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Abstract 

Pollution of soil by trace metals has become one of the biggest global environmental challenges 

resulting from anthropogenic activities, therefore, restoration of metal contaminated sites needs 

due attention. The use of phytoremediation technologies as nature-based solution to pollution, 

could support successful implementation of green economic development strategies; with 

economically affordable and environmentally friendly benefits. The present investigation 

employed an exploratory study on the phytoremediation potentials of three selected native plants; 

Phytolacca dodecandra (L’Herit), Adhatoda schimperiana (Hochst) and Solanum incanum L, 

dominating areas close to heavy metal contamination sources; in metropolitan centers of Addis 

Ababa. In this work, concentration of six heavy metals of interest chromium (Cr), lead (Pb), 

cadmium (Cd), nickel (Ni) copper (Cu) and zinc (Zn) were examined in soil and in different tissues 

(leaves, stems and roots) of selected plants (both seedlings and mature plants), in dry and rainy 

seasons using atomic absorption spectrophotometer. Efficiency of phytoremediation is discussed 

based on calculated values of Bio-concentration Factor (BCF), Translocation Factors (TF) and 

Bioaccumulation Coefficient (BAC). Phytolacca dodecandra showed BCF, TF and BAC > 1 for 

Zn, Pb, Ni, Cu and Cd Adhatoda schimperiana gave BCF, TF and BAC > 1 for Zn, Cu, Ni and Cr; 

likewise, BCF, BAC and TF values of > 1 were noted in Solanum incanum for Zn, Cu, Pb and Ni. 

Based on these scenarios, the three plants could be utilized for phytoextraction of contaminated 

soil. Conversely, BCF and BAC for Cr levels in tissues of Phytolacca dodecandra were all < 1, 

which indicates unsuitability for phytoremediation of Cr in contaminated soils. Besides, Adhatoda 

schimperiana retained Pb and Cd in their roots showing root BCF > 1, while BAC and TF < 1, 

which highlights its suitability for phytostabilization. Moreover, BCF, TF and BAC values of < 1 

noted for Cr and Cd in Solanum incanum reveal that Solanum incanum may not be a good 

candidate for remediation of Cr and Cd contaminated environments. In conclusion, results from 

this study revealed that the selected plants can accumulate substantial amounts of the above trace 

metals in their tissues and can serve as prospective phytoremediators of most of these metals. 

Phytoextraction and phytostabilization were the main mechanisms of remediation in this study. 

Key words: Contaminated soil; Heavy metals; Plant uptake; Translocation factor; 

Bioconcentration factor; Phytoremediation, Phytoextraction; Phytostabilization 
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CHAPTER ONE 

1. Introduction 

1.1.  Background of the study  

Environmental pollution is of a serious ecological concern, and several inorganic and organic 

contaminants have been noted as sources of environmental contamination (Ali et al., 2018; Gul et 

al., 2019; Saxena et al., 2019). Heavy metals are one of the leading environmental pollutants and 

critical threats to human health in many countries (Ashraf, et al., 2019). Heavy metal refers to 

trace elements with an atomic number above 20 and density of larger than 5 g/cm3 (Singh et al., 

2019). There are 53 trace elements documented as heavy metals (Padmavathiamma and Li, 2007; 

Sarma, 2011; Prieto et al., 2018).  

Pollution of soils by heavy metals or excessive accumulation of trace metals in agricultural soils 

and edible crops have become a potential threat to the environment and human health since the 

start of the industrial revolution (Xiong et al., 2016; Chaoua et al., 2019; Woodford, 2019; 

Elshamy et al., 2019). Heavy metal contaminants can have both anthropogenic and natural sources, 

however, the anthropogenic activities are major sources of metal contaminants (EPA, 2000; 

Kabata-Pendias, 2011; Saif and Khan, 2017; Singh et al., 2019). Contamination of soil by toxic 

metals can occur from a variety of sources the main ones are the use of fossil fuel (Muradoglu et 

al., 2015), industrial practices (Belouchrani et al., 2016; Singh et al., 2019), mine tailings (Chen 

et al., 2016; Gul et al., 2019), agricultural pesticides (Belouchrani et al., 2016), automobile exhaust 

or transportation (Luo et al., 2018) and illegal dumping of wastes (Khan et al., 2016; Gul et al., 

2019). 

Common soil contaminant trace metals with tremendous health risk to organisms include Cd, As, 

Ni, Pb, Cr, Zn, Cu, and Hg (Sharma et al., 2014; Singh et al., 2019). Trace metals especially; Cr, 

Pb, Cd, Hg, Ni, Cu, and Zn are considered as potentially toxic heavy metals with negative 

environmental impacts (Antoniadis et al., 2017; Cabral-Pinto et al., 2019; Hasan et al., 2019). 

Similarly, Nagajyoti et al. (2010) reported urban areas with intensive anthropogenic activities have 

been contaminated by environmental pollutants including: Cr, Pb, Cd, Ni, Co, Zn, Fe and others. 

Some of these heavy metals, including Mn, Ni, Cu and Zn are essential elements having biological 



 

2 
 

importance. However elevated concentrations of these heavy metals could be harmful to organisms 

(Shi et al., 2016). Conversely, metals including Cr, Cd, Hg, As and Pb are non-essential metals 

and have no apparent biological importance (Swapna et al., 1987).  

Despite the presence of low contaminated areas (pristine areas) in some parts of the world, 

anthropogenic environmental pollution influences are well spread throughout the world. Even 

though the contribution of developed countries is very high and they are the most polluting 

countries in the world, the negative impact of pollution is worse in developing countries mainly 

because of limited financial resources and technical expertise that hamper the progress to comply 

with universal environmental guidelines and remediation measures (Azam, 2016). 

Deterioration of natural environments caused by unsustainable use of resources and contamination 

of environmental medium is a serious problem in the developing world, like Africa. Africa is a 

continent with rapid population growth accompanied by urbanization and industrialization which 

places huge demand on resources and impacts the quality of environment (Fayige et al., 2018; 

Odoh et al., 2019). Central Ethiopian highlands are under increasing pressure due to expansion of 

industries and population growth (Minase et al., 2016). Even though Addis Ababa is a rapidly 

growing metropolitan in Africa, solid waste management systems, sewerage treatment facilities 

and regulatory compliances have not progressed well in proportion to its development (Colombani 

et al., 2018; Aschale et al., 2019). Pollution of local environments in Addis Ababa is connected to 

uncontrolled solid waste and sewage disposal from industrial and domestic sources, urbanization 

and unsustainable use of resources, vehicle washing effluents and toxic chemicals used for 

agriculture (Regassa et al., 2011; Woldetsadik et al., 2018; Eriksson and Sigvant, 2019). 

There are several conventional treatment technologies (physical and chemical approaches) to deal 

with metal contaminated environments (Antoniadis et al., 2017; Yang et al., 2018), but most of 

these are expensive, more technical and environmentally destructive (Luo et al., 2018). 

Phytoremediation is identified as a non-destructive and promising technology for cleaning toxic 

metals from polluted water or soil (Prieto et al., 2018; Eid et al., 2019). This plant-based clean-up 

method is an alternative and emerging technology, which is both economically and 

environmentally sound (Gong et al., 2018; Ashraf, et al., 2019). This technology is an efficient 

and feasible technique for clean-up of sites contaminated by toxic metals (Fu et al., 2019). 

Phytoremediation technologies can be classified based on the mechanisms involved. These 
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include: phytoextraction, phytodegradation, phytostabilization, phytovolatilization and 

rhizofiltration (Pantola and Alam, 2014; Eid et al., 2019).  

Plants that can absorb metals, mainly in the aboveground parts, are usually referred to as 

hyperaccumulators. These plants can collect and build up exceedingly higher level of metals than 

nearby plants. Hyperaccumulators can take up and retain the following metals with a minimum 

concentrations of: 10,000 mg/kg of Mn or Zn, 1,000 mg/kg of Cu, Ni, Cr, Co, Se or Pb, 100 mg/kg 

of Cd or As (Turgut et al., 2004; Saxena et al., 2019).  

Numerous studies have been conducted on phytoremediation of metal contaminants, and over 500 

plant species have been identified as metal hyperaccumulators (Luo et al., 2016; Singh et al., 

2019). Phytoremediation methods depend on potential absorption and translocation of 

contaminants into the aerial parts of plants (Rehman et al., 2017; Gul et al., 2019). Metal mobility 

and availability for plant uptake can be influenced by cation exchange capacity, organic matter, 

soil pH, soil texture, soil microorganisms, root type and other factors (Eid et al., 2019; Gul et al., 

2019). A potential phytoremediation candidate plant has to be tolerant to harsh environmental 

conditions, has unpalatable nature and must grow in polluted soil (Evangelou et al., 2015; 

Prabakaran, et al., 2019). Hence, sound evaluation of plant capacity to remediate a polluted site 

and a practical approach for implementations are essential prerequisite of any phytoremediation 

plan.  

Three locally available native plants namely: "endod" (Phytolacca dodecandra) “sensel” 

(Adhatoda schimperiana) and Thorne apple (Solanum incanum) were chosen for this study. The 

selection of these plants was based on fulfillment of basic characteristics of plants for 

phytoremediation. Most importantly, tolerance and survival in contaminated sites, large biomass, 

perennial nature and availability at a local level are used as a preliminary selection criteria. 

It is evident from literature that there are no previous reports using these plants for 

phytoremediation of heavy metals contaminated soils. Currently, phytoremediation research is 

dominantly green-house and laboratory-based; however, these conditions do not reflect accurately 

the accumulation capability in terrestrial application (Paz-Alberto and Sigua, 2013; Rostami and 

Azhdarpoor, 2019). Real field evaluation of phytoremediation properties of plants is critical since 

several environmental factors which cannot be simulated in controlled environment could have 
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different impact in natural environments (Luo et al., 2018). Findings in natural field conditions 

could have significant differences from those in controlled environments since field is an actual 

world where numerous factors in the environment concurrently affect removal efficiency of plants 

(Ji et al., 2011; Singh and Malaviya, 2019). Several factors can play a role that could influence 

phytoremediation in the field; these include temperature, soil pH, nutrients, moisture, 

microorganisms, contaminant distribution pattern, low metal bioavailability and soil type (Saxena 

et al., 2019). Consequently, this study evaluated the heavy metal phytoremediation potentials of 

the ‘Endod’ Phytolacca dodecandra, ‘Sadom Apple’ Solanum incanum and ‘Sensel’Adhatoda 

schimperiana plants under field conditions. 

1.2.  Statement of problem 

Heavy metal contaminants causing ecological health problems are receiving global attention (Gajic 

et al., 2018, Fu et al., 2019), and the condition is even worse in developing countries, where there 

are no stringent environmental regulations. These pollutants should be managed in an 

environmentally safe and economically sustainable way.  

Application of nature’s self-purification strategies, such as phytoremediation can be alternatives 

to conventional remedial technologies including chemical leaching, solidification, excavation, 

filtration, soil washing, vitrification, thermal treatment which are expensive, labor-intensive, and 

known to cause undesirable effects on the ecosystem and soil characteristics (Suthar et al., 2014; 

Yi and Sung, 2015; Luo et al., 2018). Phytoremediation is the bioremediation method using either 

terrestrial or aquatic plants to clean-up polluted sites. This technology is natural solar-driven clean-

up method, economical and ecologically pleasant with high public acceptance (Sidhu et al., 2017; 

Hrynkiewicz et al., 2018). It uses selected plants and associated microorganisms to remediate 

contaminated air, water or soil (Hrynkiewicz et al., 2018). 

Several plants are known as metal hyper accumulators; however, many of these species are leafy 

vegetables and edible crops. Edible plants are not preferred for phytoremediation due to the toxic 

effect of certain metals and short life span of most edible crops (Evangelou et al., 2015; Saxena et 

al., 2019). Previous studies identified few non-edible tree species, shrubs and energy crops as 

suitable plants for clean-up of metal contaminated sites (Evangelou et al., 2015; Tauqeer et al., 

2019). The utilization of these plants for remediation purpose is advantageous due to their 
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perennial nature, high biomass, public acceptance, adaptation to polluted sites, erosion control and 

aesthetic values (Cristaldi et al., 2017; Ting et al., 2018). Thus, there is a need to look for a wider 

variety of wild plants for phytoremediation of contaminated sites.  

Phytoremediation of contaminants from polluted sites could be affected by plant variety, soil 

properties and climate of the region. Plants must be appropriate for soil and climatic conditions of 

the area and introduction of exotic plant species for phytoremediation purposes could also cause 

disruption of the local flora, take over local plants and might have impact on soil and biodiversity 

(EPA, 2000; Jeschke et al., 2014; Potgieter et al., 2019). Therefore, there is a need to concentrate 

on locally available native flora for remediation of metal polluted soils (Lajayer et al., 2017; Eid 

et al., 2019). 

Studies on phytoremediation properties of plants are prerequisite and also have a positive impact 

on the success of phytoremediation project plan. Even though there are numerous research reports 

on phytoremediation potentials of plants, phytoremediation studies on mixed metal contaminants 

and the use of plants to remediate multiple contaminants are very limited (Tauqeer et al., 2019). 

And, most of the available studies draw attention to plant families: Brassicaceae, 

Caryophyliaceae, Euphorbiaceae, Cunouniaceae, Cyperaceae, Asteraceae, Flacourtiaceae, 

Fabaceae, Lamiaceae, Poaceae and Violaceae (Anjum et al., 2014, Amin et al., 2018). A review 

article published by Luo et al. (2016); also noted most of the studied plants were families of 

Asteraceace, Brassicaceae, Caryophyllaceae, Fabaceae, Poaceae and Violaceae. Further, based 

on review of studies conducted so far, it can be concluded that little attention has been given to: 

Phytolaccaceae, Acanthaceae and Solanaceae plant families; except for few edible members of 

Solanaceae.  

Phytoremediation studies on mixed metal contaminants could be essential since mixed metal 

contamination is common in most sites (Singh et al., 2019). Besides, based on local personal 

observation, plant species selected for this study: “Endod” (Phytolacca dodecandra), “Sensel” 

(Adhatoda schimperiana) and “Embuaye” (Solanum incanum) seem to grow vigorously and adapt 

well in extremely contaminated industrial areas in Ethiopia. On the contrary, too much 

concentration of pollutants especially heavy metals, could inhibit plant growth and can even result 

in death of plants and limit application of phytoremediation (Fu et al., 2019). However, plants used 

in phytoremediation projects are often adapted to contaminated sites (Keller et al., 2006) and sites 
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with multiple contaminants could be good candidates for phytoremediation plan. Consequently, in 

view of the fact that adaptation to a metal contaminated area could be due to capacity to accumulate 

or exclude pollutant (EPA, 2000; Mehes-Smith et al., 2013; Kalubi et al., 2016; Fu et al., 2019); 

there is also a need to investigate this fact and the mechanisms of adaptation.  

The selection of these plants for this study was based on several criteria. Some of these conditions 

are: ability to survive, tolerate, grow and reproduce in a highly contaminated sites; Non-invasive 

and locally available; non edible to human and unpalatable to most herbivores; adaptation to a 

wide range of climatic and soil conditions; large biomass production ability and regrowth after 

harvesting the aboveground portion. Similarly, contaminants of interest (Cd, Pb, Cr, Ni, Zn and 

Cu) were selected for this study based on the reports on their potential toxicity, tremendous health 

risk on organisms, negative environmental impacts and abundance in urban areas. 

The emphasis of the present study was therefore to assess phytoremediation potentials of 

Phytolacca dodecandra, Adhatoda schimperiana and Solanum incanum by determination of 

elemental concentrations in plants collected from multiple metal contaminated industrial sites. In 

addition, this research is the first to report phytoremediation potential investigations of these plants 

in a field setting. 

1.3.  Aim and Objectives 

 The overall objective of this research was to assess the use and efficiency of naturally growing 

plants, A. schimperiana, P. dodecandra, and S. incanum L, in phyto-remediating multiple 

metals (Pb, Cd, Cu, Ni, Zn and Cr) from contaminated soils under natural field conditions. 

Specific study objectives are: 

 To evaluate the correlations between soil physicochemical characteristics and metal 

absorption by the selected plants.  

 To determine and compare the heavy metal accumulation potentials of seedlings and mature 

 counterparts of the selected plants. 

 To examine the effect of seasonal variations on elemental absorption and accumulation 

properties of the selected plants.   

 To determine the mechanisms used by the plants for remediation.  
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 To determine the suitability of the selected plants for field restoration of metal    

 contaminated soil. 

1.4. Research questions 

    In evaluating each aspect of selection, the following questions were addressed: 

    Are there any differences between the studied seedlings and mature plants in heavy metal 

 accumulation?  

    What mechanisms are involved in the phytoremediation process? 

    Does seasonal variation affect absorption and translocation of metals by the selected plants? 

    Is there correlation between soil physicochemical characteristics and metal uptake by the 

 selected plants?  

    How suitable are the selected plants for field restoration of metal contaminated soil? 

 

1.5.  Significance of the study 

Contaminated land, a global problem, is becoming an important research topic in many countries 

since it has a considerable impact on environment and human health (Sarwar et al., 2017; Li et al., 

2019). Soil pollution is an insidious risk since it is difficult to detect and observe soil erosion and 

other soil degradation processes and it is making a hidden impact that is based on contaminant 

characteristics, properties of soil and speed of entry. Anthropogenic activities and poor 

environmental management standards are principal soil pollution causes. 

Toxic metals can contaminate soil and water resources which can directly affect biological 

diversity and human health. Excessive buildup of metals in the environment could result in 

degradation of natural environments and ecological imbalance which will in turn affect yield and 

quality of crops (Mayor et al., 2013). Similarly, accumulation of toxic metals in food crops and 

biomagnification of metals in animals along food chains could also affect health. 

Environmental clean-up is crucial for mitigating pollution risk on the human health and the natural 

ecosystem. However, physical treatment methods and chemical treatments of heavy metal 

contaminated sites are very expensive, labor intensive and results in secondary pollution. Net 
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environmental benefits of remediation technologies should be considered before commencing the 

remedial measures to maximize net environmental benefits. Phytoremediation technology could 

be highly suitable and can have enormous benefits for low income countries (Waoo et al., 2014). 

Plant-based remediation of polluted sites is an environmentally friendly alternative to other 

treatment technologies (Nanda and Abraham, 2013; Thijs et al., 2017; Li et al., 2019). Besides the 

remediation purpose, phytoremediation also contributes to the reduction of greenhouse gases via 

fixation of atmospheric CO2, reduction of soil erosion, energy production and aesthetic values 

(Novo et al., 2018). 

Phytoremediation using native plants is often better because of their adaptation, survival and 

growth under environmental stress compared to non-native ones (Chandra and Kumar, 2017; 

Guarino et al., 2019) and it will also reduce environmental risks associated with this technology. 

However, planning for a phytoremediation project without having initial information about the 

nature of the plants to be used and relying on non-native plants might not be economically viable 

and environmentally sustainable. Successful remediation depends on adaptation or tolerance of 

plants to multiple metal contaminants and the capacity to uptake and translocate metals (Singh et 

al., 2019). Hence, in-depth research and selection of metal accumulator plants, along with metal-

resistant plants, and those best adaptable to contaminated environment and a deeper understanding 

of their heavy metal absorption, translocation and accumulation is vital to make the whole project 

a success (Reeves et al., 2018; Singh et al., 2019).  

This field experimental study on selected plants growing in metal contaminated soil, examined the 

remediation potentials of these plants to clean up contaminants of interest (Pb, Ni, Cu, Zn, Cd, and 

Cr) in actual environmental conditions. Findings of the study addresses the application of 

Phytolacca dodecandra, Adhatoda schimperiana and Solanum incanum for phytoremediation 

heavy metal contaminated soils. This could contribute to the existing broader scientific knowledge 

on the use of indigenous, locally adapted and commonly available plant species for the 

management of polluted soils in urban environments. Results could provide important insight on 

the potential benefits of these plants and the research output could add value to environmental 

management efforts, especially on remediation of heavy metal contaminated sites. Further, results 

from this study can also be used as an input for further research and provide information on the 
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selected plants so that there could be informed consideration of them for the implementation of 

phytoremediation projects. 

1.6.  Scope of Study  

The research is delimited to assess the potential use of selected native plants; Adhatoda 

schimperiana, Phytolacca dodecandra and Solanum incanum for phytoremediation of selected 

heavy metals: Pb, Ni, Cu, Zn, Cd, and Cr from contaminated industrial sites. Predefined heavy 

metal concentration ratios between the plants and the contaminated soil were used for evaluation 

of the degree and mechanism of phytoremediation process.  

In the current study, no controlled pot experiment was conducted, but an investigation on metal 

absorption and translocation by selected plant Species growing naturally on the industrially 

contaminated soil was done. Exclusion of metals accumulated in seeds and flowers of the studied 

plants can also be mentioned as a limitation of this study, which is basically because the study also 

comprises samples of young plant seedlings that did not flower.  Plant age estimation was done 

using growth ring examination, stem girth comparison and other morphological characterization. 

Although this study compared the phytoremediation of seedlings and ‘mature plants’ the exact age 

of mature plants remains unestablished. Similarly, the study did not include comparative study on 

the plant growth rate. On the other hand, this study did not assess the impacts of microbial activity 

on the phytoremediation activities of plants. 

The other limitation of this study is that there was no ‘before’ and ‘after’ assessment to evaluate 

metal contaminant’s reduction after phytoremediation, as no predetermined or artificially 

contaminated soil was employed. However, the assessment of phytoremediation potential was 

conducted by quantification of metal accumulation efficiency by calculating the Bioconcentration 

factors and Translocation factors.  

1.7. Ethical considerations 

1.7.1. Site and societal value considerations 

Sampling sites involved in the sampling campaign were of low-intensity public uses and sites that 

belong to the municipality, company or industries. No samples were collected without consent 

with the concerned bodies. Necessary precautions were taken to reduce conflict with stakeholder 
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communities. Study ethical clearance was obtained from UNISA and the ethics details and other 

consent letters are placed in the Appendix part. 

1.7.2. Regulatory concerns 

All regulatory issues were taken into account and agreement was made and ethical clearance and 

support was obtained from all concerned bodies; government (Addis Ababa City Municipality and 

Environmental Protection Authority), private companies including industries around the study 

area.  

1.7.3. Ecological risk considerations 

The study took into account all possible ecological risks, all study plants are native to the country 

and no risk of invasive species expected. Study plant samples were carefully discarded, in best 

available hazardous waste disposal facility based on the consent of EPA, to avoid cross 

contamination to any environmental medium. In addition, plant root samples were safely collected 

without extensive excavation and the excavated soil was filled back, to avoid the risk associated 

with erosion. 

1.7.4. Health risk considerations 

Appropriate protective measures that can avoid hazard exposure routes such as inhalation, contact 

and ingestion were considered while doing the experiments and during disposal of analyzed 

samples. All possible risk reduction procedures and materials including masks, safety gloves, and 

lab apron were used. All field and laboratory equipment were cautiously cleaned to prevent 

contamination. 
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CHAPTER TWO 

2. Literature review 

2.1. Environmental contamination 

 
Environmental pollution attributable to anthropogenic and natural sources is increasing rapidly 

with human population, industrialization, urban development and consumption of natural 

resources (Panayotou, 2016; Irfan and Shaw, 2017; Liang and Yang, 2019). Discharges of several 

chemical contaminants by industries into different environmental media (soil, water, air) disturb 

ecosystem balance. Dealing with environmental contaminants that endanger the normal 

functioning of the environment becomes a paradox for scientists and politicians (Basak and Dey, 

2016). In general, the rate of contaminant accumulation surpasses the ecological capacity of the 

planet to remove it. Thus, reversing the potential impacts of these contaminants on the natural 

environment needs collaboration with nature (Prieto et al., 2018). 

Several toxic chemicals and materials are available in the environment and people get exposed to 

these substances in many ways. Exposure to these contaminants can be through air, water and 

polluted soil pathways (Moore, 2019). Consumption of vegetables and seafood exposed to 

contaminated water or soil are potential sources of exposure. Industrial activities are most 

significant sources of environmental pollution especially in developing countries (Mingkhwan and 

Worakhunpiset, 2018). Ecosystem degradation, elevated levels of hazardous contaminants in the 

environment, and potential impacts of these contaminants were aggravated due to industrialization 

(Nayak et al., 2018; Moore, 2019).  

Heavy metals are the major naturally occurring toxic materials and heavy metal pollution is of 

great ecological and health concern (Nayak et al., 2018; Almalki et al., 2019). Resistance to 

degradation, bioaccumulation and biomagnification are main factors that exacerbate the likely 

effects of metals on health of human being, biodiversity and the ecosystem.  

2.2.  Soil pollution 

Soil is an exceedingly complex and vital constituent of the environment. Pollution or 

contamination of soil is extensive and a severe global environmental problem (Mizutani et al., 

2016). Good soil lacks pollutants and contains key minerals and other components for better plant 
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growth. However, due to the continuous unsustainable exploitation of natural resources and the 

negligent disposal of wastes, it is difficult to find good soil. Soil is final receptor of several 

environmental contaminants that are produced by human activities (Cristaldi et al., 2017). Land 

disposal of solid wastes and toxic contaminants is a common practice for many of us. However, 

the impact on soil can be long term, degrading the quality of productive land and leaving it wasted. 

The pollution of soil is an important environmental problem seriously impacting the normal 

functioning of the ecosystem today (Huang et al., 2018; Rostami and Azhdarpoor, 2019). With 

increasing human population and industrial development, contamination of life supporting 

environmental media is inevitable. Rapid urbanization accompanied by increasing agricultural and 

industrial practices has severely degraded soil quality worldwide (Adrees et al., 2015; Li et al., 

2019). Soil pollution can adversely impact soil quality, productivity and other natural ecological 

parameters connected to soil. Contamination of soil can directly impact food security through crop 

yield reduction due to toxicity or making the produced one unsafe for consumption (Eugenio et 

al., 2018). 

Contamination of land with heavy metals has been given considerable  attention to date, due to the 

increased health effects, persistence in the environment and deterioration of soil quality (Kidd et 

al., 2007; Kankia and Abdulhamid, 2014; Ashfaque et al., 2016; Azeez et al., 2019). 

Anthropogenic activities such as wastewater irrigation, poor solid waste disposal practices, 

mining, excessive use of agrochemicals, accidental leakage of chemicals and oil, atmospheric 

pollution can also increase soil contaminants, especially concentration of trace metals in soil 

(Jarosz-Krzeminska and Adamiec, 2017; Eugenio et al., 2018).  

Effect of soil contamination depends on the nature of the pollutant, dosage of pollution and agro-

ecological regions because of the complex linkage between the climate of the region, soil type, 

plant or crop types and management practices involved (Saha et al., 2017). Ecological states of the 

biosphere are closely interconnected, pollution therefore will have an impact on the quality of the 

other.  Therefore, soil contaminated with chemical substances becomes a pollution source for other 

environmental components including air, water and plants (Kalandadze and Matchavariani, 2019). 

Appropriate remedial measures for contaminated soil need detailed study on pollutant type and 

dose, pollution source and assessment of possible impacts. 
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2.3.  Soil remediation 

Soil remediation is the method of cleansing and revitalizing contaminated soil, to reduce 

environmental impacts and effects on health. The main target of soil remediation is restoration to 

its natural state. But, complete removal of contaminant or purifying to the level suitable for all-

purpose does not seem economically feasible and technically achievable (Azam, 2016). Thus, most 

remediation approaches are predetermined to deal with contaminated soil and make the soil 

suitable for a specific future use or achieving ‘fitness for use’ status (US EPA, 2009). 

The removal of toxic contaminants from polluted soil is usually expensive, labor intensive and 

time consuming. Currently, there are several technologies dealing with heavy metal contaminated 

soil recovery; however, some are still in the experimental stage (Prieto et al., 2018). Contaminated 

soil can be remediated by several mechanisms; mechanical, thermal or biological processes. 

Conventional remediation techniques, including chemical extraction methods, physical 

excavation, and thermal decontamination methods use diesel fuel motorized machineries which, 

could have harmful environmental impacts through their emissions of contaminants such as 

greenhouse gases (Sner and Anderson, 2011; Yang et al., 2018).  

Ex-situ and in-situ remediation methods are two main strategies for remediation of contaminated 

sites. Remediation at the original site is termed as in-situ remediation and ex-situ clean-up method 

includes excavation and transportation of contaminated soil into a new location for treatment 

(Leguizamo et al., 2017). Ex-situ remediation of polluted soil carried out by chemical and physical 

methods carry a large price tag (Lajayer et al., 2017). However, in-situ remediation methods are 

economical and have limited environmental impacts (Song et al., 2017; Li et al., 2019). In-situ 

vitrification, soil washing, incineration, soil flushing, landfilling, stabilization and solidification 

are common conventional remediation methods (Rahman et al., 2016). 

In general, decontamination of soil can be done using chemical, physical or biological techniques 

(Khalid et al., 2017; Liu et al., 2018). Chemical and physical remediation methods are 

disadvantaged by limitations such as an irreversible change in soil properties, high cost, labor-

intensive, disruption of biological diversity and native flora, secondary pollution problem and the 

need for technological advancement (Rahman et al., 2016).  Adequate remediation of 

contaminated sites or environmental media needs an integrated approach, cooperation and 
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utilization of biotechnological methods together with other traditional remediation and natural 

resource conservation methods (Mani et al., 2015; Singh and Singh, 2016). 

2.3.1. Physical remediation  

Physical remediation involves physical techniques such as thermal treatment, isolation, 

containment method, and soil replacement methods for reversal of polluted soil (Yao et al., 2012). 

Thermal treatment is common for volatile contaminants such as Hg; it involves remediation by 

surface heating (Li et al., 2019). Conductive heating methods, electrical heating, and steam heating 

are common methods in thermal treatment techniques (Song et al., 2017). Contaminated soil can 

be isolated or contained in a physical barrier wall or impermeable materials for the reduction of 

further migration and distribution of contaminants such as heavy metals into groundwater.  

Blending contaminated soil with a large amount of uncontaminated soil involves soil replacement 

methods and this method also includes landfilling and surface capping techniques. Replacement 

techniques are suitable for heavily polluted soil with a small area because of the high cost 

associated. 

2.3.2. Chemical remediation 

Chemical remediation method is a system of removal of contaminants or decontamination of 

environmental medium using chemical reagents or reactions (Song et al., 2017). Remediation 

techniques involved in this method include stabilization, solidification, soil flushing, soil washing, 

vitrification and electro-kinetics (Liu et al., 2018). However, stabilization technique is temporary 

in-situ remediation technique that is inexpensive and easy to apply for high contamination. 

Solidification is a regularly practiced fast, efficient technique involving chemical reaction for 

contaminant immobilization and physical enclosing of pollutants in a solid medium, like asphalt 

and cement (Li et al., 2019). Solidification is an expensive process, both in-situ or ex-situ 

conditions are possible, while stabilization technique is common in an in-situ condition. However, 

in both cases, contaminants remain in the soil and the land loses its original function. Soil flushing 

is another in-situ remediation technique applicable to moderate to highly contaminated conditions; 

it is an economical contaminant removal process with a limited disturbance on soil, however, the 

potential to pollute groundwater remains as a disadvantage of this technique (Liu et al., 2018). 

Similarly, soil washing is fast remediation method using water or other suitable solution for 
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decontamination of soil (U.S EPA, 2006; Li et al., 2019). It is a regularly practiced technique 

involving solvent and mechanical method for remediation of polluted soil, and the method involves 

extreme soil disturbance and common in an ex-situ condition (Song et al., 2017; Ashraf et al., 

2019).  

Vitrification technique is another chemical remediation technique regularly practiced both in an 

ex-situ and in-situ condition and this technique involves mixing of contaminated soil with glass 

forming mixtures under heat of thermal energy (1400–2000°C) (Yao et al., 2012; Li et al., 2019). 

The final product after vitrification process gives amorphous homogeneous glass that contains 

contaminants like heavy metals immobilized in a glass matrix via chemical bonding encapsulation 

(Navarro, 2012).  

Electrokinetics is also newly developed in-situ contaminant removal technique applicable for fine 

texture soil with moderate to high contamination condition. This process uses direct electric 

current for effective heavy metals removal from contaminant matrix which involves process 

mechanisms like electrolysis, electrophoresis, electroosmosis and electromigration (Liu et al., 

2018). 

2.3.3. Biological remediation 

Biological remediation methods are an environmentally sustainable techniques for remediation of 

polluted soils (Agnello et al., 2016). Considering negative impacts on the environment and the 

high cost associated with physical and chemical treatments; biological treatments are better 

alternatives for clean-up of contaminated sites (Prieto et al., 2018). Reclamation of contaminated 

sites using biological methods can be done via bioremediation or phytoremediation, or 

combination of both (Ashraf et al., 2019). Removal, immobilization and decontamination of 

pollutants via biological remediation techniques could be done by plants and associated 

microorganisms (Ayangbenro and Babalola, 2017). Microorganisms cannot breakdown toxic 

metals but they can minimize the mobility and bioavailability by changing the chemical and 

physical characteristics of the polluted environment (Ashraf et al., 2019). 
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2.4.  Phytoremediation Methods 

“The term phytoremediation comes from the Greek word “phyto” meaning plant, and Latin 

‘remedium’ meaning restoring balance” and it can be defined as remediation of contaminated 

environment using an inherent characteristic of plants (Rahman et al., 2016). It is an in-situ 

technique of utilizing plants to uptake, assimilate or stabilize different contaminants from water, 

soils or sediments (Leguizamo et al., 2017; Rostami and Azhdarpoor, 2019). Phytoremediation is 

an emerging, cost effective, environmentally sound, in-situ clean-up and remediation approach for 

contaminated soil (Razzaq, 2017; Yang et al., 2019). It has been reported to be tenfold cheaper 

than chemical and physical methods of environmental remediation methods and other engineering- 

based soil removal and replacement techniques (Marques et al., 2009).  

The process can occur by means of plant metabolic processes alone or in association with 

microorganisms which play an important role in phytoremediation (Nwoko, 2010; Wang et al., 

2017). An effective phytoremediation process relies on site characteristics, plant type and the 

capacity of plants to accumulate, assimilate and degrade the pollutants (Kvesitadze et al., 2006; 

Tauqeer et al., 2019). Natural phytoremediation approach uses the natural accumulating properties 

of plants and concomitant microorganisms, while an induced phytoremediation method; involves 

different mechanisms for enhancing availability of contaminants and uptake properties of plants 

(Rahman et al., 2016). Induced phytoremediation approach involves chelators, chemicals, 

genetically modified plants or other enhancing methods applied on the target plant or the 

environmental compartment under treatment or investigation.  

Plants can use several strategies to decontaminate toxic heavy metals, however the common 

strategy is metal uptake. Excessive absorption and concentration of toxic metals can deleteriously 

damage plant tissue (Khan and Faisal, 2018). Plants can also use several methods to avoid the toxic 

effect of over-accumulation. The restriction of metal movement into plant root with the help of 

mycorrhizal fungi is one way of avoiding the toxic effect (Marques et al., 2009). Plants can also 

be metal “accumulators” or “excluders”; plants that can store metals and remain vigorous are metal 

accumulators, while plants that can control the uptake of toxic metals can be categorized as metal 

excluders (Tangahu et al., 2011; Khan and Faisal, 2018). Various phytoremediation mechanisms 

are used by plants to accomplish detoxification of contaminated sites these include; 
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phytoextraction, phytodegradation, phytostabilization, phytovolatilization and rhizofiltration 

(Pantola and Alam 2014; Gupta et al., 2019; Ashraf et al., 2019).  

2.4.1. Phytoextraction 

Phytoextraction can also be termed as phytosequestration, phytoaccumulation or phytoabsorption 

(Mahar et al., 2016). Pollutant accumulation (mostly metals) in plant biomass is a common process 

in phytoextraction.  Phytoextraction process can be applied to polluted soil and water, and this 

kind of extraction can be realized by accumulation or hyperaccumulation (Wang et al., 2017). In 

this method, transfer of contaminants to the aerial part of plants is vital since harvest and safe 

disposal of contaminants is desired (Bosiacki et al., 2014; Razzaq, 2017; Prabakaran et al., 2019). 

The phytoextraction method has been tried more on toxic metal extraction than organic 

contaminants. This process remediates metal contaminated soils without disturbing soil properties, 

and it is also termed as biomining or phytomining (Singh and Bhargava, 2017). Translocation of 

contaminants from root to the aboveground portion is vital for effective phytoextraction since 

removal or harvest of below ground portion is difficult (Rahman et al., 2016).  

Phytoextraction method can clean-up metal polluted sites and can be applied for phytomining 

(plant assisted mining) of precious metals including Pt (Platinum), Au (Gold), Pd (Palladium) and 

Ag (Silver) (Rahman et al., 2016). Application of phytomining process along with mining 

rehabilitation project could compensate for the cost of remediation; and revenue generated from 

energy recovery (bioenergy generation) and extraction of precious metals can boost the economic 

feasibility of the process (Robinson et al., 2015).  Profitable phytomining could depend on metal 

stored in soil and the aboveground plant tissue, existing market value of the target metal and eco-

environmental benefit obtained from bioenergy generation and possible benefits from carbon 

credit sale (Mahar et al., 2016; Chaney and Baklanov, 2017; Saxena et al., 2019). Phytomining 

can also generate revenue from combustible biomass of plants by applying it in the agricultural 

field or Agro-mining site (Mahar et al., 2016). 

2.4.2. Phytodegradation 

Phytodegradation is the process of transformation of pollutants using plants either through internal 

metabolic processes or externally via release of compounds and plant enzymes (Verma and Gupta, 

2013; Muthusaravanan et al., 2018). It is a common remediation process for biodegradable organic 



 

18 
 

pollutants, rather than heavy metals (Fasani et al., 2018). Compounds produced by plants will 

convert contaminants to nontoxic/less toxic ones (Verma and Gupta, 2013). Phytodegradation can 

occur in the absence of microorganisms and can serve as a promising remediation method if the 

environment lacks microorganisms due to elevated pollutant level and plant enzymes play roles in 

degradation process (Pandey and Bajpai, 2019). Phytodegradation efficiency can be affected by 

factors including pollutants concentration in soil, uptake efficiency of pollutants, soil moisture 

(Muthusaravanan et al., 2018). 

2.4.3. Phytostabilization 

It is the process of immobilizing/reducing contaminant mobility of using chemicals produced by 

plants or it is the plant-based inactivation of contaminants (Singh, 2012; Oosten and Maggio, 2015; 

Ramanjaneyulu et al., 2017). It is a relatively easier phytoremediation technique to implement 

(Chen et al., 2015). Plant species that can store metal contaminants in their roots can be considered 

suitable for phytostabilization (Giovanni et al., 2019). Contaminant mobility/solubility can be 

changed by the action of plants, and metal contaminants will be adsorbed and form a precipitate 

or accumulate in below ground parts of phytostabilizing plants (Liu et al., 2018; Zeng et al., 2019).  

Phytostabilization also reduces contaminant availability for transfer into food chain, reduce heavy 

metal leaching and can serve as promising long-term solution for contaminated sites (Wang et al., 

2017).  

Phytostabilization of metal polluted site can be enhanced through combining biological activities 

and soil amendment methods (Giovanni et al., 2019). The process needs no disposal of hazardous 

contaminants and it is suitable to natural remediation of polluted sites to attain site-specific 

remediation objectives (Gupta et al., 2019; Pandey and Bajpai, 2019). Most important processes 

involved in phytostabilization technology includes removal and storage of heavy metals/other 

contaminants in the below ground part; immobilization of contaminants via alteration of soil 

characteristics (organic matter, pH); soil cover and reduction of physical contact with human and 

other animals; erosion control through mechanical stabilization of soil and regulation of 

contaminant movement by controlling leaching (Bolan et al., 2011; Chen et al., 2015). 

Sites established for phytostabilization will always remain polluted, vegetated and unsuitable for 

other uses, especially, for the production of edible crops. Migration of contaminants and transfer 
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to the food chain could happen due to high rainfall and flooding and other extreme weather events 

(Bolan et al., 2011). However, biomass production from phytostabilized sites can generate income 

and add other ecological benefits. 

2.4.4. Phytovolatilization 

Contaminants can be volatilized to the atmosphere through the opening of stomata after being 

taken up by the plant root (Pantola and Alam, 2014). In this process contaminants (inorganic 

pollutants like metal ions or volatile organics) could be volatilized or evaporated in a modified 

form or in a normal form (Vanek et al., 2010). Phytovolatilization can be utilized for remediation 

of either inorganic or organic contaminants for instance vinyl chloride, Hg, Se and As (Pantola 

and Alam, 2014; Gomes et al., 2016; Giovanni et al., 2019).  

Phytovolatilization of soil contaminated by toxic heavy metals could not be sustainable and 

reliable because of the difficulty to control the fate of volatilized materials. Even though the 

phytovolatilization process seems to be easy; loss of control over the volatilized element is the 

main drawback of the process which would result in potential health impact on human and the 

secondary deposition of contaminants that would re-contaminate soil and water bodies (Chen et 

al., 2015).  

2.4.5. Rhizofiltration  

Rhizofiltration is also termed as phytofiltration. It is a contaminant removal method which 

involves either absorption or adsorption of contaminants into plant roots (Rezania et al., 2016; 

Gupta et al., 2019). There is similarity between rhizofiltration and phytoextraction, however it is 

applicable for remediation of groundwater rather than soil. The process also concentrates or 

precipitates contaminants like heavy metals and hence reduces the migration of contaminants 

(Yang et al., 2005, Pandey and Bajpai, 2019).  Metal extraction via rhizofiltration can be done 

using either aquatic or terrestrial plants, but long rooted terrestrial plants are commonly used 

(Ashraf et al., 2019).  
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2.5.  Phytoremediation in practice 

Phytoremediation has been accepted as a sustainable technique for remediation of contaminated 

sites (Ashraf et al., 2019). This green technology uses both terrestrial and aquatic plants, and 

associated microorganisms to deal with several contaminants especially heavy metals. 

Phytoremediation process could be applied using different methods (Ali et al., 2013): natural 

(traditional method for using natural accumulation capacity of plants) and induced (modern way 

of enhancing the efficiency of the process by technological manipulation of different conditions).  

Several researchers have screened a wide range of plants and examined their phytoremediation 

potentials (Pandey and Bajpai, 2019). However, this technology is struggling to shift from 

controlled experiment systems to field level applications (Saxena et al., 2019; Agnihotri and 

Shekhar, 2019). Field scale applications of phytoremediation were observed in few countries 

including United States, Germany, Canada, Belgium, Italy, and others (Greenberg et al., 2014; 

Pandey and Bajpai, 2019). In addition, the review conducted by Odoh et al. (2019) reported active 

utilization of phytoremediation in some areas of UK, India and USA, and substantial achievement 

in Germany, France, Peru, and China. 

In general, practical applications on the field or commercial application did not progress well, 

mainly due to sustainability issues, time consuming nature, influence of climatic conditions, lower 

biomass of hyperaccumulator plants, limited bioavailability of metals and difficulty of complete 

decontamination using a single approach, especially the traditional ways (Dotaniya et al., 2018; 

Pandey and Bajpai, 2019). Therefore, the use of combined phytoremediation approaches and 

modern ways of plant and site parameter manipulation were observed to enhance remediation 

potential by improving plant biomass (rapid growth) and accelerating contaminant removal.   

The other main challenge to put into action the concept of phytoremediation method for large field 

remediation is, scarcity of enough documentation on the phytoremediation potentials of nonedible 

plants. Most of phytoremediation studies worked so far focused on food crops, however edible 

crops should not be used for remediation (Pandey and Bajpai, 2019).  Therefore, successful 

practical application of phytoremediation in the coming years needs careful selection of non-

edible, perennial, fast growing, easily harvestable and native plant species with sufficient biomass 

and decontamination potential.  
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For commercialization and practical application, phytoremediation has to be further tested at field 

level and other factors contributing to underutilization of practical applications of techniques could 

be tackled by using potential efficiency enhancement methods. Efficiency of phytoremediation, 

especially heavy metal phytoextraction can be induced by using modern techniques such as 

chelating, pH manipulation, using electric current in soil, using microbes, organic amendment, 

using genetically engineered plants, improved agronomic practices, applying plant growth 

promoters, etc.(Gerhardt et al., 2017; Pandey and Bajpai, 2019). Genetically engineered and 

transgenic plants resulted in a great achievement and advancement in phytoremediation; however, 

there are critical safety concerns especially a risk of horizontal gene transfer is a major concern 

(Agnihotri and Shekhar, 2019). Another recently advocated novel and efficient remediation 

technique for clean-up of heavy metal polluted site is washing-coupled phytoremediation, which 

uses soil washing reagents for enhancing metal accumulation in plants (Xiao et al., 2019). 

2.6.  Factors affecting the phytoremediation of heavy metals 
 

Performance of phytoremediation, especially for heavy metal remediation, could be affected by 

metal availability in soil, tolerance of plants, translocation of metals, environmental factors, plant-

microbial interaction, soil properties and others (Hasan et al., 2019; Giovanni et al., 2019).  This 

emerging technology and research on it is mostly restricted to pot and laboratory level with few 

field studies (Ashraf et al., 2019; Kumar and Thakur, 2019). However, there could be entirely 

different situations in the natural field conditions. In field soil, factors such as OM and extent of 

metal mobility, uneven distribution of contaminants, soil pH, temperature, seasonal variability, 

moisture content, available nutrient and microbes could affect phytoremediation efficiency (Ashraf 

et al., 2019; Rostami and Azhdarpoor, 2019). 

Successful phytoremediation technique starts from selection of appropriate plants for individual 

metal contaminants (Yadav et al., 2018). Plant characteristics and species can affect heavy metal 

absorption from the contaminated soil. Using plants with better accumulation potential or 

application of hyperaccumulators can give significant clean-up of toxic metals (Yadav et al., 

2018). However, the same plant species growing under the same concentration of contaminants, 

in the same site can accumulate different levels of the same heavy metals (Lone et al., 2008).  
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Soil pH is a principal factor governing plant available metal concentrations, and solubility of 

metals tends to rise in acidic pH and decline in alkaline pH conditions (Kumar and Thakur, 2019). 

Soil pH has a significant impact on heavy metal bioavailability for plant uptake and lower pH 

increases metal absorption and concentration in plants tissues (Bader et al., 2019). Lower pH of 

the soil can break dissolution–precipitation equilibrium between metals and allow the leaching of 

heavy metals into solutions (Sheoran et al., 2016).  

Soil texture can considerably influence heavy metal availability; fine textured soils including clay 

soil can adsorb higher amounts of metals and have lower bioavailability. However, higher metal 

ion availability is a characteristic of coarse textured soils including sand (Sheoran et al., 2016). 

The higher clay content also increases the Cation Exchange Capacity (CEC) and lowers metal 

availability.  The higher soil CEC, the higher heavy metal immobilization and the lower 

availability of metals (Yadav et al., 2018). Lower soil pH and the replacement of metal cation with 

H+ will result in leaching metals. Soil moisture content, temperature, and several other minor 

factors can also affect heavy metal phytoremediation potentials of plants.   

Plant interaction with microorganisms can enhance plant potential for uptake of heavy metal 

pollutants (Mandal et al., 2017; Yadav et al., 2018). Organic compounds produced by plants can 

be potential foods for microorganisms in soil, increase microbial count and diversity that will 

accelerate remediation process (Dotaniya and Meena, 2017). Rhizospheric bacteria can make 

metals available to the roots of plants by changing mobility of metallic ions, by producing chelators 

or using tolerance properties of microorganisms (Nayak et al., 2018). Metal tolerant bacteria can 

also enhance plant growth through production of plant-growth-promoting compounds, enhancing 

nutrient uptake, increasing metal tolerance, reduce toxicity and facilitate the phytoremediation 

process (Nayak et al., 2018; Dotaniya et al., 2018). 

Plant associated factors including root density and depth, plant biomass, transpiration rates and 

others can also play significant role in phytoremediation process (Sheoran et al., 2016). Sufficient 

root depth that can reach soil solution and dense root system that can have large area of contact 

with contaminant will increase removal efficiency. Plants with higher above ground biomass can 

have better phytoextraction efficiency. Similarly, metal translocation through uptake and 

transpiration of soil solution are important factors. In general, to achieve effective decontamination 

or phytoremediation, plants should have increased growth rate, have high resistance to toxicity and 
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able to grow in highly contaminated sites, be native to a particular environment, disease and pest 

resistant, should be inedible or less attractive to herbivores and insects so as to reduce transfer 

through food chain and it shall remediate multiple contaminants (Rezania et al., 2016; Khan and 

Faisal, 2018). 

2.7.  Limitations of phytoremediation 

Challenges in the phytoremediation technologies includes accumulation capacity of plants, limited 

bioavailability, impact of invasive plants, transfer into food chain, restriction by lower biomass of 

plants, soil toxicity level, suitability for low-polluted territories and root depth (Burges et al., 2018; 

Hasan et al., 2019). These limitations need to be considered and possible improvement and 

management technologies need to be included before the implementation of large scale and 

commercial phytoremediation projects (Kumar and Thakur, 2019).   

Time is the most important limitation of phytoremediation, and various companies and industries 

lost interest to implement it due to its time-taking nature (Mahar et al., 2016; Saxena et al., 2019). 

Time required for growth of plants and slow removal of contaminants, which may take 2-3 or 

several years, made phytoremediation time intensive (Agnihotri and Shekhar, 2019). The time- 

consuming nature of the technology might involve additional cost for treatment and safety 

especially for field level application of phytoextraction (Mahar et al., 2016).  Plant growth can be 

restricted by adverse climatic conditions such as drought, flood, pests and etc. (Agnihotri and 

Shekhar, 2019). However, we could think time as such is not a problem with phytoremediation, 

especially considering the lasting environmental solution phytoremediation could bring to 

ecosystems and possibilities to enhance the remediation process by integrating with other 

management practices. 

In addition, phytoremediation might be suitable for sites where human interference is limited and 

it may not be the remediation method of choice for sites that pose an acute risk to humans and 

receiving ecosystems (Tangahu et al., 2011). Especially, the main challenge of using 

hyperaccumulator plants for clean-up of metal contaminated sites includes slow growth, lower 

biomass yield and finding the hyperaccumulator plant itself (Sumiahadi and Acar, 2018). This 

makes the process not feasible for sites that need quick remediation. In addition, the use of artificial 

chelators or mobilizing agents can also be expensive and could have negative environmental 
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impacts including change in physicochemical properties of soil, leaching to the groundwater and 

toxicity to plants and soil microorganisms (Saxena et al., 2019). 

Likewise, phytotoxicity issue is another limitation of phytoremediation. This technology is rarely 

applicable in highly contaminated sites because a toxic effect in the environmental matrices could 

hinder plant germination and growth. However, many stakeholders take no notice of these 

limitations being impressed by the economic and environmental aspects of the technology 

(Petruzzelli et al., 2018).  The gap between the real field-scale remediation and results obtained 

from controlled laboratory or greenhouse studies is another drawback of the technology, 

particularly, field scale application of heavy metal phytoextraction has encountered many 

challenges, basically due to the need for understanding detailed interaction between soil-plant-

contaminant interactions and underlying molecular mechanisms (Petruzzelli et al., 2018).  In 

addition, metals in soil under the natural field condition could be unavailable or insoluble for plant 

uptake principally because of trace metal adsorption to the corresponding soil particles and 

precipitation (Li et al., 2017). 

2.8. Advantages of phytoremediation 

Expensive environmental clean-up methods using engineering techniques and heavy machinery 

that involve the installation of artificial barriers, massive excavation and coverage with clean soil 

and others can be replaced by cheap plant-based solutions. The phytoremediation approach is a 

quite innovative method for the restoration of polluted sites. Environmental remediation using this 

method has several benefits over other conventional physical and chemical treatment technologies. 

Remediation through phytoremediation has several advantages including low cost, little 

disturbance on the landscape, simple to use, added aesthetic value, applicability to a wide range of 

contaminants, have implications on human health (Kumar and Thakur, 2019); Gupta et al., 2019). 

Apart from the remediation of polluted sites, the phytoremediation method produces green cover 

and has numerous environmental and socioeconomic importance (Pandey and Bajpai, 2019).  

Phytoremediation approach of environmental remediation has numerous indirect benefits, 

including aesthetic value, sequestration of carbon, conservation of biological diversity, economic 

benefits and additional income through utilization of contaminated land after remediation, reduces 
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hazardous waste disposal cost, benefits from biomass production and metal recovery (Tangahu et 

al., 2011; Pandey and Bajpai, 2019).  

Phytoremediation technology can be applied for decontamination of wide-ranging environmental 

pollutants (Tangahu et al., 2011). Phytoremediation is very much economical when applied in 

large contaminated sites or large volumes of contaminated water, and it offers cost effective 

alternative solution for remediation of hazardous wastes. Lately, phytoremediation has been 

receiving attention as a most ecological and promising green technology for remediation of 

polluted soil (Tangahu et al., 2011; Laghlimi et al., 2015).  

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 Figure 1. Advantages and disadvantages of phytoremediation solutions for contaminated sites. 

 

 

Advantages of phytoremediation 

- Low cost 

- Environmentally friendly 

- Can decontaminate wide range of 

contaminants 

- Long-lasting treatment solution 

- Reduce the risk of secondary 

contamination 

- No requirement of expensive 

equipment or highly specialized 

personnel. 

- In-situ application reduces cost and 

disturbance 

- Economic benefit from bioenergy 

production and sale of carbon credits 

- Aesthetic values  

- Social acceptability 

- Plants serve as sink of carbon 

- Erosion control 

Limitations of phytoremediation 

- Slow and time consuming 

- Non-native species can affect 

biodiversity 

- Extreme level of contamination can 

be toxic to plants 

- Climatic conditions and soil 

chemistry can limit the 

performance 

- Contaminated vegetation can risk 

food chain if mismanaged 

- Project designer and proper 

selection of plant species required 

- Phytoremediation of soil is only 

applicable to top soil 

- Lower plant biomass and slow 

growth limits the efficiency 
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2.9. Bio-concentration factors and translocation factors  

 

Quantification of phytoextraction efficiency or potential of plants to uptake and translocate metals 

can be computed by calculating Bioconcentration Factor (BCF) and Translocation Factor (TF). 

The BCF signifies the potential of selected plants in accumulating trace metals (environmental 

contaminants) into its tissues (Ladislas et al., 2012). Values of TF displays the potential of plants 

in translocating pollutants into their above ground parts (Antoniadis et al., 2017). Screening plants 

for phytoremediation and selection of hyperaccumulator plants entirely relies on the values of TF 

and BCF (Antoniadis et al., 2017; Saxena et al., 2019). Identification of suitable plants for 

remediation of contaminated medium relies on the computed values of BCF and TF (Pandey, 2012; 

Sidhu et al., 2017). Heavy metal hyperaccumulator plants can also be selected by computing values 

of BCF and TF. Similarly, TF and BCF > 1 indicates the suitability of plant species for 

phytoextraction of metals (Yoon et al., 2006). In addition, in the selection of potential plants for 

phytoextraction, BCF is effective than shoot metal concentration and it is an appropriate technique 

for quantitative estimation and comparison of bioavailability of metal to plants (Naseem et al., 

2009; Sakakibara et al., 2011).  

2.10. Heavy metal pollution and phytoremediation 

Metals are non-biodegradable or persistent elements accumulating in the environment for a long 

run (Oosten and Maggio, 2015); identified as major carcinogens (Wekpe et al., 2019), and these 

metals are extremely contributing to environmental contamination throughout the world (Razzaq, 

2017). Heavy metals can cause detrimental toxicological and environmental effects even in a little 

amount in the environment. Excessive trace metal accumulation in soil could transfer through the 

food chain; bio-accumulate and reduce microbial density in soil (Khan et al., 2010; Alloway, 

2013). 

Both non-essential and essential metals are naturally available in soil; however, an increase in their 

concentration due to anthropogenic activities made them the most represented soil contaminants 

and major abiotic stresses that cause environmental pollution (Kabata-Pendias, 2001; Shehata et 

al., 2019). The essential ones include Ni, Fe, Zn, Cu, Mn, and non-essential metals include Pb, Cr, 
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Cd, As and Hg (Dabonne et al., 2010; Lu et al., 2015). Several industries, manufacturing 

companies, and agricultural processes commonly use heavy metals including Pb, Cr, Cd, Ni, Cu, 

Zn, Hg and As and dispose their wastes into the receiving environment (Tchounwou et al, 2014; 

Cristaldi et al., 2017). Among these metals Hg, Pb, Cd, Cr, Zn, Cu, As and Co are reported as most 

toxic ones and commonly known as potentially toxic heavy metals (Ghosh, 2010; Alloway, 2013; 

Eugenio et al., 2018).  

Phytoremediation technique can be extensively applied to several environmental restorations, 

however selection of suitable plant/s is very essential for phytoremediation process (Cristaldi et 

al., 2017; Wang et al., 2017). The most important criteria, in addition to their metal removal 

properties, could include tolerance to extreme soil conditions including very high or very low pH; 

excessive metal concentration (Wu et al., 2013). Further, adaptability to the desired local 

environment; dense rooting systems and high biomass production (Marques et al., 2009; Oosten 

and Maggio, 2015) and fast-growing properties (Doty et al., 2007) needs to be considered. Plants 

that have large biomass and translocate moderate amount of trace metals in the aerial parts are 

suggested as suitable for field scale phytoremediation (Fiorentino et al., 2013).  

 

“Viola calaminaria and Thlaspi caerulescens were the first plant species known to accumulate 

metals” as reported by Hartman, 1975 (Pantola and Alam, 2014). Previous investigators identified 

several plants that can accumulate heavy metals and today over 101 families have been found to 

contain hyperaccumulator plant species (Sarma, 2011; Ahmadpour et al., 2012), Brassicaceae 

plant family contain several hyperaccumulators of heavy metals species like Pb, Cd, Cu, Zn, Ni, 

and Se (Bouquet et al., 2017; Yahaghi et al., 2018). 

Chromium is a potentially toxic metal largely used in chemical industry, metal manufacturing, 

textile, pesticide manufacturing, dyeing, tanneries, industrial coolants, mining and others, has an 

ecological risk and carcinogenic effect on living organisms (Zhitkovich, 2011; Vimercati et al., 

2017; Xia et al., Error! Reference source not found.). Long exposure to Cr can cause cancer on 

human beings, it can also bring about other health impacts such as hair fall, skin irritation, eye 

irritation and impact on nervous system (Dotaniya et al., 2018). This toxic metal can be 

accumulated by plant species such as Leersia hexandra (Zhang et al., 2007), Typha angustinfolia 
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(Dong et al., 2007), Cynodon dactylon (Sampanpanish et al., 2006, Helianthus annuus (Farid et 

al., 2017), Eichhornia crassipes (Sarkar et al., 2017), and others. 

Lead is a toxic heavy metal with no identified importance or essential cell activities in plants 

(Azeez et al., 2019). Anthropogenic sources such as industrial and atmospheric deposition, lead 

acid batteries, heavy-traffic load, coal-based power plants, paints industrial effluent; mineral 

extraction and others could increase concentration of Pb in soil (Dotaniya et al., 2018). Exposure 

to lead can cause mental retardation, nervous system disorder, cardiovascular disease, 

gastrointestinal cancer, kidney disease and other health impacts on human (Dotaniya et al., 2018).  

Lead polluted soil can also be remediated by using different plant species such as, Brassica 

junicca, which is a good accumulator of Pb (Clemente et al., 2005; Yahaghi et al., 2018). Other 

researchers also investigated other potential accumulators of Pb. For instance, Zea maize L. and 

Pisum sativum L. that absorbed large concentrations of Pb in their aerial parts (Tariq and Ashraf, 

2016). Several plants such as Piptatherum miliaceum, Thlaspi praecox, Hemidesmus indicus, 

Thlaspi rotundifolium were identified as good remediators of Pb contaminated soil (Sekhar et al., 

2005; Oh et al., 2013). Similarly, Linum usitatissimum L. was regarded as hyperaccumulator of Pb 

(Hosman et al., 2017). 

Industrial activities like mining, smelting, electroplating, plumbing, brass manufacture, agriculture 

fertilizers, sewage disposal and other anthropogenic activities are most important sources of zinc 

pollution (Furini, 2012; Dotaniya et al., 2018). Even though it is an essential element at high 

concentrations it is toxic (Agnello et al., 2014). Potential effect on human health includes damage 

to the nerve system, skin irritation, vomiting and weakness (Dotaniya et al., 2018). Plant species 

such as: (Arabidopsis halleri, Thlaspi praecox, Thlaspi goesingense and Thlaspi caerulescens) can 

remediate Zn contaminated soils (Pantola and Alam, 2014).  

Other researchers also reported Helianthus annus and Zea mays (Spirochova et al., 2003) and 

Juncus effuses (Favas et al., 2016) as good accumulators of Zn among others. Zn was found to be 

accumulated by Salix viminalis (Hammer et al., 2003) and Sonchus asper and Corydalis 

pterygopetata (Yanqun et al., 2005). Dhiman et al. (2016) noted Zn phytoextraction using Brassica 

napus is possible.  Linum usitatissimum L was reported as hyperaccumulator of Zn (Hosman et al., 

2017). Sedum alfredii was reported as hyperaccumulator or Zn (Cui et al., 2018). Plants including 

Arabidopsis halleri, Thlaspi goesingense, Thymus praecox and Sedum alfredii were also reported 
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as Zn hyperaccumulators (Tian et al., 2017; Liu et al., 2018). Recently, Guarino et al. (2019) 

reported that Populus alba and Eucalyptus camaldulensis are good candidates for Zn 

phytoextraction. 

Main sources of Cd in the environment are mining, paint industries, battery industries electronic 

waste, welding, electroplating, agricultural pesticides, fertilizers, and others (Dotaniya et al., 

2018). Cd is an abundant, toxic and most serious metal pollutant in agricultural sites, causing 

oxidative stress in a plant, subsequently affecting plant germination, growth, fruiting and nutrients 

translocation (Shang et al., 2018; Azeez et al., 2019). Cadmium transfer via food chain and health 

impacts are also of significant concern (Huang et al., 2017; Rizwan et al., 2018). Effects on human 

health includes softening of the bones, enzymatic disorder, kidney damage, carcinogenic effect, 

lung cancer, renal dysfunction, and Ca imbalance (Dotaniya et al., 2018). 

Experiments showed different plants can accumulate Cd. (Spirochova et al., 2003) reported 

Helianthus annuus and Zea mays can store a considerable amount of Cd in their biomass. Alaboudi 

et al. (2018) also recommended Helianthus annuus for remediation of Cd contaminated soil. 

Thlaspi caerulescens was also identified to remediate soil polluted with Cd (Wu et al., 2004). A 

field investigation and laboratory dose-gradient experiments by Liu et al. (2019) reported Lantana 

camara L plants Cd-hyperaccumulating plants suitable for remediation of Cd polluted sites. 

Rasheed et al. (2019) reported Conocarpus lancifolius as potential candidate for Cd 

phytoextraction. Sedum alfredii was reported as a hyperaccumulator of Cd (Tian et al., 2017; Cui 

et al., 2018). Field investigation combined with dose dependent laboratory experiment conducted 

by Liu et al. (2019) also reported Lantana camara L as a hyperaccumulator of Cd. Phytoextraction 

of Cd using Ricinus communis was also reported by (Yang et al., 2017). 

Nickel, in its toxic level, can have potential health impacts for instance: a disorder of the nervous 

system, lungs and impact on cardiovascular tissues (Axtell et al., 2003). Successful 

phytoremediation of Ni contaminated soil could be attained using plants such as Bidens pilosa, 

Conyza Canadensis, Crotalaria micans, Leucaena leucocephala, and Pueraria lobata (Ho et al., 

2013). Similarly, Ni Hyperaccumulator plant species (Stackhousiatryonii, Helianthus anus, 

Thlaspi goesingens) were reported by Bhatia et al. (2005), Turgut et al. (2004) and Kramer et al., 

(2000). A plant known as Sebertia acuminate was reported as a Ni hyperaccumulator tree (Jaffré 

et al., 2013). Successful phytoextraction of Ni form contaminated soil using Brassica juncea was 
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reported (Kathal et al., 2016). Alyssum bertolonii was reported as an efficient accumulator of Ni 

(Bini et al., 2017). Noccaea caerulescens was reported as multi-metal hyperaccumulator including 

Ni (Milner and Kochian, 2008; Deng et al., 2019).  

Copper is an essential plant micronutrient with an extensive source in the environment and 

excessive concentration can cause great harm to plants (Lin et al., 2019). Major anthropogenic 

sources of Cu include Cu mining, smelting chemical industry, pesticide, sulphuric acid plant, metal 

piping and others (Dotaniya et al., 2018). Long exposure to Cu can significantly affect human 

brain, kidney and liver, and it also results in chronic anemia, stomach irritation, and lethargy 

among others (Dotaniya et al., 2018). 

High concentration of Cu in the leaves of Avicennia marina plant was reported by (Lotfinasabasl 

et al., 2012). Brachiaria decumbens was reported as efficient phytoextractor of Cu (Andreazza et 

al., 2013). Similarly, plant species Brassica juncea L was also described as best accumulator of 

Cu (Pantola et al., 2013; Purakayastha et al., 2008). Accumulation and tolerance of Cu was 

observed in Eichhornia crassipes (Sarkar et al., 2017). 

Studying the properties of plants under their natural environment will be important as the above- 

listed factors can affect the potentials of plants to accumulate heavy metals. Even though most 

phytoremediation studies available in the literature were conducted under controlled environment 

or green house conditions, few field-based experiments assessing plant phytoremediation 

potentials are also available.  

The first field trial on plant metal extraction potential was conducted at Woburn, UK in 1991 and 

natural hyperaccumulator plants grown in sewage treated field spots were investigated (McGrath 

et al., 1993). The authors reported Thlaspi caerulescens was found accumulating 2000-8000 mg 

Zn per kg of shoot dry weight when growing in soil containing 150-450 mg of Zn per kg of soil.  

Jose et al. (2011) conducted a survey on phytoremediation potentials of plants grown in mining 

sites. Plant and soil samples in this study were obtained from mining area, and results from the 

study revealed that hyperaccumulation was found in Thlaspi caerulescens for Pb, Cd, and Zn and 

in Armeria vulneraria for Zn and Pb. Another research conducted by Usman et al. (2019) on 

naturally growing shrub plant Tetraena qataranse reported the plant as a suitable candidate for 

phytostabilization of toxic metals such as Cr, Cu, Ni and Pb phytoextraction of Cd. 
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Lotfinasabasl et al. (2012), studied heavy metal phytoremediation potentials of Avicennia marin, 

grown in mangrove forest, revealed that both seedling and mature plants of Avicenniamarin can 

take up elements (Cr, Cu, Co, Cd, Ni and Fe) and accumulate in their tissues. This study finally 

proved the suitability of Avicennia marina for clean-up of metal polluted soil. Similar research 

was also conducted on plant Rhizophora mucronata by Pahalawattaarachchi et al. (2009) in 

Alibaug mangrove forest, and the plant accumulated considerable amounts of Cr, Cu, Cd, Ni and 

Fe in their tissues. 

Yahya et al. (2014) examined accumulation of metals in five native plant species (Dipterygium 

glaucum, Indigofera spiniflora, Salsola kali, Suaed aaegyptiaca, and Zygophyllum album) grown 

in an industrial area. Samples of soil and plants were obtained from contaminated sites and 

analysed for their heavy metal content. BCF, BAC and TF were calculated to understand 

phytoremediation potentials of the plants. Accordingly, the highest of both TF and BAC was 

shown for Zn in Dipterygium glaucum, and they concluded this species as an excellent candidate 

for decontamination of Zn-polluted soils. The highest value of BCF recorded for Indigofera 

spiniflora was also noted as a good candidate to immobilize Zn. The study concluded that the 

potential of the studied plants to remediate the Zn contaminated soils, in the order of Zygophyllum 

album being the most suitable plant followed by Dipterygium glaucum, Salsola kali, Suaedaa 

egyptiaca and Indigofera spiniflora. 

The most important hyperaccumulator Thlaspi caerulescens can accumulate a large concentration 

of metals especially Zn and Pb without showing signs of toxicity (Dinh et al., 2018). Brassicaceae 

plant families represent a large number of metal accumulating plants principally, Alyssum, 

Arabidopsis, Bornmuellera, Thlaspi plant genera of Brassicaceae can remove multiple metals (Dar 

et al., 2015; Gupta et al., 2019). Naturally growing Portulaca oleracea L. plant samples were 

collected from industrial areas by Elshamy et al. (2019) to study their suitability for 

phytoremediation, and results showed efficient decontamination of multiple metal contaminated 

soil using Portulaca oleracea. Similarly, large amounts of more than single metal could be 

accumulated by plants such as Malva parviflora, Amaranthus viridus, Echinochloa colonum, and 

Chenopodium murale (Elshamy et al., 2019).  

Another field survey conducted by Favas et al. (2016) revealed that Holcus lanatus can accumulate 

As, Cu, Zn and Pb; Pteridium aquilinum can remove As, Pb and Zn, and Rumex induratus and 
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Cistus salvifolius were reported as good accumulators of Cu from polluted sites. Field study 

conducted by Kumari et al. (2016) for screening plant species for remediation of metals also 

reported metal accumulators and hyper accumulator plants. The hyperaccumulator terrestrial plant 

species reported are Cannabis sativa for Ni, Cd and Cr; Parthenium hysterophorus 

hyperaccumulation of Pb; and Amepelopteris prolifera for Ni. 

It was evident that most of the studies were done in a controlled environment, green-house and 

laboratory, while field trials on phytoremediation potentials of plants to remediate contaminated 

sites are very limited and there have been gaps in this regard. Therefore, field scale studies and 

documentation of findings will be key preconditions that need to be carried out for successful 

implementation of phytoremediation projects. Consequently, this study examined heavy metal 

remediation potential of three selected plants: Adhatoda schimperiana, Phytolacca dodecandra 

and Solanum incanum from contaminated metropolitan areas of Ethiopia. 

2.11. Phytoremediation studies in Ethiopia 

 

Industrial wastes have been increasingly discharged into water and soil, and causing environmental 

pollution in Ethiopia. Release of toxic heavy metals from industries, manufacturing companies, 

domestic sources and agricultural sources is becoming serious problem to the environment and 

biological systems.  

There are several previous studies on determination of heavy metal concentrations, sources of 

contamination, effects of heavy metals on environment and potential health impacts in Ethiopia.  

Similarly, studies on heavy metals uptake and bioaccumulation in edible crops and vegetables are 

abundant. However, researches on phytoremediation potentials of non-edible plants targeting 

cleanup of heavy metal contamination in soil are very few in literatures, in Ethiopia.  

An overview of few selected literatures relevant to the theme of present study are presented as 

follows:  An investigation on phytoremediation potential of commonly grown tree species 

(Millittia ferruginea, Ricinus communis and Eucalyptus camaldulensis) was conducted by Mehari 

et al. (2010). The total Cr uptake and the calculated Cr Accumulation factor reported for Ricinus 

communis was highest and followed by Millittia ferruginea and Eucalyptus camaldulensis. The 

study finally recommended the three plant species for remediation of Cr contaminated sites. 
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A study by Itanna and Coulman, (2003) on Phyto-extraction of Cu, Fe, Mn, and Zn from 

contaminated site using threes grass species, reported concentrations in grass plant tissue indicate 

generally that grass species, rhodesgrass (Chloris gayana) and setaria Setaria Sphacelata could 

extract all the selected metals more efficiently than oat (Avena sativa).  

Phytoremediation of chromium from tannery wastewater using swamp smartweed (Polygonum 

coccineum), para grass (Brachiara mutica) and papyrus (Cyprus papyrus) was reported by 

(Kassaye et al., 2017). Phytoremediation potentials of Lemna minor and Azolla filiculoides was 

investigated under field condition by (Amare et al., 2018) in semi-arid regions of Ethiopia. Then 

Lemna minor was reported as phytoaccumulator for Fe, Mn, Zn and Co. Similarly, higher 

accumulation of Fe, Mn, Zn and Cu was noted for Azolla filiculoides. 

Four local plant species (Pennisetum purpureum, Typha domingensis, Cyprus latifolius, and 

Echinochloa pyramidalis) were studied for their potentials to remove Cr from contaminated 

tannery wastewater under constructed wetland system (Alemu et al., 2020). The BCF values of > 

1 were noted for all these plants, but TF < 1 reveals larger accumulation in roots (non-harvestable 

portion) and inadequacy for phytoextraction of Cr (III) was reported. However, even though TF of 

< 1 was noted for Pennisetum purpureum, it has been recommended for Cr treatment based on its 

potential to store Cr in the shoot part, rapid growth and produce biomass (Alemu et al., 2020). 

2.12. Metal tolerance in plants 

Heavy metal toxicity can disturb the redox status, cause oxidative stress and can affect plant 

physiological, biochemical processes, growth and yield. Heavy metals effects on plants might be 

due to absorption of plant nutrients, interaction with plant functional protein groups, the formation 

of reactive oxygen species (Dotaniya et al., 2018). Tolerance to toxic effects of metals is a principal 

reason for implementation of phytoremediation technique for restoration of contaminated soils 

(Thakur and Singh, 2016). Plants have self-mechanism to survive in contaminated sites and a 

variety of biomolecules that govern metal uptake and accumulation process (Mehes-Smith et al., 

2013).   

During reduction of metal toxicity, physical barriers in which trichomes, plant cell wall, and 

microbial association are used as principal defense mechanisms (Harada et al., 2010). Plants can 

avoid metal toxicity by accumulating in their vacuoles and synthesis of biomolecules that can 
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detoxify toxic metals (Fahr et al., 2013; Dotaniya et al., 2018). Plant proteins can play key roles 

for metal tolerance. Metal uptake and transport via plant xylem can be accomplished by proteins 

such as heavy metal transporting ATPases, copper transporters (COPTs), cation diffusion 

facilitator (CDF), Zn–Fepermease (ZIP), and Multidrug And Toxin Efflux (MATE) (Dotaniya et 

al., 2018). The protein P1B ATPases type protein in hyperaccumulator plants regulates 

homeostasis and metal tolerance (Ali et al., 2013).  Uptake and transport of heavy metals through 

the cell membrane and decontamination can be done by heavy-metal ATPase (HMA) (Saxena et 

al., 2019). Likewise, Chen et al. (2015) reported metal binding proteins, metallothiones (MTs), 

and phytochelatins (PCs) can detoxify toxic metals.  

Metal accumulation or exclusion strategies can be used by plants to grow in contaminated medium 

and tolerate the toxic effects (Li et al., 2017). Similarly, Thakur and Singh (2016), noted plants 

have several means of metal tolerance and detoxification. Plants can limit excessive accumulation 

of heavy metals in the cytoplasm using two defense strategies: avoidance and tolerance. The 

avoidance mechanism is the plant’s capability to hinder metal uptake, while tolerance implies 

continued existence under excess metal condition (Thakur and Singh, 2016).  
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CHAPTER THREE 

3. Research design and methodology 

Quantitative research design was applied in this study and the method employed was exploratory 

research method. Experimental values obtained from laboratory measurement, using reliable 

devices, are interpreted using mathematical and statistical procedures. The sampling sites were 

purposively selected and samples were collected purposively. Plant samples from non-polluted 

sites (control) and polluted sites (Industrial area) were examined along with their corresponding 

soil.  Sampling plan and location was based on availability of target plant and site characteristics.   

3.1.  Site description 

Samples of plants and soil for this research were obtained from metal contaminated sites located 

in Akaki River Basin industrial area and contaminated sites of Addis Ababa, Ethiopia. Akaki River 

Basin is an industrial belt area, in central Ethiopia, majority of effluents originating from different 

industrial units: steel melting furnaces, re-rolling mills, food and beverages, paints, wineries, 

rubber and plastic products, soap, textile and other metalliferous industries around Addis Ababa 

are channeled to natural drains within the industrial estates ultimately to Akaki River Basin 

(Aschale et al., 2019).  

Therefore, the area is highly polluted with multiple contaminants as it is also evident from previous 

researches (Alemayehu, 2006; Woldetsadik et al, 2017; Aschale et al., 2019). These sites also 

receive contaminants from domestic, agricultural sources, schools, hospitals, small manufacturing 

business and others. 
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Figure 2. Map of the study area and sampling sites. 

 

3.2.  Plants used in this study  

Three different plants Phytolacca dodecandra, Adhatoda schimperiana and Solanum incanum 

were chosen in this study as they are locally available plants dominating contaminated industrial 

areas, dump sites and road sides of many cities in Ethiopia. These plants were chosen after studying 

basic properties of plants for phytoremediation such as tolerance to high concentrations of metals, 

adaptability to specific environment/sites, non-edible, large biomass, fast growing and extended 

root system, as in (Sheoran et al., 2016; Pandey and Bajpai, 2019). 

3.2.1. Phytolacca dodecandra  

Phytolacca dodecandra is a woody plant commonly found in South Africa; Sub-Saharan Africa, 

Madagascar; South America, and Asia (Hanelt et al., 2001; Esser et al., 2003). It is a plant from 

family of Phytolaccaceae, commonly known as ‘endod’ or ‘gopo berry’ (Hanelt et al., 2001; 

Zelalem et al., 2016). Phytolacca dodecandra is relatively common in Ethiopia, it is well known 

for its local benefit as soap. An Ethiopian scientist Aklilu Lema discovered that it as lethal to snails 

and effective for control of schistosomiasis (Esser et al., 2003). 
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 Figure 3.  Phytolacca dodecandra plant pictures  

3.2.2. Adhatoda schimperiana 

Adhatoda schimperiana belongs to the plant family of Acanthaceae, commonly known as ‘sensel’, 

‘simiza’ or ‘dhumuga’, it is fast growing plant (Zelalem et al., 2016). This plant is very common 
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in towns as well as in cities growing on waste places or serve as fence. It has several medical 

importance, especially used in the treatment of pelegra or "kuruba" local name (Getahun, 1976).  

 

 

 

 

 

Adhatoda schimperiana belongs to the plant family of Acanthaceae, commonly known as 

‘sensel’, ‘simiza’ or ‘dhumuga’, it is fast growing plant (Zelalem et al., 2016). This plant is very 

common in towns as well as in cities growing on waste places or serve as fence. It has several 

medical importance, especially used in the treatment of pelegra or "kuruba" local name 

(Getahun, 1976). 

 

 

 

 

 

 

  Figure 4. Adhatoda schimperiana plant pictures. 

 

3.2.3. Solanum incanum 

Solanum incanum is a shrubby herb from plant family Solanaceae, it can grow up to 4 ft high and 

it is locally available and abundant throughout Ethiopia. It is called ‘apple of Sodam’ or ‘thorn 

apple’ (Eng.) and have local names ‘Imbuay’ or ‘hidi’ (Sambo et al., 2016).  The fruits of solanum 
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incanum are poisonous; however, it has several medicinal properties, especially for treatment of 

gonorrhea and fruits mixed with cattle urine can be used for tanning leather. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

              Figure 5. Solanum incanum plant pictures. 

 

Several East African communities use fruits of Solanum incanum as a remedy for toothache, 

stomachache, fever, snakebite and earache (Kokwaro, 1993). Treatment of tumors, warts and sore-

throat using Solanum incanum plant extracts was also reported (Dold and Corps, 2000; Schemelzer 

and Gurib-Fakim, 2008). 
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3.3. Sampling procedures and design 

Preceding the main survey, a pilot investigation was carried out to determine possible sampling 

points. Five sampling sites (SS1- SS5) were established from Akaki River Basin (industrial belt in 

central Ethiopia), distances between sampling points varied based on the availability of plants and 

industries. These sampling sites are Lideta (SS-1), Mekanisa (SS-2), Kera (SS-3), Hana Mariam 

(SS-4) and Akaki sites (SS-5) representing contaminated sites. These sites are situated along the 

river basin SS-1 the upper catchment/upstream (located in urban center) and SS-5, Lower 

catchment/downstream (the periphery). Sampling points with in the sample site were selected 

based on the availability of desired plants and proximity to contaminant sources like factories. 

Preliminary investigation and survey of sample points was done before the actual sampling. 

Accordingly, sites along the river bank, exposed to the polluted river water through urban irrigation 

or receiving direct effluent from factories, were selected as contaminated site. In addition, sites 

under intense anthropogenic pressure, receiving leachate from open dump sites, wastewater from 

car wash and garages were targeted.  

On the other hand, control sampling site (CSS/ SS6) was identified in non-industrial area, with 

limited human interference (rural area of the town of Debrezeit) to serve as control and the same 

trend was applied for collection of control soil samples; adapting methods followed by (Jose et al., 

2011; Lotfinasabasl et al., 2012).  

The GPS coordinates of the different sampling points with in the different sites are as follows: 

Lideta (9°00'42.9"N 38°44'27.5"E, 9°00'28.5"N 38°44'23.2"E and 9°00'31.4"N 38°44'11.9"E); 

Mekanisa (8°58'31.9"N 38°44'02.5"E,  8°58'29.3"N 38°44'01.8"E and 8°58'27.3"N 38°43'58.2"E); 

Kera (8°58'59.4"N 38°45'09.6"E, 8°58'57.7"N 38°45'12.7"E and 8°59'19.5"N 38°44'58.9"E);  

Hana (8°55'49.3"N38°45'24.3"E, 8°55'53.0"N 38°45'26.2"E and 8°55'32.8"N 38°45'06.1"E) and 

Kality  (8°54'43.1"N 38°44'56.4"E, 8°54'41.4"N 38°44'49.3"E and 8°54'20.1"N 38°44'47.1"E). 

Within each sampling site SS1-SS6, there were three sampling plots (Plant 1, Plant 2 and Plant 3) 

and within each sampling plot, for instance; Phytolacca dodecandra sample plot (Plant 1), there 

were eight sampling points, 2 + 2 for mature (having flower) and 2 + 2 for seedlings (younger 

plants with no flower), representing dry and wet season samples.  Eight (4 mature and 4 seedlings) 

individual study plants from each species were carefully dug and removed for analysis, following 
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the work of Nazir et al. (2011) and Lotfinasabasl et al. (2012) as a reference. In this case, In 

addition to the presence and absence of flowers, seedlings were selected and differentiated from 

the mature plants, based on plant age estimation done using growth ring examination, stem girth 

comparison and other morphological characterization. Dwarf plants with thick stem that seems 

seedling were identified using morphological parameters (external structure of plants) and 

excluded from sampling.   A total of 144 plant samples were taken and separated into leaves, stems 

and roots; and, covered with carefully labeled plastic bags, stored in ice boxes and taken to 

Laboratory of the Geological Survey of Ethiopia and Addis Ababa City Environmental Protection 

Authority for analysis of contaminants of interest: Zn, Ni, Cu, Cr, Cd and Pb.  

The soil in which plants grew, representing surface and rhizosphere soil 0 to 40 cm depth range (0 

- 15 cm, 15 - 30 cm and 30 – 40 cm, combined as one sample) was taken immediately after plant 

sampling. Five surface samples of soils adjacent to sample plants (that is directly influenced by 

root secretions), one from the midpoint and others from four vertexes, were taken and a composite 

sample was made by mixing (Ashraf, 2011; Yahya and Hajar, 2014). 

 

 A total of 36 composite soil samples (1.5 kg each) were taken during the dry season, T0 ranging 

from 21-250C (November-December, 2017) and 36 soil samples were taken during wet season, T0 

ranging from 18-210C (June-July, 2018).  During the sampling process, the topsoil, which is 

composed of litter, wet spots, was cleared out to have clear and fully decomposed soil sample. 

Composite soil samples (1.5kg) from each point were thoroughly mixed, carefully labeled and 

bagged using polyethylene bags. Analysis of soil and plant samples run from November 2017- 

February, 2018 for dry season samples and June 2018- August, 2018 for wet season samples.  

 

Figure 6, shows photographs taken during sampling campaign and the points 6.a, 6.b, 6.c and 6.d 

represents different sampling sites. Accordingly, 6.a (Sampling of Phytolacca dodecandra, 

Mekanisa site); 6.b (Sampling of Adhatoda schimperiana, Kera site); 6.c (Sampling of Adhatoda 

schimperiana, Hana mariam site) and 6.d (Sampling of solanum incanum, Kality site).  The GPS 

coordinates of the sampling points 6.a, 6.b, 6.c and 6.d were 8°58'31.9"N 38°44'02.5"E; 

8°58'57.7"N 38°45'12.7"E; 8°55'53.0"N38°45'26.2"E; 8°54'20.1"N 38°44'47.1"E, respectively. 
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   Figure 6. Photographs of sample collection. 
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3.4. Analytical procedures 

3.4.1. Characterization of soil and plant samples  

Samples of plants and soil were examined for their metal (Pb, Cr, Cd, Zn, Cu and Ni) levels and 

physicochemical properties of soil samples: texture, pH, conductivity, organic matter, Cation 

Exchange Capacity (CEC), and moisture content were also analysed.  

Table 1. Analytical method for determination of soil physicochemical parameters. 

Parameters   Methods  References 

pH 1:2.5 Jackson method Jackson, 1973 

Moisture content (%) Gravimetric method Jackson, 1973; Joel and Amajuoyi, (2009) 

Conductivity (dSm-1)  1:2 soil/water slurry  Jackson, 1973 

Organic matter (%)  Wet combustion with K2Cr2O7 Nelson and Sommers, 1996 

CEC (mequ/100g)  Sodium saturation Method  Rowell, 1994 

Texture Hydrometer method  Bouyoucos,  1962 

Heavy metal concentration 

(mg/kg)  

Atomic Absorption 

Spectrophotometer 

EPA, 1996 

Soil pH measurement was performed using the water suspension method, soil to water ratio (1:2.5) 

described by Jackson, (1973). First soil samples were mixed well, powdered, put through a sieve 

(2 mm). Then 20 g sample of soil was added into a beaker and mixed with 50 ml deionized water. 

The mixture was systematically blended by stirring with disposable plastic stirrer for about 10 min. 

Then pH meter was adjusted using standard methods, and finally the reading of pH value was 

taken by immersing the electrode of the pH meter (ELMETRON, CPI-501, Poland) into the 

solution.   

The EC of sample soil solution was determined using conductivity meter and analytical procedure 

stated by Jackson, (1973) was applied. 10 g sample of soil was placed in 250 ml beaker and mixed 

with 10 ml of distilled water. Then the mixture was then stirred with disposable plastic stirrer for 

30 minutes and allowed to settle.  Finally, conductivity was measured using an electrical 

conductivity meter (SCHOTT handy-lab LF11, Germany) after standard calibration and 

temperature adjustment (25 
oC). 
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Soil MC% was estimated by using oven drying gravimetric method (Jackson, 1973).  For this, first 

dry clean crucible was prepared and 10 g sample of soil was added to it, then the weight of crucible 

containing moist soil was determined (W1) and it was oven dried at (105 °C) for 24 hours and the 

weight was recorded for the second time (W2).  

Using the formula indicated by (Joel and Amajuoyi, 2009; Tellen and Yerima, 2018), moisture 

content was calculated using equation 1 and presented in percentage as follows:  

 

Soil OM% content was calculated from the value of organic carbon (OC%) in soil by using a 

mathematical equation presented in (Nelson and Sommers, 1996) Equation 2.  Majority of soil 

contain 2-6% organic matter and 58% of the organic fraction is OC, which is 1.2-3.5% of the soil 

composition (Manns et al., 2016).  OC% was determine using wet digestion technique Walkley 

and Black (1934), and 5 g of air-dry soil was crushed and put through a sieve (0.5 mm). Then fine 

powder of 1g soil was transferred to 500 ml wide-mouth Erlenmeyer flask (Here: 2 other blank 

flasks were prepared without soil and run the same way) and then 1N K2Cr2O7 (10 ml) and H2SO4 

(20 ml conc.) were added into the flask.  The flask was properly swirled until the soil and the 

reagents are mixed. After that distilled water (200 ml), H3PO4 (10 ml), and then diphenylamine 

indicator (1 ml) was added. In successive steps solutions in the blank flasks and sample flask were 

titrated with Fe (NH4)2 (SO4)2. 6H2O (0.5 N) and the titration process was stopped when the color 

changed sharply to green. Finally, the OC percentage was calculated using the formula (Van 

Reewijk, 2002; Addis and Abebaw, 2015; Tellen and Yerima, 2018).  

Equation 1 
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Soil CEC value was determined using the standard procedure of Rowell. (1994), modified by Herk 

(2012) Equation 3. First, previously crushed sample of soil (5 g) was placed in a centrifuge tube 

of 50 ml and 1 M sodium acetate solution (30 ml) was added. After 5 min shaking and 10 min 

centrifuge the liquid was decanted and 1 M sodium acetate solution (30 ml) was added, and the 

sample was re-suspended 3 times. Then solution ethanol (30 ml) was poured and re-suspended for 

3 cycles. After that, NH4OAc (30 ml) was added and then re-suspended and another 3 cycles was 

started. Then, the liquid was filtered using the filter paper (Whatman No 42), and poured into a 

flask (100 ml). Finally, the solution in the flask was made 100 ml with NH4OAc pH 7 solution. In 

the end, the flame photometer was adjusted by a standard Na solution. CEC of the soil was then 

computed using the mathematical formula (Herk, 2012). 

 

Particle size of soil was obtained using hydrometer (Bouyoucos, 1962). Accordingly, 50 g of 

sample soil (< 2 mm) was added into a beaker (400 ml) and socked with 50ml calgon solution 

overnight. The solution was then poured to a 1000ml cylinder. Then it was covered with rubber 

and the suspension was mixed (10 times) by inverting the cylinder. After that, 2 drops of amyl 

alcohol were poured into soil suspension and finally hydrometer was inserted. The first hydrometer 

reading (H1) and the temperature (T1) was recorded after 40 seconds. The suspension was covered 

with the tight rubber and mixed by inverting the cylinder (10 times) for the second time, and left 

Equation 2 

Equation 3 
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for 3 hours. The second reading of the hydrometer (H2) and the temperature (T2) were recorded 

after 3 hours. Lastly, percentage of the textural class was obtained using procedures used by 

(Olayinka et al., 2017). 

 

 

3.4.2. Soil heavy metal analysis 

For analytical experiment soil samples were crushed to a size of 2mm following methods used by 

Spirochova et al. (2003). EPA method 3050 B (1996) was applied to determine total metal 

concentration. About 1g sample of soil was added to a solution of 1:1 HNO3 10 ml and the solution 

was then heated at 950C for 15 minutes on hotplate. Then the samples were digested with repeated 

addition of concentrated HNO3 (5 ml). After that, samples were digested with 30% H2O2 and H2O2 

(1 ml) was repeatedly added. Lastly, HCl (10 ml) was applied for 15 minutes to digest samples. A 

100 ml flask was then used to collect digested samples, and dilution was made using 100 ml 

distilled water and analysis was done using Atomic Absorption Spectrometry (AAS), model, 

Varian Spectr AA 20Plus. 

3.4.3. Plant sample analysis 

Plant samples were washed carefully using distilled water as in (Spirochova et al., 2003). Leaf 

stem, and root samples were added in different crucible and heated in furnace up to 4500C for 1.10 

hour and then plant sample was then heated and for 4 hours (Mathew, 2005). The final ash residue 

was then mixed with 25% HNO3 (5 ml) (Soylak et al., 2004). The solution was filtered using 

Whatman No. 42 and then poured into flask (25 ml) and the flask was filled up to 25 ml with 

distilled water. Finally, AAS was used to measure metal concentrations. 
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3.5. Evaluation of phytoremediation efficiency 

The following factors were calculated for the evaluation of phytoremediation potentials of sample 

plants: Calculation of BCF, TF and BAC. BCF is an index for calculation of metal accumulation 

in plants (Ghosh and Singh, 2005). Consequently, bioaccumulation of metals in the plant tissues 

or the uptake and accumulation in plant parts was estimated by computing BCF applying the 

formula (Liu et al., 2009) given in Equation (4).  

 

 

 

Further, BCF can also be presented in percentage by applying following the formula used in 

(Wilson and Pyatt, 2007) for calculation of metal concentration percentages in leaves, stem and 

root of the particular plant (Equation 5).  

 

 
 

Metal movement from root to aerial part (stem and leaves) was determined by calculating TF. TF 

was calculated by using the formula of translocation ratio applied in (Padmavathiamma and Li, 

2007) (Equation 6).  

 

 

Biological Accumulation Coefficient (BAC) or otherwise called Bioaccumulation Coefficient 

was calculated using the formula presented in (Moffat, 1995) (Equation 7). 
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Some authors consider BCF as a relationship between concentration of metal in root and metal in 

soil (Ghosh and Singh, 2005; Mahdavian et al., 2017). Others define it as metal concentration in 

plant shoot in relation to that of metal concentration in soil (Lu et al., 2015; Saravanan et al., 2019). 

Other authors define BCF as a ratio of metal in plant and metal in soil (Kulkarni et al., 2014). 

However, other authors (Hesami et al., 2018) applied another term called Extraction Factor (EF) 

for calculation of shoot metal concentration (Equation 8).  

 

However, even though different authors used a different approach to calculate this EF, BCF shoot 

and BAC intended to explain the same thing (metal build up in shoot in relation to soil).  

Several authors recommended the use of BCF and TF for the identification of suitable plants for 

phytoremediation purpose (Pandey et al., 2014; Sidhu et al., 2017). Plants showing BCF root > 1 

and a TF < 1 could be used for phytostabilization and plants could be selected for phytoextraction 

if their TF and BCF values are > 1 (Yoon et al., 2006).  However, in cases where; BCF is less than 

one, but with very large TF (> 1) another approach could be used since larger TF could compensate 

lower BCF. Explicitly plants having a larger metal concentrations in their shoot could be identified 

by calculating EF and EF > 1 could be considered as an indicator of plants with phytoextraction 

potential (Hesami et al., 2018).  

Therefore, in this research, combination of most of these are used, for instance: the method of 

Yoon et al. (2006) was used for selection of plants with phytostabilization properties; BCF of shoot 

as in (Lu et al., 2015; Saravanan et al., 2019) and EF values as in Hesami et al. 2018, were also 

used to evaluate phytoextraction potentials and since one has to consider plants that can 

accumulate trace metals in their shoot (aboveground harvestable portion) to the level higher than 

the soil metal concentration to give shoot BCF >1 and TF >1.  
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3.6. Statistical analysis 

Relationships between data (metal accumulation and translocation potentials of selected plant 

species and their seedlings, soil metal concentration and others) were presented statistically and 

statistical interpretations such as ANOVA and post-hoc (LSD) were applied for significant 

differences. Differences between soil metal concentrations of dry and wet season samples; 

seedlings and mature plants, were evaluated by performing T-test (Mean difference test). Similarly, 

correlation coefficient (r) was computed to evaluate association between concentrations of metals 

in plant tissues and soils. Significance values were presented as p < 0.05 and p < 0.01levels. For 

all analysis and for comparison of mean differences, SPSS version 22 and Microsoft Office Excel 

were used. 
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CHAPTER FOUR 

4. Results and Discussions 

4.1.  Characteristics of sample site 

Characteristics of sample sites (Lideta, Mekanisa, Kera, Hana Mariam, Kality) chosen on the basis 

of the possible presence of wide-ranging environmental pollution and presence of desires plants 

was described in the following sections. The study area, Addis Ababa City is a metropolitan city 

located in the center of Ethiopia, East Africa. The City is situated at the latitude of 9.005401 and 

the longitude is 38.763611 and the GPS coordinates are 9° 0' 19.4436'' N and 38° 45' 48.9996'' E. 

The city covers an area of about 540 Km2 and the elevation lies between 2,200 to 2,500 m above 

sea level. The United Nations population projections estimated the population of Addis Ababa in 

2020 is 4,794,000, a 4.4% increase from 2019. However, the estimation made by (CSA, 2019) was    

4,592,000 with an annual growth rate of 4.4 percent. Furthermore, the average low-temperature of 

12°C and an average high -temperature of 20°C. 

The control samples were collected from a non-industrial site at the periphery of Bishoftu/ 

Debrezeit town located at south east of Addis Ababa, and the GPS coordinates of 8° 44' 4.74'' N 

and 39° 0' 30.726'' E. The average altitude of the town is about 1877.8 m above sea level.  The 

average annual minimum and average annual maximum temperatures are 8°C and 22°C, 

respectively.  

4.2. Characteristics of sampled soils  

Soil characteristics and physicochemical properties can considerably affect the uptake 

characteristics of different elements and trace metals by plant roots. Removal of metal 

contaminants by plants depends on several factors; these include the plant species, biomass, root 

depth, age, growing season; soil pH, organic matter, temperature, moisture content, aeration; 

availability of competing ions and form and magnitude of trace metals (Vangronsveld et al., 2009; 

Pandey and Bajpai, 2019; Saxena et al., 2019).  
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Table 2. Characteristics of selected soil parameters within the plant growth areas. 

Parameters Soil samples  P 

(0.05) 

 Lideta  Mekanisa  Kera Hana Mariam  Kaliti Control   

DRY SEASON        

pH 6.34 ± 0.25 5.74 ± 0.94 5.09 ± 0.4 6.5 ± 0.5 7.22 ± 0.41 6.91 ± 0.15 0.002* 

 6.07- 6.6 5.19 -6.83 5.06 – 5.14 6.06 – 7.1 6.75 – 7.47 6.75 – 7.03  

EC 296.9 ± 8.96 415.9 ± 28. 418.7 ± 16.6 385.4 ± 9.1 318.2 ±7.3 123.12 ± 7.9 0.000* 

 290-307 394- 447.6 401 - 434 376- 394 312.4 -326.4 117.3 – 132  

CEC 43.73 ± 3.2 45.6 ± 8.9 47.6 ± 7.14 50.2 ± 7.52 49.2 ± 2.8 39.3 ± 2.3 0.305 

 41.8 – 47.4 36. 4 -54.2 42.7 – 55.8 43 - 58 47.2 – 52.4 37.34 – 42.6  

OM% 4.11 ± 0.8 3.7 ± 1.2 4.24 ± 0.3 4.8 ± 1.35 5.2 ± 0.22 4.3 ± 0.26 0.343 

 3.2 – 4.62 2.59 – 4.93 3.94 – 4.5 3.51 – 6.2 4.91 – 5.4 4.03 – 4.52  

MC% 18.51 ± 1.4 20.5 ±2.20 18.81 ± 1.7 20.9 ± 2.14 21.8 ± 1.5 21.12 ± 0.6 0.248 

 17.03 – 19.7 18.02 – 22.3 17.1 – 20.4 16.7 - 22.4 20.85 – 23.6 20.43 – 21.5  

  
 T

ex
tu

re
 

Sand 16 ± 4 18.3 ± 2.83 19.97 ± 3.8 19.82 ± 2.2 21.2 ± 1.4 17.8 ± 0.62 0.304 

 12 – 20 15.2 - 20.7 16.6 – 24 18.4 – 22.3 19.8 – 22.6 17.1 – 18.2  

Silt 35.4 ± 2.44 34.1 ± 5.9 34.5 ± 5.8 29.1 ± 3.84 30.9 ± 2.97 39.3 ± 2.4 0.117 

 33.2 – 38 28.3 – 40 28.5 – 40 26.7 – 33.5 28.54 – 34.2 37 – 41.8  

Clay 48.61 ± 1.62 47.6 ± 4.4 45.53 ± 2.1 51.1 ± 3.44 48 ± 2.21 43 ± 1.9 0. 054 

 46.8 – 50 44.8 – 52.6 43.4 – 47.5 47.7 – 54.6 46 – 50.4 41 – 44.8  

WET SEASON        

PH  7.02 ± 0.2 6.38 ± 0.9 5.04 ± 0.1 7.4 ± 0.4 7.6 ± 1.31 6.6 ± 0.41 0.009* 

  6.8 – 7.2 5.37 – 7. 1 4.95 -5.12 7.1 – 7.82 6.14 – 8.71 6.14 – 6.95  

EC  283.74 ± 5.74 352.9 ± 12. 407.4 ± 5.4 362 ± 4.8 308.2 ± 31.6 125.9 ± 10.3 0.000* 

  279 - 290 343 - 366.4 402.5 - 413 357.5 - 367 289 - 344.7 115 - 135.8  

CEC   41.9 ± 3.64 46.92 ± 2.21 46.1 ± 6.9 47.44 ± 6.2 47.95 ± 3.52 40.3 ± 1.2 0.244 

  39.2 - 46 44.95 – 49.3 38.8 - 52.5 41.4 – 53.8 44.4 – 51.4 39 – 41.4  

OM%  3.7 ± 1.04 3.4 ± 0.71 3.81 ± 0.41 3.9 ± 0.62 4.9 ± 0.6 3.98 ± 0.2 0.178 

  2.48 – 4.4 2.98 – 4.2 3.35 – 4.12 3.17- 4.33 4.22 – 5.32 3.81 – 4.19  

MC%  31.1 ± 3.5 30.14 ± 2.8 32.32 ± 2.5 28.9 ± 1.4 34.3 ± 1.3 30.4 ± 1.4 0.145 

  28 – 34.93 27.9 – 33.34 29.6 – 34.4 27.53 – 30.3 32.83 – 35.2 28.84 – 31.7  

T
ex

tu
re

 

Sand 20.4 ± 3.82 23.13 ± 2.9 19.9 ± 3.2 20.53 ± 1.9 20.41 ± 2.3 22.8 ± 1.9 0.589 

 17.5 – 24.7 19.8 - 25 16.6 - 23 18.5 – 22.2 18.43 – 22.9 20.7 -24.3  

Silt 35.96 ± 1.2 33.7 ± 5.01 33.9 ± 3.5 33.3 ± 6.24 31.53 ± 1.12 38.1 ± 2 0.389 

 34.7 - 37 29.1 - 39 31.1 – 37.8 29.4 – 40.5 30.4 – 32.6 36.1 – 40.03  

Clay 43.63 ± 3.96 43.2 ± 2.4 46.23 ± 5.4 46.2 ± 4.6 48.1 ± 2.9 39.1 ± 1.6 0.123 

  39.1 – 46.3 41.2 – 45.9 42.2 – 52.3 41 - 49 45.5 – 51.2 37.5 – 40.6  

*Mean values significantly different, p < 0.05; all parameter levels reported as Mean ± SD, N=3. Units used for EC and CEC are (mS/m) and 

(meq/100g), respectively.  
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Composite soil samples surrounding plant samples were collected for analysis. Accordingly, 

corresponding soil physicochemical properties and concentrations of metals were measured to 

evaluate correlation between soil parameters and plant uptake and transfer potential. The following 

vital soil parameters were examined in the present study: soil pH, cation exchange capacity (CEC), 

organic matter (OM), texture, electrical conductivity (EC), and moisture content. Values of soil 

parameters determined in this study are presented in Table 2 above. 

4.2.1. Soil pH  

Soil pH is an important soil parameter used for measuring acidity or alkalinity of soil solution 

which shows the activities of H+ and OH- ions (Motsara, and Roy, 2008). Chemical process 

occurring in soil, possible toxicity, plant nutrient deficiency can be estimated via soil pH (Hazelton 

and Murphy, 2016). Soil pH also impacts heavy metal solubility, speciation and availability for 

uptake (Sheoran et al., 2016). Alkaline pH, higher percentage of OM and larger fraction of clay 

substances lowers metal movement and availability for uptake (Mkumbo et al., 2012). Conversely, 

a lower pH enhances the cation mobility, absorption, and transfer of trace metals within the plant 

tissue.  

The data presented in Table 2, clearly indicated that, the pH values of soil samples collected from 

different sampling sites ranged from acidic to slightly alkaline, and pH ranged between 4.95 to 8.7 

in rainy season and 5.06 to 7.47 for dry season. ANOVA also revealed there is significant seasonal 

variation p < 0.05 in pH of soil. Mean soil pH in samples at Lideta site was 6.34 ± 0.25 for dry 

season and 7.02 ± 0.22 for rainy season. Soil taken from samples at Mekanisa site had pH 5.74 ± 

0.94 during dry season and 6.38 ± 0.9 in wet season. Samples of soil collected from Kera site 

showed relatively low pH values of 5.04 ± 0.1 and 5.09 ± 0.04 in rainy and dry seasons, 

respectively. Soil pH of samples at Hana Mariam site varied between 7.08 to 7.82 during dry 

season and 6.06 and 7.06 during rainy season. In addition, soil pH values obtained from samples 

at Akaki site were all slightly alkaline both in dry season and wet seasons, the mean values of 7.22 

± 0.41 and 7.6 ± 1.31 are presented in Table 2.  

Mean pH values of soil samples collected from contaminated sites, except for samples collected 

from Kality site, during dry season are lower than mean pH value of control samples (6.91 ± 0.15). 

However, during wet season soil samples collected from contaminates sites, with the exception of 
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Kera and Mekanisa site, gave a higher mean pH values than Control sample collected from the 

vicinity of Bishoftu/Debrezeit Town.     

The mean pH values of soil samples obtained in this research are comparable to results reported 

by other recent studies for instance: Woldetsadik et al. (2017), reported mean pH values ranging 

from 5.99 to 7.16 and Mean pH value reported by (Mengesha et al., 2017) was 6.97 or it ranges 

between 6.5 and 7.4. 

A lower probability value of p = 0.000 < 0.05 obtained from ANOVA also revealed that there is 

significant variation in pH values among samples from different sites. Moreover, LSD (p = 0.000 

< 0.05) was observed between Kera site and Akaki site which are sites with the least and the highest 

mean pH values, respectively.  A wide range of variation between pH values of different sample 

sites of present could be attributed to the levels of anthropogenic interferences.  An increase in pH 

values of soil samples during wet season was probably attributable to broken floor tiles, block and 

leaching from other construction and demolition wastes containing calcium carbonate (CaCO3), 

which could serve as buffer and dilute and raise pH values (Oluyemi et al., 2008). 

Control soils sampled from Bishoftu area showed pH recordings ranging from 6.14 to 6.95 and 

6.75 to 7.03 during rainy and dry seasons, respectively. Reduction in pH values during rainy season 

in control sample sites might be due to lower pH of rain water or leaching of cations due to 

precipitation (Brady and Weil, 2002) or production of organic acid due to cultivation of land in 

the upper catchments which in turn adds H+ ion to the soil. Mean pH value (6.75) noted in the 

present study was slightly lower than neutral pH; which is nearly comparable to pH values ranging 

between 6.38 and 8.08 (average 7.00) reported by (Minase et al., 2016).  

4.2.2. Soil texture 

Soil texture refers to the particle size of soil or it represents fineness and roughness of soil particles. 

It elucidates relative proportions of different particle size clay, silt and sand (ISSS, 2002). Soil 

texture is an essential factor that affects metal mobility, availability and soil to plant transfer of 

trace metals. Clay particles can significantly impact trace metal availability (Beyer and Cromartie, 

1987; Sheoran et al., 2016). 
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Soil samples investigated in this research are composed of mixtures of sand, silt and clay. Results 

showed, clay and silt are dominant soil textures in the studied soil. Clay fraction is a predominant 

texture in almost all studied sites including the control samples site chosen as unpolluted. Particle 

size distribution in soils of the study site shows the largest portion of clay followed by silt and 

sand.  

The highest mean clay fraction (51.1 ± 3.4%) was recorded at Hana Mariam site during dry season, 

while the minimum recording of (45.5 ± 2.1) for clay was noted at Kera site. Slightly lower mean 

values of clay fraction were noted in rainy season. The lower and higher mean values of 48.1 ± 2.9 

and 43.2 ± 2.4% were obtained for Akaki site and Mekanisa site, respectively (Table 2). 

Comparison with the mean values of the control soil showed significant variation p = 0.015 < 0.05 

and based on LSD value, highly significant difference (p = 0.001 < 0.05) was recorded for Hana 

Mariam site and the control site.  

Similarly, sample soils also had significant amount of silt, minimum mean fraction (29.1%) and 

maximum (35.4%) were recorded for Hana Mariam site and Lideta site, respectively during dry 

season (Table 2). During wet season lowest mean portion of silt 31.5 ± 1.12% was recorded at 

Akaki site and maximum portion amounting to 35.96 ± 1.2% was noted for Lideta site. Control 

soil collected from non-contaminated site showed largest mean silt fraction. Mean values of 38.1 

± 1.98 and % 39.3 ± 2.4% were noted for wet and dry season samples, correspondingly. Probability 

value of p = 0.011 < 0.05 indicated control soil samples had significantly higher mean values than 

those from contaminated sites.  

Data in Table 2, also showed, a sand fraction was the lowest in its proportion in all sample sites, 

the minimum percentage of 16 ± 4% was recorded for Lideta site and the maximum mean value 

21.2 ± 1.4 was noted for Kality site in dry season. The average value of sand fraction noted during 

wet season was slightly higher than the value in dry season, however the difference remains 

statistically insignificant p = 0.722 > 0.05. During rainy season minimum (19.9 ± 3.2%) and 

maximum (23.1 ± 2.9%) values were recorded at Kera site and Mekanisa site, respectively.  

4.2.3. Moisture content (MC)  

The quantity of water that exists in the soil mass was represented as moisture content. Soil MC 

could vary depending on level of precipitation. During dry season, high temperature enhances 
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evapotranspiration that will in turn reduces soil MC. Knowing the MC of soil is vital for evaluating 

water uptake in plants, water holding capacity, water movement, infiltration, leaching of chemicals 

and other physical processes (Foth, 1990). Soils under different land uses vary in their MC and 

soil texture especially silt and clay fractions are strongly correlated with the MC (Mishra and 

Defera, 2018; Medeiros et al., 2018). 

Seasonal variation and difference in MC of different sampling sites in this study is summarized in 

Table 2. Mean values of MC vary between 27.5 to 35.2%, and 16.7 to 23.6% during wet and dry 

seasons, respectively. The lowest (16.7%) mean soil moisture was noted in the soil of Hana 

Mariam site and the highest (35.2%) was recorded at Akaki site. However, ANOVA, both in dry 

season (p = 0.248 > 0.05) and wet season (p = 0.145 > 0.05) revealed variation in moisture content 

of different sites was not significant.  

Further, even though the moisture difference during the wet and dry season is obvious, the MC of 

soil samples were also positively affected by the organic matter content in soil, which could be 

explained by the Pearson Correlation Coefficients recorded in dry season r (0.603), p = 0.008 and 

wet season r (0.769), p = 0.000 whereas p < 0.01. Likewise, clay fraction has a positive effect on 

the soil moisture content, which is, significant positive effect in wet season r (0.534), p < 0.05 and 

insignificant positive effect r (0.186), p > 0.05 during dry season. This positive relationship could 

explain that clay-rich soil could retain more water. Likisa and Gejea (2017) reported a similar 

finding concluding elevated moisture content due to higher clay fraction.   

4.2.4. Organic Matter (OM) 

Soil OM represents the portion of soil containing living things and dead (debris) of plants and 

decomposition products from animals. OM in soil includes debris of plants and animals that 

contains protein, carbohydrate and other organic species (Foth and Ellis, 1997).  OM composition 

of soil can influence soil properties including soil structure, nutrient contributions, infiltration rate 

and biological activity. Soil with high OM content could have acidic pH due to decomposition of 

OM that can produce inorganic acids, carbonic acids and carboxylic acids (Brady and Weil, 2002). 

Higher OM in soil increases CEC, MC, and improves soil stability and aeration. 

The percentage values of organic matter were found to vary with sample sites. Maximum of 4.8% 

± 1.35 was recorded in samples at Kera site and the minimum percentage of 3.4% ± 0.71was 
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recorded at Mekanisa site. Soils having higher clay content are likely to retain more OM than soils 

with low clay content. Compositions of OM noted in control site 3.75% ± 1.34 for dry season and 

3.44% ± 0.82 for wet season which is near compare to values reported by (Woldetsadik et al., 

2017) in wastewater irrigated sites of Addis Ababa. Mean OM percentage recorded in dry season 

was greater than recordings taken during wet season. However, statistical analysis (ANOVA) 

revealed seasonal differences are insignificant, p = 0.087 > 0.05. Similarly, the variation in 

percentage values of organic matters in soil samples of different sites were not statistically 

significant, p > 0.05 both for dry and wet season samples (Table 2). 

4.2.5. Electrical Conductivity (EC) 

EC explains the capacity to carry electric current. It is usually given in units of deciSiemens per 

meter (dS/m) or millisiemens per meter (mS/m). The conductivity property depends on availability 

of ions and temperature (Maria, 1997). Electric conductivity also expresses soluble salts in the soil 

solution, which impacts plant metal.  

Relatively, lowest mean conductivity value (296.9 ± 8.96 mS/m) was observed at Lideta site soils 

and highest mean value of electrical conductivity (418.7 ± 16.6 mS/m) was observed at Kera site 

soils during dry season. Similarly, minimum and maximum mean EC values recorded in wet 

season are 283.74 ± 5.74 mS/m and 407.4 ± 5.41 mS/m, displayed in (Table 2). The electric 

conductivity of the present soil samples had positive relationship with the clay fraction r (0.476), 

p = 0.003 and soil CEC r (0.470), p = 0.004 which indicates that, an increase in clay content and 

CEC could increase the EC. This is in agreement with Mosseler and Major. (2017) who indicated 

clay soil has greater EC than sandy due to its higher cation exchange capacity. In addition, Corwin 

and Lesch. (2005) and Medeiros et al. (2018) also reported positive correlation among clay content 

and the soil EC.  

ANOVA revealed the mean difference of EC between different sampling sites is highly significant 

p = 0.000 at 0.05 level. Conversely, comparison of mean differences in EC of soil samples 

collected in dry and wet season shows t (34) = 0.591, p = 0.558. Explicitly, mean EC of dry season 

sample (M = 326.35 mS/m, SD = 105.57) showed insignificant difference from the mean EC of 

wet season soil samples (M = 306.71 mS/m, SD = 93.39). Control soil samples procured from 

Debrezeit/Bishoftu area, showed the lowest mean values of EC ranging from 115 to 135 mS/m 
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and 117.3 to 132 mS/m for wet and dry season, respectively (Table 2). The lower values of EC in 

uncontaminated site could be explained as due to limited concentration of ions. 

4.2.6. Cation exchange capacity (CEC)  

CEC explains soil capacity to hold and exchange cations (Brady and Weil, 2002) or keep cations 

in available form for plant uptake (Ilaco, 1985). Mean values of CEC in soil from Lideta, 

Mekanisa, Kera, Hana Mariam and Kality sites were 42.8 ± 3.2, 46.24 ± 5.9, 46.8 ± 6.3, 48.8 ± 

6.35 and 48.6 ± 2.92 meq/100g soil, respectively. CEC value is highest in soils of Hana Mariam 

(48.82 ± 6.35 meq/100g) and the minimum was noted in soils of Lideta site, 42.8 ± 3.23 meq/100g. 

The higher CEC exceeding 25 meq/100g indicates the higher clay fraction in soil samples, which 

enhances heavy metal adsorption (Bulluck et al., 2002).  The correlation coefficient r (0.505) and 

p value of 0.002 which is <0.01 revealed there is significant relationship between the OM 

percentage composition and the CEC of soil samples. Soil samples with higher organic matter tend 

to have higher CEC and those with lower OM fraction had lower CEC. This is in concurrence with 

McAlister et al. (1998) who reported CEC have strong association with OM content. Olaniran et 

al. (2013) also reported soil OM has strong influence on CEC. 

 

Similarly, mean values of CEC were significantly impacted by the clay content in the soil samples 

correlation coefficient (r) 0.570, p = 0.000 < 0.05 reveal that the higher the clay content the higher 

is the CEC, which is in line with Bulluck, et al. (2002). However, a negative and significant 

relationship r (-0.642), p = 0.000 was noted between CEC and silt content while, the sand fraction 

had insignificant (p = 0.461 > 0.05) effect on the CEC of soils.  

Mengesha et al. (2017), reported soil samples taken from Akaki River catchment located in central 

Ethiopia have moderate to high CEC in the range of 31.44 to 51.12 Meq/100mg.  Similarly, control 

soil collected from Bishoftu has mean CEC value of 47.95 Meq/100 gm was comparable with a 

moderate to high CEC values varying between 45 - 58 Meq/100 gm reported by (Minase et al., 

2016). 

Heavy metal (Pb, Cr, Cd, Zn, Cu and Ni) concentration in soil samples obtained from five different 

polluted industrial sites and control sites are presented in Figure 7 below. ANOVA, p < 0.05 

showed significant difference in concentration of trace metals among different sampling sites. Soil 
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samples collected from all contaminated sites gave significantly higher mean values of analysed 

heavy metals than samples collected from control sites, except for Ni which showed insignificant 

difference p = 0.054 > 0.05. Heavy metal concentration in control soil samples might be associated 

with phosphate fertilizers which contain toxic heavy metals (Bitew and Alemayehu, 2017).  

 

    SS: Sample site, CSS control sample site; SS1 (Lideta site), SS2 (Mekanisa site), SS3 (Kera site), SS4 (Hana Mariam site), SS5 (Kality site)   
      Bar charts represent mean of 3 samples and vertical error bars represent standard deviation (±SD)  

      Figure 7. Heavy metal concentrations in the soil surrounding plant samples. 

High concentration of heavy metals in soils can negatively impact absorption of essential nutrients 

(Khan et al., 2016). Heavy metal bioaccumulation in edible plants has detrimental effect on human 

health (Mortensen et al., 2018). Therefore, edible crops grown in metal contaminated sites are not 
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safe for consumption. Heavy metals toxicity can also limit plant growth, crop yield and change 

native microbial populations (Asati et al., 2016; Xia et al., Error! Reference source not found.).  

Based on their level of toxicity, heavy metals are classified as relatively less poisonous, moderately 

poisonous and extremely poisonous (Mukesh et al., 2008). Metals studied in this research, Pb, Cd, 

and Zn were classified as extremely poisonous and Cr, Ni and Cu are classified as moderately 

poisonous. And maximum permissible limits for metals (Cr, Pb, Cd, Cu, Zn, and Ni) concentration 

in soil presented by European Union, 2002 and joint WHO/FAO, (2007), were 300, 3, 300, 150, 

140 and 50, respectively in mg/kg. 

Cd detected in all sampling sites from contaminated regions of Addis Ababa, are far greater than 

maximum permissible limit (3 mg/kg) while, the highest mean value (53.95 ± 13.27 mg/kg) was 

noted at Lideta site and minimum recording 2.6 ± 1.3 mg/kg was noted for control site.  The total 

mean metal values in soil are in order of Zn > Ni > Pb > Cu > Cr > Cd during wet season and Ni 

> Zn > Pb > Cr > Cu > Cd during dry season. Mean values of metal concentrations of in 

contaminated sites of Addis Ababa ranged between: 108.7-385.6, 61.2-390, 14.79-69.2, 70.4 - 

419.7, 82.2 - 253.8 and 93.2- 664.8 in mg/kg’s for Pb, Cr, Cd, Zn, Cu and, Ni respectively (Figure 

7). The mean values recorded for studied metals particularly, Cd (29.74 ± 12.8 mg/kg), Pb (217 ± 

80.12 mg/kg), Cr (175.99 ± 72.7 mg/kg) and Ni (246 ± 118.5 mg/kg) are higher than values noted 

by previous studies in the same city (Alemayehu, 2006; Aschale et al, 2017, Mengesha, et al., 

2017; Melaku, 2018). For instance; Mengesha, et al. (2017) reported lower mean values of 139.9 

± 9.57, 40.52 ± 12.97, 13.91 ± 10.96 and 0.31 ± 0.04 for Ni, Cr, Pb, and Cd, correspondingly.  

However, the mean concentration of Cu (155.73 ± 44.15 mg/kg) obtained from the present 

investigation was higher than mean value of Cu (103.16 ±7.22) reported by Mengesha et al. (2017). 

Conversely, mean value of Zn (261.01 ± 90.01mg/kg) recorded in soil samples of this study was 

considerably lower than mean concentration of Zn (5856.74 ± 642.61) noted by Mengesha et al. 

(2017). Elevated levels of metals, especially Pb and Cu in high-traffic density urban centers 

indicate traffic related sources (Chen et al., 2016).   

Mean concentrations of 61.6 ± 7.32 mg/kg, 43.3 ± 4.41mg/kg, 29.6 ± 3.59 mg/kg, 145 ± 26.4 

mg/kg, 48.7 ± 4.75 mg/kg and, 2.27 ± 0.31 mg/kg for Cr, Cu, Pb, Zn, Ni and Cd, respectively on 

soils of Mekanisa site as also noted by Woldetsadik et al. (2017).  However, concentration of trace 
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metals in soils of Mekanisa site obtained in the present investigation are as follows: Cd (29.08 ± 

18.82 mg/kg), Cr (196.23 ± 54.04 mg/kg), Pb (265.67 ± 104.98 mg/kg), Zn (289.37 ± 27.64 

mg/kg), Ni (303.02 ± 82.76 mg/kg), Cu (160.69 ± 12.53 mg/kg) during dry season, and mean 

values of Cr (217.83 ± 150.7 mg/kg), Cd (34.99 ±11.62), Pb (212.04 ± 32.01 mg/kg), Zn (356.35 

± 60.76 mg/kg), Cu (159.23 ± 37.18 mg/kg) and Ni (293.55 ± 86.92 mg/kg) during wet season 

(Figure 7).  Woldetsadik et al. (2017), also examined mean metal concentrations in soils of Kera, 

Hana and Akaki areas of Addis Ababa. The respective values of trace elements (Cd, Cr, Pb, Zn, 

Ni and Cu) reported were 2.95 ± 0.42, 76.3 ± 6.74, 81.1 ± 10.9, 160 ± 8.35 and 49.9 ± 6.2 mg/kg; 

1.37 ± 0.21, 56.3 ± 2.52, 33.1 ± 1.88, 130 ± 16.6, 39.9 ± 4.85 and 38.3 ± 4.92; 1.19 ± 0.27, 69.1 ± 

8.51, 35.9 ± 5.22, 154 ± 28, 46.6 ± 3.27 and 27.9 ± 1.6 mg/kg at Kera, Hana and Kality sites 

correspondingly.   

Control soils collected from the non-industrial site gave considerably lower trace elements than all 

the sample soils collected from around industrial sites of Addis Ababa. Mean levels of metals in 

control soil during dry season were as follows: Cr (94.3 ± 10.1 mg/kg), Cd (3.74 ± 1.03 mg/kg), 

Pb (71.64 ± 18.12 mg/kg), Zn (134.7 ± 34.4 mg/kg), Ni (84.3 ± 21.7 mg/kg) and Cu (68.14 ± 21.7 

mg/kg). The soil Cr, Cd, Pb, Zn, Ni and Cu concentrations recorded for control soil samples 

collected in wet season were 56 ± 10.6, 2.6 ± 1.28, 58.7 ± 20.1, 107.9 ± 11.65, 126.13 ± 20.6 and 

mg/kg, respectively (Figure 7).  

Mean concentrations of heavy metals higher than Maximum Permissible Limit (MPL, European 

Union, 2002 and joint WHO/FAO. (2007), were recorded at Lideta site for Cd, Cr, Ni and Cu 

during dry season and only Cd was higher than MPL during the wet season. Mekanisa site had 

average values of > MPL for Cr, Cu, Cd, and Ni during dry season, while wet season soil samples 

had mean values > MPL for all studied metals except Pb. Soil heavy metals at Kera sites are all 

higher than MPL, except for Pb which is slightly lower than MPL. Cadmium was the only metal 

with concentration higher than MPL at Hana Mariam site, while all studied elements, except Pb, 

were higher than MPL in dry season. Among studied elements, Cu Cd, and Ni during wet season 

and only Cd and Ni during dry season were higher than MPL in soils of Akaki site. Control soils 

collected from the non-industrial site perceived to be uncontaminated, showed mean 

concentrations of studied heavy metals lower than MPL, except for a slightly higher mean value 

recorded for Ni during wet season and Ni and Cd during dry season (Table 3). 
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Table 3. Total heavy metal concentrations in the soil samples surrounding the plant 

samples. 

      Heavy metal concentration (mg kg-1) 

Season    Sites 

 

Cd Cr Pb Zn Ni Cu 

 1 Mean 53.95 ± 13.3 177 ± 30.6 205.1±104.7 293.8 ± 52.4 322.8±74.43 167.84±15.9 

 Range 45.05-69.2 145-206 108.7-316.5 260.2-354.1 270.41-408 151.4-183 

2 Mean 29.1±18.8 196.23±54.0 265.7±104.98 289.37±27.6 303.02±82.8 160.7±12.5 

 Range 14.79-50.4 141-249 182.1-383.5 266.3-320 249.23-398 149.64-174 

3 Mean 36.6±14.3 248.7±3.03 302.5±120.4 312.97± 69.9 407.43 ± 240 184.5±25.1 

 Range 21.3-49.6 246.9-252 164.1-382.6 264.21-393 189.5-664.8 158-208 

4 Mean 27.8±5.54 223±37.9 235.4±18.5 345.62±38.4 212.2±80.7 151.27±89.7 

 Range 22.7-33.7 193.8-265.9 220.74-256 319.2-389.7 159.95-305 87.42-253.8 

5 Mean 20.3 ±1.4 137.67±10 131.2±12.4 147.67±45.9 171.6±64.3 98.76±16.9 

 Range 19-21.7 130-149 118-142.6 104-195.5 116-242 82.23-116 

Control Mean 3.74±1.03 94.33±10.1 71.64±18 134.7±34 84.28±21.7 68.14± 20.7 

 Range 2.96-4.91 85-105 51.7-87.1 110-174 66.51-108.4 49.91-90.6 

        

ANOVA F-Value 6.541 10.446 3.599 11.017 3.014 3.735 

p (Sig) 0.004 0.000 0.032 0.000 0.054 0.029 

        

             

 

 

 

 

 

 

 

 

Wet  

 

1 Mean 19.5±1.99 91.9±31.97 165.9±63.8 193.17±25 219.50±59.1 167.13±43.6 

 Range 17.22-21.03 61.2-125 112-236.4 168.2 - 218 174.2-286.3 118-201 

2 Mean 34.99±11.6 217.83±150. 212 ±32.01 356.4±60.8 293.6±86.9 159.2±37.2 

 Range 27.97-48.4 110.21-390 175.4-234.6 298.6-419.7 225.3-391.4 125.74-199 

3 Mean 24.9±5.64 239.33±27.1 276.8±95.3 321.7±24.7 270.64±32.8 187.1±11.4 

 Range 18.8-29.93 217-269.5 208.5-385.6 299.7-348.4 247.2-308 178.4-200 

4 Mean 23.13±3.9 124.10±25.6 214.3± 20 227.3±68.8 107.63±15.3 110.7±24.8 

 Range 18.9-26.5 94.7-141.6 196.3-235.9 159.7-297.3 93.2-123.7 86.5-136 

5 Mean 27.14±5.5 104.08±31.8 161.19±35.5 122.1±47.6 152.1±18.2 170±58.64 

 Range 22.4-33.12 80.86-140.3 126-197.06 70.4-164 134-170.3 103-212 

Control Mean 2.56±1.3 56.02±10.6 58.67±20.1 107.9±11.7 126.13±20.6 38.57±17.5 

 Range 1.34-3.9 48.05-68 46.22-81.84 98.7-121 102.4-138 28.5-58.7 

ANOVA F- Value 9.761 3.680 5.949 15.471 8.309 7.122 

p (Sig) 0.001 0.030 0.005 0.000 0.001 0.003 

  

MPL (Mg Kg1) 

 

3 

 

150 

 

300 

 

300 

 

50 

 

140 

  

NB: N= 3 for all samples and all samples value is representation of a composite of samples taken from 5 points  

P < 0.05 represents significant difference based on results of ANOVA 
MPL: Maximum permissible Limit, European Union, 2002 and joint WHO/FAO, 2007 
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The higher values of trace elements in most of studied sample spots could be associated with motor 

vehicle emission in urban center (Wekpe et al., 2019), industrial effluent (Belouchrani et al., 2016) 

or poor waste management systems (Khan et al., 2016). Heavy metals in control soils could be 

attributed to use of agricultural pesticides, fungicides and artificial fertilizers in a nearby 

agriculture fields or from geological processes (Prieto et al., 2018). Seasonal variation in level of 

metals in soil samples were estimated by computing independent sample t-test. Cadmium 

concentrations were higher in dry season, however t-test t (20.32) = 1.677, p = 0.109 revealed there 

were no statistically different variations between their mean values of dry season (M = 33.54 

mg/kg, SD = 15.81) and wet season (M = 25.93 mg/kg, SD = 7.72).  

Seasonal differences in Cr mean concentrations of dry season soil samples (M = 195.5 mg/kg, SD 

= 48.27) and wet season samples (M = 155.4 mg/kg, SD = 87.9) was also statistically insignificant 

t (28) = 1.588, p =0.124. However, the maximum mean chromium 248.7 ± 3.03 mg/kg was noted 

in soils at Kera site followed by Hana Mariam (223 ± 37.9 mg/kg) and Mekanisa area (196.2 ± 

54.04 mg/kg) in dry season (Table 3). Similarly, mean values recorded in wet season are maximum 

at Kera site 239.3 ± 27.1 mg/kg followed by Mekanisa (217.8 ± 150.7 mg/kg) and Hana Mariam 

(124 ± 25.6 mg/kg). These sites had elevated levels of Cr that is larger than recommended 

maximum limit (100 mg/kg) because they are urban centers where anthropogenic interference is 

intense.  

Lead showed insignificant mean differences t (28) = 0.743, p = 0.464. However, the mean value 

of dry season soil sample 227.96 mg/kg ± 94.38 was slightly higher than wet season samples (206 

mg/kg ± 64.3). The mean values of Zn available in dry season (M = 277.9 mg/kg, SD = 81.7) and 

wet season (M = 244.14 mg/kg, SD = 97.47) are insignificantly different t (28) =1.027, p = 0.313. 

The higher content of lead in all sites could be due to traffic related emission of trace metals in 

metropolitan areas (Feng et al., 2011).  

Mean difference test (t-test) of soil Ni and Cu also showed insignificant seasonal variation. Ni 

concentration of 283.4 mg/kg ± 137.9 noted in dry seasons was higher than values recorded during 

rainy season 208.7 mg/kg ± 84.12. However, t-test gave a value of t (28) =1.792, p = 0.84 which 

is statistically not significant. Mean value of Cu recorded in rainy season (158.84 mg/kg ± 42.13) 

was higher than values recorded in dry season (152.6 mg/kg ± 47.35). It was noted Cu in soil 

samples had insignificant seasonal variation t (28) = 0.38, p = 0.706.  
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Even though seasonal variation showed statistically insignificant mean differences, the higher 

concentration in dry season soil samples could be due to the dumping of solid wastes and limited 

wash in dry season which permit deposition of heavy metals. The larger mean values of Zn and 

Cu recorded in soils of Kera site, Mekanisa site and Hana Mariam area could be associated to an 

input of wastewater from different anthropogenic activities and garages. Which is in concurrence 

with findings of Tekere et al. (2016), who reported car wash effluent characterized by Cu and Zn 

pollutants. 

  Table 4. Correlations matrix of the six studied heavy metals in soil samples.

 

Regardless of other factors, the relationships between levels of different metals in soil were 

investigated by computing the correlation matrix. Statistically significant values (p < 0.05) or 

highly significant values (p < 0.01), and the correlation between occurrence of each trace metals 

were as follows: strong positive correlations were observed between Cd and Cr (r =.619, n = 36, 

p < 0.01), Pb and Cd (r =.582, n = 36, p < 0.01), Zn and Cd (r = .648, n 36, p < 0.01 ), Cd and Ni 

(r = .508, n 36, p < 0.01), Pb and Cr (r = .653), Cr and Zn (.782), Pb and Zn (.636), Ni and Pb (r 

= .640), Ni and Zn (r = .567), Cu and Pb (r = .610), Cu and Ni (r = 622) and moderate positive 

correlations were recorded between Ni and Cr (r = .479 n 36, p < 0.01), Cu and Cd (r = .471 n 36, 

p < 0.01 ), Cu and Cr (r = .343 n 36, p < 0.01 ) and Cu and Zn (r =.464 n 36, p < 0.01) presented 
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in Table 4. These positive relationships explain that potential sources of pollution are similar and 

sites that had higher concentration of one metal tend to have higher concentration of the other 

metal (Shen et al., 2016). 

Further, based on R2 values, presence of Cd could indicate 38.32%, 42%, 34%, 26% and 22.18% 

availability of Cr, Zn, Pb, Ni and Cu in soil samples, respectively. Similarly, presence of Cr in soil 

samples could explain availability of Pb (42.64%), Zn (61.15%), Ni (22.94) and Cu (11.77%). In 

addition, Pb concentration in soil could indicate availability of Zn, Ni, and Cu by 40.45%, 40.96% 

and 37.2%, respectively. Finally, Ni availability could explain presence of Zn by 32.15% and Cu 

could explain 38.69% possible presence of Ni in the same soil (Table 4).  

4.3.  Metal accumulation and phytoremediation potentials of plants 

All of the selected plants; Phytolacca dodecandra, Adhatoda schimperiana and Solanum incanum 

species can grow in both dry and wet seasons, under varied ecological conditions. These plants 

also share characteristics of fast growth, perennial, large biomass production and re-growth after 

pruning. Plants can take up and accumulate both essential and non-essential metals, however the 

uptake properties could be affected by plant type, the availability of metals in sufficiently mobile 

form in the growth medium, metal type, other physicochemical parameters and plant type and age 

environmental parameters (Gomes et al., 2016; Usman et al., 2019). Most importantly, plant 

growth is the most essential parameter to evaluate phytoremediation efficiency of plants to clean-

up polluted sites (Beauchamp et al., 2018; Rasheed et al., 2019). In other terms, plant adaptability 

or vitality in metal stress is a supplementary indicator to recognize plants for phytoremediation or 

phytoextraction (Li et al., 2017).  Accordingly, all plants selected in this study were found 

dominating contaminated sites. 

4.3.1. Phytolacca dodecandra plant characteristics and phytoremediation properties 

Phytolacca dodecandra is a plant from the family Phytolaccaceae (Adams et al., 1989) and it is 

native to Madagascar and sub-saharan Africa (Schemelzer and Gurib-Fakim, 2008). This plant is 

commonly known in Ethiopia with its local name “endod” or named as African soapberry in 

Ethiopia (Esser et al., 2003; Matebie et al., 2019). Phytolacca dodecandra is also named as ‘Gopa 

berry’ in some parts of east Africa. It also has several traditional medical and historical 
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backgrounds in East Africa, especially Ethiopia for its detergent properties and molluscicidal 

potencies or snail control purposes.   

The most important characteristics of this plant that received the researcher’s attention is that: 

Phytolacca dodecandra has high adaptability and can grow comfortably producing a high above 

ground biomass in highly contaminated soil; it is a perennial rapid growing plant with deep root 

system, unpalatable by livestock and it can re-grow after cutting. This plant was observed to grow 

and adapt to heavily polluted soil and concentration of heavy metals without showing phytotoxic 

symptoms such as leaf stunting and tip withering (Chanu and Gupta, 2016; Luo et al., 2018). 

4.3.1.1.Metal accumulation and distribution pattern of Phytolacca dodecandra  

Phytolacca dodecandra (mature and seedlings) plants gathered from five different contaminated 

sites were examined and content of Cr, Pb, Cd, Ni, Cu, and Zn in different parts-root, stem and 

leaves. Phytolacca dodecandra plants can deposit metals in the vegetative tissues. Phytolacca 

dodecandra accumulated larger portions of heavy metals in its roots and substantial portions were 

distributed in aboveground biomass.  

Based on initial investigations, Phytolacca dodecandra is capable of taking up and transporting 

several heavy metals within their above ground tissues and root zone. As it can be seen in Table 

5, both seedlings and mature plants of Phytolacca dodecandra accumulated analysed metals.  
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Table 5. Distribution of heavy metals (mg/kg) in different tissues of Phytolacca dodecandra. 

Metal Phytolacca /Plant parts Dry season (mg/kg) Wet season (mg/kg) 

  Mature plants Seedlings Mature plants  Seedlings 

Cd Root 24.7 ± 8.62 8.35 ± 2.96 20.32 ± 10.8 6.9 ± 2.24 

 Stem 23.3 ± 12.23 5.2 ± 1.92 17.1 ± 7.8 7.9 ± 3.8 

 Leaf 37.9 ± 16.1 6.97 ± 1.8 25.12 ± 12.2 7.3 ± 4.1 

 Total concentration plant 85.87 ± 32.95 20.53 ± 3.17 62.5 ± 30.42 22.1 ± 8.5 

Cr Root 139.5 ± 69.4 73.5 ± 34.5 120.78 ± 67.58 65.11 ± 30.2 

 Stem 90.7 ± 13.3 55.7 ± 31.5 83.34 ± 24.64 43.51 ± 18.4 

 Leaf 85.1 ± 16.1 47.98 ± 27 69.69 ± 34.14 43.03 ± 10.7 

 Total concentration plant 315.3 ± 90.63 177.2 ± 90.4 273.81 ± 119.5 151.65 ± 57.5 

Pb Root 160.9 ± 54.4 92.64 ± 26.5 157 ± 56.1 85.07 ± 23.7 

 Stem 132.6 ± 53.6 96.94 ± 20.7 102.5 ±10.8 66.65 ± 19.2 

 Leaf 224.6 ± 89.5 133.8 ± 59.4 165.7 ± 57.2 103.4 ± 68.7 

 Total concentration plant 518.11 ± 179.7 323.37 ± 90.9 425.19 ± 119.5 255.14 ± 104 

Zn Root 517.64 ± 113.9 69.34 ± 7.25 577.24 ± 212.6 78.03 ± 38.7 

 Stem 528.59 ± 126.7 64.63 ± 26.7 486.9 ± 167.1 65.97 ± 47.7 

 Leaf 739.38 ± 171.4 113.69 ± 39.96 697.74 ± 266.8 120.5 ± 68.4 

 Total concentration plant 1785.6 ± 404 247.7 ± 59.2 1761.8±634.9 264.5±137.7 

Ni Root 156.4 ± 60.8 79.25 ± 35 130.7 ± 46.7 50.3 ± 23.6 

 Stem 107.1 ± 37.72 64.5 ± 19.53 136.6 ± 47.8 65.54 ± 28.8 

 Leaf 205.5 ± 81.6 81.68 ± 35.4 181.4 ± 106 59.6 ± 32.2 

 Total concentration plant 468.9 ± 149.6 225.42 ± 72.6 448.6 ± 170.5 175.4 ±77.9 

Cu Root 151.8 ± 64.5 37.5 ± 12.5 102 ± 32.2 32.1 ± 13.1 

 Stem 142.4 ± 60.9 46.1 ± 18.7 85.74 ± 17.04 39.4 ± 7.31 

 Leaf 106.9 ± 43.6 50.72 ± 22.5 72.75 ± 16.6 26.55 ± 6.7 

 Total concentration plant 401 ± 150 134.3 ± 49.4 260.5 ± 56.2 98.02 ± 16.6 

  NB: Values are grand means of 5 samples with 2 trials for each analysis ± the standard deviation (SD).  

However, results observed for metal uptake and translocation patterns in different tissues indicated 

that there is substantial difference in elemental content and abundance in different tissues. The 

mean content of Zn (1785.61 ± 404.05 mg/kg) was the largest among analysed trace metals and 

Cd concentration (62.51 ± 30.42 mg/kg) was the lowest (Table 5). 
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                         NB: MPD represents mature Phytolacca dodecandra              SPD represents Seedlings of Phytolacca dodecandra 

  Figure 8. Metal concentration in Phytolacca dodecandra plants. 

 

 

NB: MPD represents mature Phytolacca dodecandra              SPD represents seedlings of Phytolacca dodecandra               

Figure 8. Metal concentration in Phytolacca dodecandra plants 
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Table 6. Mean BCF and TF values of trace metals in different tissues of Phytolacca 

dodecandra in dry season. 

 
NB: M ± SD stands for mean ± standard deviations, N=5       Bold and asterisks (*) denote values are > 1 
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 Biological concentration factor (BCF)  

Phytolacca dodecandra 

 

Translocation factor (TF)  

 Phytolacca dodecandra 

  

BCF root BCF stem BCF leaf BCF shoot TF stem TF leaf TF aerial 

 

Cd 

 

mature 

M ± SD 0.67±0.30 0.55±0.12 0.93±0.25            1.48*±0.35 0.98±0.47 1.53*±0.50 2.50*±0.95 

 Range 0.35-1.1* 0.43-0.72 0.63-1.28* 1.06*-2.00* 0.63-1.79* 1.16*-2.32* 1.81*-4.11* 

 

seedlings 

M ± SD 0.23±0.07 0.15±0.09 0.20±0.08 0.35±0.16 0.72±0.40 0.92±0.38 1.64*±0.72 

Range 0.1-0.29 0.07-0.31 0.11-0.29 0.18-0.57 0.12-1.15 0.45-1.29* 0.76-4.11* 

 

Cr 

 

mature 

M ± SD 0.63 ± 0.26 0.42±0.10 0.40±0.15 0.83±0.25 0.72±0.18 0.68±0.214 1.40*±0.4 

Range 0.37-1.06* 0.28-0.57 0.24-0.65 0.52-1.22* 0.41-0.85 0.38-0.97 0.79-1.82* 

seedlings M ± SD 0.34±0.17 0.25± 0.14 0.23±0.16 0.48±0.29 0.75±0.13 0.64±0.14 1.38*±0.13 

Range 0.11-0.52 0.09-0.42 0.06-0.45 0.15-0.81 0.55-0.88 0.52-0.86 1.07*-1.57* 

 

Pb 

 

mature 

M ± SD 0.61±0.21 0.50±0.19 0.79±0.17 1.30*±0.33 0.86±0.34 1.202*±0.63 2.06*±0.96 

Range 0.34-0.84 0.22-0.68 0.65-1.08* 0.87-1.74* 0.46-1.39* 0.38-2.10* 0.84-3.49* 

 

seedlings 

M ± SD 0.35±0.14 0.39±0.17 0.47±0.09 0.86±0.22 1.14*±0.45 1.45*±0.48 1.95*±1.10 

Range 0.24-0.59 0.23-0.65 0.38-0.59 0.63-1.17* 0.71-1.81* 0.89-1.69* 0.35-2.25* 

 

Zn 

 

mature 

M ± SD 1.79*±0.3 1.85*±0.38 2.56*±0.41 4.40*±0.77 1.02*±0.09 1.43*±0.04 2.45*±0.06 

Range 1.49*2.12* 1.3*-2.21* 2.13*-2.98* 3.5*-5.18* 0.87-1.08* 1.39*-1.48* 2.35*-2.51* 

 

seedlings 

M ± SD 0.25±0.08 0.24±0.15 0.40±0.15 0.64±0.26 0.92±0.31 1.46* ± 0.44 2.35* ± 0.37 

Range 0.19-0.39 0.11-0.48 0.21-0.57 0.35-1.05* 0.5-1.24* 1.14*-2.21* 1.91*-2.71* 

 

Ni 

 

mature 

M ± SD 0.65±0.22 0.45±0.12 0.82±0.34 1.27*±0.37 0.69±0.07 1.42*±0.633 2.09*±0.68 

Range 0.37-0.98 0.28-0.59 0.49-1.26 0.9-1.79 0.6-0.77 0.5-1.89 1.1-2.62 

 

seedlings 

M ± SD 0.37±0.28 0.31±0.18 0.36±0.23 0.67±0.39 0.89±0.34 1.07*±0.45 1.76*±0.82 

Range 0.16-0.86 0.09-0.50 0.14-0.68 0.30-1.18* 0.56-1.28* 0.72-1.65* 0.54-2.65* 

 

Cu 

 M ± SD 1.18*±0.54 1.05*±0.24 0.83±0.39 1.88*±0.61 1.01*±0.39 0.73±0.14 1.74*±0.49 

  Range 0.59-1.95* 0.85-1.36* 0.45-1.47* 1.36*-2.83* 0.58-1.55* 0.49-0.84 1.07*-2.32 

 

seedlings 

M ± SD 0.31±0.13 0.36±0.14 0.39±0.17 0.75±0.25 1.24*±0.29 1.34*±0.34 2.58*±0.44 

Range 0.12-0.43 0.17-0.54 0.18-0.61 0.35-0.95 0.72-1.43* 0.76-1.64* 2.11*-3.01* 
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Table 7. Mean BCF and TF values of trace metals in different tissues of Phytolacca 

dodecandra in wet season. 
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 Biological concentration factor (BCF)  

Phytolacca dodecandra 

Translocation factor (TF)  

 Phytolacca dodecandra 

    

BCF root BCF stem BCF leaf BCF shoot      TF stem TF leaf TF aerial 

 

Cd 

 

mature 

M ± SD 0.91±0.66 0.76±0.50 1.09*±0.71 1.85*±1.21 0.91±0.24 1.29*±0.25 2.20*±0.47 

Range 0.04-1.97* 0.35-1.60* 0.11-2.29* 0.93-3.89* 0.71-1.33* 1.07*-1.64* 1.78*-2.97 

seedlings M ± SD 0.32±0.17 0.37±0.23 0.32±0.24 0.89±0.45 1.10*±0.35 1.06*±0.47 2.16*±0.48 

Range 0.10 -0.5 0.08-0.59 0.16-0.74 0.25-1.32 0.74-1.62* 0.69-1.62* 1.45*-2.65* 

 

Cr 

 

mature 

M ± SD 0.77± 0.27 0.60± 0.30 0.44± 0.19 1.054*± 0.44 0.76 ± 0.17 0.594± 0.22 1.35* ± 0.28 

Range 0.45-1.14* 0.3 - 0.98 0.25 - 0.65 0.56 - 1.63* 0.52 - 0.92 0.36 - 0.87 0.94 - 1.71* 

 

seedlings 

M ± SD 0.41±0.14 0.30± 0.15 0.31 ± 0.15 0.61± 0.274 0.70± 0.23 0.73± 0.20 1.44 ± 0.34 

Range 0.26- 0.57 0.16 - 0.51 0.13 - 0.45 0.31 - 0.96 0.56 - 0.06 0.51 - 0.95 1.19*- 2.01* 

 

Pb 

 

mature 

M ± SD 0.79±0.22 0.48±0.12 0.83±0.17 1.31*±0.23 0.64±0.183 1.07*±0.17 1.71*±0.28 

Range 0.55-1.12* 0.42-0.73 0.63-1.03* 1.1*-1.53* 0.48-0.96 0.86-1.24* 1.34*-2.01* 

seedlings M ± SD 0.44±0.12 0.34±0.11 0.51±0.27 0.85±0.33 0.78±0.05 1.15*±0.58 1.93*±0.58 

Range 0.25-0.57 0.18-0.46 0.17-0.9 0.35-1.24* 0.72-0.85 0.67-2.11* 1.63*-2.9* 

 

Zn 

 

mature 

M ± SD 2.10*± 0.83 1.81 ± 0.73 2.57*± 1.18* 4.36* ± 1.91 0.87 ± 0.12 1.21*± 0.08 2.08 ± 0.16 

Range 1.48*-3.48* 1.08*-2.98* 1.85*-4.63* 2.96*-7.61* 0.67-0.99 1.12*-1.33* 1.84-2.24 

 

seedlings 

M ± SD 0.30±0.14 0.24±0.14 0.41±0.164 0.65±0.28 0.78±0.31 1.81*±1.44 2.60±1.41 

Range 0.08-0.44 0.05-0.39 0.31-0.70 0.4-1.09* 0.46-1.25* 0.74-4.33* 1.20*-4.91* 

Ni mature M ± SD 0.83±0.66 0.81±0.57 0.98±0.51 1.79*±1.03 1.07*±0.25 1.44*±0.74 2.50*±0.95 

Range 0.28-1.94* 0.35-1.80* 0.42-1.60* 0.77-3.4* 0.73-1.34* 0.82-2.66* 1.65*-4.00* 

 

seedlings 

M ± SD 0.29±0.15 0.39±0.24 0.31±0.12 0.7±0.32 1.32*±0.28 1.28*±0.56 2.60*±0.43 

Range 0.06-0.47 0.07-0.67 0.14-0.42 0.21-1.08* 1.05*-1.75* 0.74-2.17* 2.30*-3.34* 

Cu mature M ± SD 0.68±0.23 0.59±0.24 0.49±0.13 1.08*±0.36 0.88±0.19 0.76±0.26 1.44*±0.31 

Range 0.32-0.87 0.31-0.92 0.35-0.65 0.68-1.57* 0.67-1.15* 0.52-1.18* 1.16*-1.96* 

 

seedlings 

M ± SD 0.21±0.09 0.27±0.11 0.18±0.08 0.43±0.21 1.37*±0.44 0.92±0.34 2.29*±0.77 

Range 0.1-0.30 0.17-0.44 0.102-0.26 0.18-0.7 0.61-1.73* 0.37-1.25* 0.98-2.98* 

NB: M ± SD stands for mean ± standard deviations            Bold and asterisks (*) denote values are > 1 
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a. Cd concentration in different parts of Phytolacca dodecandra 

Table 4 shows mean uptake values of Cd in root and aerial parts of Phytolacca dodecandra during 

dry and rainy seasons, respectively. Uptake for root ranged from 10.6 - 33.02 mg/kg for dry and 7 

- 37.00 mg/kg for wet seasons. There is also large difference in absorption of heavy metals among 

plants from different sites. Mature Phytolacca dodecandra plants were found to uptake and 

transfer large amounts of Cd in their aerial parts as compared to seedlings and this could be due to 

Cd dilution within the plant throughout its growth (Ismael et al., 2019). The maximum uptake of 

123.1 mg/kg Cd was noted in mature plant samples taken from samples at Lideta site during dry 

season and the minimum Cd of 2.34 mg/kg was noted from samples taken from the control sample 

site. The largest uptake of 33.18 mg/kg seedling was recorded in samples at Kera site and wet 

season and the minimum of 1.43 mg/kg was recorded for control site samples during wet season. 

Liu et al. (2010) reported Phytolacca americana can grow in heavily contaminated soils with Cd 

level of more than 1083mg/kg at Datianwan site.  Liu et al. (2010) also reported Phytolacca 

americana can accumulate 637 mg/kg and 402 mg/kg of Cd in their aerial parts and leaves 

respectively. 

The grand mean results of cadmium 24.71 ± 8.6 mg/kg, 23.3 ± 12.2 mg/kg and 37.9 ± 16.1 mg/kg 

were recorded for the uptake in root, stem and leaf of mature plants Phytolacca dodecandra 

respectively; during dry season (Table 5). In addition, means of Cadmium uptake by seedlings of 

Phytolacca dodecandra was also computed as 8.35 ± 2.96 for root, 5.2 ± 1.92 for stem, and 6.98 

± 1.75 mg/kg for leaves, which is in order of root > leaves > stem. Mean and standard deviations 

of Cadmium uptake in root, stem and leaf of mature Phytolacca dodecandra recorded in wet season 

samples were 20.32 ± 10.8, 17.07 ± 7.8 and 25.12 ± 12.2 mg/kg, respectively.  Values recorded 

for the mean uptake in root, stem and leaf of seedlings are also in order of 6.9 ± 2.24, 7.9 ± 3.8 

and 7.3 ± 4.1 mg/kg (Table 5).  

The results were further interpreted using BCF and TF, mean BCF of Cd in root, stem and leaves 

of mature Phytolacca dodecandra plant in dry season are in order of leaf (0.932 ± 0.25) > root 

(0.67 ± 0.30) > stem (0.552 ± 0.12) and that of seedlings showed, in roots (0.23 ± 0.074) > leaf 

(0.196 ± 0.08) > stem (0.15 ± 0.094). Biological concentration factors of Cd computed for the 

harvestable portion or BAC (shoot = 1.484 ± 0.35) and aerial translocation factors (2.50 ± 0.95) 

were found to be > 1 showing suitability of Phytolacca dodecandra for phytoextraction of Cd, 
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while values computed for seedlings shoot BCF (0.35 ± 0.16) and aerial TF (1.644 ± 0.72) showed 

BCF < 1 and TF > 1 (Table 6). Similarly, rainy season samples were also subjected to computation 

of BCF and TFs and results showed BCF of Cd in leaf (1.09 ± 0.71) > root (0.91 ± 0.66) > stem 

(0.764 ± 0.50). Whereas, seedlings showed BCF of Cadmium in stem > leaf > root or 0.366 ± 0.21 

> 0.324 ± 0.24 > 0.318 ± 0.171, respectively which are all less than one, however the aerial TF 

was found to be 2.20 ± 0.47 which is >1 (Table 7). The mean leaf BCF of mature plants was 0.93 

± 0.25 in dry season and 1.09 ± 0.71 in wet season, and the mean values are ranging from 0.63-

1.28 for dry and 0.51- 2.29 for wet. During wet season, 40% of plants samples had BCF leaf > 1, 

which is slightly greater than the 29% noted by Liu et al. (2010) in leaf of Phytolacca americana.  

In general, Cd uptake and accumulation properties tend to increase with the maturity of the plants, 

to be precise; the mature plants accumulate more heavy metals in their tissues than seedlings. Mean 

difference test (t-test) to assess the difference between mature and seedlings of Phytolacca 

dodecandra plants t (12.19) = 3.72, p = 0.003 revealed a significant difference in mean Cd 

accumulated in mature (M = 62.39 mg/kg ± 40.18) and seedlings (18.07 mg/kg ± 9.35).   

In addition, Cd accumulation in the aerial parts of Phytolacca dodecandra seedlings tends to be 

greater during the rainy season. This can be further elucidated by BCF of shoot ranging from 0.18-

0.57 and aerial TF ranging 0.76-4.11 for dry season seedling samples and the mean shoot BCF 

ranging from 0.25-1.32 and mean TF values ranging from 1.45-2.65 for seedling samples collected 

in rainy season. However, seasonal variation in Cd uptake and accumulation patterns has no 

considerable differences. Values computed for means of shoot BCF or BAC (1.484 ± 0.35) and 

aerial TF (2.504 ± 0.953) of dry season samples and shoot BCF 1.854 ± 1.21 and aerial TF 2.20 ± 

0.47 for the wet season can be observed. In addition, ANOVA of p = 0.087 > 0.05 revealed that 

the seasonal variation has insignificant effect on Cd uptake patterns.  

Samples of mature plants and seedlings of Phytolacca dodecandra from the same soil showed 

wide variation in metal concentration. The correlation between Cd accumulation in mature 

Phytolacca dodecandra and Cd concentration in soil was statistically significant. Which could be 

explained by significant value of p = 0.003 at level of 0.01, while that of seedling showed value of 

p = 0.103 which is not statistically significant. The impact of pH on the Cd accumulation pattern 

of Phytolacca dodecandra was indirect both in dry and rainy season, an increase in pH of soil 

results in a decrease in Cd uptake which is concurring with Feng et al. (2011). However, 
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correlation coefficient of r (-0.501), p = 0.311 and r (-0.544), p = 0.264 for mature and seedlings 

of Phytolacca dodecandra indicates intermediate negative relationship which is not significant. 

An increase in EC may have also positively impacted Cd uptake in seedlings of Phytolacca 

dodecandra both in dry season r (0.863), p = 0.027 and wet season r (0.94), p = 0.006. However, 

positive and insignificant relationship was noted between EC of soil and uptake of Cd by 

Phytolacca dodecandra plant p > 0.05 plants.  

Other analysed physicochemical parameters (CEC, soil texture, MC and OM) showed insignificant 

relationship (p > 0.05) with the uptake and accumulation of Cd by Phytolacca dodecandra. In 

summary, the value of TF, shoot BCF or BAC > 1 for mature plants all together point toward the 

conclusion that Phytolacca dodecandra can be a promising plant for decontamination of Cd 

polluted sites. According to Hesami et al. (2018), trace metal concentration of plants having lower 

root BCF and higher TF can be estimated by Enrichment Factor (EF) which is a product of TF and 

roots BCF, consequently, the values computed for Cd in Phytolacca dodecandra gave EF of > 1; 

therefore, Phytolacca dodecandra could be potential plant for remediation of Cd (Ghavri et al., 

2013).  

b. Cr concentration in different parts of Phytolacca dodecandra 

Findings from this study revealed that Phytolacca dodecandra can take up and distribute Cr in its 

different parts. The maximum grand mean of 315.3 ± 90.63 mg/kg Cr uptake was recorded in dry 

season for mature plants out of which the largest mean of 139.45 ± 69.4 mg/kg was recorded in 

root followed by means of 90.7 ±13.3 mg/kg and 85.12 ±16.1 for stem and leaf, respectively. 

Similarly, seedlings showed maximum total mean of 177.2 ± 90.4 in the entire plant while mean 

values of 73.5 ± 34.5 mg/kg, 55.72 ± 31.49 mg/kg and 47.98 ± 27.02 mg/kg Cr were recorded in 

roots, stems and leaves, respectively.  

Phytolacca dodecandra plant samples collected during rainy season showed slightly lower uptake 

and accumulation characteristics for Cr, which is not statistically significant. Cumulative mean of 

273.8 ± 119.5 mg/kg and 151.7 ± 57.5 mg/kg Cr were recorded for mature and seedling plants, 

respectively. Distribution of Cr in different parts of Phytolacca dodecandra can be observed from 

mean recordings of 120.8 ± 67.6 mg/kg, 83.34 ± 24.64 and 69.7 ± 34.14 for root, stem and leaves 

of mature plants, respectively.  Likewise, mean values of Cr recorded for root, stem and leaves of 
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Phytolacca dodecandra seedlings in wet season are in order of root (65.1 ± 30.2 mg/kg) > stem 

(43.51 ± 18.4 mg/kg) > leaf (43.03 ± 10.7 mg/kg).  

The mean values recorded for both mature and seedlings of Phytolacca dodecandra plants both 

during dry and wet seasons revealed that the plant has tendency to retain most of the Cr absorbed 

in their roots. BCF values recorded were 0.63 ± 0.26, 0.422 ± 0.103 and 0.404 ± 0.15 for root, 

stem and leaf, respectively in dry season and mean BCF values computed for wet season samples 

were also 0.77 ± 0.27, 0.604 ± 0.30 and 0.442 ± 0.193 for root, stem and leaf, respectively.  

However, even though, mean aerial TF values of 1.40 ± 0.38 for mature plants and 1.38 ± 0.13 for 

seedlings collected during dry season and the TF values 1.35 ± 0.28 and 1.44 ± 0.34 computed for 

the Cr content in mature and seedlings of Phytolacca dodecandra in rainy season are all > 1, values 

of BCF < 1 computed for root, stem and leaves of the plant, limits reliability of Phytolacca 

dodecandra for remediation of Cr contaminated sites. However, based on BCF of shoot or BAC 

(1.054 ± 0.44) recorded in mature plants during wet season the possibility to harvest (Marques  et 

al., 2009) and dispose the aboveground parts and allowing re-growth can be considered for 

remediation purpose.  

However, chromium levels in leaves remained quite low in all seasons and at all levels of 

chromium in soil. And Phytolacca dodecandra plants predominantly retained substantial amounts 

of Cr in their roots. Cr concentration in different tissues of Phytolacca dodecandra was: root > 

stem > leaf. The content of Cr in Phytolacca dodecandra increases with metal content in soil.  

Concentration soil Cr level on the uptake of Cr in Phytolacca dodecandra can be elucidated by the 

correlation coefficient r (0.834), p = 0.001 < 0.01 and value r (0.64), p = 0.023 < 0.05 for mature 

plants and seedlings of Phytolacca dodecandra, respectively. This is in concurrence with Jadia 

and Fulekar. (2009) who mentioned that an increase in metal concentration of growing medium 

results in a linear response in concentration of the metal in plants.  

Uptake of Cr was negatively impacted by soil pH; plants samples obtained from high pH soil 

absorbed lower Cr than those from acidic soil. Positive impacts of soil physicochemical parameters 

including CEC, EC, OM%, MC% and texture on Cr uptake were statistically insignificant p > 0.05 

for dry and wet seasons. In addition, statistical analysis for mean comparison t (21) = 2.552, p = 

0.019 revealed that mature plants and seedlings of Phytolacca dodecandra had significant 
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differences. While majority of accumulated Cr, both in mature and seedlings of this plant were 

sequestered in the root. 

c. Pb concentration in different parts of Phytolacca dodecandra 

 

Lead concentration in Phytolacca dodecandra plants varied among sampling sites p < 0.05, and 

the maximum Pb concentration was noted at Lideta site (795.13 mg/kg) followed by Kera site 

(543.07 mg/kg) and Mekanisa site (512.14 mg/kg). Likewise, Phytolacca dodecandra plant 

samples collected during wet season gave the maximum uptake at Mekanisa site 551.51 mg/kg 

followed by Kera site 548.57 mg/kg and Lideta site (390 mg/kg). Although accumulation of Pb in 

some soils were higher there were lower uptake levels by plants; this could be due to limited 

availability of Pb attributable to its strong association with clay particles, organic matter, 

precipitation as carbonate and other environment factors (Shen et al., 2002).  

However, Phytolacca dodecandra can take up and remove Pb from contaminated soil. Plant 

samples showed slightly higher potential of Pb uptake during dry season than that of rainy season 

samples for both seedlings and mature plants. The highest accumulation in dry season was in the 

leaves with metal concentration of 224.61 ± 89.46 mg/kg followed by root 160.88 ± 54.43 mg/kg 

and stem 132.62 ± 53.62 mg/kg for mature plants. The same previous trend was observed for 

mature Phytolacca dodecandra collected during wet season, with the highest Pb accumulation 

165.68 ± 57.15 mg/kg recorded for leaves followed by roots 157.02 ± 56.06 mg/kg and stem 

102.49 ± 10.80 mg/kg.  

Similarly, seedlings gave maximum transfer in their leaves 133.79 ± 59.39 mg/kg followed by 

stem 96.94 ± 20.69 mg/kg and root 92.64 ± 26.52 mg/kg during dry season. While, during rainy 

season highest accumulation of Pb (103.42 ± 68.66 mg/kg) was noted in seedlings leaves, followed 

by root 85.07 ± 23.72 mg/kg and stem 66.65 ± 19.23 mg/kg. In the present finding, Pb absorbed 

by roots of Phytolacca dodecandra was supposedly transported and accumulated both in stems 

and leaves which is not concurring with Gupta et al. (2013) who noted most absorbed Pb remains 

in root.  

In addition, results from ANOVA p = 0.172 and 0.237 for mature plants and seedlings, 

respectively indicated seasonal variation had insignificant effect on absorption and concentration 
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pattern of Pb in Phytolacca dodecandra. However, the mean difference test t (22) = 2.50, p = 0.020 

show the mean concentration of Pb uptake by mature plants significantly exceeds the value 

recorded in the seedlings, which could be explained as metal uptake is a continuous process.  

It is also evident from BCF and TF values that Phytolacca dodecandra can extract and accumulate 

Pb in its different parts. BCF of Pb in tissues of Phytolacca dodecandra in dry season is in order 

of leaf (0.794 ± 0.17) > root (0.612 ± 0.21) > stem (0.504 ± 0.19) and that of wet season is in order 

of leaf (0.825 ± 0.173) > root (0.79 ± 0.22) > stem (0.48 ± 0.12). The values BCF are slightly 

higher during the rainy season the BCF of Pb in shoot of Phytolacca dodecandra ranged from 

0.87-1.74 and the mean BCF of shoot or BAC value computed was 1.30 ± 0.33 in dry season, 

while values recorded in rainy season ranged from 1.1-1.53 and the mean value computed was 

1.31 ± 0.23 (Table 7).  

Further, relationship between Pb available in soil versus Pb contained in mature plants and 

seedlings of Phytolacca dodecandra was presented using Pearson correlation coefficient. The 

correlation coefficients and probability values r (0.808), p = 0.001 and r (0.819), p = 0.001 were 

recorded for mature plants and seedlings of Phytolacca dodecandra, respectively. Therefore, it has 

been recognized that, Pb concentration in soil positively significantly (p < 0.01) affected plant 

metal uptake pattern. This relatively high positive correlation (R2 =0.6529) highlights Pb 

concentration in soil which could explain 65.29% amount in mature Phytolacca dodecandra, 

irrespective of other factors. 

The effect of different soil physicochemical parameters was evaluated using Pearson correlation. 

For instance, pH had an indirect relationship with the Pb in Phytolacca dodecandra both in dry r 

(-0.463), p = 0.36 and wet season r (-0.536), p = 0.273 which indicates a lower pH will enhance 

Pb uptake but the impact was insignificant for both. However, the impact of pH was significant on 

seedlings especially for dry season samples (r = - 0.89, p = 0.018). This is in agreement with 

findings of Nanda and Abraham. (2013). Further, EC, CEC and clay fraction had insignificant 

positive effect on uptake of Pb (p > 0.05).  

In general, the BCF and TF larger than 1 indicated that Phytolacca dodecandra is capable of taking 

up Pb and accumulating Pb in above ground parts, especially in the harvestable portions of the 

plant. Aerial TF of 2.06 ± 0.96 for mature plants and 1.95 ± 1.094 for seedlings dry season and the 
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mean values 1.71 ± 0.28 for mature plants and 1.93 ± 0.58 for seedlings in wet season, presented 

in Table 6 and Table 7, indicates the suitability of this plant to remove Pb from polluted sites via 

phytoextraction mechanism. 

d. Zn concentration in different parts of Phytolacca dodecandra. 

Zinc is an essential element that plants require in low concentrations (Jadia and Fulekar, 2008). It 

is an available element for plant uptake found abundantly in soil; relatively mobile and most plants 

absorb this metal using their special zinc transporters (Jadia and Fulekar, 2008; Kumar and Thakur, 

2019). Excessive level of Zn could result in retarded plant growth, senescence and leaf chlorosis 

(Golubev, 2011).  

Based on the present investigation, Phytolacca dodecandra was able to accumulate Zn and can 

bring down the pollution load in soil. Zn uptake by the whole plant tends to increase with the 

maturity of plants, and similarly uptake of Zn by Phytolacca dodecandra increases with the 

concentration of Zn in the soil. Roots of the plant were observed to have characteristics that can 

remove Zn from soil. The total mean Zn uptake by mature Phytolacca dodecandra collected during 

dry season was 1785.61± 404.05 mg/kg while that of seedlings is 247.66 ± 59.15mg/kg. In the 

same way, wet season samples showed mean concentrations recordings of 1761.84 ± 634.91 mg/kg 

and 264.49 ± 137.74 mg/kg for mature plants and seedlings, respectively (Table 5). ANOVA 

results suggested that there is insignificant (p > 0.05) difference in Zn accumulation patterns 

between samples collected during dry and in rainy season.  

Accumulation patterns of Zn in different parts of Phytolacca dodecandra are in order of leaf (739.4 

± 171.4 mg/kg) > stem (528.6 ± 126.7 mg/kg) > root (517.6 ± 113.9 mg/kg). During rainy season 

Zn was taken up in the following order: leaf 697.7 ± 266.8 mg/kg > root 577.2 ± 212.6 mg/kg > 

stem 486.9 ± 167.1 mg/kg for mature plants and leaf 120.5 ± 68.4 mg/kg > root 78 ± 38.7 mg/kg 

> stem 65.97 ± 47.7 mg/kg for seedlings (Table 5). This is in concurrence with Drew et al. (1987), 

who reported Zn accumulation mostly occurs in actively growing tissues like young leaves and 

shoot. 

The mean values of total Zn accumulated in Phytolacca dodecandra showed mature plants can 

accumulate six-fold more Zn from the soil. Significant correlation was observed from a correlation 

coefficient value of r (0.767), p = 0.004. However, Pearson correlation r (0.405), p = 0.191 > 0.001 
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showed Zn concentration in soil had insignificant effect on uptake of Zn in seedlings of Phytolacca 

dodecandra.  

Higher mean values recorded for BCF (4.40 ± 0.773) and aerial TF (2.45 ± 0.062) computed for 

mature plants in dry season and the mean values of BCF 4.36 ± 1.91 and aerial TF of 2.08 ± 0.16 

for wet season samples (Table 6 and 7) showed Phytolacca dodecandra plants can be utilized 

phytoremediation of Zn through phytoextraction mechanism. The highest shoot BCF (7.61) was 

noted at Lideta site in rainy season and maximum shoot BCF noted in dry season was noted for 

Akaki site. 

BCF of Zn in different tissues of Phytolacca dodecandra ranged between 2.13 - 2.98, 1.3 - 2.21, 

1.49 - 2.12 for leaves, stems and roots, respectively. Whereas, the mean values of Zn BCF were in 

order of leaf 2.56 ± 0.41 > stem 1.85 ± 0.38 > root 1.794 ± 0.3 (Table 6). Similarly, wet season 

samples had BCF ranging 1.85 - 4.63, 1.08 - 2.98 and 1.48 - 3.48 for leaves, stems and roots, 

respectively. The mean values achieved in each compartment were in order of leaf (2.57 ± 1.18) > 

root (2.10 ± 0.83) > stem (1.81 ± 0.73) as noted in Table 7. The BCF values noted for seedlings of 

Phytolacca dodecandra were all < 1 both in dry and wet season. However, mean values of TF 

recorded were > 1; this could be explained as the uptake and transfer of Zn into the vegetative 

tissues and young leaves of seedlings were higher in the initial growing season. 

e. Ni concentration in different parts of Phytolacca dodecandra. 

Nickel is one of biologically important metals, and it is vital component required in limited amount 

for growth and metabolic activities of plants (Panda and Choudhury, 2005; Kumar et al., 2019). 

Elevated concentrations of Ni in soil did not affect Phytolacca dodecandra; the plant remains 

green and healthy and removal level increased with metal concentration in soil. Seedlings of this 

plant are also able to uptake nickel at a lower concentration.  

Seasonal variation showed insignificant effect on Ni uptake capabilities of Phytolacca dodecandra 

p > 0.05. Leaves of mature plants and seedlings of Phytolacca dodecandra showed higher 

accumulation of Ni both during dry and wet seasons. Mature plants removed mean concentration 

of 448.64 ± 170.48 mg/kg during rainy season and 468.99 ± 149.6 mg/kg in dry season. The mean 

values of Ni concentrated in seedlings of Phytolacca dodecandra were 175.38 ± 77.86 mg/kg 

during wet season and 225.42 ± 72.59 mg/kg during dry seasons (Figure 8). The lowest uptake of 
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98.7 mg/kg was recorded at non-contaminated control sample site and while highest uptake of 

683.15 mg/kg Ni was recorded at Mekanisa sample site during dry season. Similarly, during wet 

season, lower Ni concentration 184.6 mg/kg was noted for control plants and highest mean 

recording of 689 mg/kg was noted for plants at Kera sample site.  

  

The distribution level of Ni in Phytolacca dodecandra tissues was in the following order: leaves 

(205.5 ± 81.6) > root (156.4 ± 60.8) > stem (107.1 ± 37.7) for dry season samples and leaves (181.4 

± 106) > stem (136.6 ± 47.8) > root (130.7 ± 46.7) for rainy season (Table 5). And concentration 

of Ni in seedlings of Phytolacca dodecandra showed same trend. The concentration of Ni in soil 

had positive but insignificant (r = 0.32, p = 0.31 > 0.05) impact on the uptake and accumulation 

properties of seedlings but the concentration of Ni in mature plants significantly increased with 

soil concentration (r = 0.644, p = 0.024). The independent sample t- test for comparison of the 

differences between means of Ni in mature plants (M = 405.95, SD = 185.41) and seedlings (M 

=178.75, SD = 85.18) plants of Phytolacca dodecandra revealed, t (15.45) = 0.01, which indicates 

significance of the difference. 

BCF of Ni in different tissues of Phytolacca dodecandra showed higher mean values during rainy 

season. BCF noted during dry season showed higher removal rate in leaf of Phytolacca 

dodecandra and the BCF values noted for root, stem and leaves ranged between 0.37-0.98, 0.28-

0.59 and 0.9-1.79, respectively (Table 6). The shoot BCF or the BAC was found to be more than 

1, the mean value recorded was 1.27 ± 0.37. Maximum (1.79) shoot BCF was recorded in site 3 

and the minimum (0.9) was noted in site 1. Comparison using the TF also showed the higher TF 

of Ni was contributed by leaves and mean value computed was 1.42 ± 0.63 and aerial TF of 2.094 

± 0.68 was noted.  

Similarly, in wet season BCF values ranging between 0.28-1.94, 0.35-1.80 and 0.42-1.60 were 

found in root, stem and leaves of Phytolacca dodecandra (Table 7). The maximum (3.4) and 

minimum (0.77) values of BAC were recorded at Hana Mariam site and Lideta site, respectively. 

The mean value of 1.794 ± 1.03 was noted for BAC of Ni in Phytolacca dodecandra in wet season. 

In addition, aerial TF were found to be more >1 in all samples with minimum and maximum TF 

values of 1.65 and 4, respectively. 
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In general, based on shoot metal concentration EF and TF values > 1 Phytolacca dodecandra can 

be utilized for phytoremediation of Ni, while the phytoextraction mechanism seems to be the most 

appropriate technique. However, even though TF values of > 1 were recorded for seedlings of 

Phytolacca dodecandra the EF or shoot metal concentration of < 1 reveals, seedlings shall grow 

to mature plants for better removal. 

f. Cu concentration in different parts of Phytolacca dodecandra 

Copper is a trace element required in a low concentration and hence mentioned as micronutrient 

and it serves as structural component in regulatory proteins (Jadia and Fulekar, 2008; Furini, 2012). 

However, excessive amount of Cu results in phytotoxicity problem on plants (Adrees et al., 2015; 

Lin et al., 2019).  

Findings from this research have indicated the following Cu concentration ranges: mature plants 

in dry season (106.9 -600.5 mg/kg), mature plants in wet season 91.1-350 mg/kg, seedlings in dry 

season (49.3-197 mg/kg), and seedlings in rainy season (34.8-109.1 mg/kg).  It appears that, the 

largest share of Cu removed by Phytolacca dodecandra remains in the root tissue. Therefore, 

distribution of Cu in plant tissue was in the order of root > stem > leaf for mature plants in both 

season and seedlings leaf > stem > root in dry season and stem > root > leaf in wet season. In 

addition, it was found that seasonal variation had considerable effect on the Cu uptake patterns of 

Phytolacca dodecandra. Total mean of 401.1 ± 150.2 mg/kg and 134.3 ± 49.4 mg/kg recorded for 

mature and seedling plants of the dry season and values of 260.5 ± 56.2 mg/kg and 98.02 ± 16.6 

mg/kg recorded for mature and seedling plants in wet season (Table 5). 

Plants from control site also absorbed considerable amount of Cu in their tissues; which could be 

due to an increase in availability and in-plant mobility of Cu attributed to fertilizer application in 

nearby sites (Yang et al., 2005). Cu accumulated in mature plants of phytolacca dodecandra was 

significantly higher than those recorded for seedlings. The value of T test indicated t (13.12) = 

4.201, p = 0.001, M ± SD = 292.15 mg/kg ± 148.30 of Cu in mature plants is significantly higher 

than M ± SD = 103.82 mg/kg ± 46.13 of Cu in seedlings reveals that there is continuous uptake of 

Cu in Phytolacca dodecandra plants (Ebere et al., 2016). 

The level of Cu in corresponding soil had insignificant effect on the metal uptake in Phytolacca 

dodecandra. Correlation coefficient between Cu concentration of soil and Cu uptake in plant r 
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(0.53), p = 0.077 for mature plants and seedlings r (0.423), p = 0.171 revealed there is insignificant 

positive relationship. This was not in concurrence with Cui et al. (2004), who noted metal 

accumulation in plant is a function of metal level in corresponding medium. 

Values of BCF supported the higher concentration in shoot, which is attributable to the larger 

biomass of the shoot than root. The uptake and concentration of Cu in the aboveground parts of 

Phytolacca dodecandra explained by computation of TF and EF or shoot BCF of more than 1 

shows remediation of Cu contaminated soil can be approached through Phytolacca dodecandra 

uptake measures or phytoextraction. However, the BCF values recorded in root (1.18 ± 0.54) > 

Stem (1.05 ± 0.24) > leaf (0.83 ± 0.39) and root (0.68 ± 0.23) > stem (0.59 ± 0.24) > leaf (0.494 ± 

0.13) were noted for mature plants in dry and rainy season sample, respectively. Further, the BCF 

and TF s computed for seedlings of Phytolacca dodecandra revealed BCF in roots, stems and 

leaves are all less than 1. However, larger TF values were recorded and the mean aerial TF’s of 

2.29 ± 0.77 and 2.58 ± 0.44 were recorded for seedlings of phytolacca dodecandra during wet and 

dry season respectively (Table 6 and Table 7). 

4.3.1.2. Summary of metal accumulation status in Phytolacca dodecandra 

Present investigation revealed Phytolacca dodecandra can grow and regenerate under stress 

exerted by multi-metal contamination. The plant can absorb and transport significant levels of 

heavy metals into its aboveground tissues. Plants collected from a metal-contaminated industrial 

environment accumulated more metals in their tissues than plants from a common environment 

used for reference or control.  

The mean levels of metals in Phytolacca dodecandra in dry season were in the following order; 

Zn (1785.6 ± 404.1) > Pb (518.1 ± 179.7) > Ni (468.99 ± 149.6) > Cu (401.1±150.2) > Cr (315.3 

± 90.6) > Cd (85.9 ± 32.95) in mg/kg. The trace metal accumulation in Phytolacca dodecandra 

during wet season showed the following order; Zn (1761.8 ± 634.9) > Ni (448.6 ± 170.5) > Pb 

(425.2 ± 119.5) > Cr (273.8 ± 119.5) > Cu (260.5 ± 56.2) > Cd (62.5 ± 30.4) in mg/kg (Figure 8). 

Higher concentrations of metals (lead, cadmium, zinc and nickel) were found in aboveground 

tissues or predominantly in the leaf of Phytolacca dodecandra collected from polluted sites. On 

the contrary, chromium and copper were abundant in below ground tissues (roots) of Phytolacca 

dodecandra. Zn also attained its largest concentration in Phytolacca dodecandra plants both in dry 
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and rainy season; this could be associated to the relatively higher mobility of Zn in soils and its 

abundance in soil.  

The present finding reveals; Phytolacca dodecandra could be used for phytoremediation of 

analyzed trace metals. The potential of Phytolacca dodecandra to clean-up metal contaminated 

sites is promising, based on values of BCF >1 and TF > 1. However, mechanisms involved for 

remediation of metals vary based on the type of trace metal under investigation. Among the studied 

trace metals Phytolacca dodecandra can remove Cd, Pb, Zn, Ni and Cu via phytoextraction 

mechanism, however; Cr was not efficiently accumulated by Phytolacca dodecandra. Further, pot 

experiments with artificial contamination (increasingly adding contaminant of interest) could give 

a better information on the maximum metal concentration levels that the plant could tolerate.  

4.3.2. Adhatoda schimperiana plant characteristics and phytoremediation properties  

Adhatoda schimperiana (local name: simiza/sensel) is characterized by producing biomass faster 

than most other plants growing around it. It is a shrub, up to 5 m height, stems and branches can 

grow up to 1.5 cm thick (Janses, 1981). Households commonly use this plant as a fence or green 

barrier and for medical purpose; and the plant can be propagated by seed or cuttings (Janses, 1981). 

Adhatoda schimperiana has been widely known in Ethiopia for its rapid growth, medicinal values; 

especially for malaria treatment (Abdela et al., 2019; Bobasa et al., 2018), erosion control and 

fencing.  

The plant could grow in a variety of climatic conditions, and it can grow and appear green the 

entire year. This plant can also grow in multi-metal contaminated soils. Massive and deep root 

systems support quick growth and its ability to consume large quantities of water enhance metal 

removal. 

4.3.2.1. Metal accumulation and distribution pattern of Adhatoda schimperiana 

Data from this study and statistical analysis revealed that Adhatoda schimperiana has reasonable 

potential as an alternative for accumulation of Pb, Cr, Cd, Ni, Zn, and Cu. Every part of plant (root 

and above ground parts) has a significant contribution for removal of metal contaminants. An 

interaction between ecological factors and metal uptake potential and the impact of different soil 

physicochemical properties on metal removal were also determined. 
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The concentrations of Ni and Zn were larger than all the studied trace metals. The highest total 

metal uptake of 1825.8 ± 609.3 mg/kg was noted for Zn, while minimum recording of 81.14 ± 

24.06 mg/kg was for Cd in dry season (Table 8). However, even though the mean value of Cd 

absorbed by Adhatoda schimperiana is lower, the higher biomass could increase the total Cd in 

the plant (Babaeinejad et al., 2015). 

Table 8.  Distribution of heavy metals (mg/kg) in different tissues of Adhatoda 

schimperiana. 

Metal Adhatoda /Plant parts Dry season (mg/kg) Wet season (mg/kg) 

  Mature plants Seedlings Mature plants  Seedlings 

Cd Root 47.4 ± 16.3 15.54 ± 1.99 36.4 ± 13.3 15.81 ± 3.4 

 Stem 15.5 ± 8.9 4.33 ± 1.65 9.94 ± 2.4 5.23 ± 1.33 

 Leaf 8.24 ± 3.52 2.66 ± 1.33 6.38 ± 4.16 2.30 ± 0.54 

 Total concentration plant 71.1 ± 27.3 22.5 ± 2.99 52.5 ± 18.6 23.2 ± 4.2 

Cr Root 195.4 ± 50 75.24 ± 26.4 170.2 ± 66.6 68.1 ± 26.4 

 Stem 135.9 ± 48.4 63.3 ± 21.7 98.6 ± 31.35 61.50 ± 9.99 

 Leaf 111  ± 41.4 52.7 ± 16.8 89.4 ± 41.3 41.13 ± 11.2 

 Total concentration plant 442.4 ± 119.8 191.2 ± 52.4 358.1 ± 124.3 170.7 ± 41.03 

Pb Root 411.1 ± 131.3 175.25 ± 53.4 322.7 ± 134.2 174.5 ± 123.3 

 Stem 101.9 ± 54.4 37.25 ± 15 90.8 ± 37.13 34.4 ± 9.6 

 Leaf 56.53 ± 27.2 20.63 ± 7.34 51.3 ± 31.53 29.3  ± 9.5 

 Total concentration plant 569.5 ± 188.6 233.1 ± 73.9 464.8 ± 159.7 238.1 ± 125.5 

Zn Root 539.5 ± 173.4 65.524 ± 7.6 412.6 ± 114.9 94.6 ± 42.8 

 Stem 565. ± 218 74.56 ± 12 414.2 ± 161.3 72.6 ± 14.5 

 Leaf 720.6 ± 247 141.95 ± 33.2 500.6 ± 262.8 135.7 ± 61.4 

 Total concentration plant 1825.8 ± 609.3 282.03 ± 47.1 1327.4 ± 524.5 302.9 ± 105.9 

Ni Root 200.1  ± 133.7 63.03 ± 25.3 146.7 ± 39.2 64.67 ± 15.1 

 Stem 132.1 ± 48.04 47.54 ± 24.24 125.1 ± 55.2 54.55 ± 28.1 

 Leaf 253.3 ± 109.2 50.98 ± 22.2 195.7 ± 126.8 67.03 ± 37.06 

 Total concentration plant 585.5 ± 256.7 161.6 ± 44.9 467.6 ± 219.6 186.3 ± 76.5 

Cu Root 202.2 ± 77.6 36.97 ± 16.9 172.4 ± 81.8 45.48 ± 25.7 

 Stem 141.5 ± 37.2 54.94 ± 17.1 154.6 ± 82.1 47.3 ± 14.1 

 Leaf 98.5 ± 11.96 39.3 ± 8.1 92.6 ± 6.9 31.2 ± 13.2 

 Total concentration plant 442.2 ± 111.8 131.2 ± 33.4 419.6 ± 146.5 124.02 ± 45.7 

  NB: values are means of 5 samples and ± standard deviation 
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    NB: MAS represents mature Adhatoda schimperiana              SAS represents seedlings of Adhatoda schimperiana 

Figure 9. Metal concentration in Adhatoda schimperiana plants. 
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Adhatoda schimperiana plants have also demonstrated the capability to absorb considerable 

amount of toxic metals during wet season. Metal concentrations in mature plants during wet season 

was in order of: Zn > Ni > Pb > Cu > Cr > Cd with higher and lower mean recordings of 1327.4 ± 

524.5 and 52.5 ± 18.6 mg/kg for Zn and Cd, respectively. Conversely, it was also examined that, 

uptake and concentrations of metals in seedlings of Adhatoda schimperiana showed higher values 

in wet season, except for Cr and Cu. 

Table 9. Mean BCF and TF values of trace metals in different tissues of Adhatoda 

schimperiana in dry season. 

E
le

m
en

t 

M
a

tu
ri

ty
 

(D
ry

) 

 Biological concentration factor BCF  

 Adhatoda schimperiana 

Translocation factor (TF)  

Adhatoda schimperiana 

   

BCF root BCF stem BCF leaf BCF shoot TF stem TF leaf TF aerial 

 

Cd 

 

mature 

M ± SD 1.76*±0.51 0.57±0.32 0.31±0.07 0.88±0.36 0.31±0.12 0.174±0.04 0.48±0.12 

Range 1.13*-2.27* 0.19-1.08* 0.22-0.39 0.47-1.45* 0.15-1.45* 0.13-0.21 0.36-0.64 

seedlings M ± SD 0.67±0.32 0.20±0.13 0.12±0.08 0.32±0.20 0.29±0.12 0.18±0.13 0.46±0.21 

Range 0.26-1.12* 0.08-0.35 0.05-0.23 0.13-0.55 0.16-0.44 0.09-0.32 0.26-0.76 

 

Cr 

 

mature 

M ± SD 1.08*±0.23 0.77±0.30 0.62±0.19 1.38*±0.46 0.70±0.19 0.59±0.21 1.29*±0.37 

Range  0.88-1.48*  0.49-1.21* 0.38-0.85 0.87-1.91* 0.48-0.92 0.38-0.84 0.86-1.76* 

seedlings M ± SD 0.41±0.08 0.37±0.15 0.29±0.06 0.66±0.19 0.92±0.38 0.53±0.25 1.45*±0.26 

Range 0.31-0.49 0.16-0.5 0.21-0.35 0.43-0.81 0.41-1.43* 0.10-0.73 1.08*-1.68* 

 

Pb 

 

mature 

M ± SD 2.3*±1.31* 0.62±0.59 0.30±0.13 0.91±0.71 0.25±0.09 0.14±0.05 0.39±0.12 

Range 1.37*-4.49* 0.29-1.67* 0.17-0.50 0.46-2.17* 0.12-0.37 0.07-0.20 0.19-0.48 

seedlings M ± SD 0.93±0.25 0.20±0.07 0.12±0.05 0.31±0.12 0.21±0.04 0.12±0.03 0.33±0.06 

Range 0.65-1.16 0.1-0.28 0.05-0.16 0.15-0.44 0.15-0.25 0.08-0.144 0.23-0.39 

 

Zn 

 

mature 

M ± SD 2.14*±0.36 2.15*±0.24 2.96*±0.45 5.11*±0.62 1.04*±0.25 1.35*±0.3 2.38*±0.54 

Range 1.77*-2.51* 1.96*-2.55* 2.29*-3.42* 4.29*-5.83* 0.85-1.44* 1.06*-1.85* 1.91*-3.29* 

seedlings M ± SD 0.3±0.18 0.32±0.14 0.58±0.15 0.91±0.28 1.14*±0.15 2.18*±0.51 3.32*±0.65 

Range 0.2-0.62 0.22-0.57 0.44-0.82 0.66-1.39* 0.91-1.32* 1.32*-2.68* 2.23*-3.88* 

Ni mature M ± SD 0.61±0.15 0.47±0.24 0.85±0.33 1.33*±0.50 0.80±0.42 1.41*±0.59 2.21*±0.93 

Range 0.44-0.78 0.27-0.83 0.43-1.14* 0.78-1.92* 0.41-1.37* 0.88-2.3* 1.29*-3.67* 

seedlings M ± SD 0.22±0.17 0.20±0.184 0.18±0.10 0.38±0.26 0.80±0.30 1.12*±1.22* 1.93*±1.40* 

Range 0.02-0.46 0.07-0.52 0.08-0.3 0.16-0.82 0.52-1.14* 0.38-3.29 1.11*-4.37* 

Cu mature M ± SD 1.35* ±0.60 0.94 ± 0.23 0.67 ± 0.18 1.42* ± 0.67 0.57 ± 0.35 0.54±0.172 1.11*±0.45 

Range 0.85-2.37 0.61-1.18 0.51-0.97 0.4-2.11 0.09-1.07 0.37-0.8 0.69-1.87* 

 

seedlings 

M ± SD 0.25±0.12 0.37±0.13 0.27±0.08 0.63±0.13 1.60*±0.55 1.23*±0.6 2.82*±0.86 

Range 0.11-0.42 0.23-0.54 0.18-0.38 0.44-0.81 1.15*-2.3* 0.63-1.98* 1.9*-3.91* 

NB: M ± SD stands for mean ± standard deviations   Bold and * denote values are > 1 
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Table 10. Mean BCF and TF values of trace metals in different tissues of Adhatoda 

schimperiana in dry season. 
  

  
 E

le
m

en
t 

M
a

tu
ri

ty
 

(W
et

) 
 Biological concentration factor BCF  

 Adhatoda schimperiana 

Translocation factor (TF)  

 Adhatoda schimperiana 

   

BCF root BCF stem BCF leaf BCF shoot TF stem TF leaf TF aerial 

 

Cd 

 

mature 

M ± SD 1.40*±0.40 0.40±0.10 0.25±0.13 0.65±0.20 0.29±0.09 0.17±0.07 0.46±0.12 

Range 0.89-1.80* 0.23-0.5 0.11-0.44 0.34-0.81 0.2-0.44 0.08-0.24 0.38-0.66 

 

seedlings 

M ± SD 0.59±0.10 0.2±0.06 0.11±0.03 0.32±0.08 0.37±0.07 0.16±0.07 0.56±0.11 

Range 0.46-0.72 0.13-0.27 0.06-0.15 0.22-0.42 0.28-0.45 0.08-0.24 0.42-0.69 

 

Cr 

 

mature 

M ± SD 1.27*±0.45 0.75±0.18 0.69±0.36 1.44*±0.49 0.66±0.36 0.55±0.19 1.21*±0.50 

Range 0.75-1.93 0.48-0.96 0.32-1.22 0.80-2.06 0.43-1.28 0.29-0.78 0.72-2.06 

 

seedlings 

M ± SD 0.51±0.14 0.49±0.17 0.32±0.10 0.81±0.25 1.01*±0.42 0.634±0.13 1.65*±0.53 

Range 0.34-0.73 0.33-0.74 0.24-0.49 0.57-1.09* 0.66-1.57* 0.5-0.76 1.16*-2.31* 

 

Pb 

 

mature 

M ± SD 1.98*±0.61 0.49±0.23 0.21±0.09 0.69±0.31 0.24±0.06 0.10±0.04 0.34±0.10 

Range 1.34*-2.95* 0.28-0.08 0.12-0.33 0.4-1.07* 0.15-0.31 0.06-0.16 0.21-0.47 

 

seedlings 

M ± SD 0.99±0.4 0.19±0.12 0.14±0.06 0.33±0.16 0.21±0.12 0.15±0.04 0.36±0.16 

Range 0.56-1.60* 0.12-0.40 0.08-0.21 0.2-0.61 0.08-0.39 0.12-0.21 0.2-0.60 

 

Zn 

 

mature 

M ± SD 2.23*±0.74 2.24*±0.83 2.40*±0.58 4.65*±1.25* 1.00±0.20 1.15*±0.36 2.14*±0.50 

Range 1.37*-3.32* 0.97-3.27* 1.47*-2.97* 2.44*-5.53* 0.71-1.22* 0.68-1.65* 1.66*-2.87* 

 

seedlings 

M ± SD 0.54±0.32 0.42±0.22 0.68±0.16 1.10*±0.35 0.86±0.30 1.46*±0.46 2.32*±0.69 

Range 0.24-1.06* 0.24-0.78 0.51-0.92 0.78-1.70* 0.42-1.13* 0.87-2.11* 1.60*-3.24* 

Ni mature M ± SD 0.79±0.28 0.63±0.17 0.914±0.33 1.54*±0.47 0.82±0.18 1.224*±0.54 2.05*±0.70 

Range 0.52-1.26* 0.48-0.88 0.35-1.17* 0.84-2.03* 0.7-1.08* 0.5-1.77* 1.20*-2.81* 

 

seedlings 

M ± SD 0.37±0.20 0.27±0.13 0.32±0.08 0.59±0.19 0.81±0.25 1.00*±0.39 1.81*±0.59 

Range 0.2-0.72 0.18-0.46 0.2-0.40 0.38-0.84 0.6-1.20 0.53-1.43* 1.17*-2.45* 

Cu mature M ± SD 1.17*±0.60 1.13*±0.84 0.66±0.31 1.79*±1.06* 1.00*±0.40 0.69±0.41 1.68±0.75 

Range 0.37-2.03* 0.52-2.54* 0.41-1.12* 0.97-3.39* 0.55-1.41* 0.36-1.21* 0.91-2.62* 

 

seedlings 

M ± SD 0.31±0.19 0.35±0.20 0.22±0.13 0.57±0.33 1.29*±0.77 0.83±0.54 2.12*±1.30 

Range 0.11-0.55 0.14-0.60 0.08-0.34 0.22-0.94 0.62-2.52* 0.37-1.75* 0.99-4.27* 

NB: M ± SD stands for mean ± standard deviations     Bold and * denote values are > 1 
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a.  Cd concentration in different parts of Adhatoda schimperiana. 

 

Soil naturally contains much lower concentration of cadmium; however it is relatively mobile in 

soil solution (Jadia and Fulekar, 2009; Kumar and Thakur, 2019). It is observed that Adhatoda 

schimperiana plants can absorb and store Cd in their roots. The uptake of Cd recorded during dry 

season is higher than values noted during rainy season. The total Cd uptake recorded for the whole 

plant, during dry season was 71.1 ± 27.3 mg/kg, while that of wet season was 52.5 ± 18.6 mg/kg, 

and this could be due to the transpiration. The distribution of Cd in different tissues was as follows: 

root > stem > leaf for both seedlings and mature plants. Likewise, studies reported most plants 

tend to store larger fraction of absorbed Cd in their roots (Boominathan and Doran, 2003; Jadia 

and Fulekar, 2009). 

Cd concentration in Adhatoda schimperiana varied among sampling sites and seasons. In dry 

season, the highest Cd concentration value was noted in plant samples obtained from Hana Mariam 

site (95.8 mg/kg in average) whereas, minimum value of (38.54 mg/kg in average) was measured 

at Akaki site. Similarly, the maximum (77.72 mg/kg) and minimum (31 mg/kg) average values of 

Cd found in mature plants of Adhatoda schimperiana in wet season were computed for Kera site 

and Akaki site, respectively. However, plant samples from uncontaminated (control) sites, gave 

the lowest Cd concentration of 1.54 mg/kg in rainy seasons and 2.01 mg/kg in dry season. 

 

The highest uptake of Cd (Table 8) was observed in the roots rather than in the above ground 

tissues. Therefore, this uptake pattern will make a difficult situation to make use of Adhatoda 

schimperiana for phytoremediation on a practical scale, because below ground plant parts are not 

as easily harvestable as shoots. However, even though the plant fails to translocate the Cd, it can 

be used for phytostabilization since we need to take advantage of the multiple metal removal 

properties of Adhatoda schimperiana. However, considering the advantages of much higher 

concentrations of Cd in some cases; substantially higher biomass of this plant and the possibility 

of re-growing after harvesting the aboveground tissues can be kept for phytostabilization. 

Movement of Cd from soil to roots of Adhatoda schimperiana and throughout the plant and 

translocation to the upper part were also computed using BCF and TFs. Data in Table.9 and 10 

indicate that Cd retained in the below-ground parts of Adhatoda schimperiana was much higher 
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than those accumulated in the above-ground parts. That is they avoid toxicity via exclusion 

mechanism and therefore it is suitable for phytostabilization of cadmium. BCF of root in mature 

plant ranged from 1.13 - 2.27, and the mean value was 1.76 ± 0.51 in dry season. The value of 

BCF in wet season was in the range of 0.89 -1.80 and the mean value computed was 1.40 ± 0.40. 

However, TF values recorded were all < 1 both for seedlings and mature plants indicating poor 

transfer of Cd to the aerial part and unsuitability of the plant for phytoextraction. 

Regardless of the accumulating tissue, the total uptake of Cd in Adhatoda schimperiana increases 

with the level of Cd in soil. Correlation coefficient r (0.815), p = 0.001 calculated for mature plants 

and the value of r (0.632), p = 0.027 computed for seedlings showed a positive relationship, 

indicating metal uptake and accumulation in plants increases with metal concentration in 

corresponding soil, which is, similar both for seedlings and mature plants.  Among soil properties 

examined, soil pH, organic matter, moisture content and clay content had negative but insignificant 

impact on the Cd uptake pattern, however CEC and EC impacted Cd uptake positively p > 0.05. 

The test for equality of means indicated that mean values recorded for mature plants (M = 55.99, 

SD = 34.12) was significantly different from that of seedlings (M =19.24, SD = 9.04). That is, t 

(12.54) = 3.61, p = 0.003 < 0.05. 

b. Cr concentration in different parts of Adhatoda schimperiana. 

The trend of chromium uptake was: root > stem > leaf for mature plants and seedlings collected 

during dry season. The highest accumulation of chromium (585.2 mg/kg) was detected in plant 

samples collected at Hana Mariam site during dry season and a minimum (297.6 mg/kg) was 

recorded for samples from Akaki site (Figure 9). Mean values of Cr concentration 442.4 ± 119.8 

mg/kg and 191.2 ± 52.4 mg/kg were recorded for mature plants and seedlings of Adhatoda 

schimperiana samples collected during dry season (Table 8).  

During wet season mature Adhatoda schimperiana plants from soil containing (217 mg/kg) of Cr 

showed highest recording of chromium uptake (476.3 mg/kg) which is noted at Kera site. Mean 

values of 358.1 ± 124.3 mg/kg was noted for Cr in mature plants of Adhatoda schimperiana and 

seedlings of Adhatoda schimperiana accumulated remarkable concentration of 170.7 ± 41.03 

mg/kg chromium that was distributed in all tissues. The larger portion of Cr concentration was 
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noted in the root and the lower values were recorded for leaves. The trend of chromium 

accumulation by Adhatoda schimperiana in wet season was: root > stem > leaf (Table 8).  

Data also illustrates that, Cr uptake and distribution in different sampling sites differ significantly 

(p < 0.05). Cr concentration in Adhatoda schimperiana samples collected from different sites were 

in order of: Hana Mariam > Kera > Mekanisa > Lideta > Akaki for dry season samples and Kera 

> Mekanisa > Hana Mariam > Lideta site > Akaki for wet season samples. However, variation in 

concentration levels of Cr could be related to plant condition or Cr levels in soil. The lower plant 

uptake could depend the dominant Cr species trivalent Cr (III) and hexavalent Cr (VI). The 

presence of higher level of hexavalent Cr (highly soluble, mobile and the most available form of 

Cr), in soil solution could significantly increase the Cr levels in plats. In addition soil properties, 

competition of other cations and other reasons could play a role in changing the trends of uptake.  

Quantification and remediation efficiency of chromium using Adhatoda schimperiana was also 

further explained by TF and BCF. According to results in Table 9 and 10, BCF for different parts 

of Adhatoda schimperiana could be arranged in the sequence: root (1.08 ± 0.23) > stem (0.77 ± 

0.30) > leaves (0.62 ± 0.19) for dry season. Similarly, BCF of Cr in different tissues of Adhatoda 

schimperiana during wet season was also in the order of root (1.27 ± 0.45) > stem (0.75 ± 0.183) 

> leave (0.692 ± 0.36). Bioconcentration values recorded for seedlings are all measured to be less 

than 1, however TF of Cr from root to above-ground portion was higher in seedlings of Adhatoda 

schimperiana as compared to that of mature ones. This illustrates that uptake and translocation of 

Cr in Adhatoda schimperiana decreases with plant age. Mean TF values of Cr in mature plants are 

< 1 in dry season. This demonstrates the preference of Adhatoda schimperiana in storing Cr in the 

below ground part. This finding supports Yu et al. (2010) where it was reported that Cr mainly is 

retained in roots parts of plants. 

Statistical analysis also revealed, chromium accumulation in Adhatoda schimperiana correlates 

positively (p < 0.01) with soil metal concentration. Correlation coefficient of r (0.791), p = 0.002 

was computed for the mature plants and value of r (0.789), p = 0.002 for Cr uptake in seedlings. 

Further independent sample t test for comparison mean concentrations t (14.33) = 3.89, p = 0.002 

revealed a significant difference in uptake Cr properties of mature plants and seedlings of 

Adhatoda schimperiana.  
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Generally, Cr concentration in aerial parts computed by BCF of shoot or the BAC gave value > 1 

and aerial TF > 1. The higher TF > 1 in both seedlings and mature plants of Adhatoda schimperiana 

reveals the plant had efficient potential to translocate metals to aerial parts (Mkumbo et al., 2012).  

This shows shoots of Adhatoda schimperiana plant can concentrate Cr to the level higher than Cr 

available in soil. Hence, Cr phytoextraction can be approached by using Adhatoda schimperiana. 

Moreover, it was observed from this investigation that, the plant could grow in soil samples 

containing Cr levels higher than maximum allowable level of Cr in soil (150 mg/kg).  

c. Pb concentration in different parts of Adhatoda schimperiana. 

 

Lead was a trace metal reported to be immobile with lower bioavailability due to the formation of 

precipitation with low solubility (Dede et al., 2012; Usman et al., 2019). However, mobility of 

metal elements like Pb in soil solution can be impacted by soil OM content, pH or clay fraction 

(Amin et al., 2018). Adhatoda schimperiana plants removed and retained the largest fraction of 

Pb (72.96%) in their roots followed by stem (18.7%) and roots (8.98%). Similarly, percentage 

values of Pb accumulation marked for seedlings 75.9% for root, 14.36% for stem and 9.74% for 

leaves were found to be comparable with the values computed for mature plants. The highest Pb 

concentration in root could be due to immobilization of Pb in soil or precipitation, and this also 

supports reports of other researches that Pb does not easily move into the aboveground portion of 

plants (Yu et al., 2010; Usman et al., 2019). Study using transmission electron microscopy 

reported Pb mainly remains in below ground part of plants particularly in cell wall roots (Wenger 

et al., 2003).  

Accumulation in different tissues of the plant can be ordered as (root > stem > leaf) for mature 

plants and (root > stem > leaf) for seedlings. Mean of total uptake and absorption recorded for the 

whole plant 569.5 ± 188.6 mg/kg in dry season and 464.8 ± 159.7 mg/kg in wet season suggest 

better removal characteristics in dry season. Conversely, even though the total uptake recorded in 

seedlings are far less than that of mature plants, mean uptake recordings in wet season (238.1 ± 

125.5 mg/kg) exceeds that of dry season 233.1 ± 73.9 mg/kg (Table 8).  

Lead content in Adhatoda schimperiana gradually increases with the levels of Pb in soil. The 

highest absorption of 746.9 mg/kg Pb was recorded in site 3 soil containing 382.6 mg/kg lead. The 
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lower Pb contents of 131 and 146 mg/kg were measured at control soil containing 46.2 and 51.7 

mg/kg lead in dry and rainy season, in that order. This can also be further explained by the Pearson 

correlation, which showed strong positive correlation (r = 0.711, p = 0.010 < 0.05) for mature 

plants and (r = 0.755, p = 0.022) for seedlings of Adhatoda schimperiana. 

BCF and TF values of Pb in Adhatoda schimperiana are computed and presented in Table 8 and 

Table 9. BCF values (> 1) of Pb was observed only in roots of mature Adhatoda schimperiana and 

value computed for stem and leaf tissue were all < 1 indicating lead tolerance. All values of BCF 

computed for seedlings were < 1 and similarly, significantly lower mean TF values (TF < 1) of Pb 

in stems and leaves of both seedlings and mature plants. 

Thus, larger BCF in roots and lower TF values, highlights that Adhatoda schimperiana has limited 

tendency of transferring Pb to its upper tissues. Adhatoda schimperiana can possibly be utilized 

for phytostabilization (immobilization) of lead polluted soil (Mendez and Maier, 2007). However, 

lower TF of Pb indicates Adhatoda schimperiana plants had poor potential to transfer Pb from 

belowground part to the aboveground tissue, which could be caused by Pb toxicity (Yoon et al., 

2006). 

Statistical significance in the difference between the mature and the seedling of Adhatoda 

schimperiana was also computed by using independent sample test. Thus, t-test for equality of 

means indicated there was significant difference between mature and seedlings of Adhatoda 

schimperiana in Pb uptake. That is, t (17.30) = 4.04, p = 0.001 at the 95% confidence level.  

d. Zn concentration in different parts of Adhatoda schimperiana 

Zinc concentration in Adhatoda schimperiana was higher than the entire trace metals investigated 

in this study. The higher Zn concentration in mature plants of Adhatoda schimperiana indicated 

that metal removal was elevated with the plant age. Irrespective of Zn level in soil, the mean uptake 

and accumulation level of Zn (1825.8 ± 609.3 mg/kg) in mature Adhatoda schimperiana was 

higher during dry season than mean value in rainy season (1327.4 ± 524.5 mg/kg) and this could 

be due to the lower pH values during dry season. However, mean Zn accumulated in sample 

seedlings collected during wet season (302.9 ± 105.9 mg/kg) was greater than values (282.03 ± 

47.1 mg/kg) in dry season (Table 8). 
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Zn concentration in Adhatoda schimperiana plants increased with the level of Zn in corresponding 

soil; which is concurring with trend observed in Linum usitatissimum studied by Hosman et al. 

(2017). In addition, seedlings of Adhatoda schimperiana can remove considerable level of Zn in 

contaminated sites, while mature plants can accumulate an average of 6.93 times more Zn than 

available in soil in dry season. Similarly, in wet season 1.03 and 5.63 times more Zn was deposited 

in seedlings and mature plants of Adhatoda schimperiana, respectively. 

 

Subsequently, the pattern of Zn concentration in different tissues decreased in the order of leaves 

> stem > roots. Explicitly, the highest accumulation Zn was examined in leaves while roots had 

the lowest recordings. Therefore, based on the very common indices used to evaluate metal 

accumulating capacity BCF and TF values (> 1) computed in this research, Adhatoda 

schimperiana could be considered as hyperaccumulator of Zn (Wu et al., 2011). 

Zinc uptake and distribution in plant samples collected from different sites are in order of Hana 

site (2360.2 mg/kg) > Mekanisa site (2140.7 mg/kg) > Kera site (1943.5 mg/kg) > Lideta site 

(1898.6 mg/kg) > Akaki site (786 mg/kg) for dry season. In addition, Zn levels of different sites 

during wet season were in the following order: Kera site (2091.2 mg/kg) > Lideta site (1392 mg/kg) 

> Mekanisa site (1332.9 mg/kg) > Hana Mariam site (1198 mg/kg) > Akaki site (623 mg/kg). The 

variation in levels of Zn in Adhatoda schimperiana plant tissue could be also dependent on the 

microbial activities. The reduction in activity of microorganism’s results in reduction the release 

of zinc from organic materials and an increase in microbial activity can also increase the release 

of Zn from organic materials (Mousavi, 2011). 

The study highlights that Adhatoda schimperiana plants can take up and accumulate Zn in both 

heavily contaminated sites and from soils with relatively low Zn contamination levels. A rise in 

level of Zn in soil has considerable influence (p < 0.05) on metal retained in biomass of plants. 

The coefficients correlation r  (0.865), p = 0.000 recorded for mature plants and values of r (0.503), 

p = 0.096 recorded for seedlings, shows 86.5% of Zn in mature plants and 50.3% of Zn in seedlings 

could be due to the levels of Zn in the corresponding soil. Further, t-test for equality of means, t 

(11.41) = 5.292, p = 0.000 reveals the difference between Zn uptake in mature plants and seedlings 

of Adhatoda schimperiana.  
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Translocation factors of Zn in Adhatoda schimperiana plants collected from all sites were > 1, and 

the higher TF values of Zn could be because of its metabolic roles and activities in plants or 

enzymes such as proteinases and dehydrogenases. Jepkoech et al. (2013) also concluded higher 

mobility and transfer potential of Zn from soil to root and root to aerial part.  

e. Ni concentration in different parts of Adhatoda schimperiana. 

Higher absorption of Ni in Adhatoda schimperiana was observed in plants growing on at Kera site 

(995.3 mg/kg) followed by Lideta site (602.3 mg/kg) and Mekanisa site (564.1 mg/kg) during dry 

season. Similarly, higher Ni content was noted at Mekanisa site (751 mg/kg) followed by Kera site 

(636.6 mg/kg) and Lideta site (410 mg/kg). Whereas total concentration of Ni in seedlings 

collected during dry season gave the highest recording of 218.5 mg/kg at Hana Mariam followed 

by 196.45 recorded in Kera and 151.7 mg/kg at Akaki. In addition, maximum total content of Ni 

content in seedlings of Adhatoda schimperiana samples collected during wet season was found at 

Kera site (272.64 mg/kg) followed by Mekanisa site (263.8 mg/kg) and Hana Mariam site (145.3 

mg/kg) (Figure 9). Soil containing toxic level of Ni (>100 mg/kg) could result in chlorosis of plants 

(Kabata-Pendias, 2001; Shaw et al., 2004), however, Adhatoda schimperiana plants were found 

grown vigorously in soils containing Ni concentrations ranging from 93 to 664.8 mg/kg. 

The Ni concentrations of Adhatoda schimperiana plant from contaminated sites gave metal 

accumulation in the roots which ranged between 116-434.2 mg/kg, and in the stem ranged between 

79.82 - 178.05 mg/kg, and in the leaf varied between 103 - 383 mg/kg during dry season. Similarly, 

the lower and higher levels of Ni in wet season are: 106 to 203 in root, 74 to 189 in stem and 53 

to 359 mg/kg in leaves. The leaves of Adhatoda schimperiana are capable of accumulating the 

highest amount of Ni with a mean of 253.3 ± 109.2 mg/kg during dry season, while 195.73 ± 

126.76 mg/kg for rainy season. The smallest Ni accumulation was recorded in stems with the mean 

values of 132.1 ± 48.04 and 125.1 ± 55.23 mg/kg for dry season and rainy season, respectively 

(Table 8).  

Adhatoda schimperiana was observed to uptake Ni starting from the seedling stage and it was 

revealed that it can increase its uptake if its exposure to Ni contaminated soil was prolonged. 

Explicitly, statistical analysis for the relationship between Ni level in soil and Ni in plant biomass 

showed, correlation coefficients and probability values of r (0.91), p = 0.000 and r (0.47), p = 0.13 
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for mature and seedling plants of Adhatoda schimperiana. Which indicates, the positive impact is 

highly significant in mature plants. The mature and seedlings of Adhatoda schimperiana from 

similar soil had significantly different mean uptake values, which could be explained by 

independent sample t test, t (12.39) = 4.09, p = 0.001 < 0.05. 

Tables 9 and 10 revealed the potential of plant for taking up Ni from contaminated soil as also 

determined by computing BCF. Data in the tables also illustrate that, Adhatoda schimperiana gave 

root BCF < 1 in most of the examined plants except for plants grown at Hana Mariam site which 

gave root BCF of 1.26 and we could explain this as it could be because of the level of Ni in the 

corresponding soil (171.45 mg/kg) or other ecological parameters. However, shoot BCF ranged 

from 0.78 - 1.92 for mature plants in dry season and 0.84 - 2.03 for plants in wet season which 

testifies that uptake properties are better in wet season. And values computed for shoot BCF in 

seedlings ranged from 0.16 - 0.82 and 0.38 - 0.84 for dry and wet seasons, respectively. The TF 

computed to evaluate transfer potential of absorbed Ni from root to the upper tissues and values 

computed for mature plants ranged from 1.29 - 3.67 and 1.2 - 2.81 for dry and wet season, showing 

better transfer potential in dry season. Further aerial TF values recorded for seedlings 1.11- 4.37 

and 1.17 - 2.45 computed for dry season and rainy seasons, respectively.  

Finally, based on the higher biomass the values of TF and BAC or BCF of shoot > 1 Adhatoda 

schimperiana could have good potential for phytoextraction of Ni contaminated sites (Kandziora-

Ciupa et al., 2017). Even though BCF values of root were lower than 1; plants with TF > 1 and 

shoot BCF > 1 could be considered suitable for phytoextraction of contaminated sites (Yoon et al., 

2006; Malik et al., 2010). 

f. Cu concentration in different parts of Adhatoda schimperiana 

Generally, the Cu absorption in different tissues of Adhatoda schimperiana was in the order of; 

roots > stems > leaves both in dry and rainy season. A portion of Cu accumulated in Adhatoda 

schimperiana was transferred to the above ground biomass (stem and leaf). Mean values recorded 

for Cu absorbed by mature Adhatoda schimperiana plant in dry and wet season are 442.2 ± 111.8 

mg/kg and 419.6 ± 146.5 mg/kg, respectively. Similarly mean uptake values recorded in seedlings 

are 131.2 ± 33.4 and 124.02 ± 45.7 mg/kg for dry season and rainy season, respectively (Figure 

9). 
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Cu uptake in Adhatoda schimperiana had positive correlation with Cu concentration in soil. Strong 

correlation with r (0.591), p = 0.043 < 0.05 was observed in mature plants and insignificant 

correlation r (0.471), p = 0.123 > 0.05 was noted for seedlings. In addition, values of t (12.499) = 

5.11, p = 0.000 reveal significant difference between mean values of Cu uptake in mature plants 

and seedlings of Adhatoda schimperiana.  

Mean values of BCF and TF recorded for roots and shoots of mature plants were > 1 in both 

seasons of the year. Plants collected during wet season showed better absorptive and translocation 

ability than those collected during dry season. The maximum mean values of shoot BCF (1.79 ± 

1.06) recorded for wet season samples are bigger than mean values of shoot BCF (1.42 ± 0.67) 

noted for dry season (Table 9 and Table 10). However, root BCF recorded for dry season samples 

(1.35 ± 0.60) were higher than that of wet season samples 1.17 ± 0.60. In addition, aerial TF 

recorded both in wet (1.684 ± 0.75) and dry seasons (1.11 ± 0.45) are > 1, indicating Adhatoda 

schimperiana is suitable for phytoextraction of Cu contaminated sites. Further the higher mean 

values of TF in seedlings of Adhatoda schimperiana, shows immediate transfer of absorbed Cu to 

the aerial parts during growth season. This could be due to the importance of Cu as an essential 

nutrient.  

4.3.2.2. Summary of metal accumulation status in Adhatoda schimperiana 

The results indicated Adhatoda schimperiana plants stored substantial concentrations of metals in 

their tissues and the plant exhibited better remediation capacity for Zn than other studied trace 

metals. The trends in variation of metal accumulation (mg/kg) in Adhatoda schimperiana in wet 

season were: Zn (1825.8 ± 609.3) > Ni (585.5 ± 256.7) > Pb (569.5 ± 188.6) > Cu (442.4 ± 119.8) 

> Cr (442 ± 111.8) > Cd (71 ± 27.3); while during dry season observed trends were: Zn (1327.4 ± 

524.5) > Ni (467.6 ± 219.6) > Pb (464.8 ± 159.7) > Cr (419.6 ± 146.5) > Cu (358 ± 124.3) > Cd 

(52.5 ± 18.6). And an irregular trend in some cases could be associated to the impact of soil 

parameters or planting density. However, the lower Cd concentration in the plant could be because 

of higher level of Zn in the tissues of the plant (Eid et al., 2019). 

Heavy metals were consistently higher in plant materials as concentration in soil increases, and a 

significant relationship was observed from correlation analysis (p < 0.05). The present work 

demonstrated, elemental contents in roots, stems and leaves of Adhatoda schimperiana varied 
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significantly (p < 0.05). Metal content in root systems was higher for Cd, Cr, Pb and Cu. 

Conversely, it was noticed that Zn and Ni were abundant in leaves.   

Using BCF and TF factors as an indicator of phytoremediation efficiency, Adhatoda schimperiana 

plants are suitable plants for phytoremediation of multiple trace metals. And based on these 

estimators Adhatoda schimperiana plants can clean Cr, Zn, Ni and Cu through phytoextraction 

mechanism and Cd and Pb could be immobilized through phytostabilization.  

4.3.3. Solanum incanum plant characteristics and phytoremediation properties  

Solanum incanum plants are known to grow vigorously in a great variety of geographic and 

climatic conditions, including highly contaminated areas and needs little care and marginal cost if 

planted. It is spiny and familiar plant found anywhere in roadsides and it also has extensive root 

system and large biomass.  

Solanum incanum is a perennial bushy herb or shrub and also known with its common names 

(bitter garden egg or thorn apple) in most places, belongs to the family Solanaceae and genus 

Solanum. This plant can grow up to 1.8 meters of height; has alternate leaves and flowers in the 

leaf axils (Sambo et al., 2016). The fruits of which are yellow with short lifespan due to high 

moisture content. It is a common medicinal plant with multiple traditional applications in Ethiopia. 

4.3.3.1. Metal accumulation and distribution pattern of Solanum incanum 

Uptake and translocation status of metals, Cr, Pb, Zn, Ni, Cu and Cd, by Solanum incanum and 

their concentration in roots, stems and leaves were examined. Consequently, present findings 

revealed Solanum incanum plants can absorb considerable levels of heavy metals from polluted 

soils. It was found that Cr and Zn attained their highest uptake concentrations (418.06 and 1983.16 

mg/kg) at Kera site, while Pb and Ni (630.21 and 605 mg/kg) at Hana Mariam site. Moreover, the 

highest mean levels of Cu (697) and Cd (9.94) mg/kg, were recorded at Lideta (Table 11).  
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Table 11. Distribution of heavy metals (mg/kg) in different tissues of Solanum incanum. 

Metal Solanum I /Plant parts Dry season (mg/kg) Wet season (mg/kg) 

  Mature plants Seedlings Mature plants  Seedlings 

Cd Root 4.30 ± 1.38 2.09 ± 0.68 3.07 ± 1.43 1.66 ± 0.85 

 Stem 2.15 ± 0.57 1.23 ± 0.6 1.39 ± 0.47 0.82 ± 0.27 

 Leaf 1.34 ± 0.54 0.67 ± 0.31 0.92 ± 0.69 0.42 ± 0.28 

 Total concentration plant 7.79 ± 2.29 3.99 ± 1.55 5.38 ± 2.06 2.9 ± 1.22 

Cr Root 129.7 ± 51.6 71.1 ± 15.2 99.8 ± 26.14 62.35 ± 17.6 

 Stem 97.12 ± 28.04 56.6 ± 14.5 68.74 ± 26.9 42.5 ± 13.7 

 Leaf 75.6 ± 19.9 49.7 ± 14.3 48.1 ± 26.4 42.9 ± 19.7 

 Total concentration plant 302.5 ± 92.95 177.51 ± 31.5 216.6 ± 73.4 147.7 ± 43.5 

Pb Root 201.9 ± 22.1 90.56 ± 22.5 181.7 ± 52.6 73.3 ± 28 

 Stem 149 ± 33.44 61.99 ± 11.7 136.6 ± 48.6 60.7 ± 23.8 

 Leaf 156.2 ± 40.7 69.73 ± 4.5 125.8 ± 41.6 52.6 ± 22.6 

 Total concentration plant 507.05 ± 94.5 222.3 ±177.2 444.1 ± 108.8 186.6 ± 73 

Zn Root 568.41 ± 145.8 106.8 ± 21.2 494.2 ± 121.1 115.4 ± 62.6 

 Stem 661 ± 236.98 163.5 ± 56.9 535.8 ± 153.2 137.8 ± 64.8 

 Leaf 324.5 ± 23.57 85 ± 30.13 332 ± 71.4 99.7 ± 52.04 

 Total concentration plant 1553.9 ± 380.4 355.3 ± 91.3 1362 ± 260.7 352.9 ± 175.3 

Ni Root 199.3 ± 82 69.68 ± 33.7 147.02 ± 82.2 59.4 ± 26.95 

 Stem 145.98 ± 44.3 58.95 ± 30.4 124.7 ± 43.04 38 ± 14.5 

 Leaf 179.8 ± 67.9 65.67 ± 65.7 115.6 ± 17.04 35.1 ± 3.36 

 Total concentration plant 525.1 ± 148.52 194.3 ± 77.99 387.3 ± 119.5 132.5 ± 40.8 

Cu Root 112 ± 16.9 43.97 ± 12.3 125.9 ± 49.6 32.8 ± 9.9 

 Stem 223.6 ± 58.1 88.04 ± 11.5 212.4 ± 47 57.1 ± 25.4 

 Leaf 74.4 ± 17.6 30.45 ± 8.2 66.9 ± 27.3 21.5 ± 5.99 

 Total concentration plant 410.1 ± 87.54 162.5 ± 27.9 405.2 ± 95.3 111.4±37.4 

NB: values are means of 5 samples and ± standard deviation 

In addition, the lowest absorptions for all metals were attained at control sampling sites examined 

for reference levels of trace elements in non-anthropogenic sites as in Navas and Machin, (2002). 

Mean values of trace metals accumulated in the mature Solanum incanum were in order of: Zn 

(1553.9 ± 380.4) > Ni (525.1 ± 148.5) > Pb (507.05 ± 94.5) > Cu (410.05 ± 87.54) > Cr (302.5 ± 

92.95) > Cd (7.79 ± 2.29 mg/kg). Likewise, wet season samples of mature Solanum incanum 

absorbed mean values of Zn (1362 ± 260.7) > Pb (444.1 ± 108.8) > Cu (405.2 ± 95.3) > Ni (387.31 

± 119.5) > Cr (216.6 ± 73.4) > Cd (5.4 ± 2.06 mg/kg) as noted in (Table 11). 
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Table 12. Mean BCF and TF values of trace metals in different tissues of Solanum incanum 

in dry season. 
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D
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 Biological concentration factor BCF  

  

Translocation factor (TF)  

  

   

BCF root BCF stem BCF leaf BCF shoot TF stem TF leaf TF aerial 

 

 

Cd 

 

mature 

M ± SD 0.15±0.05 0.08±0.02 0.05±0.02 0.123±0.05 0.52±0.07 0.31±0.07 0.83±0.06 

Range 0.05-0.15 0.02-0.08 0.02-0.05 0.05-0.12 0.074-0.52 0.07-0.31 0.06-0.83 

seedlings M ± SD 0.07±0.02 0.04±0.02 0.02±0.01 0.06±0.03 0.56±0.16 0.31±0.07 0.87±0.22 

Range 0.02-0.15 0.02-0.08 0.01-0.05 0.03-0.12 0.16-0.56 0.07-0.31 0.22-0.87 

 

Cr 

 

mature 

M ± SD 0.70±0.17 0.53±0.07 0.42±0.09 0.94±0.15 0.78±0.12 0.622±0.15 1.40*±0.26 

Range 0.46-0.89 0.43-0.61 0.32-0.52 0.76-1.13* 0.65-0.93 0.38-0.78 1.03*-1.66* 

seedlings M ± SD 0.39±0.04 0.31±0.04 0.29±0.14 0.72±0.24 0.80±0.12 0.74±0.33 1.54*±0.40 

Range 0.35-0.46 0.28-0.36 0.17-0.51 0.46-1.03* 0.61-0.92 0.49-1.29* 1.20*-2.15* 

 

Pb 

 

mature 

M ± SD 1.12*±0.33 0.82±0.27 0.86±0.32 1.67*±0.59 0.73±0.10 0.76±0.12 1.49*±0.22 

Range 0.89-1.70* 0.6-1.28* 0.64-1.42* 1.26*-2.70* 0.57-0.82 0.63-0.89 1.20*-1.69* 

seedlings M ± SD 0.48±0.06 0.35±0.12 0.39±0.14 0.74±0.24 0.71±0.15 0.81±0.23 1.52*±0.35* 

Range 0.38-0.54 0.21-0.49 0.25-0.6 0.5-1.09* 0.56-0.93 0.52-1.15* 1.14*-2.08* 

 

Zn 

 

mature 

M ± SD 2.16*±0.57 2.40*±0.50 1.29*±0.48 3.69*±0.68 0.94±0.40 0.60±0.16 1.54*±0.47 

Range 1.43*-2.79* 1.76*-3.17* 0.84-2.10* 2.84*-4.43* 0.29-1.23* 0.42-0.76 0.75-1.99* 

seedlings M ± SD 0.41±0.12 0.59±0.14 0.33±0.12 0.92±0.22 1.53*±0.53 0.78±0.16 2.31*±0.55 

Range 0.28-0.55 0.41-0.76 0.18-0.46 0.59-1.17* 0.94-2.39* 0.64-1.03* 1.61*-3.12* 

Ni mature M ± SD 0.76±0.15 0.61±0.23 0.75±0.31 1.37*±0.54 0.82±0.32 1.02*±0.45 1.84*±0.76 

Range 0.64-1.02* 0.37-0.89 0.4-1.09* 0.77-1.94* 0.45-1.15* 0.50-1.52* 0.95-2.65* 

 

seedlings 

M ± SD 0.29±0.13 0.24±0.10 0.26±0.08 0.49±0.13 0.85±0.07 1.31*±1.32* 1.96*±1.54* 

Range 0.09-0.45 0.08-0.34 0.14-0.34 0.36-0.68 0.76-0.91 0.50-3.65* 0.52-4.56* 

Cu mature M ± SD 0.71±0.15 1.37*±0.18 0.47±0.11 1.83*±0.28 1.98*±0.35 0.67±0.124 2.65*±0.44 

Range 0.53-0.94 1.14*-1.63* 0.31-0.62 1.45*-2.25* 1.45*-2.27* 0.53-0.86 1.98*-3.13* 

seedlings M ± SD 0.28±0.10 0.58±0.21 0.19±0.05 0.77±0.234 2.08*±0.39 0.70±0.16 2.78*±0.42 

Range 0.17-0.41 0.30-0.87 0.13-0.25 0.43-1.04* 1.60*-2.50* 0.50-0.91 2.21*-3.28* 

NB: M ± SD stands for mean ± standard deviations 

Bold and * denote values are > 1 
 

Most of the metals absorbed from soil, are uniformly distributed between shoot and root systems 

of Solanum incanum plants. However, it was noted that Solanum incanum has higher tendency to 
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use above ground tissues for metal accumulation instead of roots, except for Cd and Cr. The highest 

concentrations of Cd and Cr were recorded in roots of Solanum incanum. Further, concentrations 

and relative distributions of analysed heavy metals were calculated and displayed by BCF and TF 

values in the following sections, see (Table 12 and Table 13). 

Table 13. Mean BCF and TF values of trace metals in different tissues of Solanum incanum 

in wet season. 
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  Biological concentration factor BCF  

 Solanum incanum 

Translocation factor (TF)  

 Solanum incanum 

   

BCF root BCF stem BCF leaf BCF shoot TF stem TF leaf TF aerial 

 

 

Cd 

 

mature 

M ± SD 0.12±0.04 0.06±0.02 0.04±0.03 0.11±0.03 0.54±0.28 0.29±0.17 0.83±0.392 

Range 0.04-0.15 0.02-0.08 0.03-0.05 0.03-0.12 0.28-0.56 0.17-0.31 0.39-0.87 

 

seedlings 

M ± SD 0.06±0.03 0.03±0.01 0.02±0.01 0.05±0.02 0.55±0.23 0.28±0.212 0.81±0.41 

Range 0.03-0.15 0.01-0.08 0.01-0.05 0.02-0.12 0.23-0.56 0.212-0.31 0.41-0.87 

 

Cr 

 

mature 

M ± SD 0.75±0.21 0.50±0.132 0.334±0.08 0.832±0.15 0.69±0.22 0.464±0.15 1.16*±0.31 

Range 0.6-1.08* 0.35-0.71 0.2-0.39 0.69-1.07 0.31-0.85 0.31-0.62 0.62-1.36* 

 

seedlings 

M ± SD 0.47±0.14 0.33±0.14 0.35±0.26 0.68±0.39 0.67±0.10 0.70±0.28 1.37±0.36 

Range 0.36-0.71 0.23-0.57 0.16-0.80 0.4-1.37* 0.55-0.80 0.42-1.11* 1.03*-1.91* 

 

Pb 

 

mature 

M ± SD 0.80±0.26 0.58±0.09 0.57±0.20 1.15*±0.25 0.77±0.23 0.74±0.32 1.52*±0.49 

Range 0.54-1.20* 0.46-0.69 0.26-0.81 0.8-1.50* 0.5-1.11* 0.41-1.16* 0.94-2.27* 

 

seedlings 

M ± SD 0.31±0.03 0.26±0.04 0.22±0.04 0.47±0.06 0.83±0.08 0.71±0.10 1.54*±0.04 

Range 0.27-0.35 0.21-0.29 0.17-0.26 0.39-0.55 0.74-0.96 0.57-0.84 1.48*-1.58* 

 

Zn 

 

mature 

M ± SD 2.23*±0.52 2.56*±1.12 1.51*±0.41 4.07*±1.45 1.13*±0.35 0.68±0.05 1.81*±0.36 

Range 1.72*-3.03* 1.23*-3.77* 1.03*-2.08* 2.64*-5.77* 0.6-1.55* 0.6-0.72 1.29*-2.27* 

 

seedlings 

M ± SD 0.50±0.16 0.59±0.23 0.43±0.20 1.02*±0.41 1.17*±0.28 0.82±0.21 1.99*±0.43 

Range 0.25-0.64 0.22-0.76 0.14-0.65 0.36-1.38* 0.9-1.55* 0.58-1.09* 1.48*-2.56* 

Ni mature M ± SD 0.68±0.22 0.60±0.12 0.63±0.33 1.23*±0.43 0.92±0.21 0.952±0.40 1.88*±0.56 

Range 0.4-0.93 0.51-0.80 0.34-1.15* 0.92-1.95* 0.68-1.25* 0.37-1.34* 1.05*-2.50* 

 

seedlings 

M ± SD 0.30±0.15 0.19±0.09 0.18±0.06 0.37±0.13 0.68±0.13 0.812±0.70 1.49*±0.82 

Range 0.10-0.51 0.09-0.33 0.12-0.26 0.28-0.59 0.56-0.89 0.42-2.05 0.99-2.94 

 

Cu 

 

mature 

M ± SD 0.79±0.16 1.36*±0.14 0.43±0.16 1.79*±0.29 1.78*±0.40 0.584±0.25 2.36*±0.65 

Range 0.59-1.04* 1.19*-1.56* 0.20-0.624 1.39*-2.18* 1.14*-2.16* 0.19-0.803 1.33*-2.96* 

 

seedlings 

M ± SD 0.22±0.07 0.42±0.12 0.14±0.05 0.56±0.15 1.98*±0.44 0.68±0.19 2.66*±0.54 

Range 0.15-0.32 0.22-0.50 0.11-0.22 0.33-0.713 1.47*-2.47* 0.43-0.943 1.99*-3.19* 

NB: M ± SD stands for mean ± standard deviation    Bold and * denote values are > 1 
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NB: MSI represents Mature Solanum incanum              SSI represents Seedlings of Solanum incanum 

                                                               

   Figure 10. Metal concentration in Solanum incanum plants.  
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a. Cd concentration in different parts of Solanum incanum  

Mean concentration (mg/kg) of Cd in whole Solanum incanum plant was 7.79 ± 2.29 and 5.38 ± 

2.06 in dry season and rainy seasons, respectively. Similarly, in seedlings of Solanum incanum 

also mean uptake levels of Cd (3.99 ± 1.55 and 2.90 ± 1.22, mg/kg) were recorded in dry and rainy 

seasons, respectively (Figure 10). Different seasons of the year had insignificant effect (p > 0.05) 

on Cd uptake levels of Solanum incanum. The elemental distribution in different tissues of 

Solanum incanum appears in the decreasing order from root > stem > leaf, for dry season and rainy 

seasons. This shows roots obtained highest Cd concentrations among the plant organs. Conversely, 

Cd accumulation trend reported, by Dwivedi et al. (2014), for Solanum nigrum was in order of; 

leaf > stem > root. Similarly, Peng et al. (2009) also reported Solanum nigrum can accumulate 

(262 mg/kg) Cd in the leaves. 

Based on the TF and BCF values of < 1, noted for Cd, Solanum incanum can be considered as an 

excluder of cadmium (Hosman et al., 2017). However, plants of the same family Solanum nigrum 

have been reported to have Cd hyperaccumulation ability (Jiang et al., 2016). Likewise, Wei et al. 

(2006) described Solanum nigrum had greater potential to uptake bioavailable Cd. Further, Bao et 

al. (2011) reported Solanum lycopersicum as a non-hyperaccumulator and Solanum nigrum as 

hyperaccumulator of Cd. Another study by Yashim et al. (2014) noted BCF and TF > 1 and 

reported Solanum melongena as an effective phytoremediator of Cd. 

Independent sample t test t (16.70) = 2.90, p = 0.010 revealed Cadmium concentration in tissues 

of mature Solanum incanum was significantly higher than from that of seedlings. Cd uptake in 

mature Solanum incanum was positively correlated with Cd levels in the soil r (0.831), p = 0.001 

and that of seedling was also correlated significantly r (0.782), p = 0.003, while significant value 

was p = 0.01.  In addition, Cd uptake was also dependent on soil physicochemical parameters; 

there was strong correlation (p < 0.05) between Cd uptake by Solanum incanum and clay fraction 

contained in corresponding soil; CEC and EC also positively but insignificantly affected the uptake 

of Cd. According to Liu et al. (2009), positive correlation was noted between the organic matter 

fraction and the Cd uptake by plant, however an insignificant relationship (p > 0.05) was noted for 

OM in soil and Cd uptake in Solanum incanum plant. Conversely, soil pH had negative impact on 

the uptake level of Cd in Solanum incanum and significant impact (p < 0.05) was noted for 

seedlings, while impact of pH on mature plants was not statistically significant. This was also 
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shown in similar studies by Nanda and Abraham (2013).The present investigation also revealed, 

the values of BCF (root, stem and leaf), TF and shoot BAC are all less than 1; hence Solanum 

incanum, can absorb limited amount of Cd but it does not accumulate it. Therefore, this plant can 

be placed under the listing of Cd excluders. 

b. Cr concentration in different parts of Solanum incanum  

As observed in Table 10, the chromium content of the Solanum incanum plant samples varied over 

a wide range at 159.6 - 418.1 in dry season and 98.3 to 341.02, mg/kg in wet season. The 

concentration of chromium in Solanum incanum plants varied among sampling sites (p < 0.05). 

Correlation coefficient r (0.944) p = 0.000 < 0.01 revealed a significant positive correlation 

between levels of Cr in soil and total Cr content in Solanum incanum. Seedlings of Solanum 

incanum also showed mean concentration which is positively and significantly r = (0.736) p = 

0.006 < 0.01 affected by concentration in soil. ANOVA, p < 0.05 also revealed there is significant 

variation in Cr concentration among plants from different sampling stations.  However, the 

variation could be due to the level of Cr in different soils or metal availability differences; that 

could be impacted by ecological factors or soils properties (Verbruggen et al., 2009; Yuan et al., 

2016). 

Total mean levels of chromium absorbed in mature plants of Solanum incanum displayed 

significantly higher value than seedlings. Independent sample t test gave t (17.624) = 2.89, p = 

0.010 which shows mean values of mature (M = 237.78 ± 97.63) and seedling (M = 143.72 ± 

56.49) to be significantly different. However, the higher concentration of Cr in seedlings could be 

explained by the better absorptive properties in the first growing seasons and substantial decline 

with maturity. The decline in metal concentration might be because of metal dilution in the large 

biomass of plant or saturation (Eid et al., 2012; Chang et al., 2014).  

Distribution of Cr levels in plant tissues of Solanum incanum was found to be in order of root > 

stem > leaf both for dry and wet season samples. And mean BCF values of Cr for different parts 

of Solanum incanum were 0.70 ± 0.17 (root) 0.53 ± 0.07 (stem) 0.42 ± 0.093 (leaves) for dry 

season samples and BCF of wet season samples were 0.754 ± 0.21 (root) 0.50 ± 0.132 (stem) and 

0.334 ± 0.08 (leaves). From Table 11, mean BCF values in root stem and leaves were < 1; similarly, 

BCF values recorded for shoots were < 1 and TF values recorded for shoot (aerial part) > 1; which 
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implies the plant has no Cr accumulation potential (Liu et al., 2009).  Further, the relative levels 

of Cr in shoots is less than soil Cr content and based on TF of < 1; therefore Solanum incanum 

cannot be utilized for clean-up of Cr contaminated sites (Haque et al., 2008). 

c. Pb concentration in different parts of Solanum incanum 

Lead is a relatively immobile non-essential heavy metal and considered as a very toxic 

environmental pollutant (Kabata-Pendias, 2007; Amin et al., 2018). As shown in Table 11, the 

concentrations of Pb in Solanum incanum roots varies between 173.2 and 234 mg/kg, the stem 

segment between 99.2 to 187.1 mg /kg, and Pb levels in the leaf section varied between 109 to 209 

mg/kg in dry season. Similarly, Pb concentration in different tissues of Solanum incanum collected 

during wet season were in ranges of 106 - 244 mg/kg, 90 - 209.13 mg/kg and 80-19 mg/kg for 

root, stem and leaves, correspondingly. The pattern of accumulation of Pb are as follows: root 

(201.9 ± 22.1 mg/kg) > leaves (156.2 ± 40.7 mg/kg) > Stem (149 ± 33.4 mg/kg) for dry season 

and the mean values in wet season are in order of root (181.7 ± 52.6 mg/kg) > stem (136.6 ± 48.6 

mg/kg) > leaves (125.8 ± 41.6 mg/kg). The same trends were observed for Pb in seedlings of 

Solanum incanum, both in wet and dry season.  

The mean values of Pb in Solanum incanum had linear relationship with the soil Pb concentration. 

The correlation coefficients r = .757, p = 0.004 < 0.01 and R2 = 0.573 shows Pb in soil explains 

57.30% of Pb in mature plants of Solanum incanum. Similarly, r = 0.831, p = 0.001 < 0.01 and R2 

= 0.6906 shows 69.06% of Pb in seedlings of Solanum incanum could be estimated by Pb soil.  

The total concentration of Pb in mature plants of Solanum incanum in dry season 507.05 ± 94.52 

mg/kg was larger than mean values of Pb recorded in wet season (444.1 ± 108.8 mg/kg). The total 

uptake of Pb in seedlings of Solanum incanum in dry season (222.3 ± 177.2 mg/kg) was also larger 

than mean values of Pb (186.6 ± 73 mg/kg) absorbed in wet season; this could be due to 

evapotranspiration during dry season.  

Based on the concentration of Pb obtained, BCF and TF were calculated; Mean BCF values of Pb 

for various tissues were 1.12 ± 0.33 (root), 0.814 ± 0.27 (stem), 0.86 ± 0.32 (leaf). These reveals 

that Pb bioavailability was high (> 1) in roots, while that of stem and leaves were <1 during dry 

season. Likewise, BCF obtained for different tissues in wet season samples were 0.80 ± 0.26 (root), 

0.58 ± 0.09 (stem) and 0.57 ± 0.20 (leaves) which are all < 1 (Table 13).  
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On average, BAC or EF values of > 1 and TF > 1 reveals that Solanum incanum has the potential 

of translocation of Pb to the easily harvestable aerial parts or its suitability for phytoextraction of 

Pb (Ghavri et al., 2013; Gul et al., 2019). Similarly, Malik et al. (2010), studied metal 

concentration in Solanum nigrum and reported the plant can be used for phytostabilization of Pb 

contaminated sites. Solanum melongena was also reported as good phytoremediator of Pb 

contaminated sites (Yashim et al., 2014). 

d. Zn concentration in different parts of Solanum incanum. 

Zinc is an essential element having physiological importance in plants and it is required for 

chlorophyll biosynthesis and has key role in carbonic enzyme present in photosynthetic tissues of 

plants (Mousavi, 2011). However, excessive amount of Zn causes toxicity to plants; resulting in 

reduction in development of leaves and root length. Zn uptake by plants and its mobility in soil 

could be affected by factors including total Zn in soil, organic matter content, soil type, soil pH, 

and others (Mousavi et al., 2013).  

Solanum incanum can also take up and accumulate Zn in its tissues. Uptake and concentration 

patterns of Zn in plant tissues was in the order of: stem > root > leaves in all sites are similar. The 

highest Zn accumulation in Solanum incanum plant samples during dry season 1983.16 mg/kg was 

observed in acidic soil (pH = 5.07) of sample at Kera site and wet season samples also gave the 

higher Zn recording 1711.17 mg/kg in soils of Kera site pH (5.04). Conversely, the lowest mean 

Zn uptakes of 1037 mg/kg during dry season and 1049 mg/kg for rainy season were recorded in 

Akaki sample site with a calcareous pH of 7.45 and 7.82, respectively. These results of, higher Zn 

accumulation in acidic soil and lower values of Zn accumulated in calcareous soils, are in 

agreement with Abedin et al. (2012) and Mousavi et al. (2013).  The lowest total Zn uptake values 

of 364.5 and 500 mg/kg were recorded in rainy and dry seasons of control sites, respectively.  

Similarly, seedlings of Solanum incanum attained maximum uptake of 639.06 mg/kg in rainy 

season and maximum uptake value recorded during dry season was 445.53 mg/kg. These relatively 

higher values for seedlings were recorded at Mekanisa site and Kera site samples, respectively. Zn 

accumulation has been observed in all parts of both mature plant and seedlings of Solanum 

incanum. 
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Zinc concentration in Solanum incanum showed a linear relationship with zinc concentration in 

soil. A strong positive relationship (r = .778, p = 0.003 < 0.01) was observed between Zn uptakes 

in mature plants and soil Zn concentration. Total Zn absorbed by seedlings of Solanum incanum 

was also significantly impacted by the amounts of Zn in soil (r = .642, p = .024, at the 0.05 level).   

Mature Solanum incanum showed a better Zn uptake and accumulation properties than seedling 

plants. Mean value of Zn (M = 1287.02 ± 495.9 mg/kg) accumulated in mature Solanum incanum 

was significantly higher than mean value M = 315.8 ± 149.7 mg/kg obtained in seedlings. This is 

computed and displayed by independent sample t test t (12.99) = 6.495, p = 0.000. Zinc content in 

the aboveground part (shoot) of Solanum incanum was higher than Zn levels contained in roots of 

Solanum incanum. In concurrence with findings of this study, previous researches reported the 

likelihood of Zn accumulation in green parts of plants (Liu et al., 2011).  

BCF and TF values > 1 for root, stem and leaves of Solanum incanum indicated Zn can be 

accumulated in tissues of this plant.  The observed mean values of BCF in tissues of Solanum 

incanum were in order of stem (2.40 ± 0.50) > root (2.16 ± 0.57) > 1.29 ± 0.48 for dry season 

samples and likewise, BCF for rainy season samples was in order of stem (2.56 ±1.12) > root (2.23 

± 0.52) > leaves (1.512 ± 0.41) (Table 12 and Table 13).  

Zinc accumulation properties of Solanum incanum plants were found to be better during wet 

season. The mean values of BCF of Zn in shoots of Solanum incanum were 3.69 ± 0.68 in dry 

season and 4.072 ± 1.454 in wet season, showing shoots of mature Solanum incanum can absorb 

and accumulate Zn to the level higher than concentration available in soil. Mean values of BCF 

and TF of Zn in plants from control soil were also found to be > 1. This could be due to the 

metabolic importance of Zn as an essential nutrient for production of protein and development 

(Mousavi et al., 2013).  

e. Ni concentration in different parts of Solanum incanum. 

The mean value of Ni accumulated in mature Solanum incanum plants collected from 

contaminated sites of Addis Ababa during dry season was 525.06 ± 148.52 mg/kg and ranging 

from 314.6 to 712 mg/kg. Nickel concentration in mature Solanum incanum plant samples 

collected during wet season was within the range of 280 to 589.9 mg/kg and the mean value was 

387.3 ± 119.5 mg/kg. The levels of Ni in Solanum incanum tissues were in order of root (199.3 ± 
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82.02 mg/kg) > leaves (179.8 ± 67.9 mg/kg) > stem (145.98 ± 44.3 mg/kg) in dry season. Whereas, 

trend noted during wet season was root (147.02 ± 82.2 mg/kg) > stem (124.7 ± 43.04 mg/kg) > 

leaves (115.6 ± 17.04 mg/kg) (Table 11).  

Ni content in mature plants of Solanum incanum recorded higher values than seedling plants. This 

can be observed from values of independent sample t test t (14.061) = 4.801, p = 0.000; showing, 

mean values of total Ni moped up in mature Solanum incanum (M = 408.9 ± 53.2 mg/kg) exceeds 

the value taken up by seedlings (M =153.50 ± 64.98) significantly. This is in agreement with 

Sharma et al. (2006) who stated elemental content depends on growth stages.  

The concentration of Ni in Solanum incanum plants was proportional to Ni content in 

corresponding soil, correlation coefficients of r (0.801), p = 0.002 for mature plants r (0.779), p = 

0.003 noted for seedlings shows a strong positive effect of soil metal concentration on plant uptake 

characteristics. This result concurs with findings of other researchers, and metal uptake in plants 

depends on metal available in soil (Jung, 2008). However, soil physicochemical parameters 

including pH, OM% and MC% affected the uptake level negatively and the EC, CEC and clay 

affected the Ni uptake positively. Moreover, significant impacts were noted for EC r (0.871), p = 

0.024) and clay fraction r (0.830), p = .041 for mature plants collected during wet season; similarly, 

significant impacts observed in dry season were observed for seedlings; pH r (-0.884), p = 0.019 

and CEC r (0.883), p = 0.020). 

The BCF investigated for root, stem and leaves of both mature and seedlings of Solanum incanum 

plant samples collected during both seasons of the year were low (< 1). Values of TF > 1 also 

indicates that Solanum incanum plants can effectively transfer Ni from root to the aboveground 

parts (Ghosh and Singh, 2005; Syam et al., 2016). Translocation factors in leaves varied from 0.50 

to 1.52 in dry season and 0.37 to 1.34, while in stem TF ranges form 0.45-1.15 and 0.68-1.25 for 

dry and wet season samples, respectively (Table 12). Based on mean values of shoot BCF (1.37 ± 

0.54) and aerial TF (1.834 ± 0.76) values obtained in mature plants during dry season and shoot 

BCF (1.23 ± 0.43) and aerial TF (1.88 ± 0.56) recorded in wet season we can conclude Solanum 

incanum potentials for phytoremediation of Ni contaminated soil (Ghosh and Singh, 2005). 
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f. Cu concentration in different parts of Solanum incanum. 

In dry season samples, total Cu absorption recorded in roots of Solanum incanum ranged from 44 

to 135 mg/kg and accumulation levels in stems and leaves varied between 132 to 288 mg/kg and 

from 32.3 to 97.06 mg/kg, respectively. The minimum and the maximum levels of Cu recorded 

for root, stem and leaves of Solanum incanum collected in wet season are as follows: 20.5 to 64.08 

mg/kg, 60.8 to 102.45 mg/kg and 13.4 to 39 mg/kg, respectively (Table 11). 

Solanum incanum plants store most of Cu mopped up from the soil in their stem parts. Of the total 

Cu absorbed, 54.54% was accumulated in stem followed by 27.31% in root and 18.15% in leaves 

of mature plants during dry season. Portions of 52.42%, 31.08% and 16.50% were distributed in 

stems, roots and leaves of mature Solanum incanum plant samples collected during rainy season. 

Additionally, mature Solanum incanum exhibited the highest average Cu removal (502.08 mg/kg) 

in site 4 during dry season, and followed by 467.06 mg/kg at Kera site and 417 mg/kg at Lideta 

site. In rainy season, the maximum uptake (490 mg/kg) was recorded in Lideta site followed by 

Kera site (464 mg/kg) and Mekanisa site (455.3 mg/kg).  

In addition, total uptake and accumulations of Cu in mature plants had a higher mean value than 

seedlings (410.1 ± 87.54 mg/kg and 162.5 ± 27.9 mg/kg) during dry season than that of values in 

rainy season (405.2 ± 95.3 mg/kg and 111.4 ± 37.4), respectively (Table 11). However, plants from 

a non-contaminated site (control) showed total Cu uptakes of 208.3 and 69.6 mg/kg in dry and 

rainy seasons, correspondingly. Concentration of Cu in the soil had a direct impact on the amount 

of Cu stored in Solanum incanum which could be shown by the correlation coefficient r = .936, p 

= 0.000 < 0.001.  

Further, a negative relationship was noted between metal in plant and soil pH; however a 

significant negative impact r (-0.884), p = 0.019 was only noted in seedlings of Solanum incanum 

collected during dry season. Conversely, Cu plant uptake by plants showed positive correlation 

with clay content, CEC and EC of soil. However, soil EC and Clay content gave positive and 

significant correlation (p < 0.05) with metal concentration in solanum incanum plant samples 

collected during wet season.  The correlation coefficients and significance level displayed were; r 

(0.871), p = 0.024 for EC and r (0.830), p = 0.041 for clay fractions. 
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Accumulation of Cu in Solanum incanum showed an increasing trend as plant growth advanced, 

and this concurs with Swapna et al. (1987) who noted a linear rise in Cu concentration in plant 

tissues during growth. However, total Cu accumulated in mature plants had a mean value (362.8 

± 133.8 mg/kg) of significantly higher than seedlings (128.3 ± 42.9 mg/kg). An independent 

sample t test displayed t (13.24) = 5.78 p = 0.000 which is highly significant. 

Tables 12 and Table 13 showed, Mean BCF of Cu accumulated in tissues of Solanum incanum 

followed the order of: stem (1.37 ± 0.18) > root (0.71 ± 0.15) > leaves (0.47 ± 0.11) for mature 

plants collected during dry season; and BCF of mature plants collected in wet season exhibited a 

trend of: stem (1.36 ± 0.14) > root (0.79 ± 0.164) > leaf (0.433 ± 0.16). Similarly, considerable 

amount of Cu in root was translocated to the aerial parts (stem and leaf) and TF recorded for stems 

and leaves gave values > 1. This could be due to its biological importance as an essential metal 

(Swapna et al., 1987).   

Seedlings of Solanum incanum had a higher aerial translocation factor (>1), especially due to 

higher absorption in their stem; however total shoot BCF were < 1. Hence, founded on the present 

findings, for mature plants of Solanum incanum (having both TF and shoot BCF > 1) which 

indicates the suitability of solanum incanum for phytoextraction or phytoremediation of Cu 

contaminated sites.  

4.3.3.2. Summary of metal accumulation status in Solanum incanum 

Potential of Solanum incanum, to uptake and accumulate heavy metals (mg/kg’s) appears in order 

of Zn (1553.9 ± 380.4) > Ni (525.1 ± 148.5) > Pb (507.05 ± 94.5) > Cu (410.05 ± 87.54) > Cr 

(302.5 ± 92.95) > Cd (7.79 ± 2.29) during dry season. Similarly, during wet season Zn had the 

highest concentration in plants (1362.03 ± 260.7) followed by Pb (444.06 ± 108.79), Cu (405.2 ± 

95.3), Ni (387.31 ± 119.53), Cr (216.6 ± 73.41) and Cd (5.38 ± 2.06). Results from the present 

investigation suggest that Solanum incanum has good potential for the phytoextraction of Pb, Ni, 

Zn, and Cu based on BCF and TF > 1; however, the TF and BCF obtained (<1) for Cd and Cr 

reveals that this plant could uptake a certain amount of these metals but not accumulate these trace 

metals from polluted soil; therefore Solanum incanum does not seem appropriate for the 

phytoremediation of Cd and Cr polluted sites.  
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4.4.  Comparative discussion 

Phytoremediation of contaminated sites can be attained via mechanisms including phytoextraction, 

phytodegradation, rhizofiltration, phytostabilization, phytotransformation (Saha et al., 2017; Eid 

et al., 2019). However, the most common and vital phytoremediation mechanisms for heavy metal 

contaminated sites are phytostabilization and phytoextraction (Anjum et al., 2014; Sidhu et al., 

2017). Successful eco-friendly heavy metal phytoextraction process needs careful identification of 

plant species which can effectively uptake and translocate to the aerial parts (Chandrasekhar and 

Ray, 2019; Galal et al., 2018).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NB: D represent dry season samples; W represent wet season samples.  Error bars represent standard deviations. 

 
 Figure 11. Bioconcentration factors of heavy metals in shoots of Solanum incanum, 

Adhatoda Schimperiana and Phytolacca dodecandra.  

Studied plants can absorb and concentrate high amount of selected metal contaminants (Pb, Cr, 

Cd, Zn, Cu, and Ni) into their aerial parts, and phytoextraction and phytostabilization mechanisms 

were dominantly noted for all sampled plants. However, the possibility of phytodegradation or 

phytovolatilization mechanism, in this case, needs studies in controlled and dose-dependent 

investigations. Heavy metal stored in different parts of investigated plants were directly correlated 

to metal concentration in soil, and similar observation was reported by Elshamy et al. (2019).  Even 
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though these plants can absorb selected heavy metals starting from the early stages of their 

development, only mature plants were considered here for comparison due to the continuous metal 

removal properties. Among analysed heavy metals Cd was the lowest in concentration both in soil 

and in different tissues of studied plants, and this concurs with Galal et al. (2018); Eid et al. (2019) 

who noted Cd is usually very low. The lower accumulation of Cd in plants could be due to higher 

accumulation of Zn because Cd is a chemical analogue to Zn and various plants fail to differentiate 

among these ions (Yashim et al., 2014; Eid et al., 2019).  However, other factors including the 

biological importance of metals, metal concentrations at the sampling sites, detainment in the root 

part or other mechanisms at play could affect accumulation of metal in plant.  

TF and BCF are the two main factors applied for evaluation of the efficacy of metal extraction by 

plants (Sidhu et al., 2017; Eid et al., 2019). Phytoremediation efficiency and metal mobility inside 

the tissues of studied plants was compared by calculating TF and BCF values. The highest shoot 

BCF was recorded for Zn in all studied plants both in dry and wet season and the lowest values 

were noted for Cd. Zinc was the most abundant metal obtained in different tissues of studied plants. 

Shoot BCF and aerial TF of Zn in Adhatoda schimperiana and Phytolacca dodecandra showed 

higher values during dry season, while Solanum incanum showed an opposite trend.  

The mean values of shoot BCF (5.11 ± 0.62) and aerial TF (2.38 ± 0.54) recorded for Zn in 

Adhatoda schimperiana during dry season was higher than values of shoot BCF (4.65 ± 1.25) and 

aerial TF (2.14 ± 0.50) during wet season. Similarly, Phytolacca dodecandra showed a higher 

mean values of shoot BCF (4.40 ± 0.77) and aerial TF (2.45 ± 0.06) during dry season than values 

of shoot BCF (4.36 ± 1.91) and aerial TF (2.08 ± 0.16) recorded during wet season. Conversely, 

mean values of shoot BCF (3.69 ± 0.68) and TF (1.54 ± 0.47) recorded for Zn in Solanum incanum 

during dry season was lower than values of shoot BCF (4.07 ± 1.45) and TF (1.81 ± 0.36) noted 

during wet season. 

Heavy metal BCF in aboveground parts of selected plants were calculated and presented in Figure 

12. BCF of various heavy metals in Phytolacca dodecandra shoot during dry season were recorded 

in the following order: Zn (4.398 ± 0.77) > Cu (1.878 ± 0.61) > Cd (1.48 ± 0.35) > Pb (1.30 ± 

0.33) > Ni (1.27 ± 0.37) > Cr (0.83 ± 0.25), while the trend of shoot BCF during wet season were 

Zn (4.36 ± 1.91) > Cd (1.85 ± 1.20) > Ni (1.79 ± 1.03) > Pb (1.31 ± 0.23) > Cu (1.08 ± 0.36) > Cr 

(1.05 ± 0.44). The Mean BCF values of Pb, Cr, Cd, Ni, Zn, and Cu in shoots of Phytolacca 
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dodecandra were > 1, which reveals the potential of Phytolacca dodecandra for phytoremediation 

(Pandey, 2012; Sidhu et al., 2017).  

In addition, higher aerial TF values of Cd (2.50 ± 0.95) > Zn (2.45 ± 0.06) > Ni (2.09 ± 0.68) > Pb 

(2.06 ± 0.96) > Cu (1.74 ± 0.49) > Cr (1.40 ± 0.38) were observed in dry season samples, and TF 

values of metals in the aerial parts of Phytolacca dodecandra were Ni (2.50 ± 0.95) > Cd (2.20 ± 

0.47) > Zn (2.08 ± 0.16) > Pb (1.71 ± 0.28) > Cu (1.44 ± 0.31) > Cr (1.35 ± 0.28). The data in 

Figure 12 indicates all aerial TF values recorded were > 1 which means Phytolacca dodecandra 

can effectively transfer heavy metals into the above-ground parts and can be used for 

phytoextraction of metals. This agreed with Bazan and Galizia, (2018) who stated plants with 

adaptation to different environmental conditions and having BCF and TF > 1 can be good 

phytoextractors. 

Adhatoda schimperiana was also observed to take up and accumulate multiple heavy metal 

contaminants. BCF values and TF of studied heavy metals in shoots of Adhatoda schimperiana 

were all > 1 during both seasons of the year except for Cd and Pb. Shoots of Adhatoda 

schimperiana showed mean BCF values in order of Zn (5.11 ± 0.62) > Cu (1.42 ± 0.67) > Cr (1.38 

± 0.46) > Ni (1.33 ± 0.50) > Pb (0.91 ± 0.71) > Cd (0.88 ± 0.36) in dry season, and Zn (4.65 ± 

1.25) > Cu (1.79 ± 1.06) Ni (1.54 ± 0.47) > Cr (1.44 ± 0.49) > Pb (0.69 ± 0.31) > Cd (0.65 ± 0.20) 

in wet season samples. According to the mean shoot BCF’s, heavy metal accumulation by Solanum 

incanum was in increasing order as Zn > Cu > Pb > Ni > Cr > Cd during dry season. The mean 

BCF value was 3.69 ± 0.68, 1.83 ± 0.28, 1.67 ± 0.59, 1.37 ± 0.54, 0.94 ± 0.15, respectively (Figure. 

11). Similarly, calculated BCF’s for Solanum incanum collected during wet season were 4.07 ± 

1.45, 1.79 ± 0.29, 1.23 ± 0.43, 1.14 ± 0.25, 0.83 ± 0.15, 0.11 ± 0.03 for Zn, Cu, Ni, Pb, Cr, and 

Cd, respectively. Mean BCF values recorded for shoots of Solanum incanum plants were > 1 for 

Cu, Zn, Ni, Pb while Cd and Cr gave values < 1.  

In addition to the biomass yield, tolerance to multiple contaminants and bioaccumulation factors, 

translocation factors or metal mobility to the aerial parts of plants are very crucial to evaluate the 

effectiveness of phytoremediation (Ali et al., 2013; Sidhu et al., 2017). Accordingly, based on the 

mean values calculated for aerial TF of trace metals studied plants can be ordered as follows: 

Phytolacca dodecandra > Solanum incanum > Adhatoda schimperiana for Cd, Cr and Pb during 

both seasons. However, seasonal variation was noted in the translocation characteristics of Zn, Ni 
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and Cu within plants. The highest mean TF of Zn was observed in Phytolacca dodecandra 

followed by Adhatoda schimperiana and Solanum incanum in dry season, while during wet season 

Adhatoda schimperiana showed a higher TF followed by Phytolacca dodecandra and Solanum 

incanum. The higher TF of Zn, Cu and Ni in aerial biomass of plants is coherent since these metals 

are essential to the plants (Guarino et al., 2019). 

 

 

 

 

 

 

 

 

 

 

 

 

        D-represent dry season samples, W-represent wet season samples. Error bars represent standard deviations. 

Figure 12. Translocation Factors of heavy metals in shoots of Solanum incanum, Adhatoda 

Schimperiana and Phytolacca dodecandra.  

Aerial TF of Ni calculated was higher for Adhatoda schimperiana during dry season followed by 

Phytolacca dodecandra and Solanum incanum, whereas Phytolacca dodecandra showed a better 

mean value during wet season. Solanum incanum was found to be superior in translocation of Cu 

followed by Phytolacca dodecandra and Adhatoda schimperiana. Mean values of aerial TF were 

all > 1, except for Pb in Adhatoda schimperiana and Cd in Solanum incanum and Adhatoda 

schimperiana. The ability of plant’s to accumulate metal contaminants from polluted soil, or 

phytoremediation potential to clean-up heavy metals can be better explained by the calculated 

values of BCF and TF than simple total metal available in plant. Thus, in this study, the mean 
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values of BCF >1 and TF >1 noted for the native plants indicated, majority of studied heavy metals 

can be removed from contaminated soil using these plants. The total mean values of BCF and TF, 

regardless of the contributions of seasonal variation and soil physicochemical properties, selected 

plants are suitable for remediation of heavy metal contaminated sites.  
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CHAPTER FIVE 

5. Conclusions and recommendations  

5.1. Conclusions 

The current investigation indicated, soil physicochemical parameters organic matter (OM), 

moisture content (MC), clay content, cation exchange capacity (CEC); showed no significant 

variation (p > 0.05) among different sampling sites; while pH and EC varied significantly (p < 

0.05). Thus, these had limited differential influence on the phytoremediation studies of different 

sites. Investigation of trace metals in experimental soil revealed trace metals Cr, Cd, Pb, Ni and 

Cu had mean values significantly higher than recommended maximum limit, but Zn showed mean 

value of less than recommended maximum limits. The current level of toxic metals in the soil of 

studied sites could have significant effect on human health and receiving ecosystem. Therefore, 

there is a need for urgent remediation and restoration of this soil.   

Three different plant species, viz. Phytolacca dodecandra, Adhatoda schimperiana and Solanum 

incanum, were evaluated for their heavy metal phytoremediation potentials. These plants grow in 

multi-metal contaminated sites without showing stress related morphological symptoms. The 

outcomes of this research have shown Cr, Pb, Cd, Cu, Zn and Ni were distributed in tissues of all 

selected plants (Phytolacca dodecandra, Adhatoda schimperiana and Solanum incanum). Mature 

plants of all selected plants showed significantly higher (p < 0.05) metal removal capacity, as 

shown by the BCF and TF’s, than younger plants. A gradual rise in metal uptake by plants was 

observed with an increase in metal concentration of soil. Correlation analysis (p < 0.05) revealed; 

the levels of individual metal in the corresponding soil positively and significantly correlated to 

levels of metals contained in plants. Thus, it can be concluded that selected plants are appropriate 

for phytoremediation of sites contaminated by the studied heavy metals.  

Each metal absorbed by Phytolacca dodecandra had peculiar characteristics of accumulation; for 

instance, Cd and Cr were abundant in the roots of Phytolacca dodecandra; while Pb, Zn and Ni 

were higher in leaves; whereas Cu showed higher values in roots during dry season and higher 

values in stem during wet season. The order of total metal concentrations in Phytolacca 

dodecandra is: Zn > Ni > Pb > Cr > Cu > Cd for wet season and Zn > Pb > Ni > Cu > Cr > Cd for 

dry season samples. In addition, mean values of studied metals accumulated in plants collected 
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during dry season were higher than those collected during wet season. Further, based on the TF, BCF, 

and BAC values it can be suggested that Phytolacca dodecandra is a potential accumulator of Zn, Cu, 

Ni, Pb, and Cd; while Cr was not sufficiently accumulated in the shoot. 

Adhatoda schimperiana has good potential to accumulate Ni and Zn, in its upper tissues; leaves contain 

the largest share of metals taken up by the entire plant. Distribution of Cd, Cr and Pb in Adhatoda 

schimperiana highlighted higher concentration in roots. However, Adhatoda schimperiana can be 

effectively utilized for phytoremediation of metal contaminated sites. Mechanism involved for removal 

of Cd and Pb was phytostabilization; while Cr, Zn and Ni, was phytoextraction as based on values of 

(BCF > 1, TF > 1 and BAC > 1). The result from this study indicates that Solanum incanum is good in 

taking up and distributing trace metals in their tissues. Among all investigated metals, the plant 

Solanum incanum accumulated higher concentration of Zn.  The BCF of Cd in Solanum incanum plants 

was < 1, TF was also < 1, indicating these plants retain larger portion of metals in their roots than other 

parts; similarly, Cr was more in roots and the BCF of shoot < 1 and TF > 1, revealing that the plant 

may not be suitable for phytoremediation of Cr contaminated sites. Pb was also higher in root, but BCF 

and TF > 1 shows its potential for phytoextraction. Ni, Cu and Zn had the highest accumulation in the 

stems of Solanum incanum, showing the suitability for phytoextraction of Zn, Cu and Ni contaminated 

sites. 

Finally, multiple metal uptake properties, adaptability of candidate native plant species to multiple 

metal contamination and prevailing environmental conditions could make these plants suitable for 

phytoremediation of metalliferous sites. Besides, using plants as suitable green filters, such as Solanum 

incanum, Adhatoda schimperiana and Phytolacca dodecandra for remediation of contaminated sites, 

has a great potential contribution towards the successful implementation of zero carbon economy. The 

contribution of these plants for reduction of soil erosion, energy recovery, and other environmental 

services could be an additional advantage. Hence, the finding of this study is very useful and 

worthwhile for researchers and government policy makers to propose low cost and nature-based 

solution for environmental pollution. It can pave the way for further study and implementation of the 

phytoremediation project using these plants to clean heavy metal contaminants from soil and mitigate 

harmful environmental impacts of heavy metals released through anthropogenic activities. Finally, it 

can be concluded that potential adoptions of phytoremediation in the Ethiopian as well as the study 

area setting is very promising. Summary of the most important findings from this study are presented 

in Schematic diagram (Figure. 13).  
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Figure 13. Schematic diagram showing most important findings  
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dodecandra, and S. incanum L, in phyto-remediating multiple metals (Pb, Cd, Cu, Ni, Zn 
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Interpretation and Conclusions 

Metal in soil Positive correlation with metal concentration in plant tissue 

Mature plants Vs seedlings Mature plants showed higher metal accumulation 

Seasonal variation Higher accumulation was observed in samples collected during dry 

season, except for Cr, Ni and Cu in Adathoda sch. and Zn in solanum I. 
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5.2. Recommendations  

Screening of suitable plants, especially native ones, for phytoremediation and implementation of 

projects along with other development works can have numerous environmental relevant 

advantages. Since different plants native to contaminated sites have different unique growth and 

phytoremediation potentials, robust plants that will aid the remediation process at high efficiencies 

and economically promising way shall be discovered. 

Using this primary investigation as an open window of opportunity; one can further investigate the 

applicability of these plants to other contaminants.  

Even though the removal efficiencies were high in the early growth stages; allowing the plant grow 

to maturity could give a better result; or using the continuous removal properties and advantages 

of larger biomass could meet the ultimate goal of complete heavy metal removal. There is need to 

establish the best life stage at which the most remediation is realized and use such as the target in 

actual field applications. 

The use of harvesting and re-growth methods and multiple planting for better removal or 

successful extraction of target contaminant and using mixed planting in case of multiple metal 

contaminated sites should be evaluated and applied.  

Further studies in controlled environments can investigate the age dependent variation and trends 

of metal removal based on time of exposure and dose of contaminant. 

Research on these plants will be desirable to clarify the biochemistry of metal accumulation, 

translocation in the plant shoots and tolerance mechanisms. 

Finally, further investigations on plant physiologies, the use of advanced agronomic practice, 

management systems that enhance the metal availability, accumulation and translocation may play 

important role for an efficient and better remediation of heavy metals. 
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7. APPENDICES 

7.1. Appendix 1. Summaries of selected statistical datas 

 

T-test for mean differences of metal accumulation in mature and seedlings of phytolacca 

dodecandra 

 
Group Statistics 

 Maturity N Mean Std. Deviation Std. Error Mean 

Cd_ Phyto _T-test mature 12 62.3867 40.18075 11.59918 

seedlings 12 18.0675 9.35153 2.69955 

 
Independent Samples Test 

  Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

  

F Sig. t df 

Sig.  

(2-tailed) 

Mean 

Difference 

Std. Error 

Difference 

95% Confidence Interval 

of the Difference 

  Lower Upper 

Cd_ phyto Equal variances 

assumed 
20.085 .000 3.721 22 .001 44.31917 11.9092 19.62103 69.0173 

Equal variances 

not assumed 

  
3.721 12.188 .003 44.31917 11.90918 18.41565 70.2227 

 
Group Statistics 

 Maturity N Mean Std. Deviation Std. Error Mean 

Cr_ Phyto _T-test  mature 12 262.6850 118.94936 34.33772 

seedlings 11 155.7973 74.64250 22.50556 

 
Independent Samples Test 

  Levene's Test for 

Equality of Variances t-test for Equality of Means 

  

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Difference 

Std. Error 

Difference 

95% Confidence Interval of 

the Difference 

  Lower Upper 

   Cr_ phyto Equal variances 

assumed 
1.611 .218 2.552 21 .019 106.88773 41.87666 19.80045 193.97500 

Equal variances 

not assumed 

  
2.603 18.687 .018 106.88773 41.05581 20.85948 192.91597 
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Group Statistics 

 maturity N Mean Std. Deviation Std. Error Mean 

Pb_ phyto _ T_ test mature 12 417.3400 188.06968 54.29104 

seedlings 12 258.1275 115.60013 33.37088 

 
Independent Samples Test 

  Levene's Test for 

Equality of Variances t-test for Equality of Means 

  

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Difference 

Std. Error 

Difference 

95% Confidence Interval of the 

Difference 

  Lower Upper 

Pb_ Phyto Equal variances 

assumed 
2.119 .160 2.498 22 .020 159.21250 63.72702 27.05075 291.37425 

Equal variances 

not assumed 

  
2.498 18.274 .022 159.21250 63.72702 25.47058 292.95442 

 
Group Statistics 

 Maturity N Mean Std. Deviation Std. Error Mean 

Ni_ Phyto_ T-test Mature 12 405.9533 185.40697 53.52238 

seedlings 12 178.7525 85.18303 24.59022 

 
Independent Samples Test 

  Levene's Test for 

Equality of Variances t-test for Equality of Means 

  

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Difference 

Std. Error 

Difference 

95% Confidence Interval of the 

Difference 

  Lower Upper 

Ni_ Phyto Equal variances 

assumed 
7.349 .013 3.857 22 .001 227.20083 58.90097 105.04770 349.35397 

Equal variances 

not assumed 

  
3.857 15.446 .001 227.20083 58.90097 101.97121 352.43046 
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Group Statistics 

 Maturity N Mean Std. Deviation Std. Error Mean 

Zn_ phyto_ T-test mature 12 1550.7492 691.19411 199.53055 

seedlings 12 242.7725 96.64428 27.89880 

 
Independent Samples Test 

  Levene's Test for 

Equality of Variances t-test for Equality of Means 

  

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Difference 

Std. Error 

Difference 

95% Confidence Interval of 

the Difference 

  Lower Upper 

Zn_ Phyto Equal 

variances 

assumed 

17.631 .000 6.492 22 .000 1307.97667 201.47155 890.15025 1725.80308 

Equal 

variances not 

assumed 

  

6.492 11.430 .000 1307.97667 201.47155 866.56738 1749.38595 

 

 

Group Statistics 

 
Maturity N Mean Std. Deviation Std. Error Mean 

Cu_ Phyt_ T-test Mature plant 12 292.15417 148.297588 42.809826 

seedlings 12 103.81833 46.128995 13.316294 

 

Independent Samples Test 

  
Levene's Test for 

Equality of Variances t-test for Equality of Means 

  

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Difference 

Std. Error 

Difference 

95% Confidence Interval of 

the Difference 

  
Lower Upper 

Cu_ Phyto  Equal variances 

assumed 
10.877 .003 4.201 22 .000 188.335833 44.833078 95.357720 281.313947 

Equal variances 

not assumed 

  

4.201 13.109 .001 188.335833 44.833078 91.561583 285.110084 
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T-test for mean differences of metal accumulation in mature and seedlings of Adhatoda 

schimperiana 

 

Group Statistics 

 
Maturity N Mean Std. Deviation Std. Error Mean 

Cd_ Adha _T-test mature plants 12 55.9900 34.11938 9.84942 

seedlings 12 19.2367 9.03856 2.60921 

 

Independent Samples Test 

  
Levene's Test for 

Equality of Variances t-test for Equality of Means 

  

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Difference 

Std. Error 

Difference 

95% Confidence Interval of 

the Difference 

  
Lower Upper 

Cd_ Adha Equal variances 

assumed 
18.044 .000 3.607 22 .002 36.75333 10.18916 15.62231 57.88436 

Equal variances 

not assumed 

  

3.607 12.536 .003 36.75333 10.18916 14.65794 58.84872 

 

Group Statistics 

 
Maturity N Mean Std. Deviation Std. Error Mean 

Cr_ Adha _ T-test Mature plants 12 352.1842 158.41288 45.72986 

Seedlings 12 160.9358 62.35892 18.00147 

 

Independent Samples Test 

  
Levene's Test for 

Equality of Variances t-test for Equality of Means 

  

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Difference 

Std. Error 

Difference 

95% Confidence Interval of the 

Difference 

  
Lower Upper 

Cr_ Adha Equal variances 

assumed 
12.865 .002 3.891 22 .001 191.24833 49.14543 89.32695 293.16971 

Equal variances 

not assumed 

  

3.891 14.329 .002 191.24833 49.14543 86.06858 296.42809 
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Group Statistics 

 
Maturity N Mean Std. Deviation Std. Error Mean 

Adha _ Pb_ T- test Mature plants 12 470.2817 196.61645 56.75828 

Seedlings 12 207.0983 110.31502 31.84520 

 

Independent Samples Test 

  
Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

  

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Difference 

Std. Error 

Difference 

95% Confidence 

Interval of the 

Difference 

  
Lower Upper 

Adha _Pb Equal variances 

assumed 
4.337 .049 4.044 22 .001 263.18333 65.08164 128.21228 398.15439 

Equal variances 

not assumed 

  
4.044 17.301 .001 263.18333 65.08164 126.05489 400.31177 

 

Group Statistics 

 
Maturity N Mean Std. Deviation Std. Error Mean 

Zn_ Adha _T-test Mature plants 12 1359.4775 741.14341 213.94967 

seedlings 12 216.8775 100.67629 29.06274 

 

Independent Samples Test 

  
Levene's Test for 

Equality of Variances t-test for Equality of Means 

  

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Difference 

Std. Error 

Difference 

95% Confidence Interval of 

the Difference 

  
Lower Upper 

Zn_ Adha Equal variances 

assumed 
24.091 .000 5.292 22 .000 1142.60000 215.91458 694.82057 1590.37943 

Equal variances 

not assumed 

  

5.292 11.406 .000 1142.60000 215.91458 669.43000 1615.77000 
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Group Statistics 

 
Maturity N Mean Std. Deviation Std. Error Mean 

Ni_ Adha _T -test Mature plants 12 467.3925 252.48776 72.88694 

seedlings 12 160.1875 63.58001 18.35397 

 

Independent Samples Test 

  
Levene's Test for 

Equality of Variances t-test for Equality of Means 

  

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Difference 

Std. Error 

Difference 

95% Confidence Interval of the 

Difference 

  
Lower Upper 

Ni_ Adha Equal variances 

assumed 
13.336 .001 4.087 22 .000 307.20500 75.16232 151.32790 463.08210 

Equal variances 

not assumed 

  

4.087 12.389 .001 307.20500 75.16232 144.00949 470.40051 

 

Group Statistics 

 
Maturity N Mean Std. Deviation Std. Error Mean 

Cu_ Adha_ T-test mature plants 12 375.8858 170.53047 49.22791 

seedlings 12 115.4917 44.62191 12.88123 

 

Independent Samples Test 

  
Levene's Test for 

Equality of Variances t-test for Equality of Means 

  

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Difference 

Std. Error 

Difference 

95% Confidence Interval of 

the Difference 

  
Lower Upper 

Cu_ Adha Equal variances 

assumed 
13.271 .001 5.117 22 .000 260.39417 50.88529 154.86453 365.92380 

Equal variances 

not assumed 

  

5.117 12.499 .000 260.39417 50.88529 150.01383 370.77450 
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  T-test for mean differences of metal accumulation in mature and seedlings of Solanum 

Incanum 

 

Group Statistics 

 
maturity N Mean Std. Deviation Std. Error Mean 

Cd_ Sola _T-test mature 12 5.8258 2.81486 .81258 

seedling 12 3.1625 1.48693 .42924 

 

Independent Samples Test 

  
Levene's Test for 

Equality of Variances t-test for Equality of Means 

  

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Difference 

Std. Error 

Difference 

95% Confidence Interval of 

the Difference 

  
Lower Upper 

Cd_ Sola Equal variances 

assumed 
3.979 .059 2.898 22 .008 2.66333 .91899 .75747 4.56919 

Equal variances 

not assumed 

  

2.898 16.695 .010 2.66333 .91899 .72174 4.60492 

 

Group Statistics 

 
Maturity N Mean Std. Deviation Std. Error Mean 

Cr_ Sola mature 12 237.7833 97.62596 28.18219 

seedlings 12 143.7208 56.49417 16.30846 

 

Independent Samples Test 

  
Levene's Test for 

Equality of Variances t-test for Equality of Means 

  

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Difference 

Std. Error 

Difference 

95% Confidence Interval of 

the Difference 

  
Lower Upper 

Cr_ Sola Equal variances 

assumed 
6.695 .017 2.889 22 .009 94.06250 32.56074 26.53567 161.58933 

Equal variances 

not assumed 

  

2.889 17.624 .010 94.06250 32.56074 25.55026 162.57474 
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Group Statistics 

 
Maturity N Mean Std. Deviation Std. Error Mean 

Pb_ Sola_ T-test mature 12 415.4567 168.40244 48.61360 

seedlings 12 183.1333 71.16581 20.54380 

 

Independent Samples Test 

  
Levene's Test for 

Equality of Variances t-test for Equality of Means 

  

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Difference 

Std. Error 

Difference 

95% Confidence Interval of the 

Difference 

  
Lower Upper 

Pb_ Sola   Equal variances 

assumed 
5.946 .023 4.402 22 .000 232.32333 52.77622 122.87215 341.77451 

Equal variances 

not assumed 

  

4.402 14.807 .001 232.32333 52.77622 119.70595 344.94072 

 

Group Statistics 

 
Maturity N Mean Std. Deviation Std. Error Mean 

Zn_ Sola_ T- test Mature 12 1287.0158 495.90480 143.15539 

seedling 12 315.8192 149.66368 43.20418 

 

Independent Samples Test 

  
Levene's Test for 

Equality of Variances t-test for Equality of Means 

  

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Difference 

Std. Error 

Difference 

95% Confidence Interval of the 

Difference 

  
Lower Upper 

Zn_ sola Equal variances 

assumed 
9.532 .005 6.495 22 .000 971.19667 149.53283 661.08457 1281.30877 

Equal variances 

not assumed 

  

6.495 12.987 .000 971.19667 149.53283 648.11861 1294.27472 
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Group Statistics 

 
maturity N Mean Std. Deviation Std. Error Mean 

Ni_ Sola_ T-test mature 12 408.9017 172.46483 49.78631 

seedlings 12 153.4992 64.98080 18.75834 

 

Independent Samples Test 

  
Levene's Test for 

Equality of Variances t-test for Equality of Means 

  

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Difference 

Std. Error 

Difference 

95% Confidence Interval of the 

Difference 

  
Lower Upper 

Ni_ Sola Equal variances 

assumed 
11.703 .002 4.801 22 .000 255.40250 53.20293 145.06637 365.73863 

Equal variances 

not assumed 

  

4.801 14.061 .000 255.40250 53.20293 141.34032 369.46468 

 

Group Statistics 

 
maturity N Mean Std. Deviation Std. Error Mean 

Cu _sola_ T-test mature 12 362.8275 133.80116 38.62507 

seedlings 12 128.3367 42.91534 12.38859 

 

Independent Samples Test 

  
Levene's Test for 

Equality of Variances t-test for Equality of Means 

  

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Difference 

Std. Error 

Difference 

95% Confidence Interval of the 

Difference 

  
Lower Upper 

Cu_ Sola Equal variances 

assumed 
11.373 .003 5.781 22 .000 234.49083 40.56320 150.36791 318.61376 

Equal variances 

not assumed 

  

5.781 13.240 .000 234.49083 40.56320 147.02026 321.96141 
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Correlation coefficients for relationships between metal concentrations in soils and metal 

accumulation in mature and seedlings of phytolacca dodecandra  

 
Correlations 

  soil Cd_ Phytolacca _mature 

soil Pearson Correlation 1 .778** 

Sig. (2-tailed)  .003 

N 12 12 

Cd_ Phytolacca _mature Pearson Correlation .778** 1 

Sig. (2-tailed) .003  

N 12 12 

**. Correlation is significant at the 0.01 level (2-tailed).  

 
Correlations 

  soil Cd_ Phytolacca _seedlings 

soil Pearson Correlation 1 .493 

Sig. (2-tailed)  .103 

N 12 12 

Cd_ phytolacca_ seedlings Pearson Correlation .493 1 

Sig. (2-tailed) .103  

N 12 12 

 
Correlations 

  Soil Cr_ phytolacca _mature  

Soil Pearson Correlation 1 .834** 

Sig. (2-tailed)  .001 

N 12 12 

Cr_ phytolacca _mature Pearson Correlation .834** 1 

Sig. (2-tailed) .001  

N 12 12 

**. Correlation is significant at the 0.01 level (2-tailed).  

 
Correlations 

  Soil Cr_ phytolacca seedlings 

Soil Pearson Correlation 1 .647* 

Sig. (2-tailed)  .023 

N 12 12 

Cr_ phytolacca seedlings Pearson Correlation .647* 1 

Sig. (2-tailed) .023  

N 12 12 

*. Correlation is significant at the 0.05 level (2-tailed).  
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Correlations 

  Soil Pb_ Phytolacca _mature 

Soil Pearson Correlation 1 .808** 

Sig. (2-tailed)  .001 

N 12 12 

Pb_ phytolacca _mature Pearson Correlation .808** 1 

Sig. (2-tailed) .001  

N 12 12 

**. Correlation is significant at the 0.01 level (2-tailed).  

 
Correlations 

  Soil Pb_ Phytolacca _seedlings 

Soil Pearson Correlation 1 .819** 

Sig. (2-tailed)  .001 

N 12 12 

Pb_ Phytolacca _seedlings Pearson Correlation .819** 1 

Sig. (2-tailed) .001  

N 12 12 

**. Correlation is significant at the 0.01 level (2-tailed).  

 
Correlations 

  Soil Zn_ mature_ phytolacca 

Soil Pearson Correlation 1 .767** 

Sig. (2-tailed)  .004 

N 12 12 

Zn_ mature_ phytolacca Pearson Correlation .767** 1 

Sig. (2-tailed) .004  

N 12 12 

**. Correlation is significant at the 0.01 level (2-tailed).  

 
Correlations 

  Soil Zn _phytolacca _seedlings 

Soil Pearson Correlation 1 .405 

Sig. (2-tailed)  .191 

N 12 12 

Zn _phytolacca _seedlings Pearson Correlation .405 1 

Sig. (2-tailed) .191  

N 12 12 
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Correlations 

  Soil Ni_ phytolacca_ mature 

Soil Pearson Correlation 1 .644* 

Sig. (2-tailed)  .024 

N 12 12 

Ni_ phytolacca _ mature Pearson Correlation .644* 1 

Sig. (2-tailed) .024  

N 12 12 

*. Correlation is significant at the 0.05 level (2-tailed).  

 
Correlations 

  Soil Ni_ phytolacca _ seedlings 

Soil Pearson Correlation 1 .320 

Sig. (2-tailed)  .310 

N 12 12 

Ni_ phytolacca _ seedlings Pearson Correlation .320 1 

Sig. (2-tailed) .310  

N 12 12 

 
Correlations 

  Soil Cu_ phytolacca_ mature 

Soil Pearson Correlation 1 .530 

Sig. (2-tailed)  .077 

N 12 12 

Cu_ phytolacca _mature Pearson Correlation .530 1 

Sig. (2-tailed) .077  

N 12 12 

 
Correlations 

  Soil Cu_ Phytolacca _seedlings 

Soil Pearson Correlation 1 .423 

Sig. (2-tailed)  .171 

N 12 12 

Cu_ Phytolacca _seedlings Pearson Correlation .423 1 

Sig. (2-tailed) .171  

N 12 12 
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Correlation coefficients for relationships between metal concentrations in soils and metal 

accumulation in mature and seedlings of Adhatoda schimperiana  

 
Correlations 

  Cd_ soil Cd_ mature_ Adhatoda 

Cd_ soil Pearson Correlation 1 .815** 

Sig. (2-tailed)  .001 

N 12 12 

Cd_ mature_ Adhatoda Pearson Correlation .815** 1 

Sig. (2-tailed) .001  

N 12 12 

**. Correlation is significant at the 0.01 level (2-tailed). 

 
Correlations 

  Cd_ soil Cd _seedling _ Adhatoda 

Cd_ soil Pearson Correlation 1 .632* 

Sig. (2-tailed)  .027 

N 12 12 

Cd _seedling _ Adhatoda Pearson Correlation .632* 1 

Sig. (2-tailed) .027  

N 12 12 

*. Correlation is significant at the 0.05 level (2-tailed).  

 
Correlations 

  Cr Cr _Adhatoda_ Mature 

Cr Pearson Correlation 1 .791** 

Sig. (2-tailed)  .002 

N 12 12 

Cr _ Adhatoda _Mature Pearson Correlation .791** 1 

Sig. (2-tailed) .002  

N 12 12 

**. Correlation is significant at the 0.01 level (2-tailed). 

 
Correlations 

  Cr Cr _ Adhatoda _ Seedling 

Cr Pearson Correlation 1 .789** 

Sig. (2-tailed)  .002 

N 12 12 

Cr _ Adhatoda _ Seedling  Pearson Correlation .789** 1 

Sig. (2-tailed) .002  

N 12 12 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Correlations 

  Pb_ soil Pb_ Adhatoda _mature 

Pb_ soil Pearson Correlation 1 .711** 

Sig. (2-tailed)  .010 

N 12 12 

Pb_ Adhatoda _mature Pearson Correlation .711** 1 

Sig. (2-tailed) .010  

N 12 12 

**. Correlation is significant at the 0.01 level (2-tailed).  

 
Correlations 

  Pb_ Soil Pb_ Adhatoda seedling 

Pb_ Soil Pearson Correlation 1 .755** 

Sig. (2-tailed)  .005 

N 12 12 

Pb_ Adhatoda seedling Pearson Correlation .755** 1 

Sig. (2-tailed) .005  

N 12 12 

**. Correlation is significant at the 0.01 level (2-tailed).  

 
Correlations 

  Soil_Zn Zn_ Adhatoda _mature 

Soil_ Zn Pearson Correlation 1 .865** 

Sig. (2-tailed)  .000 

N 12 12 

Zn_ Adhatoda _mature Pearson Correlation .865** 1 

Sig. (2-tailed) .000  

N 12 12 

**. Correlation is significant at the 0.01 level (2-tailed).  

 
Correlations 

  Soil_ Zn Zn_ Adhatoda_  seedling  

Soil_ Zn Pearson Correlation 1 .503 

Sig. (2-tailed)  .096 

N 12 12 

Zn_ Adhatoda  _ seedling  Pearson Correlation .503 1 

Sig. (2-tailed) .096  

N 12 12 
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Correlations 

  Ni_ soil Ni_ mature _Adhatoda 

Ni_ soil Pearson Correlation 1 .906** 

Sig. (2-tailed)  .000 

N 12 12 

Ni_ mature _Adhatoda Pearson Correlation .906** 1 

Sig. (2-tailed) .000  

N 12 12 

**. Correlation is significant at the 0.01 level (2-tailed).  

 
Correlations 

  Ni_ soil Ni_ Adhatoda _seedling 

Ni _soil Pearson Correlation 1 .465 

Sig. (2-tailed)  .128 

N 12 12 

Ni_ Adhatoda _seedling Pearson Correlation .465 1 

Sig. (2-tailed) .128  

N 12 12 

 
Correlations 

  Soil_ Cu Cu_ Adhatoda_ mature 

Soil_ Cu Pearson Correlation 1 .591* 

Sig. (2-tailed)  .043 

N 12 12 

Cu_ Adhatoda_ mature Pearson Correlation .591* 1 

Sig. (2-tailed) .043  

N 12 12 

*. Correlation is significant at the 0.05 level (2-tailed).  

 

 
Correlations 

  Soil_ Cu Cu_ Adhatoda_ seedling  

Soil_ Cu Pearson Correlation 1 .471 

Sig. (2-tailed)  .123 

N 12 12 

Cu_ Adhatoda_ seedling Pearson Correlation .471 1 

Sig. (2-tailed) .123  

N 12 12 
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Correlation coefficients for relationships between metals concentrations in soils and metal 

accumulation in mature and seedlings of Adhatoda schimperiana  

 
Correlations 

  Cd in soil Cd _ solanum_ mature 

Cd in soil Pearson Correlation 1 .831** 

Sig. (2-tailed)  .001 

N 12 12 

Cd _ solanum_ mature  Pearson Correlation .831** 1 

Sig. (2-tailed) .001  

N 12 12 

**. Correlation is significant at the 0.01 level (2-tailed).  

 
Correlations 

  Cd in soil Cd _seedlings_ solanum 

Cd in soil Pearson Correlation 1 .782** 

Sig. (2-tailed)  .003 

N 12 12 

Cd _seedlings_ solanum Pearson Correlation .782** 1 

Sig. (2-tailed) .003  

N 12 12 

**. Correlation is significant at the 0.01 level (2-tailed).  

 
Correlations 

  Soil_ Cr Cr_ solanum _mature  

Soil_ Cr Pearson Correlation 1 .944** 

Sig. (2-tailed)  .000 

N 12 12 

Cr_ solanum _mature Pearson Correlation .944** 1 

Sig. (2-tailed) .000  

N 12 12 

**. Correlation is significant at the 0.01 level (2-tailed).  

 

 
Correlations 

  Soil_ Cr Cr_ solanum _seedlings  

Soil_ Cr Pearson Correlation 1 .736** 

Sig. (2-tailed)  .006 

N 12 12 

Cr_ solanum _seedlings Pearson Correlation .736** 1 

Sig. (2-tailed) .006  

N 12 12 

**. Correlation is significant at the 0.01 level (2-tailed).  
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Correlations 

  Pb_ soil Pb_ solanum _ mature 

Pb_ soil Pearson Correlation 1 .757** 

Sig. (2-tailed)  .004 

N 12 12 

Pb_ solanum _ mature Pearson Correlation .757** 1 

Sig. (2-tailed) .004  

N 12 12 

**. Correlation is significant at the 0.01 level (2-tailed).  

 
Correlations 

  Pb_ soil Pb_ solanum _seedling  

Pb_ soil Pearson Correlation 1 .831** 

Sig. (2-tailed)  .001 

N 12 12 

Pb_ solanum _seedling Pearson Correlation .831** 1 

Sig. (2-tailed) .001  

N 12 12 

**. Correlation is significant at the 0.01 level (2-tailed).  

 
Correlations 

  Zn_ soil Zn _ solanum_ mature 

Zn_ soil Pearson Correlation 1 .778** 

Sig. (2-tailed)  .003 

N 12 12 

Zn _ solanum_ mature Pearson Correlation .778** 1 

Sig. (2-tailed) .003  

N 12 12 

**. Correlation is significant at the 0.01 level (2-tailed).  

 
Correlations 

  Zn_ soil Zn _ seedlings_ solanum 

Zn_ soil Pearson Correlation 1 .642* 

Sig. (2-tailed)  .024 

N 12 12 

Zn _ seedlings_ solanum Pearson Correlation .642* 1 

Sig. (2-tailed) .024  

N 12 12 

*. Correlation is significant at the 0.05 level (2-tailed).  
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Correlations 

  Soil_ Ni Ni_ solanum_ mature  

Soil_ Ni Pearson Correlation 1 .801** 

Sig. (2-tailed)  .002 

N 12 12 

Ni_ solanum_ mature Pearson Correlation .801** 1 

Sig. (2-tailed) .002  

N 12 12 

**. Correlation is significant at the 0.01 level (2-tailed).  

 
Correlations 

  Soil_ Ni Ni_ solanum_ seedlings 

Soil_ Ni Pearson Correlation 1 .779** 

Sig. (2-tailed)  .003 

N 12 12 

Ni_ solanum_ seedlings Pearson Correlation .779** 1 

Sig. (2-tailed) .003  

N 12 12 

**. Correlation is significant at the 0.01 level (2-tailed).  

 
Correlations 

  Cu_ soil Cu_ solanum _ mature  

Cu_ soil Pearson Correlation 1 .936** 

Sig. (2-tailed)  .000 

N 12 12 

Cu_ solanum _ mature Pearson Correlation .936** 1 

Sig. (2-tailed) .000  

N 12 12 

**. Correlation is significant at the 0.01 level (2-tailed).  

Correlations 

  Cu_ soil Cu_ solanum _ seedling 

Cu_ soil Pearson Correlation 1 .568 

Sig. (2-tailed)  .054 

N 12 12 

Cu_ solanum _ seedling Pearson Correlation .568 1 

Sig. (2-tailed) .054  

N 12 12 
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Correlation coefficient between soil physicochemical parameters and metal accumulation in 

 Phytolacca dodecandra (Dry season) 
 

  Cd_ in mature  

(Phyto /Dry) 

Cd_ in seedlings pH EC CEC OM Clay MC 

Cd in mature 

(Phyto /Dry) 

Pearson Correlation 1        

Sig. (2-tailed)         

N 6        

Cd in seedling Pearson Correlation .913* 1       

Sig. (2-tailed) .011        

N 6 6       

pH Pearson Correlation -.501 -.544 1      

Sig. (2-tailed) .311 .264       

N 6 6 6      

EC Pearson Correlation .720 .863* -.520 1     

Sig. (2-tailed) .107 .027 .291      

N 6 6 6 6     

CEC Pearson Correlation .553 .578 .020 .743 1    

Sig. (2-tailed) .255 .229 .970 .090     

N 6 6 6 6 6    

OM Pearson Correlation -.096 .083 .098 .142 .448 1   

Sig. (2-tailed) .856 .876 .853 .789 .373    

N 6 6 6 6 6 6   

Clay Pearson Correlation .453 .633 -.321 .636 .683 .814* 1  

Sig. (2-tailed) .366 .178 .535 .174 .134 .049   

N 6 6 6 6 6 6 6  

MC Pearson Correlation -.368 -.293 -.341 -.350 -.411 .502 .265 1 

Sig. (2-tailed) .473 .574 .508 .497 .419 .311 .612  

N 6 6 6 6 6 6 6 6 

*. Correlation is significant at the 0.05 level (2-tailed).       

**. Correlation is significant at the 0.01 level (2-tailed).       

 

 
  Cr_ in mature 

 (Phyto /Dry) 

Cr_ in seedlings pH EC CEC OM Clay MC 

Cr_ in mature 

 (Phyto /Dry) 

Pearson Correlation 1        

Sig. (2-tailed)         

N 6        

Cr_ in seedlings Pearson Correlation .819* 1       

Sig. (2-tailed) .046        

N 6 6       

pH Pearson Correlation -.805 -.502 1      

Sig. (2-tailed) .053 .310       

N 6 6 6      

EC Pearson Correlation .803 .660 -.520 1 .743    

Sig. (2-tailed) .055 .153 .291  .090    

N 6 6 6 6 6    

CEC Pearson Correlation .203 .161 .020 .743 1    

Sig. (2-tailed) .699 .761 .970 .090     

N 6 6 6 6 6    

OM Pearson Correlation -.244 -.239 .098 .142 .448 1   

Sig. (2-tailed) .642 .648 .853 .789 .373  .049 .311 

N 6 6 6 6 6 6 6 6 

Clay Pearson Correlation .287 .072 -.321 .636 .683 .814* 1 .265 

Sig. (2-tailed) .581 .893 .535 .174 .134 .049  .612 

N 6 6 6 6 6 6 6 6 

MC Pearson Correlation -.167 -.241 -.341 -.350 -.411 .502 .265 1 

Sig. (2-tailed) .752 .646 .508 .497 .419 .311 .612  

N 6 6 6 6 6 6 6 6 

*. Correlation is significant at the 0.05 level (2-tailed).       

**. Correlation is significant at the 0.01 level (2-tailed).       
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  Pb_ in mature  

(Phyt /Dry) 

Pb_ in 

 seedlings 

pH EC CEC OM Clay MC 

Pb_ in mature 

 (Phyt /Dry) 

Pearson Correlation 1        

Sig. (2-tailed)         

N 6        

Pb_ in seedlings Pearson Correlation .660 1       

Sig. (2-tailed) .154        

N 6 6       

pH Pearson Correlation -.463 -.887* 1      

Sig. (2-tailed) .355 .018       

N 6 6 6      

EC Pearson Correlation .524 .819* -.520 1     

Sig. (2-tailed) .286 .046 .291      

N 6 6 6 6     

CEC Pearson Correlation .331 .327 .020 .743 1    

Sig. (2-tailed) .521 .527 .970 .090     

N 6 6 6 6 6    

OM Pearson Correlation -.116 -.148 .098 .142 .448 1   

Sig. (2-tailed) .827 .780 .853 .789 .373    

N 6 6 6 6 6 6   

Clay Pearson Correlation .384 .418 -.321 .636 .683 .814* 1  

Sig. (2-tailed) .453 .410 .535 .174 .134 .049   

N 6 6 6 6 6 6 6  

MC Pearson Correlation -.248 -.081 -.341 -.350 -.411 .502 .265 1 

Sig. (2-tailed) .636 .879 .508 .497 .419 .311 .612  

*. Correlation is significant at the 0.05 level (2-tailed).       

**. Correlation is significant at the 0.01 level (2-tailed).       

 
  Zn_ in mature 

(Phyto /Dry) 

Zn_ in 

 seedlings 

pH EC CEC OM Clay MC 

Zn_ in mature  
(Phyto /Dry) 

Pearson Correlation 1        

Sig. (2-tailed)         

N 6        

Zn_ in seedlings Pearson Correlation .381 1       

Sig. (2-tailed) .456        

N 6 6       

pH Pearson Correlation -.093 -.302 1      

Sig. (2-tailed) .860 .561       

N 6 6 6      

EC Pearson Correlation .827* .356 -.520 1     

Sig. (2-tailed) .042 .489 .291      

N 6 6 6 6     

CEC Pearson Correlation .962** .249 .020 .743 1    

Sig. (2-tailed) .002 .634 .970 .090     

N 6 6 6 6 6    

OM Pearson Correlation .326 .571 .098 .142 .448 1   

Sig. (2-tailed) .529 .237 .853 .789 .373    

N 6 6 6 6 6 6   

Clay Pearson Correlation .683 .774 -.321 .636 .683 .814* 1  

Sig. (2-tailed) .134 .071 .535 .174 .134 .049   

N 6 6 6 6 6 6 6  

MC Pearson Correlation -.487 .307 -.341 -.350 -.411 .502 .265 1 

Sig. (2-tailed) .327 .555 .508 .497 .419 .311 .612  

*. Correlation is significant at the 0.05 level (2-tailed).       

**. Correlation is significant at the 0.01 level (2-tailed).       
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  Ni_ in mature 

 (Phyto /Dry) 

Ni_ in seedlings pH EC CEC OM Clay MC 

Ni_ in mature 
 (Phyto /Dry) 

Pearson Correlation 1        

Sig. (2-tailed)         

N 6        

Ni_ in seedlings Pearson Correlation .476 1       

Sig. (2-tailed) .340        

N 6 6       

pH Pearson Correlation -.744 -.148 1      

Sig. (2-tailed) .090 .779       

N 6 6 6      

EC Pearson Correlation .761 .791 -.520 1     

Sig. (2-tailed) .079 .061 .291      

N 6 6 6 6     

CEC Pearson Correlation .549 .751 .020 .743 1    

Sig. (2-tailed) .259 .085 .970 .090     

N 6 6 6 6 6    

OM Pearson Correlation .294 -.230 .098 .142 .448 1   

Sig. (2-tailed) .572 .661 .853 .789 .373    

N 6 6 6 6 6 6   

Clay Pearson Correlation .761 .228 -.321 .636 .683 .814* 1  

Sig. (2-tailed) .079 .664 .535 .174 .134 .049   

N 6 6 6 6 6 6   

MC Pearson Correlation .119 -.793 -.341 -.350 -.411 .502 .265 1 

Sig. (2-tailed) .823 .060 .508 .497 .419 .311 .612  

N 6 6 6 6 6 6 6 6 

*. Correlation is significant at the 0.05 level (2-tailed).       

**. Correlation is significant at the 0.01 level (2-tailed).       

 

 
  Cu_ in mature  

(Phyto /Dry)  
Cu_ in seedlings pH EC CEC OM Clay MC 

Cu_ in mature  

(Phyto /Dry) 

Pearson Correlation 1        

Sig. (2-tailed)         

N 6 6       

Cu_ in seedlings Pearson Correlation .827* 1       

Sig. (2-tailed) .042        

N 6 6       

pH Pearson Correlation -.542 -.325 1      

Sig. (2-tailed) .267 .529       

N 6 6 6      

EC Pearson Correlation .733 .486 -.520 1     

Sig. (2-tailed) .097 .328 .291      

N 6 6 6 6     

CEC Pearson Correlation .356 .126 .020 .743 1    

Sig. (2-tailed) .489 .813 .970 .090     

N 6 6 6 6 6    

OM Pearson Correlation -.493 -.415 .098 .142 .448 1   

Sig. (2-tailed) .321 .413 .853 .789 .373    

N 6 6 6 6 6 6   

Clay Pearson Correlation .097 .082 -.321 .636 .683 .814* 1  

Sig. (2-tailed) .855 .877 .535 .174 .134 .049   

N 6 6 6 6 6 6 6  

MC Pearson Correlation -.581 -.506 -.341 -.350 -.411 .502 .265 1 

Sig. (2-tailed) .226 .306 .508 .497 .419 .311 .612  

N 6 6 6 6 6 6 6 6 

*. Correlation is significant at the 0.05 level (2-tailed).       

**. Correlation is significant at the 0.01 level (2-tailed).       
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Correlation coefficient between soil physicochemical parameters and metal accumulation in phytolacca dodecandra 

 (Wet season) 

  Cd_ in mature 

 (Phyt /Wet) 

Cd_ in  

seedlings 

pH EC CEC OM Clay MC 

Cd_ in mature 
 (Phyt /Wet) 

Pearson Correlation 1        

Sig. (2-tailed)         

N 6        

Cd_ in seedlings Pearson Correlation .784 1       

Sig. (2-tailed) .065        

N 6 6       

pH Pearson Correlation -.572 -.104 1      

Sig. (2-tailed) .236 .845       

N 6 6 6      

EC Pearson Correlation .802 .939** -.100 1     

Sig. (2-tailed) .055 .006 .850      

N 6 6 6 6     

CEC Pearson Correlation .489 .678 .260 .687 1    

Sig. (2-tailed) .325 .138 .618 .132     

N 6 6 6 6 6    

OM Pearson Correlation -.069 -.116 .465 .173 .192 1   

Sig. (2-tailed) .896 .827 .353 .744 .716    

N 6 6 6 6 6 6   

Clay Pearson Correlation .122 .440 .622 .598 .750 .670 1  

Sig. (2-tailed) .817 .382 .187 .210 .086 .146   

N 6 6 6 6 6 6 6  

MC Pearson Correlation .167 -.237 -.338 -.040 -.534 .463 -.230 1 

Sig. (2-tailed) .752 .651 .513 .940 .275 .356 .661  

N 6 6 6 6 6 6 6 6 

**. Correlation is significant at the 0.01 level (2-tailed).       

*. Correlation is significant at the 0.05 level (2-tailed).       

 

 
  Cr_ in mature  

(Phyt /Wet)  
Cr_ in  

seedlings 
pH EC CEC OM Clay MC 

Cr_ in mature 

 (Phyt /Wet) 

Pearson Correlation 1        

Sig. (2-tailed)         

N 6        

Cr_ in seedlings Pearson Correlation .976** 1       

Sig. (2-tailed) .001        

N 6 6       

pH Pearson Correlation -.490 -.401 1      

Sig. (2-tailed) .324 .430       

N 6 6 6      

EC Pearson Correlation .665 .759 -.100 1     

Sig. (2-tailed) .149 .080 .850      

N 6 6 6 6     

CEC Pearson Correlation .523 .663 .260 .687 1    

Sig. (2-tailed) .287 .151 .618 .132     

N 6 6 6 6 6    

OM Pearson Correlation .091 .021 .465 .173 .192 1   

Sig. (2-tailed) .863 .969 .353 .744 .716    

N 6 6 6 6 6 6   

Clay Pearson Correlation .343 .420 .622 .598 .750 .670 1  

Sig. (2-tailed) .506 .407 .187 .210 .086 .146   

N 6 6 6 6 6 6 6  

MC Pearson Correlation -.031 -.189 -.338 -.040 -.534 .463 -.230 1 

Sig. (2-tailed) .954 .720 .513 .940 .275 .356 .661  

N 6 6 6 6 6 6 6 6 

**. Correlation is significant at the 0.01 level (2-tailed).       

*. Correlation is significant at the 0.05 level (2-tailed).       

 



 

177 
 

 
  Pb_ in  mature 

(Phyto /Wet) 

Pb_ in  

seedlings 

pH EC CEC OM Clay MC 

Pb_ in mature 

(Phyto /Wet) 

Pearson Correlation 1        

Sig. (2-tailed)         

N 6        

Pb_ in seedlings Pearson Correlation .786 1       

Sig. (2-tailed) .064        

N 6 6       

pH Pearson Correlation -.536 -.373 1      

Sig. (2-tailed) .273 .467       

N 6 6 6      

EC Pearson Correlation .812* .726 -.100 1     

Sig. (2-tailed) .050 .103 .850      

N 6 6 6 6     

CEC Pearson Correlation .452 .662 .260 .687 1    

Sig. (2-tailed) .369 .152 .618 .132     

N 6 6 6 6 6    

OM Pearson Correlation .211 .034 .465 .173 .192 1   

Sig. (2-tailed) .688 .950 .353 .744 .716    

N 6 6 6 6 6 6   

Clay Pearson Correlation .285 .437 .622 .598 .750 .670 1  

Sig. (2-tailed) .584 .387 .187 .210 .086 .146   

N 6 6 6 6 6 6 6  

MC Pearson Correlation .325 -.217 -.338 -.040 -.534 .463 -.230 1 

Sig. (2-tailed) .530 .679 .513 .940 .275 .356 .661  

N 6 6 6 6 6 6 6 6 

*. Correlation is significant at the 0.05 level (2-tailed).       

 

 
  Zn_ in mature  

(Phyt /Wet) 

Zn_ in  

seedlings 

pH EC CEC OM Clay MC 

Zn_ in mature 

(Phyt /Wet) 

Pearson Correlation 1        

Sig. (2-tailed)         

N 6        

Zn_ seedlings Pearson Correlation .375 1       

Sig. (2-tailed) .463        

N 6 6       

pH Pearson Correlation -.336 -.507 1      

Sig. (2-tailed) .515 .305       

N 6 6 6      

EC Pearson Correlation .553 .503 -.100 1     

Sig. (2-tailed) .255 .309 .850      

N 6 6 6 6     

CEC Pearson Correlation .459 .399 .260 .687 1    

Sig. (2-tailed) .360 .433 .618 .132     

N 6 6 6 6 6    

OM Pearson Correlation .428 -.606 .465 .173 .192 1   

Sig. (2-tailed) .397 .203 .353 .744 .716    

N 6 6 6 6 6 6   

Clay Pearson Correlation .269 -.207 .622 .598 .750 .670 1  

Sig. (2-tailed) .607 .694 .187 .210 .086 .146   

N 6 6 6 6 6 6 6  

MC Pearson Correlation .428 -.263 -.338 -.040 -.534 .463 -.230 1 

Sig. (2-tailed) .397 .615 .513 .940 .275 .356 .661  

N 6 6 6 6 6 6 6 6 

*. Correlation is significant at the 0.05 level (2-tailed).       
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  Ni_ in mature  
(Phyto /Wet) 

Ni_ in  
seedlings 

pH EC CEC OM Clay MC 

Ni_ in mature 

(Phyto /Wet) 

Pearson Correlation 1        

Sig. (2-tailed)         

N 6        

Ni_ in seedlings Pearson Correlation .858* 1       

Sig. (2-tailed) .029        

N 6 6       

pH Pearson Correlation -.274 -.586 1      

Sig. (2-tailed) .599 .222       

N 6 6 6      

EC Pearson Correlation .814* .787 -.100 1     

Sig. (2-tailed) .049 .063 .850      

N 6 6 6 6     

CEC Pearson Correlation .699 .359 .260 .687 1    

Sig. (2-tailed) .122 .485 .618 .132     

N 6 6 6 6 6    

OM Pearson Correlation -.293 -.401 .465 .173 .192 1   

Sig. (2-tailed) .574 .431 .353 .744 .716    

N 6 6 6 6 6 6   

Clay Pearson Correlation .240 .010 .622 .598 .750 .670 1  

Sig. (2-tailed) .647 .985 .187 .210 .086 .146   

N 6 6 6 6 6 6 6  

MC Pearson Correlation -.306 -.067 -.338 -.040 -.534 .463 -.230 1 

Sig. (2-tailed) .555 .900 .513 .940 .275 .356 .661  

N 6 6 6 6 6 6 6 6 

*. Correlation is significant at the 0.05 level (2-tailed).       

 
 

  Cu_ in mature 

 (Phyt /Wet) 

Cu_ in 

 seedlings 

pH EC CEC OM Clay MC 

Cu_ in mature  
(Phyt /Wet) 

Pearson Correlation 1        

Sig. (2-tailed)         

N 6        

Cu_ in seedlings Pearson Correlation .460 1       

Sig. (2-tailed) .359        

N 6 6       

pH Pearson Correlation .098 -.025 1      

Sig. (2-tailed) .853 .963       

N 6 6 6      

EC Pearson Correlation .568 .974** -.100 1     

Sig. (2-tailed) .239 .001 .850      

N 6 6 6 6     

CEC Pearson Correlation .575 .708 .260 .687 1    

Sig. (2-tailed) .233 .116 .618 .132     

N 6 6 6 6 6    

OM Pearson Correlation .741 .153 .465 .173 .192 1   

Sig. (2-tailed) .092 .772 .353 .744 .716    

N 6 6 6 6 6 6   

Clay Pearson Correlation .621 .666 .622 .598 .750 .670 1  

Sig. (2-tailed) .189 .149 .187 .210 .086 .146   

N 6 6 6 6 6 6 6  

MC Pearson Correlation .358 -.174 -.338 -.040 -.534 .463 -.230 1 

Sig. (2-tailed) .487 .742 .513 .940 .275 .356 .661  

N 6 6 6 6 6 6 6 6 

**. Correlation is significant at the 0.01 level (2-tailed).       

*. Correlation is significant at the 0.05 level (2-tailed).       
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Correlation coefficient between soil physicochemical parameters and metal accumulation in Adhatoda schimperiana  

(Dry season) 

 
  Cd_ in mature  

(Ada/Dry) 

Cd_ in  

seedlings 

pH EC CEC OM Clay MC 

Cd_ in mature 

(Ada/Dry) 

Pearson Correlation 1        

Sig. (2-tailed)         

N 6        

Cd_ in seedlings Pearson Correlation .741 1       

Sig. (2-tailed) .092        

N 6 6       

pH Pearson Correlation -.418 -.575 1      

Sig. (2-tailed) .410 .233       

N 6 6 6      

EC Pearson Correlation .708 .974** -.677 1     

Sig. (2-tailed) .116 .001 .140      

N 6 6 6 6     

CEC Pearson Correlation -.122 -.066 .742 -.181 1    

Sig. (2-tailed) .818 .901 .091 .731     

N 6 6 6 6 6    

OM Pearson Correlation -.200 -.354 .809 -.516 .853* 1   

Sig. (2-tailed) .704 .491 .051 .295 .031    

N 6 6 6 6 6 6   

Clay Pearson Correlation .468 .096 .452 .032 .232 .191 1  

Sig. (2-tailed) .349 .856 .368 .952 .658 .718   

N 6 6 6 6 6 6 6  

MC Pearson Correlation -.579 -.635 .948** -.676 .649 .624 .362 1 

Sig. (2-tailed) .228 .175 .004 .140 .163 .186 .481  

N 6 6 6 6 6 6 6 6 

**. Correlation is significant at the 0.01 level (2-tailed).       

*. Correlation is significant at the 0.05 level (2-tailed).       

 

 
  Cr_ in mature 

(Ada/Dry) 

Cr_ in  

seedlings 

pH EC CEC OM Clay MC 

Cr_ in mature 
 (Ada/Dry) 

Pearson Correlation 1        

Sig. (2-tailed)         

N 6        

Cr_ in seedlings Pearson Correlation .963** 1       

Sig. (2-tailed) .002        

N 6 6       

pH Pearson Correlation -.676 -.478 1      

Sig. (2-tailed) .140 .338       

N 6 6 6      

EC Pearson Correlation .927** .848* -.677 1     

Sig. (2-tailed) .008 .033 .140      

N 6 6 6 6     

CEC Pearson Correlation -.306 -.116 .742 -.181 1    

Sig. (2-tailed) .555 .827 .091 .731     

N 6 6 6 6 6    

OM Pearson Correlation -.623 -.448 .809 -.516 .853* 1   

Sig. (2-tailed) .187 .373 .051 .295 .031    

N 6 6 6 6 6 6   

Clay Pearson Correlation .204 .386 .452 .032 .232 .191 1  

Sig. (2-tailed) .698 .450 .368 .952 .658 .718   

N 6 6 6 6 6 6 6  

MC Pearson Correlation -.649 -.474 .948** -.676 .649 .624 .362 1 

Sig. (2-tailed) .163 .342 .004 .140 .163 .186 .481  

N 6 6 6 6 6 6 6 6 

**. Correlation is significant at the 0.01 level (2-tailed).       

*. Correlation is significant at the 0.05 level (2-tailed).       

 
 



 

180 
 

  Pb_ in mature 

 (Ada/Dry) 

Pb_ in  

seedlings 

pH EC CEC OM Clay MC 

Pb_ in mature  

(Ada/Dry) 

Pearson Correlation 1        

Sig. (2-tailed)         

N 6        

Pb_ in seedlings Pearson Correlation .675 1       

Sig. (2-tailed) .141        

N 6 6       

pH Pearson Correlation -.675 -.760 1      

Sig. (2-tailed) .142 .080       

N 6 6 6      

EC Pearson Correlation .720 .891* -.677 1     

Sig. (2-tailed) .107 .017 .140      

N 6 6 6 6     

CEC Pearson Correlation -.408 -.177 .742 -.181 1    

Sig. (2-tailed) .422 .737 .091 .731     

N 6 6 6 6 6    

OM Pearson Correlation -.373 -.403 .809 -.516 .853* 1   

Sig. (2-tailed) .467 .428 .051 .295 .031    

N 6 6 6 6 6 6   

Clay Pearson Correlation .159 -.364 .452 .032 .232 .191 1  

Sig. (2-tailed) .763 .478 .368 .952 .658 .718   

N 6 6 6 6 6 6 6  

MC Pearson Correlation -.838* -.792 .948** -.676 .649 .624 .362 1 

Sig. (2-tailed) .037 .060 .004 .140 .163 .186 .481  

N 6 6 6 6 6 6 6 6 

*. Correlation is significant at the 0.05 level (2-tailed).       

**. Correlation is significant at the 0.01 level (2-tailed).       

 

 

  Zn_ in mature 

(Ada/Dry) 

Zn_ in  

seedlings 

pH EC CEC OM Clay MC 

Zn_ in mature 

(Ada/Dry) 

Pearson Correlation 1        

Sig. (2-tailed)         

N 6        

Zn_ in seedlings Pearson Correlation .955** 1       

Sig. (2-tailed) .003        

N 6 6       

pH Pearson Correlation -.706 -.690 1      

Sig. (2-tailed) .117 .129       

N 6 6 6      

EC Pearson Correlation .829* .809 -.677 1     

Sig. (2-tailed) .041 .051 .140      

N 6 6 6 6     

CEC Pearson Correlation -.528 -.417 .742 -.181 1    

Sig. (2-tailed) .282 .411 .091 .731     

N 6 6 6 6 6    

OM Pearson Correlation -.679 -.577 .809 -.516 .853* 1   

Sig. (2-tailed) .138 .231 .051 .295 .031    

N 6 6 6 6 6 6   

Clay Pearson Correlation .299 .269 .452 .032 .232 .191 1  

Sig. (2-tailed) .565 .607 .368 .952 .658 .718   

N 6 6 6 6 6 6 6  

MC Pearson Correlation -.729 -.732 .948** -.676 .649 .624 .362 1 

Sig. (2-tailed) .100 .098 .004 .140 .163 .186 .481  

N 6 6 6 6 6 6 6 6 

**. Correlation is significant at the 0.01 level (2-tailed).       

*. Correlation is significant at the 0.05 level (2-tailed).       
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  Ni_ in mature 

(Ada/Dry) 

Ni_ in  

seedling 

pH EC CEC OM Clay MC 

Ni_ in mature 

(Ada/Dry) 

Pearson Correlation 1        

Sig. (2-tailed)         

N 6        

Ni_ in seedling Pearson Correlation .512 1       

Sig. (2-tailed) .299        

N 6 6       

pH Pearson Correlation -.796 -.255 1      

Sig. (2-tailed) .058 .625       

N 6 6 6      

EC Pearson Correlation .720 .698 -.677 1     

Sig. (2-tailed) .106 .123 .140      

N 6 6 6 6     

CEC Pearson Correlation -.334 .230 .742 -.181 1    

Sig. (2-tailed) .518 .661 .091 .731     

N 6 6 6 6 6    

OM Pearson Correlation -.334 -.082 .809 -.516 .853* 1   

Sig. (2-tailed) .517 .877 .051 .295 .031    

N 6 6 6 6 6 6   

Clay Pearson Correlation -.271 .345 .452 .032 .232 .191 1  

Sig. (2-tailed) .604 .503 .368 .952 .658 .718   

N 6 6 6 6 6 6 6  

MC Pearson Correlation -.928** -.311 .948** -.676 .649 .624 .362 1 

Sig. (2-tailed) .007 .549 .004 .140 .163 .186 .481  

N 6 6 6 6 6 6 6 6 

**. Correlation is significant at the 0.01 level (2-tailed).       

*. Correlation is significant at the 0.05 level (2-tailed).       

 

 
  Cu_ in mature 

 (Ada/Dry) 
Cu_ in  

seedlings 
pH EC CEC OM Clay MC 

Cu_ in mature 

(Ada/Dry) 

Pearson Correlation 1        

Sig. (2-tailed)         

N 6        

Cu_ in seedlings Pearson Correlation .285 1       

Sig. (2-tailed) .584        

N 6 6       

pH Pearson Correlation -.740 .012 1      

Sig. (2-tailed) .093 .983       

N 6 6 6      

EC Pearson Correlation .911* .332 -.677 1     

Sig. (2-tailed) .012 .521 .140      

N 6 6 6 6     

CEC Pearson Correlation -.303 .100 .742 -.181 1    

Sig. (2-tailed) .559 .850 .091 .731     

N 6 6 6 6 6    

OM Pearson Correlation -.489 .200 .809 -.516 .853* 1   

Sig. (2-tailed) .325 .704 .051 .295 .031    

N 6 6 6 6 6 6   

Clay Pearson Correlation .095 .321 .452 .032 .232 .191 1  

Sig. (2-tailed) .859 .536 .368 .952 .658 .718   

N 6 6 6 6 6 6 6  

MC Pearson Correlation -.810 -.207 .948** -.676 .649 .624 .362 1 

Sig. (2-tailed) .051 .694 .004 .140 .163 .186 .481  

N 6 6 6 6 6 6 6 6 

*. Correlation is significant at the 0.05 level (2-tailed).       

**. Correlation is significant at the 0.01 level (2-tailed).       

 

 

 



 

182 
 

Correlation coefficient between soil physicochemical parameters and metal accumulation in Adhatoda schimperiana  

(Wet season) 

 
  Cd_ in mature  

(Ada wet) 

Cd_ in seedlings pH EC CEC OM Clay MC 

Cd_ in mature 

(Ada wet) 

Pearson Correlation 1        

Sig. (2-tailed)         

N 6        

Cd_ in seedlings Pearson Correlation .764 1       

Sig. (2-tailed) .077        

N 6 6       

pH Pearson Correlation -.384 .060 1      

Sig. (2-tailed) .452 .910       

N 6 6 6      

EC Pearson Correlation .976** .875* -.222 1     

Sig. (2-tailed) .001 .023 .673      

N 6 6 6 6     

CEC Pearson Correlation .042 .299 .496 .190 1    

Sig. (2-tailed) .937 .565 .317 .718     

N 6 6 6 6 6    

OM Pearson Correlation -.517 .141 .595 -.354 .152 1   

Sig. (2-tailed) .293 .789 .212 .491 .773    

N 6 6 6 6 6 6   

Clay Pearson Correlation .157 .756 .439 .347 .372 .744 1  

Sig. (2-tailed) .766 .082 .384 .501 .468 .090   

N 6 6 6 6 6 6 6  

MC Pearson Correlation -.489 .141 .469 -.335 .237 .954** .712 1 

Sig. (2-tailed) .325 .790 .348 .516 .652 .003 .112  

N 6 6 6 6 6 6 6 6 

**. Correlation is significant at the 0.01 level (2-tailed).       

*. Correlation is significant at the 0.05 level (2-tailed).       

 

 
  Cr_ in mature 

(Ada wet) 

Cr_ in seedlings pH EC CEC OM Clay MC 

Cr_ in mature 
(Ada wet) 

Pearson Correlation 1        

Sig. (2-tailed)         

N 6        

Cr_ seedlings Pearson Correlation .871* 1       

Sig. (2-tailed) .024        

N 6 6       

pH Pearson Correlation -.396 -.443 1      

Sig. (2-tailed) .438 .379       

N 6 6 6      

EC Pearson Correlation .920** .927** -.222 1     

Sig. (2-tailed) .009 .008 .673      

N 6 6 6 6     

CEC Pearson Correlation .145 .232 .496 .190 1    

Sig. (2-tailed) .785 .659 .317 .718     

N 6 6 6 6 6    

OM Pearson Correlation -.683 -.362 .595 -.354 .152 1   

Sig. (2-tailed) .135 .481 .212 .491 .773    

N 6 6 6 6 6 6   

Clay Pearson Correlation -.034 .320 .439 .347 .372 .744 1  

Sig. (2-tailed) .949 .537 .384 .501 .468 .090   

N 6 6 6 6 6 6 6  

MC Pearson Correlation -.631 -.274 .469 -.335 .237 .954** .712 1 

Sig. (2-tailed) .179 .599 .348 .516 .652 .003 .112  

N 6 6 6 6 6 6 6 6 

*. Correlation is significant at the 0.05 level (2-tailed).       

**. Correlation is significant at the 0.01 level (2-tailed).       
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  Pb_ in mature 

(Ada wet) 

Pb_ in 

 seedlings 

pH EC CEC OM Clay MC 

Pb_ in mature 

(Ada wet) 

Pearson Correlation 1        

Sig. (2-tailed)         

N 6        

Pb_ in seedlings Pearson Correlation .953** 1       

Sig. (2-tailed) .003        

N 6 6       

pH Pearson Correlation -.547 -.707 1      

Sig. (2-tailed) .261 .116       

N 6 6 6      

EC Pearson Correlation .891* .813* -.222 1     

Sig. (2-tailed) .017 .049 .673      

N 6 6 6 6     

CEC Pearson Correlation -.240 -.241 .496 .190 1    

Sig. (2-tailed) .647 .646 .317 .718     

N 6 6 6 6 6    

OM Pearson Correlation -.421 -.454 .595 -.354 .152 1   

Sig. (2-tailed) .406 .366 .212 .491 .773    

N 6 6 6 6 6 6   

Clay Pearson Correlation .182 .093 .439 .347 .372 .744 1  

Sig. (2-tailed) .730 .861 .384 .501 .468 .090   

N 6 6 6 6 6 6 6  

MC Pearson Correlation -.415 -.363 .469 -.335 .237 .954** .712 1 

Sig. (2-tailed) .413 .479 .348 .516 .652 .003 .112  

N 6 6 6 6 6 6 6 6 

**. Correlation is significant at the 0.01 level (2-tailed).       

*. Correlation is significant at the 0.05 level (2-tailed).       

 

 
  Zn_ in mature 

(Ada wet) 
Zn_ in 

 seedlings 
pH EC CEC OM Clay MC 

Zn_ in mature 

(Ada wet) 

Pearson Correlation 1        

Sig. (2-tailed)         

N 6        

Zn_ seedlings Pearson Correlation .948** 1       

Sig. (2-tailed) .004        

N 6 6       

pH Pearson Correlation -.600 -.594 1      

Sig. (2-tailed) .208 .214       

N 6 6 6      

EC Pearson Correlation .868* .896* -.222 1     

Sig. (2-tailed) .025 .016 .673      

N 6 6 6 6     

CEC Pearson Correlation -.175 .067 .496 .190 1    

Sig. (2-tailed) .740 .900 .317 .718     

N 6 6 6 6 6    

OM Pearson Correlation -.477 -.493 .595 -.354 .152 1   

Sig. (2-tailed) .338 .321 .212 .491 .773    

N 6 6 6 6 6 6   

Clay Pearson Correlation .139 .160 .439 .347 .372 .744 1  

Sig. (2-tailed) .792 .763 .384 .501 .468 .090   

N 6 6 6 6 6 6 6  

MC Pearson Correlation -.474 -.409 .469 -.335 .237 .954** .712 1 

Sig. (2-tailed) .342 .421 .348 .516 .652 .003 .112  

N 6 6 6 6 6 6 6 6 

**. Correlation is significant at the 0.01 level (2-tailed).       

*. Correlation is significant at the 0.05 level (2-tailed).       

 

 



 

184 
 

 
  Ni_ in mature 

(Ada wet) 

Ni_ in 

seedlings 

pH EC CEC OM Clay MC 

Ni_ in mature 

 (Ada wet) 

Pearson Correlation 1        

Sig. (2-tailed)         

N 6        

Ni_ in seedlings Pearson Correlation .964** 1       

Sig. (2-tailed) .002        

N 6 6       

pH Pearson Correlation -.594 -.714 1      

Sig. (2-tailed) .214 .111       

N 6 6 6      

EC Pearson Correlation .687 .712 -.222 1     

Sig. (2-tailed) .131 .113 .673      

N 6 6 6 6     

CEC Pearson Correlation .263 .138 .496 .190 1    

Sig. (2-tailed) .615 .795 .317 .718     

N 6 6 6 6 6    

OM Pearson Correlation -.605 -.668 .595 -.354 .152 1   

Sig. (2-tailed) .203 .147 .212 .491 .773    

N 6 6 6 6 6 6   

Sand Pearson Correlation -.011 .184 -.664 -.347 -.402 -.276   

Sig. (2-tailed) .984 .727 .150 .500 .430 .597   

N 6 6 6 6 6 6   

MC Pearson Correlation -.513 -.531 .469 -.335 .237 .954** .712 1 

Sig. (2-tailed) .298 .279 .348 .516 .652 .003 .112  

N 6 6 6 6 6 6 6 6 

**. Correlation is significant at the 0.01 level (2-tailed).       

*. Correlation is significant at the 0.05 level (2-tailed).       

 

 
  Cu_ in mature 

 (Ada wet) 

Cu_ in 

 seedlings 

pH EC CEC OM Clay MC 

Cu_ in mature 

 (Ada wet) 

Pearson Correlation 1        

Sig. (2-tailed)         

N 6        

Cu_ seedlings Pearson Correlation .582 1       

Sig. (2-tailed) .226        

N 6 6       

pH Pearson Correlation -.254 -.441 1      

Sig. (2-tailed) .627 .381       

N 6 6 6      

EC Pearson Correlation .601 .795 -.222 1     

Sig. (2-tailed) .207 .059 .673      

N 6 6 6 6     

CEC Pearson Correlation -.073 -.368 .496 .190 1    

Sig. (2-tailed) .891 .473 .317 .718     

N 6 6 6 6 6    

OM Pearson Correlation -.081 -.169 .595 -.354 .152 1   

Sig. (2-tailed) .878 .749 .212 .491 .773    

N 6 6 6 6 6 6   

Clay Pearson Correlation .398 .332 .439 .347 .372 .744 1  

Sig. (2-tailed) .434 .520 .384 .501 .468 .090   

N 6 6 6 6 6 6 6  

MC Pearson Correlation -.211 -.171 .469 -.335 .237 .954** .712 1 

Sig. (2-tailed) .688 .746 .348 .516 .652 .003 .112  

N 6 6 6 6 6 6 6 6 

**. Correlation is significant at the 0.01 level (2-tailed).       

*. Correlation is significant at the 0.05 level (2-tailed).       
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Correlation coefficient between soil physicochemical parameters and metal accumulation in Solanum incanum  

(Dry season) 

 
  Cd_ in mature 

(Sola Dry) 
Cd_ in  

seedlings 
pH EC CEC OM Clay MC 

Cd_ in mature 

(Sola Dry) 

Pearson Correlation 1        

Sig. (2-tailed)         

N 6        

Cd_ in seedlings Pearson Correlation .888* 1       

Sig. (2-tailed) .018        

N 6 6       

pH Pearson Correlation -.729 -.926** 1      

Sig. (2-tailed) .100 .008       

N 6 6 6      

EC Pearson Correlation .593 .655 -.513 1     

Sig. (2-tailed) .215 .158 .298      

N 6 6 6 6     

CEC Pearson Correlation .536 .616 -.666 .806 1    

Sig. (2-tailed) .273 .193 .148 .053     

N 6 6 6 6 6    

OM Pearson Correlation .095 -.084 -.069 .165 .473 1   

Sig. (2-tailed) .859 .874 .897 .755 .343    

N 6 6 6 6 6 6   

Clay Pearson Correlation .744 .546 -.470 .597 .580 .657 1  

Sig. (2-tailed) .090 .262 .347 .211 .228 .156   

N 6 6 6 6 6 6 6  

MC Pearson Correlation -.524 -.551 .365 .025 .234 .739 .106 1 

Sig. (2-tailed) .286 .257 .477 .962 .656 .094 .842  

N 6 6 6 6 6 6 6 6 

*. Correlation is significant at the 0.05 level (2-tailed).       

**. Correlation is significant at the 0.01 level (2-tailed).       

 

 
  Cr_ in mature 

(Sola Dry) 

Cr_ in  

seedlings  

pH EC CEC OM Clay MC 

Cr_ in mature 

(Sola Dry) 

Pearson Correlation 1        

Sig. (2-tailed)         

N 6        

Cr_ in seedlings Pearson Correlation .714 1       

Sig. (2-tailed) .111        

N 6 6       

pH Pearson Correlation -.908* -.444 1      

Sig. (2-tailed) .012 .378       

N 6 6 6      

EC Pearson Correlation .781 .962** -.513 1     

Sig. (2-tailed) .067 .002 .298      

N 6 6 6 6     

CEC Pearson Correlation .701 .783 -.666 .806 1    

Sig. (2-tailed) .121 .065 .148 .053     

N 6 6 6 6 6    

OM Pearson Correlation -.038 .019 -.069 .165 .473 1   

Sig. (2-tailed) .943 .972 .897 .755 .343    

N 6 6 6 6 6 6   

Clay Pearson Correlation .543 .430 -.470 .597 .580 .657 1  

Sig. (2-tailed) .266 .395 .347 .211 .228 .156   

N 6 6 6 6 6 6 6  

MC Pearson Correlation -.387 -.056 .365 .025 .234 .739 .106 1 

Sig. (2-tailed) .449 .916 .477 .962 .656 .094 .842  

N 6 6 6 6 6 6 6 6 

*. Correlation is significant at the 0.05 level (2-tailed).       

**. Correlation is significant at the 0.01 level (2-tailed).       
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  Pb_ in mature  

(Sola Dry) 

Pb_ in  

seedlings 

pH EC CEC OM Clay MC 

Pb_ in mature 

(Sola Dry) 

Pearson Correlation 1        

Sig. (2-tailed)         

N 6        

Pb_ in seedlings Pearson Correlation .853* 1       

Sig. (2-tailed) .031        

N 6 6       

pH Pearson Correlation -.061 -.550 1      

Sig. (2-tailed) .908 .258       

N 6 6 6      

EC Pearson Correlation .750 .816* -.513 1     

Sig. (2-tailed) .086 .048 .298      

N 6 6 6 6     

CEC Pearson Correlation .484 .697 -.666 .806 1    

Sig. (2-tailed) .331 .124 .148 .053     

N 6 6 6 6 6    

OM Pearson Correlation .408 .369 -.069 .165 .473 1   

Sig. (2-tailed) .421 .472 .897 .755 .343    

N 6 6 6 6 6 6   

Clay Pearson Correlation .776 .898* -.470 .597 .580 .657 1  

Sig. (2-tailed) .070 .015 .347 .211 .228 .156   

N 6 6 6 6 6 6 6  

MC Pearson Correlation .160 -.127 .365 .025 .234 .739 .106 1 

Sig. (2-tailed) .763 .811 .477 .962 .656 .094 .842  

N 6 6 6 6 6 6 6 6 

*. Correlation is significant at the 0.05 level (2-tailed).       

**. Correlation is significant at the 0.01 level (2-tailed).       

 

 
  Zn_ in mature 

(Sola Dry) 
Zn_ in 

 seedlings 
pH EC CEC OM Clay MC 

Zn_ in mature 

(Sola Dry) 

Pearson Correlation 1        

Sig. (2-tailed)         

N 6        

Zn_ in seedlings Pearson Correlation .800 1       

Sig. (2-tailed) .056        

N 6 6       

pH Pearson Correlation -.717 -.462 1      

Sig. (2-tailed) .109 .356       

N 6 6 6      

EC Pearson Correlation .750 .772 -.513 1     

Sig. (2-tailed) .086 .072 .298      

N 6 6 6 6     

CEC Pearson Correlation .609 .337 -.666 .806 1    

Sig. (2-tailed) .199 .514 .148 .053     

N 6 6 6 6 6    

OM Pearson Correlation -.220 -.238 -.069 .165 .473 1   

Sig. (2-tailed) .676 .650 .897 .755 .343    

N 6 6 6 6 6 6   

Clay Pearson Correlation .450 .527 -.470 .597 .580 .657 1  

Sig. (2-tailed) .370 .283 .347 .211 .228 .156   

N 6 6 6 6 6 6 6  

MC Pearson Correlation -.586 -.480 .365 .025 .234 .739 .751 1 

Sig. (2-tailed) .221 .335 .477 .962 .656 .094 .085  

N 6 6 6 6 6 6 6 6 

*. Correlation is significant at the 0.05 level (2-tailed).       
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  Ni_ in mature 

(Sola Dry) 

Ni_ in seedlings pH EC CEC OM Clay MC 

Ni_ in mature 

(Sola Dry) 

 

Pearson Correlation 1        

Sig. (2-tailed)         

N 6        

Ni_ in seedlings Pearson Correlation .412 1       

Sig. (2-tailed) .417        

N 6 6       

pH Pearson Correlation -.564 -.884* 1      

Sig. (2-tailed) .243 .019       

N 6 6 6      

EC Pearson Correlation .573 .691 -.513 1     

Sig. (2-tailed) .235 .128 .298      

N 6 6 6 6     

CEC Pearson Correlation .334 .883* -.666 .806 1    

Sig. (2-tailed) .517 .020 .148 .053     

N 6 6 6 6 6    

OM Pearson Correlation -.086 .438 -.069 .165 .473 1   

Sig. (2-tailed) .872 .385 .897 .755 .343    

N 6 6 6 6 6 6   

Clay Pearson Correlation .675 .647 -.470 .597 .580 .657 1  

Sig. (2-tailed) .141 .165 .347 .211 .228 .156   

N 6 6 6 6 6 6 6  

MC Pearson Correlation -.627 .080 .365 .025 .234 .739 .106 1 

Sig. (2-tailed) .183 .880 .477 .962 .656 .094 .842  

N 6 6 6 6 6 6 6 6 

*. Correlation is significant at the 0.05 level (2-tailed).       

 

 
  Cu_ in mature 

(Sola/ Dry) 

Cu_ in 

 seedlings 

pH EC CEC OM Clay MC 

Cu_ in mature 

(Sola Dry) 

Pearson Correlation 1        

Sig. (2-tailed)         

N 6        

Cu_ in seedlings Pearson Correlation .763 1       

Sig. (2-tailed) .078        

N 6 6       

pH Pearson Correlation -.800 -.727 1      

Sig. (2-tailed) .056 .102       

N 6 6 6      

EC Pearson Correlation .758 .913* -.513 1     

Sig. (2-tailed) .081 .011 .298      

N 6 6 6 6     

CEC Pearson Correlation .640 .852* -.666 .806 1    

Sig. (2-tailed) .171 .031 .148 .053     

N 6 6 6 6 6    

OM Pearson Correlation .139 -.014 -.069 .165 .473 1   

Sig. (2-tailed) .792 .980 .897 .755 .343    

N 6 6 6 6 6 6   

Clay Pearson Correlation .791 .419 -.470 .597 .580 .657 1  

Sig. (2-tailed) .061 .408 .347 .211 .228 .156   

N 6 6 6 6 6 6 6  

MC Pearson Correlation -.388 -.180 .365 .025 .234 .739 .106 1 

Sig. (2-tailed) .448 .732 .477 .962 .656 .094 .842  

N 6 6 6 6 6 6 6 6 

*. Correlation is significant at the 0.05 level (2-tailed).       
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Correlation coefficients between soil physicochemical parameters and metal accumulation in Solanum incanum  

(Wet season) 

 
  Cd_ mature  

(Sola wet) 

Cd_ in 

 seedlings 

pH EC CEC OM Clay MC 

Cd_ mature 

(Sola wet) 

Pearson Correlation 1        

Sig. (2-tailed)         

N 6        

Cd_ seedlings Pearson Correlation .848* 1       

Sig. (2-tailed) .033        

N 6 6       

pH Pearson Correlation -.308 -.738 1      

Sig. (2-tailed) .553 .094       

N 6 6 6      

EC Pearson Correlation .760 .725 -.416 1     

Sig. (2-tailed) .080 .103 .412      

N 6 6 6 6     

CEC Pearson Correlation .917* .866* -.376 .586 1    

Sig. (2-tailed) .010 .026 .463 .222     

N 6 6 6 6 6    

OM Pearson Correlation .543 .346 .085 -.125 .673 1   

Sig. (2-tailed) .266 .501 .873 .813 .143    

N 6 6 6 6 6 6   

Clay Pearson Correlation .898* .945** -.651 .659 .890* .516 1  

Sig. (2-tailed) .015 .004 .161 .155 .017 .294   

N 6 6 6 6 6 6 6  

MC Pearson Correlation .750 .709 -.274 .360 .944** .744 .751 1 

Sig. (2-tailed) .086 .115 .599 .483 .005 .090 .085  

N 6 6 6 6 6 6 6 6 

*. Correlation is significant at the 0.05 level (2-tailed).       

**. Correlation is significant at the 0.01 level (2-tailed).       

 

 
  Cr_ in mature 

 (Sola wet) 

Cr_ in  

seedlings 

pH EC CEC OM Clay MC 

Cr_ mature  
(Sola wet) 

Pearson Correlation 1 .729 -.773 .829* .731 .026 .805 .587 

Sig. (2-tailed)  .100 .072 .041 .099 .961 .053 .221 

N 6 6 6 6 6 6 6 6 

Cr_ in seedlings Pearson Correlation .729 1 -.388 .911* .682 .172 .810 .427 

Sig. (2-tailed) .100  .448 .012 .136 .745 .051 .399 

N 6 6 6 6 6 6 6 6 

pH Pearson Correlation -.773 -.388 1 -.416 -.376 .085 -.651 -.274 

Sig. (2-tailed) .072 .448  .412 .463 .873 .161 .599 

N 6 6 6 6 6 6 6 6 

EC Pearson Correlation .829* .911* -.416 1 .586 -.125 .659 .360 

Sig. (2-tailed) .041 .012 .412  .222 .813 .155 .483 

N 6 6 6 6 6 6 6 6 

CEC Pearson Correlation .731 .682 -.376 .586 1 .673 .890* .944** 

Sig. (2-tailed) .099 .136 .463 .222  .143 .017 .005 

N 6 6 6 6 6 6 6 6 

OM Pearson Correlation .026 .172 .085 -.125 .673 1 .516 .744 

Sig. (2-tailed) .961 .745 .873 .813 .143  .294 .090 

N 6 6 6 6 6 6 6 6 

Sand Pearson Correlation -.800 -.536 .873* -.454 -.729 -.369 -.895* -.667 

Sig. (2-tailed) .056 .273 .023 .366 .100 .471 .016 .148 

N 6 6 6 6 6 6 6 6 

MC Pearson Correlation .587 .427 -.274 .360 .944** .744 .751 1 

Sig. (2-tailed) .221 .399 .599 .483 .005 .090 .085  

N 6 6 6 6 6 6 6 6 

*. Correlation is significant at the 0.05 level (2-tailed).       

**. Correlation is significant at the 0.01 level (2-tailed).       
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  Pb_ in  mature 

(Sola wet) 

Pb_ in 

 seedlings 

pH EC CEC OM Clay MC 

Pb_ mature 

(Sola wet) 

Pearson Correlation 1        

Sig. (2-tailed)         

N 6        

Pb_ seedlings Pearson Correlation .836* 1       

Sig. (2-tailed) .038        

N 6 6       

pH Pearson Correlation -.408 -.769 1      

Sig. (2-tailed) .422 .074       

N 6 6 6      

EC Pearson Correlation .951** .829* -.416 1     

Sig. (2-tailed) .004 .041 .412      

N 6 6 6 6     

CEC Pearson Correlation .600 .754 -.376 .586 1    

Sig. (2-tailed) .208 .084 .463 .222     

N 6 6 6 6 6    

OM Pearson Correlation .007 .114 .085 -.125 .673 1   

Sig. (2-tailed) .989 .830 .873 .813 .143    

N 6 6 6 6 6 6   

Clay Pearson Correlation .739 .882* -.651 .659 .890* .516 1  

Sig. (2-tailed) .093 .020 .161 .155 .017 .294   

N 6 6 6 6 6 6 6  

MC Pearson Correlation .379 .618 -.274 .360 .944** .744 .751 1 

Sig. (2-tailed) .459 .191 .599 .483 .005 .090 .085  

N 6 6 6 6 6 6 6 6 

*. Correlation is significant at the 0.05 level (2-tailed).       

**. Correlation is significant at the 0.01 level (2-tailed).       

 

 
  Zn_ in mature  

(Sola wet) 
Zn_ in  

seedlings 
pH EC CEC OM Clay MC 

Zn_ in mature 

(Sola wet) 

Pearson Correlation 1        

Sig. (2-tailed)         

N 6        

Zn_ in seedlings Pearson Correlation .769 1       

Sig. (2-tailed) .074        

N 6 6       

pH Pearson Correlation -.461 -.770 1      

Sig. (2-tailed) .358 .073       

N 6 6 6      

EC Pearson Correlation .893* .720 -.416 1     

Sig. (2-tailed) .016 .106 .412      

N 6 6 6 6     

CEC Pearson Correlation .383 .591 -.376 .586 1    

Sig. (2-tailed) .453 .217 .463 .222     

N 6 6 6 6 6    

OM Pearson Correlation -.392 .014 .085 -.125 .673 1   

Sig. (2-tailed) .442 .979 .873 .813 .143    

N 6 6 6 6 6 6   

Clay Pearson Correlation .440 .779 -.651 .659 .890* .516 1  

Sig. (2-tailed) .382 .068 .161 .155 .017 .294   

N 6 6 6 6 6 6 6  

MC Pearson Correlation .252 .504 -.274 .360 .944** .744 .751 1 

Sig. (2-tailed) .629 .308 .599 .483 .005 .090 .085  

N 6 6 6 6 6 6 6 6 

*. Correlation is significant at the 0.05 level (2-tailed).       

**. Correlation is significant at the 0.01 level (2-tailed).       
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  Ni_ in mature  

(Sola wet) 

Ni_ in  

seedlings 

pH EC CEC OM Clay MC 

Ni_ in mature 

(Sola wet) 

Pearson Correlation 1 .871* -.731 .871* .757 .053 .830* .603 

Sig. (2-tailed)  .024 .099 .024 .081 .920 .041 .205 

N 6 6 6 6 6 6 6 6 

Ni_ in seedlings Pearson Correlation .871* 1 -.710 .708 .758 .253 .865* .547 

Sig. (2-tailed) .024  .114 .116 .081 .629 .026 .261 

N 6 6 6 6 6 6 6 6 

pH Pearson Correlation -.731 -.710 1 -.416 -.376 .085 -.651 -.274 

Sig. (2-tailed) .099 .114  .412 .463 .873 .161 .599 

N 6 6 6 6 6 6 6 6 

EC Pearson Correlation .871* .708 -.416 1 .586 -.125 .659 .360 

Sig. (2-tailed) .024 .116 .412  .222 .813 .155 .483 

N 6 6 6 6 6 6 6 6 

CEC Pearson Correlation .757 .758 -.376 .586 1 .673 .890* .944** 

Sig. (2-tailed) .081 .081 .463 .222  .143 .017 .005 

N 6 6 6 6 6 6 6 6 

OM Pearson Correlation .053 .253 .085 -.125 .673 1 .516 .744 

Sig. (2-tailed) .920 .629 .873 .813 .143  .294 .090 

N 6 6 6 6 6 6 6 6 

Clay Pearson Correlation .830* .865* -.651 .659 .890* .516 1 .751 

Sig. (2-tailed) .041 .026 .161 .155 .017 .294  .085 

N 6 6 6 6 6 6 6 6 

MC Pearson Correlation .603 .547 -.274 .360 .944** .744 .751 1 

Sig. (2-tailed) .205 .261 .599 .483 .005 .090 .085  

N 6 6 6 6 6 6 6 6 

*. Correlation is significant at the 0.05 level (2-tailed).       

**. Correlation is significant at the 0.01 level (2-tailed).       

 
  Cu_ in mature 

(Sola wet) 
Cu_ in 

 seedlings 
pH EC CEC OM Clay MC 

Cu_ in mature 

(Sola wet) 

Pearson Correlation 1        

Sig. (2-tailed)         

N 6        

Cu_ in seedlings Pearson Correlation .811 1       

Sig. (2-tailed) .050        

N 6 6       

pH Pearson Correlation -.313 -.481 1      

Sig. (2-tailed) .545 .334       

N 6 6 6      

EC Pearson Correlation .840* .863* -.416 1     

Sig. (2-tailed) .036 .027 .412      

N 6 6 6 6     

CEC Pearson Correlation .152 .207 -.376 .586 1    

Sig. (2-tailed) .773 .694 .463 .222     

N 6 6 6 6 6    

OM Pearson Correlation -.590 -.455 .085 -.125 .673 1   

Sig. (2-tailed) .218 .365 .873 .813 .143    

N 6 6 6 6 6 6   

Clay Pearson Correlation .223 .426 -.651 .659 .890* .516 1  

Sig. (2-tailed) .672 .399 .161 .155 .017 .294   

N 6 6 6 6 6 6 6  

MC Pearson Correlation -.001 -.087 -.274 .360 .944** .744 .751 1 

Sig. (2-tailed) .998 .870 .599 .483 .005 .090 .085  

N 6 6 6 6 6 6 6 6 

*. Correlation is significant at the 0.05 level (2-tailed).       

**. Correlation is significant at the 0.01 level (2-tailed).       
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