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Abstract 21 

Fish sounds are important components of Azorean soundscapes. Therefore, unraveling 22 

their patterns can contribute to a better assessment of local biodiversity dynamics. 23 

Passive Acoustic Monitoring (PAM) is a cost-effective, non-intrusive method providing 24 

long-term information regardless of weather or logistic conditions, which can be 25 

especially useful when monitoring remote areas. Using PAM, we assess temporal 26 

dynamics of fish vocal activity in a protected seamount and validate PAM as an 27 

important tool for biodiversity assessment in deep-sea fish communities. Thus, we 28 

evaluated the annual, seasonal and diel patterns of variation of putative fish sounds 29 

identified in an Azorean protected seamount, the Condor (ca.190 m depth). Here, 3 30 

years (2008, 2010 and 2012) of acoustic data were collected and analyzed for diversity 31 

and abundance of the most prevalent fish sounds. We compared abundance and 32 

diversity of fish sounds before and after the establishment of the marine protected area 33 

in 2010, to assess its initial protection effects. We also compared abundance and 34 

biodiversity measures (richness and Shannon diversity index) of acoustic data with 35 

fishing data from deep-water longline surveys, to verify if acoustic diversity and 36 

taxonomic diversity show a similar trend. Additionally, we estimated a likely distance 37 

range of fish sound sources from the acoustic data loggers for local background noise 38 

and typical fish sound levels. Estimated detection distance of different fish sounds, 39 

considering Condor background noise level and reported fish sound source levels, were 40 

typically larger than 10 m and could reach hundreds of meters in some species 41 

suggesting that this study potentially targeted sounds of the deep-sea fish fauna. Fish 42 

acoustic activity was prevalent at dusks and nights of all years, while no overall 43 

seasonal pattern was detected. However, one sound sequence (#1) was dominant in the 44 

autumns of all studied period. A decrease in abundance and richness of sounds was 45 
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observed from 2008 to 2012 in line with the results of fishing surveys. Although 46 

unexpected, these consistent trends suggest that PAM provides a reliable representation 47 

of fish biodiversity dynamics. Taken together, this study shows that monitoring fish 48 

sounds with PAM is a valid and promising tool for fish biodiversity assessment in deep 49 

Azorean seamounts.  50 

 51 

 52 

Key-words: Fish sounds, passive acoustic monitoring, Fish sound detection distance, 53 

biodiversity, temporal patterns, deep-water fishes. 54 

 55 

1. Introduction 56 

Finding effective ways to measure ocean biodiversity and health is paramount to 57 

monitor the effects of pressures such as climate change, pollution, coastal development, 58 

and overfishing ramp up. Registering sounds emanating from aquatic organisms by 59 

using Passive Acoustic Monitoring (PAM) is a cost-effective, non-intrusive tool that is 60 

becoming invaluable for long-term oceanic surveys (Lammers et al. 2008). PAM takes 61 

advantage of programmable autonomous recording systems that can be deployed at 62 

chosen places and depths, which is especially relevant for deep-sea studies, since it 63 

allows to collect large datasets in real time at extended temporal and spatial scales, even 64 

in remote locations (André et al. 2011). It allows to estimate community composition, 65 

population density of different species, as well as temporal and spatial patterns of 66 

species distribution and behaviour (Marques et al. 2013; Ruppé et al. 2015; Parsons et 67 

al. 2016; Desiderà et al. 2019). Acoustic data can also be used as biodiversity proxies 68 

(Browning et al. 2017). Thus, PAM can be an important complementary tool of 69 

traditional biodiversity assessments, since acoustic measurements may provide 70 

continuous information impossible to gather by other methods, like visual censuses or 71 
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fishing surveys. For example, it is capable of detecting species that are visually cryptic 72 

but acoustically active like toadfish, cusk-eel or snapping shrimps, or aquatic organisms 73 

that are acoustically active at night (Staaterman et al. 2017; Picciulin et al. 2019). 74 

Therefore, this tool can play a major role in the implementation, monitoring and 75 

management of marine protected areas and in monitoring remote areas such as deep-sea 76 

environments. 77 

In addition to detecting vocal species, PAM may also be used to characterize the 78 

overall biophonical component of marine soundscapes, by listening to sounds that are 79 

by-products of animal activities such as locomotion, foraging, and breathing (Sueur & 80 

Farina 2015). Recently, fish sounds have been studied in an ecological framework to 81 

tackle biodiversity, ecology and conservation issues at the population and at the 82 

community level (Desiderà et al. 2019). However, in marine environments and 83 

particularly in deeper oceanic waters, it is still unclear whether acoustic diversity 84 

correlates with fish diversity (Bolgan et al. 2018; Desiderà et al. 2019). Likewise, the 85 

effectiveness of PAM in monitoring marine protected areas needs to be established 86 

(Picciulin et al. 2019).  87 

A significant number of fish species signal acoustically in social contexts such 88 

as during reproduction, agonistic interactions (Amorim 2006; Ladich 2019), to maintain 89 

group cohesion (Van Oosterom et al. 2016) or while schooling (Larsson 2009). Because 90 

acoustic communication in fishes may be influenced by several factors, such as predator 91 

avoidance, foraging opportunities, reproductive activity or environmental constraints, 92 

fishes may concentrate their calling effort in a particular time of the day or period of the 93 

year in association with the prevailing acoustic and ecological contexts (Helfman 1986, 94 

McCauley 2012, Ruppé et al. 2015, Rice et al. 2017). The documentation of temporal 95 

patterns of abundance and diversity of fish sounds is therefore paramount to interpret 96 
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acoustic data in terms of biodiversity and ocean health and to establish vocal fishes as 97 

indicator species for marine environmental status (Di Iorio et al. 2018). 98 

Seamounts are submerged mountains that rise from the seafloor but do not reach 99 

the surface. Despite being widespread throughout all oceans’ basins, their biodiversity 100 

remains still largely unknown (Pitcher et al. 2007). In the Azorean waters, several 101 

seamounts have been identified and studied due to the increasing recognition of their 102 

importance as biodiversity hotspots (Morato et al. 2008, Morato et al. 2010, Morato et 103 

al. 2016). These areas are considered among the remaining pristine places on earth 104 

(Pitcher et al. 2007). Seamounts bring together physical conditions, like nutrient 105 

upwellings, but mostly an increase of primary or secondary productivity seems to be the 106 

main mechanism driving a high biodiversity (Pitcher et al. 2007, Morato et al. 2010). 107 

Indeed, many fish species aggregate on seamounts to feed or mate. These include many 108 

acoustically active fish species which are commercially or ecologically important, such 109 

as the dusky grouper Epinephelus marginatus, the sunfish Mola mola, the redfish 110 

Sebastes norvegicus, the tarpon Megalops atlanticus, the Atlantic herring Clupea 111 

harengus and the haddock Melanogrammus aeglefinus (Fish and Mowbray 1970; 112 

Hawkins & Amorim 2000; Bertucci et al. 2015).  Therefore, acoustic monitoring may 113 

help to unravel the presence of sound producing fish species at seamounts bringing new 114 

insights on fish communities inhabiting these diverse and pristine locations.  The aims 115 

of this study were to test the utility of using acoustic data to (1) assess fish biodiversity 116 

in deeper waters (validated with data from fishing surveys), (2) detect temporal patterns 117 

of fish vocal activity including (3) changes driven by the shift in marine protection 118 

status. 119 

In Carriço et al. (2019) we uncovered an important diversity of fish sounds from 120 

two Azorean seamounts. Here, we report on the annual, seasonal and diel patterns of 121 
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occurrence of fish sounds recorded by acoustic data loggers at ca. 190 m depth on 122 

Condor seamount, near the 200 m depth upper limit of the bathyal and mesopelagic 123 

zones (Priede 2017). Taking advantage from tools such as biodiversity indices, we 124 

compare bioacoustic data with longline fishing survey data collected in the same site 125 

(150-950 m depth; Menezes & Giacomello 2013). As Condor seamount became 126 

protected in 2010 (Giacomello et al. 2013), we evaluate changes in the abundance and 127 

diversity of sounds and fish fauna before and just after the establishment of the 128 

protected area. Finally, we estimate the attenuation range of fish sound sources to local 129 

background noise using typical fish sound levels to evaluate if our dataloggers are 130 

targeting sounds of the deep-sea fish fauna and discuss the advantages and limitations of 131 

PAM to monitor deep-water areas. 132 

 133 

2. Materials and Methods 134 

2.1 Study site 135 

The Azores is an archipelago composed of nine volcanic islands and several underwater 136 

seamounts. The Condor seamount is located about 17 km southwest of Faial island (Fig. 137 

1). In 2010, an area of 242 km
2
 (22 km x 11 km) encompassing the entire Condor 138 

seamount until ca. 1000 m depth, was designated as a protected area for scientific 139 

research through an agreement among local authorities, researchers, fishermen and 140 

other stakeholders (Giacomello et al. 2013). Most commercial fisheries became 141 

forbidden in the area, and, activities such as seasonal pole-and-line tuna fishing, big 142 

game fishing, bait fishing, and scientific or recreational fishing are allowed under a 143 

special authorization (Giacomello et al. 2013; Ressurreição & Giacomello 2013). 144 
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 145 

Fig. 1. Location of the deployment sites of the EARs in the Condor seamount. 146 

Recordings were analysed from deployments 1 (38 32.390 N, 29 02.753 W at 190.8 m), 147 

2 (38 32.395 N, 29 02.617 W at 193.3 m), 7 (38 32.407 N, 29 02.627 W at 193.4 m), 8 148 

(38 32.381 N, 29 02.604 W at 193.1 m) and 10 (38 32.399 N, 29 02.615 W at 193.3 m). 149 

The maximum distance among all 5 deployments used was 217 m.   150 

 151 

2.2 Acoustic recordings 152 

Ten deployments of Ecological Acoustic Recorders (EARs, Lammers et al. 153 

2008) were made between 2008 and 2012 in the Condor seamount (Fig. 1). The EAR is 154 

an autonomous acoustic recorder with a Sensor Technology SQ26-01 hydrophone and a 155 

response sensitivity of −193.14/−194.17 dB re 1 V/μPa (varying between deployments). 156 

The frequency response from 1 Hz to 28 kHz varies within ± 1.5 dB. EARs were 157 

bottom-moored at an approximate bottom depth of 190 m, while the recorder was kept 158 

at 8-10 m from the seafloor. Each deployment recorded for approximately 6-7 months. 159 
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From these, we selected data from deployments based on recordings availability 160 

throughout the year and quality of the recordings. 2008, 2010 and 2012 were analysed 161 

and 2009 and 2011 were discarded. These different years allowed to assess the 162 

abundance and diversity of fish sound sequences before and after the protection status 163 

was implemented. Fish sound sequences are sequences of several isolated sounds of the 164 

same type, repeated in a close, stereotyped pattern, ranging from 1 to several sounds 165 

(average 2-16 sounds per sequence and with an average sound interval of 0.16-0.75 s), 166 

as described in Carriço et al. (2019).  167 

The location of each deployment varied in a range of c. 7-217 m, since the 168 

deployment process did not allow an exact placement in the exact same location (Fig. 169 

1).  170 

The programming (sampling effort) of the data loggers was different in different 171 

deployments: deployments 1 (2008) recorded 0.5 min (sampling duration) every 10 min 172 

(sampling period); 2 (2008), 7 and 8 (2010) recorded 1.5 min every 15 min at a 173 

sampling rate of 50 kHz, while deployment 10 (2012) recorded 60 min every 210 min, 174 

at 2 kHz. Considering the different sampling efforts between the three deployments, the 175 

daily number of sound sequences (number of sound sequences per day) was 176 

standardized according to the respective weighting value for each sampling effort (i.e. 177 

each value was multiplied by the ratio between sampling period and sampling duration), 178 

so they could be comparable. However, the different sampling efforts may affect the 179 

probability of detecting a sound. The cycle of recordings may be mismatched with the 180 

cycle of vocalizations (duration, repetition rate, interval) which can contribute to miss 181 

some sounds and consequently underestimate their occurrence (Stanistreet et al. 2016). 182 

All the recordings were converted to 8 kHz. 183 

 184 
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2.3 Temporal patterns of acoustic data  185 

Eco-acoustic indices, like the ACI, are mathematical functions which characterize 186 

variation of acoustic energy in the time and frequency domains of the soundscape 187 

(Browning et al. 2017, Sueur 2018). These indices allow for a holistic approach which 188 

evaluates the global acoustic environment as a proxy of species assemblage diversity 189 

(Sueur et al. 2008). In marine habitats, however, methodological validations (such as 190 

manual inspection of acoustic tracks) are required for understanding which kind of 191 

information are highlighted by acoustic indexes in each specific environment (Belghith 192 

et al. 2018; Bolgan et al. 2018). Bolgan et al. (2018) showed that the ACI is sensitive to 193 

variation of fish sound abundances (i.e. number of sounds) as well as of fish sound 194 

diversity (i.e. number of sound types) but it cannot discern between these two 195 

parameters. In the light of the above studies, we used the ACI as a tool for quickly 196 

exploring our large dataset to identify the acoustic tracks with highest abundance and/or 197 

diversity of fish 198 

sound sequences. The ACI was calculated on four months of recordings collected 199 

during three different years. In particular, the ACI was computed on data from 2008 200 

(April, May, August and November), 2010 (April, June, August and December) and 201 

2012 (March, June, August and November). For the data of 2008 and 2010, the ACI 202 

was computed for two bandwidths, 15-2000 Hz and 2000-4000 Hz (bandwidths in 203 

which fish sounds are more likely to occur and have most of their acoustic energy); for 204 

2012, the ACI was computed only in the bandwidth 15-1000 Hz (because here the 205 

sampling rate was only 2000 Hz), using the plug-in SoundscapeMeter (FFT window 206 

size: 512, frequency resolution: 8 kHz, temporal resolution of the ACI algorithm: 0.5 s, 207 

noise filter: 0) in the WaveSurfer software (Pieretti et al. 2011). For each month of 208 

recordings, a subsample of 5 days was chosen for manual spectrogram inspection within 209 
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the days with the highest ACI values (Pieretti et al. 2011). Manual spectrogram 210 

inspections allowed for a quantification of the number of sound sequences for each 211 

sound sequence type (as most sounds occurred in sequences), which could have not 212 

been achieved by application of acoustic indexes alone (Bolgan et al. 2018).  213 

For the temporal analysis (annual, seasonal and diel), we selected the most 214 

common sequences. Manual acoustic analysis measured abundance and diversity of fish 215 

sounds sequences. 216 

The four most common fish sound sequences were #1, #4, #5 and #10 (Fig. S1; 217 

see also Carriço et al. 2019). The remaining sound sequences, due to their lower 218 

abundance (abundance range: 1-21 sounds found in the analysed dataset (20 days per 219 

year, 3 years)) were included in a single category called ‘Others’. These sound 220 

sequences could not be attributed to a particular species. The analysis considered day 221 

and night periods. The diel patterns were analysed and compared between years (2008 222 

and 2010) and seasons: spring (April-May); summer (June-August) and autumn 223 

(November-December). 2012 was excluded from the diel analysis because the sampled 224 

duty cycle did not allow a balanced sampling of the different periods of the day. 225 

Although in the winter months there was also the presence of fish sounds, they were not 226 

included in the analysis since there were no recordings for all years.  227 

To evaluate diel variations in the fish sound production the diel light phase times 228 

for our study site were retrieved for each day with suncalc package in R (Agafonkin & 229 

Thieurmel 2018). Dawn period was defined as the time elapsed since the beginning of 230 

dawn until the end of sunrise (mean duration: 0.54 h; range for the sampled days: 0.52-231 

0.58 h); day time was defined from the end of the sunrise until the beginning of the 232 

sunset (mean duration: 12.8 h; range: 9.35-14.75 h); dusk period was defined from the 233 

beginning of the sunset until the end of dusk (mean duration: 0.54 h; range: 0.50-0.58 234 
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h); and night time was defined since the end of dusk until the beginning of dawn (mean 235 

duration: 10.46 h; range 8.08-13.55 h).  236 

To evaluate acoustic diversity, we adapted traditional taxonomic biodiversity 237 

indices (see below) but used sound sequence types instead of species. The sound 238 

sequence richness (number of sound sequence types) and the Shannon index were 239 

calculated and compared between seasons and years. Note that, all sound sequence 240 

types included in “others” category were considered individually to calculate acoustic 241 

diversity. 242 

 243 

2.4 Detection distance of vocal fishes 244 

To estimate the distance of fish sound sources from the EARS we used known (or 245 

estimated) sound levels of seven fish species, Opsanus tau, Pomatochistus pictus, 246 

Chromis chromis, Sebastes pauscipinis, Argyrosomus japonicus, Pempheris adspersa 247 

and Halobatrachus didactylus (Barimo & Fine 1998, Sprague and Luczkovich 2004, 248 

Vasconcelos & Ladich 2008, Codarin et al. 2009, Sirovic & Demer 2009, Locascio and 249 

Mann 2011, Parsons et al. 2012, Amorim et al. 2013, Radford et al. 2015). Assuming 250 

spherical loss with no sound absorption by the medium, the source level (sound level at 251 

1 m) was calculated for each of these species, using the equation: 252 

�� = 10 log
��
������� �� 

Where, SL, Source Level (dB); RLlinear, Received level converted to linear scale and r 253 

the distance from the fish to the hydrophone as reported for each species. The 254 

transmission loss was calculated with: 255 

�� = 10 log
����� 

Where, TL, Transmission Loss (dB); and d, distance to the source. The attenuation was 256 

obtained by subtracting the Transmission Loss from the Source Level for each distance. 257 
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For background noise level we used mean and range values as in Romagosa et al. 258 

(2017) for ambient sound pressure level (based on mean SPL values from 2010 in Fig. 5 259 

cf. Romagosa et al. 2017) of Condor seamount in the 18-1000 Hz frequency band.  260 

 261 

2.5 Patterns of fish assemblages 262 

Data on the temporal and spatial patterns of variation of benthic and benthopelagic fish 263 

assemblages on the Condor seamount were obtained from a previously published study 264 

(Menezes & Giacomello 2013) that collected longline samples in the 151-1200 m depth 265 

interval, from 2003 to 2012 (between September and November). These samples were 266 

conducted in autumn: 19 and 20 of November 2003; 15-25 of September 2009; 25 267 

September 2010 to 1 of October 2010; 22 of September to 7 of October 2011; 29 of 268 

September to 15 of October 2012; according to Table 1 in Menezes & Giacomello 2013.  269 

From all the species in Table 2 from Menezes & Giacomello (2013), we selected the 270 

species that were caught with the fishing gear at 150-250 m, whose depth range was 271 

within the presumed detection range of the hydrophone (see results) and noted the ones 272 

that were vocal or potentially vocal (species belonging to the same genus or family of 273 

other confirmed vocal species; Carriço et al. 2019). Although some fish species could 274 

theoretically be detected several hundred meters away we chose to select fish with its 275 

upper catch distribution limit ranging from 150-250 m, to be conservative. The years 276 

2009, 2010 and 2012 were considered for the fish surveys.  277 

 278 

2.6 Biodiversity metrics 279 

For the fish assemblages (fish species) and for acoustic data (sound sequences), we 280 

calculated the relative abundance and two biodiversity indices (Species richness and 281 

Shannon biodiversity index). The species richness is the number of species present in a 282 
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community and is a good indicator of diversity, since a community with a higher 283 

number of species is characterized by a greater diversity (Magurran 1988; Willig et al. 284 

2003). The Shannon Index is also a diversity function which conjugates the number of 285 

species present in a community with the relative abundance of each species present in 286 

the sample (Magurran 1988; Willig et al. 2003). However, it should be considered that 287 

this index condenses two variables into a single metric, is especially sensitive to small 288 

samples and does not adequately reflects rare species or sound types (Sandoval et al. 289 

2018), which eventually may underestimate a part of the diversity. Also notice that for 290 

the comparison of the biodiversity metrics between the acoustic data and the fishing 291 

surveys, data were not available for the same years in the period prior to the protection 292 

establishment. For the acoustic data only 2008 was available, whereas fishing surveys 293 

were only made in 2003 and 2009, and only 2009 was considered.  294 

 295 

296 

A total of 19300 (SD= 625.1) sound sequences, belonging to 9 different sound 297 

sequences types, were found in the 2008 datasets; 3220 (SD= 183.5) sound sequences 298 

belonging to 8 sound sequences types were found in the 2010 datasets and, finally, 347 299 

(SD=18.6) sound sequences of 5 different sound sequence type were found in the 2012 300 

datasets. 301 

302 

3.1 Annual patterns 303 

There was a marked decrease in the total number of registered sound sequences (i.e. 304 

sound sequences abundance per day) from 2008 to 2012 (Fig. 2a). This decline in sound 305 

sequences abundance was accompanied by a decrease in sound richness (number of 306 

sound sequence types, Fig. 2b). Interestingly, higher values of the Shannon Index 307 
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concerning fish vocalizations were observed in 2010 (Fig. 2c).  In Fig. 2d, e and f we 308 

report the variation in fish abundance (d) species richness (e) and Shannon index (f) of 309 

fish species sampled by longline fishing, between 2009 and 2012, including all fish 310 

species considered (total - all the species present at the depths closest to the EARs) or 311 

the potentially vocal (vocal and potentially vocal species within the same depths) (see 312 

Fig. S2 and S3 for the comparative abundance of each species). Fish species abundance 313 

(total or potentially vocal) decreased from 2009 to 2012, following a pattern similar to 314 

the acoustic data (Fig. 2d). Total species richness increased in 2010, with a slight 315 

decrease in 2012, while potentially vocal species richness was stable in the different 316 

years (Fig. 2e). The Shannon Index for taxonomic diversity increased slightly from 317 

2009 to 2010 and then decreased in 2012, especially for potentially vocal species (Fig. 318 

2f). In summary, the fish abundance and diversity decreased in 2012 compared to 319 

previous years. The only exception was in species richness (especially of the potentially 320 

vocal fish) that was stable in all the three years.  321 

In terms of annual pattern of the occurrence of the different sound sequences, 322 

there was an increase in number of sound sequence #1 across the years and a decrease 323 

in the number of sound sequence #10 (Fig. 3). The sound sequence #4 and ‘Others’ 324 

mostly occurred in 2010. Sound sequence # 5 decreased in abundance in 2010 and then 325 

increased in 2012. 326 
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 327 

Fig. 2. Annual patterns in fish sound sequences and fish assemblages sampled by 328 

longline fishing (from Table 2 in Menezes & Giacomello 2013), including a sub-sample 329 

of species present at depths within putative acoustic detection range from the EARs 330 

(Total) and a sub-sample of these species including only the vocal and potentially vocal 331 

fish species (Potentially vocal). Sound abundance (a) represents means of the total 332 

number of sounds per day (logarithmic scale) and standard deviation (represented by 333 

error bars) (N=20 days per year); Richness (b) represents the number of unique sound 334 

sequence types that were detected in the recordings, calculated yearly; Shannon Index 335 

(c) represents the number of sound sequence types conjugated with the relative 336 

abundance of each sequence type, calculated yearly. Abundance in fish species (d) 337 
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represents total number of individuals reported, where richness (e) represents the 338 

number of species collected in the fish surveys (per year) and the Shannon Index (f) 339 

represents the number of species conjugated with the relative abundance of each specie 340 

(per year); for total and potentially vocal species. 341 

 342 

 343 

 344 

Fig. 3. Annual patterns in fish sounds: proportion of sound sequences types per year. 345 

Average abundance based on 20 sampled days per year. Total number of sound 346 

sequences for each year indicated above the bars. Note that in 2008 “Others” occurred 347 

only 0.5% and are not noticeable.  348 

 349 

3.2 Seasonal patterns 350 

There was a higher number of fish sound sequences in spring and autumn 2008, in 351 

summer and autumn 2010 and in summer 2012 (Fig. 4). In other words, there was no 352 

consistent seasonal pattern over the studied years. In terms of the occurrence of a 353 

particular sound sequence, sound sequence #1 was dominant in autumn in all three 354 
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years, whereas sound sequence #5 and sound sequence #10 had a higher incidence in 355 

spring and summer 2008 and 2012. Sound sequence #4 was strongly present in spring 356 

and summer 2010. 357 

 358 

Fig. 4. Seasonal patterns in fish sound sequences for the three years (2008, 2010, 2012): 359 

diversity (proportion of each sound sequence, top section) and abundance (total number 360 

of sound sequences, bottom section). Average abundance based on 5 day sampled per 361 

month. 362 

 363 

3.3 Diel patterns  364 

A higher abundance of sound sequences was observed at dusk and night for both 2008 365 

and 2010 (representing 69,2 % and 79,5% of observed sound sequences respectively), 366 

with the sound sequence #1 and #10 being the most prevalent (Fig. 5). Sound sequence 367 

#1 occurred in all periods but less during the day (Fig. 5B). Its presence at dawn and 368 

dusk increased from 2008 to 2010. Sound sequence #10 was infrequent at night. It was 369 

predominantly present from dawn to dusk in 2008 but only at dusk in 2010. Sound 370 

sequence #5 was present in all the periods of the day except for dawn in 2010. Sound 371 

2008 2010 2012
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sequence #4 seemed to be restricted to the day period of 2010. The others sound 372 

sequences were mainly present at dawn and dusk of 2010. 373 

 374 

Fig. 5.  Diel patterns of occurrence fish sounds in 2008 and 2010. A - Bars indicate the 375 

proportion of occurrence of sound sequences (sum of all sequence types per hour) 376 

according to different periods of the day, while pies depict the proportion of sound 377 
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sequences occurring in each period of day (N=20 sampled days per year). B – Mean (± 378 

S.D.) abundance of the most abundant sound sequence (#1) throughout the day (24 h).  379 

 380 

3.4 What is the detection distance of vocal fishes in this study? 381 

Attenuation of vocalizations of seven fish species reported in literature to ambient noise 382 

level characterising our recording site are depicted in Fig. 6. Sounds from these species 383 

can propagate at different distances, with some species theoretically being heard over 384 

great distances (Table S1). The sound received levels of three species (out of the seven 385 

considered) would be higher than the mean background up to a max of 20 m distance, 386 

while the sounds of two species could be detected much further, up to 1 km. In contrast, 387 

P. pictus source level is below minimum ambient noise level, which make it hard to be 388 

heard at more than just a few centimetres while S. pauscipinis received level are above 389 

the ambient noise level only up until to a distance of 6 to 8 m. Similarly, H. didactylus, 390 

O. tau and C. chromis received levels are above the ambient noise level up to a distance 391 

of about 10-20 m. In contrast, in two species, P. adspersa and A. japonicus, the source 392 

level is so enhanced that the received levels are above the mean ambient noise level up 393 

to a distance of 1000 m, allowing these species to be detected at much greater distances. 394 

These calculations are theoretical and, furthermore, we do not know the source species 395 

responsible for the recorded sounds; however, this exercise highlights that the EARs 396 

located at about 190 m depth may have record fish sounds from some species vocalizing 397 

at depths greater than 200 m, allowing it to potentially target sound of the deep-sea fish 398 

fauna. 399 

 400 
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 401 

Fig. 6 – Attenuation of several fish species’ vocalizations which source levels are 402 

reported in literature (Opsanus tau (Barimo & Fine 1998), Pomatochistus pictus 403 

(Amorim et al. 2013), Chromis chromis (Codarin et al. 2009), Sebastes pauscipinis 404 

(Sirovic & Demer 2009), Argyrosomus japonicus (Parsons et al. 2012), Pempheris 405 

adspersa (Radford et al. 2015) and Halobatrachus didactylus (Vasconcelos & Ladich 406 

2008)). Average and range ambient sound pressure level measured at Condor for the 407 

frequency band 18-1000 Hz by Romagosa et al. (2017) is also depicted. Distance is 408 

presented in logarithmic scale. 409 

 410 

4. Discussion 411 

The development of new tools to assess the state of ecosystems and anthropogenic 412 

impacts is a priority to establish effective mitigation measures. Passive acoustic 413 

monitoring can contribute to the collection of important data from deep, dark and 414 

remote areas of the ocean with a minimal impact to the ecosystem at large geographical 415 

and temporal scales (Staaterman et al. 2017). Here, we present the first study addressing 416 

temporal patterns of the vocal fish community inhabiting deep waters around a 417 

seamount habitat. Data collected over an extended temporal scale allowed the 418 
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characterization of annual, seasonal and diel rhythms of fish sound production and the 419 

comparison of the observed acoustic patterns with variation of fish assemblages 420 

surveyed by longline fishing for a similar time frame (Menezes & Giacommello 2013). 421 

During the sampled period, there was a change in the protection status of Condor 422 

seamount which was closed to fishing in June of 2010 for conservation and research 423 

purposes (Giacomello et al. 2013).  424 

Annual patterns for the most abundant fish sound sequences recorded in Condor 425 

seamount were investigated. There was a decrease in the mean abundance of sounds and 426 

in sound richness (the number of sound sequence types) from 2008 to 2012, while a 427 

higher biodiversity was only observed in 2010. The observed acoustic trends were in 428 

line with the variations in fish assemblages estimated by fishing. The decrease in the 429 

fish assemblages may have caused a reduction in the number of sounds, since fewer fish 430 

will produce fewer sounds. Abundance and the biodiversity Shannon Index presented 431 

similar annual trends for both fish assemblages and acoustic data, validating PAM for 432 

monitoring fish biodiversity in underwater seamounts and at relatively high depths. 433 

Consistently, in 2013, the fish community from Condor was also surveyed visually 434 

using remotely-operated vehicles (ROV) which sampled 15 species in common with the 435 

species recorded by longline, for a total of 51 taxa registered by the ROV and 48 by 436 

longline fishing. Fish species sampled by both methods included some potential vocal 437 

species with commercial value like Pagelus bogaraveo (Perciformes), Helicolenus 438 

dactylopterus, Pontinus kuhlii (Scorpaeniformes), Phycis phycis (Gadiformes) (Meneses 439 

& Giacomello 2013, Porteiro et al. 2013). This highlights the importance of combining 440 

different sampling methodologies for the validation of one particular method. Other 441 

studies have pursued such validations.  Desiderá et al. (2019) found a strong association 442 

between acoustic and visually assessed fish diversity in rocky Mediterranean shallow 443 
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habitats. Positive relationships between visual surveys and acoustic diversity (measured 444 

by the ACI index) were found in Bertucci et al. (2016) and Harris et al. (2016) in 445 

shallow marine environments. The fact that fishing and acoustic surveys seem to obtain 446 

similar results, leads us to consider PAM as useful and effective instrumental for 447 

monitoring fish communities or target vocal species in conservation projects, not only 448 

in shallow marine waters but also in deeper and less accessible ocean environments.  449 

To the best of our knowledge, this is the first study that relates fish sound 450 

abundance and diversity with direct surveys of deep-water fish fauna. Few studies have 451 

reported sound production by fishes from the deep-sea (Bonaparte 1832, Cato 1978, 452 

Mann and Jarvis 2004, Rountree et al. 2012, McCauley & Cato 2016, Wall et al. 2017, 453 

Parmentier et al. 2018, Rieira et al. 2020). Moreover, beyond the scarcity of recordings 454 

of vocalizations from deep-sea fish, a few anatomical studies have reported the presence 455 

of muscles attached to the swimbladder (Marshall 1967, Nguyen et al. 2008, Ali et al. 456 

2016, Parmentier et al. 2018, Fine et al. 2018), a common feature in several fish that 457 

produce sounds (Fine and Parmentier 2015). While acoustics may be the preferred mode 458 

of communication for fish active at night (Ruppé et al. 2015) and/or in a dark 459 

environment like the deep-sea (Mann and Jarvis, 2004), until not long-ago technology 460 

did not allow us to record at those depth for long periods of time (Wall et al., 2017, 461 

Bolgan et al. 2020).   462 

The change in the protection status of Condor seamount in 2010 afforded an 463 

opportunity to observe changes in fauna biodiversity. Although we expected an increase 464 

in fish sound sequences abundance and diversity after 2010, as a result of fisheries 465 

interdiction, neither an increase in fish species abundance/biodiversity nor in fish 466 

acoustic abundance/biodiversity was observed. However, this may be explained by the 467 

amount of time needed for the ecosystem to recover and therefore an extended period of 468 
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observation would be essential to see the reserve effects in fish and, consequently, 469 

acoustic biodiversity. Moreover, due to the system resilience, the observed decrease in 470 

the abundance and biodiversity of both sounds and species, may be due to negative 471 

impacts from previous years, that take some time to became visible (Holling 1973), like 472 

the fishing pressure or marine pollution that has been occurring in the past years. In 473 

addition, some current fishing practices outside the protected area, also associated with 474 

some non-compliance observed inside the reserve (Rosa, personal communication) may 475 

also have a significant impact in biodiversity recorded in the area and impact the speed 476 

for the system’s recovery. Hence, the reduced time after the reserve establishment (2 477 

years) may have not been enough to produce positive observable effects in species and 478 

sound abundances as reserve effects typically take more than 10 years to get established 479 

(Edgar et al. 2014). Indeed, more recent data from demersal longline fishing in Condor 480 

revealed an increase in the abundance and biomass of the commercial specie Pagelus 481 

bogaraveo (Giacomello, personal communication; Rosa et al. 2018), which is a 482 

potentially vocal species (Carriço et al. 2019). Future studies comparing acoustic data 483 

with fishing surveys from more recent years, are necessary to ascertain the relation 484 

between the acoustic and the fishing data observed in this study and its relation with 485 

MPA effects. 486 

Regarding finer-scale temporal patterns of fish sounds at Condor seamount, we 487 

found a higher number of fish sounds in spring and autumn for 2008, in summer and 488 

autumn for 2010 and in summer for 2012. Although we did not find an obvious seasonal 489 

pattern in fish sound abundance, sound sequence type #1 was consistently present in the 490 

three sampled years and occurred more frequently in autumn/winter months. Studies on 491 

fish sound occurrence in deeper environments have been the subject of few studies 492 

(Wall et al. 2013; Wall et al. 2014), but several have described seasonal patterns in 493 
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shallow water (< 40m depth; McCauley & Cato 2000, Montie et al. 2015, Rice et al. 494 

2016, Pine et al. 2017, Sánchez-Gendriz & Padovese 2017). Differences in water 495 

temperature, seasonal movements or migrations, food availability and changes in fish 496 

behaviour like reproduction may explain some of the seasonal patterns of the fish 497 

calling activity in deep waters (McCauley & Cato 2000, Nguyen et al. 2008, Rice et al. 498 

2016, Sánchez-Gendriz & Padovese 2017). Radford et al. (2008) found that the ambient 499 

noise was more intense in summer in a shallow temperate reef in New Zealand due to 500 

crustaceans and fish chorus. For daily variations, we observed a higher incidence of 501 

sounds at night and dusk, in line with other studies (Locascio & Mann 2008, Parsons et 502 

al. 2016). McCauley & Cato (2000) and Rice et al. (2017) also found nocturnal 503 

dominant patterns in fish chorusing. Various species of fish exhibit diel behavioural 504 

cycles (Helfman 1986), including in sound production (Parsons et al. 2016, Rice et al. 505 

2017). Acoustic communication seems to follow these patterns (Ruppé at al. 2015) as it 506 

is associated with behaviours that present daily cycles such as foraging and agonistic 507 

interactions (Amorim 2006; Macaulay 2012). Additionally, since a significant part of 508 

the acoustic communication in fishes is related with reproduction activity, which occurs 509 

mostly at night (Macaulay 2012; Rice et al. 2017, Staaterman et al. 2017), this may also 510 

influence daily rhythms and seems to agree with the observed patterns for Condor. The 511 

production of sound at night and in periods with less light can also be a way to avoid 512 

and minimize predation risk and a better way to find mates than visual displays (Wilson 513 

et al. 2014). Note that, although at the studied depth (ca. 190 m) there is only dim light, 514 

it still has slight daily changes in light intensity, that associated with other factors like 515 

vertical migrations (in turn also related with light level changes) (Brierley 2014; Afonso 516 

et al. 2014, Cascão et al. 2017) might influence the presence and vocalization of certain 517 

species, contributing to the observed diel patterns. Although the behaviour of deeper-518 
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water fishes is far from being well understood, PAM could potentially provide 519 

information about the environmental quality and habitat health by monitoring fish 520 

sound patterns. Sound production is typically associated with particular behaviours and 521 

fish behaviour is the first endpoint to be affected by stressors (van der Sluijs et al. 2011, 522 

Sharma 2019). Examples are noise pollution, overexploitation, habitat fragmentation or 523 

diseases that can contribute to changes in the characteristic of a soundscape from a 524 

given area (Laiolo 2010). 525 

Fig. 6 highlights the fact that some fish species can be monitored at larger 526 

distances than others. For example, Gobiidae species can only be recorded very close to 527 

the hydrophone (few cm; Lugli & Fine 2007; Amorim et al. 2018), thus having no 528 

potential to be monitored with PAM. The remaining species, however, could be 529 

detected > 10 m away, and some, like Pempheridae or Sciaenidae (Sprague and 530 

Luczkovich 2004, Parsons et al. 2012, Radford et al. 2015), are expected to have much 531 

higher propagation distances, being good candidates to be monitored with PAM over 532 

large spatial scales. The fact that most species are detected at 10 m or more support the 533 

idea that the EARs could have recorded fish sounds emitted at depths below 200 m, i.e. 534 

from deep-waters.  535 

 536 

5. Conclusions 537 

In conclusion, this study highlights the presence of diel periodicity (more sounds at 538 

night), as well as seasonal and yearly variations in fish calling activity in a seamount at 539 

ca. 190 m depth. However, seasonality appears to be less restricted in time than in 540 

shallower water. The comparison of the acoustic recordings with traditional fish surveys 541 

suggests that data from both approaches vary in parallel over the years, strongly 542 

indicating that ecological changes are therefore reflected on both datasets; this 543 
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approach, to the best of our knowledge, has never been applied before. We suggest that 544 

passive acoustic monitoring can play a fundamental role in assessing deep-water fish 545 

abundance and diversity dynamics. Studies of this kind at even greater depths are 546 

therefore strongly encouraged. 547 

 548 
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Highlights 
 

 
•  Diel patterns of fish sounds were detected at ca. 190 m depth. 
 
• Highest abundances of sound sequences were observed at dusk and night. 
 
• Trends of abundance and diversity of vocalizations were similar to catch trends in 
fishery surveys. 
 
• Acoustic monitoring is a useful tool to assess biodiversity in deep seamounts. 
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