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Highlights 

 Temperature anomalies for the Mid-Holocene compared to preindustrial are 

significantly different in the low- and high-resolution versions of the atmospheric 

model ECHAM5 

 For summer, shortwave cloud radiative forcing emerges as an important factor.  

 For boreal winter, differences are mainly related to circulation changes. 

 Anomaly differences are regionally as large as the mid-Holocene minus 

preindustrial temperature signals. 

 

Abstract. This study evaluates the dependence of simulated surface air temperatures on 

model resolution and orography for the mid-Holocene. Sensitivity experiments with the 

atmospheric general circulation model ECHAM5 are performed with low (~3.75°, 19 vertical 

levels) and high (~1.1°, 31 vertical levels) resolution. Results are compared to the respective 

preindustrial runs. It is found that the large-scale temperature anomalies for the mid-Holocene 

(compared to preindustrial) are significantly different in the low- and high-resolution versions. 

For boreal winter, differences are mainly related to circulation changes caused by the response 

to thermal forcing in conjunction with orographic resolution. For summer, shortwave cloud 

radiative forcing emerges as an important factor. The anomaly differences (low minus high 

resolution version) in the Northern Hemisphere are regionally as large as the anomalous mid-

Holocene temperature signals. Furthermore, they depend on the applied surface boundary 

conditions. We conclude that the resolution matters for the Northern Hemisphere response in 

mid-Holocene simulations, which should be taken into account in model-model and data-model 

comparisons. 
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1. Introduction 

 

Modelling the Holocene climate has been a focus for the Paleoclimate Modelling 

Intercomparison Project (PMIP) since its beginning (Joussaume and Taylor, 1995), 

progressing from simulations with atmospheric general circulation models, using prescribed 

ocean conditions, to simulations using fully coupled atmosphere–ocean-sea ice general 

circulation models, some of which included vegetation dynamics (Kageyama et al., 2006; 

Braconnot et al., 2007, 2012), to simulations with more full Earth system models (e.g., Otto-

Bliesner et al., 2017). At the same time, the grid resolution has increased in these climate 

models from ~5° to now ~1° horizontal resolution with more accurate simulations of physical 

processes on a more local scale. One key aspect of the intercomparisons is to evaluate and 

benchmark models, assembling evaluation data sets and undertaking quantitative assessment 

of simulations. One particular source of uncertainty in climate models is due to their spatial 

resolution (Randall et al., 2007, Flato et al., 2013). Small-scale physical processes that cannot 

be resolved adequately on the computational mesh are represented as parameterized 

schemes. By improving computer architectures and resources, higher resolved models are 

applied. Model results of simulations with enhanced grid resolution demonstrate more realistic 

climate simulations, e.g. due to the growing set of model processes and phenomena 

(Roeckner et al., 2006, Bader et al., 2008, Reichler and Kim, 2008, Lauer and Hamilton, 2013, 

Lohmann et al., 2020).  

 

The resolution in numerical simulations of the atmosphere is thus of particular interest. The 

orographic boundary condition, as an example, shows substantial differences between coarse 

and higher resolved model setups. As a response, the meridional vorticity gradient could lead 

to a modified atmospheric Rossby wave propagation (Charney and Eliassen, 1949, Bolin, 

1950, Kasahara, 1966, Yoshino, 1981, Cook and Held, 1992), in response to sea surface 

temperature (SST) forcing (Houghton et al., 1974, Huang, 1978, Chervin et al., 1980, Hoskins 

and Karoly, 1981, Simmonds and Smith, 1986, Hoskins and Ambrizzi, 1993). Aside from 

orographic boundary conditions, the tuning of parameterized subgrid-scale processes is 
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indispensable in climate models of varying grid size (Kiehl and Williamson, 1991, Kristjánsson, 

1991, Lane et al., 2000, Tselioudis and Jakob, 2002, Jung and Arakawa, 2004).  

Concerning model inter-comparison studies, experiments have been carried out with a wide 

spectrum of models involving different parameterization schemes, complexities and resolution 

(Cubasch et al., 2001, Braconnot et al., 2012, Knutti and Sedláček, 2012). As one particular 

example, Roeckner et al. (2006) performed a set of experiments with the atmospheric general 

circulation model ECHAM5 with prescribed SSTs (Roeckner et al., 2003). The resolutions 

ranged from T21L19 to T159L31. While the physics of the model remained unchanged, 

resolution-sensitive parameters were changed (Roeckner et al., 2006). The results show a 

tendency to reduce the error upon increasing horizontal and vertical resolution.  

Regarding model inter-comparisons for the modern climate, Cess et al. (1990) focussed on 

global atmospheric feedback processes. The treatment of cloud processes was identified as 

responsible for intermodal differences. The influence of horizontal resolution was analyzed for 

the European Centre of Medium Range Weather Forecast numerical weather prediction model 

on systematic errors, cloud radiative forcing, and extratropical cyclone characteristics (Tibaldi 

et al., 1990, Potter, 1995, Jung et al., 2006). It was shown that low-resolution model simulations 

do not capture the correct nonlinear dynamics of the extratropics. Key characteristics of 

extratropical cyclones, that are highly sensitive to model resolution, show a tendency to more 

realistic patterns with increased resolution. Furthermore, cloud radiative forcing characteristics 

changes with model resolution. Williamson et al. (1995) conducted climate sensitivity studies 

with the National Center for Atmospheric Research Community Climate Model (CCM2). Their 

findings show large differences between low and medium resolution model versions. They 

conclude, that high-resolution models are required to better capture nonlinear processes of 

medium scales. Pope and Stratton (2002) used the Hadley Centre climate model HadAM3 to 

perform resolution dependent sensitivity studies. Model biases are reduced with increased 

model resolution. Gao et al. (2006) performed simulations with the Regional Climate Model 

RegCM2 and focused on changes in orography and model resolution on East Asian 

precipitation. The high-resolution simulation (< 60 km grid) with coarse orography provides 

more realistic results compared to the coarse-resolution model and orography. Boville (1991) 

explored significant improvements in simulating the troposphere towards increased model 

resolutions. Hack et al. (2006) and Gent et al. (2010) performed climate sensitivity experiments 

with the Community Climate System Model (CCSM) Community Atmosphere Model version 3 

(CAM3), and showed that biases are reduced with model resolution. Hamilton (2006) reviewed 

numerical model simulations with varying resolutions. Increased resolution lead to significantly 

overall improved global-scale circulations.  
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For paleoclimate conditions, experiments have been standardized and compiled by PMIP 

(Gladstone, 2005, Braconnot et al., 2007a, 2007b, Brewer et al., 2007, Zheng et al., 2008, 

Otto-Bliesner et al., 2009, 2017, Kageyama et al., 2017, Brierley et al., 2020). Here, we 

supplement such intercomparisons concerning potentially resolution-dependent results. In 

contrast, our experimental setup is restricted here to one single model, but different resolutions 

under fixed boundary conditions in SST and sea ice (SI) concentration. Studies covering the 

Last Glacial Maximum have been presented (Rind, 1988; Dong and Valdes, 2000, Jost et al., 

2005, Kim et al., 2008), while the role of model resolution in simulating glacial inception has 

been found by Vavrus et al. (2011). To our knowledge, no intra-model study has been 

performed for the Holocene epoch so far, even though the mid-Holocene (6 ka BP) is one of 

the most frequently simulated time slices in paleoclimate modelling and belongs to the 

standard PMIP experiments (e.g., Braconnot et al., 2012, Lohmann et al., 2013; Brierley et al., 

2020).  Compared to the Last Glacial Maximum, temperature anomalies of the mid-Holocene 

are much smaller, such that the ratio between model biases and simulated temperature signals 

is expected to be relatively large (Hargreaves et al., 2013). In this study we examine the impact 

of model resolution on Holocene surface temperature variations and focus on the high northern 

latitudes.  

2. Methods  

 
Here, we employ the atmosphere model ECHAM5 (Roeckner et al., 2003) in a stand-alone 

mode to isolate resolution effects on atmospheric processes in mid-Holocene simulations. The 

model has been tested in various resolutions (Roeckner et al., 2006) against observational 

datasets. Except for resolution-dependent parameter changes, the model physics remain 

identical. Some resolution-dependent parameters are related to the horizontal diffusion, the 

orographic drag scheme or the adjustment time scale in the convective parameterization 

(Roeckner et al., 2006).   

 

Table 1: Overview of experiments  

Experiment 

 

Time slices           Model grid (resolution) 

 

Orography 

(resolution) 

  LRMH-PI 
  LRMH MH T31L19 T31L19 

  LRPI PI T31L19 T31L19 

  HRMH-PI 
  HRMH MH T106L31 T106L31 

  HRPI PI T106L31 T106L31 

HRMH-PI(LRoro)   HRMH(LRoro) MH T106L31 T31L19 
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  HRPI(LRoro) PI T106L31 T31L19 

 

 

Our experiments are summarized in Table 1, comprising the mid-Holocene (MH) and 

preindustrial (PI) periods. Runs were performed in two resolution modes: low (horizontal: 

~3.8°, vertical: 19 levels) and high (horizontal: ~1.1°, vertical: 31 levels), referred to as LRMH-PI 

and HRMH-PI, respectively. Boundary conditions of the used stand-alone global atmospheric 

model are held fixed. Furthermore, computer parallelization schemes, code and compiler 

structure were identical. The low-resolution version of the model (but then coupled to the 

ocean) has also been applied in a series of papers dealing with interglacial (Wei and Lohmann, 

2012; Lohmann et al., 2013, Pfeiffer and Lohmann, 2016) as well as of the Last Glacial 

Maximum (Zhang et al., 2013, 2014, Werner et al., 2018) background conditions. 

 

Greenhouse gas concentrations were adjusted to the appropriate conditions following the 

PMIP2 convention (Flückiger et al., 1999, Monnin et al., 2001). The varying orbital forcing 

parameters were computed following Berger (1978). Climatological SST and SI fields are 

prescribed (Fig. 1). They were derived from transient model simulations (Lorenz and Lohmann, 

2004, Lohmann, 2017) performed with the coupled general circulation model ECHO-G 

(Legutke and Voss, 1999). The considered time period is 6000 years before present and the 

preindustrial period, where a climatology is obtained from an average of 100 yr, respectively. 

The horizonal resolution of this model is approximately 2.8° in the ocean (with equatorial 

refinement) and 3.8° in the atmosphere. 

 

Furthermore, a second set of SST and SI anomalies are taken from a Holocene run (Varma et 

al., 2012, 2016), using the coupled general circulation model CCSM3 (Collins et al., 2006). 

The horizonal resolution of this model is approximately 3.0° in the ocean (with equatorial 

refinement) and 3.75° in the atmosphere. The climatology is obtained in the same way as 

explained for ECHO-G. As we do not concentrate on these four runs, we do not give additional 

abbreviations in the paper. These runs are shortly described in section 3.3 and are discussed 

subsequently. 

 

The surface boundary conditions are used as anomalies from the reanalysis datasets provided 

by AMIP2 (Taylor et al., 2000). Setting up the high-resolution ECHAM5 simulations, an 

interpolation of SST and SI to T31 and T106 is applied (cf. Herold and Lohmann, 2009) using 

a first order conservative remapping by the climate data operators (Schulzweida et al., 2009).  
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The performed sensitivity experiments LRMH-PI, HRMH-PI, HRMH-PI(LRoro) are branched out into a 

MH and a PI time-slice run. The notation LRMH-PI and HRMH-PI capture the isolated effect of 

model resolution on the MH climate anomaly. In HRMH-PI(LRoro), the model has the high 

resolution, but the orography was replaced by a low-resolution orography in order to isolate 

the effect of orographic resolution on climate.  

 

The low T31L19 (Fig. 2a) and high T106L31 (Fig. 2b) resolution orography displays similar 

maximum heights of mountain ranges across the Qinghai-Tibetan (Qingzang) Plateau 

(5201/5117 m), Greenland (3086/3055 m) and the Transantarctic Mountains (3973/3777 m). 

The geographic locations of these peaks and chains (T31 versus T106) are shifted up to 

several hundreds of kilometers, depending on the orographic resolution. Across the North and 

South American Cordillera, differences in altitude amount to several hundreds of meters.  

Resolution-dependent differences in altitude (Fig. 2) show an absolute spread of ± 1600 m for 

the South American Cordillera, ± 1300 m for the Qinghai-Tibetan (Qingzang) Plateau (due to 

the shift in the geolocation), ± 900 m for Greenland and Antarctica and ± 700 m for the North 

American Cordillera.  

 

For simplicity, land surface conditions, aerosols and ozone were set to present-day conditions. 

For all experiments an integration time of 50 years was used, where the first 10 years were 

regarded as the spin-up phase and excluded from further analysis. When comparing the high-

resolution with low-resolution results, we brought the low resolution to high resolution by 

bilinear interpolation using the climate data operators (Schulzweida et al., 2009). 
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Figure 1: SST and sea-ice concentrations for MH relative to PI based on Lorenz and Lohmann 

(2004). a) DJF anomaly of SST and sea-ice concentration. b) as a), but for JJA. Units are 

Kelvin [K]. The sea-ice 50% concentration is marked as solid magenta (MH) and dark blue (PI) 

lines. Stippled lines indicate statistical significance. 

 

 

Figure 2: Orographic height used for the performed sensitivity experiments using ECHAM5. 

The absolute height of the low and high-resolution model orography are shown in a) and b). 

Height anomalies between low (T31L19) and high (T106L31) resolution experiments are 

displayed in c). Units are meters [m]. Jo
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3. Results 

We concentrate on the Northern Hemisphere extratropics north of 40°N. Results are presented 

as anomaly (MH minus PI) and anomaly difference plots where we show the summer June-

July-August (JJA) and winter December-January-February (DJF) near-surface temperatures, 

usually described as two-meter air temperature (T2m). The anomalies of the variables are 

calculated as the mean state difference of the MH minus PI period. For significance, we apply 

a standard t-test. We show the detailed results using the ECHO-G boundary conditions in 3.1 

(summer) and 3.2 (winter) for the experiments listed in Table 1, while the sensitivity 

experiments using CCSM3 forcing are shortly shown in 3.3. 

 

3.1 Temperature differences for summer 

For JJA, the Holocene experiments indicate a pronounced warming, especially over land (Fig. 

3a,b,c). The low-resolution Holocene simulations (LRMH-PI) show pronounced T2m anomalies 

(Fig. 3a) as compared to HRMH-PI (Fig. 3b) and HRMH-PI(LRoro) (Fig. 3c) over northern Siberia 

and weakened warming over central Siberia and parts of North America (Fig. 3d,e,f). In some 

regions, the effect of resolution for summer T2m (Fig. 3f) is of the same order as the Holocene 

T2m anomalies (Fig. 3a,b).  

 

The Holocene temperature anomaly differences (Fig. 3d,f) are strongly influenced by variations 

in shortwave cloud radiative forcing, which are in turn affected by alterations of the total cloud 

cover (Fig. 4a,b). Total cloud cover differences between LRMH-PI and HRMH-PI (Fig. 4a) show 

relative changes of ± 10 %. Differences in shortwave cloud radiative forcing (Fig. 4c) lead to 

JJA variations of -22 to 24 W/m2 across Eurasia and North America. For JJA, the spatial 

difference patterns of the shortwave cloud forcing (Fig. 4c) and T2m (Fig. 3f) are quasi-

coherent and, thus, shortwave cloud forcing can be regarded as a major driving factor of the 

summer T2m differences.  

 

The isolated effect of replaced orography (fine versus coarse) shows large-scale T2m 

differences in the range of ± 1 K (Fig. 3e). It is found that these T2m differences can be 

accounted for by associated variations in cloud distribution (Fig. 4b), thus affecting the 

shortwave cloud radiative forcing balance (Fig. 4d). However, the resolution-induced T2m 

differences (LRMH-PI - HRMH-PI; Fig. 3f) cannot be attributed solely to the changed orography 

(Fig. 3e). 

 

Jo
ur

na
l P

re
-p

ro
of



 9 

 

 

Figure 3: Anomalous MH-PI simulated 2m air temperature (T2m) for JJA.  a) Low- and  b) high-

resolution T2m anomalies. c) High-resolution simulation with a low-resolved orography. Lower 

row: Resolution (d), orographic (e), and combined resolution and orographic (f) effects on MH-

PI anomalies. Units are Kelvin [K]. Significant areas ( =0.05) are surrounded by dotted black 

lines. The respective coastlines are depicted by heavy solid black lines. 

 

Jo
ur

na
l P

re
-p

ro
of



 10 

 

Figure 4: Differences of total cloud cover (CF) (a,b) and shortwave surface cloud radiative 

forcing (CRFsw) (c,d) for JJA. a,c) Difference between experiment LRMH-PI and HRMH-PI. b,d) 

Difference between HRMH-PI and HRMH-PI(LRoro). Units are percentages [%]/100 for CF and 

Watts per square meter [W/m2] for CRFsw. For lines see caption of Figure 3. 

 

 

3.2 Temperature differences for winter 

Analogous to JJA, the DJF temperatures are shown in Fig. 5. The DJF temperature anomaly 

for MH minus PI in the low-resolution simulation LRMH-PI is shown in Fig. 5a. Temperature 

anomalies range from -2.7 to 2.0 K with the largest positive anomalies in Eurasia and cold 

spots in eastern Siberia and over the Labrador and Greenland Seas (Fig. 5a). The high-

resolution experiment HRMH-PI (Fig. 5b) shows a consistent T2m pattern across the oceanic 

areas. In Eurasia, the HRMH-PI T2m anomaly pattern falls into two parts with a maximum 

Holocene anomaly in northern Siberia and western North America (Fig. 5b). Fig. 5c shows the 

results of the high-resolution runs with low-resolution orography. The isolated effect of 

resolution arises from the difference of the low-resolution experiment LRMH-PI and the high-

resolution experiment with a low resolved orographic mask HRMH-PI(LRoro), as displayed in Fig. 

5d. 
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Figure 5: As Fig. 3, but for DJF.  

 

 

We note that the winter T2m anomaly differences (Fig. 5d,e,f) across large areas of Eurasia 

and North America are of the same order of magnitude as the Holocene T2m anomalies (Fig. 

5a,b). A large part of the T2m anomaly differences can be attributed to changes in atmospheric 

circulation. Fig. 6 shows sea level pressure (SLP) and geopotential height at 500 hPa 

anomalies for LRMH-PI and HRMH-PI. The high-resolution experiment HRMH-PI(LRoro) with a low-

resolved orographic mask is displayed in Fig. 6c. The lower row shows the associated 

geopotential height anomalies at 500 hPa. In LRMH-PI, the circulation bears similarities with the 

Arctic Oscillation pattern. The low-pressure center in Fig. 6a yields a pronounced warming 

over Eastern Europe and part of Siberia (Fig. 5a).  

 

In HR, the anomalous SLP pattern has a wave-like structure (Fig. 6b), and is responsible for 

the heterogenous warming in the northern part of Siberia and eastern North America (Fig. 5b). 

A pronounced low-pressure anomaly over northern North America (Fig. 6b) is associated to 

the advection of air from the East Pacific Ocean to central North America, creating a positive 
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T2m anomaly in HRMH-PI (Fig. 5b). A lowering in surface albedo (max. 10%) due to snow cover 

reduction amplifies the T2m changes (not shown). 

 

As a response to the different orography, the geopotential height field mirrors a strong 

barotropic response across the Northern Hemisphere (Fig. 6c,f). The stationary wave pattern 

(Fig. 6e) is transformed substantially (Fig. 6f). The T2m anomalies show a heterogenic pattern 

across eastern North America and several regions of Eurasia (Fig. 5a,b). The differences 

between HRMH-PI and LRMH-PI (Fig. 5f) are in the same order of magnitude as the respective 

Holocene anomalies (Fig. 5a,b). The HR experiment with low-resolution orography on the other 

side shows a distinct pattern with no clear relation of SLP and T2m anomaly (Figs. 5c, 6c).  

 

 

 

 

 

Figure 6: Sea level pressure (upper row) and geopotential height at 500 hPa (lower row) 

anomalies (MH minus PI) for DJF. Units of sea level pressure are in hectoPascal [hPa] and for 

geopotential height in meters [m].  
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3.3 Temperature differences with another set of lower boundary conditions 

Finally, we show the changes in MH temperatures by using another background SST and SI 

as obtained by Varma et al. (2012, 2016). Fig. 7a,b shows the forcing fields, and Fig. 7c,d the 

respective boreal summer and winter MH-PI anomalies for the low-resolution simulation LRMH-

PI. Temperature anomalies range from -2 to 2 K with the largest positive anomalies in eastern 

Siberia (Fig. 7c) for boreal summer and largest negative anomalies over North America (Fig. 

7d) for boreal winter.  

 

The relative anomalies of the high-resolution experiments show pronounced heterogenous 

cold and warm spots of up to 2 K (Fig. 7e) for boreal summer and large-scale differences in 

boreal winter (Fig. 7f). This is again related to a substantial change in atmospheric circulation 

(not shown). We have not performed the high-resolution runs with low-resolution orography 

LRMH-PI(LRoro) using the SST and SI of Varma et al. (2012, 2016). 
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Figure 7: a,b) Mid-Holocene SST anomalies [K] based on CCSM3 simulations of Varma et al. 

(2016). Anomalies MH-PI of T2m for JJA (c) and DJF (d) for the low-resolution ECHAM5 

simulation. The difference between the high- and low-resolution simulations (e,f). Stippled lines 

as in Fig. 3. 

 

DJF
b)a)

e) f)

c) d)
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4. Discussion 

 
A set of mid-Holocene sensitivity experiments was carried out with the atmospheric general 

circulation model ECHAM5. Each experiment was performed in two resolution modes: low 

(~3.75°, 19 vertical levels) and high (~1.1°, 31 vertical levels), and prescribed SST and sea ice 

distributions using output from coupled climate models were applied. Furthermore, we 

performed an additional experiment where the high-resolution orography was replaced by the 

coarse orography in order to isolate the effect of orographic resolution on the climate 

simulation. We emphasize that boundary conditions over the ocean are deliberately held fixed 

in order to isolate the effect for the atmosphere. This is in contrast to previous studies, where 

we changed the resolution in the ocean and atmosphere for early and mid-Holocene 

experiments (Shi and Lohmann, 2016, Shi et al., 2020) and found that the simulated mean 

climates show significant differences with different model resolutions. As the model versions 

are not available for arbitrary resolutions, we cannot evaluate whether the resolution effect is 

due to the changed horizontal or vertical resolution.  

 

As a consequence of increased grid resolution in climate models, more accurate simulations 

of physical processes on a more local scale are expected. Low-resolution model results are 

now complemented by higher-resolved simulations and are often compared with each other in 

model intercomparison studies like PMIP. The resolution dependence in numerical simulations 

is thus of particular interest. The mid-Holocene is one of the key times in the past to test models 

(e.g., Braconnot et al., 2012; Otto-Bliesner et al., 2017). The most prominent difference 

between the mid-Holocene and present day arises from the orbital configuration, which leads 

to an increase in boreal summer insolation in the Northern Hemisphere and a decrease in the 

tropical and subtropical Southern Hemisphere in boreal winter. In several model simulations 

we test if the resolution of the atmospheric component can affect the results where we 

concentrate on the Northern Hemisphere.  

Our summer temperature distribution across Eurasia and North America is in agreement with 

earlier results published in PMIP (Braconnot et al., 2007a, Braconnot et al., 2012, Lohmann et 

al., 2013). These simulations (ensemble median) capture a mid-to-late Holocene cooling trend 

of summer surface temperatures over continental Eurasia and North America with a maximum 

of 2 K. Increases in total cloud cover were found to contribute to these changes (Braconnot et 

al., 2007b, Braconnot et al., 2012). On the regional scale, T2m anomaly differences of LRMH-PI 

minus HRMH-PI are above the summer differences between MH and PI (Fig. 3f). Here, the low-

resolution simulations show higher total cloud cover distribution over Eurasia and North 
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America as compared to the high-resolved simulations. Annual mean differences exceed 15 

% on a regional scale, seasonal differences surpass 35 %. The cloud cover differences in turn 

affect the cloud radiation balance. Nam and Quaas (2012) describe this phenomenon while 

evaluating ECHAM5 simulations by satellite datasets. They demonstrate that ECHAM5 

underestimates cloud radiative forcing when total cloud coverage is large. The downstream 

process influences the evaporation and hence the water cycle in the model as well. Dimri 

(2004) and Giorgi and Marinucci (1996) point out the sensitivity of physical parameterizations 

in climate models as a function of their horizontal resolution. For ECHAM5, the subgrid-scale 

cloud scheme depends on the represented model resolution (Roeckner et al., 2003, 2006). 

Thus, variations in total cloud cover between varying model versions are associated with 

modified parameters in the cloud and convective schemes. The resolution-dependent 

differences of these variables lead to changes in surface temperature (Roeckner et al., 2006, 

Dallmeyer, 2008). This feature can be highly model-dependent. 

For DJF, the combined effect of resolution and orography (LRMH-PI minus HRMH-PI) is more 

pronounced (Fig. 5f) and thus surpasses MH temperature changes throughout large areas of 

continental Eurasia and North America. The sensitivity study HRMH-PI (LRoro) represents the 

isolated effect of orographic-induced T2m anomalies. Pronounced T2m anomaly differences 

during DJF are reflected across northern Eurasia and western and central North America (Fig. 

5e). The results are in line with the findings of Charney and Eliassen (1949), Grose and 

Hoskins (1979), and Hoskins and Karoly (1981). They argued that mountain barriers of the 

size of the Rocky Mountains and the Himalayas influence the position of the stationary Rossby 

wave. Kasahara (1966), Kasahara et al. (1973), and Manabe and Terpstra (1974) applied 

atmospheric general circulation models to isolate the effect of mountain ranges and planetary 

waves. They ran a set of simulations with and without the effect of mountains and focused on 

the stationary and transient disturbance of atmospheric wave trains. The presence of mountain 

barriers led to an increase in the stationary component of the eddy conversion while the 

absence of mountains causes the opposite. Furthermore, Manabe et al. (1970) reported in an 

earlier study that the resolution of the orographic mask and model do play an important role to 

this phenomenon.   

 

Orographic effects during JJA are of minor influence to T2m anomaly changes (Fig. 3e). The 

effects of orographic resolution and clouds are identified for both boreal summer and winter, 

whereby during DJF the effects are more pronounced (Figs. 3f and 5f). Furthermore, snow 

cover and surface albedo across the Rocky Mountain Range and central North America act as 

an amplifying mechanism to temperature changes. The isolated effect of orography in HRMH-

PI(LRoro) shows temperature anomalies during boreal winter that are seen in the immediate 

vicinity of large-scale mountain ranges. Our LRMH-PI minus HRMH-PI and HRMH-PI(LRoro) results 
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indicate resolution-induced temperature anomalies that are regionally as large as the MH 

temperature anomalies. In particular, HRMH-PI(LRoro) shows that the effect of the low resolution 

of orography cannot explain the differences in LRMH-PI and HRMH-PI. The interaction between 

orography and MH thermal forcing leads to characteristic stationary wave patterns. 

 

Our results have implications for data-model comparisons. We emphasize, however, that a 

detailed data-model comparison is beyond the scope of the present paper. Comparing our DJF 

temperature anomalies (LRMH-PI versus HRMH-PI) with proxy data (e.g., Bartlein et al., 2011), we 

do not see a clear increase in the performance in HRMH-PI relative to LRMH-PI (Figs. 5, 7). Proxy 

data suggest a reduced latitudinal temperature gradient over Europe during the mid-Holocene 

(Bartlein et al., 2011) which is more pronounced in HRMH-PI than in LRMH-PI. Across West Siberia 

proxy and model data show similar positive Holocene temperature anomalies. Across Central 

Eurasia, the low-resolution model experiments better reflect the positive MH temperature 

anomalies, compared with the negative T2m anomaly of the higher resolved version. The T2m 

anomaly differences between the model runs are strongest over Siberia and the Rocky 

Mountain Range. In the area of the Rocky Mountain Range, pollen data (Viau et al., 2006, 

Bartlein et al., 2011, Kaufmann et al., 2020) and model experiments show contrasting 

anomalies (pollen negative vs. model positive). Our MH results confirm the general statement 

that current models have a limited ability to reproduce spatial patterns of reconstructed 

temperature changes (e.g., Harrison et al., 2014). 

 

For JJA T2m anomalies (Figs. 3, 7), low- and high-resolution model runs show continental-

wide positive temperature anomalies during the mid-Holocene. Higher MH T2m compared to 

PI (Fig. 3a,b) over Europe and northern Siberia are consistent with multi-proxy reconstructions 

of the northern high-latitudes (Sundqvist et al., 2010, Kaufmann et al., 2020) as well as specific 

pollen and plant macrofossil records (Prentice et al., 1996, Tarasov et al., 1998, MacDonald 

et al., 2000, Seppä and Birks, 2001). A southward retreat of Arctic treelines is related to a 

decline in Arctic mid-to-late Holocene summer temperatures. Lake records from western 

Greenland estimate local MH summer temperatures of approximately 2 to 3 K higher than 

present day (Axford et al., 2013). δ18O records in ice cores from the Agassiz Ice Cap on 

Ellesmere Island imply a summer cooling of 4 K from 8 ka BP to present (Fisher et al., 1995). 

Briner et al. (2016) report that temperatures of Arctic Canada and Greenland decreased by 

approximately 3±1 K from the mid-to-late Holocene.  

 

 

 

5. Conclusions 
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The resolution dependence of model results has been addressed for present day conditions 

(e. g. Jost et al., 2005, Hack et al., 2006, Roeckner et al., 2006, Byrkjedal et al., 2008, Kim et 

al., 2008).  The studies point out the benefits of higher resolved model experiments. However, 

Harrison et al. (2015) pointed out that differences in performance can only weakly be related 

to modern-day biases, and more sophisticated models are not necessarily better at simulating 

climate changes. Therefore, an understanding of MH climate dynamics is essential. Our mid-

Holocene climate simulations with ECHAM5 demonstrate the dependence of continental 

surface air temperatures on spatial resolution and orography changes. When comparing the 

different resolutions, we see that on the regional scale temperature anomaly differences can 

be of the same order of magnitude as simulated MH temperature anomalies. Differences in 

boreal winter temperature anomalies are largely attributable to distinct stationary wave 

patterns. We suspect that stationary and transient eddies and the model’s climatological basic 

states determine the atmospheric response to MH thermal forcing anomalies, in a similar way 

as described in other contexts (e.g., Chervin et al., 1980, Held et al., 2002, Branstator, 2002, 

Kushnir et al., 2002, Brandefelt and Kornich, 2008, Branstator and Selten 2009). Meridionally 

trapped waves of this kind have been seen in other contexts, where they have been termed 

“circum-global waves” (Branstator, 2002), consisting of an equivalent barotropic wave. In 

contrast, the summer temperature differences between the low- and high-resolution models 

can be largely attributed to changes in shortwave cloud radiative forcing which is consistent 

with the finding that the shortwave cloud feedback is a major driver of differences between 

PMIP model results, highlighting the fingerprint of model physics (Braconnot and Kageyama, 

2015). 

 

In all experiments, SST and sea ice fields remained fixed and thus, we isolate the effect in 

atmosphere-only experiments. This advantage of fixed SSTs constitutes at the same time a 

disadvantage, since the SSTs cannot develop freely and are not completely consistent with 

the atmospheric circulation pattern, because the circulation would affect SST and sea ice. This 

can be directly seen in our set up. The original ECHO-G simulation showed a pronounced 

Arctic Oscillation-like response for the MH winter (Lorenz and Lohmann, 2004, Felis et al., 

2004, Lohmann, 2017), whereas the atmospheric circulation forced by the output of this 

particular simulation shows a different atmospheric response for the high-resolution version. 

Furthermore, the response of low- and high-resolution versions differ considerably when using 

other mid-Holocene lower boundary conditions. As a logical next step, we will perform 

simulations by using different background climates as derived from PMIP (e.g. Brierley et al., 

2020). Our experiments using different background SST and sea ice might be a starting point 

for more systematic analyses of the system.  
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Our results imply that differences in paleoclimate simulations could partly be attributed to the 

use of different resolutions, even when using the same atmospheric circulation model. It is 

conceivable that high-resolution models are required to represent the atmospheric dynamics 

such as baroclinic waves and even blocking phenomena (e. g. D'Andrea et al., 1996, Matsueda 

et al., 2009, Scaife et al., 2010, Berckmans et al., 2013, Dunn-Sigouin and Son, 2013, Rimbu 

et al., 2014). Blockings play a central role for the extratropical circulation, mean climate and 

extremes (Masato et al., 2013, Ionita et al., 2016, Lutsko et al., 2019). Related to this, 

persistent episodes of extreme weather in the Northern Hemisphere summer were 

associated with the presence of high-amplitude quasi-stationary atmospheric Rossby waves 

within a particular wavelength range becoming trapped within an effective mid-latitude 

atmospheric waveguide (Branstator, 2002, Mann et al., 2017, Wills et al., 2019). Therefore, 

high-resolution models are most likely necessary to resemble the decadal to millennial 

variability as seen in the paleorecords (Laepple and Hubers, 2014, Lohmann et al., 2020). 

Future work shall examine the potential of using high-resolution modelling to infer the 

variability and frequency of past extremes (Petoukhov et al., 2013). For intercomparison 

studies, we suggest future studies to systematically explore resolution-dependent results in 

coupled and uncoupled general circulation models. 
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