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Abstract. The monitoring of electric submersible pumps (ESPs) is essential for optimal petroleum 

artificial lifting operations. Most ESP research are aimed at operation improvement and optimization      

of the centrifuge multi-stage pump motor and the load that the pump has to discharge which is a 

function of the pumps mechanical properties and characteristics, liquid compositions, pressure and 

temperature. ESPs failure often lead to oil production losses or “oil deferment” which affects revenue 

for all the parties involved. Also, pulling the ESP out of the wellbore of interest, requires mobilization 

of a rig because it is installed several hundred meters down the wellbore. To prevent these loses, a 

predictive approach is needed to avert these scenarios. In the current decade, machine learning 

algorithms studies have spurred real- time technologies research interest due to their abilities to 

predict future outcomes using already existing data sets. This study presents a predictive approach for 

Electric Submersible Pump failure during artificial lift operations. The study creates an “algorithm” 

that helps to predict via Machine learning, the failure of an ESP with the assumption that failure is 

usually caused by pressure build-ups. A deep learning model for predicting ESP failure was proposed 

and artificial neural network was used in developing the suggested model. Based on the outcomes of 

this study, it can be concluded that the selected AI algorithm and its characteristics, are suitable for 

applications in detecting ESP failure before it happens using upstream-data. 

 

Keywords: Electric submersible pump; Deep learning; Artificial neural network; Pump discharge 

pressure; Non-Newtonian fluid 

1.  Introduction 

Historically, submersible electric pumps (ESPs) have been used to remove liquids from mining sites. It 

then found application in hydrocarbon wells that produce large water with a little gas-oil ratio (GLR). 

To date, the application of ESPs in wells that has little water influx has been extended to most mature 

hydrocarbon fields were the natural reservoir energy cannot long provide the necessary drive for the 

hydrocarbon production. There are many examples in the literature where ESP is used in wells that 

produce very little water and a lot of gas [1]. ESPs are generally reserved for applications in which the 

generated or natural stream is mostly fluid. A huge volume of gas in the ESP can result in gas 



4th International Conference on Science and Sustainable Development (ICSSD 2020)
IOP Conf. Series: Earth and Environmental Science 655 (2021) 012027

IOP Publishing
doi:10.1088/1755-1315/655/1/012027

2

 

 

 

 

 

 

interference or serious damage if the ESP is not installed properly. Free gas can meaningfully cause a 

reduction in the load generated by the ESP and thwart the propelled fluid from getting to the surface. 

ESP design can be effective for gas reservoirs that also have substantial amount of fluids, because the 

liquids from the wellbore can be removed effectively to allow ease of gas flow to surface using the 

flow channels [3]. ESP applications have been also proven to be effective means of dewatering crude 

oil wells. The design and size of the impeller, the speed of rotation, capacity of the electric motor, 

pump capacity and characteristics and fluid thermodynamic properties have been identified as the 

source of ensuring effective performance and output capacity for ESPs [4, 5]. Thus, the performance 

efficiency of ESPs depends solely on the mechanical and fluid properties under consideration. 

After the correct design of the submersible electric pump (ESP), operators often attempt to 

achieve the maximum possible service life. To achieve this, the equipment must be properly installed, 

and the operation of the device must be regularly maintained and monitored. Mature fields, tight and 

unconventional reservoirs experience significant and rapid flow drop with phase fraction changes [6]. 

Figure 1 shows the life run analysis of twenty-five (25) ESP used in “Field X” for production of 

hydrocarbon. The analysis showed that with proper installation, maintenance, and surveillance, about 

60% of the ESP did not exceed three (3) years run life. Therefore, the routine monitoring of ESP 

operation parameters is considered a standard operation method not a guarantee for prolong run life 

[7]. 

 

Figure 1. “Field X” ESP performance run life analysis for Hydrocarbon Wells 

 

It is assumed that operating conditions are constant throughout the life of the well. However, 

performance changes over time and tends to decrease as the production life of the well increases [8]. 

Oil, gas and water ratio also change over time. EPSs are used in hydrocarbon exploration and 

production business to produce an unlimited volume of liquids from the hydrocarbon wellbores. 

According to Minette et al. [1], ESPs have been used to produce approximately 10% of the world’s 

crude oil. ESP failures account for thousands of barrels of deferred production. For example, assuming 

deferring production from a well(s) producing 1,000 Boe for one (1) month with an oil price of $50. 

Complete failures often leads to a complete loss of the ESP functions, while partial failures leads to 

reduction in the ESP capacity. ESPs failures often lead to oil production losses or “oil deferment” 

which affects revenue for all the parties involved [9, 10]. Also, pulling the ESP out of wellbore 

requires mobilization of a rig because it is installed several hundred meters down the wellbore.  
Most ESP research are aimed at operation improvement and optimization of the centrifuge multi-stage 

pump motor and the load that the pump has to discharge which is a function of the pumps mechanical properties 

and characteristics, liquid compositions, pressure and temperature [11, 12]. Although, Castellanos et al. [7] 

in their study applied classification and regression tree in the recognition and organization of pumping 
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system incipient faults. This study creates an Algorithm that learns to predict when the ESP would fail 

with Machine learning, with the assumption that failure is usually caused by previous readings build-

ups. A deep learning model for ESP failure prediction was proposed and neural network was utilized 

for constructing the suggested model. The development of modern oil and gas industry has caused 

highly increased complexity in both industrial equipment and production systems, which makes it 

challenging to identify and evaluate failure conditions in a timely manner with conventional methods.  

The development of an appropriate forecasting and inspection method to assess ESP mechanical 

damage and failure with a long warning period/ window is of paramount importance in the oil and gas 

industry. The ability and complexity of the deep learning algorithm is greatly enhanced due to the 

internal hierarchical structure; hence, its adoption in this study. 

 

2.  Methodology 

 

The frequency of failure for electric submersible pumps in most mature oil field wells are a concern as 

shown in Figure 1. Hence, it is of utmost importance to develop techniques or tools that can 

effectively predict the ESPs lifetime. Most hydrocarbon wells are produced with an electric 

submersible pump (ESP) as an artificial lift method. These downhole ESPs are powered with on-site 

diesel generators or from the mains. The variable speed drive unit for the ESP is specific for the 

hydrocarbon wells, which can change the current rate and transform the pump speed to control the 

outcomes from the ESP. The frequency of ESP is often increased to make-up for the decreased oil 

production rate due to increased wellbore water influx. A distinctive allowable operating frequency 

range is from 30 to 70 Hz.  

 

ESPs operational performance sequence is summarized below:  

 

1. The pump head ΔH supplied by the ESP pump decreases with an increase in flow rate. 

2. An increase in the impeller rotation rate produces a relative increment in the pump 

performance in accordance with the affinity rules (Equations (1 and 2), scaling with pump 

frequency). 

  

The ESP efficiency usually decreases when working with fluids that are more viscous than water [13]. 

 

                                                                                                  (1) 

 

                                                                                                                  (2) 

 

Where, fref is the frequency of reference, usually 60 Hz and qref is the corresponding flow 

rate. 

According to Hoffman and Stanko [13], “in order to avoid gas absorption in the ESP and cavitation, 

the suction pressure of the pump is often maintained above the minimum value, which depends on the 

pump’s work flow.” The methodology is based on an objective phenomenon: this phenomenon shows 

that when devices fail, they show various types of characters, and these fluctuations are recorded and 

captured in the data collected during this period, and this data can be used to record the precursors of 

the malfunction. Therefore, deep learning approach was applied to determine the maximum selective 

information concealed behand the acquired for diverse failure cases. 

 

2.1 Proposed Production Optimization Method 
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There are numeric and model-based optimization schemes in literature that serves as advisory scheme 

to the operators. These advisory scheme often performs mathematical optimization on the network 

model to determine the optimum production frequency. These models consider a set of conservation 

equations for steady state that must be answered in an iterative approach to calculate the optimum 

conditions for production while neglecting all time dependent fluctuations.  

But, this study proposed an electric submersible pump failure prediction model, that utilizes 

deep learning and artificial neural network with the assumption that failure is usually caused by 

previous readings build-ups. Python programming language, Keras - which is a library for deep 

learning and artificial neural network (long short term memory, LSTM) were applied in developing 

this model. LSTM networks belong to the class of recurrent neural networks (RNNs). In other words, 

a neural network in which the underlying topology of connections between neurons contains at least 

one cycle [14, 15]. LSTM network in its nature studies long-term colonies from data trends and can 

overcome the intrinsic problems of RNNs. An LSTM network consists of an input section, one or 

more storage locations, and an output section. The number of neurons in the input section corresponds 

to the number of explanatory variables. The main feature of LSTM networks is a hidden layer 

consisting of so-called memory cells. In this study, the preparation and transfer of data is completely 

done in Python using the Numpy and Pandas packages. The LSTM and ANN networks are established 

using Keras. LSTM is capable of modelling sequences of a model, in this study, time-sequences 

because the data set contained values of parameters acquired at fixed intervals. 

The model was built to perform three (3) major functions: Input data (date fed into the 

algorithm), train data (data used to operate the algorithm), and feedback data (data used to improve the 

algorithm). The data set were split into the training and test data in 70:30 percent ratio respectively. 

the data set were further scaled to values between 0 and 1 before it were inputted into the algorithm. 

Figure 2 shows the chronological processing architecture in RNN, since RNN structure is comparable 

to a chain of iterating modules, that can serve as information memory to storage from preceding 

processing stages. For direct neural networks, its RNNs comprise of a feedback loop used to receive 

input data that the neural network will process. 

 
Figure 2. Sample of RNN processing architecture [16] 

 

2.2 Data used for the proposed Model 

 

The ESP system consists of an internal electric motor that is located at the production tubing inside the 

wellbore. It is power-driven by underground electric cables linked to installations at the surface. The 

centrifugal pump serves as the engine which is responsible for pumping liquids from the subsurface to 

the surface facility. This system uses a motor to convert electrical energy into mechanical energy, 

which is transferred to the liquid in the form of pressure using a centrifugal pump. The reliability of 

artificial lift systems (such as ESPs) is largely dependent on the outputs of these pumps. ESP can 

function in harsh environments such as viscous flow and two-phase flow. In the current decade, machine 

learning algorithms studies have spurred real- time technologies research interest due to their abilities to predict 

future outcomes using already existing data sets [17]. There variables often affect the performance and 

operation life-time of the ESP; but, the variables considered in this study for predicting ESP failures 
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are: the vibration data (Figure 3) because mechanical models for vibration of typical faults can 

positively identify the faults of ESP [18], pump intake pressure, pump discharge pressure, pump 

frequency, average variable-speed drive, and motor temperature. Operating beyond certain limits of 

these variables can result in ESP malfunctions or shorten service life, which has a significant 

economic influence, due to the cost acquired in changing the pump and lost production time which has 

huge implications. 

 

 
Figure 3. Vibration Data Chart for Oil Field Operating ESP 

 

 

2.3 Use of Variable Speed Drive (VSD) Unit 

 

The purpose of the artificial lift design is to create a lifting system that will provide the ideal fluid 

producing capacity that equals the rate of inflow from the wellbore reference. A shared resolution for 

over-designed ESP schemes is to install production chokes at the well-head. Installing a choke creates 

a pressure drop that limits the amount of fluid flowing from the well and rate at which the ESP 

operates within the acclaimed range of pumping rate. The field considered in this study had a VSD 

available, thus, the removal of the choke as a means of adjusting the pumping rate. Table 1 shows that 

as the VSD maintained the electrical frequency driving the ESP system to 52 Hz, the intake pressure 

of the pump require to produce the desired discharge pressure were within a specific range.  
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Table 1. Sample ESP Field Data 

Date/ Time 

Average 

Variable Speed 

Drive 

Pump 

Intake 

Pressure 

Pump 

Discharge 

Pressure  

Pump 

Frequency  

Motor 

Temperature 

20/07/2017 

00:31:02 
156 1179.8 1613.5 52 130.6 

20/07/2017 

01:01:02 
156 1180 1616.5 52 130.2 

20/07/2017 

01:31:02 
156 1180.4 1617.4 52 130.62 

20/07/2017 

02:01:02 
156 1180.5 1618 52 130.62 

20/07/2017 

02:31:02 
156 1180 1615.5 52 130.57 

20/07/2017 

02:57:02 
156 1180.2 1615.8 52 130.62 

20/07/2017 

03:27:02 
156 1180.5 1615.2 52 130.85 

20/07/2017 

03:57:02 
156 1179.7 1615.4 52 130.71 

20/07/2017 

04:27:02 
156 1179.8 1611.6 52 130.63 

20/07/2017 

04:57:02 
156 1179.9 1613.1 52 130.7 

20/07/2017 

05:25:52 
156 1180 1615.7 52 130.72 

20/07/2017 

05:55:52 
156 1179.8 1616.5 52 130.66 

20/07/2017 

06:25:52 
156 1179.6 1614.5 52 130.88 

20/07/2017 

06:55:52 
156 1180 1618.7 52 130.89 

20/07/2017 

07:25:52 
156 1179.8 1616.9 52 130.54 

20/07/2017 

07:55:52 
156 1180 1614.7 52 130.28 

20/07/2017 

08:25:52 
156 1180 1613.9 52 130.36 

20/07/2017 

08:55:52 
156 1179.8 1615.4 52 130.13 

20/07/2017 

09:25:52 
156 1179.7 1613.8 52 130.37 

20/07/2017 

09:55:52 
156 1180.3 1616.1 52 130.57 

20/07/2017 

10:25:52 
156 1180 1615.1 52 130.67 

20/07/2017 

10:55:52 
156 1179.8 1613.8 52 130.73 

20/07/2017 

11:25:52 
156 1179.4 1608.3 52 130.72 
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3.  Results and Discussion 

 

Jupyter Notebook which is an open-source web-based interactive development environment that 

permits the creation and sharing of documents was adopted for this study. Field data were imported 

using the set of codes below in the Jupyter user interface developed in this study due to its ability to 

support a wide range of workflows in data science and machine learning. 

 

#!/usr/bin/env python 

# coding: utf-8 

# In[1]: 

import pandas as pd 

import seaborn as sns; sns.set() 

import matplotlib.pyplot as plt 

import numpy as np 

import math 

import pickle 

# In[2]: 

get_ipython().system('pip2 install xlrd') 

get_ipython().system('pip3 install xlrd') 

# In[3]: 

vibration_data = pd.read_excel("E_35_Vibration.xlsx", sheet_name="DATA", index_col=0, 

header=1) 

surveillance_data = pd.read_excel("E_35_Surveillance.xlsx", sheet_name="Sheet1", index_col=1) 

# In[4]: 

vibration_data.columns = ['Vibration X', 'Vibration Y'] 

vibration_data.index.names = ["Date"] 

vibration_data.drop([vibration_data.index[0]], inplace=True) 

# In[5]: 

vibration_data.head() 

# In[6]: 

surveillance_data.drop(['Unnamed: 0'], axis=1, inplace=True) 

surveillance_data.index.names = ['Date'] 

 

Figure 4 shows the cleaned and filtered data after importation. These data were used to found 

the connections between the input features and the expected output. 
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Figure 4. ESP Input Filtered Data in Jupyter Interface 

 

Jupyter interface supports data cleaning and transformation, and these filtered data improve 

the results of the data-driven model. Due to the number of data set with many columns used for this 

study, correlation matrix plot in Python was used to check and visualize correlations among columns 

using a heatmap (Figure 5). The correlation matrix is a matrix in which the i-j position determines the 

correlation between the i-th and j-th parameters of a given data set. Essentially, there are two key 

components to the correlation value: size and sign. The larger the size (close to 1), the stronger the 

correlation. Even if it is negative, there is an inverse correlation; and if it is positive, there is a regular 

correlation. In the heatmap, Navy blue means positive and White means negative. The stronger the 

colour (deeper the colour), the larger the correlation magnitude. From Figure 5, there are five (5) 

regular combination of correlations. These are average VSD amp-pump frequency, pump inlet 

pressure-motor temperature, pump frequency-average VSD amp and motor temperature- pump inlet 

pressure. They were identified using the magnitude (1) and colour sign (Navy blue). 

 

 
Figure 5. Correlation Heatmap for the Data set 
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Often, the failure of ESP is observed using the pump discharge pressure, because the pump 

discharge pressure tends to zero when the ESP is unable to lift the hydrocarbon to the surface. 

Equation (3) shows that the pump discharge pressure,  is dependent on well head pressure,  and 

pressure variation due to hydrostatic and friction forces, . 

 

                                                          (3) 

 

Thus, the pressure drop in the production tubing due to failure, shut-down or malfunction of 

ESP is accounted for when estimating the pressure variation due to hydrostatic and friction forces. 

This pressure variation has a direct relationship with the pump discharge pressure. From literature, it 

was assumed in this study that failure is usually caused by previous readings build-ups as shown in 

Figure 6 [7, 19, 20]. This analytical assumption was the bases for the development of the ESP failure 

predictive model for pump discharge pressure. The training and validation were conducted using the 

data that match to the results obtained from the cross-validation. From the simulation analysis results 

(Figure 6), it can be concluded that the selected algorithm and its corresponding characteristics are fit 

detecting ESP failures before they happen using build-up data from a particular field. 

 

 
Figure 6. Predicted Failure for the ESP using Pump Discharge Pressure 

 

 

4. Conclusion 

 

Electrical Submersible Pumps are mainly used to increase hydrocarbon production which in-turn will 

increase the return on investment, but this function is affected by particulate matters. History has 

shown that ESPs have short service life. Their failures usually occur unexpectedly and are considered 

normal since the device is located downhole at the subsurface. Thus, making it difficult to detect the 

root cause of its short service life. To demonstrate the strictness of this problem, this study examined 

the Electrical Submersible Pumps (ESPs) failure based on pump discharge pressure. ESPs have been 

identified as the furthermost artificial lifting devices engaged in hydrocarbon production facilities. To 

reduce the ESP failures in the field, it is necessary to determine how the operating conditions 

contribute or behave during ESP failure. Thus, the pump discharge pressure data was used to evaluate 

the smart model, and this study concludes that: 

i. Failure can be instantaneous. 

ii. There was very strong correlation in predicting values such as pressure. 
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iii. The selected algorithm and its corresponding characteristics are fit detecting ESP failures 

before they happen using build-up data 
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