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Seismic oceanography
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Study of the ocean’s thermohaline finestructure using seismic/ 

acoustic methods (essentially MCS) [Holbrook et al., 2003]

Airgun sources

Contrasts of 

acoustic

impedance

Channels

Seafloor

Hydrophones

Main strength: unprecedented

lateral resolution, close to

synoptical

Main drawback: water reflectivity

is 102-103 weaker than in solid

Earth  noise is a major issue

2Rx=(ld)1/2

O[101 m]
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Common mid point (CMP)

Seismic oceanography

Study of the ocean’s thermohaline finestructure using seismic/ 

acoustic methods (essentially MCS) [Holbrook et al., 2003]

Multi-channel system



Seismic oceanography
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Study of the ocean’s thermohaline finestructure using seismic/ 

acoustic methods (essentially MCS) [Holbrook et al., 2003]

Maps of acoustic reflectivity  correspondence between reflector 

position and thermohaline gradients (essentially V through T)

Biescas et al. [2008]

Meddy

Staircases



Seismic oceanography
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Extract information on water dynamics by spectral analysis of 

acoustic reflector’s vertical displacements [Holbrook and Fer, 2005]

Deep targets (>400 m)

Low frequency sources

(<80 Hz) 

Rx≈50-100 m

IWs



Wavenumber (kx) [m
-1]       
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Energy cascade at the submesoscale
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Motivation and objectives
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Explore the potential of high resolution MCS data to:

 Cover observational gap at horizontal scales of ~103-101 m

 Investigate transitional subrange of the energy cascade

between internal waves and turbulence

Horizontal scale (m)

V
e

rt
ic

a
l 
s
c
a

le
(m

)

True observational gap, barely covered

by conventional hydrograpic systems



AW: Atlantic water (shallow)

MW: Mediterranean water (deep)

AMW: Atlantic modified water (close to thermocline)

50 m
100 m

150 m
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Alboran Sea

• Complex shallow thermohaline finestructure by mixing of AW and MW 

(AMW)

IWs at Alboran Sea

Atlas of oceanic internal solitary

waves (2004)

• Complex shallow thermohaline finestructure by mixing of AW and MW 

(AMW)

• IWs are generated at the Strait of Gibraltar

• Complex shallow thermohaline finestructure by mixing of AW and MW 

(AMW)

• IWs are generated at the Strait of Gibraltar

• Subject to continuous shear between outgoing MW and incoming AW



10

EGU
Vienna, 21 April 2016

XBTs

XCTD
HR-MCS lines

IMPULS-2006 experiment

Originally intended for geological research, but also to explore 

potential for seismic oceanography (simultaneous XBT, XCTD)

HR-MCS system: Streamer of 300 m, 48 channels (6.25 m); 

source of 4.75 liters at 138 bars [40-240 Hz] 

 Nominal Rx(75 m)≈15 m
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Alboran Sea

The thermohaline

stratification 

created by the 

water exchange 

concentrated 

between 35 m 

and 110 m deep 

at the time of the 

HR-MCS 

acquisition 

(AMW)

XCTD



HR-MCS data
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NW SE

IMPULS-2

IMPULS-3

Processing flow : 2D geometry correction, CMP fold doubling, freq. 

filtering (40-240 Hz), amplitude correction, direct wave filtering, CMP 

sorting, PSTM, depth conversion with XBT-derived sound speed

model



Reflector tracking
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Automatic reflector tracking following

a criteria of maximum cross-

correlation between neighbouring

traces. It must be above a threshold

within a 10 ms time window (7,5 m)

Reflectors >1200 m long  all

contribute equally to the analyzed

scale range

NW SE



kx slope spectra
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Averaged spectrum of the117 reflectors tracked in the two 

profiles, multiplied by (2πkx)
2 to emphasize slope variations, and 

scaled by the buoyancy frequency (N/N0)

2s

Key assumption: reflectors follow

isopycnals  shown to be true in areas

not subject to T-S compensating intrusions



Results
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Spectral slope kx
-q with q=2.05±0.06

lx > 100 m

lN=2pDV/N
lN

INTERNAL WAVES

Spectral slope kx
-q with q=2.05±0.06

GM79 predicts q=2 for internal waves (between fC and N) 



Results
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33 m > lx > 16 m

lN

INTERNAL WAVES
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kx
-q with q=1.64±0.21, in agreement with Batchelor59 for

turbulence (q=5/3)  IW collapse

kx
-q with q=1.64±0.21, in agreement with Batchelor59 for

turbulence (q=5/3)  IW collapse

At lx<16 m (similar to Rx), q≈0, characteristic of white noise



Results
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100 m > lx > 33 m

lN

INTERNAL WAVES

T
U

R
B

U
L

E
N

C
E

T
R

A
N

S
IT

IO
N

A
L

Transitional subrange characterized by q=2.8±0.2

 Kelvin-Helmholtz shear instabilities? q=2.5-3.0 (Waite, 2011)

Transitional subrange characterized by q=2.8±0.2



Kelvin-Helmholtz instabilities?
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KH billows described in 

atmosphere and ocean 

1) Develop in stratified 

systems when shearing is 

strong enough to bring 

Ri=N2/(V/z)2<0.25

2) Aspect ratio 7:1 bw thickness of sheared layer and 

wavelength of largest disturbances  100/13≈7.6

3) Observations suggest average l=50-75 m and A=1-5 m 

van Haren & Gostiaux (2010)

KH billow train at Great Meteor seamount

Distance (km)



Summary
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• HR-MCS data help covering the observational gap that

exists in the ocean at horizontal scales of 101-103 m



Summary

20

EGU
Vienna, 21 April 2016

• HR-MCS data help covering the observational gap that

exists in the ocean at horizontal scales of 101-103 m

• We found strong evidence that ocean dynamics at the 

Aboran Sea thermocline is dominated by internal waves 

at lx>lN, below which KH-type instabilities likely develop 

until they collapse giving rise to turbulence



Summary
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• HR-MCS data help covering the observational gap that

exists in the ocean at horizontal scales of 101-103 m

• We found strong evidence that ocean dynamics at the 

Aboran Sea thermocline is dominated by internal waves 

at lx>lN, below which KH-type instabilities likely develop 

until they collapse giving rise to turbulence

• The availability of a system providing observations at the 

appropriate scales opens new perspectives to improve 

knowledge on small-scale mixing and dissipation
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Thank you
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IMPULS 2

IMPULS 3
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