

Valentí Sallarès

Jhon F. Mojica, Berta Biescas, Dirk Klaeschen

Outline

- Introduction
 - Seismic oceanography
 - Characterization of the sub-mesoscale energy cascade
- Motivation and objectives
- Data set
 - MCS data & acoustic reflectors tracking
 - k_x slope spectra of vertical reflector displacements
- Results
 - Interpretation of the obtained spectra
 - Implications concerning sub-mesoscale energy cascade
- Summary

Study of the ocean's thermohaline finestructure using seismic/ acoustic methods (essentially **MCS**) [Holbrook et al., 2003]

Study of the ocean's thermohaline finestructure using seismic/ acoustic methods (essentially **MCS**) [Holbrook et al., 2003]

Study of the ocean's thermohaline finestructure using seismic/ acoustic methods (essentially **MCS**) [Holbrook et al., 2003]

Maps of acoustic reflectivity \rightarrow correspondence between reflector position and thermohaline gradients (essentially V through T)

Extract information on water dynamics by spectral analysis of acoustic reflector's vertical displacements [Holbrook and Fer, 2005]

Energy cascade at the submesoscale

Motivation and objectives

Explore the potential of high resolution MCS data to:

 \rightarrow Cover observational gap at horizontal scales of ~10³-10¹ m \rightarrow Investigate transitional subrange of the energy cascade between internal waves and turbulence

- Complex shallow thermohaline finestructure by mixing of AW and MW (AMW)
- IWs are generated at the Strait of Gibraltar
- Subject to continuous shear between outgoing MW and incoming AW

Originally intended for geological research, but also to explore potential for seismic oceanography (simultaneous XBT, XCTD)

HR-MCS system: Streamer of 300 m, 48 channels (6.25 m); source of 4.75 liters at 138 bars [40-240 Hz]

→ Nominal $R_x(75 m) \approx 15 m$

Processing flow : 2D geometry correction, CMP fold doubling, freq. filtering (40-240 Hz), amplitude correction, direct wave filtering, CMP sorting, PSTM, depth conversion with XBT-derived sound speed model

Reflector tracking

Automatic reflector tracking following a criteria of maximum crosscorrelation between neighbouring traces. It must be above a threshold within a 10 ms time window (7,5 m)

Reflectors >1200 m long \rightarrow all contribute equally to the analyzed scale range

Averaged spectrum of the117 reflectors tracked in the two profiles, multiplied by $(2\pi k_x)^2$ to emphasize slope variations, and scaled by the buoyancy frequency (N/N_0)

Spectral slope k_x^{-q} with q=2.05±0.06 GM79 predicts q=2 for internal waves (between f_C and N) 15

10-3

10-1

 k_x^{-q} with q=1.64±0.21, in agreement with Batchelor59 for turbulence (q=5/3) \rightarrow IW collapse

Horizontal Wavenumber (k_x) (m⁻¹)

At $\lambda_x < 16$ m (similar to R_x), q ≈ 0 , characteristic of white noise

10-2

Transitional subrange characterized by $q=2.8\pm0.2$ \rightarrow Kelvin-Helmholtz shear instabilities? q=2.5-3.0 (Waite, 2011)

Kelvin-Helmholtz instabilities?

KH billows described in atmosphere and ocean

1) Develop in stratified systems when shearing is strong enough to bring $R_i=N^2/(\partial V/\partial z)^2<0.25$

2) Aspect ratio 7:1 bw thickness of sheared layer and wavelength of largest disturbances \rightarrow 100/13 \approx 7.6

3) Observations suggest average $\lambda\text{=}50\text{-}75$ m and A=1-5 m

 HR-MCS data help covering the observational gap that exists in the ocean at horizontal scales of 10¹-10³ m

Summary

- HR-MCS data help covering the observational gap that exists in the ocean at horizontal scales of 10¹-10³ m
- We found strong evidence that ocean dynamics at the Aboran Sea thermocline is dominated by internal waves at $\lambda_x > \lambda_N$, below which KH-type instabilities likely develop until they collapse giving rise to turbulence

Summary

- HR-MCS data help covering the observational gap that exists in the ocean at horizontal scales of 10¹-10³ m
- We found strong evidence that ocean dynamics at the Aboran Sea thermocline is dominated by internal waves at $\lambda_x > \lambda_N$, below which KH-type instabilities likely develop until they collapse giving rise to turbulence
- The availability of a system providing observations at the appropriate scales opens new perspectives to improve knowledge on small-scale mixing and dissipation

Thank you

EGU Vienna, 21 April 2016

