \& O.S. Paulo	\times	H1	MN652790
	Toledo, Montes de Toledo, Hontanar	39.586946	-4.506851	03/04/2017	S.E. Silva, R. Mendes \& O.S. Paulo	\times	H1	MN652791
centre	Toledo, Montes de Toledo, Hontanar	39.586946	-4.506851	03/04/2017	S.E. Silva, R. Mendes \& O.S. Paulo	x	H1	MN652792
	Toledo, Montes de Toledo, Hontanar	39.5865000001	-4.507	15/06/2016	S.E. Silva, R. Mendes \& E. Marabuto	\times	H1	MN652793
	Toledo, Montes de Toledo, Hontanar	39.5752237423	-4.5410353884	15/06/2016	S.E. Silva, R. Mendes \& E. Marabuto	\times	H1	MN652794
($\mathrm{n}=32$)	Toledo, Montes de Toledo, Valdeazores	39.4500492018	-4.6827687569	15/06/2016	S.E. Silva, R. Mendes \& E. Marabuto	\times	H1	MN652795
	Cáceres, Sierra de Guadalupe, Guadalupe	39.4615341	-5.3295201	04/04/2017	S.E. Siva, R. Mendes \& O.S. Paulo	\times	H1	MN652796
	Cáceres, Sierra de Guadalupe, Cañamero	39.4725	-5.362778	04/04/2017	S.E. Siva, R. Mendes \& O.S. Paulo	\times	H1	MN652797
	Cáceres, Sierra de Guadalupe, Cañamero	39.476167	-5.36725	04/04/2017	S.E. Siva, R. Mendes \& O.S. Paulo	\times	H1	MN652798
	Cáceres, Sierra de Guadalupe, Alía	39.500917	-5.345	04/04/2017	S.E. Siva, R. Mendes \& O.S. Paulo	\times	H1	MN652799
	Cáceres, Sierra de Guadalupe, Alía	39.500917	-5.345	04/04/2017	S.E. Siva, R. Mendes \& O.S. Paulo	\times	H1	MN652800
	Madrid, Loeches	40.371944	-3.379861	26/05/2014	V.L. Nunes, T.G. Laurentino \& E. Marabuto	\times	H1	MN652801
	Madrid, Sierra de Guadarrama, Rascafria	40.878583	-3.847806	26/05/2014	V.L. Nunes, T.G. Laurentino \& E. Marabuto	\times	H1	MN652802
	Madrid, Sierra de Guadarrama, Rascafria	40.878583	-3.847806	26/05/2014	V.L. Nunes, T.G. Laurentino \& E. Marabuto	\times	H1	MN652803
	Madrid, Sierra de Guadarrama, Rascafria	40.878583	-3.847806	26/05/2014	V.L. Nunes, T.G. Laurentino \& E. Marabuto	x	H1	MN652804
	Madrid, Sierra de Guadarrama, Real Sitio de San IIdefonso	40.900481	-4.009089	13/08/2014	V.L. Nunes, T.G. Laurentino \& E. Marabuto	\times	H1	MN652805
	Madrid, Sierra de Guadarrama, Real Sitio de San IIdefonso	40.861	-4.027333	11/06/2017	S.E. Silva, R. Mendes \& A.S.B. Rodrigues	x	H1	MN652806
	Madrid, Sierra de Guadarrama, Real Sitio de San IIdefonso	40.861	-4.027333	11/06/2017	S.E. Silva, R. Mendes \& A.S.B. Rodrigues	\times	H1	MN652807
	Madrid, Sierra de Guadarrama, Rascafria	40.872	-3.885	11/06/2017	S.E. Silva, R. Mendes \& A.S.B. Rodrigues	x	H1	MN652808
	Madrid, Sierra de Guadarrama, Rascafria	40.872	-3.885	11/06/2017	S.E. Silva, R. Mendes \& A.S.B. Rodrigues	\times	H1	MN652809
	Madrid, Sierra de Guadarrama, Rascafria	40.878583	-3.847806	26/05/2014	V.L. Nunes, T.G. Laurentino \& E. Marabuto	\times	H1	MN652810
	Segovia, Cerezo de Arriba	41.245	-3.548722	11/06/2017	S.E. Silva, R. Mendes \& A.S.B. Rodrigues	\times	H1	MN652811
	Segovia, Ribota	41.358972	-3.44675	11/06/2017	S.E. Silva, R. Mendes \& A.S.B. Rodrigues	\times	H1	MN652812
	Segovia, Ribota	41.358972	-3.44675	11/06/2017	S.E. Silva, R. Mendes \& A.S.B. Rodrigues	\times	H1	MN652813
	Soria, Valdealvillo	41.649472	-2.891194	11/06/2017	S.E. Silva, R. Mendes \& A.S.B. Rodrigues	x	H1	MN652814
	Soria, Villaciervos	41.752611	-2.651472	11/06/2017	S.E. Silva, R. Mendes \& A.S.B. Rodrigues	\times	H1	MN652815
	Valladolid, Castronuevo de Esgueva	41.686667	-4.597	16/05/2014	E. Marabuto	\times	H1	MN652816
	Valladolid, Castronuevo de Esgueva	41.686667	-4.597	16/05/2014	E. Marabuto	\times	H1	MN652817
	Valladolid, Castronuevo de Esgueva	41.686667	-4.597	16/05/2014	E. Marabuto	\times	H1	MN652818
	Valladolid, Castronuevo de Esgueva	41.686667	-4.597	16/05/2014	E. Marabuto	\times	H1	MN652819
IP-SE	Murcia, Sierra Espuña	37.8627000005	-1.55323	12/06/2016	S.E. Silva, R. Mendes \& E. Marabuto	\times	H1	MN652820
	Murcia, Sierra Espuña	37.8650027781	-1.5713306989	12/06/2016	S.E. Silva, R. Mendes \& E. Marabuto	\times	H1	MN652821
Iberian	Murcia, Sierra Espuña	37.85508	-1.568043	11/07/2017	S.E. Silva \& R. Mendes	\times	H3	MN652822
Peninsula,	Granada, Puebla de Don Fadrique	37.953222	-2.408	28/05/2014	V.L. Nunes, T.G. Laurentino \& E. Marabuto	x	H1	MN652823
southeast	Granada, Puebla de Don Fadrique	38.042361	-2.472611	28/05/2014	V.L. Nunes, T.G. Laurentino \& E. Marabuto	\times	H1	MN652824
	Granada, Puebla de Don Fadrique	37.953222	-2.408	28/05/2014	V.L. Nunes, T.G. Laurentino \& E. Marabuto	\times	H1	MN652825
($\mathrm{n}=38$)	Granada, Puebla de Don Fadrique	38.064417	-2.5215	28/05/2014	V.L. Nunes, T.G. Laurentino \& E. Marabuto	x	H1	MN652826
($\mathrm{n}=38$)	Granada, Puebla de Don Fadrique	38.042361	-2.472611	28/05/2014	V.L. Nunes, T.G. Laurentino \& E. Marabuto	\times	H1	MN652827
	Granada, Puebla de Don Fadrique	37.953222	-2.408	28/05/2014	V.L. Nunes, T.G. Laurentino \& E. Marabuto	x	H5	MN652828
	Almería, Sierra Maria-Los Vélez	37.694417	-2.174639	28/05/2014	V.L. Nunes, T.G. Laurentino \& E. Marabuto	x	H1	MN652829
	Almería, Sierra Maria-Los Vêlez	37.694417	-2.174639	28/05/2014	V.L. Nunes, T. . . Laurentino \& E. Marabuto	\times	H1	MN652830

BTL_112	B. .t. lusitanicus	F	1	Spain
BTL_136	B. .t.lusitanicus	F	1	Spain
BTL_138	B. .t. lusitanicus	F	1	Spain
BTL_141	B. .t.lusitanicus	F	1	Spain
BOM_ALH_001	B. .t.lusitanicus	F	1	Spain
BOM_ALH_003	B. .t.lusitanicus	F	1	Spain
BOM_ALH_009	B. .t.lusitanicus	F	1	Spain
BOM_ALH_016	B. .t. lusitanicus	F	1	Spain
BOM_ROL_001	B. .t.lusitanicus	F	1	Spain
BOM_ROL_002	B. .t. lusitanicus	F	1	Spain
BOM_ROL_008	B. .t.lusitanicus	F	1	Spain
BOM_ROL_009	B. .t. lusitanicus	F	1	Spain
BOM_ROH_001	B. .t. lusitanicus	F	1	Spain
BOM_ROH_002	B. t. lusitanicus	F	1	Spain
BOM_ROH_003	B. t. lusitanicus	F	1	Spain
BOM_ROH_004	B. t. lusitanicus	F	1	Spain
BOM_ROH_014	B. t. lusitanicus	F	1	Spain
BTL_185	B. t. lusitanicus	F	1	Spain
BTL_191	B. t. lusitanicus	F	1	Spain
BTL_197	B. t. lusitanicus	F	1	Spain
BTL_168	B. t. lusitanicus	F	1	Spain
BTL_180	B. .t. lusitanicus	F	1	Spain
BOM_NEH_006	B. t. lusitanicus	F	1	Spain
BOM_NEH_007	B. t. lusitanicus	F	1	Spain
BOM_NEH_011	B. t. lusitanicus	F	1	Spain
BOM_NEH_013	B. t. lusitanicus		1	Spain
BOM_NEH_038	B. t. lusitanicus	-	1	Spain

Almeria, Sierra Maria-Los Vélez	37.694417	-2.174639	28/05/2014	V.L. Nunes, T.G. Laurentino \& E. Marabuto	\times	H1	MN652831
Alicante, Serra de Serrella-Barranc Fort	38.697333	-0.309361	27/05/2014	V.L. Nunes, T.G. Laurentino \& E. Marabuto	\times	H1	MN652832
Alicante, Serra de Serrella-Barranc Fort	38.697333	-0.309361	27/05/2014	V.L. Nunes, T.G. Laurentino \& E. Marabuto	\times	H1	MN652833
Alicante, Serra de Serrella-Barranc Fort	38.697333	-0.309361	27/05/2014	V.L. Nunes, T.G. Laurentino \& E. Marabuto	\times	H1	MN652834
Alicante, lbi	38.6356000015	-0.5228	13/06/2016	S.E. Silva, R. Mendes \& E. Marabuto	\times	H6	MN652835
Alicante, Serra de Serrella-Barranc Fort	38.7025000015	-0.3031000003	13/06/2016	S.E. Silva, R. Mendes \& E. Marabuto	\times	H1	MN652836
Alicante, Serra de Serrella-Barranc Fort	38.697333	-0.309361	27/05/2014	V.L. Nunes, T.G. Laurentino \& E. Marabuto	\times	H1	MN652837
Alicante, Serra de Serrella-Barranc Fort	38.697333	-0.309361	27/05/2014	V.L. Nunes, T.G. Laurentino \& E. Marabuto	\times	H1	MN652838
Sevilla, Montellano	36.993333	-5.569361	0104/2017	S.E. Silva, R. Mendes \& O.S. Paulo	\times	H1	MN652839
Sevilla, Montellano	36.993333	-5.569361	0104/2017	S.E. Silva, R. Mendes \& O.S. Paulo	\times	H1	MN652840
Sevilla, Montellano	36.984194	-5.545111	01/04/2017	S.E. Silva, R. Mendes \& O.S. Paulo	\times	H1	MN652841
Sevilla, Montellano	36.984194	-5.545111	0104/2017	S.E. Silva, R. Mendes \& O.S. Paulo	\times	H1	MN652842
Málaga, Serranía de Ronda, Pujerra	36.612167	-5.140722	01/04/2017	S.E. Silva, R. Mendes \& O.S. Paulo	\times	H1	MN652843
Málaga, Serranía de Ronda, Pujerra	36.612167	-5.140722	0104/2017	S.E. Silva, R. Mendes \& O.S. Paulo	\times	H7	MN652844
Málaga, Serranía de Ronda, Pujerra	36.612778	-5.139194	01/04/2017	S.E. Silva, R. Mendes \& O.S. Paulo	\times	H1	MN652845
Málaga, Serrania de Ronda, Pujerra	36.612778	-5.139194	0104/2017	S.E. Silva, R. Mendes \& O.S. Paulo	\times	H1	MN652846
Málaga, El Burgo	36.8001999999	. 9138	08/06/2016	S.E. Silva, R. Mendes \& E. Marabuto	\times	H1	MN652847
Granada, Sierra Nevada, El Molinillo	37.310833	-3.413889	29/05/2014	V.L. Nunes, T.G. Laurentino \& E. Marabuto	\times	H1	MN652848
Granada, Sierra Nevada, Alfacar	37.258889	-3.549167	29/05/2014	V.L. Nunes, T.G. Laurentino \& E. Marabuto	\times	H1	MN652849
Granada, Sierra Nevada, Alfacar	37.258889	-3.549167	29/05/2014	V.L. Nunes, T.G. Laurentino \& E. Marabuto	x	H1	MN652850
Granada, Sierra Nevada, Monachil	37.139167	-3.467778	29/05/2014	V.L. Nunes, T.G. Laurentino \& E. Marabuto	\times	H1	MN652851
Granada, Sierra Nevada, Monachil	37.139167	-3.467778	29/05/2014	V.L. Nunes, T.G. Laurentino \& E. Marabuto	\times	H1	MN652852
Granada, Sierra Nevada, Alfacar	37.2592	-3.54825	09/06/2016	S.E. Silva, R. Mendes \& E. Marabuto	\times	H1	MN652853
Granada, Sierra Nevada, Alfacar	37.2592	-3.54825	09/06/2016	S.E. Silva, R. Mendes \& E. Marabuto	\times	H1	MN652854
Granada, Sierra Nevada, Alfacar	37.2660500741	3.5265	09/06/2016	S.E. Silva, R. Mendes \& E. Marabuto	\times	H1	MN652855
Granada, Sierra Nevada, Monachil	37.1130500004	-3.4397	09/06/2016	S.E. Silva, R. Mendes \& E. Marabuto	\times	H1	MN652856
Granada, Sierra Nevada, Alfacar	37.258889	3.549167	29/05/2014	V.L. Nunes, T.G. Laurentino \& E. Marabuto	x	H1	MN652857

Sample Code	Taxa	Sex	n	Country / Island	Geographic region	Sampling Location	Latitude	Longitude	Date of collection	Collector(s)	mtDNA analysis	COI haplotype	GenBank accession no.
BOM_SWI_003	B. t. terrestris	F	1	Switzerland	Switzerland	Basel	-	-	08/2016	T.G. Laurentino	x	H2	MN652858
BT_046	B. t. terrestris	F	1	Germany	Germany	Rothenburg ob der Tauber	49.374933	10.17695	08/05/2014	V.L. Nunes	\times	H1	MN652859
BT_029	B. t. terrestris	M	1	France	France	Sainte-Anastasie-sur-Issole,	43.3555	6.141	23/04/2014	E. Marabuto	\times	H1	MN652860
BOM_TUR_001	B. .t dalmatinus	F	1	Turkey	Turkey	Tekirdag, Ganos Mountains	--	-	06/2016	S. Yurtsever	\times	H1	MN652861
BTX_395	B. t. audax	F	1	Great Britain	England	P. Hill near Oxford	-	-	-	T.G. Laurentino	\times	H8	MN652862
BTA_258	B. t. africanus	F	1	Morocco		Chefthaouen	35.182969	-5.222889	15/07/2014	V.L. Nunes, T.G. Laurentino \& E. Marabuto	\times	H9	MN652863
BTA_261	B. t. afficanus	F	1	Morocco	Morocco	Chefchaouen	35.182969	-5.222889	15/07/2014	V.L. Nunes, T.G. Laurentino \& E. Marabuto	\times	H9	MN652864
BTA_262	B. t. africanus	F	1	Morocco	($=4$)	Azrou	33.406333	-5.2035	16/07/2014	V.L. Nunes, T.G. Laurentino \& E. Marabuto	\times	H9	MN652865
BTA_104	B. t. africanus	F	1	Morocco		Chefchaouen	35.104	-5.139417	18/07/2014	V.L. Nunes, T.G. Laurentino \& E. Marabuto	\times	н9	MN652866

Outgroup

Sample Code	Taxa	Sex	n	Country / Island	Geographic region
BHO_067	B. hortorum	F	1	Portugal	$\begin{aligned} & \text { Outgroup } \\ & (n=13) \end{aligned}$
BLA_205	B. lapidarius	F	1	Portugal	
BLA_212	B. lapidarius	F	1	Portugal	
BLA_069	B. lapidarius	F	1	Spain	
BTL_084	B. lucorum	F	1	Spain	
BTL_103	B. lucorum	F	1	Spain	
BTL_146	B. lucorum	F	1	Spain	
BPA_229	B. pascuorum	F	1	Portugal	
BPA_068	B. pascuorum	F	1	Spain	
BPA_133	B. pascuorum	F	1	Spain	
BPA_152	B. pascuorum	F	1	Spain	

Sampling Location	Latitude	Longitude	Date of collection	Collector(s)	${ }^{\text {matDNA }}$ analysis	col haplotype	GenBank accession no.
P.N. Peneda-Gerês, Vilar da Veiga	41.73505	-8.159281	14/05/2014	T.G. Laurentino \& O.S. Paulo	x		MN652867
Serra da Estrela	40.427972	-7.654022	10/06/2014	T.G. Laurentino	x		M 652868
Serra da Estrela	40.462928	-7.513517	11/06/2014	T.G. Laurentino	x		M 6658869
Cantabria, Vega de Liébana	43.086333	-4.7245	14/05/2014	E. Marabuto	x		MN652870
Burgos, Barbadillo de Herreros	42.136667	-3.1935	15/05/2014	E. Marabuto	x		MHO18628
Léon, Sierra de Ancares	42.871333	-6.452083	12/05/2014	E. Marabuto	x		MN652871
Madrid, Sierra de Guadarrama, Rascafría	40.878583	-3.847806	26/05/2014	V.L. Nunes, T. . . Laurentino \& E. Marabuto	x	-	MHO18629
Mafra, Sobral da Abelheira	-	--	28/06/2014	O.S. Paulo, S.E. Silva \& A.S. Rodrigues	\times	-	MN652872
Cantabria, Vega de Liébana	43.086333	-4.7245	14/05/2014	E. Marabuto	\times	-	MN652873
Alicante, Serra de Serrella-Barranc Fort	38.690556	-0.287111	27/05/2014	V.L. Nunes, T. . . Laurentino \& E. Marabuto	\times	-	MN652874
Madrid, Sierra de Guadarrama, Miraflores de La Sierra	40.800278	-3.756667	26/05/2014	V.L. Nunes, T.G. Laurentino \& E. Marabuto	\times	-	MN652875

$\begin{array}{\|l\|l\|} \text { RAD } \\ \text { analy } \end{array}$	$\begin{aligned} & \text { RAD } \\ & \text { sequencing } \\ & \text { lane } \end{aligned}$	Barcode	Total reads	Retained reads (Process_ Radtags)	Mapped reads properly paired (Bowtie2)	$\begin{array}{\|l} \text { \% of } \\ \text { mapped } \\ \text { reads } \end{array}$	Number of loci (Stacks)	Mean Coverage (Stacks) (Stacks)	Samples of datase BT_OU	Samples of dataset BT_SSP	Samples of datas BT_BTL	Frequency of missing data, dataset BT_OUT (VCFTools)	Frequency of missing data, dataset BT_SSP (VCFTools) VCTools)	Frequency of missing data dataset BT_BTL (VCFTools)
\times	Lane 2	TTAAT	8109844	7734007	4605896	59.6	207938	17.92	x	x	\times	0.00545171	0.0243446	0.0313586
removed	Lane 2	TGGTT	236766	- 120102	210810	9.0	747	8.77						
x	Lane 2	ATTAG	7315526	7127626	- 4316556	60.6	200433	17.62	x	\times	\times	0.0103193	0.0309482	0.0373926
x	Lane 2	AGGAC	4660438	4538676	6643980	58.3	136442	15.69	x	\times	\times	0.0564642	0.10408	0.105595
\times	Lane 2	AGAGT	11736928	11350762	2998274	61.7	282072	19.6	x	\times	\times	0.00564642	0.0222748	0.0210276
\times	Lane 2	AAGGG	5382908	5200161	3092488	- 59.5	148671	16.53	x	\times	\times	0.036215	0.0824956	0.0830133

\times	Lane 1	CCGGT	7346304	7111056	4258414	59.9	150611	19.65	x	x	x	0.00778816	0.0283856	0.0291644
\times	Lane 1	CAGTC	8489710	8257735	5231910	63.4	159071	21.98	\times	\times	\times	0.00584112	0.0172482	0.0149936
removed	Lane 1	GTCAC	1968792	1872510	1055220	56.4	57562	12.11						
\times	Lane 1	CTCTT	9251988	8770867	4913908	56.0	166760	20.57	x	x	\times	0.00428349	0.0214863	0.0206619
\times	Lane 1	TCTCT	15162584	14508026	8652690	59.6	208682	27.55	x	\times	\times	0.00175234	0.00818056	0.00895959
\times	Lane 1	TATAC	3328796	3176285	1883466	59.3	74807	15.79	\times	\times	\times	0.0630841	0.111275	0.109435
\times	Lane 1	TGTGG	16898876	16338434	9724544	59.5	233263	27.95	\times	\times	\times	0.00097352	0.00857481	0.00895959
\times	Lane 1	CAACT	10468942	10070127	6041328	60.0	197828	21.49	\times	\times	\times	0.00506231	0.015277	0.0152679
\times	Lane 1	TTTTA	14787532	14167207	8373646	59.1	202131	27.48	\times	\times	\times	0.00311526	0.008082	0.00722253
\times	Lane 2	AAAAA	29499926	28594514	17801252	62.3	624304	22.68	\times	\times	\times	0.00194704	0.00965898	0.00950814
removed	Lane 2	TCAGA	1399906	1244947	636054	51.1	41413	11.61						
\times	Lane 2	TCGAG	4576352	4431323	2658398	60.0	134666	15.82	\times	\times	\times	0.0609424	0.105855	0.109618
\times	Lane 2	TGACC	7852030	7596370	4624002	60.9	211407	17.89	\times	x	\times	0.0132399	0.0361719	0.0326385
removed	Lane 2	ACGTA	337128	286528	152578	53.3	11331	9.29						
	Lane 2	AACCC	13519934	13186619	8314690	63.1	325446	20.19	\times	\times	\times	0.00097352	0.00798344	0.00987383

\times	Lane 2	AATTT	3466884	3201722	1756018	54.8	100208	14	\times	\times	\times	0.138629	0.214567	0.224538
												0.0109034	0.0351863	0.0339184
			7963274	7719129	4557522	59.0			\times	\times	\times			
x	Lane 2	CAACT	4352780	3997355	2198672	55.0	117516	14.95	\times	\times	\times	0.0858645	0.149024	0.15149
\times	Lane 2	CCAAC	8593044	8391856	5424226	64.6	229334	18.62	\times	\times	\times	0.0107087	0.0249359	0.0232218
x	Lane 2		2125	96388	7165928	0.7			x	x		0311526	156712	013622
\times	Lane 2	ACTGC	10753424	10501149	6708582	63.9	277030	19.33	\times	\times	\times	0.00584112	0.0189237	0.0165478
\times	Lane 2	TTCCG	7266592	7040446	4228904	60.1	195504	17.63	\times	\times	\times	0.024338	0.0508575	0.0457122
\times	Lane 2	TGTGG					239485	18.62	\times	\times	\times	0.0122664	0.024246	0.0235875
\times									\times	\times	\times			
\times	Lane 2	TTTTA	3092968	2861849	1641620	57.4	92469	13.84	\times	\times	\times	0.163162	0.237138	0.244012
removed	Lane 2	TGCAA	531410	428555	200060	46.7	13988	10.18						

$\begin{aligned} & \text { RAD } \\ & \text { analysis } \end{aligned}$	$\begin{aligned} & \text { RAD } \\ & \text { sequencing } \\ & \text { lane } \end{aligned}$	Barcode	Total reads	$\begin{aligned} & \text { Retained } \\ & \text { reads } \\ & \text { (Process } \\ & \text { Radtags) } \end{aligned}$		$\begin{aligned} & \text { \% of } \\ & \text { mapped } \\ & \text { reads } \end{aligned}$	Number of loci (Stacks)		Samples of datase BT OUT BT_OUT	Samples Of datase BT_SSP	Samples BT_BTL	Frequency of missing data dataset BT OUT (VCFTools)	Frequency of missing data, dataset BT SSP (VCFTools)	Frequency of missing data dataset BT BTL (VCFTools)
x	Lane 2	AGCTG	6885900	6683291	4088484	61.2	188241	17.73	x	\times		0.0132399	0.0342007	
\times	Lane 1	TTCCG	6060962	5863768	3366584	57.4	117490	18.99	x	\times		0.00584112	0.0308496	
\times	Lane 1	CCCCA	7457604	- 7241194	4306960	59.5	136690	20.94	x	x		0.00837227	0.0230633	
\times	Lane 2	AGTCA	14513666	14223980	7884990	55.4	313539	20.05	x	\times		0.00292056	0.0150798	
\times	Lane 2	GACTA	7370284	[7201198	- 4162876	- 57.8	198189	17.32	x	\times		0.0144081	0.0381431	

$\begin{aligned} & \text { RAD } \\ & \text { analysis } \end{aligned}$	$\begin{aligned} & \text { RAD } \\ & \text { sequencing } \\ & \text { lane } \end{aligned}$	Barcode	Total reads	Retained reads (Process Radtags)	Mapped properly paired (Bowtie2)	$\begin{aligned} & \% \text { of } \\ & \text { mapped } \end{aligned}$ reads	Number of loci (Stacks)	Mean per (Stacks)	Samples of datase BT_OUT	Samples BT_SSP	Samples of datase BT_BTL	Frequency of missing data, BT OUT (VCFTools) (CFTools)	$\begin{aligned} & \text { Frequency of } \\ & \text { misising data, } \\ & \text { dataset } \\ & \text { BT_SSP } \\ & \text { VCFTools) } \end{aligned}$	Frequency of missing data dataset BT_BTL (VCFTools)
\times	Lane 2	CCCCA	6654410	6373456	1857064	29.1	94848	16.91	x			0.03602		
\times	Lane 1	TCCTC	9630278	9237789	3797870	41.1	129379	21.73	x			0.122079		
\times	Lane 2	CTCTT	7673874	7385489	3059096	41.4	138893	18.26	x			0.127531		
\times	Lane 2	CTTCC	9673764	9393983	3976006	42.3	177966	19.07	x			0.120911		
\times	Lane 1	GGCCT	5369388	4996943	2764028	55.3	100492	17.97	x			0.0216121		
removed	Lane 2	GTCAC	623266	527856	263090	49.8	18635	9.97						
removed	Lane 1	TGCAA	1606326	1471245	821262	55.8	44092	12.09						
removed	Lane 1	TACGT	2535204	2160906	743172	34.4	39070	11.54						
x	Lane 2	CGTAT	6366508	4132680	1413486	34.2	77692	15.43	x			0.178349		
\times	Lane 2	cGCGC	6155140	5978181	2104318	35.2	107737	16.99	x			0.132788		
\times	Lane 2	CCTTG	12943046	12573453	4313748	34.3	181112	20.31	x			0.118769		

Table S1b. List of samples with sequences downloaded from GenBank, with information concerning: sampling (taxa, sex, country, number of samples, origin, date of collection and bibliographic reference); outputs of mitochondrial COI analyses (haplotypes and GenBank accession numbers).

Taxa	Sex	n	Country / Island	Sampling Location	Latitude	Longitude	Date of collection	Collector(s)	mtDNA analysis	COI haplotype	GenBank accession no.
B. terrestris	F	5	Ireland	Wexford	$52^{\circ} 20020 \mathrm{~N}$	$6^{\circ} 27036 \mathrm{~W}$	01/07/2007	Moreira et al. (2015)	x	HA/ H8	KP670306
B. terrestris	F	5	Ireland	Cork	$51^{\circ} 53052 \mathrm{~N}$	$8^{\circ} 28015 \mathrm{~W}$	01/07/2007	Moreira et al. (2015)	x	HA/ H8	KP670306
B. terrestris	F	4	Ireland	Donegal	$54^{\circ} 39016 \mathrm{~N}$	$8^{\circ} 06038 \mathrm{~W}$	01/07/2007	Moreira et al. (2015)	x	HA/ H8	KP670306
B. terrestris	F	1	Ireland	Donegal	$54^{\circ} 39016 \mathrm{~N}$	$8^{\circ} 06038 \mathrm{~W}$	01/07/2007	Moreira et al. (2015)	x	HB/H1	KP670307
B. terrestris	F	2	Ireland	Galway	$53^{\circ} 16025 \mathrm{~N}$	$9^{\circ} 03006 \mathrm{~W}$	01/07/2007	Moreira et al. (2015)	x	HA/H8	KP670306
B. terrestris	F	3	Ireland	Galway	$53^{\circ} 16025 \mathrm{~N}$	$9^{\circ} 03006 \mathrm{~W}$	01/07/2007	Moreira et al. (2015)	x	HB/H1	KP670307
B. terrestris	F	2	Ireland	Meath	$53^{\circ} 37052 \mathrm{~N}$	$6^{\circ} 47027 \mathrm{~W}$	01/06/2007	Moreira et al. (2015)	x	HA/ H8	KP670306
B. terrestris	F	3	Ireland	Meath	$53^{\circ} 37052 \mathrm{~N}$	$6^{\circ} 47027 \mathrm{~W}$	01/06/2007	Moreira et al. (2015)	X	HB/H1	KP670307
B. terrestris	F	5	Ireland	Kildare	$53^{\circ} 09035 \mathrm{~N}$	$6^{\circ} 54032 \mathrm{~W}$	01/06/2007	Moreira et al. (2015)	x	HA/ H8	KP670306
B. terrestris	F	5	Great Britain	North Wales, Rhyl	$53^{\circ} 19010 \mathrm{~N}$	$3^{\circ} 29019$ W	01/07/2007	Moreira et al. (2015)	x	HA/ H8	KP670306
B. terrestris	F	3	Great Britain	South Wales, Lampeter	$51^{\circ} 18052 \mathrm{~N}$	$3^{\circ} 10049 \mathrm{~W}$	01/07/2007	Moreira et al. (2015)	x	HA/H8	KP670306
B. terrestris	F	2	Great Britain	South Wales, Lampeter	$51^{\circ} 18052 \mathrm{~N}$	$3^{\circ} 10049 \mathrm{~W}$	01/07/2007	Moreira et al. (2015)	x	HB/H1	KP670307
B. terrestris	F	2	Isle of Man	Isle of Man	$54^{\circ} 14009 \mathrm{~N}$	$4^{\circ} 32053 \mathrm{~W}$	01/08/2007	Moreira et al. (2015)	x	HA/ H8	KP670306
B. terrestris	F	1	Isle of Man	Isle of Man	$54^{\circ} 14009 \mathrm{~N}$	$4^{\circ} 32053 \mathrm{~W}$	01/08/2007	Moreira et al. (2015)	x	HB/H1	KP670307
B. terrestris	F	5	Great Britain	England, Oxford	$51^{\circ} 45008 \mathrm{~N}$	$1^{\circ} 15020 \mathrm{~W}$	01/07/2007	Moreira et al. (2015)	x	HA/ H8	KP670306
B. terrestris	F	4	Great Britain	England, Dover	$51^{\circ} 07046 \mathrm{~N}$	$1^{\circ} 18040 \mathrm{~W}$	01/08/2007	Moreira et al. (2015)	x	HA/ H8	KP670306
B. terrestris	F	1	Great Britain	England, Dover	$51^{\circ} 07046 \mathrm{~N}$	$1^{\circ} 18040 \mathrm{~W}$	01/08/2007	Moreira et al. (2015)	x	HB/H1	KP670307
B. terrestris	F	5	Greece	Macedonia	$40^{\circ} 45000 \mathrm{~N}$	$22^{\circ} 53059 \mathrm{E}$	01/07/2007	Moreira et al. (2015)	x	HB/H1	KP670307
B. terrestris	F	5	Portugal	Bragança	$41^{\circ} 48025 \mathrm{~N}$	$6^{\circ} 45033 \mathrm{~W}$	01/05/2007	Moreira et al. (2015)	x	HB/H1	KP670307
B. terrestris	F	5	Croatia	Pula	$44^{\circ} 52010 \mathrm{~N}$	$13^{\circ} 50028 \mathrm{E}$	01/03/2007	Moreira et al. (2015)	x	HB/H1	KP670307
B. terrestris	F	5	Croatia	Zadar	$44^{\circ} 01046 \mathrm{~N}$	$17^{\circ} 48000 \mathrm{E}$	01/03/2007	Moreira et al. (2015)	x	HB/H1	KP670307
B. terrestris	F	5	France	Samer	$44^{\circ} 38021 \mathrm{~N}$	$1^{\circ} 44042 \mathrm{E}$	01/07/2007	Moreira et al. (2015)	x	HB/H1	KP670307
B. terrestris	F	5	France	Beauvais	$49^{\circ} 25045 \mathrm{~N}$	$2^{\circ} 04051 \mathrm{E}$	01/07/2007	Moreira et al. (2015)	x	HB/H1	KP670307
B. terrestris	F	5	France	Grenoble	$45^{\circ} 11039 \mathrm{~N}$	$5^{\circ} 43053 \mathrm{E}$	01/05/2007	Moreira et al. (2015)	x	HB/H1	KP670307
B. terrestris	F	5	Poland	Grudziadz	$54^{\circ} 20038 \mathrm{~N}$	$18^{\circ} 39056 \mathrm{E}$	01/06/2007	Moreira et al. (2015)	x	HB/H1	KP670307
B. terrestris	F	5	Poland	Katowice	$50^{\circ} 15053 \mathrm{~N}$	$19^{\circ} 01025 \mathrm{E}$	01/06/2007	Moreira et al. (2015)	x	HB/H1	KP670307
B. terrestris	F	5	Denmark	Bilund	$56^{\circ} 15050 \mathrm{~N}$	$9^{\circ} 30006 \mathrm{E}$	01/08/2007	Moreira et al. (2015)	x	HB/H1	KP670307
B. terrestris	F	5	Latvia	Jelgava	$56^{\circ} 56047 \mathrm{~N}$	$24^{\circ} 06017 \mathrm{E}$	07/05/2008	Moreira et al. (2015)	x	HB / H1	KP670307
B. t. sassaricus	M	7	Sardinia	--	$40^{\circ} 47^{\prime} 27^{\prime \prime} \mathrm{N}$	0803'12"E	--	Coppée (2010)	X	H11	JQ769086
B. t. terrestris	M	4	France (Southeast)	--	43²5'32"N	06²5'23"E	--	Coppée (2010)	x	H1	JQ769069
B. t. terrestris	M	4	France (North)	--	$48^{\circ} 50^{\prime} 37{ }^{\prime \prime} \mathrm{N}$	0221'35"E	--	Coppée (2010)	x	H1	JQ769080
B. t. terrestris	M	4	France (Southwest)	--	$42^{\circ} 28^{\prime} 38{ }^{\prime \prime} \mathrm{N}$	0155'04"E	--	Coppée (2010)	x	H1	JQ769088
B. t. terrestris	M	4	Belgium	--	5050'22"N	04²3'44"E	--	Coppée (2010)	x	H1	JQ769070
B. t. terrestris	M	3	Germany	--	$51^{\circ} 56^{\prime} 27^{\prime \prime} \mathrm{N}$	07 $33^{\prime} 03^{\prime \prime} \mathrm{E}$	--	Coppée (2010)	x	H13	JQ769081
B. t. terrestris	M	3	Denmark	--	$54^{\circ} 59^{\prime} 1^{\prime \prime} \mathrm{N}$	$12^{\circ} 00^{\prime} 32^{\prime \prime} \mathrm{E}$	--	Coppée (2010)	x	H1	JQ769082
B. t. terrestris	M	5	Sweden	--	$59^{\circ} 51^{\prime} 43^{\prime \prime} \mathrm{N}$	$17^{\circ} 38^{\prime} 00^{\prime \prime} \mathrm{E}$	--	Coppée (2010)	x	H1	JQ769083
B. t. xanthopus	M	5	Corsica	--	$42^{\circ} 17^{\prime} 255^{\prime \prime} \mathrm{N}$	0852'40"E	--	Coppée (2010)	x	H15	JQ769071
B. t. dalmatinus	M	5	Greece (Crete)	--	$35^{\circ} 23^{\prime 2} 28^{\prime N}$	23³4'30"E	--	Coppée (2010)	x	H1	JQ769072
B. t. dalmatinus	M	4	Turkey	--	$39^{\circ} 55^{\prime} 54{ }^{\prime \prime} \mathrm{N}$	32 ${ }^{\circ} 1^{\prime} 48^{\prime \prime} \mathrm{E}$	--	Coppée (2010)	x	H1	JQ769078
B. t. dalmatinus	M	4	France (Southeast)	--	$43^{\circ} 25^{\prime} 32$ "N	06²5'23"E	--	Coppée (2010)	x	H1	JQ769079
B. t. lusitanicus	M	3	Madeira	--	$32^{\circ} 48^{\prime} 01^{\prime \prime} \mathrm{N}$	$16^{\circ} 50^{\prime} 43^{\prime \prime} \mathrm{W}$	--	Coppée (2010)	x	H1	JQ769073
B. t. lusitanicus	M	3	France (Southwest)	--	$42^{\circ} 28^{\prime} 51{ }^{\prime \prime} \mathrm{N}$	0155'25"E	--	Coppée (2010)	x	H1	JQ769087
B. t. lusitanicus	M	5	Spain	--	$36^{\circ} 42^{\prime} 59^{\prime \prime} \mathrm{N}$	04* $25^{\prime} 03^{\prime \prime} \mathrm{W}$	--	Coppée (2010)	x	H1	JQ769076

B. t. africanus	M	5	Morocco	--	$35^{\circ} 03^{\prime} 40^{\prime \prime} \mathrm{N}$	05 ${ }^{\circ} 09^{\prime} 60^{\prime \prime} \mathrm{W}$	\|--	Coppée (2010)	X	H16	JQ769074
B. t. calabricus	M	5	Italy	--	$35^{\circ} 59^{\prime} 35^{\prime \prime} \mathrm{N}$	$13^{\circ} 52^{\prime} 49^{\prime \prime} \mathrm{E}$	--	Coppée (2010)	x	H1	JQ769075
B. t. audax	M	5	Ireland	--	$52^{\circ} 57{ }^{\prime} 03,3^{\prime \prime} \mathrm{N}$	$9^{\circ} 04^{\prime} 41,8^{\prime \prime} \mathrm{W}$	--	Coppée (2010)	x	H2	JQ769077
B. t. audax	M	3	Great Britain (North)	--	$51^{\circ} 05^{\prime} 43,0^{\prime \prime} \mathrm{N}$	$0^{\circ} 38{ }^{\prime} 33,2{ }^{\prime \prime} \mathrm{E}$	--	Coppée (2010)	x	H8	JQ769084
B. t. audax	M	5	Great Britain (Southwest)	--	$50^{\circ} 21^{\prime} 33^{\prime \prime} \mathrm{N}$	$03^{\circ} 50^{\prime} 15^{\prime \prime} \mathrm{W}$	--	Coppée (2010)	X	H8	JQ769085
B. terrestris	M	1	Great Britain	--	--	--	--	Williams et al. (2012b)	X	H8	JQ843647
B. terrestris	M	1	Great Britain	--	--	--	--	Williams et al. (2012b)	X	H8	JQ843646
B. terrestris	F	1	Turkey	Sinop	--	--	2010	Williams et al. (2012b)	X	H1	JQ843645
B. terrestris	F	1	Turkey	--	--	--	--	Williams et al. (2012b)	x	H1	JQ843658
B. terrestris	F	1	Turkey	--	--	--	--	Williams et al. (2012b)	X	H1	JQ843669
B. terrestris	F	1	Turkey	--	--	--	--	Williams et al. (2012b)	x	H12	JQ843663
B. terrestris	F	1	Turkey	--	--	--	--	Williams et al. (2012b)	x	H1	JQ843643
B. terrestris	F	1	Turkey	--	--	--	--	Williams et al. (2012b)	x	H1	JQ843664
B. terrestris	F	1	Turkey	--	--	--	--	Williams et al. (2012b)	x	H1	JQ843644
B. terrestris	F	1	Turkey	--	--	--	--	Williams et al. (2012b)	X	H1	JQ843611
B. terrestris	F	1	Turkey	--	--	--	--	Williams et al. (2012b)	x	H1	JQ843612
B. terrestris	F	1	Turkey	--	--	--	--	Williams et al. (2012b)	X	H1	JQ843613
B. terrestris	F	1	Turkey	--	--	--	--	Williams et al. (2012b)	x	H1	JQ843614
B. terrestris	F	1	Algeria	Bouira	--	--	2005	Williams et al. (2012b)	X	H14	JQ843667
B. terrestris	F	1	Italy	Siena	--	--	1995	Williams et al. (2012b)	X	H14	JQ843662
B. terrestris	F	1	Spain	Canary Islands	--	--	2008	Williams et al. (2012b)	X	H17	JQ843661
B. terrestris	F	1	Spain	Canary Islands	--	--	2008	Williams et al. (2012b)	X	H17	JQ843660
B. terrestris	F	1	Spain	Canary Islands	--	--	2008	Williams et al. (2012b)	X	H17	JQ843659
B. terrestris	F	1	France	Perpignan	--	--	2008	Williams et al. (2012b)	x	H1	JQ843670
B. terrestris	F	1	Latvia	--	--	--	--	Williams et al. (2012b)	X	H1	JQ843609
B. terrestris	F	1	Latvia	--	--	--	--	Williams et al. (2012b)	X	H1	JQ843610
B. terrestris	F	1	Great Britain	--	--	--	--	Williams et al. (2012b)	x	H8	JQ843628
B. terrestris	F	1	Great Britain	--	--	--	--	Williams et al. (2012b)	X	H8	JQ843631
B. terrestris	F	1	Great Britain	Bromley, close to London	--	--	2011	Williams et al. (2012b)	x	H8	JQ843632
B. terrestris	F	1	Germany	--	--	--	--	Williams et al. (2012b)	X	H1	JQ843633
B. terrestris	F	1	Great Britain	--	--	--	--	Williams et al. (2012b)	X	H8	JQ843634
B. terrestris	F	1	Greece	--	--	--	--	Williams et al. (2012b)	X	H1	JQ843635
B. terrestris	F	1	Sweden	Uppsala	--	--	2011	Williams et al. (2012a)	X	H1	JQ692970
B. terrestris	F	1	Sweden	,	--	--	--	Williams et al. (2012b)	x	H1	JQ843636
B. terrestris	F	1	Sweden	--	--	--	--	Williams et al. (2012b)	x	H1	JQ843637
B. terrestris	F	1	Sweden	--	--	--	--	Williams et al. (2012b)	x	H1	JQ843638
B. terrestris	F	1	Switzerland	--	--	--	--	Williams et al. (2012b)	x	H1	JQ843639
B. terrestris	F	1	Switzerland	--	--	--	--	Williams et al. (2012b)	X	H1	JQ843640
B. terrestris	F	1	Switzerland	--	--	--	--	Williams et al. (2012b)	x	H1	JQ843641
B. terrestris	F	1	Switzerland	--	--	--	--	Williams et al. (2012b)	X	H12	JQ843642
B. terrestris	F	1	Switzerland	--	--	--	--	Williams et al. (2012b)	x	H1	JQ843629
B. terrestris	--	1	Germany	Brandenburg, Mallnow	52.56 N	14.48E	28/03/2012	Schmidt et al. (2015)	x	H12	KJ838396
B. terrestris	--	1	Germany	Brandenburg, Mallnow	52.56 N	14.48E	28/03/2012	Schmidt et al. (2015)	X	H1	KJ838178
B. terrestris	--	1	Germany	Baden-Wuerttemberg, Mue	47.82 N	7.62 E	07/04/2012	Schmidt et al. (2015)	x	H1	KJ838879

Table S2. The sample size and diversity indices across B. t. Iusitanicus samples by lberian region considering mitochondrial DNA COI data and RADseq dataset BT BTL. Note that six individuals were excluded from RADseq dataset. n, number of individuals analysed; h, average haplotype diversity; π, average nucleotide diversity; H_{o}, observed heterozygosity; H_{E}, expected heterozygosity.

Geographic region	COI			RADseq			
	$\stackrel{n}{\text { (total }=198)}$	\boldsymbol{h}	T	$\begin{gathered} n \\ (\text { total }=31) \end{gathered}$	H_{0}	H_{E}	π
IP-NW	24 (2 hap.)	0.08330	0.00014	2	--	--	--
IP-WE	56 (2 hap.)	0.07010	0.00012	11	0.2696	0.2919	0.2706
IP-SW	20 (2 hap.)	0.10000	0.00034	3	--	--	--
IP-NO	28 (2 hap.)	0.07140	0.00012	2	--	--	--
IP-CE	32 (1 hap.)	0	0	5	0.3148	0.3600	0.2702
IP-SE	38 (5 hap.)	0.19700	0.00044	8	0.2537	0.3128	0.2706

STACKS parameter testing

Methods

Preliminary tests of parameter values for each STACKS module were carried out in order to identify the optimal parameter values for use in the final STACKS analysis. The three datasets (BT_OUT, BT_SSP and BT_BTL) were tested separately. For the three first modules - pstacks, cstacks and sstacks - tests were performed using three sets of three randomly chosen individuals, each set corresponding to each one of the three datasets. For the last module - populations - all the samples were used because the number of SNPs obtained vary with population size and number.

Pstacks extract stacks that have been aligned to a reference genome and identify SNPs in each individual (Catchen et al., 2013). In this module, the parameter -m (minimum depth of coverage to report a stack) was tested. Several tests were performed by increasing the ' m ' value in increments of 2 , from 2 to 10 , while non-test parameters were kept as default. For each test, the number of created loci and respective mean coverage was evaluated. The input for cstacks module was created by running pstacks with the selected "optimal" parameters. Cstacks merges loci from multiple individuals, creating a set of consensus loci or catalog (Catchen et al., 2013). For the module, the parameter -n (maximum number of mismatches allowed between homologous loci among individuals when building the catalog) was also tested by increasing the value in increments of 2 from 2 to 10 , while keeping non-test parameters as default. The number of loci added to the catalog for each ' n ' value, as well as the number of verified matches against the catalog was then evaluated.

Populations is used to compute population-level summary statistics and to output SNPs according to some parameters (Catchen et al., 2013). In this module two main parameters were tested: -p, which represents the minimum number of populations that a locus must be present in for it to be retained in the final dataset; -r, which represents the minimum percentage of individuals in a population that a locus must be present in for it to be retained in the final dataset (Catchen et al., 2013). Several combinations using these two parameters were tested as follows: ' p ' was set at values between 3 and 6 for dataset BT_BTL, at values between 5 and 9 for dataset BT_SSP and at values between 7 and 14 for dataset BT_OUT, which corresponds to 50% of taxa or above, for each dataset; ' r ' was set to 50% and 100% for each 'p' setting. Only these two values of ' r ' were tested because some taxa are only represented by two or less individuals. After testing each combination of parameters (-r; -p), we evaluated the number of retained SNP loci in each final dataset, the average coverage per SNP per sample and the average frequency of missing data per sample, using VCFTOOLS version 0.1.14.

Results

Figure S 1 shows the results of parameter tests for pstacks. In pstacks, an 'm' parameter value of two (minimum of two reads to report a stack) resulted in a very large number of loci (min: 405 555, máx: 1700 054), and with a low coverage, as expected (min: 7.26, máx 10.57). Increasing the minimum stack depth parameter to four prevented reads with possible sequencing errors from forming stacks and the number of
loci decreases considerably, as mean coverage increases. After m=6 (number of loci: min: 117 490, máx: 624 304; mean coverage: min: 17.73, máx: 27.95), further increases in ' m ' resulted in slowed changes in number of loci, while coverage increases considerably, probably because the rate at which stacks absent from the reference were removed slowed. After this value, true stacks began to be dismantled, resulting in a lower number of loci, while the stacks that are maintained have very high coverage (Catchen et al., 2013). The results from $\mathrm{m}=6$ seem to be the ones which result in the best combination between loci number and coverage. In this way, the value of m set to 6 was chosen to perform the final STACKS analysis. The output results obtained from the parameter test using $\mathrm{m}=6$ were used as input for the cstacks parameter tests.

Figure S2 shows the results of parameter tests for cstacks and sstacks. Increments in the maximum number of mismatches allowed between homologous loci from multiple individuals when building the catalog, seem to have a very small impact in the number of loci added to the catalog and in the number of verified matches of an individual against the catalog. This value varies with the evolutionary distance of the members being examined, and the small variation observed is probably the result of the small divergence among individuals (Catchen et al., 2011). The value $\mathrm{n}=2$ was chosen for final STACKS analysis and for running the input for populations parameters tests.

Figure S3 shows the results of parameter tests for populations module. Results for $\mathrm{r}=50 \%$ typically showed higher numbers of SNP loci with lower coverage but also with lower amount of missing data. This means that few SNPs are present in all individuals of each population. Higher values of ' p ' typically yielded lower numbers of loci but with higher coverage and also lower amount of missing data. This means that, as the stringency of ' p ' increased, less SNPs are available, but they have a relatively good coverage across all samples, and as a consequence, less missing data. Among the different tests, the number of retained loci ranged from 40045 (average coverage per SNP per sample: 50.70; average frequency of missing data per sample: 0.10) to 14231 for dataset BT_BTL (average coverage per SNP per sample: 73.25; average frequency of missing data per sample: 0), from 41849 (average coverage per SNP per sample: 49.7; average frequency of missing data per sample: 0.1) to 14580 (average coverage per SNP per sample: 72.6; average frequency of missing data per sample: 0) for dataset BT_SSP and from 45184 (average coverage per SNP per sample: 44.69 ; average frequency of missing data per sample: 0.20) to 3772 (average coverage per SNP per sample: 75.18; average frequency of missing data per sample: 0) for dataset BT_OUT. Based on these results, outputs from runs using the parameters p5r50 (dataset BT_BTL), p8r50 (dataset BT_SSP) and p13r50 (dataset BT_OUT) retain the better combination of number of loci, average coverage per SNP per sample and amount of missing data and these parameters were chosen for final STACKS analysis.

Figure S1. Results of parameter tests for the STACKS module pstacks. (a) Changes in number of created loci (pstacks) and (b) loci mean coverage obtained (pstacks) for each value of ' m ' tested for three randomly selected individuals from each dataset.

(b)

Figure S2. Results of parameter tests for the STACKS modules ctsacks and sstacks. (a) Changes in number of loci added to the catalog (cstacks) and (b) number of matches against the catalog (sstacks) for each value of ' n ' tested for three randomly selected individuals from each dataset.
(a)

(b)

(c)

Figure S3. Results of parameter tests for the STACKS module populations. Variation in number of SNP loci in the final dataset, in average coverage per SNP and per sample and in average frequency of missing data per sample obtained for each combination of parameters (-r; -p) tested in populations module, using (a) dataset BT_BTL, (b) dataset BT_SSP and (c) dataset BT_OUT.

```
####################################################################
# List of command line commands used for RADseq dataset analyses ##
####################################################################
# in the commands below
# input_files_path = input file path
# output_files_path = output path to write results
# output_directory_path = output path to directory where to write the results
# barcodes_file_path = path to a file containing barcodes
# log_files_path = path to write logfile
# list_of_samples = list of the files corresponding to each sample
# populations_file_path = path to a file containing the list of populations
```

\#\#\# Build index using BOWTIE2 version 2.1.0
bowtie2-build -f input_files_path Bt_all
\#\#\# Prepare reads (cleaning and demultiplexing) with STACKS version 1.29 - pipeline
process_radtags
process_radtags -1 input_files_path -2 input_files_path -o output_files_path -b
barcodes_file_path -c -q -r -e pstI -E phred33 -i gzfastq -D
\#\#\# Convert barcodes to sample name
\#!/bin/bash
mv input_files_path/sample_ATTAG.1.fq.gz output_files_path/BTL_236.1.fq.gz
\#\#\# Align reads with reference genome using BOWTIE2 version 2.1.0 \#
\#! /bin/bash
samples="
list_of_samples
"
for sample in \$samples
do
bowtie2 --trim3 3 --sensitive -p 6 -x input_files_path/Bt_all -1 input_files_path/\$
\{sample\}.1.fq.gz -2 input_files_path/\$\{sample\}.2.fq.gz -S input_files_path/\$
\{sample\}_Bt_all.sam
done

```
### Conver SAM files to BAM using SAMTOOLS version 0.1.19
#!/bin/bash
for samfile in $(ls input_files_path/*.sam); do samtools view -Sb ${samfile} > $
{samfile}.bam; done
### Sort and filter BAM files using SAMTOOLS version 0.1.19
#! /bin/bash
samples="
list_of_samples
"
for sample in $samples
do
samtools sort input_files_path/${sample}_Bt_all.sam.bam output_files_path/$
{sample}_Bt_all.sam.bam.sorted
samtools index input_files_path/${sample}_Bt_all.sam.bam.sorted.bam
samtools view -q 20 -F 0x0004 -b input_files_path/$
{sample}_Bt_all.sam.bam.sorted.bam > output_files_path/$
{sample}_Bt_all.sorted.quality.bam
samtools flagstat input_files_path/${sample}_Bt_all.sam.bam.sorted.bam >
output_files_path/${sample}_Bt_all.sorted_flagstat
samtools flagstat input_files_path/${sample}_Bt_all.sorted.quality.bam >
output_files_path/${sample}_Bt_all.sorted.quality_flagstat
done
### Build loci from ref using STACKS version 1.45 - pipeline pstacks
# !/bin/bash
samples="
list_of_samples
"
i=1
for sample in $samples
do
    pstacks -t bam -i $i -m 6 -p 4 \
                                    -f input_files_path/$sample \
                                    -o output_files_path &>> log_files_path/Log_pstacks
            let "i+=1";
done
```

```
### Create catalog and match samples to catalog using STACKS version 1.45 -
pipeline cstacks and sstacks
#!/bin/bash
samples="
list_of_samples
"
samp=""
for sample in $samples
do
    samp+="-s input_files_path/$sample ";
done
cstacks -p 4 -b 1 -n 2 -o output_files_path $samp &>> log_files_path/Log_cstacks
for sample in $samples
do
        sstacks -p 4 -b 1 -c input_files_path/batch_1 \
        -s input_files_path/${sample} \
        -o output_files_path &>> log_files_path/Log_sstacks
done
```

\#\#\# Filter and export SNPs to VCF file format using STACKS version 1.45 - pipeline
populations, using dataset BT_OUT
\#!/bin/bash
populations -b 1 -P input_files_path -M input_files_path -t 4 -p 13 -r 50 --vcf --
write_random_snp
\#\#\# Filter and export SNPs to VCF file format using STACKS version 1.45 - pipeline
populations, using dataset BT_SSP
\#!/bin/bash
populations -b 1 -P input_files_path -M input_files_path -t 4 -p 8 -r 50 --vcf --
write_random_snp

```
### Filter and export SNPs to VCF file format using STACKS version 1.45 - pipeline
populations, using dataset BT_BTL
#!/bin/bash
```

```
populations -b 1 -P input_files_path -M input_files_path -t 4 -p 5 -r 50 --vcf --
write_random_snp
### Determine missing data per individual and filter VCF files using VCFTOOLS
version 0.1.15
vcftools --vcf input_file_path --missing-indv
vcftools --vcf input_file_path --max-missing 0.75 --maf 0.05 --recode --out
output_file_path
```

\#\#\# Determine per-SNP nucleotide diversity, observed and expected heterozygosities
vcftools --vcf input_file_path --site-pi
vcftools --vcf input_file_path --het

```
### Principal component analysis of the three datasets using the R script
snp_pca_static.R (https://github.com/CoBiG2/RAD_Tools) as of commit 134b11d
snp_pca_static.R input_files_path output_files_path populations_file_path
### Run BAYESCAN version 2.1 using both datasets BT_SSP and BT_BTL
./bayescan_2.1 input_file_path -snp -threads 14 -od output_directory_path
\#\#\# Run SELESTIM version 1.1.7 using both datasets BT_SSP and BT_BTL
./selestim -threads 12 -file input_files_path -outputs output_directory path -thin 20 -npilot 50 -lpilot 1000 -burnin 100000 -length 1000000 -calibration
```

\#\#\# Run Maverick version 1.0.4 with Structure_threader version 1.2.4, using dataset BT_SSP
~/.local/bin/structure_threader run -K 5 -i input_file_path -o output_file_path -t 10 -mv ~/.local/bin/MavericK --params parameters.txt --log=1
\#\#\# Run Maverick version 1.0.4 with Structure_threader version 1.2.4, using dataset BT_BTL
~/.local/bin/structure_threader run -K 4 -i input_file_path -o output_file_path -t 10 -mv ~/.local/bin/MavericK --params parameters.txt --log=1

```
### Final set of parameters (parameters.txt) used for run Maverick, using dataset
BT_SSP
#### Data properties
# headerRow_on t
# popCol_on f
# ploidyCol_on f
# ploidy 2
# missingData-9
#### Model parameters
# Kmin 1
# Kmax 5
# admix_on t
# fixAlpha_onf
# alpha 1.0,0.845,0.448,0.414,0.32
# alphaPropSD 1.0,0.2125,0.0975,0.065,0.063
#### Simulation parameters
# exhaustive_on f
# mainRepeats 10
# mainBurnin 5000
# mainSamples 50000
# thermodynamic_on t
# thermodynamicRungs 50
# thermodynamicBurnin 5000
# thermodynamicSamples 50000
# EMalgorithm_on f
# EMrepeats 100
# EMiterations 100
#### Basic output properties
# outputLog_on t
# outputLikelihood_on t
# outputQmatrix_ind_on t
# outputQmatrix_pop_on f
# outputQmatrixError_ind_on t
# outputQmatrixError_pop_on f
# outputEvidence_on t
# outputEvidenceNormalised_on t
# outputEvidenceDetails_on t
\#\#\# Final set of parameters (parameters.txt) used for run Maverick, using dataset BT_BTL
\#\#\#\# Data properties
\# headerRow_on t
\# popCol_on f
\# ploidyCol_on f
```

```
# ploidy 2
# missingData-9
#### Model parameters
# Kmin 1
# Kmax 4
# admix_on t
# fixAlpha_on f
# alpha 1.0, 3.94, 1.58, 1.05
# alphaPropSD1.0, 0.51, 0.18, 0.12
#### Simulation parameters
# exhaustive_on f
# mainRepeats 10
# mainBurnin 5000
# mainSamples 50000
# thermodynamic_on t
# thermodynamicRungs 50
# thermodynamicBurnin 5000
# thermodynamicSamples 50000
# EMalgorithm_on f
# EMrepeats 100
# EMiterations 100
#### Basic output properties
# outputLog_on t
# outputLikelihood_on t
# outputQmatrix_ind_on t
# outputQmatrix_pop_on f
# outputQmatrixError_ind_on t
# outputQmatrixError_pop_on f
# outputEvidence_on t
# outputEvidenceNormalised_on t
# outputEvidenceDetails_on t
```

