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Abstract

Acute lymphoblastic leukemia (ALL) is a blood cancer characterized
by a high proliferation and maturation arrest of the lymphoid
precursors which can either be from B or T-cell lineage. In adult
patients, this type of cancer is considered a rare disease and the
outcome is worse than children, especially for those presenting the
T-Cell ALL (T-ALL) type. In order to get insights on the evolution
of adult T-ALL under therapy, we have whole genome sequenced
leukemic samples at diagnosis and relapse of 19 adult patients with
T-ALL who relapsed after standard treatment. We report the somatic
driver alterations and active mutational process and compared them
to other ALL cohorts. We pinpoint candidates of therapy resistance
by looking at relapse-enriched alterations (e.g. genes NT5C2,
ABCB1 and SMARCA4). In most cases, the relapse clone is
estimated to diverge from the primary the previous year to the
diagnosis, by which time, the relapse-fated subpopulation size ranges
from few to millions of cells. We have also simulated different
scenarios of primary and relapse leukemias and concluded that the
relapsed leukemias of the sequenced cohort are driven by genetic
resistance. In this project we provide an integrated vision of the
mutational evolution of T-ALL adult cases and highlight the
relevance of finding cancer driver genes of resistance. In line with
that, we have also generated a compendium of mutational cancer
driver genes across different cancer types through the analysis of
thousands of tumors with a whole new framework for driver gene

discovery (IntOGen).



Resum

La leucémia limfoblastica aguda (LLA) és un cancer de sang que es
caracteritza per una altra proliferacio i arrest en la maduraci6 dels
precursors limfoblastics que poden ser del llinatge B o T. En pacients
adults, aquest tipus de cancer és considerat una malaltia rara i
presenten pitjor pronostic que els pacients pediatrics en especial en
aquells adults del tipus T-LLA. Per tal de con¢ixer millor 1'evolucid
de la T-LLA en adults en tractament, hem seqiienciat el genoma
sencer de mostres a diagnostic i recaiguda de 19 pacients adults amb
T-LLA que van recaure després de rebre el tractament estandard.
Reportem les alteracions somatiques driver 1 els processos
mutationals actius en comparacié amb d’altres cohorts de LLA.
Tamb¢ assenyalem candidats de resisténcia al tractament tot mirant
les alteracions abundants en recaiguda (per exemple als gens NT5C2,
ABCB1 i SMARCA4). En la majoria dels casos, el clon de recaiguda
s’estima que va divergir del clon primari ’any previ a la diagnosi,
moment pel qual, les cel-lules destinades a fer la recurréncia
constitueixen una subpoblacio cel-lular que va de poques a milions
de cel-lules. Mitjangant simulacions de diferents escenaris de
leuceémies primaries i de recaiguda, concloem que les leucémies de
recaiguda d’aquesta cohort seqiienciada es deuen a una resisténcia
genetica. En aquest projecte donem una visié integrada de I’ evolucio
mutacional de les T-LLA en casos adults i resaltem la rellevancia de
trobar gens driver de resisténcia. En aquesta linia, també hem generat
un compendi de gens driver mutacionals de diferents tipus cancer a
través de l'analisi de milers de tumors amb una nova plataforma de

deteccio de gens driver (IntOGen).

i



il



v



Table of contents

ADSITACE. ..cevieeie ettt ettt e et 1
RESUIM ...t 11
1. INTRODUCTION .....ociiiiiiiiieiieeieee ettt 1
1.1 Cancer is an evolutionary ProCess ..........eevveeereveeerveeerveessnnens 1
1.1.1 Hallmarks and ecological features of cancer................... 3
1.1.2 Darwinian evolutionary theory in cancer ...................... 12
1.1.3 Molecular cancer data..........c..cccuveeecrieenciieeniie e 14
1.1.3.1 The revolution of Next Generation Sequencing in
Cancer GENOIMICS.......cccueeeiieriieeieeiieeteenereeteenieeebeeseneeeeas 14
1.1.3.2 Acquisition of somatic alterations...............cc........ 30
1.1.3.3 Positive selection in cancer vs Neutral tumor
EVOIULION ... e e 44
1.1.3.4 Evolution patterns through space and time............. 47
1.2. Overview of Leukemia ........cccceevieniieniieniieiienieeiee e 59
1.2.1 What is leukemia? .........cccceevveeeivieeiieeeie e 59
1.2.2 Cancer classification of leukemias ...........cccccveevvveennnenn. 60
1.2.3 Epidemiology and etiology.........ccccceeveeriieniienieenieennen. 63
1.2.4 Scientific and clinical advances in the history of
1EUKEMIAS ...t 66
1.2.5 Hematopoiesis, lymphoid
differentiation and maturation ............ccceeeeveeeeieeeceeesceeeeenenn 67
1.3 Acute lymphoblastic leukemia ...........cccoevveeciienieniieniene. 70
1.3.1 Subclassification of the disease:
B-cell ALL and T-cell ALL similarities and differences ....... 71
1.3.2 Primary Genomics of ALL ......c.cccccivviiiiiiiniiniieieeen 81
1.3.2.1 B-ALL driver alterations ...........cccccceeeeuveercreeerneeens 83
1.3.2.2 T-ALL driver alterations ...........cccccceeeeuveeecreeennneens 87
1.3.2.3 Somatic mutation rate and signatures..................... 92

1.3.2.4 Germline mutations and predisposition.................. 93



1.3.3 Treatment Resistance and Relapse .........ccccccveevvenenennne. 93

1.3.3.1 Clonal evolution and relapse in ALL ..................... 94

1.3.3.2 Standard treatment..........cccceeveeeieenieniienieeeene 102

2. OBJECTIVES ..ottt 113
3. RESULTS oot 115
3.1 Chapter 1.t 115
The evolution of adult T-ALL patients...........cccecverreennennee. 115

3.2 CRAPLET 2..niiiieciieeeiie ettt et ve e e ae e e eae e e nae e 195
Compendium of mutational cancer driver genes.................. 195

4. DISCUSSION ... oottt sttt 218
5. CONCLUSIONS ...ttt 263
6. BIBLIOGRAPHY ....ooviiiiiieteeeeeeee e 265
7. APPENDIX ...ooiiiiiiiiiieeeeee et 287

7.1 Collaboration .........ooeviiiiiiiiiii 287









1. INTRODUCTION

1.1 Cancer is an evolutionary process

Cancer is a term that comes from the greek word for crab «karkinos» and
comprises a set of diseases that present abnormal cells that uncontrollably
divide and invade the proximal tissues and/or spread to other parts of the
body [1,2]. It presents a high heterogeneity among its different forms (more
than 100 different ones) with particular risk factors and epidemiology [3].
However, global numbers point out that cancer is the second leading cause
of death worldwide and approximately one third of the cancer deceases are
due to the following risk factors: high body mass index, low fruit and

vegetable intake, lack of physical activity, tobacco and alcohol use [4].

In general, cancer is also defined as a genetic disease as it is caused by
changes in the genome that triggers the loss of division and growth control
of the cells. The genome is formed by deoxyribonucleic acid (DNA) which
is a molecule in the shape of a double helix of polynucleotide' chains
(strands). Alterations can appear at different levels of the genome: from the
sequence of a gene® to each one of the packing levels of the DNA (see
Figure 1). The necessary information for the cell to develop, function, grow
and reproduce is stored in this molecule in the cellular nucleus. Unrepaired
alterations from damaged DNA can cause cancer if it affects specific

cellular functions that lead to abnormal division of the cells and the

' The monomeric units of DNA are called nucleotides which are formed by a
desoxyribose, a phosphate group and a nitrogenous base. There are 4 possible
nitrogenous bases of two types: pyrimidines (thymine or T and cytosine or C) and
purines (guanine or G and adenine or A; see Figure 1).

2 Def. gene: DNA sequence of fixed position (locus) with the basic physical unit of
inheritance.
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formation of a tumoral mass or neoplasm. The acquisition of the
“malignancy” of the cancerous cell is a progressive inner-process called
tumorigenesis or carcinogenesis.

DNA Structure

4\l —Histone

Nucleotide

Nucleotide
base pairs:

[l Guanine
[ Cytosine

Adenine : = 1
.Thymine@f

Figure 1. Illustration by Terese Winslow. DNA structure consists of different levels
of DNA wrapping and packing.

Our knowledge of this disecase has grown as a result of the advances in
genetics. The first notorious approaches towards the comprehension of
cancer disease started in the late nineteenth century [5]. David von
Hansemann who was a pathologist, noticed that some tumor cells presented
multipolar mitosis which resulted in abnormal chromosomal numbers in
daughter cells [6,7]. Contemporary to his work, the german zoologist
Theodor Boveri, observed an unequal number of chromosome distribution
in the daughter cells of a double-sperm fertilized sea-urchin eggs [8]. The
phenotypic differences between the chromosomal imbalanced daughter

cells drove him to the hypothesis that cancer is a cellular disease. He
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proposed that tumors also arise as a consequence of abnormal segregation
of chromosomes that provide the capacity of unrestricted growth to the
daughter cells [9]. These german scientists were the first ones to link
aberrant chromosomal distributions of daughter cells to the actiology of

cancer.

In the following decades, experimental advances were made in the field of
chemical carcinogenesis which allowed the connection between exposure

to chemical agents and the cause of cancer in humans [10].

In the 70s and 80s the first cancer-causing genes were described. Bishop
and Varmus observed how normal avian cells turned malignant with the
presence of transferred Rous Sarcoma Virus (src) sequences [11]. They
discovered that the src sequences were already present in the normal avian
genome thus realizing that viral cancer-causing genes were altered
sequences of already existing genes of the normal cells. This finding
introduced the concept that cancer might emerge from mutated versions of
genes. A few years later, this was consolidated by the description of a single
mutation at codon 12 which was able to activate the oncogenicity of HRAS

gene human bladder cancer [12].

1.1.1 Hallmarks and ecological features of cancer

The somatic mutation theory [ 13] (SMT) presents tumorigenesis in humans
as a multi-step process in which the accumulation of defects in the
regulatory circuits that rule the normal cell disrupt their homeostasis to
transform it into its malignant counterpart [ 14]. There are multiple ways for
a cell to acquire a cancerous state. Unfortunately, this implies that cancer is
a complex disease in which each patient has a unique tumoral manifestation

of it (analogously coined as “malignant snowflakes” since ultimately they



are all different [15]). Paradoxically, zooming out of its complexity there

are six well-defined traits that characterize malignant cells called the

“Hallmarks of cancer” by Hanahan and Weinberg [14,16] (see Figure 2).

1.

Evading growth suppressors

This means to gain insensitivity to growth-inhibitory (antigrowth)
signals. This hallmark reunites tumor suppressor gene discoveries.
Two of the most notorious examples are RB protein which controls
cell-cycle progression and TP53 which acts as a sensor of aberrant
cell functionality and can halt cell-cycle or even trigger apoptosis

if needed.

Sustaining proliferative signaling

There are many ways in which a cell can maintain its proliferative
capacity. Cancer cells can stimulate their surrounding environment
into the production of proliferative ligands. Another possibility is
the autocrine way in which tumoral cells produce growth factors
and the corresponding receptors themselves. Furthermore, cells can
just increase the expression of growth factor receptors or modify
their structure to make them active and ligand-independent.
Alternatively, a cell can become ligand-independent by acquisition
of mutations in downstream effectors of proliferation related
pathways. For example, activating mutations in Ras protein break
the intrinsic negative feedback-loop that regulates the Ras GTPase
activity. Another example are loss-of-function PTEN mutations
that prevents phosphatidylinositol (3.,4,5) trisphosphate (PIP3)
from degradation and constitutively PI3K signaling activates PI3K

proliferative signaling.



Activating invasion and metastasis of the tissues

One of the most studied cancer dissemination processes is the
“epithelial-mesenchymal transition” (EMT) mechanism. This is a
developmental regulatory program that apart from being involved
in embryonic morphology it also acts in the transformation towards
malignancy of epithelial cells in cancer. The transcriptional factors
such as Snail, Slug, Twist and Zeb1/2 are the players of this process
in which they modify the cell into an invasive phenotype by making
it matrix in-adherent, creating a fibroblastic morphology,
increasing its capacity for motility and resistance to apoptosis.
Another important element related to this hallmark, is the
disruption of normal signaling between cancer cells and the
surrounding stromal cells. For example, in some occasions,
macrophages can supply with metalloproteases and cysteine
cathepsin proteases to degrade the matrix bindings and promote cell
invasion. Apart from EMT, there are other forms of dispersion
described like nodules of cancer cells invading in mass (“collective
invasion”) or cancer cells acquiring ameboid motility to slight

thought the tissue.



Sustaining proliferative
signaling

Resisting Evading growth
cell death suppressors

Inducing Activating invasion
angiogenesis and metastasis

Enabling replicative
immortality

Figure 2. The Hallmarks of Cancer reprinted from Hallmarks of cancer: The next
generation (v.144, p.647) by Hanahan and Weinberg, 2011 Cell.

4. Enabling replicative immortality

That is limitless replicative potential which is acquired by
overcoming two proliferative barriers: senescence and crisis (cell
death). The first term means that cells enter a nonproliferative but
viable state and the second one means overcoming an apoptotic
crisis phase of senescent cell population and becoming immortal.
Most of the cell lines used in cancer research are immortalized and
by studying them it has been discovered that telomeres (the
protective ends of chromosomes) play a central role in this
enduring cell state. Telomeres are eroded along the cell descendant
generations giving a finite replicative potential to it. In fact, most
of the immortalized cells have functional levels of expression of
telomerase (the specific DNA polymerase that adds the repetitive
telomeric segments). Apart from this function, there are evidences

of other involvements of telomerase in tumorigenesis that are



telomere-independent. The protein subunit TERT has been
associated with cell proliferation, apoptotic resistance and DNA-

damage repair involvement.
5. Inducing angiogenesis and sustain it

Angiogenesis is the physiologic process of creating new blood
vessels from existing ones. It is very active during embryogenesis
and transiently activated in adults in concrete processes like wound
healing or female reproductive cycle. The purpose of angiogenesis
is to ensure good tissue irrigation so that cell metabolic exchange
of nutrients and waste is guaranteed. In order to sustain highly
demanding neoplastic growth, it has been observed that there is an
angiogenic switch during tumor progression. However,
neovascularization patterns in tumors is highly variable among
tumor types, some of them being hypovascularized (e.g. pancreatic
ductal adenocarcinomas) and others hypervascularized (e.g.
pancreatic neuroendocrine carcinomas). Some immune innate
system® cells are associated with the angiogenic switch

contributing to tumor growth and local invasion.
6. Resisting cell death

Apoptosis or “cell suicide” is a programmed cell death that serves
as a normal mechanism to eliminate damaged cells and maintain
tissue homeostasis. When it is impaired, there is a loss of control of
cell proliferation and, therefore, it contributes to tumor progress.

There are two circuits to trigger apoptosis, one cell extrinsic and

3 Immune innate system: immunity mechanism against pathogens. It is

phylogenetically conserved among multicellular organisms. Cell members of it are
macrophages, neutrophils, mast cells, and myeloid progenitors.



the other with cell intrinsic origin. The first one starts by the
activation of an external receptor (tumor necrosis factor receptor
superfamily) and the intrinsic one is normally triggered by inner
cell stress (e.g DNA damage). Both stimulate the caspase enzymes
(caspase 8 and 9 respectively) which provokes the interaction of
those with apoptotic inhibitors and the Bcl-2 family members
which some are pro- and some anti-apoptotic regulators. This ends
up lising the outer membrane of the mitochondria and releasing
cytocrom ¢ which in turn activates other caspases that initiates
proteolytic activities to induce disassembly of the cell. One way to
resist apoptosis is by the overexpression of anti-apoptotic proteins
like Survivin or Bcl-2. On the contrary, deactivating mutations in
pro-apoptotic regulators also contributes to inhibit apoptosis.
Another notorious example is the loss of function of TP53 which
implies a disruption of a critical damage sensor within the intrinsic

apoptotic circuit.

The 6 original hallmarks were defined in 2000 and were embraced as a
research guidance by the scientific community. However, as some pointed
out some years later [17], there is not much difference between benign
tumor mass and a malignant one in terms of the the features described in
the seminal paper by Hanahan and Weinberg meaning that except for the
tissue invasion and metastasis hallmark, most of them are shared between
the two. In 2011 the hallmarks were re-defined and updated to a past decade
of research. In addition, a new approach was presented with the distinction
of two concepts surrounding cancer: “enabling characteristics" and
“hallmarks of cancer”. The acquisition of hallmarks is possible by two
consequential characteristics of neoplasias (i.e. enabling characteristics):
genome instability and mutability and tumor promoting-inflammation. The

first one refers to the successive acquisition of genomic alterations that

8



provide the characteristics of the hallmarks to the cells. Examples of these
alterations are gains and losses of copy number and/or genome
rearrangements favoring dysregulation of cell homeostasis or inactivating
mutations in key players of genome integrity maintenance. This settles a
wide mutational space for the cell to explore and acquire favorably

mutagenic genotypes.

The second enabling characteristic implies the observed infiltration of
innate and adaptive immune system cell members in tumors. Inflammation
associated to the immune response can foster tumor progression and
contribute to the hallmark capabilities of cancer since it releases signaling

factors for the acquisition of them.

Other novelties of the reviewed seminal paper is the addition of two
hallmarks emerged in line with the recent scientific advances such as
deregulating cellular energetics and avoiding immune destruction. The first
one comes from observed altered energy metabolism in many different
cancer types. Some cancer cells switch to an “aerobic glycolysis” in which
they take energy prioritizing glycolysis only instead of mitochondrial
oxidative phosphorylation. It is believed that this preference provides the
cell with lots of glycolysis intermediates that can serve to fuel biosynthesis
pathways. Some of the related alterations with this energy switch are
upregulation of GLUT1 (glucose transporter) and activation of oncogenes
like RAS that among other things upregulates glycolysis. Regarding the
second new hallmark (avoiding immune destruction), immune surveillance
acts as the natural barrier against tumorigenesis and cancer progression so
some solid tumors have managed to avoid detection and therefore
destruction by the immune system. Transplantation experiments with
immunodeficient mice have shown that cancer cells arising on those are

inefficient when injected in immunocompetent hosts.



Some other lines of criticisms have emerged regarding this summarized
view of cancer by Hanahan and Weinberg accusing them of considering
cancer only as a cell-based disease caused by alterations in the DNA and
without taking into account other points of view [18]. These critical voices
pointed out the ignored evolutionary view of cancer that defines it more like
a tissue-based disease. Among other arguments, they specifically call in
question whether proliferation is an acquired cancer cell characteristic and
therefore quiescence seems to be the base state of normal cells (as it has
been suggested in the seminal paper). Instead, they claim that
carcinogenesis is caused by a faulty interaction of the cells and their
environment (other cells, extracellular matrix) which, in their opinion, is
the real regulator against a default proliferative state of all cells which, in
addition, resembles to what happens in organogenesis. This perspective of
cancer model is collected in the tissue organization field theory (TOFT)
which has not been as widely accepted as SMT over the past years of cancer
research. However, the debate that surrounded both serves to remind the
research community that cancer is more complex than it seems and
multidisciplinary efforts must join to elucidate the biology behind and
eventually find suitable cures [19,20].

Following this reasoning it seemed necessary that, despite the effort in the
comprehension of the genetics and cellular biology of cancer, other aspects
like the dynamics along time and space of tumors must also be taken into
account for the clinical battle against it. Therefore, some years later, new
ways to characterize tumors have emerged. With the advances in
knowledge of cancer progression and tumor adaptability plus the
technological improvements that allowed to retrieve several layers of
information from tumors, some cancer researchers with evolutionary
perspectives proposed a two dimensional framework to classify cancer

according to the genetic, environmental and kinetics main characteristics of
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it [21]. The two components of this classification are and Evo-index to
capture the evolvability* of the tumors and the Eco-index that measures the

environmental viability of the neoplastic cells.

This system provides up to 16 different categories when splitting each index
into two subdivisions. The Evo-index rounds up the heterogeneity of
neoplasms in space and time by relying on the concepts of diversity (D) and
change over time (A). On the other hand, the Eco-index can be summarized
into the hazards (H) or the deathly hurdles that cells must face and resources
(R) that are fundamental for the cell maintenance (see Figure 3). For
example, a tumor with low diversity (D) among its tumor cells, with a low
mutation rate or genome instability (A) that ensures homogeneity, suffering
from an hypoxic situation (H) that attracts immune response and limited
resources to keep the growth rate (R), has little capacity to evolve and seems
easy to eradicate. Contrary, the worst possible scenario would be a tumor
that evolves rapidly (high D and A) and has plenty of resources (high R)
which is highly adaptive to changes in the environment or any other

affecting interventions (H: like immune evasion or therapy).

4 The concept of a neoplasm as an evolving system is extended in the next section
(1.1.2). Here, the definitions are limited to provide a general understanding of the
classification

11



Evo-index Eflo-im:iex
Diversity + - azards +

H1 H2
&~ & A A

y Neutral =
Quiescent evolution, 4 W, Hypoxic
4 s yp
QRN with few with slow I~ 1 Barren immune
Al clones accumulation R predation
of many clones 1
Change
s time Resources
Recent Massi
MR ( B =nsioniy TSSlvle i Massive cell
A2 new dominant eong ~ s Flourishing e
+ clone turnover - O =
+ R2

Nature Reviews | Cancer

Figure 3. The Eco and Evo-index adapted and reprinted from Classifying the
evolutionary and ecological features of neoplasms (v.17, p.605-619) by Maley et
al., 2017 Nature Reviews Cancer

Both the hallmarks and the Eco-evo indexes emerge from the perspective
of the cancer genomics research field. These initiatives define cancer
disease as they provide ways to characterize them. However, there are other
classifications (sometimes more specific) based on other criteria such as
histological origin, histological stage and well defined biomarkers. Those
are addressed below to guide where acute lymphoblastic leukemia settles.
The concept of evolvability of this disease is relevant to this piece of work

and is extended in the following section.

1.1.2 Darwinian evolutionary theory in cancer

The Darwinian evolutionary theory describes how populations of

organisms change over time due to variation and the effect of natural

12



selection® on the heritable traits that influence the fitness® of individuals.
The same rationale can be applied to neoplasms. In 1976, Peter Nowell [23]
analogously characterized cancer development as an evolutionary process.
In other words, a tumor can be understood as a population of individuals
(cells) that accumulate changes (alterations) in the genome which are then
subjected to the pressures of selection. The unrepaired genome variability
can be advantageous to the cell and create a clonal expansion. That is, the
cocktail of alterations is heritable to the daughter cells and is transmitted to
the following generations making a quick population growth that
outcompetes the rest of the cells. Various beneficial alterations carried by
different mutant clones present a dynamic competitive scenario between
cellular populations that we call intratumoral heterogeneity [24] (ITH or
diversity as mentioned in the previous section). This diversity does not only
imply changes in functional parts of the genome (i.e coding regions). There
are increasing lines of evidence that epigenetic changes such as DNA
methylation, chromatin remodeling and post-translational modification of

histones are also sources of ITH [25].

There are several little clonal expansions that can create tissue mosaicism
or benign forms of cell growth in certain normal tissues with particular
constraints. However, occasionally, a cell can accumulate sufficient
mutagenic load to become malignant to proliferate and invade.

Heterogeneity can serve to reveal the tumor’s life history as it is explained

5 Charles Darwin observed that species have changed overtime as it is evidenced
in the fossil records. He also noticed that the offspring of some species presents
variation that makes them more suitable to survive “the struggles of existence”
increasing their chances to reproduce and transmit their advantageous
characteristics to the next generation. Therefore, he inferred that nature is able to
select the favoral variability of the individuals and called that natural selection [22].
According to him and Alfred Russel Wallace, evolution happens by natural
selection.

¢ Darwinian fitness is defined as the ability of an individual to survive and have
fertile offspring
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in the coming sections. Not only does it open the possibility to explore the
past trajectory of the tumor but can also provide hinds for forecasting its
progression and most likely outcome. In other words, ITH provides the
tumor with high capacity of adaptability which usually challenges

effectiveness of treatment and can result in a therapy-resistant tumor form.

1.1.3 Molecular cancer data

In 1971, the U.S government declared the “war on cancer” which stated a
commitment to support research to reduce the incidence, morbidity and
mortality from cancer [26]. A few years later, in 1986 it became apparent
the need to obtain the full sequence of the cancer genome to systematically
detect the mutated genes that cause it [27]. From 1990 to 2003 scientific
efforts resulted in the sequencing of the human genome as part of the
Human Genome Project (HGP) [28] and inspired other initiatives to
sequence tumor genomes to reveal the basic cancer mechanisms setting the
bases of the cancer genomics research field. A summarized definition of it
is the following: “Cancer genomics is the study of the totality of DNA
sequence and gene expression differences between tumor cells and normal
host cells. It aims to understand the genetic basis of tumor cell proliferation
and the evolution of the cancer genome under mutation and selection by the

body environment, the immune system and therapeutic interventions.”[29]

1.1.3.1 The revolution of Next Generation Sequencing in Cancer
Genomics

The increment in knowledge due to cancer genomes research initiatives
fostered the improvement of sequencing technologies and vice versa. It
started with Sanger Sequencing, then continued by identifying mutations
with capillary-based sequencing in exons that were individually amplified

and then sequenced and has evolved to large-scale analysis of hundreds of
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cancer genomes with massively parallel sequencing (MPS) (see Figure 4,
[30]). Even within MPS technologies there has been a great improvement
from 1 gigabase (GB) in a single run to more than 600 gigabases per run
around 2012 [31]. Not only it provides higher-throughput but also it is
possible to cover the whole-genome with a much more reasonable price,
thus, increasing the chances to systematically apply genome sequencing to
the clinics (see the sequencing cost of a human genome through years

compared to Moore’s Law in here [32]).

Single
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Figure 4. Improvements in the rate of DNA sequencing over the past 30 years and
into the future reprinted from The cancer genome (v. 458, p.719-724) by Stratton
et al., 2009 Nature.

First generation sequencing

Maxam-Gilbert and Sanger sequencing technologies are considered the
“First Generation Sequencing”. Maxam and Gilbert used radiolabeled DNA
treated with chemicals to break the chain at specific bases and determine
the position of the specific nucleotides by the length of the cleaved
fragments in a polyacrylamide gel [33]. However, in 1977 Frederik Sanger
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presented the ‘“chain termination” method (also known as Sanger
Sequencing; [34]) becoming one of the major breakthroughs in the history
of biology and medicine. The key of this approach is that it mixes dye-
labelled normal deoxynucleotides (ANTPs) and dideoxy-modified dNTPs
(ddNTPs). The last ones are analogs of the first ones that are unable to bind
to the next ANTP and halts DNA extension. Doing 4 of these reactions (1
per each ddNTPs) on 4 lanes in a gel generates fragments of elongated
DNA. The shorted fragments migrate faster. The terminal base of those can
be identified by autoradiography so the sequence can be inferred as there is

a radioactive band in a given position of one of the specific lanes.

Several improvements were done to the Sanger Sequencing in the following
years, especially introduction of capillary base electrophoresis. The first
semi-automated sequencing machine was commercialized by Applied
Biosystems in 1987 based on Leroy Hood improvement to Sanger

Sequencing.
Second generation sequencing

The first commercialized “Next Generation Sequencing” (NGS) machine
was Roche 454 sequencing system that used pyrosequencing method to
provide mass parallelisation of sequencing reactions. This method differed
from the past technologies because it does not use radio- or fluorescently-
labelled dNTPs. Instead it infers the sequence by measuring the amount of
pyrophosphate produced when a base is incorporated. The release of the
pyrophosphate triggers an enzyme reaction that involves luciferase and so

producing light [35].

Another important landmark was the Solexa Genome Analyzer, the first

“short-read” sequencing platform that was launched and commercialized
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by Solexa and lately acquired by Illumina [36]. This technology does also
sequencing-by-synthesis’ using reversible dye-terminators chemistry. The
following years, Illumina developed the HiSeq platforms (models
2500/2000/1500/1000) which currently dominate the sequencing services
and facilities. Short-read sequencing implied a methodological switch from
chain-termination and electrophoresis to fragmented DNA, clonally
amplified, loaded in newly developed microchips with improved
chemistries that allows massively parallel sequencing and, therefore,

reduces sequencing time and costs.

Another short-sequencing platform is SOLiD (Supported Oligonucleotide
Ligation and Detection) System. As its name suggests sequencing is based
on DNA fragments for ligation to oligonucleotide adapters using DNA
ligase and not by synthesis like in sequencing-by-synthesis. Another
notorious sequence-by-ligation (SBL) is Complete Genomics “DNA
nanoballs” technique. Even though Illumina technology is more spread and

used, both SBL technologies remain competitive [33].

Third and fourth generation sequencing

There is a diffuse boundary that separates second and third generation
sequencing but here [33], the latter is defined as those technologies that are
able to sequence single molecules and avoid DNA amplification. There are
two main commercialized technologies worth mentioning here: single
molecule real time (SMRT) platform from PacificBioscience (PacBio
machines) and nanopore sequencing performed in GridlON and MinlON
platforms by Oxford Nanopore Technologies (ONT). However, there are

great differences between these two. The PacBio uses DNA polymerase

7 Sequencing-by-synthesis refers to methods that need DNA-polymerase during
sequencing. We can distinguish two subcategories: cyclic reversible termination
and single nucleotide addition [35].
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attached to the bottom of a “well-structure” called zero-mode waveguide
(ZMW) with a small diameter. Fluorescent nucleotides are incorporated
inside the ZMW which provide real-time bursts of fluorescent signal
without interference of signals of other nucleotides. On the other hand,
nanopore sequencing first requires the denaturalization of the strands of the
DNA so that one strand enters the nanopore, a protein channel pore
embedded in a synthetic membrane. The sequence is inferred as each base
that enters the pore creates a different membrane current. Both technologies
provide sequencing results of long-reads which are very useful in the novo
assembly of genomes or to gain resolution to determine the breakpoints that

define structural variants.

The fourth generation sequencing is known as “in situ” sequencing. It adds
a new layer of information since the distribution of the reads coming from

RNA are a reflection of the heterogeneity of the tissue sequenced [37].

Other sequencing technologies such as Single-Cell, Hi-C or ATAC-seq are
being used to study cancer and cover other aspects to understand tumors
(increase the resolution to the level of individual tumoral cells or analyzing

chromatin interactions and accessibility).

Sequencing analysis and bioinformatics

With all the contemporary advances and market variability that came with
nucleotide sequencing it also became apparent the need to standardize the
huge amount of raw data that these technologies were producing (and that
currently still produce). Since the Solexa Genome Analyzer II (GAII)
platforms by Illumina have proven to be the ones with highest penetration
in the market and the main representatives of NGS, the up-coming section
is mainly focused in the data management and analysis of the genomic data

of this technology. The processing of the great amount of sequencing data
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consolidated a discrete but already existing field: bioinformatics. Also
known as computational biology, it is defined as the research area that
involves the storage, organization and analysis of biological, medical and

health information using computers, databases, maths and statistics [38].

One of the first things that IT departments and/or bioinformaticians faced
was storage. In one run of a GAII platform, 115,200 Tiff formatted files are
produced per run, each at about 8 megabytes (MB) in size which sum-up to
1 terabyte (TB) [39]. The intensities of the images are processed to provide
base calls in BCL format file (Binary Base Call). Those are then converted
into FASTQ format which is a text-based sequencing data file that contains
both raw sequence data and quality scores [40]. When the reads in the
FASTQ format are aligned or mapped to the human reference genome, the
output file can vary from 8 to 150 and also up to 300 GB depending on the
read length (36-250 base pairs or bp), the depth and the breadth of the
coverage that the reads provide [39,40]. There are different formats to
represent the alignment files: SAM, BAM, CRAM format. The first one
refers to Sequence Alignment Map (SAM) which is the human-readable
form of the alignments. Each SAM file starts with a header followed by a
row for every read together with 11 tab-delimited fields describing that
read. BAM and CRAM files are compressed versions of SAM files. BAM
files are the most widely used format since most of the processing

algorithms take BAMs as the default input.

After some years of sequencing projects, there is now one gold standard
pipeline for doing alignments and creating BAMs: “GATK Best Practices”.
These are a series of workflows (each adapted to a particular experiment
design) of the best way to use the Genomic Analysis ToolKit (GATK)
which has been developed and maintained by the Broad Institute [41].

These workflows are the result of many years accumulating knowledge of
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how to analyze high-throughput sequencing data (HTS). There are different
experimental HTS designs: whole-genome sequencing (WGS), whole-
exome sequencing (WXS), targeted or panel of genes sequencing (TGS)
and RNA-sequencing. Regarding the DNA-seq methods each one of them
is more adequate to help answer a particular research question and/or
clinical necessity (see Table 1) depending on the genomic region(s) of
interest as well as the project budget. For example, sequencing of a panel
of genes targeting specific alterations is often used for accurate diagnostics
of the (sub)type of cancer contributing to a better precision medicine

whereas sequencing the whole-genome is more used for research purposes.

Cost .
: Region .
Platform (pf:{J ssalr)n)ple, Sites 5 (€ Depth Data size
All coding .
$1000- and non- 0 30- Depending
WGS $3000 codin ~3x10 60x = Omcoverage
o ~60-350 GB
regions
' Depending
WXS g;ggg fex?;llcs ~6x 107 21 3 8;( on coverage
& ~5-20 GB
Varies by
i Varies by panel size
TGS $300— Sp;ilf::::(lil panel size 1288(') and
$1000 yr ?n ~1x10°- N coverage
celons 1 x 107 ~100 MB—
5GB

Table 1. Different types of Next Generation Sequencing for genomics reprinted
from Applications and analysis of targeted genomic sequencing in cancer studies
(v.17, p.1348) by Bewicke-Copley et al., 2019 Computational and Structural
Biotechnology Journal

Once the alignments are done, alterations can be detected by using variant
callers. These are algorithms that report the variability of the sample
genome and that is why it is said that they “call” variants. Many callers have

been developed in the past few years [42—45]. The first caller distinction is
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whether they differentiate between germline and somatic variants.

According to the glossary added in Vogelstein et al., 2013 [46]:

e “Germline variants: Variations in sequences observed in different
individuals. Two randomly chosen individuals differ by ~20,000
genetic variations distributed through-out the exome.”

e “Somatic mutations: Mutations that occur in any non-germ cell of
the body after conception, such as those that initiate

tumorigenesis.”

In most cancer sequencing projects, two samples are taken from each
patient: one of normal tissue (or control) and another of the tumor mass. By
sequencing, aligning and comparing both we can differentiate the germline
variants as those present in both the normal and tumoral samples that are
different from the reference genome from the somatic variants which are
those exclusive to the tumoral sample. Even though we tend to associate
tumor initiating alterations with a somatic acquisition process, there are
many inherited germline variants that predispose to cancer. One of the most
notorious cases is the inheritance of one alterated copy of BRCAI and
BRCA2 genes which increases the risk of developing various types of
cancer [47]. One of the most widely used germline callers is
HaplotypeCaller developed by the Broad Institute and distributed as part of
the GATK.

Usually, callers are specific of one, or maximum two, types of alterations

e Single Nucleotide Variants (SNVs): A single nucleotide change in
the sequence.
e Small Insertions or Deletions (InDels): Small gains (insertions) or

losses (deletions) in the DNA sequence (from 1 to 100 bp).
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e Copy Number Variants (CNVs): Sometimes also considered as
intermediate SV but often distinguished and referred to as gains and
losses of DNA fragments greater than 1 kilobase (kb) but less than
5 megabase (mb) [48]. In other words, can be summarized as
detecting more or less copies of a DNA region from the expected
two copies of a human diploid genome. Therefore, the gain in a
DNA fragment does not refer to a de novo inserted sequence but to
increase of a copy(ies) of a fragment.

e Structural Variants (SVs): A region of DNA that suffers a change
in copy number (deletions, insertions and duplication), orientation
(inversions) or chromosomal location (translations) [49]. Can be
also understood as rearrangements of DNA sections, thus, some
people consider whole-genome duplications and chromosomal

aneuploidies as CNVs but not SVs.

In the current manuscript, “mutation” refers to SNVs and InDels but it is
also used as a synonym of alteration by the community. In addition, as
shown above, there is a distinction of CNVs from the rest of SVs as a
different genomic alteration category. There are many callers that are
specific for CNVs only. This is the reason why sometimes they are treated

separately.

Before diving into the great variety of variant callers, there are other highly
used sequencing techniques for detecting CNVs and SVs apart from short-
read sequencing. The first one is BAC array-comparative genomic
hybridization (array-CGH). This technique is widely used especially in
clinical diagnostics. It provides detection of imbalances but lacks accuracy
to provide absolute copy numbers. A contemporary method that also

provides SV analysis is representational oligonucleotide microarray
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analysis (ROMA). Another common method is the usage of SNP? array data
to infer copy number variants. All of them have specific software to
estimate copy numbers. However, with the coming up of NGS, especially
of paired-end sequencing’, it has been possible to detect SVs with a better

resolution [49].

With all the available variant callers one can find themselves a bit lost when
choosing which one is more appropriate. In that case, searching for
benchmark publications helps in deciding. One of the best guidance when
picking aligners and variant callers is the work of Alioto et al., 2015 where
they used tumor-normal pair samples that were publicly available to
compare sequencing methods, pipelines and validation methods to call
variants [42]. According to their paper, Strelka obtained some of the highest
precision and recall measures when tested with different datasets and using
BWA as an aligner. The highest precision score was obtained when
intersecting MuTect2 [41] and Strelka. Others have also benchmarked
different callers and conclude that MuTect2 and Strelka seem to be

performing better [51].

As mentioned above, there are certain algorithms specialized only on
detecting copy number changes and contrary, there are others that have been
designed to detect all (or most) of the SVs. Table 2 is divided into two, the
upper one describes computational tools specified in CNVs detection
whereas the bottom one lists some of the most used SVs callers. Columns

are the same except for the one which differentiates:

8 SNP: Single Nucleotide Polymorphism. A polymorphism, it has to occur in at
least one in 100 people [50].

° Paired-end sequencing: Both ends of the DNA fragments are sequenced which
provides better alignment and increases the quality of the sequencing.
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Segmentation algorithm used in CNV detection. These are

changepoint algorithms that serve to define transition boundaries to

localize and quantify copy number changes [52].

Signal method used to detect breakpoints in SV analysis. There are

4 different signals to detect them [45]:

Read-depth: uses changes in read depth to identify regional
rearrangements.

Paired-end: uses the abnormally mapped pair of reads
(such as unexpected distance and direction) of the DNA
segments to infer a SV event

Split-read: it works by splitting the short-reads in smaller
fragments and then re-mapping them separately to the
reference genome. The location of the breakpoint is
revealed by the orientation and location of the splitted-
remapped reads.

Local-assembly: it is used along with any of the above
signals. It re-assembles reads that are already aligned to

provide a better resolution of the breakpoint.
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The great variety of variant callers and the specificity of those to certain
genomic alterations are a reflection of the amount of attention driven to the

sequencing of tumors and the will for a precise characterization of those.

Pan-Cancer Initiatives and precision medicine

Due to the expansion of NGS, large-scale studies sequencing tumor samples
of patient cohorts of different cancer types have been possible. These
initiatives have aimed to uncover the main somatic alterations driving
tumors with the ultimate goal of providing knowledge for more effective

precision medicine approaches.

One of this first pan-cancer initiatives is The Cancer Genome Atlas (TCGA;
[53]) which started in 2005 and it is a joint effort from multiple institutes.
It began with a pilot project of only 3 cancer types and extended into two
phases and ended up molecularly characterizing over 20,000 primary tumor
samples from 33 different cancer types. It comprises not only genomic but
also epigenomic, transcriptomic and proteomic data. With these data, it was
possible to have the first genomic broad overview of different cancer types
(12 at that moment) [54]. Furthermore, as a result of the analysis of lung
squamous cell carcinoma cohort of TCGA a new clinical trial for lung
cancer was launched (Lung-MAP; [55]) inspired by the results of the study
[56]. The TCGA project has evolved to the Pan-Cancer Atlas [57,58] which
is a resource that covers all the relevant findings from the published work

derived from it.

As a consequence of TCGA and other large cancer sequencing projects
(such as the Cancer Genome Project from the Wellcome Trust Sanger
Institute), in 2008 the International Cancer Genome Consortium (ICGC;

[59]) was built with the aim of coordinating large-scale cancer genome
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studies. Under the umbrella of the ICGC, new advances in the
understanding of tumor evolution of breast cancer revealed that the most
recent common ancestor within the cancer cell populations appeared early
in time so that there is a lot of subclonal diversification before diagnosis

[60].

Most of the data collected in the ICGC data portal is focused on coding
regions of the genome. In order to explore the non-coding parts of the
genome and to study common patterns of mutations The Pan-Cancer
Analysis of Whole Genomes (PCAWG) was launched. This large-scale
project comprises more than 2600 cancer whole-genomes sequenced [61]
and its analysis has revealed non-coding alterations relevant for cancer [62]
as well as brought genomic analysis of somatic alterations closer to

precision medicine [63] among other things.

Precision medicine also referred to as personalized medicine are used
interchangeably but are indeed different things. Any medical appointment
and any clinical decision made is personalized to the particular patient. In
other words, physicians operate in an individualized way for each one of
their patients and, therefore, medicine is intrinsically personalized. Having
clarified that, precision medicine means applying medical procedures based
on genetic, environmental, and lifestyle factors of the patient for better
treatment efficiency [64]. Cancer genomics field boosted with the NGS
outbreak anticipated to revolutionize oncology by identifying cancer
specific events that can guide clinical decision-making [31,65]. Currently,
targeted sequencing panels of cancer genes for diagnosis, prognostic and
prediction of drug-response outcome are being used by clinicians to adjust
treatments (e.g MSK-IMPACT panel from the Memorial Sloan Kettering
Cancer Center [66]). However, there are still several bottlenecks between

the huge amount of data generated from all the large and medium-scale
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cancer studies and the delivered information that finally is evaluated for
clinical decision-making. Concretely, the major bottleneck is the
interpretation of the clinical significance of the genomic events which is

very well summarized in Good et al., 2014 (Figure 5).
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Figure 5. The interpretation bottleneck of personalized medicine reprinted from
Organizing knowledge to enable personalization of medicine in cancer (v. 15, p.1-
9) by Good et al., 2014 Genome Biology.

1.1.3.2 Acquisition of somatic alterations

Cancer genomics has been studying the acquisition of somatic alterations:

30



1) tounderstand the relevant somatic events that can be tackled to stop
the cancer growth, spread potential and therapy resistance

2) from an evolutionary perspective to comprehend the cancer
progression

3) to learn about the mutational processes that the tumoral cells are

going through

Driver and passenger mutations

As mentioned before, it is of common knowledge that cancer arises due to
the accumulation of genomic abnormalities. However, noticing the large
mutation burden per sample of different cancer types it becomes evident
that not all the alterations (ranging from 41 and 2.5 million point mutations
per genome according to Radhakrishnan and Pich et al., 2017 [63]; see
Figure 6) are responsible for tumorigenesis and cancer progression.

Therefore, one of the main goals of cancer genomic researchers has been to
identify the alterations that are truly driving carcinogenesis. From here, we
define as “driver” alterations those genomic events that confer growth
advantage to the cells harboring them and that have been positively selected
during the evolution of the tumor. The rest of non-driver alterations are
called “passengers” which are not contributing to the cancer development
and provide no functional consequence [30]. Passenger alterations are
carried along in the clonal expansion derived from selection upon drivers.
From Figure 6, one can see that in all cancers, passenger mutations
outnumber drivers making their identification more challenging. The
general focus has been to identify “cancer genes” which by definition are

those carrying driver mutations (hence, also called driver genes).
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Figure 6. Mutation burden from whole-genome sequenced tumors of PCAWG reprinted from The whole-genome panorama of cancer

drivers by Radhakrishnan and Pich et al., 2017 bioRxiv.
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The main approach to systematically find cancer genes has been to detect
signals of positive selection by analyzing the somatic mutations from
sequenced tumors of large cohorts of cancer patients (e.g. TCGA/ICGC).
The general procedure is to compare the mutational patterns with their
expectation under neutral mutagenesis. During the last few years, many
genomic research groups have developed algorithms and computational
tools that search for the following characteristics of the mutational pattern

of genes that constitute signals of positive selection:

- Mutational recurrence of genes. That is, genes that are found
recurrently mutated across many cancer patients in a cohort which
points towards a relevant role of the gene in the tumorigenesis of
that particular cancer type. To computationally identify those, most
algorithms search for genes mutated more frequently than the
expected background level (understood as the background mutation
rate). Examples of that are MuSiC [67] and MutSigCV [68].
Searching for recurrent mutated genes was the first step to find
candidate driver genes [69]. It has also dragged with it some
controversy since a good estimation of the background mutation
rate is the key to avoid false positives and false negatives [70-72].
Currently, new approaches have emerged accounting for many
confounders to improve the modeling of the background mutation
rate to accurately measure the excess of mutations in genes. These
approaches assert gene-specific positive and negative selection by
measuring mutation count bias while correcting for covariates
(regional genomic characteristics, mutational processes and
consequence type). Methods that apply this are also quite recent
like dNdScv [73] and cBaSE [74].

- Detection of functional impact (FI) bias. Identification of genes

with a bias towards the accumulation of somatic mutations with
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high FI. A score is given to each mutation. Some of the methods
that assess the FI of non-synonymous mutations'® are SIFT,
PolyPhen2, MutationAssessor or CADD framework. Those
provide scores that have been used in OncodriveFM [75] (and its
evolved version: OncodriveFML [76]) to compute the bias and
identify cancer drivers.

- Uncovering of mutational clusters. Find genes that have mutations
clustered in particular regions of the sequence affecting specific
amino acids of the protein. There are sequence-based clustering
approaches such as OncodriveCLUST [77] (and its evolved
version: OncodriveCLUSTL [78]), protein three-dimensional
clustering approaches such as HotMAPS [79] and clustered
mutations in protein-domains like smRegions [80]

- Detection of tri-nucleotide specific bias. Taking into account the
number of mutations and nucleotides context (5* and 3° flanking
bases) of point mutations (thus,“tri”-nucleotide) helps to identify
cancer genes. This is a very recent approach [81] that takes into
account the differential probabilities of each nucleotide context.

All these approaches are complementary to each other so one gene can show
more than 1 signal of positive selection. In fact, the accumulation of
evidence of positive selection helps to accurately define a list of candidate
driver genes. One of the leading initiatives that particularly focuses on
providing the most complete list of cancer genes is IntOGen (Integrative

OncoGenomics) platform. It is a framework that automatically identifies

10'SNVs are also known as point mutations or single-base substitutions (SBS)
which can be classified as synonymous or non-synonymous. A synonymous
mutation (also referred as silent mutations) means that the nucleotide change results
into a codon which translates for the same amino acid (AA) as the original
sequence. Non-synonymous therefore, means that there is a change in the AA
residue of the protein and are further classified according to their consequence type
in: missense (if it changes the AA) or nonsense (if it creates stop codon and as
consequence the protein translation is prematurely terminated).
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and characterizes cancer genes. It has a pipeline implemented which runs 7
driver  discovery algorithms (dNdScv, CBaSE, MutPanning,
OncodriveCLUSTL, HotMAPS, smRegions, OncodriveFML and dNdScv)
and combines their results to create a compendium of driver genes and a
repository of the mutational features associated to them that help to explain
their mechanism of action (see Figure 7). The workflow is available in the
Web platform (https://www.intogen.org/search) together with the results
from the analysis of 28000 sequenced tumors from many projects and
genomic dataset repositories such as cBioPortal, pediatric cBioPortal,
ICGC , TCGA, PCAWG, Hartwig Medical Foundation, TARGET and St.
Jude Cloud. Relevant results from the analysis of all these mentioned
datasets can be found in Martinez-Jiménez et al., 2020 [82] as well as a

historical revision of the identification of cancer genes.
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As mentioned before, cancer genes can be classified according to their
mode (or mechanism) of action. Vogelstein et la., 2013 define cancer genes
as [46]:
- Oncogene: A gene that, when activated by mutation, increases the
selective growth advantage of the cell in which it resides
- Tumor suppressor gene: A gene that, when inactivated by mutation,
increases the selective growth advantage of the cell in which it

resides.

Previously mentioned, oncogenes were first identified in cancer-causing
retroviruses [11]. Normal cell genes involved in relevant processes that,
when altered are activated and have oncogenic potential, are called proto-
oncogenes. We call this type of activating changes gain-of-function
mutations which normally affect specific protein AA residues that confer
them with a constitutively activated protein form. Since these are very
specific places in the sequence, oncogenes tend to accumulate missense
mutations in particular positions. Other alterations affecting oncogenes are
duplications that lead to an overexpression of the gene or translocations that
bring genes under the control of a different promoter or enhancers causing

its overexpression [83].

On the other hand, mutations affecting tumor suppressors are called /oss-
of-function mutations which, as the name explicitly reveals, create a
nonfunctional protein. Nonsense mutations creating truncated versions of
the proteins are abundant among tumor suppressors. This type of cancer
genes normally encode for relevant regulators of the cell such as
checkpoint-control proteins of the cell cycle, enzymes of DNA repair or

cascade members of apoptosis for example. The pattern of loss-of-function
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mutations in tumor suppressor genes show more positional variability along

the sequence compared to oncogenes [46].

The most reliable source of cancer genes together with related information
such as their cancer incidence and their mode of action is the Cancer Gene
Census (CGC; [84,85]). This is a catalog of genes (approximately 700
drivers) curated from the literature. Most of the tools mentioned above have
tested their accuracy based on their ability to recover CGC genes. As a
result of a driver discovery exercise one ends up with a list of candidate

driver genes. There are also methods to infer their mechanism of action.

Endogenous and exogenous mutational processes

The great amount of data coming from the somatic mutational catalogs that
the global cancer sequencing initiatives have produced, opens a new
opportunity to understand the mutational processes that the tumor cells have

suffered.

More than a decade ago, Gerd P. Pfeifer showed the presence of certain
mutation patterns in 7P53 sequence in lung and skin tumors which coincide
with the mutation types observed experimentally after the exposure to
particular carcinogens. Him and colleagues reported that G>T/C>A
transversions were more abundant in smoking patients than nonsmokers
and these transversions are also more abundant in lung cancers compared
to other cancer types pointing towards a mutagenic signature caused by
tobacco carcinogens such as benzo(a)pyrene damaging the DNA [86,87].
Also, he described the abundance of C>T and CC>TT mutations as the
result of the replication errors of the polymerase when encountering
pyrimidine dimers in dipyrimidine sites caused by the exposure to UV light

in skin cancers [88]. These observations were limited to a tumor suppressor
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gene under positive selection. However, similar observations were made
also in more comprehensive somatic catalogs of malignant melanoma and

lung cancer in the following years [89,90].

It became apparent the need to explore mutational patterns of other cancer
types with less evident associative relation (tobacco smoke — lung; UV
light — melanoma) to understand the underlying mutational processes
operating. Many considerations must be taken into account to design an
approach to detect these types of mutational imprints. First of all, the cell
has different mechanisms of repair that attenuate and, consequently, shape
the signals left by the DNA damaging agent. For example, in the above
mentioned studies they associate the presence of transcriptional strand bias
in lung cancer as a reflection of the past activity of transcription-coupled
nucleotide excision repair. Second, several exogenous and endogenous
carcinogens might be acting in the same tumor development, therefore,
mixing the particular “signature” of each one. The unique combination of
mutation types imprinted in the DNA by specific mutational processes are,
indeed, called mutational signatures. Each one can be understood as a
probability distribution of the 96 types of mutations (in this particular
context, “mutation” refers to SBS). The different mutations types can be
summarized into 6 different substitutions C>A, C>G, C>T,

T>A, T>C and T>G taking as reference the pyrimidines (C,T) and therefore
adding the reverse complement counts to the corresponding type. These
substitutions are usually referenced with their sequence context: the 5* and
3’ nucleotides of the flankings from the substitution position. Thus, 96
comes 6 substitutions * 4 possible 5’ nucleotide context * 4 possible 3’
nucleotide context. The 96 substitution types are usually represented as a
mutational profile (also called mutational spectrum) in which one can easily
visualize the trinucleotide channels with the amount of substitutions

showing the mutational process activity. Apart from signatures, any
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somatic mutation catalog from a tumor sample can also be represented as a
mutational spectrum. In fact, most of the computational frameworks to
detect signatures take mutational spectra as the input data structure with the
counts for each of the 96 different mutations of each sample. As highlighted
above, the general idea behind all signature computational approaches is
that the somatic mutational catalogue is a combination of different
signatures reflecting the mutational processes in which the ones with the
higher activity during the tumor development have more weight in the

required decomposition exercise to detect them [91].

We can distinguish two ways to detect the mutational signatures present in
a somatic catalogue of a sample or group of samples (such as a cohort of a

particular cancer type):

- de novo extraction: This approach aims to discover novel
signatures.
The first and most notorious method to extract mutational
signatures was first used here [92] as part of the Breast Cancer
project within the ICGC and, after, fully described in the landmark
paper of Ludmil B. Alexandrov at the beginning of 2013 [93]. This
computational framework implemented in SigProfiler uses a
decomposition algorithm called Non-negative Matrix Factorization
(NMF). This algorithm requires the somatic catalog as an input
matrix data and the number of mutational signatures to be
deciphered. Thus, they also included a model selection approach to
determine the number of signatures. The application of this method
to 507 whole genomes and 6,535 from exome sequenced tumors
from 30 different cancer types revealed the first mutational
signature profiles [94]. With the data from PCAWG the list of

mutational signatures was amplified [95]. All of them are publicly
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available in COSMIC [96] which not only includes the SBS
signatures but also doublet base substitutions signatures and small

InDels ones.

Following the Alexandrov model there are other de novo extraction
methods developed such as SignatureAnalyzer

(https://github.com/broadinstitute/Signature Analyzer-GPU/).

- fitting of signatures: The goal in this approach is to infer which
signatures are active in the somatic catalog from a set of reference
signatures such as the ones in COSMIC. Two examples are
deconstructSigs [97] which solves the fitting using multiple linear
regression model and sigfit [98] which adopts a Bayesian NMF
approach.

There are more than 60 signatures detected in cancer. Some of them are of
unknown etiology and some of them are believed to be sequencing artifacts.
For example, Figure 8 shows some of the mutational signatures of known
etiology. Signature 4 is found mostly in lung cancers (lung adenocarcinoma
and squamous cell carcinoma) and it has been associated with tobacco
smoking. In addition, there are 4 different signatures, all called signature 7
(a,b,c,d), that have been related to UV light damage (example in signature
7a in Figure 8). Furthermore, signature 1 and signature 5 are called “clock-
like” signatures because mutations attributable to these tend to accumulate
at a constant rate over time and, therefore, are proportional to the
chronological age of the sequenced patient [99]. In fact, not only have they
been detected in tumor samples but are also found in normal tissue
[100,101]. Signature 1 shows high abundance of C>T mutations in (N)CG
trinucleotide contexts which can be attributable to an endogenous

mutational process associated with age. It has been observed that
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spontaneous and/or enzymatic deamination of 5-methylcytosine to thymine
generates mismatches in the double helix that if unrepaired at the time of
replication become fixed as a C to T substitution which match with the
observed pattern in signature 1. Regarding signature 5, there is no clear
etiology. The number of mutations attributable to this signature correlates
well with the age of the individuals. However the rates of signature 5
acquisition differ between cancer types without presenting a correlation

with the stem cell division of each particular tissue of origin.
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Figure 8. Mutational profiles of SBS signatures. Bar plots taken from COSMIC. The x-axis
has each one of the 96 mutation types given as trinucleotide contexts. The y-axis represents
the percentage of them. From above to below profiles of signature 4, signature7a, signature
5 and signature 1.

Currently, there is special interest in sequencing healthy tissue and pre-
malignant neoplastic forms [102—105]. Some of these studies have shown
that known mutational signatures of cancers can be recovered from healthy
tissues (especially signature 1 and 5) [106,103,107,108]. Moreover, novel
signatures are being detected in healthy cells which might reflect
endogenous mutational processes specific to the tissue. One example of that

is as a characteristic mutational profile detected in hematopoietic stem-cell
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population and acute myeloid leukemia samples [101,109] which seem to

be characteristic of the hematopoietic cell lineage.

Other interests regarding the analysis of mutational patterns involves the
study of the consequences of chemotherapies. These treatments affect both
cancerous and healthy cells. The damage in normal tissue may eventually
translate into fixed mutations which may contribute to long-term secondary
effects. There have already been described some therapy-related signatures
such as signature 11 which is related to temozolomide, signature 31 which
is associated with platinum-based drugs or signature 32 detected in post-
treatment samples with azathioprine [94,95,110]. The detection of novel
signatures seems to be going into this direction with very interesting recent
projects in which they describe several footprints of chemotherapies in
metastatic tumors including the novel capecitabine and fluorouracil (5-FU)
signature [111] or another novel signature related to thiopurine treatment in
pediatric relapse samples of acute lymphoblastic leukemia (now included

as signature 87 in COSMIC; [112]).

1.1.3.3 Positive selection in cancer vs Neutral tumor evolution

During the 90's and early 2000's some speculative controversies took-off
among cancer researchers. On the one hand, due to the first genomic
characterization of tumor samples (especially from colorectal cancers) it
started to prevail the idea that carcinogenesis might require genome
instability and the acquisition of a hypermutator phenotype to develop and
establish [113,114]. On the other hand, others argued against it since: (1)
many tumors do not show chromosomal instability nor present alterations
in key pathways that enhance mutability of the genome such as DNA repair
pathways and (2) stressed the power of selection, instead of increased

mutation rate, to force sporadic tumors to appear due to clonal selection and
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expansion of cells harboring drivers [115,116]. As pointed out in here
[117], these opposing views are not necessarily mutually exclusive. For
some cancer types such as colorectal and endometrial cancers with defects
in members of the DNA mismatch repair pathway, the mutator phenotype
hypothesis adjusts well. The increase in the mutation rate provides a wider
mutational spectrum upon which selection can act. For some other cancers,
it seems that the normal mutation rate might be sufficient to account for the
observed tumor development characteristics without the need of

hypermutation [30].

Another debate dominated the past few years. The dNdScv framework [73]
is not just a driver discovery method but it has provided an approach to
estimate positive selection beyond the sequence of a gene. It can also be
applied to a group of genes or even in the entire exome of the tumors
revealing genome-wide measures of selection in cancer. The core of the
approach is that it applies the normalized ratio of non-synonymous to
synonymous mutations (dN/dS) which has historically been used in species
evolution studies, to quantify selection (positive and negative) in cancer
genomes. This apparent simplistic model has been refined to account for
covariates to provide a good estimate of the background mutation rate at
different scales (both locally and globally). The application of the method
to PCAWG data showed no evidence of negative selection on coding point
mutations. Also the analysis of gene sets revealed no clear signals of
purifying selection. Therefore, except for driver mutations all the rest of
coding somatic substitutions (~99%) seem to accumulate neutrally. The
absence of negative selection contrasts with other studies applying also
dn/ds (with slight differences) in which essential cellular genes turn to be
negatively selected along with detected negative signals in the proteins

controlling peptide exposition and the immunopeptidome itself [118].
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Some years later, a paper came out describing that some colorectal tumors
came from a single expansion and the cell subpopulations observed had
driver alterations private to each one of them which appeared at very early
stages of the tumor growth. This cancer growth behavior was named the
“Big Bang” model [119]. A few years ago, a new approach to measure
selection came out inspired by the Big Bang model and hypothesized that
this mixture of subclones might be explained by neutral tumor growth
dynamics. As a summary, they argue that mutations arising during the
neutral expansion follow an accumulation distribution of 1/f power-law
where f represents the allelic frequency. Then, adjusting a R? goodness-of-
fit to the cumulative distribution of 1/f they indicated a threshold of R?
>0.98 to call for neutrality [120]. A proportion of tumors sequenced
(approximately 4) across cancers presented neutrality under the model,

especially gastric and colon cancers.

The relative simplicity of the model raised criticism among The PCAWG
Evolution and Heterogeneity Working Group which argue that excessive
assumptions were taken. Among the points stressed in the reply note [121],
they run dN/dS for subclonal mutations previously considered as neutral
which resulted in signs of significant positive selection. In the reply to the
reply note, the authors of the original paper re-analyzed the data with dN/dS
(excluding some problematic patients) and stressed that the neutrality
detected in the original paper was confirmed by non-significant positive

selection result [122].

All in all, the interest to detect natural selection and to better understand the
evolution of tumor population cells is a cancer genomics hot topic which
reflects its relevance towards studying driver alterations within the intra
tumoral heterogeneity of neoplasias to avoid therapy resistance. In addition,

the combination of methods should shed light for a better comprehension
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of cancer rather than cloud over it. The scalability of methods designed for

illuminating specific questioned areas must be taken with caution.

1.1.3.4 Evolution patterns through space and time

The somatic catalog of sequenced cancer cells represents a snapshot in the
evolution of the tumor. The identification of drivers and the deciphering of
the mutational processes acting, are approaches to a better understanding of
tumorigenesis. However, inferring the ITH and how this mixture of
populations of cells have evolved is fundamental to have the whole picture.
The relevance of it lies in avoiding treatment failure. Therapy can eliminate
most of the tumoral cells and therefore reduce the competence of the
resistant ones that can progress again and cause recurrent cancer. When it
happens, it is sometimes classified as advanced cancer or stage IV in the

clinics. The majority of the cancer-related deaths happen at this point.

Treatment resistance, relapse and metastasis

The failure of the therapy to completely eliminate tumoral cells can
manifest as the patient undergoing a second malignancy in a post-treatment
period after the primary one was believed to be eradicated. This is called a
relapse. When a second neoplasia appears in a different region
(tissue/organ) from the primary site of the first cancer is called metastasis.
Metastases diagnosed after the treatment of the first primary tumor are also
called relapsed metastasis. In contrast, in situ cancer recurrence is

sometimes called just relapse.

Metastases occur due to a multistep process which involves the
dissemination of cancer cells to anatomically distant organs followed by the
adaptation to the new particularities of the tissue microenvironment. This
is called invasion-metastasis cascade and can be summarized in the

following steps [123,124]:
47



1) locally invade the adjacent tissue through the surrounding
extracellular matrix (ECM) and stromal cell layers

2) intravasation into lymphatic system and/or bloodstream

3) survive the circulation and vasculature and stop at the capillary
system of a distant organ

4) extravasation into the new tissue location

5) colonize by overcoming the microenvironment hazards

6) generating a viable niche to grow

The development of the metastasis implies genetic and epigenetic changes
that settle an heterogeneous scenario for selection to favor some traits under
the pressure of these successive bottlenecks. Some of these changes have
been well studied. For example, in carcinomas (epithelial derived cancers),
cells undergo some phenotypic changes in which they lose intercellular
adhesion and polarization and acquire motility and invasiveness
characteristics called epithelial-mesenchymal transition (EMT) with a

similar cellular program that in embryonic development.

It is thought that a lot of “seed” cells of the primary tumor die during this
process especially during colonization [124]. Since usually, this is the
critical point, it has also been observed that some cells that reach a distant
tissue (micrometastasis) undergo dormancy state and sprout when the
conditions are favorable to create a macrometastasis. The circulating tumor
cells (CTCs) found in the bloodstream of patients have been observed to
travel isolated alone as well as in clusters which may give rise to polyclonal
metastatic seeding [125]. The genetic and epigenetic commonalities and
differences observed when comparing primary and metastatic samples of
the same individual can provide hinds of the seeding process. Intriguingly,

there are primary tumors with “preferences” for certain metastatic sites such
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as breast cancer which frequently metastasize in lung, bones, liver and

brain.

The origin of such tumor heterogeneity which contributes to treatment
failure and recurrence has motivated different explanations. One of those is
the cancer stem cell model (CSC) which describes how self-renewing
malignant stem cells maintain the clonality of the tumor. It is conceived as
hierarchical organization of the tumor cell populations being the CSC at the
top of it and therefore multipotent. Their tumor-initiating and clonal
maintenance capacity have been observed through repopulation assays
either by serial transplantation in recipients or in situ tracking studies
[126,127]. When the first papers supporting this model came out, there was
some controversy as it was seen as an opponent explanation to the clonal
evolution model [128]. First, the CSC model explains ITH by an aberrant
differentiation program whereas the clonal evolution model relies on
competition among neighboring subpopulations of cells to produce such
mixture. Second, the CSC model assumes that only a small pool of cells
(CSC) contribute to tumor progression and therefore, are the ones that
mutate and eventually become more aggressive which differs from the
clonal evolution model which supposes that any tumoral cell acquires
mutations and has the potential to progress. Third, regarding therapeutic
resistance, the clonal evolution model considers that there is selection
towards tolerant clones whereas the CSC model presumes that CSC are

drug-resistant.

Apart from these differences, there are also some commonalities. In both
theories, the tumor originates from a single cell that accumulates alterations
and acquies proliferative power. Moreover, stem-cell like property is
something compatible with both since not only can be a characteristic from

the tumor cell of origin but also can be an advantageous trait to be selected
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[128]. In fact, there are some explanations to reconcile both models, for
example, by clarifying the term “stemness” (gain and maintain a stem-cell
state). Stemness is influenced by cancer genetic and epigenetic diversity
and the tumor microenvironment [ 126]. In fact, there is increasing evidence
that the niche of the CSCs plays also an important role in the division of
these cells which has been observed not to be as an asymmetric mitotic
process as it was believed [129] but rather a more dynamic model. Also, for
some cancers it is difficult to distinguish CSC from non-CSC since it seems
to be a stemness generalized among tumoral cells as well as there are
cancers in which it has been observed a reversing transition process
between stem and non-stem cell states [126,129]. Related to that, the term
“cancer stem cell” has also brought confusion into its origin since not all
the CSC derive from normal stem cells. The concept of “stemness” should
be restricted to its cell functionality independently on whether it refers to
normal or malignant ones [130]. Besides, it is also difficult to isolate CSC
since there are just a few clear markers (e.g. CD44+ in some solid tumors
or CD34+/CD38- in leukemia) among cancer types and there is high
variability in their frequency between tumors [131]. As a consequence of
the previous reasoning, CSC term should be found restricted to tumor-
initiating cell (T-IC) or leukemia-initiating cell (L-IC) which are [126]: (1)
able to create a xenograft that is representative of the original tumor (2) able
to self-renew in assays of serial passage in xenografts with different clonal
cell dosages, (3) able to give rise to daughter cells that can proliferate but

unable to establish or maintain the tumor in serial passage assays.

The lab of John E. Dick has extensively studied the role of L-IC in the
context of acute myeloid leukemia (AML). Performing transplantation
assays into severe combined immune-deficient (SCID) mice, they were the
first to isolate and characterize them as CD34+/CD38- and they proved their

self-renewing capacity [132,133]. Among other contributions, in 2011 he
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discovered that L-IC clones of B-cell acute lymphoblastic leukemia
harbored distinct genetic alterations and demonstrated a branched multi-
clonal evolution model of leukemogenesis, thus, linking CSC and genetic

evolution models to describe tumor heterogeneity [ 134].

Independently of the origin of ITH, tumors that present high ITH have more
probability of treatment failure [135]. In a neoplastic mass, the more
diverse, the more chances of the presence of chemoresistant cells, which
are the major cause of relapse. Resistance is classified into two types of
resistance [136]:

- intrinsic resistance: the factors mediating resistance are already
present in the bulk before administration of the treatment.

- acquired resistance: it is developed during treatment by diverse
therapy-induced adaptive responses. For example, it can occur in
initially sensitive tumors that acquire resistant alterations during
treatment or by an upregulation of an alternative compensatory

signalling pathway of the therapeutic target.

Apart from the starting point of the resistance, some common mechanisms

of resistance have been described, some which are dependent on the
treatment and others that are more general [136]:

1) Drug transport and metabolism

- drug efflux: some cell membrane transporters have been

related to chemotherapy resistance by pumping out drugs.

The most notorious case is the ATP-binding cassette

(ABC) transporter family. Especially, overexpression of

the gene MRD1 (ABCB1) has been related to multi-drug

resistance in various cancers such as lung [137], breast

[138] and leukemia [139,140].
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2)

3)

4)

5)

- drug activation and inactivation: some drugs are delivered
as prodrugs and are activated by cellular enzymes, so in the
absence of those the cell tolerates the drug. Contrary, some
cellular metabolites can inactivate chemotherapeutic
agents. For example, platinum drugs can be inactivated by
thiol glutathione.

Alterations in drug targets: alterations and/or changes of expression
of the target can also create resistance. A notorious case is to find
mutations in gatekeepers residues of kinases. This is a conserved
residue at the opening of the ATP-binding pocket. Examples of that
are mutations found in specific residue of the BCR-ABLI
oncogenic kinase, formed by rearrangement in chronic myeloid
leukemia (CML), which conferred resistance to imatinib [141].
DNA damage repair: the effectiveness of chemotherapeutic agents
inducing DNA damage depends on the cell capacity to activate
DNA repair pathways. Thus, mutations that affect the response to
DNA damage and DNA repair may increase the chance of survival
of cells with large quantities of DNA lesions, such as those exposed
to certain chemotherapies.

Downstream resistance mechanisms: that is, even though the cell
accumulates anticancer agents and the target is inhibited, which
should ultimately induce cell death, the cancer cell finds ways to
survive like generating deregulation of apoptosis.
Resistance-promoting adaptive responses: these responses can be
listed as:

- activation of prosurvival signaling

- oncogenic bypass and pathway redundancy: this is also
called kinome reprogramming. It has been observed that

due to the treatment, which is effectively inhibiting the
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6)

7)

target (i.e. EGCF), an alternative kinase becomes
activated.

- undergoing EMT: it is also believed that resistance can
happen in some tumors as cells present certain plasticity to
acquire stem-cell-like properties (like in EMT)

Tumor Microenvironment: It has been observed that stroma-
induced resistance to different therapeutic agents. These
interactions can change the sensitivity of tumor cells to some drugs
[142]. Some of the observed influences of it are changes in
expression of integrins and cytokines and growth factors such as
autocrine, paracrine and endocrine activation of oncogenic
signaling by growth factors.

Cancer Stem Cells: There is increasing evidence that CSCs confer
resistance to chemotherapies, which are described somewhere
[143] and some of them summarized here. First, it has been studied
that the CSC niche provides protection against the exposure to
drugs. For example, it has been observed that CSCs are surrounded
by hypoxic conditions, for example, it has been demonstrated that
hypoxia-inducible factor-1 (HIFlalpha) is required for the
maintenance of L-IC in CML mouse models [144]. Paradoxically,
a perivascular niche has also been reported to be essential for

maintaining CSCs in certain tumors.

In addition, as chemotherapy and radiotherapy target fast
proliferating cells, it has been observed that CSCs are slow-dividers
and most of the time acquired quiescent states, thus, avoiding the
attack of these therapies. Finally, it has also been reported a high
drug efflux by ABC transporters in CSC as well as some other

general resistant characteristics described above.
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Inferences of clonal populations and their dynamics

ITH fosters tumor evolution and can engender drug resistance, thus, it has
attracted a lot of attention due to its clinical relevance [24]. As a
consequence, many research groups have focused on disentangling the
architecture of tumor and its different subclonal populations as well as

deciphering the history of the tumor progression.

There are different mathematical models aimed to infer population
dynamics described here [145] and summarized as follows. One of the first
ones described was the multistage theory which models the probability of
developing cancer as a function of the age. The kinetics of tumor initiation
and progression such as the number of rate-limiting steps of the cancer
(transforming steps towards carcinogenesis) can be estimated from age-
incidence curves. In fact, in general, 6 rate-limiting steps have been inferred
in cancer development which is quite close to the average number of driver
alterations estimated in tumors (4-5 drivers [61]). Other more sophisticated
models of population genetics have been applied in cancer research to study
the evolution of tumors. For example, Wright-Fisher model can be used to
simulate cell populations with a specific number of generations and study
the accumulation of driver mutations through clonal expansions.
Applications of it allow creating multiple cell types representing genetically
different subclones of the tumoral mass using multinomial sampling and
also accounting for number of mutations, selection force and genetic

instability.

Phylogenies of the tumoral populations of a neoplasm are also widely used
to represent the inferred reconstruction of evolutionary cancer processes
[146]. In these representations, the clonal subpopulations represent the taxa

of the phylogenetic tree. Most of the computational tools developed to infer
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these phylogenies rely on the detected somatic SNVs and/or CNVs. In the
case of SN'Vs detected, trees are built upon the inference of clones from the
allele frequencies of the mutations. These are calculated with the number
of reads mapping to the reference genome that harbor the variant respect to
the total aligned and must be corrected by copy number changes affecting
the regions as well as the normal contamination of the sample. This way,
we can obtain the number of cancer cells having each substitution (also
called Cancer Cell Fraction or CCF). After, the SNVs can be clustered by
common frequencies into sets of mutations as a proxy of the subpopulations
of cells in the tumor. This process is commonly known as clonal
deconvolution. Some tools are more oriented to quantify ITH and only
perform clonal deconvolution without inferring phylogenies such as
SciClone [147] and Pyclone [148] but are useful when combined with other
phylogenetic methods to infer trees [149].

Most of the algorithms developed to build cancer phylogenetic trees borrow
classic evolution methods such as maximum parsimony, neighbor joining,
UPGMA or Bayesian probabilistic inference methods and also a
combination of some of those. For example, for bulk sequencing sample
data, both PhyloWGS [150] and Canopy [151] are based on probabilistic
models using Markov chain Monte Carlo (MCMC) sampling to obtain
phylogenies that are consistent with the mutation frequencies. In addition,
as more projects use single-cell sequencing, similar probabilistic
approaches but specific to this data are used such as SCITE [152]. Related
to the above, the diversity of the data has led a great variety of methods that
can be divided in [146]:
- cross-sectional methods: gives information about the common
progression of a population building trees from many tumor

samples of a cohort.
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- regional bulk sequencing: builds trees from single-patient data
using samples of different tumor sites. This particular group of
methods are the ones prone to combine deconvolution of clones and
phylogenies.

- single-cell methods: uses the detectable cell-to-cell variation to
create phylogenetic trees. Not only there are algorithms based on
single-cell sequencing of DNA but also some preceding the
sequencing technique that use fluorescence in situ hybridization
(FISH) markers.

Notably, a simplistic but accurate phylogenetic representation of samples
was developed by Nik-Zainal and colleagues within the Peter Campbell’s
group at the Wellcome Trust Sanger Institute [60] which has been later
applied to many other followed-up research projects [153,154]. They
“manually” build trees based on a deductive reasoning approach using the
mutational frequencies of SNVs and borrowing the concept of “the most-
recent common ancestor” (MRCA) from population genetics. The approach
makes the following assumptions which seem reasonable within the
evolutionary cancer setting:

1) Mutations occurred only once during tumor development. In other
words, a position cannot be mutated twice which is referred to as
the “infinite sites assumption”.

2) Mutations cannot be undone or lost. In other words, back-mutations
do not happen.

From these, one can deduce that two clone subpopulations harboring the
same mutation implies that they share a common ancestor clone that had
acquired the mutation and had transferred it to the daughter cells. Their

approach follows three steps:
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1) Phasing with Battenberg'!: map mutations with adjacent germline
heterozygous SNPs'? to the copy number events which allows to
determine whether a mutation is on the retained or subclonally
deleted parental copy of a chromosome.

2) Bayesian Dirichlet process to perform a clustering of subclonal
subtitutions

3) Apply the Pigeonhole Principle (PHP): an easy and very well-
explained example of the principle is given here [155] as follows.
According to the PHP no sum of the subpopulations can exceed the
CCEF of'the ancestor. Imagine a deconvolution of the CCF that gives
three different subclusters of mutations at 100%, 80%, 40%. Then
100%+80% > 100% therefore the subclone 80% must be a
descendant of the 100% subclone. On the other hand, 80%+40% >
100% as a consequence 40% subclone must be a descendant of 80%
one.

Usually, in this type of studies they use multiregional samples of the tumor
and the phylogenetic trees show a trunk that represents the clonal mutations
that are shared in all tumoral cells in every sample and the branches are
subclonal cluster mutations. The length of the trunk and the branches
represents the number of mutations specific to each lineage. This type of
studies revealed that in breast cancer, primary tumors had a subclone
lineage representing a 50% of tumoral cells [60] and that clones seeding
metastasis disseminated late from the primary neoplasms but still acquired
private mutations with some clinical actionable potential [154]. In contrast,
the patterns of subclonal composition among the cohort of patients with

multi-sampled breast tumors showed great variability [153].

' copy number caller presented in the same paper [60]
12 such as the list of SNPs derived from the 1000 Genomes Project.
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Apart from studying ITH and evolution patterns, cancer phylogenies trees
also drove the interest to decipher the temporal sequence of driver events.
There are different approaches to study the order of genomic events [156].
One way is to compare the driver alterations at different tumor development
stages. For example, private mutations of metastatic sites that are enriched
in particular genes or pathways in a cohort inform about the final phases of
tumor evolution. Similarly, others have looked at displasias [100,105,157]
or even normal cells [103,158] of the tissue to detect precursor lesions in
cancer. For example, positive selection of oncogenic mutations in drivers
of cutaneous squamous cell carcinomas such as NOTCHI have been

detected in normal skin [103].

The most obvious thing to do would be to take serial samples of each patient
but, usually, this is impossible. In general, one can say that clonal
mutations, meaning mutations with CCF closer to 1, correspond to
relatively early events in tumor evolution, most likely happening previous
or at the time of the most recent clonal expansion, whereas subclonal
mutations are usually considered later events. A pan-cancer analysis of
TCGA [159] with single-patient primary data revealed that known cancer
genes have a tendency to be clonal within across cancer types and that
APOBEC-mediated mutagenesis happens late in tumor evolution and
contributes to the acquisition of subclonal driver mutations. Furthermore,
as seen before, multiregional sampling of a single biopsy serves to study
tumor evolution and also to time its main genomic alterations. Those can
be ordered by checking the relationship between SNVs and the surrounding
copy number gains. For example, mutations are called “early” when they
are present in the two alleles of the duplicated region because they must
have happened before the gain event whereas mutations are called “late”
when those are detected in a single allele since they most likely occurred

after the duplication. In a similar way other events can also help order
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mutations such as whole-genome duplications (WGD) or copy neutral loss-
of-heterozygosity. Applying this reasoning the PCAWG Evolution &
Heterogeneity Working Group revealed that across cancer types, mutations
in the driver tumor suppressor 7P53 are usually early events, WGD happen
in intermediate phases of the tumor evolution and copy number changes are
typically late being losses earlier than gains [160]. In addition, they also
used age-related mutations, which accumulate at a constant rate through
time, as a calibrated “molecular clock” to get chronological time estimates
of the WGD resulting in genome doublings happening several years before
diagnosis. Other contemporary multi-cancer studies have also revealed that
for some patients with synchronously diagnosed metastases, the systemic
seeding can happen very early (approximately 2-4 years before diagnosis

of the primary; [161])

The more we learn about the occurrence and latency of driver genetic
aberrations the closer to early detection and prevention of cancer

recurrence.

1.2. Overview of Leukemia

1.2.1 What is leukemia?

Blood and plasma cells are created through a highly regulated process
called hematopoiesis. In this process the hematopoietic stem cells (HSC)
differentiate and mature to form erythrocytes, megakaryocytes, and
immune cells of myeloid, lymphoid, or monocytic lineage (see Figure 9) in
bone marrow or lymphatic tissues (spleen, thymus and lymph nodes) which
are tissues and organs composing the hematopoietic system. Genetic and
epigenetic aberrations affecting HSC can cause a maturation arrest and

uncontrolled proliferation of immature cells. When these cells (of any
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lineage and hematopoietic immature stage) create a clonal expansion in the
bone marrow, infiltrate and circulate at elevated numbers in the
bloodstream we call it leukemia [162]. In certain cases (lymphoid lineage),
there is also abnormal proliferation of the lymphatic tissues. Contrary, when
the lymphatic tissues present malignant masses of well-differentiated
lymphoid cells (lymphocytes) the disease is called lymphoma. There are
two types of lymphoid cells, the T-cell and B-cell lineages which, as shown

below, are often used to classify related malignancies.
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Figure 9. Illustration by Terese Winslow. Hematopoiesis process to produce blood
cell types.

1.2.2 Cancer classification of leukemias

Different criteria allocates leukemia in distinct cancer groups. According to
its cell of origin, leukemia belongs to the group of hematopoietic
malignancies. However, due to its histological nature the different leukemia

types are also classified as “liquid” cancers. Officially, the World Health
60



Organization (WHO) made the following general categories [163,164] in
2016 (on each group of the classification backbone, there are only written
the malignant forms that are considered leukemias in bold):
Lymphoid malignancies:
e B Cell Neoplasm
o Precursor B cell Neoplasms
m  B-lymphoblastic leukemia/lymphoma (with
several subtypes)
o Mature B cell Neoplasms
m  Chronic lymphocytic leukemia/small
lymphocytic lymphoma
m  B-cell prolymphocytic leukemia
= Hairy cell leukemia
e T Cell and NK Cell Neoplasms
o Precursor T cell Neoplasms
m  T-lymphoblastic leukemia/lymphoma
o Mature T cell Neoplasms
m  T-cell prolymphocytic leukemia
m  T-cell large granular lymphocytic leukemia
m  Adult T-cell leukemia/lymphoma
e Hodgkin's Lymphoma
e Posttransplant lymphoproliferative disorders (PTLD)

e Histiocytic and dendritic cell neoplasms

Myeloid malignancies:
e Myeloproliferative neoplasms
o Chronic myeloid leukemia (CML)
o Chronic neutrophilic leukemia (CNL)

o Chronic eosinophilic leukemia
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e Myelodysplastic and lymphoid neoplasms with eosinophilia and
abnormalities of PDGFRA,PDGFRB and FGFR1
o0 Chronic myelomonocytic leukemia (CMML)
o Atypical chronic myeloid leukemia (aCML), BCR-
ABL12
0 Juvenile myelomonocytic leukemia (JMML)
e Myelodysplastic and myeloproliferative neoplasms
e Myelodysplastic syndromes
e Acute myeloid leukemia and others
o Acute myeloid leukemia (AML) (with several subtypes)
o Acute myelomonocytic leukemia
o0 Acute monoblastic/monocytic leukemia
o Pure erythroid leukemia
o Acute megakaryoblastic leukemia
o Acute basophilic leukemia
o Myeloid leukemia associated with Down syndrome
Acute leukemias of ambiguous lineage:
e Acute undifferentiated leukemia

e Mixed phenotype acute leukemia

Since the WHO classification is based on the cell of origin, some forms of
leukemia and lymphomas are considered different manifestations of the
same disease. For example, chronic lymphocytic leukemia (CLL) and small
cell lymphoma (SLL) are both part of mature B-cell neoplasms or T-cell
lymphoblastic leukemia and T-cell lymphoblastic lymphoma are joined
under the same category (T-ALL/T-LBL). Sometimes, these types of cases
are differentiated and separated in leukemias and lymphomas depending on
whether the malignant cells prevail in bone marrow and blood or the lymph
nodes and therefore distinguishing between “liquid” and “solid”

hematopoietic malignancies. Therefore, clinically, a more used
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classification for leukemias are lineage (myeloid or lymphoid) and
condition (acute or chronic) which results in the four major types of
leukemias: chronic lymphocytic leukemia (CLL), chronic myeloid
leukemia (CML), acute lymphoblastic leukemia (ALL), acute myeloid
leukemia (AML). Also lineage serves to distinguish solid hematopoietic
cancers as myelomas and lymphomas. Usually, the latter are subdivided

into Hodgkin Lymphomas (HL) and Non-Hodgkin Lymphoma (NHL) [50].

1.2.3 Epidemiology and etiology

The incidence of leukemias worldwide is of 6.1 per 100,000 in males
compared to 4.3 per 100,000 for females. Mortality is also higher in males
than females (4.2 per 100,000 vs 2.8 per 100,000 respectively) [162]. ALL
is considered a rare cancer in adults whereas CLL and AML are the most
frequent ones. In contrast, ALL is the most frequent leukemia among
children (75% of all leukemias in pediatric compared to 12% in adults [50]).
The rest of the leukemias written above (1.2.2) also have a low incidence
and are different from the four major ones as they involve transformed cells.
Acute leukemia forms are among the most common pediatric cancers
therefore, the incidence of them by age follows a bimodal distribution.

Contrary, chronic leukemia incidences increase with age (see Figure 10).
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Figure 10. Hematopoietic cancer distributions of incidences by age between 2015-
2017 in the UK. Female (pink) and male (blue) cases per 100,000 are differentiated.
Data collected by the Cancer Research UK, entry August 2020 source:
cruk.org/cancerstats

In hematopoietic cancers with pediatric incidence such as acute leukemias,
mortality rate is higher in adults than in children. Concretely, the average
mortality of age groups in the UK population according to the data of the
Cancer Research UK is 0.517 per 100,000 in adults compared to 0.262 per
100,000 in pediatric patients in ALL and 9.84 per 100,000 vs 0.187 per
100,000 in children in AML. Similar population numbers are given for US
cases [162]. However, in general, leukemia one-year diagnosed survival
rates have increased from 34% in 1971-1972 to 68.5% in 2010-2011 as well
as the five-year survival rates that have also improved 38.5 points [165]

over the last years as reported by Cancer Research UK.
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Among different populations, the US incidence data shows that the

prevalence of leukemias is higher among White-Caucasian people than the

rest except for ALL in pediatric patients which is higher among the Hipanic

community [162].

The identified risk factors for developing leukemia are [162,166,167]:

radiation (therapeutic, occupational and wartime-related). It has
been observed that ionizing radiation among survivors of the
atomic bombs, workers of nuclear plants and radiologists previous
to the 50s manifested leukemia at higher rates than other population
groups.

chemical exposures (residential and occupational): high exposures
to hydrocarbons in common products, industrial disinfectants and
some building materials showed associations with leukemia as well
as some pesticides (especially in children)

chemotherapy: Therapy-related secondary AMLs can occur after
chemotherapy employed as treatment of a primary malignancy.
family history: e.g. people with CLL/SLL relatives have more
chances to develop leukemia.

genetic syndromes: some examples such as Down syndrome, Li-
Fraumeni syndrome, Fanconi anemia and Bloom syndrome.
Infections: There are different examples that support a causality by
infection. For example DNA herpesvirus EBV in association with
Burkitt’s lymphoma or retrovirus human T-lymphotropic virus 1
(HTLV-1) in adult T-cell leukaemia/lymphoma. In addition, the
proposed double hit theory by Mel Greaves also states a causal
relation between infection and ALL. H e proposed that some
ALL are driven by a first in utero event which creates pre-leukemic
clones that together with a “delayed infection” can cause a second

aberrant genetic event and trigger leukemia transformation [168].
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1.2.4 Scientific and clinical advances in the history of leukemias

At the beginning of 1800, and during the following 50 years, several

contemporary scientists diagnosed and defined leukemia for the first time

[169]:

In 1811 Peter Cullen describes a peculiar case of “milky” blood in
a patient with “splenitis acutus” (acute hyperplasia of the spleen)
In 1825 Alfred Velpeau reported a case of a patient with “pus-
filled” blood and enlarged liver and spleen that presented swelling
of the abdomen, fever, weakness, and urinary stones (first time
description of leukemia symptoms)

In 1844 Alfred Donné was the first physician to perform a
microscopic examination and description of immaturance
presented by the white blood cells

In 1845 John Bennett was the first physician to realize that the
accumulation of leukocytes was a primary systemic blood disorder
and not a secondary manifestation of other diseases and call it
leucocythemia. Two years later, Rudolf Virchow introduced the
term leukdmie to name a disease with unbalanced red and white

cell quantity in blood.

It was not until 1869 that Ernst Neumann connected leukemia origin and

the bone marrow as he was one of the first to realize that leukocytes were

formed there [170]. There was a great advance in knowledge of this disease

by the mid-20th century due to the discovery of several chromosomal

abnormalities characteristic of different types of leukemias. Mel Greaves

has summarized these advances into clinical and biological in the following

timeline ([167]; see Figure 11).
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Figure 11. Scientific and clinical leukemia discoveries reprinted from Leukaemia 'firsts' in
cancer research and treatment by Greaves 2016 Nature Reviews Cancer.

One of the most notorious discoveries was the observation of the
Philadelphia (Ph) chromosome in CML by David Hungerford and Peter
Nowell who at that time resided in that city [171]. Later, it was identified
the translocation of the Ph aberration which involves chromosome 22 and
9 and, following, it was discovered that the fusion gene BCR-ABLI
resulting from the translocation has leukemorgenic power not only in CML
but also in ALL. Another important medical advance as treatment for
leukemia patients is the allogeneic bone marrow transplantation which
implicates the administration of healthy hematopoictic stem cells from a
compatible donor. In fact, Dr. E.D. Thomas and his medical team were
awarded with the Nobel Prize (1990) for being pioneers in transplants for
leukemia patients [167].

1.2.5 Hematopoiesis, lymphoid differentiation and maturation

HSCs are the common ancestors of all the blood cells. Those are rare and
quiescent with the ability to self-renew and to differentiate into all blood
cell lineages. Hematopoiesis happens during embryonic development at
different stages and sites (e.g. HSCs are present in the fetal liver) but, right
after birth, HSCs become resident in the bone marrow where hematopoiesis
takes place during adulthood [172]. The first population derived from HSC
are multipotent progenitors (MPPs) which have also been defined as

lympho-myeloid-restricted multipotent progenitors (LMPP) in mouse

67



which can either give rise to common myeloid progenitor (CMP) or
lymphoid progenitor cells [172,173]. Regarding the lymphoid lineage, the
studied LMPP can differentiate into a population called early lymphoid
progenitors (ELPs) which, in turn, differentiate into the thymic early T-cell-
lineage progenitors (ETPs) or into common lymphoid progenitors (CLPs)
of the bone-marrow. At this point of lymphopoiesis, B and T lineages
differentiation pathways separate depending on stimuli on CLPs [174] (see
Figure 12). However, a common biologic process between the two is the
expression of recombinase activating gene proteins RAG1 and RAG2
which initiate rearrangement at the immunoglobulin heavy chain (IGH)
locus in B and also triggers the T-cell receptor gene rearrangement which
are necessary to create the diversity of Immunoglobulins (Igs) and T-cell

receptors (TCR).

B-Cell Development

CLPs committed to B-lymphoid lineage are called pro-B-cell which start to
express several markers of differentiation. In the next step, expression of
CD19 marks the pre-Bl-cell population which completes the gene
recombination in the heavy chain locus. This locus is present in segments
that code for the variable (V), diversity (D), joining (J), and constant (C)
regions [174]. RAG1 and RAG?2 are responsible for the cleave and shuffled
bind of the VDJ genes to create the diversity of IGH. When expression of
the RAG genes halts, the IGH assembles with the IG light chains (IGLs;
also previously rearranged in a similar way) to form the pre-B-cell receptor
(pre-BCR). The presentation of pre-BCR serves as a check-point for
selection of those cells that have Ig functional. The signals generated by the
pre-BCR triggers a clonal expansion (positive selection process) of the
harboring cells now called pre-BII cells. Further rearrangements of the light
chain follow to create a complete assembled BCR which are carried by the

denominated immature B-cells [173,174]. Those undergo a second check-
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point (negative selection process) in which if they bind to a self-antigen
with the BCR are either killed or inactivated. All the maturation steps
previously explained take place at the bone marrow (see Figure 12). The
resulting cells are mature naive B-cells which migrate into the lymph node
and spleen for further differentiation. In the inter-follicular region of those,
they may develop into short-lived plasma cells or enter the germinal center
(GC) within the follicle where somatic hypermutation and heavy chain
class-switching takes place. These processes transform the cells into long-

lived plasma cells and memory/marginal zone B cells [175] (see Figure 12).

T-Cell Development

Some CLPs migrate to the thymus and become ETPs. Even though it is
widely accepted that lymphocytes come from lymphoid committed
precursors characterized as the CLPs there is also evidence that ETPs retain
myeloid potential [176,177]. In any case, these progenitors reach the cortex
of the thymus lacking the mature T-cell markers CD4 and CDS and start
their differentiation process. They undergo 4 stages of differentiation
(DN1,DN2,DN3,DN4) detected by the combination of expression of two
different markers (CD25 and CD44) but still retaining the double-negative
(DN) phenotype for CD4 and CDS (see Figure 12). When cells reach DN3
stage, they initiate rearrangement of TCR loci and expression of pre-T cell
receptor (pre-TCR) formed by an already rearranged [-chain and
invariant/surrogate  a-chain [172,178]. Pre-TCR signals initiate
proliferation of DN4 and induce the co-expression to double-positive (DP)
CD4/CDS stage. After, the TCRA gene is finally rearranged to get a
complete TCR. The TCRs are exposed to the major histocompatibility
complex (MHC). Active interaction positively selects the T-cells into CD8
or the CD4 positive, depending on whether they recognize MHC class I or
MHC class II respectively [178]. Another check-point (negative selection
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process) regarding potential autoreactivity of thymocytes purifies the final

TCR repertoire [172].
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Figure 12. Lymphoid hematopoiesis. Figure inspired by The Biology of Acute
Lymphoblastic Leukemia Carroll et al., 2011 Childhood Leukemia: A Practical
Handbook and Lymphoid Hematopoiesis and Lymphocytes Differentiation and
Maturation Cavalheiro et al., 2017 IntecOpen. Cell illustrations are taken from
https://reactome.org/icon-lib

1.3 Acute lymphoblastic leukemia

ALL is a disease caused by a maturation arrest and high proliferation of the
lymphoid progenitor/precursor cells also called lymphoblasts or just blasts
in the bone marrow, blood and extramedullary sites [179]. As explained
above (1.2.3), acute lymphoblastic leukemia is one of the four major
leukemia types. In general, ALL accounts for 1.5% of all cancers [50]. It is
more prevalent in children than in adults (75% children vs. 12% in adults
of all leukemias [50]). Most pediatric patients respond well to treatment
achieving a S-year overall survival rate between 85% - 90% [180,181]

whereas in adults it is 40% approximately [179,180]. Despite the
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improvements in treatment, relapse ALL forms (15-20% of pediatric and
40-75% of adult patients recur; [182]) presents a discouraging prognosis to
the point of becoming the second cause of cancer-related mortality among
pediatric patients [183].

Clinically, ALL is differentiated from LBL when there are >20% blast cells
in the initial diagnostic aspirate of the bone marrow [184]. For example,
cases of T-LBL manifest with enlargement of mediastinum due to the
thymus and little dissemination of T-lymphoblasts in blood whereas T-ALL
present more than 20% of blasts cells infiltrated in bone marrow
independently of the thymus involvement. In fact, approximately only '3 of
the T-ALL present mediastinal masses, the rest of them lack evidence of it
and normally correlate with increased circulating blasts in the bloodstream

[185].

A first morphological inspection to the cells of the aspirate can differentiate
ALL from AML but as explained hereunder other checks must be
performed to fully characterize which type of ALL is presented.

1.3.1 Subclassification of the disease: B-cell ALL and T-cell ALL
similarities and differences

There are two main types of lymphoblasts: T-cell and B-cell lineage,
therefore, we can distinguish B-ALL and T-ALL disease forms. The first is
more prevalent both in adults and children (75% B-ALL vs. 25% T-ALL in
adults and 85-90% B-ALL vs. 10-15% T-ALL in pediatrics; [186,187]).

B-ALL cases commonly present fever, caused by neutropenia (low levels
of neutrophils) and infection, fatigue due to anemia and bleeding at
mucocutaneous as a result of thrombocytopenia (low levels of platelets)

[188]. Other typical clinical manifestations are enlargement of lymph nodes
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(lymphadenopathy), the spleen (splenomegaly) and the liver
(hepatomegaly) due to the infiltration of lymphoblasts [189]. Furthermore,
the infiltration and intramedullary growth of blasts in the bone marrow can
cause bone pain. Other organs that can be affected by infiltration are
meninges, testes and ovaries and the central nervous system. Patients
diagnosed with T-ALL often suffer the same described symptoms as B-
ALL plus, as mentioned before, mediastinal thymic masses and also tend to

present lower degree of leukopenia (low white blood cell count) [188].

Accurate diagnosis of ALL implied standardized guidelines to classify it
which comprehensively tackles different aspects such as morphology,

immunophenotype, (cyto)genetics and genomics.
Morphology

The French-American-British (FAB) morphological classification of ALL
is based on the following features of the blasts [186]: cell size, nuclear
shape, prominence of nucleoli and the amount and appearance of cytoplasm
(degree of basophilia, presence of cytoplasmic vacuolation). There are three
groups:

e L1: small homogenous cells with a regular nuclear shape but its
contents not clearly visible. It also presents a moderate basophilic
cytoplasm. Most patients have lymphoblasts fitting this
description, especially children.

e [2: large heterogeneous cells with irregular nuclear shape
accompanied by a cleft in the nucleus. Large and prominent
nucleoli. There is also heterogeneity in cytoplasm colours and
moderate abundance of it. This appearance of the blasts is more
common among old patients.

e [3: large cells but homogeneous in size. Also homogeneity in

nucleus shape with oval-to-round form and a prominent nucleoli.
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In addition, these cells present evident cytoplasmic basophilia and
vacuolation. Usually, L3 blasts express mature B- lymphoid
markers. These blasts are detected in patients with leukemia

secondary to Burkitt's lymphoma.
Immunophenotype

The WHO further classifies ALL into different subgroups according to the
markers (proteins or glycoproteins) that are either in the cell surface or
cytoplasm of the lymphoblasts which are detectable when using flow
cytometry. The monoclonal antibodies that bind to those markers and emit
light signals during the immunophenotyping process have been grouped
into Clusters of Differentiation (CD) [173]. This classification has been
defined by European Group for the Immunological Characterization of
Leukemia (EGIL) [184,190] (see Table 3).

Precursor B-cell leukemia (HLA-DR+, TdT+, CD19+, and/or CD79a+, and/or
CD22+, and/or CD34+)

1 0,
Pro B-ALL (B-I) CD19+ CD79a+ c¢CD22+ (comprises 10% of adult

ALL patients)
Common ALL (B-II) CD10+ (comprises 50% of adult ALL patients)
Pre B-ALL (B-III) CD10+ clg (comprises 10% of adult ALL patients)
Mature B-ALL (B-1V) slg+ kappa or lambda (4% of adult ALL patients)

Precursor T-lymphoblastic leukemia (TdT+,cCD3+ and CD34+)
CD5+ CD7+ CD117+ CD11b+ CD65+ HLA-DR

ETP T-ALL (CD13 and CD33 myeloid markers). 15% of pediatric
and 35% of adult patients of T-ALL cases

Pro T-ALL (T-I) CD7+ (7% of adult ALL)
Pre T-ALL (T-1I) CD2+ CD5+ CD7+

. CDla+ sCD3+ CD2+ CD5+ CD7+ CD4+ CD8+ (17%
Cortical T-ALL (T-III) of adult ALL)

0,

Mature T-ALL (T-IV) i&]i})-s— CD2+ CD5+ CD7+ CD4+ CD8+ (1% of adult

Table 3. ALL immunophenotypes. There are only listed the positive expressed
markers that characterize each type. A “c” means cytoplasmic and an “s” surface;
if not indicated assume surface expressed marker. The table is a summary from
Hoelzer et al., 2016 Annals of Oncology and Abdul-hamid et al., 2011 IntechOpen
and Follini et al., 2019 International Journal of Molecular Sciences.
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The immunophenotypes of the lymphoblasts reflect the developmental step
of the maturation arrest of the lymphoid precursors (see Figure 12 again).
For example, lymphoblasts in ETP T-ALL are double negative for CD4 and
CDS8 and show a very close transcriptional program with early T-lineage

progenitors (ETP) [191].
(Cyto)genetics

Recurring gross chromosomal rearrangements that alters the regulation of
key genes and aneuploidies'® are common across ALL and define different
subtypes (see Table 4). Also common transcriptional programs define these
subtypes, sometimes triggered by the same genetic aberrations that
characterize them. Furthermore, since some of the genes dysregulated are
actually genes involved in lymphoid development there is a correlation
between the maturation arrest and the aberrations presented [192] as well
as some enrichment of certain leukemogenic driver alterations on each of
these subtypes [193]. Mainly, in B-cell lineage, rearrangements cause
chimeric fusion genes that involve transcription factors of hematopoietic
development, epigenetic modifiers, tyrosine kinases and cytokine receptors
which act as oncogenes whereas in T-cell lineage alteration in the
expression of genes (such as those from the groups mentioned above) are
caused by the influence of the resulting misplaces regulatory regions of

TCR.

. Characteristic Genes o
Lineage Subtype Aberration affected Frequency (%)
adult children
Hyperdiploidy with
Hyperdiploid more than 50 - 7 20-30
chromosomes
B-ALL Hypodiploidy with
Hypodiploid less than 44 - 2 2-3
chromosomes

13 Aneuploidies: gains and losses of entire chromosomes
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T-ALL

ETV6-
RUNX1

TCF3-PBX1

BCR-
ABLI1/Ph
positive

Ph-like

CRLF2
rearrangement
S

MLL
rearrangement

MYC
rearrangement
S

DUX4
rearrangement
s

PAXS
rearrangement
S

iAMP21

TALI1
dysregulation

LMO2
dysregulation

TLX1
dysregulation

TLX3
dysregulation

t(12;21)(p13;922)
translocation

t(1;19)(q23;p13)
translocation

t(9;22)(q34;q11.2)
translocation

Ph- but same
transcription profile

CRLF2
rearrangements

t(4;11)(q21;q923)
translocation

%(3;14)(q24;q32),
%2;8)(q12;924), t(2;8)
(q12;924)
translocations

t(4;21)(q35;922)
t(4;14)(q35;q32)

PAXS rearrangements

Intrachromosomal
amplification of
chromosome 21

t(1;7)(p32;935) and
t(1;14)(p32;ql1)
translocations,
del(1)(p32p32),
small insertion— de
novo enhancer
t(11;14)(p15;q11)
translocation and 5'
LMO?2 deletion
t(10;14)(q24;q11) and
t(7;10)(q35;924)
translocations
t(5;14)(q35;932) and
t(5;14)(q35;q11) tran
slocations

ETVe6-
RUNX1

TEL-
AMLI
TCF3-
PBXI,

E2A-

PBX

BCR-
ABLI

IGH-
CRLF2,
P2RYS-
CRLF2

MLL-
AF4

MYC

ERG-
DUX4
IGH-
DUX4

PAXS

TAL1

LMO2

TLX1
[HOX11
J
TLX3
[HOX11
L2]

25-30

20-25

10-12

54

0.3-
2.1

12-25

30

15-25

2-6

2-5

10-16

1-2

2.5

15-18

10

5-10

20-25
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PICAL

M-
(10;11)(p13;ql4) and  MLLTI
HOXA t(11;19)(q23;p13) 0, 20 10
dysregulation translocations MLL-
del(9)(q34;q934) MLLTI,
SET-
NUP14
Episomal NUP214
amplification of -ABL1
ABLI1
dysr‘/:g.ﬁ;tion 9q34 amplification ETVe6- 5-6 6
encoding ABLI
t(9;12)(q34;p13) EMLI1-
t(9;14)(q34;932) ABLI1
t(14;14)(q11;q13)
NKX2- translocation
1/NKX2-2 t(14;14)(q13;932) NKX2-1 6-8 8
. . NKX2-2
dysregulation translocation
+others

Table 4. ALL subtypes defined by gene expression profiles and recurrent
aberrations. Summary table inspired from from Hunger & Mullighan 2015, Blood,
Ustwani et al., 2016 Critical Reviews in Oncology/Hematology, Girardi et la., 2017
Blood, Gu et al., 2019 Nature Genetics, Belver & Ferrando 2016, Nature Reviews
Cancer, Van Vlierberghe 2012 J Clin Invest.

Apart from the summary of Table 4 there are some other worth mentioning

characteristics of ALL subgroups [194]:

Hyperdiploid: this is one of the subgroups with better prognosis and
it also has more incidence in adolescents than in adults [195]. The
ploidy gains usually happen in these chromosomes: X, 4, 6, 10, 14,
17, 18 and 21 being trisomies and tetrasomies the major aberrations
(over 75 % of patients with hyperdiploid subtype). The project of
Paulsson et al., 2015 from Lund University revealed recurrent
mutations in Ras pathway genes as well as histone modifiers [196].
Interestingly, through the study of monozygotic twins the lab of
Mel Greaves showed that the hyperdiploidy condition is acquired
prenatally in Pre-B cell in utero [197].
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Hypodiploid: in this case, chromosomal loss is associated with a
bad prognosis. Some [198], further differentiate patients into near-
haploid (24-31 chromosomes) and low-hypodiploid (32-39
chromosomes). Both show activating mutations in Ras pathway
and PI3K signalling too. Mutations in TP53 are also very common.
ETV6-RUNXI type: patients in this group have good prognosis.
Both genes (ETV6 and RUNXI1) are involved in normal
hematopoiesis [199]. There is evidence, again revealed by Greaves
lab, that the fusion has a pre-leukemic origin as it has been seen to
happen prenatally in monozygotic twins that required the
acquisition of other postnatal genetic alterations to develop ALL
[200]. Evidence suggests that these second events cooperating with
the fusion are a consequence of aberrant RAG recombinase activity
[201]

TCF3-PBX1 type: It is more prevalent among African-Americans.
In general, this one has a good prognosis. It is associated with pre-
B immunophenotype [202].

BCR-ABLI1 type: can also be found as Ph or Ph+ in the literature
since it refers to having the Philadelphia chromosome. Patients
with this translocation have a dismal prognosis but there are some
improvements due to incorporation of tyrosine kinase inhibitors in
treatments. Recurrent deletions of IKZF1, most likely coming from
aberrant RAG-activity, are associated with this subgroup [203].
Ph-like: the name of these was given when they discovered that
there were patients with similar gene expression profile to Ph
positive patients but lack BCR-ABL1 fusion [204]. It is considered
a high-risk group [205].

CRLF2 rearrangement: this category partially overlaps with Ph-
like subtype. Almost 50% of the cases of Ph-like ALL have

rearrangements in the cytokine receptor-like factor 2 (CRLF2). It
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is also common among ALL patients with Down Syndrome. The
majority of CRLF2-rearranged cases co-occur with mutations in
the JAK-STAT pathway [195].

MLL-rearrangement type: rearrangements in MLL gene (former
KMT2A) such as the resulting MLL-AF4 is very common within
infant ALL patients (60% of infant patients younger than one year),
with special incidence on those with less than 6 months of age
[193]. In general, has a poor prognosis.

MYC rearrangement: dysregulation of MYC by rearrangements is
also common in Burkitt cell leukemia/lymphoma and therefore,
also correlates with L3 morphological type. Prognosis has been
reported to be poor [206] and favorable [194].

DUX4 rearrangements: approximately 7% of B-ALL cases have a
distinct gene expression profile that includes DUX4
rearrangements. Among these cases 50% to 70% have focal
deletions in ERG too [207]. In addition, transcriptional
deregulation of ERG in this subtype can happen due to the
expression of an ERG isoform (ERGalt) that inhibits the wild-type
ERG function [208]. Despite having recurrent alterations in IKZF1,
this group presents good prognostic.

PAXS5 rearrangements: PAXS5 gene plays a role in both lymphoid
lineages. In B-cells, it is a key player for the cells to commit to the
lineage. There are many different types of alterations affecting
PAXS but the chromosomal translocation ones involve a great
variety of gene partners. A recent study [209] has redefined B-ALL
subtypes an differentiates two groups of PAXS alterations with
different gene expression profiles: “PAX5alt” meaning PAXS5
alterations  (rearrangements, intragenic amplifications or
mutations) and PAXSP80R referring to PAXS aminoacid change

p.Pro80Arg and biallelic PAXS alterations. According to this
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study, both subgroups of PAXS5 in all patient ages (adults and
children) presented intermediate to poor outcomes.

iAMP21: This name refers to intrachromosomal amplification of
chromosome 21. It is characterized by at least 3 gain copies of large
regions of chromosome 21 creating dysregulation of the genes
within such as RUNX1 [195]. Overall has a poor prognosis both in
children and adults [210].

Other B-ALL subtypes defined are: MEF2D rearrangements and
ZNF384 rearrangements. The first usually partners with BCL9,
HNRNPULI, DAZAPI1 and SS18 and overall is considered a high-
risk new subgroup [211] whereas the second usually partners with
EP300, TCF3 and TAF15 and the clinical prognosis seems to
depend on the partners [212]. A very rare subtype that has also been
described is characterized by IL3-IGH [207]. Recently, there have
been detected some B-ALL cases with similar transcriptional
profile as ETV6-RUNX1 but negative for the translocation that are
a new subtype called ETV6-RUNX1-like [207].

TAL1 dysregulation: TAL1 gene is a regulator of hematopoiesis.
Aberrant expression of'it is found in 60% of the T-ALLSs in children
and 45 % in adults but not for all of these cases is possible to find
molecular evidence of causality [192,213] (e.g. 16%-30%
rearrangement STIL-TAL1 and 3% translocation t(1;14)(p32;ql1)
in children). TAL1 increased levels are believed to dysregulate
members of T-cell specific lineage so cell differentiation is halted
[42]. Samples with TAL1 overexpression profile are associated
with late cortical immunophenotype [192]. In general, the subgroup
presents a good prognosis in children.

LMO2 dysregulation: Aberrant expression of LMO2 sometimes
overlaps with TAL1 overexpression too [192]. Apart from TALI,

LMO?2 aberrant expression can co-occur with LYL1 dysregulation
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and has also been considered another subgroup [214]. Although
alterations affecting this gene are found in 10% of pediatric T-ALL,
there are 45% of cases with LMO2 expression dysregulated
suggesting different activating mechanisms [215]. In general, it has
a favorable outcome.
TLX1 dysregulation: Also known as HOX11, is upregulated when
translocations place the control of the gene under TCR enhancers.
It has been shown that downregulates the rearrangement and
expression of the TCRA locus which ends up in thymocyte arrest
in cortical development [178]. Genes associated with TLX1 are
involved in cell growth and proliferation so, since most treatment
drugs affect proliferation that might explain the favorable outcome
of this subtype [192].
TLX3 dysregulation: This gene is the former HOX11L2, its usual
fusion partner is BCL11B but also its ectopic expression can be
regulated by TCR enhancer. This subtype is associated with WT1
mutations and early cortical development phenotype [214]. It
presents a dismal prognosis.
HOXA dysregulation: This group involves different genomic
aberrations that alter the expression of the HOXA genes, especially
HOXA9 and HOXA10. Dysregulation of HOXA genes is common
among ETP-T-ALL immunophenotypes [178].
ABL1 dysregulation: Not only is involved in B-ALL but also in T-
ALL. NUP214-ABL1 is the most common fusion affecting ABL1
expression in T-cell lineage, however, the mechanisms (amplified
episomes and intrachromosomal amplification) to overexpress
ABL1 are different than in Ph positive patients (translocation)
[216]. Also the oncogenic power of NUP214-ABL1 is not
sufficient to drive leukemogenesis so other alterations are required
[214].
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NKX2-1/NKX2-2 dysregulation: In a study from the Netherlands
in 2011 [217], they identified another subgroup of unclassified-
subgroup samples which shared dysregulation of either NKX2-1 or
its paralog NKX2-2 by different genetic aberrations. Both are
believed to develop a similar oncogenic role in T-ALL and are
associated with early cortical development arrest [215].

Others: In that same study from the Netherlands mentioned above
[217], they also described another group of samples with distinct
expression signature. They observed deletions in del(5)(q14) that
cause upregulation of MEF2C. This subtype is associated with
immature stages of development so it is believed to play a role in
the regulation of the genes in early stages of thymocyte
differentiation. It also presents enrichment in CDKNI1B deletions
[218] and overall is associated with very poor prognosis [215].
Other subtypes less frequent are characterized by dysregulation of
TAL2, LMOI1, NKX2-5, MYC and MYB [215]. Since the
immunophenotype group ETP T-ALL shows a different gene
expression profile is also considered as a genetic subtype together
with the ones mentioned above. In fact, ETP is characterized by
high frequency of JAK mutations and low frequency of NOTCH1
mutations compared to the other subtypes. It is considered a high-

risk group and is usually associated with treatment resistance [219].

1.3.2 Primary Genomics of ALL

Along with the dysregulation of gene expression due to the rearrangements,
there are recurrent genes and pathways altered that contribute to leukemic
transformation and proliferation. There are substantial differences between

the B and T-ALL driver alterations. Some of those are enriched in particular
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immunophenotypes and tend to co-occur with certain rearrangements

(summary at Figure 13).

a)
ETP Early cortical Late cortical
TAL1
et LMO1 or LMO2
NRAS, FLT3, ETV6, WT1, PHF6,
RUNX1,GATA3, NUP214-ABL1
DNMT3A and EZH2 and PTPN2 PTEN
NOTCH1 and FBXW7
del(9p22) CDKN2A loss
b)
Initiation Lesion generation
Initiating lesion Aberrant RAG activity
(eg, ETV6-RUNX1, Developmental arrest
MLL rearrangement) Alterations in B-cell transcription
confers self-renewal factor genes (eg, PAXS, IKZF1, EBF1)
X7
v
_— —_—
A
Haemopoietic Pro-B-cell/ Mature
stem cell/ Pre-B-cell B cell
lymphoid - )
progenitor Predisposition Cooperating events
Inherited variants « Cell cycle and tumour suppressors
(eg, IKZF1, CEBPE (CDKN2A/CDKN2B [INK4/ARF], TP53, RB1)
ARIDSB, CDKN2A) « Cytokine receptor and kinases (CRLF2, JAK1, JAK2, ABL1, PDGFRB)

« Ras signalling (NRAS, KRAS, NF1, PTPN11)

« Lymphoid signalling (BTLA, TOX, CD200)

« Transcription factors, coregulators, coactivators
« Mutations in epigenetic regulators (CREBBP)

« Other

’

Diagnosis

Figure 13. Prevalence of genomic alterations at each immunophenotype. a) T-cell
lineage reprinted from The genetics and mechanisms of T cell acute lymphoblastic
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leukaemia by Belver & Ferrando 2016 Nature Reviews Cancer and b) B-cell
lineage adapted from Acute lymphoblastic leukaemia by Inaba et al., 2013 The
Lancet.

1.3.2.1 B-ALL driver alterations

Transcriptional regulation of lymphoid development

IKZF1 (IKAROS Family Zinc Finger 1): The resulting protein from this
gene is a transcription factor that acts as a chromatin remodeler. During
lymphoid development, lkaros protein allows chromatin accessibility
which is necessary for V(D)J recombination and regulates the expression
of B-cell-specific genes [173]. In a study of 2008 [203], they described
recurrent deletions in this gene in B-ALL adult and pediatric patients (61
out of 304) especially in Ph positive ones which presented more than the
80% of this subtype cases with deletions. A closer look at the breakpoints
of these deletions suggested an aberrant RAG-mediated recombination
activity. The follow-up study of the same group, revealed a poorer
prognosis outcome of the Ph positive and negative cases harboring /IKZF'1
deletions [220]. It commonly co-occurs with CRLF2 rearrangements [194].
Some germline variants have been described to create predisposition to

ALL [221].

Other members of the Ikaros family have also been found altered in B-ALL
such as IKZF2 and IKZF3 especially in hypodiploid ALL subtype [198].

PAXS5 (Paired Box 5): This gene is another regulator of B-cell lymphoid
development which encodes for a transcription factor that represses
necessary components for T-cell lineage and drives precursors to B-cell
commitment, activates BCR signalling modulators and also plays a role in
the maintenance of mature B-cell state [222]. It is altered in 30% of B-ALL

[194] and mutated cases have recently been divided into two new ALL
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subtypes [209] as referred above (1.3.1): PAXS5alt and PAX5 P8OR. The
last refers to a group of patients that commonly present a different genetic
profile and all share the same missense mutation p.Pro80Arg in the paired
box DNA binding domain that constitute a hotspot in it whereas the first
englobes different types of alterations such as rearrangements, sequence
mutations and focal intragenic amplifications. According to the study, both
types accounted for 9.7% of those cases that were previously unclassified.
In addition, a recurrent germline mutation (p.Glyl83Ser) has been

described to confer ALL susceptibility [223].

EBF1 (EBF Transcription Factor 1 or Early B Cell Factor 1): This gene,
together with TCF3 (E2A), regulates the expression of genes of the B-Cell
lineage and it is essential for the rearrangements of the loci IgH and IgL
[222]. PAXS and EBF1 regulate each other in an auto-regulatory loop
[222]. Focal deletions of this gene leading to haploinsufficiency arrests cells
at pre-pro-B-cell stage and suggests a contribution to leukemogenesis

[224].

RUNX1 (RUNX Family Transcription Factor 1) encodes for the protein
known as acute myeloid leukemia 1 protein so, as the name suggests, it is
involved in both acute leukemia forms plus other hematopoietic
malignancies. In mice, it is expressed to trigger the transformation of
vascular endothelium cells to primitive HSCs during embryonic
development but it is not necessary for the maintenance of long-term HSC
in adult hematopoiesis [222]. 25% of B-ALL cases present dysregulation
of RUNXI1 by the chimeric fusion with ETV6 due to the translocation
between chromosome 12 and 21 [201]. Although this fusion is required but
not sufficient for leukemic transformation [225], the oncogenic
dysregulation of ETV6-RUNX1 happens as RUNXI1 binds to its target

sequences and the recruitment of ETV6 partners inhibits their transcription
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[226]. ETV6 loss-of-function mutations are also common among B-ALL

both in ETV6-RUNX1 and non-rearranged ETV6 [227,228].

Other leukemic driver transcription factors of this category are LEFI
(Lymphoid Enhancer Binding Factor 1) which is a mediator of the WNT
signalling and has been associated with leukemic transformation [229] and

ERG (ETS Transcription Factor ERG) previously mentioned at 1.3.1.
Tumor suppression and cell cycle regulation

TP53 which acts as tumor suppressor in many cancers [82] predicts a very
dismal outcome in ALL patients harboring alterations in it [230]. The
majority of the alterations (disruptive mutations and deletions) tend to
locate in exons 7 and 8 and it is more prevalent (>90%) in hypodiploid
subtype in both adult and pediatric patients [198]. In this B-ALL subtype,
not only TP53 is intriguing recurrent but also RB1 [198]. This gene is called
Retinoblastoma (RB) Transcriptional Corepressor 1 and encodes por pRB
which is another tumor suppressor that acts as the key regulator of the
entrance to cell cycle which is also widely altered in different cancers [82].
Deletions of the Cyclin Dependent Kinase Inhibitors 2 (CDKN2A and
CDKN2B) can also be found in B-ALL [203] and they encode for p16INK,
pl4ARF and p15 which are involved in G(1)-S cell cycle transition as they
inhibit CDK4 and CDK®6 that inhibit pRB.

Cytokine receptors, kinases and RAS signaling

CRLF2 is part of the cytokine interleukin-7 (IL7) receptor which activates
intracellular signalling through Janus kinases (JAK1-3) that consequently
activate STAT transcription factors (JAK-STAT pathway) [231]. Cytokine
receptors are linked not only to the JAK-STAT pathway but also to RAS
pathway and PI3K-AKT pathways, all of them activating gene expression

&5



programs [232]. Dysregulation of these players can alter the normal
functions of the cell and contribute to leukemogenesis. For example, in Ph-
like ALL it has been observed IL7RA (IL7 receptor alpha) insertions and
deletions, chimeric fusions of JAK2 due to deletions and translocations,
rearrangements of the erythropoietin receptor (EPOR-R) and mutations in
SH2B3 as alterations that keep JAK-STAT signalling activated [233].
Regarding RAS signaling, the pathway is abnormally activated by point
mutations in NRAS and KRAS genes, as well as, loss-of-function mutations
of negative modulator NF1, upstream regulator PTPN11 and kinase
receptor FLT3 which activating mutations have been detected [181]. In
pediatric patients, approximately around 30% have mutations in the RAS
pathway [234]. Other overexpressed kinases due to fusions are the “ABLI
type” (ABL1, ABL2, CSF1R, and PDGFRB) which are also common in
Ph-like ALL [233] and obviously BCR-ABLI1 positive.

Epigenetic regulators

Aberrant acetylation and methylation contribute to changes of the
transcriptome that can drive important leukemic consequences [195]. It is
very common to find alterations in DNA and chromatin modifiers in
different ALL subtypes, some of them enriched in relapse as mentioned
below. For example, missense mutations in WHSC1 (NSD2) which is a
histone methyltransferase are found in ETV6-RUNX1 [201] and CREBBP
known as CREB-binding protein, a H3K18 and H3K27 acetylase is
recurrently mutated among hypodiploid cases at diagnosis [198]. Also
histone methyltransferase MLL family members and chromatin remodeling
genes of the SWI/SNF complex such as ARID family are common in B-
ALL [181]. Another recurrent altered gene is histone acetyltransferase

EP300 [181].
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Other recurrent genes

BTLA (B And T Lymphocyte Associated) and a type I membrane
glycoprotein called CD200 are involved in lymphoid signaling and are
recurrently deleted [220]. There are transcriptional cofactors such as
TBL1XR1, BTGl and NCORI1 that present deletions in B-ALL [234].
Hotspot mutations in ZEB2 have also been reported [235]. Another
commonly deleted gene but less studied is ADD3 adducin gene [234,236].

1.3.2.2 T-ALL driver alterations

NOTCHI1 pathway

NOTCHI is a transmembrane type I protein of the NOTCH family. In
children with ALL, it is found mutated in around 60% of the cases (e.g.
56.2% in Weng et., 2004 [237]) and in adults it seems to vary from
publication to publication (53% Neumann et., 2014 [238] vs. 86% Kim et
al., 2020). Anyway, it is one of the most prevalent mutated genes in T-ALL.
This cellular receptor has an extracellular and intracellular domain
facilitating transduction of external signals into transcriptional changes in
the cell. In mammals there are 4 homolog NOTCH genes (NOTCH1-4)
being NOTCHI1 the one playing a major role in leukemogenesis [172].
Notch signalling is critical for prenatal hematopoiesis and postnatally it is
expressed during thymocyte development and determines T-cell fate
specificity [239]. Concretely, it is involved in the progression of cortical
thymic developmental stages (DN1-3, see Figure 12), therefore, it is not
surprising to find it highly mutated in lymphoblasts with early (Pre, Pro T-
ALL) and late cortical immunophenotypes [240,241]. The oncogenic power
of NOTCHI1 pathway in T-ALL is its constitutively active signaling. The
most common altered form of Notchl is a truncated protein due to gain-of-
function mutations and deletions in specific domains that produce the active

intracellular part of the receptor (ICN1) which translocates to the nucleus
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and constitutively triggers upregulation of PI3K/Akt/mTOR, c-myc, and
NF-kb [178,240]. The most affected domains, HD and PEST, in NOTCHI
are those which, once altered, create the active Notch1 form [237]. The first
is actually divided into two HDN and HDS, these are the heterodimerization
domains that hold the extracellular and intracellular subunits linked,
therefore, mutations in it spares Notch1 from being cleaved by proteases to
release the active ICN1 form. The second domain, is called proline (P)
glutamate (E) serine (S) threonine (T) rich (PEST), which contains a degron
for the proteasome-dependent degradation, is responsible of the stability of
the active ICN1 and, thus, mutations impairing the degron recognition
contribute to the overactivation of the pathway. Related to that, another
contributing factor in maintaining NOTCHI1 active is the presence of loss-
of-function mutations in FBXW7 which encodes for a subunit of the E3
ubiquitin protein ligase complex that, among others, regulates NOTCHI
stability [241]. Mutations in FBXW7 can be found between 15 to 25% of
the T-ALL patients [241,242]. Another case of constitutively activation of
NOTCH1 is the chromosomal translocation t(7;9)(q34;q34.3) which
generates a truncated form of NOTCH1 and can be found in less than 1%
of the patients [178]. The prognostic impact of NOTCHI/FBXW7
mutations seems to be favorable with early response to treatment in
pediatric and adult patients but seems to lack association with a good long-
term outcome and, moreover, differences in therapy protocols suggest a
dependency of NOTCHI prognostic value to the intensification of the
treatment [240].

Proto-oncogenes expressed by rearrangements

As mentioned before, both T and B-ALL are characterized by
rearrangements and gene expression profiles determining certain subtypes.
Due to these rearrangements, transcription factor oncogenes are aberrantly

expressed under the control of strong enhancers of the TCR loci [215].
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These genes are: LIM-only domain (LMO) genes, HOX genes such as
TLX1(HOX11), TLX3(HOX11L2), HOXA cluster genes, class II bHLH
transcription factors (TAL1, TAL2, LYL1, BHLHBI1), NKX2.(1,2,5) and
also MYC and MYB [178]. In addition, some of them can also be
overexpressed by translocations with other non-TCR partners or by other

lesions such as deletions.

TAL1 overexpression creates an upregulation of a positive feedback loop
with GATA3, RUNXI1 (see below) and MYB. The latest is associated with
developmental arrest since it has been observed that interference with MYB
activity affects differentiation [243]. LMO1 and LMO2 are frequently co-
expressed with TAL1 and LYL1 suggesting a cooperative role in T-cell

leukemogenesis [178].

HOX genes also play a role in T-ALL. For example, evidence suggests that
TLX1 contributes to the blocking of T-cell differentiation by dysregulation
of mitotic checkpoint machinery and thus promoting aneuploidy events
caused by missegregation of chromosomes [244]. Regarding TLX3, it
seems that TLX3 and TLX1 have a lot of overlapping set of target genes
and their transcriptional signature resembles [178]. Both are mainly found
dysregulated in early cortical stages and co-occur with mutations in tumor
suppressors such as protein tyrosine phosphatase non-receptor type 2
(PTPN2), Wilms tumor 1 (WT1) and PHD finger protein 6 (PHF6) (see

Figure 13, more information below; [215]).

The transcription factor MYC contributes to cell growth and proliferation
downstream NOTCHI1 signaling. Besides, its protein stability also depends
on FBXW?7. Therefore, alterations in the NOTCH]1 pathway transducts in
upregulation of MYC and acts as a driver of leukaemia-initiating activity
[178].
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Tumor suppression and cell cycle regulation

Somatic mutations in tumor suppressors such as ETV6, GATA3 and
RUNXI1 are abundant in the immature ETP immunophenotype and adult
patients (between 8 to 14 % frequency [214]). ETV6 is essential for the
development of HSC, GATA3 is an important regulator of development of
T-cell progenitors and, as previously mentioned in 1.3.2.1, RUNXI is
crucial to hematopoiesis [215]. Other altered tumor suppressors that can be
found in 10-15% of T-ALL are BCL11B (Kruppel-like C2H2-type zinc
finger transcription factor), LEF1 (lymphoid enhancer factor/T cell factor)
and WT1 (Wilms Tumor 1 transcription factor) [178].

In T-ALL, as well as in B-ALL, dysregulation of cell cycle (a hallmark of
cancer) can be achieved by altering CDKN2A and/or CDKN2B. However,
in the T-cell type, around 70% of the cases present deletions in these loci
[178]. Together with NOTCHI1, these are the most altered genes in T-ALL
with an incidence of more than 50% of the cases having at least one of
NOTCH1 or CDKN2A/B loci affected [214]. Other deleted genes altering
the cell cycle are RB1 and CDKNIB (12% frequency) and translocations
affecting CCND2 which is another cell cycle regulator which have also

been observed in a few cases (~1%) [215].
JAK-STAT pathway and RAS signaling

As indicated above (1.3.2.1), Janus kinases are activated either by
IL7R-activating mutations that transduce in phosphorylation of JAK1 and
JAK3 or activating mutations in these two (frequency of each one of these
genes ranges from 5 to 12 % T-ALL [214]). In both cases, there is activation
of STATS5 which transcriptionally regulates proliferation and survival

especially in ETP T-ALL. Other alterations affecting this pathway but less
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frequent are ETV6-JAK2 fusion, loss-of-function mutations in DNM2 or
SH2B3 and deletions in PTPN2 [214].

Similarly as in B-ALL, also some T-ALL patients have NRAS and KRAS
activating mutations (e.g. K-Ras®!?P) especially in cases of early immature
arrest. In addition, also the other frequent genes affecting this pathway such
as FLT3, NF1 and PTPNI11 (see 1.3.2.1) have been observed in T-ALL
[178].

Epigenetic regulators

In T-ALL, there is a notorious epigenetic regulator called PHF6 which is a
plant homeodomain (PHD)-containing factor that is frequently mutated and
deleted in adult male patients (38 %) [178]. Among its functions, this gene
encodes for a protein that interacts with nucleosome remodeling
deacetylase (NuRD) complex and therefore, helps regulate nucleosome
positioning and transcription. A recent study revealed that Phf6 is
associated with HSC homeostasis and has oncogenetic power to leukemia
initiation which suggests that alterations in PHF6 are an early event in
leukemogenesis [245]. Another epigenetic regulator highly mutated in
adults compared to pediatric patients, specifically in ETP T-ALL subtype
[246], is DNMT3A. This gene encodes for DNA methyltransferase 3A
which has been identified in AML and the preceding stages:
myelodysplastic syndrome (MDS) and elderly individuals with clonal
hematopoiesis (CH) [247]. Another group of epigenetic modifiers mutated
are members of the polycomb complex such as EZH2, SUZ12 and EED
which normally is involved in transcriptional repression and are also
abundant among ETP T-ALL cases [195]. Other epigenetic regulations
altered are lysine demethylase 6A (KDM6A, also called UTX) and histone
acetylation modifiers (CREBBP, EP300, HDAC7, HDACS5, NCOA3)

[248].
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Other recurrent genes

Around 10-15% of T-ALL present loss-of-function mutations or deletions
in PTEN [178]. The inactivation of this tumor suppressor activates Akt of
the PI3K-AKT-mTOR pathway. This pathway can also be activated by
mutations AKT1, PI3KCA, PI3KR1, and IL7R and also by cross-activation
from other key signaling pathways such as JAK-STAT or NOTCHI1 [248].

Other genes mutated are ribosomal protein genes such as RPLS, RPL10,
and RPL22 which frequency sums up to approximately 20% of the T-ALLs.
In addition, there have been detected inactivating mutations in CNTO3
(3.8% almost exclusively in adult patients) which encodes for a subunit of

the CCR4-NOT complex that regulates mRNA degradation [249].
1.3.2.3 Somatic mutation rate and signatures

In Figure 6 one can observe that overall, leukemias have a lower number of
mutations compared to other cancers. Respect to ALL in adults, data from
samples collected at diagnosis, shows one of the lowest mutation burdens
[94]. Looking at the number of mutations in T-ALL compared to B-ALL
the mutation rate is very similar in pediatric patients [234]. However, when
comparing adults to pediatric patients with ALL, older patients tend to
accumulate more mutations than the youngests. As mentioned before, all
organisms accumulate mutations through time so, as time goes by,
mutational processes attributable to aging tend to increase their
contributions in the total mutational burden. In fact, the major mutational
signatures detected in ALL are clock-like signatures (signature 1 and 5)
both in adult patients [94,99], as well as, in pediatric patients [234]. There
are some cases of B-ALL that also show activity of APOBEC!* mutational

14 APOBEC here refers to the group of APOBEC cytidine deaminases the activity
of which generates mutations with specific patterns: Signature 2 and 13 of
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processes but not in T-ALL. However, APOBEC expression in a few T-
ALL cases has been detected so its mutational activity cannot be discarded

[250].
1.3.2.4 Germline mutations and predisposition

Briefly, setting aside somatic mutagenesis, TP53 is the gene with more
germline detected mutations with predisposition character [251]. Not only
in ALL but also across pediatric cancers. However, in the most recent
pediatric pan-cancer study no pathogenic germline mutations were detected
in T-ALL cases (n=19; [252]). However in both cell lineage types, exist
some predisposing mutations such as in IKZF1 (as mentioned earlier
[253]). Other genes that have been observed with predisposing leukemia
mutations are PAXS5, RUNX1 and ARIDS5B [223,251,253].

1.3.3 Treatment Resistance and Relapse

As outlined above, the percentages patients undergoing relapse are 15-20%
of pediatrics and 40-75% of adults [182]. Although pediatric ALL has one
of the highest cure rates in cancer (around 90% [202]), relapse of this
disease remains the major cancer-related death cause in children [254]. In
adults, the outcome is dismal with an overall 5-year survival of around 30-
40% [179]. Different studies have evidenced the existence of minor
subclones called “relapse-fated” existing at time of diagnosis [255-257].
The characterization of subclones contributing to relapse is one of the
current main research focuses with the objective to find markers of
recurrence and time its appearance and progression for an early detection

[182,254].

COSMIC. These enzymes, most likely APOBEC3A in the majority of cases, are
responsible for local hypermutation mutagenesis that creates these signatures [96].

93



1.3.3.1 Clonal evolution and relapse in ALL

Over the last years, different lines of evidence derived from the study of
clonal evolution suggest that leukemias present more clonal complexity that
it was initially thought. In the leukemic scenario, during tumor initiation,
selection happens as normal HSC and early progenitors compete for
resources whereas, during the progression of the cancer, selection acts upon

the different leukemic clones [258].
Pre-leukemic development

As noted earlier, different studies support an in utero origin of pre-leukemic
clones carrying aneuploidies or fusion gene aberrations in pediatric B-ALL.
In this review of Dr. Mel Greaves, he summarizes the evidence from his
own work and others regarding tumor initiation [168]. First, studies of
monozygotic twins with concordant B-ALL revealed that there are several
genomic lesions considered founders of B-ALL that are shared in pre-
leukemic clones such as ETV6-RUNXI1, Hyperdiploidy, BCR-ABL1 and
MLL-AF4 and are acquired in utero and transmitted from one twin to the
other by blood transfusion. Another experiment with pediatric discordant
twins further confirmed the shared existence of the lesion in pre-leukemic
cells of the healthy twin. Other studies mentioned in the review backtracked
early B-ALL events in neonatal blood spots in which for the majority of the
B-ALL checked patients they confirmed that the ETV6-RUNX1 and MLL-
AF4 fusions were already at birth. All these studies also suggested that, in
the case of ETV6-RUNX1+ or hyperdiploidy, the event is necessary but not
sufficient to drive leukemogenesis whereas MLL fusions found in infant
patients is sufficient by itself. Discordant healthy twins and some further
studies of cord blood samples in the population also suggested that: (1)
secondary events are necessary to drive B-ALL, (2) in utero pre-leukemic

origin is more common than the incidence of B-ALL itself. Therefore, the
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leukemogenic transition of the pre-leukemic clone to the disease seems low
which may indicate either a frequent loss of the pre-leukemic population or
difficulties to acquire secondary leukemic events (strong bottleneck).
Related to that, Greaves bets for the “delayed infection hypothesis” as a
plausible explanation of acquisition of post-natal secondary lesion by viral
causation which could explain the higher incidence of childhood B-ALL in
modern societies. In addition to B-ALL, the group of Greaves also pointed
out a prenatal origin of T-ALL with NOTCHI1 being detected in neonatal
blood spots of one pediatric patient [259].

Unlike AML, where there are measurable pre-leukemic stages such as CH
and MDS in adult patients, our knowledge of pre-leukemic cells
progressing towards ALL initiation in adults is scarced. According to
Greaves, the fact that ETV6-RUNX1 or hyperdiploidy, which are the
subtypes with more evidences of in utero origin, are less prevalent in adults
suggests a low persistence of the pre-leukemic clone with aging and points
towards adults having a different cancer respect to children [168]. Apart
from that, examples of pre-leukemic stages have been observed in familial
ALL in which germline mutations are the first event to settle tumor
initiation. Briefly as an example, in a study of 5-generation kindred with 10
individuals suffering from B-ALL and other hematological diseases
(DLBCL, aplastic anemia, and/or thrombocytopenia) they discovered a
common germline deletion of ETV6 as the most likely predisposition event

[260].
Order of acquisition and relapse-enriched alterations

A recent study [261] performed single-cell targeted sequencing in 4
pediatric patients of T-ALL in pair samples at diagnosis and remission.
Analysis of the CD34+CD38- multipotent compartment with a graph-based

algorithm revealed the most probable order acquisition for each patient.
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According to their results, loss of CDKN2A and known oncogenic fusion
genes are intermediate events whereas NOTCHI1 activating mutations tend
to happen late. Early events detected were of unknown significance except
for STATSB mutation detected in one of the patients. This contrasts with
the idea of NOTCHI1 alterations being an early prenatal event as explained
above. The notion that NOTCH1 mutation gain can appear as both, an early
or late event, in T-ALL has already been suggested before as mutations in

this gene sometimes appear as secondary events [262].

In a similar study using single-cell sequencing with B-ALL samples,
CRLF2 rearrangements were mostly early but sometimes can be late events
in leukemogenesis too [263]. In another study using single-cell sequencing
combined with bulk sequencing of 6 B-ALL patients, they determined the
temporal ordering of events and reported that ETV6-RUNXI1 translocation
and structural variation due to RAG-mediated activity are early events,
followed by clone-specific APOBEC punctuated mutagenesis and showed
that acquisition of oncogenic SNVs such as proliferative KRAS point
mutations are late events and not sufficient to boost a clonal dominance in
the developed primary leukemia [264]. They also showed that VDJ
recombination can occur at different progression moments of

leukemogenesis since it can also be ongoing in more evolved clones.

Other alterations are considered late events as they appear in most blasts at
relapse. Recurrence of the disease happens after a stringent bottleneck
generated by the treatment which (if fortunate) leads to a disease remission.
Reasonably, within the mutations carried by the relapse clone there might
be genomic event/s driving drug resistance. Therefore, a lot of research
projects are uncovering the relapse genomics. The focus is made on relapse-

enriched genes which are those with mutations retained in diagnosis until
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relapse (therefore shared between samples of the same patient) or those

genes with acquired mutations specific or private to relapse.

One of the first ones to look at enriched-relapse alterations was Mullighan
and colleagues back in 2008 who checked CNA in 61 ALL children
comparing primary to relapse samples of each [255]. Results revealed a list
of common deletions of genes in relapse samples: CDKN2A/B, ETV6,
IKZF1, NR3C1 and TCF3. For some patients, some of these deletions were
not shared with the primary sample but acquired at relapse. NR3C1 which
encodes for the glucocorticoid receptor postulated as a treatment-resistant
driver gene since this type of steroids are administered during treatment of
ALL. Other genes involved in the glucocorticoid signaling have also been
detected at relapse samples such as: BTG1/BTG2 and TBL1XR1. The first
operates as a co-activator of the glucocorticoid receptor and the second is
involved in regulation of the receptor responsive elements [265]. IKZF1
deletions have also been recurrently found in relapse samples of B-ALL
both in pediatric and adult [266,267]. Another relapse enriched altered gene
is TP53 in which copy number loss and mutations have been associated

with nonresponse to chemotherapy [230].

In a mutational landscape study by Dr. Adolfo Ferrando’s lab, NR3C1 is
not only deleted but relapse-specific mutations in both T-ALL and B-ALL
have also been detected [257]. In addition, in a recent study the paralog
NR3C2 has also been reported as relapse enriched [112] together with other
genes further explained in the upcoming paragraphs. Going back to the
mutational landscape, one of the highlighted results in Ferrando’s paper is
the high frequency of activating mutations in members of the RAS-MAPK
in the relapse samples which seem to have a dual role regarding resistance

and sensitivity to different chemotherapies.
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Apart from that one of the main discoveries regarding resistant relapses by
Ferrando’s team and others is the role of activating mutations in NT5C2 in
ALL [268,269]. In a back to back publication, both reported that this gene
encodes for a 5'-nucleotidase enzyme that confers resistance to purine
analogs and that it was found with relapse-specific mutations in 20% T-
ALL cases and 3-10% of B-ALL. Moreover, other relapse-specific
alterations have been detected in genes involved in purine metabolism such
as PRPS1 and PRPS2 which are also related to resistance [112,270].
Concretely, PRPS1 gene encodes for an enzyme regulator of the “the novo”
purine synthesis. The authors reasoned that the resistance to thiopurines
happens when mutants of PRPS1 protein cannot be inhibited by reduced
negative feedback loop so they enhanced “the novo” purine synthesis that
competes with the metabolization of thiopurine drugs and thus generating

tolerance to them.

Other groups of common relapse genes are epigenetic regulators, metabolic
genes and mismatch-repair pathway members. Among the genes in the first
group the most notorious ones are CREBBP (acetyltransferase), its paralog
EP300, NCORI (nuclear  corepressor  complex), WHSCI1
(methyltransferase), EZH2 (methyltransferase), SETD2
(methyltransferase), CTCF (zinc finger) and KDMG6A (demethylase)
[265,271]. Deletions and sequence mutations of CREBBP are believed to
interfere with glucocorticoid responsive genes [272]. Apart from that, in a
recent study of relapse B-ALL in adults [267], they specifically highlighted
the enrichment of novel alterations in metabolic genes in the recurrence of
this disease. Briefly, they detected relapse-specific mutations in FPGS
(Folylpolyglutamate Synthase) which catalyzes polyglutamylation of
methotrexate (a step necessary in the processing of this drug) and ABGLI
(ATP/GTP Binding Protein Like 1) which has a a glutamate decarboxylase

function also involved in glutamylation processing. FPGS has also been
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detected in pediatric relapse cases [112]. Related to metabolism, in a recent
study where relapse clones at diagnosis have been isolated and
characterized, they detected a gene expression signature of mitochondrial
metabolism as a hallmark of the relapse subclones [182]. Finally, DNA
mismatch repair genes such as MSH6, MSH2 and PMS?2 are also frequently
altered in relapse samples [265]. As an example, not only MSH6 deletions
are detected in relapse samples but it has been seen that knockdown of
MSH6 gene resulted in higher levels of thiopurines in cells that become
unable to initiate apoptotic cascade thus, conferring insensitivity to this

drugs [273].

Although the alterations driving primary ALL in T and B-cell lineages are
different, since both receive similar multiagent treatment (see 1.3.3.2
below) the relapse-enriched genes suspicious of being resistant mechanisms

of the treatment are common among them.

Relapse patterns and leukemia progression

There are 3 models in which the treatment can accelerate clonal evolution

in ALL. Landau et al., 2014 called them:

- differential sensitivity model
- mass extinction and competitive release model

- chemotherapy-induced mutagenesis model

The first model explains how therapy selects a minor clone containing a
mechanism of resistance to it which then grows and establishes a relapse
population. In contrast, the second model refers to cases in which there is a
heavy cytoreduction which is insufficient to eliminate all leukemic blasts
but that settles the possibility of a change in the clonal landscape allowing

a fitter minor clone to expand. If all the remaining clones are equally fitter
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then the higher the frequency in the population, the more chances to become

the major clone again and resemble the diagnostic composition of cells.

In many backtracking studies of driver alterations, the majority of ALL
recurrences come from a minor subclone at diagnosis previous to the
treatment. For example, in Mullighan et al., 2008, he estimated that 52% of
the relapse cases came from a pre-existing minor clone [255]. Probably,
these cases belong to the differential sensitivity model whereas the 34% of
the relapses that were reported, evolved from diagnosis clone which in this
case, better fits with the mass extinction and competitive release. In a study
with 20 pediatric cases with primary-relapse samples, they reported that
75% of the relapsed B-ALL arised from minor subclones at diagnosis with
45% of them harboring NT5C2 mutations [256]. In a similar study with T-
ALL, they analyzed a total of 13 cases in which all relapses came from
subclone at diagnosis. However, 6 out 13 patients had a relapse with
mutations already detectable at primary leukemia whereas in the rest, the
major primary clone was lost in relapse pointing towards an ancestral pre-
existing clone. Again, mutations in NT5C2 were observed in 5 of the
patients. A very recent study used research techniques such as deep digital
mutation tracking and xenografting to classify 92 cases of childhood ALL
and concluded that 50% of the times the relapse-fated clone arises from a
minor clone at diagnosis, 27% comes from the primary major clone and
18% has a multiclonal origin. Regarding relapse in adults, similar numbers
were obtained when comparing childhood vs adult B-ALL cases (46% and
58% respectively) which had a relapsed-leukemia coming from minor

clones [267].

Given that, it has been shown to what extent chemotherapies can leave a
mutational footprint or signature due to their DNA damaging effect [111],

it might be that the chemo-mutagenesis confers therapy-induced resistance
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to a clone that then expands and generates a relapsed leukemia. In fact, a
recent study of pediatric ALL, reported a new signature derived from
thiopurines from which they could estimate the probability of this purine
analog’s treatment causing relapse-specific driver mutations and found that,
for some cases, resistant mutations in genes PRPS1, NT5C2 and TP53 were
most likely chemotherapy-induced [112]. This is a clear example of a
chemotherapy-induced mutagenesis model. In addition, in another recent
study [254], mutations in NT5C2 were not detected by ddPCR in primary
leukemias but were present exclusively in relapse which further support the
idea that mutations at this gene are acquired during treatment or even due
to treatment. On top of that, another recent study from the same authors was
able to isolate relapse initiating clones from diagnosis samples with limiting
dilution xenografting experiments. Results confirmed the existence of
relapse clones that in fact, were showing already intrinsic tolerance
capability to some drugs at diagnostic samples. In addition, two patients
had NT5C2 at relapse, for one patient, mutations in this gene were not
detected in the relapse-fated clones coming from its PDX from primary
samples whereas in the other patient the mutation was at a very low

frequency at primary PDX [182].

Related to a previously mentioned study describing a thiopurine signature
[112], the authors also tried to characterize early from late relapses.
Concretely, they categorized relapses in three groups according to the
elapsed time between diagnosis and relapse: very early (less than 9 months),
early (between 9 and 36 months) and /afe (more than 36 months). Results
show that, based on their estimates of population growth, pre-existing
resistant subclones at diagnosis fit with observed timing of very early
relapse whereas early relapse adjusts better with a relapse arising from a
persistent subclone that acquires resistant alteration during treatment

allowing proliferation before therapy ends. Therefore, later relapse may
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come from a survivor subclone that restarts proliferation after the therapy
period is over. In fact, early relapses were the ones presenting more relapse-
specific mutations in known genes associated with resistance than the other
relapse types (65% over 17% very early or 32% late). They are not the only
ones to characterize early/late relapses. Another recent study [183], came
up with a score to represent “clonal dynamics” based on VAF shifts of
different mutations at different samples (primary-relapse/s). They reported
more clonal dynamics in early relapses than /ate and associated this to more
plasticity of the tumor favoring quick emergence of fitter clones and a
change in predominant populations post-treatment whereas late relapses

were considered to arise from quasi-inert persistent clones.

Above all of the relapse population characterization, studies of
phylogenetic trees built with primary-relapse samples revealed a general
branching pattern in the evolution of ALL. In a study of 55 pediatric
patients with ALL [257], the shape of the trees based on mutations detected
with WXS, showed enough private primary mutations to consider a branch
instead of a linear evolution process. Another study checking for CNA with
multiplexing fluorescence in sifu hybridization demonstrated a complexity
in the clonal architecture of ALL and branching evolutionary trajectories

[274].

1.3.3.2 Standard treatment

Diagnosis and risk factors

Usually, identification of lymphoblasts by morphology and cytochemistry'

and assessment of peripheral blood and bone marrow infiltration is

15 Lymphoblasts lack myeloperoxidase so they stain as Sudan black
negative. It helps to distinguish AML from ALL [275].
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performed (>20%). Immunophenotyping determines cell lineage and
precursor commitment [275]. Cytogenetics identifies main chromosomal
changes and aneuploidies and helps stratify patients according to most
likely outcome (adverse/poor, intermediate or favorable/good) as described
in 1.3.1. In fact, it is believed that part of the overall worst outcome of adults
compared to children is because older patients tend to present ALL with
adverse cytogenetics such as hypodiploidy, Ph positive type or ETP T-ALL
[276]. During the last years, and with the progress of NGS many research
groups have developed panels of driver genes to perform targeted
sequencing of the diagnostic sample and fine-tune risk assessment. For
instance, in a study where they analyzed a panel of genes with main hotspot
exons of TP53, JAK2, PAXS5, LEF1, CRLF2 and IL7R, it was demonstrated
that mutations in TP53 and JAK?2 are associated with poor prognosis since
they obtained lower overall survival (OS), lower event-free survival (EFS)
and higher relapse rate (RR) in an heterogencous cohort of 340 B-ALL
patients with children and adults [277]. Another example is a study of
alterations in IKZF1 in two independent cohorts which resulted in very poor
outcomes for the patients carrying them [220]. There are also controversial
examples such as deletions in CDKN2A and mutations in NOTCHI1 in
which their assessment as genetic markers have been tested a great number
of times without concordance in the results. Pediatric patients under the
ALL-97 (n = 55) protocol and adults in LALA-94 (n = 87) and GRAALL-
2003 (n = 54) clinical trials showed good outcome of individuals harboring
NOTCHI1 and FBXW7 mutations whereas in UKALLXII and ECOG
protocols presented no significant association [240]. However, although
there is some disagreement in long-term outcome between studies, in
general, mutations in the NOTCH]1 pathway are associated with good early
response to treatment. Similarly, in the majority of the studies deletions in
CDKN2A/B are associated with poor prognosis but there are also some that

found no prognostic value of it [278]. A recent metastudy seems to support
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that CDKN2A/B deletions are indeed related to a bad outcome and serve as

an independent prognostic marker in adults and children [279].

Risk is systematically assessed according to clinical features: age of the
patient and leukocytes or white blood cells count (WBC). The National
Cancer Institute has determined as Standard Risk (SR) children between 1-
9 years old and peripheral-blood leukocyte count at diagnosis <50000/uL
whereas high risk (HR) children are those with 10-15 years old and
leukocyte count >50000/uL [280]. Other determined categories are
adolescents with ages 16-20 years and young adults with ages of 21-39
years which are usually referred together as AYAs. Therefore, in some
cases adults are just considered those older than 40. These categories are
widely used by the St. Jude Hospital research projects that are cited along
this work. Later, risk is re-evaluated according to the first response to
treatment. Concretely, it is performed a quantification of the residual
disease, called minimal residual disease (MRD) by microscopic
morphological assessment, which helps monitoring ALL under therapy
and, so far, it is the strongest predictive feature of this disease [281].
Patients whose MRD stays high and never achieve complete remission are

called refractory.

Overview of treatment

Following the generalized summary of this recent review [276], front-line
treatment of ALL has 4 major components which are blocks with specific
drugs and dosages adjusted for a particular period of time:

e Induction

e (Consolidation

e Intensification

e Maintenance
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The induction block aims to make the most cytoreduction possible to reach
a complete remission (meaning absence of detectable disease) and restore
normal hematopoiesis. It usually lasts 5 weeks approximately. The
chemotherapy given is a multi-drug cocktail of glucocorticoids
(immunosuppressor), vincristine (mitotic inhibitor-cytotoxic alkaloid), L-
asparaginase (cytotoxic enzyme) and anthracycline (antitumor antibiotic).
The most common glucocorticoid is prednisone but some protocols have
used dexamethasone too which seems to present higher toxicity. Also the
most used anthracycline is daunorubicin. Patients with BCR-ABL1
translocations which had very bad prognosis have significantly improved
their outcomes as tyrosine kinase inhibitors such as dasatinib have been
incorporated as part of the therapy. Usually, an MRD measure is taken in
the middle and at the end of induction. A current measure to determine
whether the patient should follow high-risk or standard-risk procedure is to
determine an MRD > or < 0.01% respectively. Therefore, intensification of
the therapy is adjusted according to the risk to reduce toxicity and long-
term effects on those with good prognosis. At this point, allogeneic
hematopoietic cell transplantation (allo-HSCT) is also considered

depending on comorbidities and overall status of the patient [282].

The consolidation block consists of administering chemotherapy in
frequent pulses every 2-3 weeks. The main objective of this block is to get
rid of the remaining leukemic cells. Induction seems to be more similar
between protocols compared to consolidation which tends to vary more.
The usual drugs administered in this phase are: cytarabine (antimetabolite-
pyrimidine analog), high-dose methotrexate (antimetabolite-folic acid
analog), vincristine, asparaginase, mercaptopurine (antimetabolite-purine

analog), and glucocorticoids.
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The intensification block consists in a reinduction phase so drugs supplied
are very similar to those in induction. It is also common to use
cyclophosphamide (alkylating agent). Similarly to consolidation, the aim of
this phase of treatment is to ensure the eradication of any left leukemic cells.
High-risk patients that have achieved remission are usually the ones that

receive this therapeutic block.

The maintenance block is the longest period of treatment (approximately
up to 2 years from induction). Mercaptopurine is the main drug
administered in this treatment phase which is daily given. It is normally
combined with weekly doses of methotrexate. During this period there
might be short reinductions too in which mercaptopurine and methotrexate

are interrupted for the delivery of induction drugs.

Apart from these, along the different blocks, patients also receive
intrathecal chemotherapy (methotrexate, cytarabine, and hydrocortisone) to
avoid CNS relapse. Furthermore, as mentioned above, allo-HSCT is also

part of the therapy for high-risk relapsers and poor responders [275].

Some of the success of cure rates in ALL, especially in children, are due to

some of the following improvements [275,283]:

- The development of specific drugs to trigger response in blood
cancers such as folic acid antagonists, corticosteroids, and purine
analogs such as (6-mercaptopurine and thioguanine)

- Establishment of multiagent drug schedules to overcome resistance
and toxicity

- Prevention and/or treatment of CNS blast infiltration from the very
beginning of the treatment first by prophylactic cranial irradiation

and then changed to intrathecal chemotherapy.
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- Testing of new drugs as well as intensification measures by well
design clinical trials (e.g incorporation of asparaginase in treatment
protocols or incorporation of reinduction after consolidation)

- Stratification of patients due to risk factors and ALL subtypes and
adjustment of dosages and regimes according to that. Notoriously,
MRD monitoring to precise patient stratification

- Allo-HSCT as consolidation for high risk-patients and poor
responders

- Incorporation of tyrosine kinase inhibitors to treat Ph+ patients

- Improvements in AYA patients with therapy that resembles

pediatric therapeutic regimens.

Recently, new treatments have been developed to improve ALL cure rates,
especially targeting relapsed leukemias. For example, rituximab and
inotuzumab ozogamicin are monoclonal antibodies against B-cell lineage
leukemia markers such as CD20 and CD22 respectively that have shown
very promising results on relapse and refractory adult patients with
reasonable toxicity. In fact, inotuzumab ozogamicin has already been
approved by FDA and EMA! to treat adult patients with relapsed or
refractory leukaemia. Similarly, there are also new antibodies developed
to target CD19 such as Blinatumomab which has already been approved for
the treatment of adult Ph negative patients. CD19 can also be targeted using
immunotherapy with anti-CD19 chimeric antigen receptor (CAR) T cells.
Results with patients of a wide range of ages showed promising results but
anti-CD19 CAR T treatment has severe effects and usually is only
recommended after different alternative lines of treatment have been given

or after allo-HSCT.

1 FDA: US Food and Drug Administration
EMA: European Medicines Agency

107



In the case of T-ALL, there has not been as much improvement as in B-
ALL. A notorious advance is the usage of nelarabine (antimetabolite-purine
analog) to treat relapsed and refractory T-ALL patients of all ages. Some
inhibitors of key players in T-ALL such as JAK inhibitors, BCL-2
inhibitors are being tested to improve EFS rates. CAR T for T-ALL is also
under development but issues regarding the similarities between leukemic

T-cells and genetically engineered CAR T-cells must be overcomed [219].

The poorer outcome in adults compared to pediatric patients may be
attributable to different factors. As mentioned before, adults tend to have
more incidence in adverse subtype groups than children. They suffer from
higher toxicity than children, for instance, severe hepatotoxicity due to
asparaginase, so as consequence, this drug is not administered at the
intensity of children or it is even dropout from treatment protocols. Older
patients also tend to have more comorbidities associated with treatment.
Another suggested explanation is that, since ALL is rare in adults, there is
a lack of specialized centers so there is lesser awareness of stratification and
management of toxicity and most adults are treated outside clinical trials

[284].
Described treatment resistance

As indicated before, NT5C2 activating mutations are one of the main
alterations that drive relapse as they confer resistance to 6-mercaptopurine
[268]. This gene encodes an enzyme called cytosolic 5'-nucleotidase 11
which is responsible for the dephosphorylation of purine nucleotides. The
dephosphorylated nucleotides can then be exported out of the cell, therefore
reducing their intracellular levels. Gain-of-function mutations of NTC52
increase the export of dephosphorylated purine analogs like 6-

mercaptopurine or thioguanine conferring resistance [285]. Evidence
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supports that NT5C2 mutations are disadvantageous to the leukemic cells
as they cause an excess of nucleotide exportation but they provide selective
advantage when mercaptopurine is administered [286]. Mutations observed
are classified on those locking the protein in its constitutively active form,
those blocking the switch-off mechanism and those that truncate the break
for allosteric activation [285]. In addition to NT5C2 and as mentioned
above (see 1.3.3.1), PRPS1-mutated clones can also generate tolerance to
purine analogs since the mutants reduced the feedback inhibition loop of
the protein which ultimately results in inhibition of the drug metabolization

into its active damaging form [270].

There are studies associating polymorphisms and mutations of the
glucocorticoid receptor encoded in NR3C1 with glucocorticoid resistance
but there was a need for functional studies, such as the ones performed with
NTS5C2, to better understand it [287]. A couple of years ago, a study
demonstrated how the glucocorticoid receptor associated with CTCF
interact at lymphocyte-specific open chromatin domains (LSOs) to regulate
chromatin accessibility critical for the glucocorticoid-induced apoptosis.
They reported how glucocorticoid resistant cells had an increased
methylation of DNA at the enhancer preventing formation of DNA looping
and, therefore, impeding the binding of transcriptional machinery necessary

to trigger apoptosis [288].

Furthermore, in B-ALL, relapse samples recurrently present mutations in
CREBBP which have been shown to impair regulation of glucocorticoid-
receptor-responsive genes [272]. Instead of a particular genomic mutation
conferring resistance, some studies have focused on the overall alteration
of pathways such as JAK-STAT and PI3K-AKT-mTOR and resistance to
glucocorticoids [287]. For example, a few years ago, a study with PDX

showed that in T-ALL with active JAK-STAT pathway, removing IL7 or
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inhibiting JAK-STAT signaling stimulated by IL7 sensitizes cells to
glucocorticoids and might help to overcome resistance [289]. Another
mechanism of resistance to chemotherapy has been described with pS3 and
ABCBI. As indicated above (1.1.3.4), the gene ATP-binding cassette sub-
family B member 1 (ABCB1) encodes for P-gp protein which is a ATP-
dependent membrane efflux pump that is able to export several drugs such
as vincristine, anthracyclines, and glucocorticoids [290]. It has been shown
that p53 transcriptionally regulates ABCB1 and that mutations and
deletions in TP53 lead to increased expression of P-gp [287]. A recent study
reported that cells having TP53 mutants with expressed truncated forms of
p53 showed insensitivity to doxorubicin whereas when WT expression was

rescued cells were re-sensitized in B-ALL [291].

As described above, loss-of-function of mutations in genes that encode for
members of PRC2 complex (EZH2, EED, or SUZ12) are enriched in
relapse and are also abundant in adverse subtype ETP-TALL. Depletion of
PRC?2 is associated with resistance to chemotherapy-induced apoptosis in

human T-ALL cell lines [292].

Finally, there are other factors contributing to chemoresistance that can be
cell-extrinsic. Some studies summarized elsewhere [293] have shown that
the bone marrow microenvironment by modulating cell-cell interactions
and by the production of soluble factors in the niche induce survival
signaling which can contribute to chemoresistance. For example, several
lines of evidence related the abnormal high expression of surface integrin
VLA-4 in leukemic cells to chemoresistance, particularly in tests with
cytarabine. Specifically, the binding of VLA-4 with VCAM-1 (surface
protein in vascular endothelium cells) mediates activation of pro-survival
signaling in ALL cells which can shield them against treatment induced

apoptosis. Another example is, the chemokine receptor CXCR4 which has
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also been involved in chemoresistance. High expression of this receptor is
associated with higher relapse rates and inferior survival and its silencing
has been related with restore of chemosensitivity and induction of apoptosis

in ALL.
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2. OBJECTIVES

General goals

Study the clonal evolution from primary to relapse of T-ALL in
adult patients

Identify genomic candidates of treatment resistance in adult T-ALL
Analyze similarities and differences between T-ALL and B-ALL
and between the pediatric and adult diseases

Contribute to the generation of a compendium of mutational cancer

genes across tumor types

Specific goals

Characterize the emergence of the relapse clone
o Estimate the time before clinical presentation when the
primary and relapse clones diverged
o Infer the size of the relapse subpopulation at the time of
diagnosis of the primary
o Identify recurrent relapse-enriched alterations suspicious
of conferring resistance
Comparison of drivers between different types of ALL
Define which are the mutational processes operating in
leukemogenesis and, also, whether the relapse samples show signs

of chemotherapy signatures

Collect, curate and annotate datasets of tumor somatic mutations

across cancer types
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3. RESULTS

3.1 Chapter 1

The evolution of adult T-ALL patients

The results section contains the accepted manuscript of my main project
during the PhD. Like most studies in our field, the publication shows only
part of the large amount of work done during the project. For this reason, in
the following introductive part, I decided to describe a detailed overview of
all the progression of it, to provide a more realistic and complete picture of
the work carried out. Furthermore, this beginning of the results section, also
aims to define the contribution of all the people involved in the project since

there are other authors of our lab and external collaborators in it.

When does the project start?

The research explained in the manuscript of the upcoming section is a
collaborative project with the lab of Dr. Anna Bigas'” and the group of Dr.
Josep Maria Ribera'®. During my first PhD year, I joined the project at the
initial planning phase in January 2017 (see the diagram of Table 5). Given
the high incidence of childhood B-ALL, most of the genomic knowledge
generated in the past years such as the implicated genes and pathways and
the evolution under treatment of ALL is clearly biased towards the pediatric
disease. Consequently, little is known about the evolution of adult T-ALLs
under treatment. The motivation of the project was to find mechanisms of
therapy resistance in T-ALL, check their detection at diagnosis and include

them in the regular diagnosis test of the Hospital Germans Trias i Pujol for

17 Stem cells and cancer Group-Institut Hospital del Mar d'Investigacions
Mediques (IMIM)

18 Acute lymphoblastic leukemia Group-Josep Carreras Leukaemia Research
Institute (IJC)
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relapse prevention. The project is funded by The Asociacion Espafiola
Contra el Cancer (AECC)". The initial plan was divided into two phases: a
first 3-year phase to sequence samples and to identify candidates and a
second phase of the following two years to validate the candidates and
develop xenograft models for further prediction analyses. The group of the
1JC was already collecting data from adult T-ALL patients from different
spanish hospitals and the group at IMIM was coordinating the project and
bringing the experimental expertise to our ensemble. Our role was to lead
the bioinformatic analysis which had the central weight in the investigation

as evidenced in the objectives written above.

Project design and sequencing

We have frequently met with our collaborators along the past 4 years. The
meetings, in particular during the first period, had as main objective to
revise the clinical data of the patients and the sample availability to decide
which ones could be included in the project. In order to study the evolution
of leukemias and to search for alterations of therapy resistance, we selected
primary and relapse bone marrow aspirates (preferably, otherwise
peripheral blood) with reasonable sample purity of patients above 18 years
old. After a few months, our collaborators were able to gather a collection
of primary, remission and relapse samples (here referenced as trios) per
individual from a small cohort of 9 adult patients with T-ALL. We decided
to sequence the whole genome of the samples from this first batch with the
expectation to sequence an in-house cohort between 20 to 30 T-ALL adult
patients. However, the sequencing center was not up to us to decide since
local regulation stated that the election of it must undergo public tender
procedure. We received the sequences from the first batch of patients in

June 2018.

19 Translated: Spanish Association Against Cancer
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Collection of ALL tumor sequences in the public domain

In the meantime, we decided to gather as much data as possible from ALL.
We downloaded the somatic mutational catalogs from the published
projects that were available at the moment. Logically, most of the data that
we obtained was coming from pediatric cohorts. Usually, the data we
collected were somatic mutations from the supplementary MAF files
reported in publications. At that time, not only was I a first year PhD student
but also I was finishing my master’s degree so, the first cohort comparison
and landscape of driver genes carried out served as my master thesis?.
Soon, we realized that the diversity in mutation calling procedures among
the cohorts could influence downstream analysis that we were willing to
perform. For this reason, to continue the investigation, now as my main
PhD project, we decided to download and re-analyze the raw data ourselves
to accomplish as much homogeneity as possible between cohorts. Not all
the published projects provided a link to a public repository from which to
download the raw data. Finally, we ended up having mostly WGS data from
pediatric projects of the St. Jude Pediatric Hospital and another pediatric
project with WXS data from Columbia University [257] that had samples
trios per patient (a table with the characteristics of the cohorts is provided

in the manuscript; there were a total of 238 patients).

First steps of the analysis

Since it was the first time that our lab performed sequence alignments and
calling of somatic variants for such a volume of data, I, with support from
other lab members, had to come up with a pipeline to systematically analyze
all the samples. After trying some aligners and exploring GATK
possibilities, we decided to use Sarek pipeline [294] developed by

20 https:// www.upf.edu/web/bioinformatics/projects-2016-2017
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SciLifeLab in Sweden in nextflow scripting language. At that time, the
pipeline was still at the beginning of its development and it was called
CAW. However, the first analysis was done with the alignments and
somatic calls outputted by CAW of a few cohorts. The pipeline seemed
appropriate since it was using a pretty standard way to make the BAM files
while implementing the “Best Practices” of GATK and using Strelka and
MuTect. After some benchmarking of other calling tools and “trial and
error” we had the SNVs, InDels, CNV and SV of some of the patients (4
of the total number of patients coming from public repositories). I made the

first BAMs and test runs myself with the help of Jordi Deu Pons.

However, at some point of the analysis, Dr. Loris Mularoni helped run the
rest of the alignments and mutation calls with a stable version of Sarek
while I was working in the first batch and learning about single-cell RNA-

seq.
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Related to that, a pilot study to try to quantify the heterogeneity of the
primary tumor and the existence of a relapse form was performed using 1
patient (the only one at that time with cryopreserved cells). The
inconclusive results and the lack of material suggested to abandon such
idea.

Therefore, we saved that line of investigation for another time and started
new angles to study clonal evolution from bulk sequencing. Finally, we

have sequenced the whole genome of sample trios of 19 patients.

Sections of the manuscript and contributions

Figure 1 and 2 of the manuscript correspond to the first part of the project
in which we decided to compare cohorts of ALL to our in-house cohort of
T-ALL adults and make a landscape of the disease, as well as, search for
therapy-resistant candidates. From figure 3 to 5 we decided to focus on the
leukemic evolution of the in-house cohort. Since this is my main PhD
project, I have actively participated in all parts of the project, including the
initial meetings when we decided the samples to sequence, to the
discussions of experimental validation of mutations. Regarding the
computational analyses, Dr. Santi Gonzalez and I have performed all of
them. I did the analyses of the first part of the project from the somatic
calling of alterations, the consecutive filtering steps, to the discovery of
drivers running IntOGen and curating literature and to the fitting of
mutational signatures. During this period I had constant feedback from
Santi who helped guide some technical decision-making from one step to
the next one. The second part of the analysis was built upon many
discussions with Santi, my supervisors and I, with occasional input help
from Dr. Ferran Muiflos for more mathematical-related technical parts.
Concretely, I coded a simple model to estimate the divergence time of the

primary and relapse clones. However, more accurate modelling was needed
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from where Santi took over this part and designed and implemented the
mutation rate increment models that resulted in the estimates of the
divergence time in figure 4.c. Furthermore, after running some tests with
Clonex [295] for the simulations of cell population growth, Santi and I
realized it required some adaptation of the code in order to simulate the
growth of not only a primary tumor but also a relapse. Therefore, he adapted
Clonex and ran the simulations that resulted in figure 5.c and then compared
with the observed data in figure 5.d. Ferran implemented the model of
tumor growth from Li et al., 2019 [112] so I could obtain the doubling time
that allowed me to infer the population size of relapse at diagnosis that
corresponds to figure 5.a. The dPCR experiments were conducted by Dr.
Violeta Garcia-Hernandez under the supervision of Dr. Anna Bigas and

with the help of the Pathology Department in Hospital del Mar.

I have also participated in outlining and discussing the draft of the paper.
The manuscript has been accepted for publication in Genome Biology for

Cancer Evolution and Metastasis special issue.

Sentis I , Gonzalez S , Genesca E, Garcia-Hernandez V , Muifios F ,
Gonzalez C, Lopez-Arribillaga E, Gonzalez J, Fernandez-Ibarrondo L,
Mularoni L , Espinosa L , Bellosillo B, Ribera JM , Bigas A , Gonzalez-
Perez A , Lopez-Bigas N. The evolution of relapse of adult T-cell acute
lymphoblastic leukemia (Accepted, Genome Biology)
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Abstract

Background: Adult T-cell acute lymphoblastic leukemia (T-ALL) is
a rare disease that affects less than 10 individuals in one million. It
has been less studied than its cognate pediatric malignancy, which
is more prevalent. A higher percentage of the adult patients relapse,
compared to children. It is thus essential to study the mechanisms

of relapse of adult T-ALL cases.

Results: We profile whole-genome somatic mutations of 19 primary
T-ALLs from adult patients and the corresponding relapse
malignancies, and analyze their evolution upon treatment in
comparison with 238 pediatric and young adult ALL cases. We
compare the mutational processes and driver mutations active in
primary and relapse adult T-ALLs with those of pediatric patients. A
precise estimation of clock-like mutations in leukemic cells shows
that the emergence of the relapse clone occurs several months
before the diagnosis of the primary T-ALL. Specifically, through the
doubling time of the leukemic population, we find that in at least 14
out of the 19 patients, the population of relapse leukemia present at
the moment of diagnosis comprises more than one but fewer than
108 blasts. Using simulations, we show that in all patients the relapse

appears to be driven by genetic mutations.

Conclusions: The early appearance of a population of leukemic
cells with genetic mechanisms of resistance across adult T-ALL
cases constitutes a challenge for treatment. Improving early

detection of the malignancy is thus key to prevent its relapse.

Keywords: T-ALL, adult acute lymphoblastic leukemia, T-ALL

evolution under therapy, evolution of leukemia relapse, ALL relapse
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Background

Acute lymphoblastic leukemia (ALL) affects 3 children in 100,000 in
the UK [1]. In the past 5 decades, intense research on this disease
has succeeded in reducing the mortality of ALL-affected children by
82% [2]. Recently, with the development of cancer genomics,
researchers have unraveled the most frequent somatic genetic
alterations underlying its development [3—14], and molecular
subtypes, as well as their clinical relevance [15-22]. Genetic
alterations that elicit some relapse events have also been uncovered
and the potential role of therapy in the development of such relapse

cases has been explored [23-31].

ALL is less prevalent in adults (0.7 patients in 100,000 people [1]).
Not only are there differences in incidence among age groups, but
also relapses after treatment appear more frequently in adults (40-
75% vs 15-20% among pediatric patients) [31]. Very few studies
have been dedicated to understanding the genomic roots of the
emergence of adult ALL, and in particular, of T-cell ALL (T-ALL) [32—
36]. There is a larger gap in the study of the evolution of this
malignancy under therapy and its relapse after treatment. Therefore,
important questions regarding the genomic evolution of adult T-ALL
remain unanswered. It is not entirely clear, for example, whether the
same mutational processes are involved in the onset of pediatric and
adult T-ALL cases, and if the chemotherapeutic drugs employed in
the treatment leave a mutational footprint in relapse cells, as it has
been shown for pediatric cases [36]. Furthermore, while some
genetic mechanisms of resistance to treatment have been identified
in pediatric ALL [26,27], it is not known whether these also contribute

to resistance of the adult malignancy.
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To explore the evolution of adult T-ALL under treatment and address
these specific questions, we profiled the whole-genome somatic
mutations of 19 T-ALLs from adult patients who relapsed after
treatment (in-house cohort; Additional file 1: Table S1). Samples
were taken at the time of diagnosis (primary) and at recurrence of
the malignancy after treatment (relapse). We then analyzed the
genomic evolution of these adult T-ALL cases in comparison with
238 pediatric and young adult ALL cases (71 with primary and
relapse samples) available in the public domain (Table 1). Known or
potential resistance mutations appear in 6 patients of the cohort.
Nevertheless, our results show that in the 19 cases the relapse is
driven by genetic mutations, and that resistant cells appear in the
population of blasts several months before the diagnosis of the

primary.

Results

The genomics of primary adult T-ALL

Previous studies on the genomic basis of pediatric ALL have
identified somatic mutations across cohorts of patients suffering from
this disease [5-8,10,12,13,28-30,37—40]. Therefore, we first aimed
to compare the landscape of somatic alterations observed across
primary adult T-ALL with that across eight other cohorts of T- and B-
ALL patients of varying age, ranging from infancy to young
adulthood, which we analyzed with a unified mutation calling
approach (Table 1; Additional file 1: Table S1 and Table S2). Among
cancer types, ALL presents a relatively low somatic mutation burden
[41,42]. Nevertheless, the burden of somatic point mutations of adult

ALL cases tends to be higher than that of cases of most of the
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subtypes of the pediatric malignancy, as has been previously
observed [43] (Fig. 1a).

Mutations in human somatic cells are contributed to by different
molecular mechanisms involving the interaction of endogenous (for
instance, spontaneous cytosine deamination or oxidative damage)
and external DNA damaging agents (such as UV-light, tobacco
carcinogens or chemotherapies) with the DNA repair machinery
[41,44-46]. The study of these mutational processes in tumors
reveals the lifetime exposures of patients to potential carcinogenic
agents and consequently contributes to shedding light on the
etiology of malignancies. Thus, we first asked whether the somatic
mutations observed across nine cohorts of pediatric and adult ALL
(Table 1) are contributed to by similar or different mutational
processes. No clear differences are observed between the
mutational profiles of B-ALL and T-ALL (Fig. 1b, top). However, the
mutational profiles of pediatric and adult malignancies exhibit
discernible, albeit slight differences (Fig. 1b, bottom). The same
mutational processes appear to be active across pediatric and adult
T-ALL and in pediatric B-ALL (Fig. 1c; Additional file 2: Fig. S1). In
particular, mutational signature 5 (SBS5), which in blood has been
demonstrated to behave in a clock-like manner [47], and has been
associated with the process of hematopoietic cell divisions [48,49],
appears as one of the main contributors of mutations in the evolution
of both pediatric and adult ALL.

We next asked whether the driver alterations observed across
primary adult T-ALL in the in-house cohort are different from those
observed across pediatric B/T-ALL (Methods; Fig. 1d; Additional file
2: Fig. S2; Additional file 1: Table S3 and Table S4). Mutations in
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some known ALL driver genes, such as NOTCH1 and FBXW?7 (the
E3-ligase charged with its recognition for ubiquitination [50]), are
overrepresented among both pediatric and adult T-ALL with respect
to B-ALLs (x?p=1.05x10""% and x? p=8.37x10°, respectively). Similar
overrepresentation of mutations in T-ALLs was found in JAK3 (x?
p=0.004). In contrast, RAS activating mutations do not appear to be
differently represented in both ALL types (x?p=0.05 and x?p=0.634
for KRAS and NRAS).

Genomic alterations driving primary and relapse adult T-ALL
With the goal to study the evolution of adult T-ALL, the 19 patients
in the in-house cohort were selected specifically because they
relapsed several months after treatment (Fig. 2a; Additional file 2:
Fig. S3; Additional file 1: Table S1). Seventeen of them received the
same treatment protocol (ALL-HR-11 [NCT01540812]), while the
remaining two were administered very similar protocols (LAL-070OLD
and ALL-HR-2003 [NCT00853008]). To uncover the genomic
similarities and differences between adult and pediatric T-ALL cases
at relapse, we next compared the in-house cohort with 31 relapsed
cases from the T-ALL Oshima and T-ALL SJ cohorts (Table 1;
Additional file 1: Table S3 and Table S4). A list of potential driver
events across the 19 patients in the cohort is presented in Additional
file 1: Table S5 and Table S6.

Many NOTCH1 and FBXW7 mutations observed in the primary
leukemias were also present in the relapse samples (Fig. 2b;
Additional file 2: Fig. S4). Intriguingly, mutations affecting USP7, a
known deubiquitinase of NOTCH1 were detected in 3 adult and 3
pediatric patients, raising the possibility of yet another form of

alteration of the NOTCH pathway in leukemogenesis [51-53].
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Overall, NOTCH1-affecting mutations in adults are distributed along
the protein-coding sequence in a very similar manner than those
observed in pediatric patients (Fig. 2c). Nine patients in the cohort
present multiple mutations of NOTCH1 that affect different protein
domains (mostly HD and PEST), in agreement with previous reports
[54]. Interestingly, in 6 patients different NOTCH1/FBXW?7 mutations
were detected in the primary and relapse samples (Fig. 2d). These
constitute examples of convergent evolution of mutations affecting
the NOTCH1 pathway, also observed in eight pediatric patients in
the cohorts analyzed. This suggests that NOTCH1 mutations tend to
appear late [55] and recurrently (i.e., in several cells) during T-ALL

development.

DNMT3A-affecting mutations, known to drive acute myeloid
leukemias (AML), were observed in three adult patients in the in-
house cohort and none of the pediatric T-ALLs. In fact, these three
patients are classified as Early T-Cell Precursor (ETP), a T-ALL
subtype that presents myeloid markers [33]. Similarly, PAT5 and
PAT9, patients with mutations of ROBO2 --a gene associated with
progression of myelodysplastic syndrome [56] to AML and recently
reported as mutated in pediatric ALL [57]-- present the ETP
phenotype. Clonal mutations of PHF6 are overrepresented (x2
p=0.001) in adult T-ALLs with respect to their pediatric counterparts,
shared between primary and relapse samples. PHF6 is a zinc-finger
transcription factor that suppresses ribosomal RNA (rRNA)
transcription [32]. Loss-of-function mutations of this gene have been
shown to decrease sensitivity to glucocorticoids [58], which are part
of the standard first-line treatment of adult T-ALL patients.
Interestingly, activating mutations of the NT5C2 gene, known to elicit

resistance to mercaptopurine anti-ALL treatment in pediatric cases
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[26,27] are also observed across 3 adult cases exposed to this drug
(Fig. 2a), with PAT16 bearing two mutations of NT5C2 (R238G,
R367Q, see Additional file 1: Table S5). In the relapse samples of
two patients of the in-house cohort, we observed amplifications of
ABCB1, an ATP-dependent membrane transporter known to
mediate multidrug resistance in tumors [59,60] (Additional file 2: Fig.
S5). Finally, SMARCA4 mutations and deletions were also detected
across adult (2) and pediatric T-ALLs, but almost exclusively in
relapse malignancies, suggesting a potential role in resistance to

treatment.

In summary, in 6 of the 19 adult patients of the in-house cohort we

were able to identify a candidate treatment-resistance mutation.

The evolution of relapse adult T-ALL measured through
mutations

We next asked how much do the mutational processes active in
primary T-ALLs also contribute to the overall burden of mutations of
relapse adult T-ALLs. The incorporation of new mutational
processes, like the exposure to chemotherapies used in their
treatment, could leave a mutational footprint that may be detectable
in the relapse clone, as recently demonstrated in metastases of

different solid tumors, and in relapsed pediatric ALL cases [45,61].

The deconstruction of mutational signatures (representing
mutational processes active during a person’s life) of primary and
relapse samples of each patient reveals very similar scenarios for
primary-private, shared and relapse-private mutations (Fig. 3a).
Signature 5 (SBS5), which represents a mutational process

associated with hematopoietic cell division [45] contributes the vast
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majority (~80%) of mutations in these three groups. We did not
detect the mutational footprint of mercaptopurine or any other
chemotherapy in the relapse samples (Additional file 2: Fig. S6). This
does not preclude that chemotherapy-related mutations exist below
the level of detection of the sequencing technology, for example if
the evolutionary bottleneck caused by the treatment has not

sufficiently reduced the T-ALL population.

Since signature 5 has been described as a clock-like process [47]
and this type of mutations are the main contribution to the burden of
clonal mutations of both primary and relapse T-ALLs, we used them
to infer a molecular time of divergence between the primary and
relapse populations (Fig. 3b, Additional file 2: Fig. S7). To this end,
we counted the number of primary-private, shared and relapse-
private signature 5 clonal mutations (Fig. 3b). In all cases the branch
that corresponds to relapse-private mutations is longer than that
representing primary-private mutations, because the relapse clone
has continued accumulating mutations longer after its divergence
from the primary (eliminated as a consequence of the treatment). As
expected, fewer relapse-private mutations accumulate in the cases
with shorter time elapsed between the diagnosis of the primary and

the emergence of relapse.

Time elapsed between divergence of primary and relapse
clones and primary diagnosis

The number of primary-private, shared and relapse-private signature
5 clonal mutations can also be used to estimate the precise time of
the divergence of the primary and relapse clonal populations. To that
end, we first needed to understand the rate of accumulation of

signature 5 mutations during T-ALL development. The DNA of
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normal hematopoietic cells has been shown to incorporate signature
5 mutations at a rate of roughly 12 per year (Fig. 4a; Additional file
2: Fig. S7; [48]). Regressing the number of signature 5 mutations
across primary and relapse T-ALLs on the age of patients in the in-
house cohort in comparison with healthy hematopoietic stem cells
(HSCs) yields slightly higher mutation rates and an unanticipated
high (~400) number of mutations at the start of life of hematopoietic
cells (intercept of trendline in Fig. 4a). This deviation could be
explained through an acceleration in the mutation rate that occurs

upon malignization of hematopoietic cells [62].

To compute the moment of time before diagnosis when this
acceleration started, as well as the value of the accelerated mutation
rate, we assumed that the acceleration rate is the same for the
primary and relapse malignancies of a patient. We then simulated a
one-time increase of the mutation rate (constant rate model) during
tumor evolution and, alternatively a steady increase (linear rate
model) in the mutation rate for successive cell generations
(Additional file 2: Fig. S8). For each patient, we assayed several
trendlines of accelerated mutation rate (i.e., starting at different
timepoints before diagnosis; dotted lines in Fig. 4b) approximating
the observed number of signature 5 clonal mutations in the primary
and relapse T-ALL clones. We computed the likelihood of each of
these trends of acceleration following their accuracy to fit the
observed number of mutations in the primary and relapse
malignancies (Fig. 4b and Additional file 2: Fig. S8). For each
trendline of accelerated mutation rate, the age of the patient at which
the divergence of the two clones occurred can be computed from the

number of shared mutations. The difference between this age and
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the age at diagnosis then yields the time elapsed between this

divergence and the diagnosis of the primary T-ALL.

Upon application of this approach to each patient in the in-house
cohort, we obtained a number of estimates of the number of days
elapsed between the divergence of both clones and the diagnosis of
the primary T-ALL, each with varying likelihood (green circles, Fig.
4c). The estimates for each patient may be summarized as their
weighted (by likelihood) averages (broken lines). The time estimated
for each patient was subsequently refined using the distribution of all
patients (see Methods). As a result, we obtained a robust prediction
of the boundaries of the most likely time elapsed between the
divergence of primary and relapse clones and the diagnosis of the
primary malignancy. In the majority of cases shown in the figure (13
out of 15) less than a year passed between its emergence and the
diagnosis (Additional file 1: Table S7).

The evolution of relapse of adult T-ALLs

Both the primary and resistant populations of T blasts across the
adult T-ALL cohort are composed of a major clone and one or more
subclones detectable through sequencing (see Additional file 3). In
all the patients, including four that are refractory to treatment, the
maijor clone in the primary and relapse leukemias differ, implying that
in every case, the treatment obliterates the major clone in the

primary malignancy.

To understand the effect of the therapy on the clonal architecture of
adult T-ALLs, we first aimed to estimate the speed of growth of the
population of T-ALL cells to determine the minimum size of the

relapse population at the time of diagnosis. This growth speed may
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be characterized through the doubling time of the population (the
time needed by a population of cells to duplicate its number). This
can be computed from the number of blasts estimated by the
pathologist at remission and relapse, and the amount of time elapsed
between both events [61] (Additional file 2: Fig. S9a; Methods). We
computed a doubling time for the T-ALL leukemic population of 10.79
days (confidence intervals, 10.1-11.36), which is slightly longer than
that recently estimated for pediatric B-ALL [61] (Additional file 2: Fig.
S9b). We were then able to compute, with this doubling time, the
minimum time necessary for the relapse population to achieve
approximately 7x10"" cells that corresponds to a full grown leukemia
[61,63]. This minimum time to expand from a single cell upon its
divergence from the primary population informs us of the likelihood

that the relapse clone has arisen before the diagnosis of the primary.

In three cases (PAT7, PAT11, PAT12), it is possible that the relapse
clone appeared during treatment, given the estimated doubling time.
In two more (PAT9 and PAT10), it is not completely clear whether
there’s enough time between the start of treatment and relapse to
allow the emergence of a new clone. In all other cases, the relapse
clone was most likely already present at the time of diagnosis and
represented by more than one cell (Fig. 5a). Indeed, for fourteen
patients in the cohort, the size of the relapse clone at the time of
diagnosis of the primary malignancy probably comprises more than
100 of 7x10" leukemia cells. (Note that this calculation is
independent from the time elapsed between divergence of the
primary and relapse clones and the diagnosis computed previously.)
PAT2, PAT4, PAT5 and PAT17, with more than 0.01% minimal
residual disease during treatment, show estimates of the relapse

clone at the time of diagnosis which are, as expected, above 1 in
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10,000 blasts. We then asked whether the relapse clone could be
detected in the primary sample of ALL cases by a method with a
lower limit of detection than Next Generation Sequencing
technologies. Thus, we aimed to detect two non-synonymous
SMARCA4 mutations (G1162S and T786l) that are private of the
relapse sample of two patients in the corresponding primary samples
of these patients (PAT8 and PAT14). With a limit of detection of
around one in one thousand cells, a digital PCR was unable to detect
this mutation in the primary sample of either patient (Fig. 5a and
Additional file 2: Fig. S10a,b). The fraction of cells of the relapse
clone estimated to be in the primary sample of these two patients is
below this limit of detection (1/10°% in PAT8 and 1/108 in PAT14).
These results thus provide further support to the estimation of the
doubling time and the size of the relapse clone in the primary

samples derived from it.

Although we were able to pinpoint known or putative resistance
mutations in several cases, we asked whether other cases of relapse
could be explained by a failure of the treatment to kill a subset of the
leukemic cells independent of any genetic mechanism [28,57]. To
answer this question, we modeled the emergence of the relapse
clone following both a resistant and a non-resistant (not driven by a
genetic mutation) scenario (Fig. 5b). First, a population of tumor cells
with driver and passenger mutations was simulated. Then, to model
the first scenario, a group of cells sharing one passenger subclonal
mutation (the resistance mutation) were selected as survivors of the
treatment, and were expanded again for 20, 40 and 60 generations
(40 generations correspond roughly to the observed times elapsed
between primary and relapse diagnoses for the cohort; Additional file

2: Fig. S11). To simulate the second scenario, a group of cells with
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the same size as in the first case (but selected randomly and sharing
no particular subclonal mutation) was selected and expanded for the
same number of generations. We then compared the change in
clonal composition --change of cancer cell fraction (CCF) of
mutations in primary and relapse-- obtained for both simulated
scenarios with the distribution of CCF in the primary samples of
mutations fixed in the relapse samples for all patients, represented
in Fig. 5¢c. For example, of all mutations fixed in the relapse ALL of
PAT8 (dashed brown line), approximately 59% were present at CCF
0-0.1% in the primary. In other words, in the primary sample they
appeared below the limit of detection of the sequencing, and thus
correspond to the red star mutations in the toy diagrams in Fig. 5b.
On the other hand, 30% of the PATS8 fixed mutations were detected
in the primary ALL at CCF between 0.9 and 1, with the remaining
mutations at intermediate CCF bins. All patients in the cohort yield

similar bimodal distributions.

Only in the results of the simulation of the resistant scenario do we
observe a distribution of CCF of the mutations in the primary sample
that resembles that of the patients in the in-house cohort (Additional
file 2: Fig. S10). By contrast, in the results of the simulations of the
non-resistant scenario, no mutations undetectable in the primary
leukemia (CCF in the 0-0.1 decile) become fixed in the relapse (Fig.
5d). This holds if the simulations are run between 20 and 60
generations, and even if a much higher (unrealistic) fitness is
assigned to driver mutations. These results suggest that the non-
resistant scenario of evolution under treatment is not feasible given

the time elapsed between primary and relapse.
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In summary, in 14 cases in the cohort the relapse population is most
likely already present before the start of the treatment. Moreover, all
relapse cases fit the model of genetic resistance --due to one genetic
event common to all cells in this relapse population-- although we

are only able to identify the responsible mutation in a few of them.

Discussion

Advancing our knowledge on how tumors respond to therapies and
which of their features determine their relapse after treatment is key
to improving clinical oncology practice. Here, we studied the
genomic features and the clonal composition of nineteen adult T-ALL
cases at diagnosis and at the time of relapse to understand their
evolution and identify commonalities that may predict their likelihood

to respond to current therapeutic approaches.

Our results suggest that for most adult T-ALL patients, the population
of leukemia cells that dominate the relapse is already present at the
moment of diagnosis, that is before the start of the treatment, and
comprises more than one but fewer than 108 blasts. One evidence
that supports this notion comes from the fact that, in most cases, the
span of time between the diagnosis and the emergence of relapse is
not enough (given the doubling time estimated from the cohort) to
explain the repopulation of a full leukemic population starting from a
single cell. This contrasts with the results reported recently for a
pediatric cohort, in which some relapse cases could be explained by
resistance mutations appearing during treatment [61]. This finding is
relevant for the clinical practice, since early identification of such
potential resistance populations in a patient’s leukemia may support

making clinical decisions regarding their treatment.
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We were not able to detect the mutational footprint of
chemotherapies employed in the treatment of patients of this cohort,
such as mercaptopurine, which has already been characterized in
pediatric T-ALL cases [61]. This does not preclude that these
chemotherapies indeed cause mutations in leukemic cells that
progress in the relapse. Since upon treatment chemotherapy
mutations will be private to each blast, and likely many of them
survive into the relapse, the variant allele frequency of these
treatment mutations will never rise above the limit of detection of the
sequencing. The detection in the relapse T-ALL population [61] of
these treatment mutations would require that only one or few blasts
survived the treatment, guaranteeing that sufficient numbers of cells
in the relapse carried the same mutations to make them detectable
through sequencing. The absence of treatment footprints in the
relapse is therefore another evidence that the relapse population at

the time of treatment already contains a large number of cells.

One intriguing result is the detection of multiple mutations affecting
the NOTCH pathway in the same T-ALL case, which do not appear
to be exceptions, but rather the rule. It is possible that mutations
affecting different domains of NOTCH1 increase the fitness of
leukemic cells more than a single mutation, and provide an
advantage for relapse. Further studies comparing the pattern of
NOTCH1 mutations in relapsing and non-relapsing T-ALLs are

needed to clarify this.

Conclusions
All results show that, in the T-ALL patients of this cohort, the relapse

is driven by genetic mutations that appear in the population of blasts
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several months before diagnosis, giving rise to a resistant subclone
of up to several million cells at the beginning of treatment. Upon
treatment thus, this subclone comes to dominate the T-ALL

population at relapse.
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Fig. 1. Comparison of primary adult and pediatric ALL cases.

a) Clonal mutation burden (per megabase) of primary T-ALLs of nine cohorts. Red
line shows the median mutation burden of the cohorts. Tumors are represented as
dots, sorted along the x-axis according to their mutation burden.

b) Mutational profiles of primary ALLs in the nine cohorts in a Uniform manifold
approximation and projection (UMAP) dimensionality reduction graph (see
Methods). The UMAP was run on a matrix of the counts of all possible tri-nucleotide
changes (96) across ALL patients of all cohorts. Each dot represents a patient,
colored according to their cohort (top panel) or their age (bottom panel).

¢) Mutational processes active across primary ALL cohorts, represented by their
mean (and standard deviation) contribution of the mutation burden of each cohort.
SBS1, SBS5, SBS2, SBS9, SBS37, SBS13, SBS36, respectively, single nucleotide
substitutions signatures 1,5,2,9,37,13,36.

d) Rate of mutations of selected frequently mutated cancer genes across primary
T-ALL cohorts. Cohorts are clustered according to the similarity in their profile of
cancer genes mutation frequency (see Methods). The total number of patients in
each cohort with mutations of each cancer gene are represented by bars at the right
side of the graph. Here are represented genes with mutations in at least two patients
(for the full list see Additional file 2: Fig. S2 and Additional file 1: Tables S3 and S4)
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Fig. 2. Comparison of different age groups in T-cell acute lymphoblastic
leukemia.

a) Schematic representation of the clinical course of all patients in the in-house T-
ALL cohort. Colored boxes (following the legend) at the bottom depict common
stages in this clinical course. The broken lines represent specific trajectories
followed by groups of patients, with the numbers in each trajectory.

b) Summary of driver mutations (single nucleotide variants, InDels, copy number
variants and translocations) identified in the primary and/or relapse T-ALLs of adult
and pediatric patients. The original cohorts and ages of the samples included in the
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table are indicated above it. The sample where the mutation is identified (primary,
relapse, or both) is indicated by color semicircles and circumference at each cell of
the table. The total number of patients affected by mutations of each gene are
indicated as bars at the right-side of the graph. The table contains the genes that
have alterations in at least two patients of the adult cohort (for full table see
Additional file 2: Fig. S4 and Additional file 1: Table S5)

c) Protein affecting mutations identified in NOTCH1 gene within adult (above graph)
and pediatric (below graph) T-ALLs. Multiple mutations in one patient are
represented as dashed colored lines that connect the mutated positions.

d) Clonality change in multi-mutated NOTCH1 pathway genes. Blue and orange
squares depict, respectively, primary and relapse T-ALL samples of each patient.
Lines connecting them represent shared (connecting lines) or private (lines ending
in a cross) NOTCH1 or FBXW7 mutations. In seven out of 19 patients only one
mutation in this pathway is identified, while in the other 9 multiple mutations are
detected. We did not detect any mutation affecting this pathway in only 3 of the 19
patients.
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Fig. 3. Shared and private mutations in major primary and relapse T-ALL
clones.

a) Contribution of different mutational processes to the mutation burden of each T-
ALL case in the adult cohort. The contribution to primary-private, relapse-private
and shared clonal mutations are indicated separately in absolute (top panel) and
relative (bottom panel) terms.

b) Molecular evolution of adult T-ALL cases represented in a tree-form showing the
number of shared clonal mutations (green trunk), clonal private-primary (blue
branch) and clonal private-relapse (orange branch) mutations. Only signature 5
mutations are considered to build the tree (for further explanation see Additional file
2: Fig. S7). The relative length of the trunk and branches is proportional to the
number of mutations in the respective group. Patients are sorted by decreasing
order of age.
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Fig. 4. Time of divergence between major primary and relapse T-ALL clones.
a) Relationship between the mutation rate of ALL samples and the age of patients.
Red line shows the regression line estimated from the data points which are the
number of mutations attributed to signature 5 (red dots are primary sample and red
crosses represent the relapse) of the in-house adult T-ALL cohort. In pink the
regression line estimate for the pediatric primary samples (here represented as pink
dots). The grey cross and triangle correspond to the signature 5 somatic mutations
from healthy tissue (MPP and HSC cells) of Osorio et al., 2018 [48]. Pearson
correlation coefficient (r) is indicated above each of the previously mentioned
regression lines.

b) Schematic representation of the different mutation rate increment models to
decipher the divergence time of the leukemic (primary and relapse) cells.

c) Divergence time of the primary and relapse clone represented as days before
diagnosis. The dots are the estimates from the models used and the size of the dots
represents their likelihood (see Additional file 2: Fig. S8). The dashed line is the
weighted mean of the likely model estimates (see Additional file 1: Table S7).
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Fig. 5. Evolution of relapse lymphoblast population.

a) Estimated size (number of cells) of the relapse population at the time of diagnosis
according to the computed doubling time. Error bars represent the estimates of cell
populations from the first and third quartile of the doubling time estimates which are
10.1 and 11.36 respectively (see Additional file 2: Fig. S9). Horizontal dotted lines
represent sizes corresponding to one cell and 108 cells (0.01% of the population:
the threshold of clinical relapse). Patients with asterisk are the ones with estimates
above the pathologist threshold of 0.01. The resolution limit of the dPCR is also
represented (~1:10000).

b) Schematic representation of the two considered scenarios of relapse of T-ALL
patients after treatment. Mutations in T-ALL cells are represented as different
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geometric figures. In the first scenario (resistant), one mutation in the primary T-ALL
below the limit of detection of the sequencing and the digital PCR (red star) provides
resistance to the treatment. All cells with this mutation survive the bottleneck posed
by the treatment, and thus this mutation and all other common to the resistant cells
(hitchhikers) are fixated in the relapse population at CCF 1. In the second scenario
(non-resistant), a group of cells with an ensemble of mutations survive the
treatment.

c) Distribution (frequency) of CCF values of mutations in primary T-ALLs in the in-
house cohort that are identified in their relapse counterparts as fixed (>0.9 relapse
CCF). Mutations are grouped by CCF bins. Each line represents one patient, for
example, the dash brown line corresponds to PATS, discussed in the text.

d) Distribution (frequency) of CCF values of mutations in synthetic primary T-ALL
populations in evolutionary simulations following the non-resistant scenario. The
dots represent mutations binned at different CCF values with the frequency that
each bin represents with respect to all mutations in each synthetic relapse
population. The average results of six simulation settings with different values of
fithess of driver mutations and number of cell generations are presented.
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Table 1. Summary of ALL cohorts analyzed

ALL subtype

cohort name

DUX4-ERG

Infant MLL-R

Ph positive

Ph-like

Hyperdiploid

Hypodiploid

iAMP21

T-ALL
Zhang

T-ALL
Oshima

B-ALL
Oshima

T-ALL
Li#

T-ALL
in-house

Subtype cohort information

Rearrangement and
overexpression of DUX4 and
transcriptional deregulation
or deletion of the
transcription factor gene
ERG

Infant patients with a fusion
of the N-terminus of the MLL
gene with the C-terminus of
a partner gene

Patients with the
“Philadelphia” chromosome
present a translocation of
chromosomes 9 and 22. This
translocation creates the
BCR-ABL fusion

Cell gene expression profile
of the lymphoblasts of Ph-
like ALL is similar to that of
Ph positive ALL; however,
they do not present BCR-
ABL1 rearrangement

Hyperdiploid patients are
characterized by multiple
chromosomal gains

Hypodiploid patients are
characterized by
chromosomal losses

Patients with
intrachromosomal
amplification of chromosome
21

Patients with T-cell ALL from
Zhang et., 2012 Nat Gen

Patients with T-cell ALL from
Oshima et al., 2016 PNAS

Patients with B-cell ALL from
Oshima et al., 2016 PNAS
(B-cell lineage subtype
unspecified)

Patients with T-cell ALL from
Li et al., 2020 Blood

In-house cohort

. Num.
A
Reference” | Sequencing | Type patients

St. Jude

St. Jude

St. Jude

St. Jude

St. Jude

St. Jude

St. Jude

St. Jude

Columbia
University

Columbia
University

St. Jude

In-house

*Cohorts with primary and relapsed paired samples
#Mutations called by the authors of the original analysis; in all other cohorts a
uniform mutation calling pipeline was applied

WGS

WGS

WGS

WGS

WGS

WGS

WGS

WGS

WXS

WXS

WGS

WGS

B-ALL

B-ALL

B-ALL

B-ALL

B-ALL

B-ALL

B-ALL

T-ALL

T-ALL

B-ALL

T-ALL

T-ALL

30

21

11

18

40

22

12

13

31*

24*

16*

19*
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"References: St. Jude cohorts were defined according to their ALL subtype in
different publications (see Methods) except for the T-ALL pediatric cohort from Li et
al., 2020 [61].

WGS: Whole-genome sequencing

WXS: Whole-exome sequencing

Methods

In-house cohort selection and samples collection

Samples from adults (>= 18 years old) with T-cell acute
lymphoblastic leukemia were collected during 15 years under
therapy protocols (LAL-070LD, ALL-HR-03, LAL-AR-2011) as part
of the PETHEMA (Programa Espafol de Tratamientos en
Hematologia) trials (with the exception of patient 16). Patients have
signed the corresponding consents of the protocols. Cohort clinical
data is specified in Additional file 2: Fig. S3 and Additional file 1:
Table S1. There are three collected samples per patient: one taken
at diagnosis (primary), a second one when the percentage of
lymphoblasts is reduced during treatment (remission) and a final

sample when the leukemia reappears after some months (relapse).

Whole genome sequencing

The short-insert paired-end libraries for the whole genome
sequencing were prepared with KAPA HyperPrep kit (Roche Kapa
Biosystems) with some modifications. In short, in function of
available material 0.1 to 1.0 microgram of genomic DNA was
sheared on a Covaris™ LE220-Plus (Covaris). The fragmented DNA
was further size-selected for the fragment size of 220-550bp with
Agencourt AMPure XP beads (Agencourt, Beckman Coulter). The
size selected genomic DNA fragments were end-repaired,
adenylated and ligated to lllumina platform compatible adaptors with
Unique Dual matched indexes or Unique Dual indexes with unique

molecular identifiers (Integrated DNA Technologies).
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The libraries were quality controlled on an Agilent 2100 Bioanalyzer
with the DNA 7500 assay for size and the concentration was
estimated using quantitative PCR with the KAPA Library
Quantification Kit lllumina® Platforms (Roche Kapa Biosystems). To
obtain sufficient amount of libraries for sequencing it was necessary
for the low input libraries (0,1 - 0,2 ug) to amplify the ligation product
with 5 PCR cycles using 2x KAPA-HiFi HS Ready Mix and 10X
KAPA primer mix (Roche Kapa Biosystems). The libraries were
sequenced on HiSeq 4000 or NovaSeq 6000 (lllumina) with a paired-
end read length of 2x151bp. Image analysis, base calling and quality
scoring of the run were processed using the manufacturer’s software
Real Time Analysis (HiSeq 4000 RTA 2.7.7 or NovaSeq 6000 RTA
3.3.3).

Analysis of ALL cohorts in the public domain

We downloaded public whole-genome and whole-exome
sequencing data from EGA and dbGap. We included samples from
St. Jude Children’s Research Hospital associated with
EGADO00001001052 and EGADO00001001432 EGA accession
codes. We have used the samples from which we could recover
clinical information given with the associated publications
[5.8,10,37,38]. We downloaded the DNA sequencing data of Oshima
et al, 2016 [30] from dbGap under the accession code
phs001072.v1.p1. The information of the cohorts with the clinical
information that we could gather for each sample is summarized in
Additional file 1: Table S2.

For some of the samples we could not find information regarding the

sex so in those cases we inferred it from the normal sample BAM of
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each patient. For that, we applied the following reasoning: (1) we
determined that the patient is a female if the average coverage of
chromosome X is greater than the minimum of average coverages
of the autosomal chromosomes and (2) we also assumed that the
patient is a female if the mean coverage of chromosome Y is 10
times smaller than the average coverage of the autosomal

chromosomes of the sample.

All the samples in Additional file 1: Table S2 have been analyzed
with the same pipeline (for detailed information see the following
section: Alignment and variant calling). However, in order to
compare the T-ALL Adult cohort with other T-ALL cohorts with pre-
and post-treatment samples we added the mutations reported in the
supplementary materials in Li et al., 2020 [61] only in Fig. 2.a and
2.b.

Alignment and variant calling

Alignment, SNV, small InDels: We performed the alignment and
calling of mutations (SNVs and small InDels) using Sarek pipeline
v2.2.1 [64]. This workflow performs the alignment from raw FASTQ
applying the steps referred to as “best practices” according to GATK.
We converted the downloaded BAMs from public repositories to
FASTQ with biobambam v2.0.72 and used them as input for the
pipeline. We used the Strelka caller implemented in Sarek to
generate mutation calls. Only the T-ALL adult cohort was aligned
with GEM-mapper v3.6 by the CNAG but the calls were done with
Strelka. The mutation calls were performed using primary and
relapse as tumor samples and the remission as “normal” sample.

Variants have been annotated with VEP v.92 run locally with the
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canonical flag and using gnomAD r2.0.1 to get population

frequencies of the potential polymorphisms.

CNV: We have used FACETS v0.5.6 [65] to call copy number
changes in WGS and WES samples. Following FACETS
documentation, we first created its input with snp-pileup which
imputed common SNPs and made the reference and alternative read
counts at nucleotide resolution. We have run snp-pileup with the
recommended parameters except for the --min-read-counts that was
set to 10,0. We run FACETS for WES as mentioned in the
documentation but setting preProcSample function parameters to
cval = 15, ndepth = 5, snp.nbhd = 500 and procSample function
parameters to cval = 80, min.nhet = 20. Similarly, we run FACETS
for the WGS data as preProcSample(snp.nbhd = 5000, ndepth = 5,
cval = 75) and procSample(cval = 800, min.nhet = 25).

SV: We ran Delly v0.7.9 [66] to detect duplications, inversions and
translocations. First we ran the call function and then the filter
function of Delly for each one of the alterations mentioned. The map-
quality parameter of the call function was set to 20 and we also
passed a file provided in the github of Delly with regions to exclude
through the --exclude argument. The filter function was run with the
following parameters: --filter somatic --minsize 0 (expect for

duplications which was set to 100) --qual-tra 0.75 --altaf 0.1.

Filtering steps

SNVs and InDels: From the VCF output from Strelka we filtered the
calls labeled as PASS and DP from the FILTER column. For the
patients with trio samples we recovered the shared mutations
between primary and relapse that are not PASS or DP but are

present in the original VCF. This was not possible for patients with
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paired samples (primary and remission). In addition, we checked for
miss-called DNVs (dinucleotide variants) by inspecting consecutive
SNV positions with Samtools v1.4.1 and changed the reference and
alternative if needed. Once the variants were annotated with VEP,
we took the variants in the canonical transcript. In case of more than
one consequence type predicted for the same variant we took the
most damaging (more impact) one according to VEP. We also
filtered out mutations with population frequency greater than 0.01
according to the gnomADg_AF column added. Finally, we discarded
low coverage variants as the ones with a total depth of 5 reads.
Further details regarding filters applied to called SNVs are provided
in Additional file 3.

CNV: We discarded the variants that were called with low reliability.
Those are the segments reported with NAs in the cellular fraction
and minor allele copy number columns of FACETS output which, to
our knowledge, indicate that the region does not have sufficient
numbers of heterozygous SNPs to guide good estimates (Additional
file 2: Fig. S5).

SV: We converted the VCFs into bedpe format with bcftobedpe
function from svtools v0.4.0 and kept the variants with the flag PASS
in the FILTER column. We manually check recurrent SV that have
not been described before in the literature by performing BLAT of the
breakend points (BND) and their flanking regions in the UCSC and
discarded those that were Alu regions or mappable to many parts of

the genome.

Purity and clonality estimations

161



We inferred the purity of the samples from the variant allele
frequency (VAF) distribution of the mutations as follows. Since the
overall ploidy of the samples was mostly around 2 (diploid) we
computed density plots of the VAF multiplied by the CNV of each
mutation as a rough proxy of the CCF and determined the purity as
the maximum point. We recomputed the CCF with the inferred purity
and fitted a beta binomial distribution (betabinom function from scipy
v1.4.1 python package). For each mutation, we derived a probability
from it and categorized them as clonal or subclonal according to a
threshold of 0.01 (above or below it respectively). Exceptionally for
PAT16, upon inspection of the CCF distributions in primary and
relapse samples, we detected a more complex clonal structure, and
thus used a threshold of 0.05 for a clearer categorization of the

clonality of the mutations.

Signatures analysis

Several runs of deconstructSigs v.1.8.0 [67] were carried out
depending on the context of the analysis. Firsty, following the
guidelines proposed by Maura et al., 2019 [49], we have included all
hematological meaningful described signatures for the fitting of
primary samples (see Additional file 2: Fig. S1). From those, we
selected the signatures that we believed had a substantial activity in
the primary leukemias in at least one patient of the cohort analyzed
and re-run deconstructSigs with them (see Fig 1.c). Secondly, we re-
fitted the T-ALL adult samples with only those signatures that
presented activity (SBS1, SBS5, SBS18) to better estimate their
contribution in Fig.3.a. Lastly, we have fitted known-treatment
signatures for the primary and relapse samples to see whether there
is any contribution of those in the mutational profile of the relapse. In
this case, we have included Signature 32 (SBS32) which the
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proposed etiology in COSMIC [68] suggests prior treatment with
azathioprine. The adult T-ALL patients have not been treated directly
with this compound but it is known that azathioprine is metabolized
to 6-mercaptopurine which is used in the maintenance phase of
received therapy (see Additional file 2: Fig. S3 and Additional file 2:
Fig S6). Apart from SBS32, we have also included two treatment
signatures recently extracted in Li et al., 2020 [61] as SBSA _new
and SBSB_new. They assigned the usage of thiopurines to
SBSB_new signature so that is why we have decided to include it.
There is not much said about SBSA new but since pediatric and
adult ALL patients receive similar treatment we decided to give it a
try in the fitting analisis. In all cases we set the signature cutoff

parameter of deconstructSigs to 0.1.

Clustering of driver genes of ALL subtypes

The distances computed to build the dendrogram on Fig. 1d were
based on Jensen-Shannon divergence measures between the
distributions of the number of patients per mutated gene of each
cohort. We only took into account genes with mutations in at least

three patients.

Dimensionality reduction

We used a Uniform Manifold Approximation and Projection (UMAP)
implemented in the python package umap-learn v0.3.10 to simplify
the mutational profiles (96 dimensions that represent each
trinucleotide channel) into two dimensions with the size of the local
neighborhood (n_neighbors) to 20 and minimal distance (min_dist)
of 0.2.

Identification of ALL driver variants
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Driver Gene Discovery: We have run the IntOGen pipeline [69] for

SNVs and small InDels (https://www.intogen.org/search) locally for

each of the defined cohorts (see above). For each one of the outputs
we have proceeded as follows. First, we have discarded all genes in
Tier 3 and 4 that are not in the Cancer Gene Census (CGC) [70].
Second, we have discarded all genes in all tiers that have been
defined as potential artifacts (see this list of genes in

https://bitbucket.org/intogen/intogen-

plus/src/master/extra/data/artifacts.json). Third, we have manually

inspected the remaining genes and defined a list of potential false
positives (FP). From this list of suspicious genes, we have discarded
those not present in the CancerMine. With the rest of the FP
candidates that were present in the CancerMine, we have decided
their level of credibility as driver genes of leukemia according to the
publications reported. Apart from that, we have also manually
searched in PubMed for any other missed relation by CancerMine of
the gene and hematopoietic neoplasms (see Additional file 1: Table
S3)

Literature lists of cancer genes of ALL: We have defined 3 lists of
known driver genes in ALL:

- Genes with SNVs/InDels mutations

- Genes affected by CNV

- Genes affected by SV that are know to drive ALL
The genes and their sources to build these lists are listed in

Additional file 1: Tables S4.a,b,c respectively.
Annotations of alterations: For SNVs and InDels we have defined as

potential driver all the mutations with a predicted protein affecting

consequence type (in the canonical transcript) according to VEP
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(transcript_ablation, splice_acceptor_variant, splice_donor_variant,
stop_gained, frameshift_variant, stop_lost, start_lost,
transcript_amplification, inframe_insertion, inframe_deletion,
missense_variant, protein_altering_variant, splice_region_variant,
incomplete_terminal_codon_variant, start_retained_variant,
stop_retained_variant) in a cancer gene from the list defined as the
combination of the results from the Driver Gene Discovery and the
curated literature list of SNVs and InDels. Results from that are
summarized in Fig. 1d, Additional file 2: Fig. S2 and Additional file 1:
Table S5.

For CNV and SV we have flagged the alterations we have found as
“known driver” (contained in the curated literature lists respectively)
or with “alteration in gene of interest” if it affects any cancer gene
related to leukemia of all the lists. In the case of CNV affecting genes
of interest, we consider as candidate drivers those oncogenes that
are fully amplified and tumor suppressors affected by any deletion.
Results are reported with the annotated “classic” Giemsa cytobands
by mapping where the BND genomic coordinates fall within them
(see Additional file 1: Table S6 a and b.

We have also annotated the genes affected grouping them by some
meaningful information such as their protein family, biological
process or pathway (see Additional file 2: Fig. S2, Additional file 2:
Fig S4 and Additional file 1: Table S4). We created those groups with

information from the sources in Additional file 1: Table S4.
Estimations of divergence time

Considering the differences between the mutational burden of T-ALL

samples compared with the expected number of mutations of healthy
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hematopoietic cells seems clear that some acceleration on the
mutation rate has occurred (Fig. 4a). Additionally, the regression
between age and signature 5 of healthy cells and T-ALL show close
slope (12.21 + 1.24 vs 20.61+ 6.58, see Fig. 4a and Additional file
2: Fig. S7) but a much higher intercept (22.35 + 45.53 vs 397.4 +
251.81, see Fig. 4a and Additional file 2: Fig. S7). We hypothesize
these similarities on slope and differences on intersect can be
explained by a late stage acceleration during tumorigenesis that

affects in a similar way the different T-ALL samples.

Based on this hypothesis of tumorigenesis acceleration of signature
5 we have built 2 different models which represent the upper and
lower boundary of the estimations: (1) the change of mutation rate is
a one-time, discontinuous event, shared between primary and
relapse; (1) the change on the mutation rate grows linearly during all
lifetime of the tumor. In both scenarios, the mutation rate can only
increase and both primary and relapse clones are under the same
mutational process. In terms of divergence time, the constant model
is the most conservative showing the earliest times of divergence
between clones, while the linear model is the one generating larger
divergences times. The rest of the models based on N acceleration

steps will generate estimates within the previous described.

We established 120 different time-points t, evenly spaced along the
10-year period immediately preceding diagnosis: we refer to them as
“acceleration times”, since they are bound to represent the time-
points when the mutation rate first deviates from neutral, clock-like
behavior. For each acceleration time we first computed a function
assigning a plausible mutation rate for each time point, consistently

with either the constant or linear model. To this end, we fitted the
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mutation curve to go through the average number of mutations of
primary and relapse N(t*) at the middle time-point t* between these

two events. More specifically, the following conditions must hold:

Constant: N(t*) = N(t,)) +u- (t" — t,)
Linear:N(t*) = N(t,) - (1 + 1)t ~tn
where the values of py and r have to be determined, depending on
the model used. Now we did 100 stochastic simulations of the
mutation curve by randomly sampling 0 or 1 mutations from a beta
binomial distribution with a 1-day granularity, only in cases the
mutation rate per day exceeds one a smaller granularity has been
used. Thus, mean parameter u(t) may change with time (linear
model) while correlation parameter p=0.0002, estimated with the
dispersion observed on healthy hematopoietic stem cells described
on Osorio et al. 2018 [48], remains constant. Therefore the number
of mutations simulated at time t is defined recursively as:
N(t;) ~ N(t;—1) + BetaBinom(u(ty),p,1)

where (tm) is either p (constant model) or log(1+r)-N(tm.1) (linear
model). As the 100 stochastic curves generated for each hypothesis
(determined by the acceleration time and mutation rate model) cut
the time levels at primary and relapse, they cast a distribution of the
possible number of mutations about the observed that yields a
likelihood that the hypothesis explains well the observed number of
mutations at primary and relapse. Thus each combination of
acceleration time and mutation rate model has an associated prior
likelihood. We calculated the Bayes posterior distribution using the
combinations of parameters with a higher success (likelihood) on the
cohort which is then used to select the most plausible models
underlying the observation, then provide a plausible set of

divergence times weighted by the likelihood. In order to avoid the
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deviation of the divergence time estimation due to a long tail of low
likelihood simulations, only the more likely scenarios have been

selected (10% percentile).

Doubling time and lymphoblast population estimates

The doubling time of the T-cell lymphoblast population was
estimated following a similar approach as in Li et al., 2020 [61]. We
assumed that blast cell growth is consistent with a logistic model,
i.e., the population fraction represented by the T-lymphoblast

population as a function of time t fits a logistic function of the form:

o(t,a) = (1+e9)?
where a is the parameter of the logistic model and t is assumed to
be given in standard time units such that the T-lymphoblast

subpopulation reaches 50% of the total population at time t =0.

Assuming the parameter a is known, the doubling time is given by
the following expression:

Tp, =log (2) /a
Therefore the doubling time estimate resorts to fitting a logistic model

to our data, i.e., provide an estimate for the parameter a.

Our approach intends to provide an estimate of a that corrects for
the likely inconsistencies between time annotations provided in the
patients’ data. We make the general assumption that some error At;
has been introduced for each patient P;when associating a standard
time to the T-lymphoblast population measurements -- mainly due to
the difficulty to estimate the initial time for paired data points with a
low initial T-lymphoblast population fraction. A standard goodness-

of-fit criterion for logistic models is given by the cross-entropy loss:
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n
1
Cyy = —EZ% logy;i+(1—y)log (1 — ¥)
i=1

where y and y are the observed (resp. predicted) data samples.

Our approach intends to simultaneously estimate the errors At; and

the parameter a by minimizing the following cross-entropy loss:

n
L(@ Aty 4ty) = =) COos tios A8) +CO tins A8))

i=1
where Cly; t; At) =y logo(t—At,a) + (1—y)log (1 —o(t—
A4t, a))

where for each patient P; the values y; , and y; ; are the initial (resp.
final) population fractions and the values t;, and t;; are the initial

(resp. final) times.

Minimization of the cross-entropy L was implemented in Python with
the function “minimize” of the scipy.optimize module. For a more
robust minimization, we ran it several times with different randomly

generated initial values (see Additional file 2: Fig. S9).
Upon estimation of the doubling time T},, we proceed to compute the
number of cells N; at the time of diagnosis as a function of the time

At elapsed between diagnosis and relapse:

Ny=Ng-f-2-4t/Tp
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where Ny is an estimate of the total number of bone marrow cells in
adults (~7.5 - 10'* cells according to [61,63]) and f is the frequency
of lymphoblasts of the biopsy.

Digital PCR analysis of SMARCA4 mutations

The dPCR analysis was performed on a QuantStudio 3D dPCR
System using the manufacturer’'s procedure and reagents
(ThermoFisher Scientific). Data analysis and chip quality were

assessed using the QuantStudio 3D Analysis Suite software online.

Simulations of relapse scenarios

In order to understand how likely our observations at primary and
relapse can be obtained under a non-therapy selective scenario, we
have performed several simulations using a Wright-Fisher model

(https://github.com/gerstung-lab/clonex).

Firstly, we have established a set of parameters based on our
observations of primary samples using a mutation rate of 10 and a
total number of driver and passenger positions of 100 (0.01 fitness
effect) and 150000 respectively on a population of 10° cells. As a
result, after 5000 generations the population has fixed a number of
driver mutations ranging from 3 to 8 (mean 5.2) and 122 to 753

(mean 505.8) passengers.

Secondly, from the primary population we randomly removed
between 9*10* and 10° cells to simulate a bottleneck effect. The
resulting population has grown for 20, 40 and 60 generations which
covers our estimations about the observed dataset (10% CI: 10.83-

37.89 generations).
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Finally, we have compared the VAF distribution at primary of those
variants with a VAF at relapse higher than 90%, considered as fixed
mutations, between the observed and simulated non-resistant

scenario.

Due to the lack of fixation of low VAF variants in our simulations, two
additional scenarios were performed under the previously described
strategy: (I) A non-resistant simulation increasing the fitness up to
0.1 (considered as high fitness, [71]) to allow for faster fixation rates.
(I A resistant scenario where the bottleneck consists of the
selection of all cells sharing a low population frequency passenger

mutation, defined as resistant mutation.

Ethics approval and consent to participate

All patients were included in protocols (LAL-070LD, ALL-HR-03,
LAL-AR-2011) from the PETHEMA group, except PAT16. These
protocols were approved by the Institutional Research Board (IRB)
of the participating centers and patients provided informed consent
before entering into the trials. The study was approved by the Comite
d’Etica de la Investigacio (Research Ethics Committee: PI-16-146)
of the Hospital Germans Trias y Pujol (code approval AEC143). The

study complies fully with the Helsinki declaration.

Availability of data and materials

The raw data of the genomic sequencing of the 45 samples (primary-
remission-relapse) of the patients of the in-house cohort is deposited
in the EGA repository (accession code EGAS00001004750; [72]).
For the sake of reproducibility, the code of the analysis is available
here: https://github.com/bbglab/evolution TALL adults
(doi:10.5281/zenodo0.4120326; [73]). Raw sequencing data of public
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datasets produced by St. Jude Children’'s Research Hospital-
Washington University Pediatric Cancer Genome Project (see Table
1) was obtained from the EGA repository (accession codes
EGADO00001001052 and EGADO00001001432; some BAMS
corresponding to  published projects somewhere else
[5,6,8,10,14,37]). Raw sequencing data of patients included in the
study by Oshima et al., 2016 [30] (Table 1) was obtained from dbGap
(phs001072.v1.p1). The somatic mutations identified in the patients
included in the study by Li et al 2020 [58] were obtained from the

Supplementary Data of the original paper.
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Supplementary Information

Additional file 1. Additional tables. This file contains the
supplementary tables referenced in the main text. Table S1 that
contains clinical information on the adult T-ALL cohort. Table S2
contains clinical information of the public pediatric cohorts. Table S3
contains the detected cancer genes by IntOGen. Table S4 contains
the lists of ALL cancer genes of interest found in the literature
separated in 3 subtables according to the type of alterations: SNVs
and InDels (Table S4.a), CNV (Table S4.b), SV (Table S4.c). Table
S5 contains the mutations (SNVs and InDels) that we consider as
candidate drivers. Table S6 has the candidate driver CNV (Table
S6.a) and SV (Table S6.b) of the cohorts analyzed. Table S7 has the
time of divergence estimates between primary and relapse
estimated as days pre-diagnosis of each patient.

Additional file 2. Additional figures. This file presents all
supplementary figures referenced in the main text.

Additional file 3. Additional methods. Some of the filtering steps have

been extended for clarification in this file.
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Additional file 2

Fig. S1
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Fig. S1. Probing for active mutational processes across ALL cohorts.
Mutational processes active across primary ALL cohorts, represented by their mean
(and standard deviation) contribution of the mutation burden of each cohort. The list
of signatures to fit was determined by their activity in any hematopoietic cancer
according to COSMIC (see Supp. Methods). This linear fitting (Methods), was used
to select the subset of mutational processes active in ALL tumors of the studied
cohorts which are shown in the main Figures.
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Fig. S2. Mutations in driver genes in primary ALLs.

Rows are driver genes in ALL (collected from the literature or identified across these
cohorts using IntOGen; see Supp. Methods) grouped by protein family, biological
process or pathway. Columns are ALL samples grouped by cohort, and sorted by
age. Each full rectangular cell represents a protein-affecting mutation in a driver
gene annotated from the literature (grey) or directly detected as driver in that cohort
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through the IntOGen pipeline (black). The bars on the left represent the total number
of patients in each ALL cohort with mutations of the gene.
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Fig. S4. Mutations in driver genes in primary and relapse T-ALL tumors of
three cohorts. Rows are driver genes in T-ALL (collected from the literature or
identified across these cohorts using IntOGen; see Supp. Methods) grouped by
protein family, biological process or pathway. Columns are ALL samples grouped
by cohort, and sorted by age. We added immunophenotypic information for the in-
house T-ALL cohort. Primary-private and relapse-private mutations are represented
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as blue and yellow semicircles, respectively. Shared mutations are represented as
green circles. The total number of patients affected by mutations of each gene
across the three cohorts are indicated by stacked bars at the right-side of the graph.
Calls from the X chromosome in the pediatric cohorts are not included (only in
adults).
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Fig. S5. Copy Number Variants detected in primary and relapse T-ALLs in the
in-house cohort.

In each panel, that corresponds to one T-ALL sample in the cohort, chromosomes
are represented in the x-axis, with their copy number in the y-axis. Copy number of
the major allele is represented as a black line and that of the minor allele as a grey
line. In diploid segments, both the black and grey lines appear close to 1 (total sum
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of 2) but not overlapping for visual purposes. Red and blue shaded backgrounds
represent amplifications and deletions, respectively. For all patients (indicated in the
graph title), the top and bottom plots correspond to the primary and relapse
samples, respectively.
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Fig. S6. No mutational footprints attributable to treatments are detected.
Panels represent the absolute (top) and relative (bottom) contribution of mutational
processes (signatures listed in legend) to the mutation burden of the primary and
relapse malignancy of each patient. As indicated in the legend, colors of the bars
indicate the signatures used in the fitting process. Note that, although included in
the fitting, the mutational signatures (or footprints) of drugs used in ALL treatment
(recently identified in pediatric relapse tumors; [57]) are not detected in relapse T-
ALLs in the in-house cohort.

183



Adult T-ALL (in-house) cohort

2500 2500

y=7.30241"x+171.589

¥=20.6128" x+397.399
2000

1000 &

Clonal Mutations
of SBS5
a
8
®
o 5
o
1
& @
o

Clonal Mutations
of SBS1

a © &
5001 L
+ 0+
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Age SAMPLE MUTATION RATE Age
@ primary Signature 1
X relapse Signature 5
b c
4
2T
5
i é g 10 s
SBS5 from Hematopoietic Cells ° 2 Signature r=0.96
2500 (Osorio et al., 2018; Cell Reports) g & - Fitting Comparison
29 o
® P [
@ 2000 y=12.2118" x+22.3520 SEMPLE S 2% SAMPLE
S 2
813 1500 ok} 5 relepse
=1 0 v
§£ I g 04
S 2 1000 r=0.98 + 0
c o o=
S . * 58 o2
o 500 . a & 2 2
Q=
0+ 32 ool
0 10 20 30 40 50 60 0 52 00 02 04 06 08 10
Age KE SBS5 exposure
7]

(fitting with SBS1, SBS5, SBS18)

Fig. S7. The contribution of clock-like Signature 5 to the mutation burden of
T-ALLs.

a) Known clock-like signatures 1 (left panel) and 5 (right panel) contribute clonal
mutations at a steady rate across the lives of T-ALL patients in the in-house cohort.
Although the number of clonal mutations contributed by each process significantly
correlates with the patients’ age (signature 1 p=2.30x103, signature 5 p=3.64x107),
the correlation is stronger in the case of signature 5, which had been previously
observed [46]. Moreover, signature 5 contributes more age-related mutations than
signature 1. Dots are primary and cross relapse samples. Trendlines following the
regression are added and their equations are indicated at the top right of each panel.
b,c) Signature 5 also fits well the steady accumulation of mutations in healthy
hematopoietic stem cells and multipotent progenitors (HSC and MPP; Osorio et al.,
2018 [47]) with aging. Signature 5 contributed mutations fit very well (r=0.98) the
mutational burden of clonally expanded HSC and MPP (b), implying that it is
probably the main mutational process active in these cells and that signature 5
mutations accumulate steadily over time. When a de novo signature extraction
(rather than the signature deconstruction presented so far in this article; see Supp.
Methods) is carried out on the mutational profile of HSC and MPP a specific HSC
population (HSCP) signature is extracted [47,48]. The activity (fraction of
contributed mutations) of this signature across HSC and MPP cells correlates very
well (r=0.96) with that obtained for the fitted signature 5. This supports the idea that
the HSCP signature and signature 5 represent the same underlying mutational
process active in HSC and MPP.
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Fig. S8
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Linear
Model
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Fig. S8. Models of accelerated mutation rate in T-ALL.

a) Schematic representation of two extreme models of the accelerated mutation rate
in T-ALL. The baseline mutation burden increase represents the steady
accumulation of mutations of HSC and MPP shown in Supplementary Figure 7. The
linear model consists in a steady acceleration of the mutation rate throughout all the
evolutionary history of the T-ALL. On the other hand, in the constant model the
acceleration occurs only once in the evolution of the T-ALL, which after this point
maintains a steady increase of the mutation burden.

b) For both, the constant (left plot) and linear (right plot) models, a number of
simulations of accelerated mutation rate are carried out, represented in these
schematic graphs by dotted lines. The likelihood of each explaining the observed
mutation burden of primary and relapse samples is then computed, as explained in
the main manuscript.

c) Real examples of the more likely models given the observed data for each patient
of both types of simulations (constant and linear). The years when the mutation rate
accelerated and incremented are written above each pair of graphs per patient.
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Fig. S9
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Fig. S9. Estimating the doubling time of T-ALL population from the
pathologists’ observations.

a) Bootstrapping adjustment of growth logistic curves to the counts of lymphoblasts
in remission and relapse bone marrow samples carried out by the pathologist. The
observations at these two points (dot pair) for each patient are represented with the
same color. Paired-dates of the bone marrow sampling are re-scaled to a
standardized time where 0.5 blast proportion (y-axis) falls at day 0 (x-axis) of the
growth trajectory of the malignancy of each patient.

b) Boxplot with the doubling time estimates resulting from the bootstrapping. The
line at the center of the boxplot is the mean. The first and third quartile of the
distribution of bootstrapped doubling times are also represented.

c) Comparison of the number of relapse cells for all patients in the in-house T-ALL
cohort computed at time of diagnosis using two different estimates of the doubling
time of the lymphoblastic population. Light orange bars represent the size of the T-
ALL relapse population computed using the doubling time estimate obtained
recently for pediatric B-ALLs (Li et al., 2020) Dark orange bars represent the size of
the T-ALL relapse population computed using the doubling time estimate obtained
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in (b). Error bars are the estimates corresponding to the doubling time in the first
and third quartiles of the distribution.

Fig. S10

Diagnosis Relapse
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Fig. $10. Results of digital PCR on mutant SMARCA4 in two primary samples.
Detection of mutations a) G1162S and b) T786l in the relapse-enriched SMARCA4
gene in primary samples of PAT14 and PAT8 respectively was negative in both
(VAF= 0). The resolution of the dPCR in PAT14 was 0.089% whereas in PATS8 it
was 0.11%. The VAF detected of the mutants in relapse derived from the dPCR is
similar to the one detected by NGS which are both close to the expected 0.5 for an
heterozygous variant with no normal contamination (0.39 vs 0.403 and 0.44 vs
0.346). Scatter plots showing the distribution of the data points based on the dyes
used (VIC and FAM). Blue dots (FAM) represent presence of mutant SMARCA4
and red dots (VIC) represent wild-type SMARCA4; yellow refers to no amplification
and green to co-amplified wild-type and mutant species.
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Fig. S11
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Fig. S11. Distribution of primary CCF of relapse fixed mutations in the
simulated resistant scenario.

Distribution (frequency) of CCF values of mutations in synthetic primary T-ALL
populations in evolutionary simulations following the resistant scenario defined in
the toy example of Figure 5b. The dots represent mutations binned at different CCF
values with the frequency that each bin represents with respect to all mutations in
each synthetic relapse population. All the results of six simulation settings with
different values of fitness of driver mutations and number of cell generations are
presented.
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Additional File 3

Preprocessing and filters of somatic mutation calls

As explained in the Methods section we have processed the
mutations (SNVs and InDels) from the original VCF output of Strelka
to the final MAF file of calls analyzed. The first thing we did was to
filter out any mutation non-labelled as PASS or DP in the FILTER
columns of their corresponding VCF. We noticed that for a few
patients the number of mutations in the relapse sample was lower
than the primary, contrary to what we would expect taking into
account that the relapse cells had more time to accumulate
mutations compared to the primary. Therefore, we decided to check
whether there were mutations labeled as PASS or DP in the primary
that were present in the relapse original VCF that we missed at
filtering. We realized that this was the case so we decided to also do
the reverse exercise and add the missed calls to the filtered set of
mutations of each sample. We have called these shared mutations
FISHED (see below Additional file 3: Fig. S1 a).

Another critical point was that we observed substantial differences
between samples of the same patient regarding tumor burden as
well as within the entire cohort. We suspected that there could be
some polymorphisms within the somatic calls of the samples. We
used gnomAD to annotate the variants with population frequencies
and decide to filter out those with a frequency above 0.01 (see
Additional file 3: Fig S1b).

The clonal classification, that is separating clonal from subclonal
mutations, is explained in detail in the Methods section. In the

Additional file 3: Fig S1 ¢ we are showing the Cancer Cell Fraction

190



(CCF, see equation below) of each mutation in the primary and
relapse samples colored or shaped according to their clonal
classification in the primary and relapse respectively. In almost all
patients, the shared clonal mutations are a well-defined blue dotted
cloud of points with its centroid approximately at CCF 1 of both axis

(samples).

VAF x (p*xcn+ 2+ (1 —p)
p

CCF =

being p the purity of the sample and cn the copy number of the region
where the mutation falls. VAF means variant allele frequency and is

calculated as follows:

ar
VAF = —
tr

where ar refers to reads mapping to the alternative allele and tr the

total number of reads mapping to that particular position.

Finally, we were notified by the sequencing center (CNAG) that
PAT3 and PAT4 primary samples seemed to have the DNA
damaged. In this figure, PAT3 shows evidence of that by its large
number of mutations and CCF values. We have not included those
samples and as a consequence, these two patients were out in most
of our analysis except for reporting protein affecting mutations in

known ALL cancer genes of interest.
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Fig. S1. Filter steps of mutations.

a) Barplot of primary and relapse sample of each patient showing the number of
SNVs (up panel) and InDels (low panel) that have the PASS label in FILTER column
of the VCF (red) and the rescued shared variants called FISHED (orange). b)
Barplot of primary and relapse samples of each patient showing all mutations as the
proportion of mutations that were filtered out due to their high frequency (> 0.01) in
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the population as annotated by Gnomad and the proportion that are believed to be
somatic. ¢) Scatterplots showing the CCF of each mutation in primary (x- axis) and

relapse (y-axis). Color and shape of each data point (mutation) is indicated in the
legend.
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3.2 Chapter 2

Compendium of mutational cancer driver genes

One of the fundamental aims in cancer research is to discover the
compendium of all cancer driver genes, which are those responsible for
tumorigenesis and provide the scientific community with new targets for
precision medicine. As explained in the above section, one of the objectives
of the leukemia project was to find new drivers of ALL and also candidate
genes of therapy resistance. With that intention, I joined another project of
the lab, the generation of a Compendium of Mutational Cancer Driver
Genes across cancer types (IntOGen project). The aims of the IntOGen
project were two: 1) to provide the research community with an automatic
identification workflow of cancer genes and ii) generate a list of cancer
driver genes across tumor types. To achieve the second objective the
analysis of somatic mutations across a large number of cancer samples was
required. At that time, I was already downloading a great amount of
tumoral data from pediatric ALL cohorts with the intention to detect signals
of positive selection for the identification of driver genes. I extended the
search from ALL to somatic mutations in other cancer cohorts, with the aim
to collect all datasets of tumor somatic mutations available in the public
domain. Dr. Francisco Martinez-Jiménez and I downloaded, curated and

annotated the catalogs of somatic mutations from cohorts of tumors in

public repositories such as cBioPortal (https://www.cbioportal.org/),

pediatric cBioPortal (https:/pedcbioportal.org/login.jsp), ICGC [59],

TARGET (https://ocg.cancer.gov/programs/target), St. Jude Cloud

(https://www.stjude.cloud/) and additional cohorts directly obtained from

literature studies summarized in Figure 2 of the paper. We also included the
data from Pan Cancer studies such as TCGA [56-57], PCAWG [61] and the
metastatic tumors from Hartwig Medical Foundation

(https://www.hartwigmedicalfoundation.nl/en/). In fact, part of the novelty
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of the framework is the amount of pediatric data and metastatic tumors
included in the release, which is data frequently not well represented in this
type of studies. All the data together comprises more than 28,076 tumors of
66 cancer types. I also provided help and feedback in the elaboration of a
system for the cancer type annotations. The description of the new pipeline
and the results of the analysis of all this great amount of data can be found
published here [82] together with an historical view of the identification of
cancer drivers genes. Also, all the results are uploaded in the IntOGen web

(https://www.intogen.org/search).

The compendium of cancer driver genes which constitutes the main
outcome of this work was published within the framework of a review
article. Therefore, it should be considered as an analysis paper, since it

reports an original research contribution.

Martinez-Jiménez F, Muifios F, Sentis I, Deu-Pons J , Reyes-Salazar I,
Arnedo-Pac C , Mularoni L, Pich O , Bonet J , Kranas H , Gonzalez-
Perez A, Lopez-Bigas N. A Compendium of Mutational Cancer Driver
Genes. Nature Reviews Cancer 20, 555-572 (2020).
https://doi.org/10.1038/s41568-020-0290-x
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Abstract | A fundamental goal in cancer research is to understand the mechanisms of cell
transformation. This is key to developing more efficient cancer detection methods and
therapeutic approaches. One milestone towards this objective is the identification of all the
genes with mutations capable of driving tumours. Since the 1970s, the list of cancer genes has
been growing steadily. Because cancer driver genes are under positive selection in tumorigenesis,
their observed patterns of somatic mutations across tumours in a cohort deviate from those
expected from neutral mutagenesis. These deviations, which constitute signals of positive
selection, may be detected by carefully designed bioinformatics methods, which have become
the state of the art in the identification of driver genes. A systematic approach combining several
of these signals could lead to a compendium of mutational cancer genes. In this Review, we
present the Integrative OncoGenomics (IntOGen) pipeline, an implementation of such an
approach to obtain the compendium of mutational cancer drivers. Its application to somatic
mutations of more than 28,000 tumours of 66 cancer types reveals 568 cancer genes and points
towards their mechanisms of tumorigenesis. The application of this approach to the ever-growing
datasets of somatic tumour mutations will support the continuous refinement of our knowledge

of the genetic basis of cancer.

Cancer is a collection of diseases characterized by abnor-
mal and uncontrolled cellular growth caused primarily
by genetic mutations'”. These mutations, called ‘drivers’
after their ability to drive tumorigenesis, confer on cells
in a somatic tissue certain selective advantages with
respect to neighbouring cells'. They occur in a set of
genes (called ‘cancer driver genes’), the mutant forms
of which affect the homeostatic development of a set of
key cellular functions. One of the main goals of cancer
research, since the establishment of genetics, has been
the discovery of these cancer driver genes across tumour
types™. Their identification has led to the development
of the paradigm of targeted anticancer therapies and,
more generally, to the search for genomic biomarkers of
prognosis and response to treatments’.

The first part of this Review presents a histori-
cal perspective of the evolution of our knowledge of
cancer genes from before the first whole-exome and
whole-genome sequencing of tumours to the present day,
and then provides an outlook for the future. It focuses on
mutational driver genes, that is, those capable of driving
tumorigenesis via single-nucleotide variants (SNVs) and
short insertions or deletions (indels), which we collec-
tively call ‘point mutations. However, it does not cover

other types of somatic alterations that affect cancer genes
and also contribute to tumorigenesis, such as amplifi-
cations or deletions, genomic rearrangements and epi-
genetic silencing. For comprehensive reviews on some
of the other types of driver alterations not covered here,
see, for example, REFS*"’. Also excluded are methods that
identify driver genes on the basis of their proximity to
significantly mutated genes in biochemical pathways or
networks, which have also been reviewed elsewhere''.
In the second part of this Review, we propose that
the maturity of the methods for mutational driver iden-
tification and the wealth of tumour mutational datasets
currently available in the public domain can advance
the ultimate goal of uncovering the compendium of
driver genes across all tumour types and also provide
clues about their tumorigenic mechanisms. To demon-
strate this proposition, we developed the Integrative
OncoGenomics (IntOGen)'*"" pipeline, aimed at the
systematic identification of the compendium of muta-
tional driver genes across tumour types. A snapshot
of the compendium of driver genes described in this
Review has been obtained through its application to
28,076 tumours grouped within 221 cohorts of 66 dif-
ferent tumour types. This snapshot of the compendium
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Positional cloning
Technique for molecular
cloning of all genetic material
in a chromosomal locus with
the aim of identifying genes.

Retrotransposition

Use of DNA retrotransposons
to introduce pieces of foreign
DNA into a genome with
different research aims, such
as transgenesis and insertional
mutagenesis.

Sanger sequencing
Method of DNA sequencing
developed by Sanger and
colleagues in the 1970s
which implements an

in vitro DNA replication
with selective incorporation
of chain-terminating
dideoxynucleotides.

Next-generation sequencing
(NGS). Also knowin as.
massively parallel sequencing,
agroup of high-throughput
methods of DNA sequencing
based on the concept of
massively parallel processing

of driver genes (and newer versions) and the automatic
system to produce it are hosted on the IntOGen platform.

The genetic basis of cancer

The search for the causes of cancer is firmly intertwined
with the development of genetics'. The first scientific
notions on the causes of cancer derived from systematic
record keeping in the eighteenth and nineteenth centu-
ries, which linked the high incidence of specific types
of tumours to exposures resulting from the practice of
some professions''. The first known report on the her-
itability of cancer by Broca dates from the late 1800s,
even before the genetic basis of inheritance developed by
Mendel became widely recognized"”. In the early 1900s,
Peyton Rous was able to transmit tumours to healthy
birds using cell-free extracts obtained from a diseased
animal ', thus suggesting that units smaller than cells
were responsible for tumorigenesis. At approximately the
same time, and before Morgan's work on chromosomes'*
as the seat of genes, Theodor Boveri proposed that can-
cer could arise as a result of incorrect chromosome
combinations®. In addition, experiments with chemical
carcinogens demonstrated that changes to the sequence
of DNA promoted cellular transformation®-*'. These
and other findings brought the basis of cancer firmly
within the realm of genetics.

The advancement of biochemistry and molec-
ular genetics in the decades from 1940 to 1980 fos-
tered the development of laboratory methods such as
positional cloning, retrotranscription and Sanger sequencing.
The application of these methods to cancer research led
to the identification of the first cancer driver genes,
named after the ability of their mutant forms to drive
tumorigenesis. A small portion of the genomes of several
birds that hybridized with part of the DNA of avian sar-
coma virus was the first cancer gene to be identified and
was thus named SRC”. The recognition of the existence
of such viral DNA fragments, a variant of ‘normal’ genes
present in the avian genomes, which had acquired trans-
forming capability had already given rise to the term
‘oncogene’ in 1969 (REF.*). Oncogenes such as HRAS
were then identified in human tumours”’*, and the
change of a single nucleotide in the gene sequence was
demonstrated to be enough to provide the transform-
ing capability”*’. With these discoveries, the genetic
basis of tumorigenesis (including the aforementioned

ional ) could finally be explained.

As the introduction of defective copies of the onco-
gene, despite the presence of normal alleles in the cell,
was enough to produce transformation, it was concluded
that oncogenes act in a dominant way’'. However, the
analysis of the incidence of retinoblastoma, a paediatric
tumour, had shown that two hits, that is, genetic events
inactivating both alleles of the gene (later named RBI,
after the disease), are necessary for the development
of the malignancy™. This apparent contradiction was
solved by the mid-1980s with the acknowledgment of
the existence of a second type of cancer gene, termed a
‘tumour suppressor’”'. Unlike in the case of oncogenes,
transformation is caused by the inactivation of tumour
suppressors, which in general requires loss of activity
of both alleles of the gene. The discovery of tumour

suppressors also provided an explanation for famil-
ial cancer cases'”: an inherited mutation inactivating
one of the alleles of a tumour suppressor increases the
likelihood of developing a tumour as only the second
hit is required.

Following this clear blueprint of two classes of
cancer genes, between the 1980s and the early years
of the first decade of the twenty-first century dozens of
genomic loci encoding oncogenes, such as MYC, RET,
platelet-derived growth factor receptor-a (PDGFRA),
MET, KIT, FMS-like tyrosine kinase 3 (FLT3), epider-
mal growth factor receptor (EGFR) and BRAF*-, and
tumour suppressors, such as TP53, transforming growth
factor receptor-p2 (TGFRB2), RB1, PTEN, checkpoint
kinase 2 (CHEK2), cyclin-dependent kinase inhibitor 2A
(CDKN2A), BRCA1, BRCA2 and adenomatous polypo-
sis coli (APC)*~* were identified. Germline mutations
in some of the latter were also shown to confer suscepti-
bility to cancer development****', Further pioneering
studies also established the importance of other types of
alterations affecting these genes, such as amplifications,
deletions, translocations or promoter hypermethylation,
for cell transformation

In 2004, a seminal article compiled a list of 291 can-
cer driver genes from the scientific literature™, including
genes altered through point mutations, translocations
or copy-number changes. In an effort to conceptual-
ize this heterogeneity, driver genes were recognized to
affect primarily a handful of essential cellular functions,
termed ‘cancer hallmarks™” (reviewed and updated in
2011 (REF™)). According to this generalization, as a result
of driver alterations, malignant cells become capable of
(1) resisting apoptosis, (2) maintaining proliferative
signalling (even in the absence of extracellular signals),
(3) evading suppressors of cell growth, (4) initiating
invasion and metastasis, (5) enabling replicative immor-
tality, (6) inducing angiogenesis, (7) achieving deregu-
lation of energy metabolism and (8) avoiding immune
destruction. The development of these capabilities is
supported by the promotion of tissue inflammation and
the intrinsic genomic instability of tumours™.

Somatic mutation patterns reveal drivers

In the early years of the first decade of this century,
improvements introduced in DNA sequencing tech-
nologies and the rapid advance in the annotation of
the human genome enabled projects aimed at revealing
increasing shares of the landscape of somatic muta-
tions in tumours. In 2005, a study sequencing 518
kinase-encoding genes found 76 non-silent mutations on
average across 25 primary breast tumours and cell lines™.
The following year, another group sequenced 13,023
genes of 11 breast tumours and 11 colorectal tumours
and found 519 and 673 with mutations, respectively®.
The development of next-generation sequencing (NGS)
technologies in the middle of the first decade of this
century’ catalysed the beginning of cancer genomics.
In 2008, two further analyses of 22 glioblastomas and
24 pancreatic tumours sequencing the entire exome
found 1,007 and 685 mutated genes, respectively™*. A
similar landscape arose from the first whole-genome
sequencing of tumours®"-". Nevertheless, the consensus
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Fig. 1| Signals of positive selection identify driver genes. a| Cells in somatic tissues accumulate mutations. Somatic
mutations in certain genes provide the cellin which they occur with a selective advantage and are thus positively selected.
Following a Darwinian process, over time, a clonal expansion occurs and the cells carrying mutations in these genes become
dominant within the population. b | Deviations of the observed pattern of mutations of genes across samples of the same
cancer type from the expected pattern reveal the genes under positive selection in tumorigenesis. Two biopsy samples are
taken from a patient with cancer: one from the tumour and the other from a healthy tissue (for example, peripheral blood

in solid malignancies). By comparison of the of these ples, the somatic point ions in the tumour are
identified. Between a handful and a few hundred somatic mutations are identified in the exome, a number that increases to
tens of th is if the whol it 1. As aresult, between a few dozen and several thousand genes appear
mutated in each tumour. The dnver genes are those that exhibit one or more signals of positive selection across the tumours
ofacohort.
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viewpoint on tumorigenesis was that only a few muta-
tional events affecting driver genes were expected to be
the origin of malignization’**. Therefore, the vast major-
ity of these mutated genes would have no involvement at
all in tumorigenesis; that is, their mutations are passen-
gers rather than drivers. These studies first exposed the
need for rigorous statistical tests that accounted for
the h of mutation rate and mutation types to
identify the unexpected mutational patterns that reveal
cancer genes®!.

Non-B-DNA structures
Local structures of
chromosomal DNA that
deviate (frequently in a
transient manner) from the
Watson-Crick double helix;
they include stem~loop
structures involving one or
both DNA strands and
G-quadruplexes.

These first studies paved the way for the launch of

large tumour sequencing initiatives in several countries,
such as The Cancer Genome Atlas (TCGA)", aimed at
sequencing the exomes of hundreds of tumours of more
than 24 frequent cancer types. As sequencing technolo-
gies continued to advance, more ambitious projects, many
grouped under the umbrella of the International Cancer
Genome Consortium (ICGC)’, set their goal on sequenc-
ing the whole genome of thousands of tumour samples.
‘With the recent conclusion of many of these initiatives,
comprehensive pan-cancer analyses have laid out some

of the most important findings of a little over a decade of

cancer genomics research” ", including lists of identi-
fied driver genes™”. The vast majority of these pioneering
projects focused on the study of primary malignancies. It
is only more recently that similar projects probing met-

astatic tumours have begun to reveal the landscape of

driver of advanced

One of the main goals of all of these pro)ecls was
the identification of the set of genes driving the malig-
nancies, providing a road map for the systematic and
comprehensive identification of mutational driver genes.
The rationale behind it is that tumorigenesis follows a
Darwinian evolution characterized by variation and
selection®”*'. Variation is provided by spontaneously
arising somatic mutations that introduce genetic differ-
ences between somatic cells in a tissue. Positive selection

Box 1| The backg d ion rate of genes

The background mutation rate of a gene (that is, the rate and distribution of mutations)
in asomatic cell is determined by its sequence, the identity of the cell and the
mutational processes the cell or tissue as well as the person has been exposed to
during their lifetime. A correct assessment of the background mutation rate of genes
requires the ability to ly model the variability introduced by all these factors.
This is key to identifying which observed patterns are actually
and attributable to positive selection.

The mutational processes active in a tissue in an individual define a set of probabilities

then acts on cells carrying mutations that confer selec-
tive advantages over neighbouring cells, leading to clonal
expansion of the mutants (FIG. 12). (A variety of selective
advantages, described above as the hallmarks of cancer,
may be provided by mutations of different driver genes.)

As a result of this evolutionary process, when a
cohort of tumours of the same cancer type is analysed,
the deviation of patterns of mutations in some genes
from their expectation under neutral mutagenesis may
constitute signals that the mutations in those genes are
under positive selection in tumorigenesis. For example,
driver genes are mutated at abnormally high frequencies
across the tumours of a cohort, and methods to detect
this significant mutational recurrence were subsequently
developed to analyse the mutational datasets produced
by the aforementioned cancer genomics projects®*".
Other signals of positive selection in tumorigenesis
(FIG. 1b), such as the abnormal clustering of mutations
in certain regions of the proteins®*", a bias towards the

accumulation of mutations with high functional impact*

or a bias in the frequency of trinucleotide changes™, have
been used by driver identification methods’'**. Over
time, many of these methods have been validated and
tested on a number of cohorts of different cancer types
and shown to be highly reliable. For thorough lists of
methods see, for example, REFS™

The analysis of the first large mutanonal datasets
revealed that different types of mutations appear with
differing frequencies in tumours of different origin and
that the rate of mutations across the human genome
is highly heterogeneous (80X 1). It quickly became
apparent that driver detection methods are profoundly
affected by the heterogeneity of the background muta-
tion rate”. Building background models that accurately
account for all of the factors that affect the mutation
rate in the absence of selection has become a hallmark
of most driver identification methods developed in
recent years’*""*". While several driver genes muta-
ted at very high frequency may be spotted just by look-
ing at their mutational pattern across tumours™, the
accurate modelling of the background mutation rate is
key to avoiding the detection of false positive drivers and
to identify those with lower mutation recurrence. The
combination of the outputs of methods that use different
signals of positive selection is the best approach for a
comprehensive identification of driver genes, which may
exhxblt some but not all signals. Spurious discoveries by

for each nucleotide in the gene to change taking into account its i
context 1. These ilities may be learned from the observed mutatlonal
prof'le of each tumour in a cohort or may be derived from the activity of a set of relevant

across the ples of a cohort'*.

dividual methods also have a hlgher chance of being
filtered out by such a combination

y of driver genes

The probability that a specific nucleotide change occurs in the gene is also infll d

by the specific features adopted by the chromatin of the cell both at the large scale

and at the small scales’***. At the large scale, the time at which the gene is replicated

relative to an origin’”’, the level of ion of the ck in'1% at its locu:

the level at which the gene is expressed” influence its mutation rate. The effect of these

large-scale factors may be carefully modelled for each gene in each relevant issue™".
y, a back model within each gene may be built by permuting the

mutations observed in the gene”%,

At the small scale, factc h as the by 9419 and other
proteins'®’, the distribution of certain chromatin marks along the gene body'*"*** and
the formation of local non-B-DNA structures'***" may alter the mutation rate locally at
sequence stretches within the gene.

The adoption of NGS by cancer research, fostered by
pioneering initiatives such as the ones mentioned in the
previous section, has generated a great amount of can-
cer genomics data available in the public domain. The
tally of tumour samples sequenced at the whole-exome
or whole-genome level that are currently available for
systematic driver discovery is in the tens of thousands.
This provides, in theory, the opportunity to identify the
compendium of mutational driver genes (‘compendium,
for short); that is, the complete list of genes driving each
malignancy upon mutations.
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Fig. 2| Application of the IntOGen pipeline to datasets of tumour mutations. a | Datasets of tumour mutations collected
from the public domain for the construction of the current snapshot of the compendium of driver genes. Both doughnut
plots represent all datasets classified by source (left) or cancer type (right). In both plots, the innermost ring signals the
cohorts from primary or metastatic or relapse tumours, while the second ring highlights cohorts of adult or paediatric
tumours. b| Mutation burden (top) and mutation type (bottom) of tumours from cancer types represented by at least two
cohorts. The number of cohorts and samples contributing to the distribution of each cancer type are shown below the plot.
Adeno., ad i CLL, chronic lymphocytic leukaemia; Hartwig, Hartwig Medical Foundation; ICGC, International
Cancer Genome Consortium; PCAWG, Pan-Cancer Analysis of Whole Genomes; St Jude, St Jude Children’s Research
Hospital; TARGET, Therapeutically Applicable Research to Generate Effective Treatments; TCGA, The Cancer Genome Atlas.

Implementation of the system. To build a snapshot of  types totalling 28,076 samples (FIG. 22; Supplementary
this compendium, we have collected somatic SNVs  Methods; Supplementary Table 1). We define a cohort
and short indels across 221 cohorts (comprising asa set of tumour samples of the same cancer type ana-
between 10 and 973 samples) of 66 different cancer lysed within a project with a uniform sequencing and
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Box2|A ing the dium of

driver genes

The snapshot of thy f driver genes described in this Review as well as the

automatic system used to produce it are hosted on the Integrative OncoGenomics
(IntOGen) platform. Cancer researchers may explore the compendium, comprising
the list of driver genes across tumour types and their mutational features, via the
Web interface of the platf Allthe inforr ined in itis also d
Furthermore, the automatic system (the IntOGen pipeline) can be obtained by
researchers from the platform for local i ion and ication to dataset:
somatic mutations across cohorts of tumours. Details on the current implementation
of the IntOGen pipeline can be found in Supplementary Methods. Building upon a

mutated driver genes will appear across many cohorts
of the same malignancy, while others will be detected
only in larger cohorts.

The construction of the compendium by use of
these datasets of tumour mutations requires an effi-
cient computational system that systematically runs
state-of-the-art driver discovery methods. Our imple-
mentation of this system, which we refer to as the
IntOGen pipeline'*'* (BOX 2), consists of three basic
steps, illustrated in FIG. 3 and explained at length in

practice that dates back to 2013, when the IntOGen platform for the analysis of cancer
driver genes was first established'***, we will continue to collect tumour sequencing
data as it becomes available in the public domain, and to produce more comprehensive
snapshots of the compendium. For future versions of the pipeline and the compendium,
regular updates may be found on the IntOGen website.

mutation calling pipeline. Most samples are contrib-
uted by large sequencing efforts, such as the ICGC*'"™
(3,988 samples), TCGA™ (10,010 samples), Pan-Cancer
Analysis of Whole Genomes (PCAWG)™ (2,554 sam-
ples), Hartwig Medical Foundation™ (3,742 samples)
and Therapeutically Applicable Research to Generate
Effective Treatments (TARGET)'™ (246 samples).
Importantly, the mutations across 60 other cohorts com-
prising 3,570 adult and 1,087 paediatric tumour sam-
ples sequenced by individual institutions were obtained
via cBioPortal and PedcBioPortal'”, respectively. This
highlights the importance of developing and maintain-
ing centralized efforts to collect sequencing data pro-
duced within small projects. Finally, the mutations of
2,257 tumours sequenced as part of eight independent
cohorts were obtained from the original studies. Most
of the 221 cohorts (180) comprise primary tumours,
while the remaining 41 are composed of metastatic or
relapse samples (4,713 in total). Special effort has been
made to include paediatric malignancies (2,799 sam-
ples grouped in 48 cohorts), which are traditionally
under-represented in driver discovery efforts.

The number of coding mutations in tumours dif-
fers depending on the cancer type, and an important
degree of variability across the samples of a given
malignancy is also observed (FIG. 2b, top). For example,
some breast adenocarcinomas bear mutations in sev-
eral hundred genes, while other samples of the same
malignancy exhibit only a dozen mutated genes. Part
of this heterogeneity may be explained by differences
in sequencing technology or depth, or in mutation
calling methods. Nevertheless, most of the heteroge-
neity in mutation burden has a biological basis, owing
to differences in the time or intensity of exposure to
mutational processes, arising, for example, from the
activity of ultraviolet light or faulty DNA repair'*-"'’,
‘While recalling all mutations across the cohorts would
eliminate part of the variability of technical origin, this
is not yet possible for such large numbers of samples
owing to limitations in computational power. It is thus
necessary, in the effort of systematic discovery of driver
genes across cancer types, to analyse each cohort
of tumours separately. Larger cohorts provide more sta-
tistical power to detect the signals of positive selection
that characterize driver genes. Therefore, in this sys-
tematic discovery one expects that certain recurrently

Synonymous mutations
Single-nucleotide variants that
cause a change of codon for a
synonymous one.

Hypermutator phenotype
Tumours with abnormally high
mutation burden in comparison
with other samples of the same
cohort (for example, more than
three times the interquartile
range above the median of

the distribution), usually as a
result of defective DNA repair
mechanisms,

Suppl 'y Methods. A first preprocessing step
guarantees that each method receives its input in the
correct format and within operational parameters,
for example, deduplicating samples taken from the
same tumour, or removing those with an abnormal
ratio of non-synonymous to synonymous mutations
or with hypermutator phenotype. Seven recently pub-
lished complementary methods of driver identi-
fication — dNdScv”, OncodriveFML”, CBaSE'"',
OncodriveCLUSTL”, a reimplementation of HotMAPS
accounting for trinucleotide contexts of mutation
types”’, smRegions'"’ and Mutpanning” — are executed
next. Then the lists of candidate drivers identified by
each method are combined through a weighted vote in
which the weight awarded to each method is based on its
perceived credibility (Supplementary Fig. 1). The com-
bination yields lists of driver genes per cohort that are
more sensitive than those produced by individual meth-
ods without loss of specificity (Supplementary Fig. 2).
In a final postprocessing step, spurious candidate driver
genes that may appear owing to known confounders are
automatically filtered out (Supplementary Methods).
The IntOGen pipeline is designed to scale smoothly
as the datasets of tumour mutations continue to grow
into the hundreds of thousands, advancing our view of
the compendium.

Each driver discovery method focuses on one or
more features of the mutational pattern of genes across
tumours. To identify the signals of positive selection, it
assesses the deviation between the observed values and
the expected values of the feature under the assumption
of neutral mutagenesis (FIG. 3. These mutational features,
collected by the IntOGen pipeline for all driver genes,
provide key insights into the mechanisms of tumori-
genesis for each of these cancer genes (see later), and
are an integral part of the compendium (Supplementary
Methods). They comprise (1) the clusters of mutations
(both linear and 3D, which may arise owing to intrapro-
tein or interprotein interactions), (2) domains in the
protein that are preferentially affected by mutations and
(3) the excess of with different e

Linear clusters are local accumulations of mutations
along the sequence of a gene found across tumours,
such as those formed by mutations at codons 12 and 13
of KRAS (FIG. 3). On the other hand, 3D clusters involve
amino acid residues, which may be separated in the
primary structure of the protein but are close in its ter-
tiary structure (for example, mutations contributed by
amino acids at positions 26, 39-42, 57 and 59-62 of
RHOA). Preferentially affected domains bear a signif-
icant accumulation of mutations, such as the case of
MH?2 in SMAD4. The excess of mutations with different
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Nonsense mutations
Single-nucleotide variants
that cause the change of
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Missense mutations
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acidin a protein sequence.
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consequences — 99% and 50% of nonsense mutations
and missense mutations, respectively, for AT-rich inter-
active domain 1A (ARID1A) — informs about the mode
of action (tumour suppressor or oncogene) of a driver
gene. An excess of observed missense mutations in the

absence of an excess of nonsense mutations indicates
the activating mode of action of oncogenes. By contrast,
tumour suppressor (or loss-of-function) genes tend to
exhibit an excess of nonsense mutations. While the
mode of action of some genes is very clear-cut, some
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How much does the systematic compendium, or more

cases are harder to place within the binary

tumour suppressor model (close to the diagonal in the

appropriately, the current snapshot obtained from
these 221 cohorts of tumours (BOX 2) add to the cur-

n’ scatterplot in FIG. 5). Furthermore,

‘mode of actio

the mode of action of some genes may differ between

tumour types.

rent knowledge of the genetic basis of tumorigenesis?
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of the

dium of Ldriver genes. a| Number of

cancer driver genes per tumour type in the compendium. The three-colour scale to
denote genes annotated in the Cancer Gene Census (CGC) in the same tumour type as
that identified in the compendium or in a different tumour type or to denote genes not
annotated in the CGC is used throughout the figure. b| Total number of cancer driver
genes in the compendium, indicating the overlap with the genes annotated in the
CGC as drivers in any tumour type (top bar). Overlap between driver gene-tumour
type associations in the compendium and those in the CGC in the same or a different
tumour type (bottom bar). ¢ | The range of tumour types in which 25 exemplary

genes are identified as drivers by the compendium represented as dots in a matrix
compared with the associations annotated in the CGC. The bottom of the plot
presents the involvement in tumorigenesis of five previously unannotated drivers
across tumour types. The size of the dots represents the percentage of all cohorts

of the tumour type in which the gene is identified as a driver. The number of tumour
types in which each gene appears as a driver in the compendium is represented in

the bars to the right.
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the most comprehensive and accurate set of validated
cancer genes annotated from the literature, and it thus
serves this purpose. One part of the answer (FIG. 4,b)
then is that almost three quarters of the 568 mutational
driver genes in the dium are already d
in the CGC (which also provides a strong validation of
the compendium). However, because the compendium
identifies the signals of positive selection unbiasedly
across the cohorts of all cancer types, it has the possi-
bility of more thoroughly mapping driver gene-tumour
type associations. Indeed, more than 80% of all identi-
fied links between a driver gene and a malignancy are
not annotated in the CGC (FIG. 42,b). For example, while
21 known CGC drivers of breast adenocarcinomas are

A systematic mining of the literature to establish a
thorough and reliable catalogue of validated cancer
genes is beyond the scope of our analysis. Thus, to
address this question, we used the set of driver genes
in the Cancer Gene Census''' (CGC; version 87) as
the ‘ground truth’ of the genes involved in the devel-
opment of the 66 malignancies represented in the
compendium. While the CGC is incomplete and may
contain some false positives, it is, to our knowledge,

in the compendium, 75 genes d in the CGC
but not previously recognized to drive this malignancy
are shown to be under positive selection across one or
more of the 12 breast cancer cohorts analysed (FIG. 45).
In other words, for many well-known driver genes,
the compendium reveals that their role across cancer
types is much more widespread than previously doc-
umented (FIG. 4¢). For example, the pattern of somatic
mutations in histone-ly N-methyltr 2C
(KMT2C) shows signals of positive selection across
31 tumour types. However, it is annotated in the CGC
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Fig. 5 | Distribution of the prevalence of driver genes across cancer bbreviations. Whil cancer-wide drivers are bona fide well-recognized
types in the compendium. Each driver gene is represented as a single dot  cancer genes, low-density lipop lated 1B (LRP1B) has long

in the scatter plot. The horizontal axis represents the number of tumour
types where a gene has been identified as a driver, and the vertical axis
represents the maximum mutational frequency of the gene across the
tumour types. The separate distributions of these two variables are
represented through 1D histograms above and to the right of the graph.
Two sets of drivers mutated at high frequency either across one or very few
tumour types (cancer specific, highly prevalent) or across more than
20 cancer types (cancer-wide drivers) are circled and denoted by their
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ec
been assumed to be a potential spurious finding. This debate is not yet
settled, as some studies have found its loss of function may be related to
enhanced cell migration in several tissues'*'~'*. The bar plots to the right of
the graph present the mutational frequency across tumour types
(corresponding to the x axis in the scatter plot) of selected cancer-specific,
highly prevalent and cancer-wide drivers. The maximum mutational
frequency of each of them appears beside the corresponding row. Bars are
coloured following the legend in FIGURE 4.
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Fig. 6 | Interpreting the mutational patterns of driver genes. a-f| Six exemplary
mutational patterns computed for five proteins across five cohorts, including multiple
! btained from a study 1in 2018 (REF ")) and lung squamous cell
carcinomas, bladder adenocarcinomas, glioblastomas and lung adenocarcinomas
obtained from The Cancer Genome Atlas (TCGA). Clusters and their boundaries are
defined by methods that assess the significant clustering of mutations. In all plots,
N denotes the number of mutations of each type of consequence (that is, missense
mutations, nonsense mutations or mutations affecting splicing) observed in the
gene across the cohort. bZIP Maf, bZIP Maf transcription factor domain; DSPc, dual
specificity phosphatase, catalytic domain; DUF3452; domain of unknown function
3452; EGFR, epidermal growth factor receptor; Furin-like, furin-like cysteine-rich
region; GF recep IV, growth factor receptor domain IV; NFE2L2, nuclear factor
erythroid 2-related factor 2; Pkinase_Tyr, protein tyrosine and serine/threonine kinase;
PTPN11, protein tyrosine phosphatase non-receptor type 11; RB_A, retinoblastoma-
associated protein A domain; RB_B, retinoblastoma-associated protein B domain;
Rb_C,Rb C-terminal domain; SH2, Src homology 2 domain.

only as a driver of medulloblastomas. The unbiased dis-
covery of cancer genes through the IntOGen pipeline
is thus an essential complement to the annotation of
experimentally validated drivers.

Not only does the systematic nature of the compen-
dium add to our knowledge of the role of well-known
cancer genes but it also points at 152 potential new
driver genes (FIG. 4,); that is, genes that were not previ-
ously annotated in the CGC. As the CGC is most likely
an incomplete proxy of the full catalogue of cancer
genes, some of these potential new drivers may have
been reported before in the literature. Indeed, we pres-
ent and discuss below five of these unannotated genes
that exhibit signals of positive selection in their muta-
tional pattern across tumours and have been suggested
by independent studies to be involved in tumorigenesis
(FIG. 4c, bottom).

The pattern of mutations in RAS GTPase-activating
1 (RASA1I) across lung and head and neck squamous
cell carcinomas exhibits several signals of positive
selection probed in the system. Its decreased expres-
sion or loss-of-function mutations have been recog-
nized to increase RAS-mediated signalling in human
bronchial epithelial'* and melanoma'"” cell lines. It
has also been linked to tumorigenic promoting func-
tions in triple-negative breast cancer'"’. Because the
protein encoding RASAI, like the protein encoding
neurofibromin 1 (NFI), negatively regulates the RAS-
MAPK pathway'"”, both genes are thought to function
as tumour supp which is also d by their

REVIEWS

proposes that some of its germline mutations cause
susceptibility to Wilms tumours'*®. Thus, its exact mode
of action in tumorigenesis remains to be determined.
Several genes encoding forkhead box transcription
factors are annotated in the CGC as drivers of several
malignancies (for example, forkhead box Al (FOXAI)
of breast and prostate carcinomas and FOXRI of neu-
roblastomas). Nevertheless, FOXA2, with several sig-
nals of positive selection across uterine carcinomas,
is not annotated in the CGC. FOXA2 mutations fre-
quently found in uterine carcinomas tend to affect
the DNA-binding domain or cause truncation of the
protein product'”’, causing its failure to localize to
the nucleus'”’. Some of these mutant forms are known
to cause a decrease in expression of the CDHI gene
(which encodes E-cadherin) and thus have been asso-
ciated with epithelial-to-mesenchymal transition in
the progression of certain tumours'*"'*2. Krueppel-like
factor 5 (KLF5), which encodes a transcription fac-
tor involved in the regulation of human development
and identified as a cancer driver gene, altered through
different mechanisms'**'*" exhibits signals of posi-
tive selection across cervical squamous, bladder and
lung squamous cell carcinomas. We also identified
bromodomain-containing 7 (BRD7), which has sev-
eral paralogues already annotated in the CGC and has
been postulated to act as a co-activator of the SMAD
transcription factors'” in driving the initiation of
melanomas and liver carcinomas.

Some genes act as drivers across several cancer types,
while others tend to be more specific. The compendium
provides an opportunity to assess the specificity of driver
genes across tumour types in a systematic manner (FIG. 5).
Most genes (360) act as drivers in one or two tumour
types, and only a small group of ten genes (cancer-wide
drivers, bottom right panel) are able to drive more than
20 malignancies through mutations. Some very specific
mutational drivers (upper left outliers in FIG. 5 and top
right panel) are very frequently mutated in only one or
two cancer types. For example, 60% of all Burkitt lym-
phomas bear driver mutations in MYC'* and 47% bear
driver mutations in cyclin D3 (CCND3)'”". Half of the
cases of uveal melanoma bear activating mutations in
one of two hotspots of guanine nucleotide-binding pro-
tein G, subunit-a (GNAQ), while almost all other cases
bear mutations at one of two homologous hotspots of
its paral GNAII (REF ). Interestingly, general tran-

mutational patterns. Lysine-specific demethylase 3B
(KDM3B), whose protein product specifically demethyl-
ates Lys9 of histone H3 to promote the transcriptional
activation of target genes, exhibits significant excess
of mutations and functional bias across two cohorts
of pilocytic astrocytomas and medulloblastomas.
However, neither nonsense nor missense mutations
are clearly over-represented within this excess; thus,
its mode of action is currently labelled as ‘ambiguous’
in the compendium. KDM3B has been shown to be
involved in cell cycle regulation in hepatocellular car-
cinomas''® and to function as an activator of the WNT
signalling pathway in colorectal cancer stem cells'"”.
Although these two studies suggest that KDM3B acts
as an oncogene in tumorigenesis, a separate report

Wilms tumours
Arare type of kidney cancer
that affects mostly children,

Paralogues

Genes within the same
genome that have evolved
from a common ancestor.
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scription factor II-I (GTF2I), mutations of which drive
virtually half of all thymomas'*, is not yet annotated
in the CGC.

Mutational features of driver genes

‘We propose that the mutational features (exemplified
in FIG. 5) of a driver gene provide a unique opportunity
to shed light on its tumorigenic function. Below, we
describe the mutational features of six driver genes as
examples of the information they provide on their role
in cell transformation.

The oncogene protein tyrosine phosphatase non-
receptor type 11 (PTPN11) shows excessive mis-
sense mutations across multiple myelomas'" (FIG. 62)
and other tumour types''"'**, which significantly
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< Fig. 7| Recurrent cancer driver domains and mutational clusters. a | Dots represent
all domains with significant enrichment of mutations in a number of different driver
genes across a number of different tumour types. Selected domains with very
significant enrichment are coloured and denoted with the domain acronym, while
the rest appear in light grey. b | Genes with significant enrichment of mutations in
domains of their protein products coloured in part a across tumour types. c—f | Number
of mutations and prevalence of linear mutational clusters identified in several drivers
across the cohorts of colorectal adenocarcinomas, obtained from The Cancer
Genome Atlas (TCGA) (part c), acute myeloid leukaemias (obtained from the Beat AML
project’™) (part d), prostate adenocarcinomas (obtained from a Stand Up To Cancer
(SU2C) 2019 publication'™) (part e) and pilocytic astrocytomas (obtained from the
International Cancer Genome Consortium (ICGC)) (part f). The fraction of mutations
of each protein in each cohort that appear in clusters and the width of these clusters
in the gene sequence appear in the heatmaps below each graph. The numbers at the
top of each column represent the number of samples with mutations falling in each
cluster. Cadherin, cadherin domain; HAT_KAT11, histone acetylation protein; muts,
mutations, nt, nucleotides; P53, p53 DNA-binding domain; Pkinase_Tyr, protein
tyrosine and serine/threonine kinase domain; Ras, RAS family domain; SET, SET
domain; SH2, Src homology 2; WD40, WD domain G repeat; zf-C2H2, C2H2

zinc-finger.

Degrons

Short sequences (4-10 amino
acids) within a protein that are
specifically recognized and
bound by enzymes responsible
for the conjugation of ubiguitin
moieties.

Nonsense-mediated decay
Surveillance mechanism
charged with the elimination
of MRNA transcripts with
premature stop codons.
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cluster within the SH2 domain of its protein product.
Inhibitory contacts between this domain and the phos-
phatase domain are abrogated on phosphorylation by
a receptor tyrosine kinase in the wild type or by muta-
tions in the domain'*”’. The activated PTPN11 then
dephosphorylates inhibitors of several signalling path-
ways, such as the MAPK or AKT pathways‘ A Nuclear
factor erythroid 2-related factor 2 (NFE2L2), another
classic oncogene, encodes a transcription factor that
is key in the control of the redox state of the cell and
its response to stress'*~'*". Across lung squamous cell
carcinomas'**, two narrow clusters of missense muta-
tions appear at its N-terminal portion (FIG. 6b). These
mutations affect sequences recognized by the cognate
E3-ubiquitin ligase Kelch-like ECH-associated protein 1
(KEAP1) (that is, degrons), and cause the abnormal sta-
bilization of NFE2L2, as do KEAPI mutations affect-
ing the domain that recognizes the NFE2L2 degrons.
This, in turn, results in the constitutive activation of
NFE2L2-regulated genes'”.

The mutational features are radically different
for tumour suppressors such as RBI across bladder
adenocarcinomas' (FIG. 6c), with greater excess of
nonsense mutations and mutations affecting splicing
than of missense mutations. Most nonsense muta-
tions trigger nonsense-mediated decay of the RBI
mRNA'", thus causing depletion of the protein and
abrogating its functions in the regulation of cell cycle
progression and the cell division cycle, the response
to cellular stress, differentiation, cellular senescence,
programmed cell death and maintenance of chroma-
tin structure'!'~'**, PTEN, another tumour suppressor,
shows an excess of both nonsense and missense muta-
tions across glioblastomas™'* (FIG. 64). Like nonsense
mutations in RBI, nonsense mutations in PTEN trig-
ger nonsense-mediated decay, reducing the production
of a functional PTEN protein product, while missense
mutations hinder either its enzymatic activity or its
recruitment to the membrane, or increase its suscep-
tibility to ubiquitylation for proteasome-mediated
degradation'**'*, These outcomes, in turn, interfere with
its role in the regulation of a host of cellular functions,

REVIEWS

such as cell cycle progression, apoptosis and protein
synthesis'’-'.

Different tumorigenic mechanisms of the same driver
across tumour types may also be revealed by their muta-
tional features. For example, in glioblastomas™, missense
mutations of EGFR (an oncogene whose protein product
is involved in the activation of multiple signalling path-
ways) tend to cluster in the extracellular domains of its
protein product (FIG. 6¢). These act as gain-of-function
alterations, likely through the stabilization of the open
conformation of the receptor, which stimulates its
autophosphorylation in the absence of a ligand'*'".
By contrast, across lung adenocarcinomas'
mutations tend to cluster in the tyrosine kinase domain
of the protein product of EGFR (FIG. 61}, altering its
‘on-off” equilibrium and increasing 1(5 activity at the
expense of reduced affinity for ATP'

Overall, several domains across the protein products
of multiple genes appear to be preferentially affected
by mutations across more than ten different tumour
types (FIG. 7a,b). The p53 DNA-binding domain (P53
in FIG. 72.b) appears significantly enriched for somatic
mutations across cohorts of 42 different cancer types,
a greater number than any other protein domain,
although this is driven only by TP53. In another exam-
ple, the tyrosine kinase domain of 13 different genes is
significantly enriched for mutations across cohorts of
24 tumour types. Of these 13 genes, BRAF is the one
exhibiting a significant enrichment of somatic muta-
tions within the tyrosine kinase domain across most
tumour types (14). The RAS, cadherin and C2H2
zinc-finger domains each exhibit significant enrichment
of mutations across 13 cancer types.

An overview of significant clusters reveals that those
in tumour suppressors tend to be wider, while those in
oncogenes are narrow and tend to accumulate a larger
share of the mutations observed in the gene (FIGS 7c-
Particularly narrow clusters are observed, for example in
KRAS (five nucleotides overlapping codons 12 and 13 of
the protein) lating 85% of the in the
gene across a cohort of 496 colorectal adenocarcinomas
(FIG. 70), or in isocitrate dehydrogenase 1 (IDH1) with all
mutations in a cohort of 257 acute myeloid leukaemias
affecting two nucleotides of codon 132 (FIG. 7d). Wider
clusters accumulate 83% of the mutations of speckle-type
POZ protein (SPOP) (44 nucleotides between codons
119 and 133) across a cohort of 444 prostate adenocar-
cinomas (FIG. 7¢) or 28% of mutations of TP53 (28 nucle-
otides between codons 266 and 275) across a cohort of
439 pilocytic astrocytomas (FIG. 71). The width of clusters
and the fraction of mutations of the gene that fall within
them differ depending on the mode of action of cancer
genes in tumorigenesis (FIG. 8). The relatively narrow
clusters of oncogenes reflect the existence of relatively
few available gain-of-function mutations along their
sequence. This is also the reason why these clusters tend
to concentrate large shares of all the mutations observed
in oncogenes across a cohort of tumours. Wider clus-
ters in tumour suppressor genes are observed because as
a rule more loss-of-function mutations are available in
their sequence (for example, mutations affecting several
amino acids of a functionally important domain).
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Cis-regulatory regions

DNA sequences involved

in the regulation of the
expression of genes, such as
transcription factor binding
sites that may be found in
promoters or enhancers.

Tumour suppressor gene
Oncogene
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Fig. 8 | Linear clusters detected in tumour suppressors
and oncogenes in the compendium. Every cluster detected
in genes of the compendium in a particular tumour type is
represented as a dot. Oncogenes are depicted in red and
tumour suppressors are depicted in blue. The separate
distribution of the two variables in the plot is represented
through 1D histograms above and to the right of the graph.
The intensity of the colour of each dot reflects the number
of dots in the same position. AML, acute myeloid leukaemia;
COAD, colon adenocarcinoma; nt, nucleotides; PIA,
pilocytic astrocytoma; PRAD, prostate adenocarcinoma.

Conclusions and perspectives

Much like ancient manuscripts, in which newer layers
of writing have been superimposed onto older texts, or
cities with a long history of human dwelling, such as
Rome, in which certain edifices exhibit rows of brick and
mortar dating from different ages, the somatic mutations
in tumour genomes constitute a record of their history.
Therefore, borrowing the name given to these ancient
scripts, somatic mutations in a tumour may be consid-
ered a palimpsest'”, the study of which may provide
extremely useful information about the tumour and its
environment. These palimpsests contain the footprints
of all the mutational processes to which somatic cells
in the tumour have been exposed during the life of the
patient, as well as the signals of positive selection rem-
iniscent of successive selective sweeps caused by driver
mutations. Cleverly designed bioinformatics analyses
applied to tumour genomes are able to reveal such foot-
prints and traces. This Review has shown that the sys-
tematic application of such bioinformatics analyses to
the detection of positive selection from the palimpsest
of tumour somatic mutations is able to begin to reveal
the compendium of cancer driver genes.

Before the inception of cancer genomics, a few dozen
cancer driver genes were identified (FIC. 9). In the span of
two or three decades, these genes were intensively stud-
ied and functionally characterized through an array of
biochemical assays and the laborious dedication of sev-
eral research groups. By contrast, in less than the two
decades that have elapsed since the sequencing of the
first tumour genomes, several hundred more cancer

genes have been identified. This ‘era’ of cancer genomics
has been made possible by advances in DNA sequenc-
ing and the development of bioinformatics methods to
handle the challenges that analysis of genomics data
poses. As shown herein, the compendium of muta-
tional driver genes derived from the analysis of the can-
cer exomes currently in the public domain (~28,000)
comprises between 500 and 600 mutational drivers.
The completion of the compendium will constitute a
milestone on the road to our understanding of tumour
biology. To date, it is very likely that genes mutated at
frequencies above 10% have already been discovered”,
and systematic analyses, such as those made possible
with the IntOGen platform, reveal their involvement in
tumorigenesis across cancer types.

‘We are also now in a position to project the evolu-
tion of the compendium into the future. The number of
datasets of tumour somatic mutations deposited in the
public domain is foreseen to increase quickly as initia-
tives to share data generated internationally, such as the
Global Alliance for Genomics and Health and the 1+
Million Genomes initiative'”, come to fruition. As new
snapshots of the compendium are uncovered with use
of these data, the trend described above is predicted to
continue into the future, with the identification of (1)
new drivers mutated at frequencies below 10% across
malignancies (owing to increased statistical power™), (2)
drivers of conditions not profiled before, (3) drivers in
diverse populations or ethnicities that have so far been
biased against in tumour genome sequencing projects
and (4) drivers of new clinical entities, such as metastatic
or relapse tumours, which have been comparatively
underexplored to date. For instance, a search through
the current snapshot of the compendium shows that
oestrogen receptor (ESR1) and androgen receptor (AR),
while rarely mutated across primary breast and prostate
tumours, respectively, are clear mutational drivers of
resistance to treatment.

In this Review, we have purposefully focused on
driver mutations affecting protein-coding genes. As
mentioned in the Introduction, this excludes other
types of somatic alterations affecting driver genes.
While short indels are included within point mutations
for the purpose of revealing mutational driver genes,
their probability of occurrence likely involve features
beyond their immediate sequence context, and thus
their background rate is more difficult to model """,
It also excludes the potential role in tumorigenesis of
mutations affecting non-coding genomic elements,
of which recent studies have identified few in compar-
ison with coding genes”'"”. Focusing on known cancer
genes and their cis-regulatory regions, one of these surveys
revealed that non-coding driver mutations are much
less frequent than protein-coding ones, with the excep-
tion of mutations in telomerase reverse transcriptase
(TERT), even after correcting for differences in statis-
tical power between whole-genome and whole-exome
sequencing datasets”. Nevertheless, it has also become
apparent from whole-genome-sequenced tumours that
our current knowledge of the distribution of mutations
in non-coding regions is not comprehensive enough
to allow the correct modelling of their background

‘www.nature.com/nrc
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mutation rate. Furthermore, our knowledge of the
biological function of most of the non-coding areas of
the genome still lags far behind that of coding genes™.
Solving these issues will be key to fully exploring the
catalogue of driver non-coding genomic elements.
Furthermore, a holistic compendium of all types of
driver alterations (coding and non-coding somatic
point mutations, structural variants, epigenetic silencing
events and germline susceptibility variants) is needed to
uncover their panorama across tumours (reported in a
preprint article'*?).

A detailed description of the precise involvement of
each gene in tumour development is absent from the
current snapshot of the compendium of driver genes.
Thus, understanding the precise mode of alteration of
each driver gene (that is, which of its mutations has the
potential to drive tumorigenesis and why) and the spe-
cific biological function it perturbs in tumorigenesis is
one of the major challenges of cancer genomics in the
near future.

A first challenge is to precisely identify the mech-
anisms that alter the function of driver genes making
them capable of driving tumorigenesis. This is the same
as identifying all of the mutations of cancer driver
genes that are capable of driving the malignancy an
understanding their role in cell transformation™'".
As explained already, we propose that the mutational
features ¢ d within the pendium may aid in
this endeavour. Furthermore, while the perturbation
of several key biological processes (the hallmarks of
cancer detailed above) are required for tumorigenesis,

Clonal haematopoiesis
Ageing-related clonal
expansion of specific
haematopoietic stem cells
(HSCs) or other early blood
cell progenitors which
contributes to the appearance
of genetically distinct
subpopulations of blood cells.

Driver genes in
diverse populations
and/or ethnicities

— Cancer Low-frequency driver genes

driver genes
— Knowledge of
mechanisms of
tumorigenesis

Driver genes upon new conditions.
(treatment, metastasis, etc.)

Rare tumour types ?

568 i

Knowledge gap

 Other omics
* Functional assays
¢ Gene interactions

* Premalignant
and healthy tissues

Time
73
Before Initial cancer genomics Consolidation cancer genomics '
cancer (e.9. TCGA and ICGC) :
genomics :
First cancer This Review Millions of
genome. (~30,000 tumour ‘tumour genomes.
sequenced genomes or exomes) or exomes.

Fig. 9| The past, present and future of cancer genomics. A conceptual representation
of the evolution of the compendium of mutational driver genes starting from the
identification of the first cancer genes before the start of the cancer genomics era
through sequencing of the first tumours to the publication of this Review. It also
provides an outlook on the consolidation of cancer genomics (with cancer genomics

as a well-established knowledge area) and future trends in cancer genomics research.
ICGC, International Cancer Genome Consortium; TCGA, The Cancer Genome Atlas.
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the specific process — for example, evading apoptosis,

intai proliferative lling and escaping the
immune system — affected by mutations in many of
the genes in the compendium is still unknown. The
interpretation of the significance of driver mutations is
also confounded by intratumoural heterogeneity and
by the complexity of the ecology of the microenviron-
ment of cancer cells'"*"'*, Profiling other dimensions of
tumours, such as by transcriptomics, proteomics and
methylomics (as performed, for example, in REF"), as
well as systematic assays of the function of individ-

ual genes and their interactions'*~'*' and single-cell
profiling approaches'**~'**, will contribute to bridging
this gap.

A second challenge arises from the fact that while
driver genes are identified in isolation by their signals of
positive selection, it is in fact a set of driver mutations
that drives tumorigenesis”'"”. For example, driver muta-
tions affecting four specific pathways are known to occur
in the vast majority of colorectal adenocarcinomas and
are required for the progression of a healthy cell to an
invasive carcinoma®. Furthermore, while the signals of
positive selection in all driver genes in a tumour cohort
are equivalent, driver mutations probably occur at differ-
ent stages of the evolution of a tumour. Again, the clever
application of bioinformatics to the analysis of the can-
cer genome palimp has enabled hers to start
resolving this temporal order'’; nevertheless, more work
is needed to understand it.

Finally, there is the challenge of fully understanding
how other features besides somatic mutations cooper-
ate in tumorigenesis. While virtually all tumours con-
tain genomic driver mutations'”, these are not sufficient
to explain the complete history of cell transformation.
Studies of somatic mutations from healthy donors have
shown that many cancer drivers are already mutated in
non-transformed cells across somatic tissues'*"~'"". The
same has been shown in other scenarios'”*'”* (for exam-
ple, in clonal haematopoiesis) or benign tumours '+,
This has led to the conclusion that a certain level of
positive selection is present in healthy somatic tissues
in a continuum, without reaching the level of cell trans-
formation. In this continuum, positive selection occurs
on mutations that confer a fitness advantage, which
likely vary between somatic tissues and over time.
Thus, a mutation can be a driver only when presented
against a background of specific selective constraints.
In some cases to reach the level of cell transformation,
non-genetic phenotypic changes, such as the stochastic-
ity of gene expression, errors in protein synthesis or cer-
tain epigenetic modifications'”®, may also be important.
Such changes have been documented in processes such
as resistance to drugs and metastasis'™"'*.

In summary, closing the gap between the list of genes
in the compendium and our complete knowledge of the
process of tumorigenesis is one of the big challenges of
cancer genomics for the near future. In turn, gaining this
insight into tumorigenesis will be fundamental to trans-
late our knowledge of cancer genomics into precision
cancer medicine.
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Supplementary Information

This document contains Supplementary Information to Martinez-Jimenez et al., Nat.
Rev. Cancer, 2020, and is composed of three main sections. The first, a document of
Supplementary Methods to the main manuscript contains technical details of the
development of the IntOGen pipeline and its application to collected and annotated
datasets of tumor somatic mutations from the public domain. Secondly, two
Supplementary Figures illustrate specific aspects of the IntOGen pipeline, i.e., the
combination of the output of driver identification methods and the comparison of the
performance of this combination with that of individual driver identification methods.
Finally, a Supplementary Table lists relevant information on the cohorts employed to
produce the snapshot of the compendium of mutational cancer genes that is described

in the main manuscript.
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Supplementary Methods

Data collection and annotation

TCGA

TCGA somatic mutations (mc3.v0.2.8 version) were downloaded from
(https://gdc.cancer.gov/about-data/publications/pancanatlas). = We then  grouped
mutations according to their patient’s cancer type into 32 different cohorts. Additionally,
we kept somatic mutations passing the somatic filtering from TCGA (i.e., column
FILTER == “PASS”).

PCAWG

PCAWG somatic mutations were downloaded from the International Cancer Genome
Consortium (ICGC) data portal

(https://dcc.icge.org/releases/PCAWG/consensus_snv_indel/). Note that only mutations
of ICGC samples can be freely downloaded from this site. The TCGA portion of the
callsets is controlled data. To obtain them, we followed the instructions to dowload them

that can be found in the same webpage.

cBioPortal

Somatic mutations from Whole Exome Sequencing (WXS) and Whole Genome
Sequencing (WGS) cohorts uploaded into cBioPortal that were not part of any other
projects included in the analysis (i.e., TCGA, PCAWG, St. Jude or HARTWIG) were
downloaded on 2020/01/15 (http://www.cbioportal.org/datasets). We then created

cohorts following these criteria:
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. Cohorts with a limited number of samples (i.e., lower than 30 samples)
associated to cancer types with extensive representation (such as Breast cancer,
Prostate cancer or Colorectal adenocarcinoma) across the compendium of
cohorts were removed.

. Samples were uniquely mapped to a cohort. If the same sample was originally
included in two cohorts, we removed the sample from one of them.

. Mutations from samples that were not obtained from human tumor biopsies were
discarded (cell lines, xenografts, normal tissue, etc.).

. When patient information was available, only one sample of each patient was
selected. The criteria to prioritize samples from the same patient was: WXS over
WGS; untreated over treated, primary over metastasis or relapse and, finally, by
alphabetical order. When there is no patient information we assumed that all
patients have only one sample in the cohort.

. When sequencing platform information was available, samples from the same
study but with different sequencing platforms were further subclassified into WXS
and WGS datasets (only if the resulting cohorts fulfilled the requirements herein
described; otherwise, the samples were discarded).

. When variant calling information was available, samples from the same cohort
and sequencing type were further classified according to their calling algorithm
(VarScan, MuTect, etc.). If the resulting cohorts for each subclass fulfilled the
requirements herein described, the samples were included; otherwise, the
samples were discarded. When variant calling information was not available we
assumed that all the samples went through the same calling pipeline.

. When treatment information was available, samples from the same cohort,
sequencing type, calling algorithm were further classified according to their
treatment status (i.e, treated versus untreated). If the resulting cohorts from the
subclassification fulfilled the requirements herein described, the samples were
included; otherwise, the samples were discarded. When information was not

available we assumed that samples had not been treated.
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8. When biopsy information was available, samples from the same cohort,
sequencing type, calling algorithm, treatment status were further classified
according to their biopsy type (i.e, primary, relapse or metastasis). If the resulting
datasets from the subclassification fulfilled the requirements herein described,
the samples were included; otherwise, the samples were discarded. When
information was not available we assumed that the biopsy type of the sample

was primary.

Hartwig Medical Foundation

Somatic mutations of metastatic WGS from Hartwig Medical Foundation
https://www.hartwigmedicalfoundation.nl/en/database/ were downloaded on 2020/01/17
through their platform. Datasets were split according to their primary site. Samples from
unknown primary sites (i.e., None, Nan, Unknown, Cup, Na), double primary or
aggregating into cohorts of fewer than 7 samples were not considered. A total of 30
different cohorts were thus created.

ICGC

Somatic mutations from Whole Exome Sequencing (WXS) and Whole Genome
Sequencing (WGS) studies uploaded in ICGC Data Portal
(https://dcc.icge.org/repositories) not overlapping with other projects included in the
analysis (i.e., TCGA, PCAWG, CBIOP or St. Jude) were downloaded on 2018/01/09.
We then created cohorts following the criteria used for the cBioPortal datasets
(cBioPortal).

St. Jude

Somatic mutations from Whole Exome Sequencing (WXS) and Whole Genome

Sequencing (WGS) of Pediatric Cancer Genome Project uploaded in the St. Jude Cloud
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(https://www.stjude.cloud/data.html) were downloaded on 2018/07/16. Cohorts were
created according to their primary site and their biopsy type (i.e., primary, metastasis

and relapse). Resulting datasets with fewer than 5 samples were discarded.

PedcBioPortal

Somatic mutations from Whole Exome Sequencing (WXS) and Whole Genome
Sequencing (WGS) studies uploaded in PedcBioPortal that were not part of any other
projects included in the analysis (i.e., St. Jude or CBIOP) were downloaded on
2020/01/15 (http://www.pedcbioportal.org/datasets). We then created cohorts following

the criteria described in the cBioPortal dataset (cBioPortal).

TARGET

Somatic SNVs from WXS and WGS of two TARGET studies, Neuroblastoma (NB) and
Wilms Tumor (WT), from the TARGET consortium were downloaded on 2019/03/07

from the Genomic Data Commons Porta (https://gdc.cancer.gov/).

Beat AML

We downloaded unfiltered somatic mutations from samples included in the Beat AML
study from the Genomic Data Commons Porta (https://gdc.cancer.gov/). We next
applied the following criteria to create our Beat AML cohort:
1. We focused on somatic single nucleotide variants from VarScan2 using skin as
normal control. All samples that did not belong to this class were discarded.
2. Samples from relapses were filtered out.
3. Samples from bone-marrow transplants were discarded.
4. If there were several samples per patient fulfilling the points 1-3, we selected the
first in chronological order.

257 independent samples of Beat AML tumors composed our Beat AML cohort.
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Literature

We also manually collected publicly available cohorts from the literature. Each cohort

was filtered following the same steps mentioned above for the cBioPortal dataset (see

above).

Preprocessing

Given the heterogeneity of the datasets analyzed in the current release of intOGen

(resulting from differences in the genome aligners, variant calling algorithms,

sequencing coverage, sequencing strategy, etc.), we implemented a pre-processing

strategy aiming at reducing possible biases. Specifically, we conducted the following

filtering steps:

1

The pipeline is configured to run using GRCh38 as reference genome. Therefore,
for each input dataset the pipeline requires that the reference genome is defined.
Datasets using GRCh37 as reference genome were lifted over using PyLiftover
(https://pypi.ora/project/pyliftover/; version 0.3) to GRCh38. Mutations failing to
liftover from GRCh37 to GRCh38 were discarded.

. We removed mutations with equal alternate and reference alleles, duplicated

mutations within the sample sample, mutations with ‘N’ as reference or
alternative allele, mutations with a reference allele not matching the nucleotide in
the reference genome and mutations outside autosomes or sexual

chromosomes.

. Additionally, we removed mutations with low pileup mappability, i.e. mutations in

regions that could potentially map elsewhere in the genome. For each position of
the genome we computed the pileup mappability, defined as the average
uniqueness of all the possible reads of 100bp overlapping a position and allowing

up to 2 mismatches. This value is equal to 1 if all the reads overlapping a
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mutation are uniquely mappable while it is close to 0 if most mapping reads can
map elsewhere in the genome. Positions with pileup mappability lower than 0.9
were removed from further analyses.

. We filtered out multiple samples from the same donor. The analysis of positive
selection in tumors requires that each sample in a cohort is independent from the
other samples. That implies that if the input dataset includes multiple samples
from the same patient —resulting from different biopsy sites, time points or
sequencing strategies— the pipeline automatically selects the first according to its
alphabetical order. Therefore, all mutations in the discarded samples are not
considered anymore.

. We also filtered out hypermutated samples. WXS samples carrying more than
1000 mutations or WGS samples with more than 10000 mutations were filtered
out if they also exhibited a mutation count greater than 1.5 times the interquartile
range above the third quartile of the mutation burden of the cohort were
considered hypermutated and therefore removed from further analyses.

. Datasets without synonymous variants were discarded. Most cancer driver
identification methods require synonymous variants to fit a background mutation
model. Therefore, datasets with less than 5 synonymous and datasets with a
missense/synonymous ratio greater than 10 were excluded .

. When the Variant Effect Predictor (VEP) mapped one mutation into multiple
transcripts associated with different HUGO symbols, we selected the canonical
transcript of the first HUGO symbol in alphabetical order.

. We also discarded mutations mapping into genes without canonical transcript in
VEP.92'.
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Methods for cancer driver gene identification

The current version of the intOGen pipeline uses seven cancer driver identification
methods to identify cancer driver genes from somatic point mutations: dNdScv?,
cBaSE?® and MutPanning* which test for mutation count bias in genes while correcting
for regional genomic covariates®, mutational processes and coding consequence type;
OncodriveCLUSTLS, which tests for significant clustering of mutations in the protein
sequence; smRegions’, which tests for enrichment of mutations in protein functional
domains; HotMAPS?, which tests for significant clustering of mutations in the 3D protein
structure; and OncodriveFML®, which tests for functional impact bias of the observed
mutations. Next, we briefly describe the rationale and the configuration used to run each

driver identification method.

dNdScv

dNdScv assesses gene-specific positive selection by inferring the ratio of
non-synonymous to synonymous substitutions (dN/dS) in the coding region of each
gene. The method resorts to a Poisson-based hierarchical count model that can correct
for: i) the mutational processes operative in the cohort determined by the mutational
profile of single-nucleotide substitutions with its flanking nucleotides; ii) the regional
variability of the background mutation rate explained by histone modifications — it
incorporates information about 10 histone marks from 69 cell lines within the ENCODE
project®; iii) the abundance of sites per coding consequence type across in the coding

region of each gene.

We downloaded (release date 2018/10/12) and built a new reference database based
on the list canonical transcripts defined by VEP.92 (GRCh38). We then used this
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reference database to run dNdScv on all datasets of somatic mutations using the

default setting of the method.

OncodriveFML

OncodriveFML is a tool that aims to detect genes under positive selection by analysing
the functional impact bias of observed somatic mutations. Briefly, OncodriveFML
consists of three steps: in the first step, it computes the average Functional Impact (FI)
score (in our pipeline we used CADD" v1.4) of coding somatic mutations observed in a
gene across a cohort of tumor samples. In the next step, sets of mutations of the same
size as the number of mutations observed in the gene of interest are randomly sampled
following trinucleotide context conditional probabilities consistent with the relative
frequencies of the mutational profile of the cohort. This sampling is repeated N times
(with N = 10° in our configuration) to generate expected average scores across all
mutated genes. Finally, it compares the observed average Fl score with the distribution
expected from the simulations in the form of an empirical p-value. The p-values are then

adjusted with a multiple testing correction using the Benjamini-Hochberg (FDR).

OncodriveCLUSTL
OncodriveCLUSTL is a sequence-based clustering algorithm to detect significant linear

clustering bias of the observed somatic mutations. Briefly, OncodriveCLUSTL first maps
somatic single nucleotide variants (SNVs) observed in a cohort to the genomic element
under study. After smoothing the mutation count per position along its genomic
sequence using a Tukey kernel-based density function, clusters are identified and
scored taking into account the number and distribution of mutations observed. A score
for each genomic element is obtained by adding up the scores of its clusters. To
estimate the significance of the observed clustering signals, mutations are locally
randomized using tri- or penta-nucleotide context conditional probabilities consistent

with the relative frequencies of the mutational profile of the cohort.
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Within the IntOGen pipeline, OncodriveCLUSTL version 1.1.2 is run for the set of
defined canonical transcripts bearing 2 or more SNVs mapping the mutations file.
Tuckey-based smoothing is conducted with 11bp windows. The different consecutive
coding sequences contained on each transcript are concatenated to allow the algorithm
to detect clusters of 2 or more SNVs expanding two exons in a transcript. Simulations
are carried out using pre-computed mutational profiles. All cohorts are run using
tri-nucleotide context SNVs profiles except for cutaneous melanomas, where
penta-nucleotide profiles are calculated. Default randomization windows of 31bp are not
allowed to expand beyond the coding sequence boundaries (e.g., windows overlapping
part of an exon and an intron are shifted to fit inside the exon). A total number of N = 10°
simulations per transcript are performed. Clustering signals are assessed using

analytical p-values.

cBaSE

cBaSE asserts gene-specific positive and negative selection by measuring mutation
count bias with Poisson-based hierarchical models. The method allows six different
models based on distinct prior alternatives for the distribution of the regional mutation
rate. As in the case of dNdScv, the method allows for correction by i) the mutational
processes operative in the tumor, with either tri- or penta- nucleotide context; ii) the site
count per consequence type per gene; iii) regional variability of the neutral mutation

rate.

We run a modified version of the cBaSE script to fit the specific needs of our pipeline.
The main modification is adding a rule to automatically select a regional mutation rate
prior distribution. Based on the total mutation burden in the dataset, the method runs
either an inverse-gamma (mutation count < 12,000), an exponential-inverse-gamma
mixture (12,000 < mutation count < 65,000) or a gamma-inverse-gamma mixture

(mutation count > 65,000) as mutation rate prior distributions — after communication with
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Donate Weghorn, cBaSE'’s first author). We also skip the negative selection analysis

part, as it is not needed for downstream analyses.

Mutpanning

Mutpanning resorts to a mixture signal of positive selection based on two components:
i) the mutational recurrence realized as a Poisson-based count model reminiscent to the
models implemented at dNdScv or cBaSE; ii) a measure of deviance from the
characteristic tri-nucleotide contexts observed in neutral mutagenesis; specifically, an
account of the likelihood that a prescribed count of non-synonymous mutations occur in
their observed given a context-dependent mutational likelihood attributable to the

neutral mutagenesis.

HotMaps3D

HotMAPS asserts gene-specific positive selection by measuring the spatial clustering of
mutations in the 3D structure of the protein. The original HotMAPS method assumes
that all amino acid substitutions in a protein structure are equally likely. We employed
HotMAPS-1.1.3 and modified it to incorporate a background model that more accurately

represents the mutational processes operative in a cohort of tumors.

Specifically, we implemented a modified version of the method where the trinucleotide
context probability of mutation is compatible with the mutational processes operative in
the cohort. Briefly, for each analyzed protein structure harbouring missense mutations,
the same number of simulated mutations are randomly generated within the protein
structure considering the precomputed mutation frequencies per tri-nucleotide in the
cohort. This randomization is performed N times (N = 10° in our configuration) thereby
leading to a background with which to compare the observed mutational data. The rest

of the HotMAPS algorithm was not modified.
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We downloaded the pre-computed mapping of GRCh37 coordinates into structure
residues from the Protein Data Bank (PDB)
(http://karchinlab.org/data/HotMAPS/mupit_modbase.sql.gz). We also downloaded (on
2019/09/20) all protein structures from the PDB alongside all human protein 3D models
from Modeller
(ftp://salilab.org/databases/modbase/projects/genomes/H_sapiens/2013/H_sapiens_20
13.tar.xz). and
(ftp://salilab.org/databases/modbase/projects/genomes/H_sapiens/2013/ModBase_H_s
apiens_2013_refseq.tar.xz). We then annotated the structures following the steps
described in HotMAPS tutorial
(https://github.com/Karchinl ab/HotMAPS/wiki/Tutorial-(Exome-scale)).

Since HotMAPS configuration files are pre-built in GRCh37 coordinates and our pipeline

is designed to run using GRCh38, for each input cohort, we first converted input somatic
mutations to GRCh37, executed the HotMAPS algorithm and transformed the output to
coordinates to GRCh38. All conversions were done using the PyLiftover tool

(https://pypi.org/project/pyliftover/).

smRegions
SmRegions is a method developed to detect linear enrichment of somatic mutations in

user-defined regions of interest. Briefly, smRegions first counts the number of
non-synonymous mutations overlapping a Pfam domain in a particular protein. Next,
these non-synonymous variants are randomized N times (N = 10% in our configuration)
along the nucleotide sequence of the gene, following the trinucleotide context probability
derived from precomputed mutation frequencies per tri-nucleotide in the cohort. The
observed and average number of simulated mutations in the Pfam domain and outside
of it are compared using a G-test of goodness-of-fit, from which the smRegions p-value
is derived. Within the IntOGen pipeline, smRegions discards domains with a number of
observed mutations lower than the average from the randomizations. The p-values are

adjusted with a multiple testing correction using the Benjamini-Hochberg procedure.
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Therefore, the analysis is confined to Pfam domains with a number of observed
mutations higher than or equal to the mean simulated number of mutations in the

re-sampling.

To create the database of genomic coordinates of Pfam domains we followed the next
steps: i) we gathered the first and last amino acid positions of all Pfam domains for
canonical transcripts (VEP.92) from BioMart; ii) for each Pfam domain we mapped the
first and last amino acid positions into genomic coordinates using TransVar —using
GRCh38 as reference genome—; iii) we discarded Pfam domains failing to map either

the first or last amino acid positions into genomic coordinates.

smRegions was conceptually inspired by e-driver'’, although significant enhancements
to the approach have been introduced. Particularly, i) our background model accounts
for the observed tri-nucleotide frequencies rather than assuming that all mutations are
equally likely; ii) the statistical test is more conservative; iii) Pfam'? domains are part of
the required input and can be easily updated by downloading the last Pfam release; iv)
the method can be configured to any other setting that aims to detect genes possibility

selected by enrichment of mutations in pre-defined gene regions.

Combining the outputs of driver identification

methods

Rationale

The IntOGen pipeline aims to provide a compendium of driver genes which

appropriately reflects the consensus from these seven driver identification methods.
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To combine the results of individual statistical tests, p-value combination methods
continue to be a standard approach in the field: e.g., Fisher's, Brown's', and
Stouffer's Z-score methods have been used for this purpose. These methods are useful
for combining probabilities in meta-analyses, in order to provide a ranking based on
combined significance under statistical grounds. However, the application of these
methods may bear some caveats:

1. The ranking resulting from p-value combination may lead to inconsistencies
when compared to the individual rankings, i.e., they may yield a consensus
ranking that does not preserve recurrent precedence relationships found in the
individual rankings.

2. Some methods, like Fisher's or Brown’s method, may bear anti-conservative
performance, thus leading to many likely false discoveries.

3. Balanced (non-weighted) p-value combination methods may lead to faulty results
just because of the influence of one or more driver identification method

performing poorly for a given dataset.

Weighted methods to combine p-values, like the weighted Stouffer's Z-score, provide
some extra room for proper balancing, in the sense of incorporating the relative
credibility of each driver identification method. We reasoned that in the context of the
combination of the output of driver identification methods, the allocation of weights

should account for differences in credibility between methods and across cohorts.

Our combination approach works independently for each cohort. To create a consensus
list of driver genes for each cohort, we first determine how credible each driver
identification method is when applied to this specific cohort (see Supplementary Figure
1 for a representation of the combinatorial workflow). We do so by tuning a voting
weight for each driver identification method that yields a good enrichment of bona-fide
cancer genes -- reported in the COSMIC Cancer Gene Census database' (CGC) -- in

the highly ranked positions of the resulting consensus ranking upon letting each driver
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identification method vote. Once a credibility score has been established, we use a
weighted method for combining the p-values that each driver identification method gives
for each candidate gene: this combination takes the driver identification methods
credibility into account. Based on the combined p-values, we conduct FDR correction to

conclude a ranking of candidate driver genes alongside g-values.

Weight Estimation by Voting

The relative credibility awarded to each method is based on the ability of the method to
give precedence to well-known genes already collected in the CGC catalog of validated
driver genes. As each method yields a ranking of driver genes, these lists can be
combined using a voting system —Schulze’s voting method. The method allows us to
consider each method as a voter with some voting rights (weighting) which casts ballots
containing a list of candidates sorted by precedence. Schulze’'s method takes
information about precedence from each individual method and produces a new

consensus ranking.

Instead of conducting balanced voting, we tune the voting rights of the methods so that
the enrichment of CGC genes at the top positions of the consensus list is maximized.
We limit the share each method can attain in the credibility simplex —up to a uniform

threshold. The resulting voting rights are deemed the relative credibility of each method.

Ranking Score

Upon selection of a catalog of bona-fide known driver elements (the Cancer Gene

Census, or CGC) we can provide a score for each ranking R of genes as follows:
< b
ER) = Zl log(i’+l)
=

where p(i) is the proportion of elements with rank smaller (closer to top) than i which

belong to CGC and N is a suitable threshold to consider only the N top ranked
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elements. Using E(R) we can define a function that maps each weighting vector w (in
the simplex of methods weights) to a value E(R(w)) where R(w) denotes the consensus
ranking obtained by applying Schulze’s voting with voting rights given by the weighting

vector w.

Optimization with constraints

Finally we are bound to find a good candidate for
w = argmax E(R(w))
For each method to have chances to contribute to the consensus score, we impose the

mild constraint of limiting the share of each method to 0.3.

Optimization is then carried out in two steps: we first find a good candidate W, by
exhaustive search in a rectangular grid satisfying the constraints defined above (with
grid step=0.05); in the second step we take W, as the seed for a stochastic hill-climbing
procedure (we resort to Python’s scipy.optimize “basinhopping”, method=SLSQP and

stepsize=0.05).

Estimation of combined p-values using weighted Stouffer's
Z-score

Using the relative weight estimate that yields a maximum value of the objective function
f we combined the p-values resorting to the weighted Stouffer's Z-score method.
Thereafter we performed Benjamini-Hochberg FDR correction with the resulting

combined p-values, yielding one g-value for each genomic element. If the element
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belongs to the CGC, we computed its g-value using only the collection of p-values of
CGC genes. Otherwise, we computed the g-value using the p-values computed for all

genes.

Tiers of driver genes from sorted list of combined rankings and
p-values
To finalize the analysis we considered only genes with at least two mutated samples in

the cohort under analysis. These genes were classified into four groups according to the

level of evidence in that cohort that the gene harbours signal of positive selection.

For the sake of simplicity, we give some conventions before proceeding to describe the
groups. For each gene G we have defined a rank r(G) and a significance g-value q(G)
according to the voting and p-value combinations described above. Given the final
ranked list of genes we can define two rank cutoffs that depend on a prescribed

significance level t:

R = mgn{r(G)\q(G)>t} -1
r = max{r(G)|¢(G) <1}

It is readily seen that r < R+1. By default the significance level t is set to 0.05.

1. The first group of genes, TIER1, contains genes showing high confidence and
agreement in their positive selection signals. TIER1 comprises all the genes

G such thatr(G) <r.
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2. The second group, TIER2, was devised to contain known cancer driver
genes, showing mild signals of positive selection, that were not included in
TIER1. More in detail, we defined TIER2 genes as those CGC genes, not
included in TIER1, whose CGC g-value was lower than a prescribed
significance level (default CGC g-value=0.25). The CGC g-value is computed
by performing FDR of the combined p-values albeit restricted to CGC genes.

3. The third group, TIER3, encompasses genes G that are not included in TIER1
or TIER2 which fulfill that r(G) < R.

4. All genes not included in the aforementioned classes are considered

non-driver genes.

Combination benchmark

We have assessed the performance of the combination compared to i) each of the
seven individual methods and ii) other strategies to combine the output from cancer

driver identification methods.

Finally, we evaluated the contribution of each of the individual methods to the

consensus list of driver genes.

Datasets for evaluation

We decided to perform an evaluation based on the 32 Whole-Exome cohorts of the
TCGA PanCanAtlas project (downloaded from
*https://gdc.cancer.gov/about-data/publications/pancanatlas*). These cohorts sequence
coverage, sequence alignment and somatic mutation calling were performed using the
same methodology guaranteeing that biases due to technological and methodological

artifacts are minimal.
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The Cancer Genes Census —version v87— was downloaded from the COSMIC data
portal (*https://cancer.sanger.ac.uk/census®*) and used as a positive set of known

cancer driver genes.

We created a catalog of genes with evidence of not involvement in cancerogenesis.
This set includes very long genes (HMCN1, TTN, OBSCN, GPR98, RYR2 and RYR3),
and a list of olfactory receptors from Human Olfactory Receptor Data Exploratorium
(HORDE) (https://genome.weizmann.ac.il’/horde/; download date 14/02/2018). In

addition, for all TCGA cohorts, we added non-expressed genes, defined as genes
where at least 80% of the samples showed a RSEM expressed in log, scale smaller or
equal to 0. Expression data for TCGA was downloaded from

|

https://gdc.cancer.gov/about-data/publications/pancanatlas*.

Metrics for evaluation

We defined a metric, referred to as CGC-Score, that is intended to measure the quality
of a ranking of genes as the enrichment of CGC elements in the top positions of the
ranking; specifically given a ranking R mapping each element to a rank, we define the
CGC-Score of R as:

S(R) = i pli) / o 1
R)= ZI Tog(i+1) Z} log(i+1)
| :

where p(i) is the proportion of elements with rank < that belong to CGC and N is a
convenient threshold to consider just the top elements in the ranking (by default N=40).
We estimated the CGC-Score across TCGA cohorts for all the rankings given by

individual methods and by the consensus ranking.

20

236



Similarly, we defined a metric, referred to as Negative-Score, that aims to measure the
proportion of non-cancer genes among the top positions in the ranking. Specifically,

given a ranking R, we define the Negative-Score of R as:

: n(i) ol 1
N®) = Zl Tog(+1) / Z] Tog(+ 1)
= : ol

where n(i) is the proportion of elements with rank < that belong to the negative set and
N is a suitable threshold to consider just the top elements in the ranking (by default N =
40). We estimated the Negative-Score across TCGA cohorts for all the rankings given

by individual methods and by the consensus ranking.

Comparison with individual methods

We compared the CGC-Score and Negative-Score of the combined lists of drivers with

the individual outputs of the seven driver discovery methods integrated in the pipeline.

We observed a consistent increase in CGC-Score of the combinatorial strategy
compared to any individual method across 23/32 (71%) of the TCGA cohorts
(Supplementary Figure 2a and 2b). Similarly, we observed a consistent decrease in
Negative-Score across TCGA cohorts, where the combinatorial strategy ranked the
least enriched in non-cancer genes in 14 (43%) cohorts and in none of them was the
most enriched in non-cancer genes (Supplementary Figure 2c).

In summary, the evaluation shows that the combinatorial strategy increases the True
Positive Rate (measured using the CGC-Score) preserving lower False Positive Rate
(measured using the Negative-Score) than the seven individual methods included in the

pipeline.
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Comparison with other combinatorial selection methods

We then computed the CGC-Score and Negative-Score based on the consensus
ranking from the aforementioned combinatorial methods and compared them to our
Schulze’s weighted combination ranking across all TCGA cohorts. Our combinatorial
approach met a larger enrichment in known cancer genes for 30/32 (93%) TCGA

cohorts (Supplementary Figure 2d).

Leave-one-out combination

We aimed to estimate the contribution of each method’s ranking to the final ranking after
Schulze’s weighted combination. To tackle this question, we measured the effect of
removing one method from the combination by, first, calculating the CGC-Score of the
combination excluding the aforementioned method and, next, obtaining its ratio with the
original combination (i.e., including all methods). This was iteratively calculated for all
methods across TCGA cohorts. Methods that positively contributed to the combined
ranking quality show a ratio below one, while methods that negatively contributed to the

combined ranking show a ratio greater than one.

We observed that across TCGA cohorts most of the methods contributed positively (i.e.,
ratio above one) to the weighted combination performance (Supplementary Figure 2e).
Moreover, there is substantial variability across TCGA cohorts in the contribution of
each method to the combination performance. In summary, all methods contributed
positively to the combinatorial performance across TCGA supporting our methodological

choice for the individual driver discovery methods (Supplementary Figure 2e).

Drivers postprocessing
The intOGen pipeline outputs a ranked list of driver genes for each input cohort. We
aimed to create a comprehensive compendium of driver genes per tumor type from all

the cohorts included in this version.
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Then, we performed a filtering on automatically generated driver gene lists per cohort.
This filtering is intended to reduce artifacts from the cohort-specific driver lists, due to
e.g. errors in calling algorithms, local hypermutation effects, undocumented filtering of

mutations.

We first created a collection of candidate driver genes by selecting either: i) significant
non-CGC genes (g-value < 0.05) with at least two significant bidders (methods
rendering the genes as significant); ii) significant CGC genes (either g-value < 0.05 or
CGC g-value < 0.25) from individual cohorts. All genes that did not fulfill these

requirements were discarded.

Additionally, candidate driver genes were further filtered using the following criteria:

1. We discarded non-expressed genes using TCGA expression data. For tumor
types directly mapping to cohorts from TCGA —including TCGA cohorts— we
removed non-expressed genes in that tumor type. We used the following criterion
for non-expressed genes: genes where at least 80% of the samples showed a
negative log2 RSEM. For those tumor types which could not be mapped to
TCGA cohorts this filtering step was not done.

2. We also discarded genes highly tolerant to Single Nucleotide Polymorphisms
(SNP) across human populations. Such genes are more susceptible to calling
errors and should be taken cautiously. More specifically, we downloaded
transcript specific constraints from gnomAD (release 2.1; 2018/02/14) and used
the observed-to-expected ratio score (oe) of missense (mys), synonymous (syn)
and loss-of-function (lof) variants to detect genes highly tolerant to SNPs. Genes
enriched in SNPs (oe_mys > 1.5 or oe_lof > 1.5 or oe_syn > 1.5) with a number
of mutations per sample greater than 1 were discarded. Additionally, we
discarded mutations overlapping with germline variants (germline count > 5) from

a panel of normals (PON) from Hartwig Medical Foundation
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(https://nextcloud.hartwigmedicalfoundation.nl/s/LTiIKTd8XxBqwaiC?path=%2FH
MFTools-Resources%2FSage).

. We also discarded genes that are likely false positives according to their known
function from the literature. We convened that the following genes are likely false
positives: i) known long genes such as TTN, OBSCN, RYR2, etc; ii) olfactory
receptors from HORDE (http:/bioportal.weizmann.ac.il/lHORDE/; download date
2018/02/14); iii) genes not belonging to Tierl1 CGC genes lacking literature
references according to CancerMine'” (http:/bionlp.bcgsc.ca/cancermine/).

. We also removed non CGC genes with more than 3 mutations in one sample.
This abnormally high number of mutations in a sample may be the result of either
a local hypermutation process or cross contamination from germline variants.

. Finally we discarded genes whose mutations are likely the result of local
hypermutation activity. More specifically, some coding regions might be the
target of mutations  associated with COSMIC  Signature 9
(https://cancer.sanger.ac.uk/cosmic/signatures) which is associated with
non-canonical AID activity in lymphoid tumours. In those cancer types were
Signature 9 is known to play a significant mutagenic role (i.e., AML, Non-Hodgkin
Lymphomas, B-cell Lymphomas, CLL and Myelodysplastic syndromes) we
discarded genes where more than 50% of mutations in a cohort of patients were

associated with Signature 9.

Candidate driver genes that were not discarded composed the compendium of driver

Classification according to annotation level from CGC

We then annotated the catalog of highly confident driver genes according to their
annotation level in CGC version 87. Specifically, we created a three-level annotation: i)
the first level included driver genes with a reported involvement in the source tumor type

according to the CGC; ii) the second group included CGC genes lacking reported
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association with the tumor type; iii) the third group included genes that were not present
in CGC.

To match the tumor type of our analyzed cohorts and the nomenclature/acronyms of

cancer types reported in the CGC we manually created a dictionary comprising all the

names of tumor types from CGC and cancer types defined in our study, according to the

following rules:

1.

All the equivalent terms for a cancer type reported in the CGC using the Somatic
Tumor Type field (e.g. “breast’, “breast carcinoma”, “breast cancer”), were

mapped into the same tumor type.

. CGC terms with an unequivocal mapping into our cancer types were

automatically linked (e.g., “breast” with “BRCA”).

. CGC terms representing fine tuning classification of a more prevalent cancer

type that did not represent an independent cohort in our study, were mapped to
their closest parent tumor type in our study (e.g., “malignant melanoma of soft

parts” into “cutaneous melanoma” or “alveolar soft part sarcoma” into “sarcoma”).

. Adenomas were mapped to carcinomas of the same cell type (e.g.,’hepatic

adenoma” into “hepatic adenocarcinoma”, “salivary gland adenoma” into “salivary

gland adenocarcinoma”).

. CGC parent terms mapping to several tumor types from our study were mapped

to each of the potential child tumor types. For instance, the term “non small cell
lung cancer” was mapped to “LUAD” (lung adenocarcinoma) and “LUSC” (lung

squamous cell carcinoma).

. Finally, CGC terms associated with benign lesions, with unspecified tumor types

(e.g., “other”, “other tumor types”, “other CNS”) or with tumor types with missing

parents in our study were left unmatched.
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Mode of action of driver genes

We computed the mode of action for highly confident driver genes. To do so, we first
performed a pan-cancer run of dNdScv across all TCGA cohorts. We then applied the
aforementioned algorithm (see Mode of action section below for more details on how
the algorithm determines the role of driver genes according to their distribution of
mutations in a cohort of samples) to classify driver genes into the three possible roles:
Act (activating or oncogene), LoF (loss-of-function or tumor suppressor) or Amb
(ambiguous or non-defined). We then combined these predictions with prior knowledge
from the Cancer Genome Interpreter'® according to the following rules: i) when the
inferred mode of action matched the prior knowledge, we used the consensus mode of
action; ii) when the gene was not included in the prior knowledge list, we selected the
inferred mode of action; iii) when the inferred mode of action did not match the prior

knowledge, we selected that of the prior knowledge list.
Repository of mutational features

Linear clusters

Linear clusters for each gene and cohort were identified by OncodriveCLUSTL. We
defined as significant those clusters in a driver gene with a p-value lower than 0.05. The
start and end of the clusters were retrieved from the first and last mutated amino acid

overlapping the cluster, respectively.

3D clusters

Information about the positions involved in the 3D clusters defined by HotMAPS were
retrieved from the gene specific output of each cohort. We defined as significant those

amino acids in a driver gene with a g-value lower than 0.05.
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Pfam Domains

Pfam domains for each driver gene and cohort were identified by smRegions. We
defined as significant those domains in driver genes with a g-value lower than 0.1 and
with positive log ratio of observed-to-simulated mutations (observed mutations /
simulated mutations > 1). The first and last amino acids are defined from the start and

end of the Pfam domain, respectively.

Excess of mutations

The so-called excess of mutations for a given coding consequence-type quantifies the
proportion of observed mutations at this consequence-type that are not explained by the
neutral mutation rate. The excess is computed from the consequence-type specific
dN/dS estimates o, as (o~ 1)/ o.. We computed the excess for missense, nonsense

and splicing-affecting mutations according to the canonical transcript.

Mode of action

Upon the consequence-type specific dN/dS estimates for nonsense and missense

mutations computed at each gene, denoted ©, . and ®,,, we deemed a gene

mis
activating or Act (resp. Loss-of-function or LoF) if ®,; — ®non > € (resp. ®uon —®,,;c > €)
with €=0.1. Genes with [©,;; — @l <& as well as genes with ®,, <1 were deemed

to have an “ambiguous” mode of action.

27

243



Supplementary Figures
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Figure Supplementary 1
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Supplementary Figure 1. Schematic representation of the approach to combine
the output of driver discovery methods.

a) Given the output of the seven driver discovery methods integrated in intOGen, b) the
pipeline dynamically estimates the credibility of the output of each method based on its
enrichment for Cancer Gene Census genes. Then in c) it performs the combination of
the outputs weighting each method output according to the credibility previously
allocated. Finally in d), the resulting list of drivers is sorted by the optimized consensus

ranking and their associated combined p-value.
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Figure Supplementary 2
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Supplementary Figure 2. Benchmark of the IntOGen combination using TCGA
cohorts.

a) The proportion of CGC drivers among the top ranking genes in the combined list is
greater than that of the lists of individual driver identification methods in three exemplary
TCGA cohorts (BRCA, LGG and Sarcoma). The proportion of CGC drivers in each list
of genes is measured across growing top ranked genes (x-axis). To summarize the
proportion of CGC drivers obtained throughout all values of rank tested, a numeric value
(CGC score) is derived (see Supplementary Methods).

b) CGC score of the output of all driver discovery methods and the combined list across
32 TCGA cohorts. Systematically, the combined list exhibits a CGC score which is at
least equal to that of the best performing individual method. In most cases, the
combined list exhibits a higher CGC score than that of any individual method.

c) For any drivers list we can also compute a potential false positives score or Negative
Score, tracking the proportion of a set of non driver genes (known “fishy” genes of driver
identification, and not expressed genes in each tissue) within the top-ranking elements
of the list. The Negative Score of the combined list across all TCGA cohorts is
comparable to that of methods with the lowest Negative Score. This means that the
increase in sensitivity of drivers identification in the combined list that is documented in
a) and b) does not come at the cost of a reduction of specificity.

d) Comparison of the CGC Score of the combined list with that obtained using classic
combination strategies across all TCGA cohorts. The combination approach developed
in the pipeline exhibits higher sensitivity than any other strategy across all cohorts.

e) To assess the contribution of each individual method to the combined list of drivers,
we carried out a systematic leave-one-out analysis across all TCGA cohorts (dots in
each distribution). We then evaluated the sensitivity of the new combination using the
CGC Score. In most cohorts, the elimination of a method from the combination causes a
decrease of sensitivity.

f) The effect of eliminating one method on the sensitivity of the combination changes

across cohorts.
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Supplementary Table

Supplementary Table 1. Summarized list of cohorts employed to produce the
snapshot of the compendium of cancer genes described in the main manuscript.

The list of cohorts collected from the public domain and employed in the construction of
subsequent snapshots of the compendium will be updated and published regularly in

the IntOGen website (www.intogen.org).
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4. DISCUSSION

In the Chapter 1 project, we had the opportunity to analyze a unique cohort
of cancer patients suffering from a rare adult disease called T-cell acute
lymphoblastic leukemia to shed some light into their treatment response and
for a better understanding of the leukemogenic process. There are few
landscape genomic studies focused on T-ALL adult patients and none (to
our knowledge) looking at the clonal evolution of their relapsed leukemias
[238,242,246,249]. We have studied 19 T-ALL adult patients from their
cancer evolution to their genomic characteristics in comparison with other

ALL forms.

According to our findings, the relapsed leukemia of the majority of these
patients arises from a population of relapse-fated cells already existing at
time of diagnosis. Prior studies have also pointed out the therapy-
preexisting origin of relapse in B-ALL [112,182,254,255]. Inspired by one
of them, Li et al., 2020 [112], we computed the doubling time of the T-
lymphoblasts through the percentage counts in serial measurements during
treatment (remission and relapse timepoints) assessed by the pathologist.
Therefore, given the estimated doubling time we could infer the number of
relapse cells expected at time of diagnosis. The precise relapse population
size at diagnosis is something that must be taken with caution since we only
had two measures of blasts per patient, thus, we actually have an aggregated
doubling time. However, these estimates are robust enough to say that the
majority of the studied cases had a preexisting clone assumed to be larger
than 1 cell and that only three patients fit more with a relapse-population
emerging during treatment. With more timepoints of the emergence of
relapse plus a bigger cohort size, it would be interesting to see whether there
are any differences between immunophenotypes of T-ALL. Another

important line of evidence that, indeed, there is mostly a preexisting relapse
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subpopulation at diagnosis, is the fact that we cannot detect thiopurine
treatment associated signature in relapse samples as shown recently in B-
ALL [112]. Imagine a single or few leukemic persistent cells, damaged by
the 6-mercaptopurine, that after treatment, make a clonal expansion. Then,
therapy-induced mutations would have been fixed in the relapse population
leaving a traceable pattern and allowing the detection of the signature.
However, given the short time between diagnosis and relapse (lots of early
relapsers in the in-house cohort?') and the lack of evidence of this signature,
it also points towards an already quite large relapse-fated population at

diagnosis.

In general, the initial clone from where the relapse arises has therefore
diverged before diagnosis and has accumulated private mutations becoming
a “branch” of the evolving leukemia. In order to have an estimate of when
the divergence between the primary and relapse happened we modeled the
contribution of signature 5 mutations which are considered to accumulate
in a clock-like manner. We noticed that although there is an overall good
linear correlation between the activity of signature 5 and the age of patients
in our in-house cohort, a direct conversion of the shared number of
mutations between primary and relapse to the corresponding chronological
age of each patient was overestimating the time of divergence. We also
observed that the intercept of the linear regression between the number of
mutations of signature 5 and the age of patients was exceeding from 0
(Figure 4.a of the manuscript) which we believed it might be due to some
acceleration in the mutation rate of this signature. For this reason, we
considered the accumulation of the signature 5 mutations to be constant

through time until a certain point (e.g. leukemic transformation) in which

2! median 9.1 months and mean 9.3 months which is a bit early compared to median
11 reported here [296] and within “early” relapse category in Li et al., 2020 paper
[112]
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most likely it starts to increase. For that, we considered as reference, the
constant mutation rate estimated for healthy hematopoictic stem cells
published by others [109] and then assumed different moments from which
the mutation rate started incrementing to fit the actual observations. We
tried two increments of the mutation rate (a constant one and a linear one)
and simulated them under a certain plausible variability departing at
different moments (i.e years) before diagnosis. Each one of these simulated
outputted models give an estimate of the divergence but still only the ones
with bigger likelihoods are used in the final estimation of it. Therefore, each
one of them contributes to a final estimate and grants a reasonable error
margin making it robust enough. The majority of the patients showed that
the divergence between primary and relapse clones likely happened the
previous year to the diagnosis of the leukemia. Therefore, our findings
suggest that in the majority of the studied cases, the relapse clone lineage
started within the year prior to primary detection and constitutes a subclonal

population at time of diagnosis of the primary.

In light of the results, one of the obvious questions is whether we can detect
the relapse before it creates a full grown second leukemia. For that, we have
checked which are the relapse-enriched mutations that can help predict the
relapse and are suspicious of providing treatment-resistance advantage. We
have identified relapse-specific alterations in known treatment-resistant
associated genes such as NTS5C2, ABCBI1 and also a new candidate:
SMARCAA4. Little is known about the involvement of SMARCA4 in
leukemogenesis and/or resistance but it has been detected exclusively in T-
ALL in primary samples [234,248] and also it has appeared mutated in a
relapse-specific manner [254,297]. We decided to see whether we could
detect the relapse SMARCA4 mutations of the two affected patients at low
allele frequency in the corresponding primary samples with a dPCR that

would give us deeper resolution than the WGS. This way, we wanted to
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check whether we can trail the relapse clone at time of diagnosis. Results
were negative which are in concordance with the estimated relapse clone
size being below the limit of detection for the two patients tested (Figure 5
a). On the one hand, that gave us more confidence that the estimate of the
doubling time and the corresponding computation of the number of relapse
cells at diagnosis is pretty accurate. On the other hand, it evidenced the need
for finding ways for relapse prevention. In relation to that, it seems that
relapse subclones at diagnosis are not always detectable at primary samples
so a close monitoring of MRD along the treatment seems the best solution
for relapse prevention [298]. In fact, the assessment of the MRD at the end
of induction has proven to be of high value to stratify patients according to
risk and is now widely used [281,298]. Therefore, the analysis of genomic
markers such as, mutations in genes with bad prognosis, in serial aspirates
or blood extractions during treatment can help to early detect a change in
the clonal dynamics. This way, helping to anticipate the emergence of the
resistant relapse clone, especially for those slow-responders to treatment
with persistent MRD as shown in here [254]. This type of tracking requires
the highest sensitivity and quantification of the mutations which can be very
costly. Therefore, a combination of techniques for this type of monitoring
such as keeping the morphological assessment at the end of induction but
trying droplet dPCR or ultra-deep sequencing for the rest of the checkpoints
seems more reasonable, as well as, the importance of treating patients
within specialized centers which are more likely the ones guaranteeing such
tracking. Apart from that, it would be interesting to perform some
functional analysis with SMARCA4 to understand its involvement in ALL.
Linking these results with the previous paragraph, given that our estimates
dated the relapse divergence within the prior year to primary diagnosis, it
seems crucial to early detect the primary. In other words, the sooner we stop
the primary leukemia progression the better we avoid the relapse-resistant

clone evolution.
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Another thing that drove our attention is the way in which the NOTCHI
pathway is mutated. First, we detected cases of convergent evolution in
which primary and relapse clones harbor different mutations in the same
pathway genes (two different NOTCH1 mutations or NOTCHI1 and
FBXW?7 private mutations to one or the other leukemia). In these cases,
perhaps, the relapse clone is able to tolerate or resist the treatment by any
genomic mechanism and the success of its progression is due to mutations
in the NOTCHI pathway as it is one of the most important signaling
pathways for proliferation in T-ALL. In the past, clinical studies checking
the prognostic value of NOTCH1 and FBXW?7 have reported different
results so further studies must be done to clarify it [241,299-301]. The
combination of a clonal and a subclonal mutation of NOTCH1 pathway
genes at time of diagnosis should serve to early detect a shift of the clonal
dominance if a close MRD monitoring is settled and may help prevent
refractory or relapsed patients. Moreover, we detected patients with
multiple mutations in the same gene simultaneously. It has been observed
that co-ocurrant mutations in HD and PEST domain of NOTCHI1 in cis
(same allele) cause a synergistic effect and overactivation of NOTCH1
[241,302]. It would be interesting to study the implications of NOTCHI
double mutants in adult T-ALL. In a recent study [302], the authors used
CisChecker which is an algorithm that can be used for NGS data to infer
whether the mutations are in cis or tramns. Otherwise using Nanopore
technology would also allow to sequence NOTCHI1 gene and check it.
Again, with a bigger cohort and serial samples of each patient, it would be
interesting to see to what extent double mutants of NOTCH1 can decrease
the doubling time and therefore, increase proliferation, and compare these
types of patients with other non-double mutants in T-ALL. In addition, it
would be interesting to relate this with clinical data of the patients, such as

incidence of CNS relapse, survival and other metrics. Another related line
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of investigation discussed along the project was to quantify the fitness
advantage of mutations in NOTCH1 and determine the fitness effects of T-
ALL main driver genes found such as PHP6 and RAS mutations in a similar
way as it has been shown recently with AML drivers appearing in CH cases
[303]. Unfortunately, with the size of our cohort it was not possible to
accurately compute that but this is some analysis that is interesting to pursue

in the future.

One of the main goals of our study in Chapter 1 was to find mechanisms of
resistance. Obvious candidates have not become apparent for all the
patients. As a consequence, we asked ourselves whether we could
distinguish a relapse driven by a non-resistant survivor cell population
(non-resistant scenario) from a relapse driven by a genetic resistance to the
treatment (resistant scenario) regardless of the specific mechanism. Since
there is an increasing evidence that the bone marrow niche can provide
protection to the leukemic blasts [178,293] against the treatment, perhaps a
non-resistance scenario would be a niche-protected group of leukemic cells
not harboring any genomic-resistant mechanism that manage to survive and
trigger a relapse. Whereas a resistant scenario would be, for example, a
leukemic cell/s harboring NT5C2 and avoiding mercaptopurine damage.
After simulating both scenarios we looked at the CCF at time of diagnosis
of the clonal relapse mutations (those fixed in the relapse cell population)
and compared them to our real data. In the non-resistant scenario, under
different parameters but simulated with the observed elapsed time between
the two leukemias, any of the undetectable mutations in the primary is able
to get fixed in relapse making it an unrealistic situation. On the contrary,
resistant simulations where a subgroup of cells carrying a resistant mutation
are selected, generate a similar scenario to the one observed in our patients.
Therefore, we are inclined to believe that, in this particular cohort, all

patients must have a relapse driven by therapy resistance, regardless of the
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concrete treatment-resistant mechanism. In other words, the relapses of our
cohort seem to be driven by genetic resistance which implies that there are
still resistant genomic mechanisms (unusual driver mutations, altered co-
occurrences, epigenetic changes...) to be discovered. In this sense, this
project evidenced the importance to generate tumoral data for those tumor
types with low incidence and to study cases with cancer conditions less
explored, such as relapse tumors or metastasis, to be able to increase the
compendium of mutational driver genes. The pipeline of IntOGen and the
whole system presented in Chapter 2 represents an important step towards
the completion of the list of all cancer driver genes. The implementation of
this framework has been optimized to facilitate the analysis of new data. As
more datasets of understudied malignancies and conditions are available
and fitted into the workflow, more complete snapshots of this compendium
will be generated. Nevertheless, still many challenges are to be solved, as
the detection of driver mutations in genes is necessary but not sufficient to

understand the whole picture of tumorigenesis.

Another lesson learned from Chapter 1 study is the confirmation of T-ALL
being a different entity from B-ALL. Although the active mutational
processes in primary leukemias are the same between T and B-ALL, we can
appreciate important differences in the pathways and altered genes driving
each one of these ALL forms. In addition, we have computed a different
doubling time for T-ALL compared to the one previously computed for B-
ALL. Although it might be that these differences are due to age (B-ALL
samples were pediatric and ours are adults), differences can also be caused
by the different biology behind the lineage or cell of origin which might
also greatly influence the tumoral growth and dynamics. Future studies
would enlarge our knowledge regarding these two ALL diseases and with
a better understanding there will come improvements in the therapeutic

opportunities to cure these patients. In fact, it seems that with the advances
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CAR-T for both leukemic lineages, more patients will benefit from this

therapy, most likely leading to increased survival rates.
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5. CONCLUSIONS

e In most adult T-ALL cases that recur, the relapse clone diverged
from the primary within the year prior to primary diagnosis, by
which time, its size ranges between a few and millions of cells, but

below the limit of detection by bulk sequencing.

e The relapse clone most likely harbors genomic alterations that

confer therapy resistance.

e The progression of T-ALL in some of the studied cases is
characterized by convergent evolution of mutations

affecting NOTCH1 pathway genes.

e The mutational processes detected in primary leukemias of B-ALL
and T-ALL are very similar; moreover, there is no evidence of
chemotherapy-related signatures in relapse adult T-ALLs, unlike in

the pediatric malignancy.

e  Weidentify well-known resistant mechanisms such as mutations in
NT5C2 and also potential resistance alterations in less studied
genes such as SMARCA4 and ABCB1 which appear in a relapse-

specific manner in adult T-ALL cases.

e We have identified 568 mutational cancer driver genes across 66
cancer types; whereas some of these drive tumorigenesis across
many cancer types (widespread), the majority are specific of one or

two malignancies
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7. APPENDIX

7.1 Collaboration

I have also been involved in the Liver Cancer Evolution Consortium (LCE).
This is a collaboration of some researchers in the labs of Dr. Martin S.
Taylor (Edinburgh University), Dr. Duncan T. Odom (DKFZ), Dr. Paul
Flicek (EBI), Dr. Nuria Lopez-Bigas and Dr. Colin S Semple (Edinburgh
University). The aim of the consortium was to shed some light into the
mutagenesis of DEN-induced mouse liver tumors and fully understand the
progression of hepatocellular carcinomas of a mouse model to get insights
into the human counterpart. The LCE sequenced 371 whole-genomes from
liver tumors from DEN-induced C3H and CAST mouse strains. Together
with Claudia Arnedo-Pac and Oriol Pich, we have searched for driver

mutations in coding and non-coding regions.

The first study of the consortium was published in Nature this year.

Aitken, S.J., Anderson, C.J., Connor, F. et al. Pervasive lesion
segregation shapes cancer genome evolution. Nature 583, 265-270
(2020). https://doi.org/10.1038/s41586-020-2435-1
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M Check for updates

Cancersarise through the acquisition of oncogenic mutations and grow by clonal
expansion'2 Here we reveal that most mutagenic DNA lesions are not resolved into a
mutated DNA base pair within asingle cell cycle. Instead, DNA lesions segregate,
unrepaired, into daughter cells for multiple cell generations, resulting in the
chromosome-scale phasing of subsequent mutations. We characterize this processin
mutagen-induced mouse liver tumours and show that DNA replication across
persisting lesions can produce multiple alternative alleles in successive cell divisions,
thereby generating both multiallelic and combinatorial genetic diversity. The phasing
of lesions enables accurate measurement of strand-biased repair processes,
quantification of oncogenic selection and fine mapping of sister-chromatid-exchange

events. Finally, we demonstrate that lesion segregation is a unifying property of
exogenous mutagens, including UV light and chemotherapy agents in human cells
and tumours, which has profound implications for the evolution and adaptation of

cancer genomes.

Analysis of cancer genomes has led to the identification of many
driver mutations and mutation signatures' that illustrate how envi-
ronmental mutagens cause genetic damage and increase cancer risk**.
The numerous patterns of mutations identified in cancer genomes
reflects the temporal and spatial heterogeneity of exogenous and
endogenous exposures, mutational processes and germline varia-
tion among patients. A study of diverse human cancers identified 49
distinct single-base-substitution signatures, with almost all tumours
showing evidence of at least three such signatures®.

This intrinsic heterogeneity leads to overlapping mutation signa-
tures that make it difficult to accurately disentangle the biases of DNA
damage and repair, or to interpret the dynamics of clonal evolution.
We reasoned that a more controlled and genetically uniform cancer
model system would overcome some of these limitations. By effectively
re-running cancer evolution hundreds of times, we aimed to explore
oncogenesis and mutation patterns at high resolution and with good
statistical power.

We chemically induced liver tumours in postnatal day 15 (P15) male
C3H/HeOu] inbred mice (hereafter referred to as C3H mice) (Fig. 1a;
n=104) using a single dose of diethylnitrosamine (DEN)°. For com-
parisonand validation, we replicated the study in the divergent mouse

strain CAST/Ei)’ (hereafter referred to as CAST mice) (Extended Data
Fig.1;n=>54).

Whole-genome sequencing (WGS) of 371independently-evolved
tumours from 104 C3H mice (Supplementary Table1) revealed that each
genome had about 60,000 (approximately 13 per Mb) somatic point
mutations (Extended DataFig. 1a), asimilar level to that found in human
cancers caused by exogenous mutagens such as tobacco®and UV expo-
sure’. Insertion-deletion mutations and larger segmental changes were
rare (Extended Data Fig. 1a-f). Point mutations were predominantly
(76%) T>N or their complement A>N changes (where N represents any
other nucleotide; Fig. 1b, Extended Data Fig. 1g-j), consistent with the
long-lived thymine adduct O*-ethyl-deoxythymidine being the principal
mutagenic lesion’. Known driver mutations were in the EGFR-RAS-RAF
pathway®* (Fig. 1c) and usually mutually exclusive. Similar results
were replicated in CAST mice (Extended Data Fig. 1j).

Chromosome-scale segregation of lesions
Ineach tumour, we observed multi
pronounced Watson-versus-Crick-strand asymmetry of mutations,
frequently encompassing entire chromosomes (Fig. 2). We define

ymic segments with
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Watson-strand bias as an excess of T>N over A»N mutations when called
onthe forward strand of the reference genome, and Crick-strand bias
as the converse of this. With a median span of 55 Mb (Fig. 2a-d), these
asymmetrically mutated segments are orders of magnitude longer than
asymmetries generated by transcription-coupled nucleotide-excision
repair (TCR)", APOBEC mutagenesis'** or replication biases™*. Total
mutation load and DNA copy number remain uniform across the
genome (Fig. 2e, f).

Pervasive, strand-asymmetric mutagenesis can be explained by
DEN-induced lesions remaining unrepaired before genome replica-
tion. The first round of replication after DEN treatment results in two
sister chromatids with independent lesions on each parent strand,
and daughter strands containing misincorporation errors comple-
mentary to the lesions (Fig. 2i). The sister chromatids segregate into
separate daughter cells during mitosis, and lesion-mutation duplexes
are resolved into a mutated DNA base pair by later replication cycles.
Asymmetric regions show a23-fold excess (median) of their preferred
mutation over its reverse complement, thus more than 95% of lesions
that generate a mutation segregate for at least one mitotic division.
We subsequently refer to this phenomenon as ‘lesion segregation’.

The haploid X chromosome always contains segments withastrong
strand bias (Fig. 2g). On autosomal chromosomes, when both allelic
copies have the same bias, the genome shows that bias (for example,
Watson bias on chromosome15in Fig. 2a-d); when one copy has Watson
bias and the other has Crick bias, the chromosome appears unbiased
(for example, chromosome19 inFig. 2a-d). Amodel based on random
retention of Watson- or Crick-biased chromosomes accurately predicts
that (1) around 50% of the autosomal genome and (2) 100% of the hap-
loid X chromosome show mutational asymmetry (Fig. 2g, Extended
Data Fig. 2). A few tumours (3.5%) have absent or muted asymmetry;
cellularity estimates indicate that they are polyclonal or polyploid
(Supplementary Table1).

Resolving sister-chromatid exchange

The lesion segregation model predicts that mutational asym-
metries should span whole chromosomes. However, we observe
symmetry switches between multimegabase segments of Wat-
son and Crick bias within chromosomes (Fig. 2a-d, g). These
probably represent sister-chromatid exchanges (SCEs) from
homologous-recombination-mediated DNA repair” (Extended Data
Fig.4a).SCEsaretypicallyinvisible to sequencing technologies because
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homologous recombination between sister chromatids is thought to
beerror-free’®.

SCE frequency per tumour positively correlates with point mutation
rate (Extended Data Fig. 3a, b). With about 27 SCEs (median) in each
tumour genome (n=371), we had sufficient statistical power to detect
recurrentexchange sites and biases in genomic context (Extended Data
Fig. 3c, d). After removing three reference-genome misassemblies
(Fig. 2g, Extended DataFig. 3e, f), we found that SCEs occur with mod-
est enrichment in transcriptionally inactive, late-replicating regions
(Extended Data Fig. 4b). The fine mapping (approximately 20-kb reso-
lution) of SCEs enabled us to test the fidelity of homologous recom-
bination. The mutation rate appears locally elevated at SCEs, but the
mutational spectrum matches the rest of the genome (Extended Data
Fig. 4c-f). Amodel of Holliday-intermediate branch migration could
explain these observations (Extended Data Fig. 4g).

Lesion segregation reveals selection

Cumulatively the tumours have equal Watson and Crick lesion-strand
retention across most of the genome (Fig. 2h). However, we observe
striking deviations at loci spanning known driver genes (Fig. 2h). The
T~>Amutation at codon 584 of the Braf driver gene®is observed in 153
out of 371 tumours in C3H mice, and we would expect the surround-
ing chromosomal segment to retain T lesions on the same strand.
This s the case in 94% (144 out of 153) of tumours (Fisher’s exact test,
P=3.6x10""). By contrast, tumours lacking the Braf mutation do not
show aretention bias (47% Crick, 53% Watson; P=0.88, not rejecting the
50:50 null expectation). We applied this test for oncogenic selection
at sites with sufficient recurrent mutations to have statistical power,
which confirmed that there was significant oncogenic selectionin Hras,
Brafand Egfr (Fig. 1c, Extended Data Table 1).

DNA repair with lesion-strand resolution

Resolving DNA lesions to specific strands within asingle cell cycle pre-
sentsaunique opportunity to investigate strand-specific DNA damage
and repairinvivo. For example, TCR (Fig. 3a) specifically removes DNA
lesions from the RNA template strand™**°.

We generated transcriptomes from the tissue of origin at the devel-
opmental time of DEN mutagenesis. Mutation rates were calculated
for each gene in each tumour, stratified by both expression level and
the strand containing lesions (Fig. 3b). As expected, TCR was highly
specificto the template strand and correlated closely with gene expres-
sion. The mutation rate in non-expressed genes had no observable
transcription-strand bias. By contrast, mutations in highly expressed
genes were reduced by 79.8 +1.0% (mean + s.d.) if the tumour had
template-strand lesions.

To evaluate the specificity of TCR, we compared mutation rates
for each trinucleotide context between template and non-template
strands, stratified by expression level (Fig. 3c). For highly expressed
genes, thymines have an 82 + 6.8% (mean + s.d. across sequence con-
texts) lower mutation rate on the template strand; the non-template
mutation rate is indifferent to expression (Fig. 3¢, dark blue lines are
closeto vertical), as expected”. Mutations from C and G show highly effi-
cient TCR onthe template strand; 70 +7.8% and 34 +21%, respectively.
In contrast to T mutations, they also show an expression-dependent
reduction in mutation rate on the non-template strand, suggesting
thatnon-TCRrepair processes are active. Rare mutations from adenine
on the lesion-containing strand increase with transcription, possibly
owing to activity of error-prone trans-lesion DNA polymerase Pol-n?..

The ability to resolve the lesion strand unmasks the contribution of
bidirectional transcription from active promoters® in shaping muta-
tion patterns (Fig. 3d-f, Extended Data Fig. 5). Genic transcription is
associated with a sharp, sustained reduction in mutation rate from
template-strand lesions. A local increase in the mutation rate over
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approximately 200 nucleotides upstream of the transcription start
site (Fig. 3d) isrevealed toresult from genic and upstream bidirectional
transcription emerging from opposite edges of the core promoter® lead-
ingtoalocal depletion of TCR activity within the promoter (Fig. 3e, f).

tril ide contexts: each context has a high and alow expression point
linked by aline. d, Sequence-composition-normalized profiles of mutation rate
around transcription startsites (TSS). e, Stratifying by lesion strand reveals
how bidirectional transcription initiation shapes the observed mutation
patterns. f, Higher resolution of the TSSregion frome.

Anengine for genetic diversity

Asegregating lesion may act as template for multiple rounds of repli-
cation in successive cell cycles (Fig. 2i). Each replication could incor-
porate different incorrectly or correctly paired nucleotides opposite
apersistent lesion, resulting in multiple alleles at the same position.
Consistent with this notion, multiallelic mutations have been reported
inhuman cancers® and a cell-lineage-tracking system®.

We evaluated multiallelic variation by identifying sites with mul-
tiple high-confidence—but conflicting—mutation calls. On average,
8% of mutated sites in DEN-induced tumours have multiallelic vari-
ants (n=1.8 x 10°sites in C3H tumours); per tumour, this value ranges
from less than 1% to 26% (Fig. 4a). As a control, only 0.098% (95% con-
fidence interval: 0.043-0.25%) of sites permuted between tumours
show evidence of non-reference nucleotides. We further validated
WGS multiallelic-variant calls using independently performed exome
sequencing® (Fig. 4b).
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The generation of multiallelic variation produces combinatorial
geneticdiversity that would not be expected under purely clonal expan-
sion. This can be directly visualized in pairs of mutations spanned by
individual sequencing reads (Fig. 4c, d). The observed combinations of

example C3H tumours that show high (g), variable (h) or low (i) rates of genetic
diversity. The percentage of mutation sites with robust support for multiallelic
variation in10-Mb wij foreach asymmetri

(black). j, Histogram of the estimated cell generation post-DEN exposure from
which tumours developed based on the proportion of multiallelic segments.
K, Enrichment of specific driver gene mutations in earlier (generation1) and
later (generation >1) transforming tumours. log, odds ratios (circles) from
Fisher’s exact test with 95% confidence intervals (whiskers) calculated from the
hypergeometricdistribution. All n=371tumours were included in the analysis
foreachgene.

DEN treatment. Each mitosis following DEN exposure is expected to
dilute the number of lesion-containing strands in each daughter cell
by approximately 50%. Only lesion-retaining fractions of the genome
generate multiallelicand combinatorial genetic diversity in the daugh-

biallelicsites require replication over lesions without th ionof

terli [« with this, the multiallelic segments mirror the

mutations in some cell divisions (Fig. 4d). This directly demonstrates
that non-mutagenic synthesis over DNA lesions occurs, and allele fre-
quency analysis indicates it is common (Extended Data Fig. 6). The
per-tumour rates of combinatorial diversity and multiallelic sites corre-
late closely and highlight the wide variation between tumours (Fig. 4e).

The explanation for such intertumour variance becomes evident
when plotting the distribution of multiallelic sites along each genome
(Fig. 4f-i). Tumours with high rates of genetic diversity have consist-
ently high rates of multiallelism throughout their genome (Fig. 4g).
They are likely to have expanded from a first-generation daughter
of the original DEN-mutagenized cell, in which all DNA is a duplex
of alesion-containing and non-lesion-containing strand. Therefore,
replication using lesion-containing strands as the template in subse-
quentgenerations produces multiallelic variation uniformly across the
genome. Tumours with lower total levels of genetic diversity exhibit
discrete genomic segments of high and low multiallelism (Fig. 4h, i).
These tumours probably developed from a cell some generations after
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mutational asymmetry segmentation pattern.

By estimating the fraction of multiallelic chromosomal segments,
we caninfer the cell generation, relative to DEN exposure, from which
the tumour expanded (Fig. 4j).In 67% of C3H tumours and 21% of CAST
tumours, theiinitial burst of mutations was instantly transformative. In
the remainder of tumours, the observed fractions of multiallelic seg-
ments cluster around expectations for subsequent cell generations,
suggesting that transformation required a specific combination of
mutated alleles, an additional mutation or an external trigger. Of note,
Egfr-driven tumours appear to transformsignificantly later (P=0.042
after Bonferroni correction, Fisher’s exact test), suggesting that driver
gene identity influences the timing of tumour inception (Fig. 4k).

Lesion segregation is ubiquitous
Lesion segregation is afeature of DEN mutagenesis in mice. This raises
two critical questions. Do other DNA-damaging agents induce lesion
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no detectable asymmetry, as expected (Extended Data Fig. 8c). We
conclude that the chromosome-scale segregation of lesions and the
resulting strand asymmetry of mutation patterns, are general features
of all tested DNA-damaging mutagens.

The pronounced mutational asymmetry observed in both
DEN-induced tumours and mutagen-exposed human iPSCs’ occurs
after asingle mutagenicinsult. By contrast, most human cancers accu-
mulate mutations as a result of multiple damaging events over their
history. Lesion segregation predicts that such tumours will acquire
new waves of segregating lesions after each exposure, thus progres-
sively masking their asymmetry patterns. Therefore, even though UV
exposure causes substantial lesion segregationin human cells (Fig. 5a,
b, Extended DataFigs. 7a, 8b), itis unlikely that skin cancers would show
mutational asymmetry following repeated UV exposure.

Nevertheless, analysis of human cancer genomes? (n = 18,850
tumours, 22 primary sites) identified multiple cancers with the char-
acteristic mutational asymmetry of lesion segregation (Fig. 5c,d). The
majority of these tumours are renal, hepatic or biliary in origin, and
show a highmutation rate and strand asymmetry of T>A or their com-
plement A>T mutations, consistent with exposure to aristolochicacid®
(Supplementary Table 2). Although it is seen most clearly in tumours
subjected to a single dosc of a mutagen, lesion segregation probably
shapes all genomes subjected to DNA damage, withimportantimplica-
tions for tumour evolution and heterogeneity.

Discussion

Inthis study, we have shown that most mutation-causing DNA lesions
arenot resolved as mutations withinasingle cell cycle. Instead, lesions
segregate unrepaired into daughter cells for multiple cellular genera-
tions, resultingin chre -scale strand ry of subsequent
mutations. This suggests that lesion removal before replication has
high fidelity and rarely results in mutations. Lesion segregation was
initially discovered in an in vivo mouse model of oncogenesis; we
haved rated that it is ubi for all tested also

20% of informative mutations (C>T or their G>A)

asymmetric runs of at least 22 consecutive mutations (for example, 222 C>T
mutations withoutanintervening G>A). Simulated nullbased on 100,000
permutations of 1,000 mutations; black curve shows median. b, All robust
mutagensin human iPSCs®, mutagen classes indicated by coloured boxes;
PAH indicates polycyclic aromatic hydrocarbons. Individual compound
abbreviations expanded inSupplementary Table 2. The rl,, metric (x-axis) is
plotted for each clone (n=325), including multiple replicates per exposure.
Data pointsize quantifies informative mutations; ‘P<0.05 (two-sided,
Bonferroni-corrected). ¢, The rl,, metricand runs tests for human cancers?;
n=18,850 cancers screened, three cohorts plotted. Blue lines show Bonferroni
adjusted P=0.05 threshold for the runs test (two-sided) and an empirical
threshold for rl,, (Methods). x-axis P-values <1 x 10 are rank-ordered.

d, Mutational asymmetry (plotted as in Fig. 2a-c) ina human hepatocellular
carcinoma (donor DO231953) witha dominant mutation signature for
aristolochicacid exposure.

segregation? Does lesion segregation occur in human cellsand cancers?
Recently, astudy inwhich humaninduced pluripotent stem cells (iPSCs)
were exposed to 79 environmental mutagens revealed that 41 of the
mutagens produced excess nucleotide substitutions®. Although not

occursinhuman cellsand is evidentin human cancers. Similar patterns
of ry inbacterial mut is suggest that the underlying
mechanisms are highly conserved®?,

Our discovery of lesion segregation challenges longstanding assump-
tions of cancer evolution®. For example, the widely used infinite sites
model® does not allow for recurrent mutation at the same site. Our
findings also provide new perspectives for understanding cancer evolu-
tion using mutational asymmetry and multiallelism patterns to track
events during oncogenesis and to quantify selection. Perhaps most
notably, lesion segregation is a previously unrecognized mechanism
for a cancer to sample the fitness effects of mutation combinations,
thus evading Muller’s ratchet® and Hill-Robertson interference, which
assumes low selection efficiency owing to the inability to separate
mutations of opposing fitness*>*. Consequently, DNA-damaging
chemotherapeutics, particularly large or closely spaced doses gener-
ating persistent lesions, could inadvertently provide an opportunity
for cancer to efficiently select resulting mutations. This insight may
guide the development of more effective chemotherapeutic regimens.

Onceidentified, lesion segregation is a deeply intuitive concept. Its
practlcal applications provide new vistas for the exploration of genome

previously notedin thesein vitro data, many of the expc
chromosome-scale lesion segregation patterns (Extended DataFig.7)
similar to those observed in the in vivo DEN model. Applying runs-based
tests (Fig. 5a, b, Extended Data Fig. 8), we detect marked mutational
asymmetry in every sample with more than1,000 ‘informative’ muta-
tions (Fig. 5b, Extended Data Fig. 8b; see Methods), including clinically
relevant insults such as sunlight (simulated solar radiation), tobacco
smoke (benzo[a]pyrene diol-epoxide (BPDE)) and chemotherapeutics
(temozolomide). By contrast, mutations induced by perturbation of

and fund al molecular biology. The discovery of
pervasive lesion segregation profoundly revises our understanding of
how thearchitecture of DNA repair and clonal proliferation can conspire
toshape the cancer genome.
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Methods

Statistical methods were used to predetermine sample size for the test-
ing of oncogenic selection by biased strand retention; otherwise, no
statistical methods were used to determine sample size. The investiga-
tors were blinded to allocation during histopathological assessment.

Mouse colony management

Animal experimentation was carried out in accordance with the Ani-
mals (Scientific Procedures) Act 1986 (United Kingdom) and with the
approval of the Cancer Research UK Cambridge Institute Animal Wel-
fare and Ethical Review Body (AWERB): the maximum approved tumour
burden was 10% body weight, which was not exceeded. Animals were
maintained using standard husbandry: mice were group housed in Tec-
niplast GM500 IVC cages witha12 h:12 hlight:dark cycle and ad libitum
access towater, food (LabDiet 5058), and environmental enrichments.

Chemical model of hepatocarcinogenesis

P15 male C3H and CAST mice were treated with asingle intraperitoneal
(IP) injection of DEN (Sigma-Aldrich N0258; 20 mg kg™ body weight)
diluted in 0.85% saline. Liver tumour samples were collected from
DEN-treated mice 25 weeks (C3H) or 38 weeks (CAST) after treatment.
All macroscopically identified tumours were isolated and processed
in parallel for DNA extraction and histopathological examination.
Non-tumour tissue from untreated P15 mice (ear, tail, and background
liver) was sampled for control experiments.

Tissue collection and processing

Liver tumours of sufficient size (>2 mm diameter) were bisected; one
half was flash frozen in liquid nitrogen and stored at -80 °C for DNA
extraction, and the other half was processed for histology. Tissue
samples for histology were fixed in 10% neutral buffered formalin for
24 h, transferred to 70% ethanol, machine processed (Leica ASP300
Tissue Processor; Leica), and paraffin embedded. All formalin-fixed
paraffin-embedded sections were 3 pum in thickness.

Histochemical staining

Formalin-fixed paraffin-embedded tissue sections were stained with
haematoxylinand eosin (H&E) using standard laboratory techniques.
Histochemical staining was performed using the automated Leica
ST5020; mounting was performed on the Leica CV5030.

Imaging

Tissue sections were digitised using the Aperio XT system (Leica Biosys-
tems) at 20x resolution; all H&E images are available in the BioStudies
archive at EMBL-EBI under accession S-BSST383.

Tumour histopathology

H&E sections of liver tumours were blinded and assessed twice by a
pathologist (S.J.A.); discordant results were reviewed by anindepend-
ent hepatobiliary pathologist (S.E.D.). Tumours were classified accord-
ing to the International Harmonization of Nomenclature and Diagnostic
Criteria (INHAND) guidelines for lesions in rats and mice*. Inaddition,
tumour grade, size, morphological subtype, nature of steatosis and
mitotic index were assessed (Supplementary Table 1), as well as the
presence of cystic change, haemorrhage, necrosis, or vascular invasion.

Sample selection for WGS

Tumours which met the following histological criteria were selected
for WGS (C3H n =371, CAST n = 84): (i) diagnosis of either dysplastic
nodule (DN) or hepatocellular carcinoma (HCC), (ii) homogenous
tumour morphology, (iii) tumour cell percentage >70%, and (iv) ade-
quate tissue for DNA extraction. Neoplasms with extensive necrosis,
mixed tumour types, a nodule-in-nodule appearance (indicative of
an HCC arising within a DN), or contamination by normal liver tissue

were excluded. Since carcinogen-induced tumours arising in the same
liver are independent®, multiple tumours were selected from each
mouse to minimise the number of animals used. A subset of normal
(non-tumour) samples from untreated mice were also sequenced (C3H
n=13,CASTn=7).

Whole-genome sequencing

Genomic DNA was isolated from liver tissue and liver tumours using
the AllPrep 96 DNA/RNA Kit (Qiagen, 80311) according to the manu-
facturer’s instructions. DNA quality was assessed on a 1% agarose gel
and quantified using the Quant-IT dsDNA Broad Range Kit (Thermo
Fisher Scientific). Genomic DNA was sheared using a Covaris LE220
focused-ultrasonicator to a450-bp meaninsert size.

WGS libraries were generated from 1 pg of 50 ng pl ™ high molecular
weight genomic DNA using the TruSeq PCR-free Library Prep Kit (1llu-
mina), according to the manufacturer’sinstructions. Library fragment
size was determined using a Caliper GX Touch with a HT DNA 1k/12K/
HiSensitivity LabChip and HT DNA Hi Sensitivity ReagentKit to ensure
fragments of 300-800 bp (target -450 bp).

Libraries were quantified by real-time PCR using the Kapa library
quantification kit (Kapa Biosystems) ona Roche LightCycler 480.0.75
nM libraries were pooled in 6-plex and sequenced on a HiSeq X Ten
(Illumina) to produce paired-end 150-bp reads. Each pool of 6 libraries
was sequenced over eight lanes (minimum of 40x coverage).

Variant calling and somatic mutation filtering

Sequencing reads were aligned to respective genome assemblies
(C3H =C3H_HeJ_v1; CAST = CAST _EiJ_v1)** with bwa-mem (v.0.7.12)*”
using default parameters. Reads were annotated to read groups using
the Picard (v.1.124)* tool AddOrReplaceReadGroups, and minor
annotationinconsistencies corrected using the Picard CleanSam and
FixMatelnformation tools. Bam files were merged as necessary, and
duplicate reads were annotated using the Picard tool MarkDuplicates.

Single-nucleotide variants were called using Strelka2 (v.2.8.4)*
implementing default parameters. Initial variant annotation was per-
formed with the GATK (v.3.8.0)** walker CalculateSNVMetrics (https://
github.com/crukci-bioinformatics/gatk-tools). Genotype calls witha
variantallele frequency <0.025 were removed. Althoughinbred strains
were used, fixed genetic differences between the colonies and the refer-
ence genome, as well as small numbers of germline variants segregating
within the colonies were identified. For each strain, fixed differences
identified as homozygous changes presentin100% of genotyped sam-
pleswere filtered out. Segregating variants were filtered based on the
excess clustering of mutations to animals with shared mothers. To
generate a null expectation taking into account the family structure
of the colonies, the parent-offspring relationships were randomly
permuted 1,000 times. For each count of recurrent mutation (range
5to 371inclusive), we determined the null distribution of expected
distinct mothers. Comparing this to the observed count of distinct
mothers for each recurrent (n > 4) mutation, those with a low prob-
ability (P<1x10™*, pnorm function from R (v.3.5.1)*) under the null
were excluded from analyses.

Copy number variation between tumours within strains was called
using CNVKit (v.0.9.6) . Non-tumour reference coverage was provided
from non-tumour control WGS data (C3H n=11, CAST n=7) and per
tumour cellularity estimates (see below) were provided.

RNA sequencing

Total RNA was extracted from P15 liver tissue (n =4 biological replicates
per strain) using QIAzol Lysis Reagent (Qiagen), according to manu-
facturer’sinstructions. DNase treatment and removal were performed
using the TURBO DNA-free kit (Ambion, Life Technologies), according
tothemanufacturer’sinstructions. RNA concentration was measured
usingaNanoDrop spectrophotometer (Thermo Fisher); RNA integrity
was assessed on a Total RNA Nano Chip Bioanalyzer (Agilent).
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Total RNA (1 pg) was used to generate sequencing libraries using the
TruSeq Stranded Total RNA Library Prep Kit with Ribo-Zero Gold (Illu-
mina), according to the manufacturer’sinstructions. Library fragment
size was determined using a2100 Bioanalyzer (Agilent). Libraries were
quantified by quantitative PCR (Kapa Biosystems). Pooled libraries
were sequenced on a HiSeq4000 to produce > 40 million paired-end
150-bp reads per library.

RNA-seq data processing and analysis

Transcriptabundances were quantified with Kallisto (v.0.43.1)* (using
the flag-bias) and a transcriptome index compiled from coding and
non-coding cDNA sequences defined in Ensembl v91*. TPM estimates
were generated for each annotated transcript and summed across
alternate transcripts of the same gene for gene-level analysis. The TSS
for each gene was annotated with Ensembl v91and based upon the most
abundantly expressed transcript. RNA-sequencing (RNA-seq) dataare
available at Array Express at EMBL-EBI under accession E-MTAB-8518.

Genomicannotation data
Mouse liver proximity ligation sequencing (HiC) data were downloaded
from GEO (GSE65126)", replicates were combined, then aligned to
GRCm38*and processed using the Juicebox (v.7.5) andJuicer scripts*’
to obtain the HiC matrix. Eigenvectors were obtained for 500kb con-
secutive genomic windows over each chromosome from the HiC matrix
usingJuicebox and subsequently oriented (to distinguish compartment
A from B) using GC content per 500-kb bin. We used progressiveCac-
tus*® to project the 500-kb windows into the C3H reference genome
and Bedtools (v.2.28.0) to merge syntenic loci between 450 and 550
kbinsize, removing the second instance where we observed overlaps.
Genic annotation was obtained from Ensembl v.91* for the corre-
sponding C3H and CAST reference genome assemblies (C3H_He)J_v1,
CAST Ei)_v1). Genomic repeat elements were annotated using Repeat-
Masker (v.20170127; http://www.repeatmasker.org) with the default
parameters and libraries for mouse annotation.

The analysable fraction of the genome

Analysis and sequence composition calculations were confined to
the main chromosome assemblies of the reference genome (chromo-
somes 1-19 and X). Using WGS of non-tumour liver, ear and tail samples
(C3Hn=11,CAST n=7) collected and sequenced contemporaneously
with tumour samples, genome sequencing coverage was calculated
for 1-kb windows using multicov in Bedtools (v.2.28.0)*. Windows
with read coverage >2 s.d. from the autosomal mean were flagged as
suspect in each tumour. Read coverage over the X chromosome was
doubled inthese calculations to account for the expected hemizygosity
in these male mice. Any 1-kb window identified as suspect in >90% of
these non-tumour samples was flagged as ‘abnormal read coverage’
(ARC) and masked from subsequent analysis. This masked 12.7% of
the C3H and 11.5% of the CAST reference genomes yielding analys-
able haploid genomesizes of C3H=2,333,783,789 nucleotides (nt) and
CAST=2,331,370,397 nt.

Mutationrate calculations

Mutation rates were calculated as 192 category vectors representing
every possible single-nucleotide substitution conditioned on theiden-
tity of the upstream and downstream nucleotides. Each rate being
the observed count of a mutation category divided by the count of
the trinucleotide context in the analysed sequence. To report asingle
aggregate mutation rate, the three rates for each trinucleotide context
were summed to give a 64 category vector and the weighted mean
of that vector reported as the mutation rate. The vector of weights
being the trinucleotide sequence frequency of a reference sequence,
for example the composition of the whole genome. In the case of
whole-genome analysis, the same trinucleotide counts are used in (1)
theindividual category rates calculation and (2) the weighted mean of

therates, cancelling out. For windowed comparisons of mutation rates,
the weighted meanis calculated using the genome wide composition of
trinucleotides rather than the local sequence composition, providing
acompositionally adjusted mutation rate estimate. For mutationrates
in TCRanalysis, the same compositional adjustment was carried out
butusing the trinucleotide composition of the aggregate genic spans
of genome (minus ARC regions) for normalization.

Mutation signatures

The 96 category ‘folded” mutation counts for each of the 371 C3H
tumours were deconvolved into the best fitting number (K) of com-
ponentsignatures using sigFit (v.2.0)* with1,000iterationsand K set
tointegers 2 to 8inclusive. A heuristic goodness-of-fit score based on
cosine similarity favoured instances where K = 2. The DEN1and DEN2
signatures reported were obtained by running sigFitwith30,000 itera-
tions for K=2. Analysis of CAST tumours gave less distinct separation
of signatures so the C3H derived DEN1and DEN2 were used for both
strains. To fit signatures to each tumour we used sigFit provided with
the DEN signatures and additional SPONT1and SPONT2 signatures
that were derived from equivalent WGS analysis of spontaneous
(non-DEN-induced) C3H tumours.

Driver mutation identification

Candidate cancer driver genes were identified by applying Onco-
driveFML (v.2.2.0 using the SIFT scoring scheme)* and Oncodrive-
CLUSTL (v.1.1.1)* to mutations identified in C3H tumours. The only
genes convincingly identified as significantly enriched for function-
ally impactful or clustered mutations were Braf, Egfr and Hras. Kras
appeared as marginally significant. These four genes were identified
for C3H°. Protein altering mutations in those genes were annotated as
driver mutations in C3H and CAST tumours.

Mutational asymmetry segmentation and scoring

For each tumour a focal subset of ‘informative’ mutation types were
defined, T>N or A>N mutations, in the case of DEN-induced tumours.
The order of focal mutations along each chromosome was represented
as a binary vector (for example, O for T>N, 1for A>N). Vectors corre-
sponding to each chromosome of each tumour were processed with
the cpt.mean function of the R Changepoint (v.2.2.2)* package run
withan Akaike information criterion (AIC) penalty function, maximum
number of changepoints set to12 (Q=12), and implementing the PELT
algorithm for optimal changepoint detection. Following segmenta-
tion, the defined segments were scored for strand asymmetry, taking
into account the sequence composition of the segment. For example
in tumours with T>N or A>N informative mutations the number of
Tsonthe forward strand is the count of Watson sites G and the num-
ber of T>N mutations is i, which together give the Watson strand
rate Ry, = /Gy, The forward strand count of As and mutations from
Alikewise give the Crick strand rate R. = ji/G.. From these two rates
we calculate a relative difference metric, the mutational asymmetry
scoreS=(Ry—Rc)/(Ry+Rc).

The parameter S scales from 1 all Watson (for example, DEN T>N
mutations) through 0 (50:50 T>N:A~>N) to -1for all Crick (for example,
DEN A~>N). For the categorical assignment, $ > 0.3 is Watson-strand
asymmetric, $<-0.3 Crick-strand asymmetric and in the range -0.3 <
$<0.3symmetric, though more stringent filtering was applied where
noted. Segments containing <20 informative mutations were discarded
from subsequent analyses.

To test for oncogenic selection at sites with recurrent mutations,
mutational asymmetry segments overlapping the focal mutation were
categorised based on their asymmetry score S, as above. The test was
implemented as a Fisher’s exact test with the 2 x 2 contingency table
comprising the counts chromosomes (two autosomes per cell) strati-
fied by Watson-versus-Crick asymmetry and the presence of the focal
mutation in the tumour. Tumours containing another known driver
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geneor recurrent mutation within the focalasymmetry segment were
discarded from the analysis. We estimated the minimum recurrence of
amutation necessary to reliably detect oncogenic selection through
simulation. Biased segregation of chromosomes containing drivers was
modelled using the observed median excess of T>N over A>N lesions
(23-fold), and random segregation of non-driver containing strands (1:1
ratio). Our model predicted >33 C3H recurrences or >41 CAST recur-
rences would give 80% power to detect oncogenic selectionif present.

Tumour cellularity estimates

We calculated tumour cellularity as a function of the non-reference
read count in autosomal chromosomes (1-R/d) x 2, where R is the
reference read count at a mutated site and d is the total read depth
at the site. For each tumour these values were binned in percentiles
and the midpoint of the most populated (modal) percentile taken as
the estimated cellularity of the tumour. Given the low rate of copy
number variation across the DENinduced tumours, no correction was
made for copy-number distortion. Skew in the variant allele frequency
(VAF) = (1- R/d)) distribution was calculated using Pearson’s median

coefficientimpl dinRas (3 x (mean - median))/s.d.
of the VAF distribution.

matched mouse strain. Expression thresholds were defined as >50th
centile for active and <50th centile for inactive genes.

A higher count of informative mutations provides greater power
toidentify shorter mutational asymmetry segments. To fairly test for
correlation between nucleotide substitution rate and SCE rate we ran-
domly down-sampled informative mutations to 10,000 per tumour
genome and recomputed the mutational asymmetry segmentation
patterns from the sampled data. Tumours with <10,000 informative
mutations were excluded. We then correlated the total (not down sam-
pled) nucleotide substitution load to the count of SCE eventsinferred
from the down-sampled data.

TCRcalculations
For each protein coding gene, the maximally expressed transcript
isoform was identified from P15 liver in the matched strain (TPM
expression), subsequently the primary transcripts. In the case of ties,
transcript selection was arbitrary. Genes were partitioned into five
categories based on the expression of the primary transcript: expres-
sionlevel 0 (<0.0001 TPM) and four quartiles of detected expression.
Using the segmental asymmetry patterns of each tumour and the
annotated coordinates (Ensembl v.91) of the selected transcripts, we
identified transcripts completely contained inasingle Watson or Crick

Identifying and filtering reference genome
Since lesion segregation, mutation asymmetry patterns allow the
long-range phasing of chromosome strands, they can detect discrep-
ancies in sequence order and orientation between the sequenced
genomes and the reference. We identified autosomal asymmetry
segments thatimmediately transitioned from Watson bias (§>0.3) to
Crick (§<-0.3) or vice versawithout occupying the intermediate unbi-
ased state (-0.3<5<0.3); such discordant segments are unexpected.
Allowing for +100 kb uncertainty in the position of each exchange site
we produced the discordant segment coverage metric. At sites with
discordant segment coverage >1 we calculated percentage consensus
for misassembly M=ds/(ds+cs) where ds is the number of discordant
segments over the exchange site and cs the number of concordant:
where either Watson or Crick mutational asymmetry extends at least
1x10°nucleotides on both sides of the exchange site. The approximate
genomic coordinates for a C3H strain specific inversion on chromo-
some 6 have been previously reported*.

SCE-site analysis

Identified SCE sites were aggregated across tumours fromeach strain.
Exchange sites within 1 x 10° nt of known and proposed reference
genome misassembly sites were excluded from analysis. The mid-point
between the flanking informative mutations was taken as the reference
g positionofthe ,and the distance betweenthose
flanking mutations as the positional uncertainty of the estimate. To
generate null expectations for mutation rate measures, the coordinate
of an exchange was projected into the genome of a proxy tumour and
the mutation rates and patterns measured from that proxy tumour
(repeated 100 times). The permutation of tumour identifiers for the
selection of proxy tumours was a shuffle without replacement that
preserved the total number of exchange sites measured in each tumour.

The comparison of mutation spectra between windows was calcu-
lated as the cosine distance between the 96 category trinucleotide
context mutation spectra for the whole genome and that calculated for
theaggregated 5-kb window. The 96 categories were equally weighted
for this comparison.

Exchangesite enrichmentanalysis used Bedtools* shuffle to permute
the genomic positions of exchange sites into the analysable fraction of
thegenome (defined above). Observed rates of annotation overlap were
compared to the distribution of values from1,000 permuted exchange
sites. For genic overlaps we used Ensembl v.91* coordinates for genic
spans; gene expression status was based on the summed expression
over all annotated transcripts for the gene from P15 liver from the

Y ric segment and located at least 200 kb from the segment
boundary at both ends. We also applied strict asymmetry criteria of
mutational asymmetry scores S > 0.8 for Watson and S <-0.8 for Crick
asymmetry segments, though analysis with the standard asymmetry
thresholds and no segment boundary margin give similar results and
identical conclusions. For each transcriptin each tumour we then used
boththe transcriptional orientation of the gene and the mutational asym-
metry of the segment containing it to resolve the segregated lesions to
either the template (anti-sense) or non-template (sense) strand of the
gene. Transcripts contained in mutationally symmetric regions or not
meeting the strict filtering criteria were excluded from analysis.

We then analysed mutation rates stratifying by gene expression level
and the template/non-template strand of the lesions but aggregating
between tumours within the same strain. The TSS coordinates used
correspond to the annotated 5’ end of the primary transcripts.

Multiallelic variation

Aligned reads spanning genomic positions of somatic mutations were
re-genotyped using Samtools mpileup (v.1.9)*. Genotypes supported
by >2readswithanucleotide quality score of 220 were reported, con-
sidering sites with two alleles as biallelic, those with three or four alleles
as multiallelic. The fraction of called mutations exhibiting multiallelic
variation was calculated for the analysable fraction of the genome,
across 10Mb consecutive windows and also for each of the mutational
asymmetry segments calculated for each tumour.

Anullexpectation for the multiallelic rate estimate was generated per
C3H tumour; genomic positions identified as mutated across the other
370 tumours were down-sampled to match the mutation count in the
focal tumour. Any of these proxy mutation sites with a non-reference
genotype supported by > 2 reads and nucleotide quality score > 20 at
the focal site were referred to as ‘multiallelic’ for the purposes of defin-
ingabackground expectation for the calling of multiallelic variation.
For each tumour, this was repeated 100 times and the mean reported.

We used WES of 15 C3H tumours from prior work® that have sub-
sequently been used to generate WGS data in this study as a basis for
validating multiallelic calls. Multiallelic variant positions derived from
WGS were genotyped in WES using Samtools mpileup, as described
above. Only sites with >30x WES coverage were considered and alleles
were found to be concordant if a WGS genotype was supported by >1
read in the WES data. To provide a null expectation, the analysis was
repeated using WES data from adifferent tumour and validation rates
reported for all versus all combinations of mismatched WGS-WES
pairs (1=15?~-15=210).
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To quantify combinatorial genetic diversity for each tumour, pairs
of mutations located between 3 and 150 nt apart were phased using
sequencing reads that traversed both mutation sites. Distinct allelic
combinations were counted after extraction with Samtools mpileup
using only reads with nucleotide quality score > 20 over both muta-
tionsites.

Estimating the cell generation of transformation

Knowing the fraction of lesion segregation segments that generated
multiallelic variation across a tumour genome allows the inference
of the generation time post-mutagenesis of the cell from which the
tumour developed, because each successive cell generationis expected
toretainonly 50% of the lesion containing segments. We estimate this
fraction as follows. Let p denote the fraction of multiallelic segments
andlet qbeits complement, that s, the fraction of non-multiallelic seg-
ments, for each tumour genome. Segment boundaries being SCE sites
or chromosome boundaries. In order to determine p, we re-purpose
the quadratic Hardy-Weinberg equation: p + g =p*+2pq +q*=1,which
holds since the two possible fractions need to sum to unity. Given an
asymmetric segment of interestin the diploid genome, there are three
distinct scenarios: (i) both chromosomes are multiallelic (p?), (ii) One
of the chromosomes is multiallelic and the other is not (pg + gp) and
(iiii) both chromosomes are non-multiallelic (¢?). The first two scenarios
are not distinguishable from the data as both appear multiallelic (m).
However, in the third scenario, for a segment to be non-multiallelic
(biallelic, b), both chromosomal copies have to be non-multiallelic.
As described below, ¢* can be estimated directly from the data and is
subsequently used to estimate P=1-+(¢?) and hence the cell genera-
tion number of transformation post-mutagenesis.

The estimation of ¢’ requires computing the ratio g*= b/(b+ m). We
candirectly observe the counts of bas non-multiallelic segments. The
number of autosomal chromosome pairs (n=19) and count of SCE
events (x) give the total number of segmentsin the genome b +m=n+x.
Exchange events are not expected to align between allelic chromo-
somes which will result in the partial overlap of segments between
allelic copies. Although this increases the number of observed seg-
ments (band m) relative toactual theind: d
behaviour of allelic chromosomes and that segment lengthisindepend-
ent of multiallelic state, this partial overlap does not systematically
distort the quantification of b or the estimation of ¢>.

To callanon-multiallelic segment (b) we require less than 4% multi-
allelic sites. The threshold is based on the tri-modal frequency dis-
tribution of multiallelic rates per segment, aggregated over all 371
C3H tumours. The 4% threshold separates the lower distribution of
multiallelic rates from the mid and higher distributions.

Totest for the enrichment of specific driver gene mutationsin early
generation versus late generation transformation post-DEN treatment,
we applied Fisher’s exact test (fisher.test function in R) to compare
the generation 1ratio of tumours with, versus those without a focal
mutation, to the same ratio for tumoursinferred to have transformed
inalater generation. We additionally report the same odds ratios, but
requiring that the “with focal mutation” tumours had adriver mutation
inonly one of the driver genes: Hras, Braf, or Egfr.

Cell-line and human cancer mutation analysis

Somatic mutation calls were obtained from DNA maintenance and
repair pathway perturbed human cells®. Of the 128,054 reported single
nucleotide variants, 6,587 unique mutations (genomic site and specific
change) were shared between two or more sister clones, so probably
represent mutations present but not detected in the parental clone. All
occurrences of the shared mutations were filtered out leaving 106,688
mutations for analysis, although the inclusion of these filtered muta-
tions does not alter any conclusions drawn. Somatic mutation calls
from mutagen exposed cells® were obtained, no additional filtering
was applied to these sub-clone mutations.

Somatic mutation calls from the International Cancer Genome Con-
sortium (ICGC)* were obtained as simple_somatic_mutation.open.*
files fromrelease 28 of the consortium, one file for each project. These
somatic mutations have been called from a mixture of WGS and WES.
Ofthe 18,965 patients represented (and not embargoed in the release
28dataset), 116 were excluded fromanalysis; these represent a distinct
WES subset of the LICA-CN project that appear to show a processing
artefact in the distribution of specific mutation subsets. ICGC muta-
tions were filtered to remove insertion and deletion mutations and also
filtered for redundancy so that each mutation was only reported once
for each patient. Mutation signatures deconvolution was performed
using the RMutationPatterns (v.1.4.2)”” package and COSMIC signature
22 wasinterpreted as aristolochic acid>.

Therl,, metricand runs tests

Amongst only the informative mutations (for example, T>N/A>Nin
DEN) three consecutive T>N without an intervening A>N is a run of
three. TheR function rle was used to encode the run-lengths for binary
vectors of informative mutations along the genome of a focal tumour.
Ranking them from the longest to the shortest run, we find the set of
longest runs that encompass 20% of all informative mutations in the
tumour. The run-length of the shortest of those is reported as the rl,,
metric. The threshold percent of mutations was defined as having to
beless than 50%, as on average only 50% of the autosomal genomes are
expected toshow mutational asymmetry patterns. Ontestingwithrand-
omized data, the value of 20% gave a stable null expectation (maximum
observed value of a run of five when simulating 10,000 informative
mutations) and still encompassed a large fraction of the informative
mutations. All rl,, results reported were implemented so that runs
were broken when crossing chromosome boundaries. To define an
empirical significance threshold for genomes with fewer mutations,
we simulated 1,000 random informative mutations 100,000 times,
>99.995% simulations had rl,,<5and 100% rl, < 6.

The Wald-Wolfowitz runs test was performed using the runs.test
function of the Rrandtests (v.1.0)* library. It was applied to binary vec-
tors of informative changes as described above, with threshold = 0.5.

The Wald-Wolfowitz runs test significance is inflated by coordinated
dinucleotide changes, such as those produced by UV light exposure
andalso other local mutational asymmetries such as replication asym-
metry”and kataegis events'*. The rl,, metric appears robust to most
such distortions but we find it efficiently detects kataegis events that
areinan otherwise mutationally quiet background, asis often the case
for breast cancer. For this reason we also indicate the total genomic
span of mutations in the rl,, subset of mutation runs: kataegis events
typically span a tiny (<5%) fraction of the whole genome.

Key resources

The key reagents and resources required to replicate our study are
listed in Supplementary Table 3. For externally sourced data, where
applicable, URLs that we used can be found in the Git repository https://
git.ecdf.ed.ac.uk/taylor-lab/Ice-Is.

Primary data processing was performed in shell-scripted environ-
ments calling the software indicated. Except where otherwise noted,
analysis processing post-variant calling was performed in a Conda
environment and choreographed with Snakemake running in an LSF
batch control system (Supplementary Table 3).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Dataavailability
The WGS FASTQ files are available from the European Nucleotide
Archive (ENA) under accession number PRIEB37808. RNA-seq files are
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available from Array Express under experiment number E-MTAB-8518.
Digitised histology images are available from Biostudies under acces-
sion S-BSST383.

Codeavailability

The analysis pipeline including Conda and Snakemake configuration
files can be obtained without restriction from the repository https://
git.ecdf.ed.ac.uk/taylor-lab/Ice-Is.
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double-ended DNA breaks, single ended breaks llapsed i
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SCEs. b, Enrichment analysis of SCE sites (red) compared with null expectations
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mirrors the decay profile of elevated mutation frequency. f, Divergence of
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a-f,VAF
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Fig.7|

a-¢, G

hydrocarbon DBADE (c) that is found in tobacco smoke. d, Summary mutation
asymmetry ribbons (as per Fig. 2d) for all mutagen exposed clones with rly > 5,

ation ry plots (shown as per Fig. 2a-c) for whichillustrates the independence of asymmetry pattern between replicate
mutagen exposed human iPSCs’. Cells exposed to simulated solar radiation clones, almost univer: yon and i
damage adjacent 50% of th genome with ryover cl

illustrate lesion seg ion for

mutations (intermutation distance 10°) indicate CC>TT dinucleotide changes.

Despite alow total mutation load (1,308 nucleotide substitutions, 842
informative T>A changes), the mutati ryof I

ionis

The dominant mutation typeis indicated for each mutagen. In those clones
withlow mutation rate: i i tohavebeen
missed leading to reduced asymmetry signal (for example, on the X

evident for thearistolochic acid exposed clone’ (b) and the p:

with <20 informativi ares| inwhite.
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b, Many human iPSCs grown from single cells after exogenous mutagen
exposure’ show significant mutation asymmetry (n=148 WGS,

a,DENinduced C3H tumour genomes (n=371) typically

mutational asymmetry across their genome. Wald-Wolfowitz runs test
(x-axis) P-values anormalappi (two-sided).
Nominal P=0.05significance threshold indicated by dashed blue line,
Bonferroni-corrected threshold shown as solid vertical blue line. P-values
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J:{ posed cell lines). Statistic: ionsand plottingasina, with
adjustment of Bonferroni correction. Diverse categories of mutagen, denoted
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¢, Celllines with genetically perturbed genome replication and maintenance
machinery? and similar mutation load to those inb do not show significant
mutation asymmetry (n=72WG y perturbed cell-lines). Statistical

y-axis, horizontal blueline gi prical ofrly>5.

d plotting asinawith of Bonferroni correction.
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Extended Data Table 1| A lesion segregation-based test for oncogenic selection

Strain Gene Mutation Mutation Odds ratio  P-value Known driver
count

C3H  Braf 6:37548568_A/T 151 213 5.77x10°® Yes

C3H  Hras 7:145859242_T/C 81 267 6.88x10°° Yes

C3H  Hras 7:145859242_T/A 65 1.02 1 Yes

C3H Intronic Fmnl1  11:105081902_A/C 44 1.03 1 No

C3H Intergenic 9:73125689_G/C 42 1.13 1 No

C3H  Egfr 11:14185624_T/A 34 3.87 1.23x10* Yes

CAST Braf 6:37451282_A/T 42 1.41 0.338 Yes
Recurrently mutated sites in C3H and CAST tumours with sufficient to detect through bi d >33 C3H

>41CAST recurrences). Odds ratio values >1 indicate the predicted correlation of driver mutation and Watson/Crick strand retention in tumours with the candidate driver mutation, but not for

he ithout . The Fisher's exact test fc d

sample sizes were: n =2 x 371 =742 for C3H, and

n=2x84=168 for CAST. P-values

d Crick str

(Methods). Each tested si

after

d

been implicated as a driver of

(7tests

indicate:
carcinomaF. The CAST 6:37451282_A/T mutation is orthologous to the C3H 6:37548568_A/T mutation.
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