
1.  Introduction
Iron is a critical micronutrient limiting primary productivity in vast ocean regions (Boyd & Ellwood, 2010; 
Tagliabue et al., 2017). Iron limitation is responsible for the development of so-called High Nitrate Low 
Chlorophyll regions of the Southern Ocean, Subarctic North Pacific, Subarctic North Atlantic, and Eastern 
Equatorial Pacific (Moore et al., 2013). Since dissolved iron (DFe) in the ocean exists in the picomolar (pM) 
to nanomolar (nM) concentration range, historical measurements with higher detection limits and contam-
ination issues have hindered a robust global understanding of the marine iron cycle compared to macronu-
trients (Bruland et al., 2014). However, over the past two decades, in large part due to the GEOTRACES pro-
gram, considerable progress has been made and reliable intercomparable iron measurements have become 
available that permit a more synoptic view of the global marine iron cycle (Schlitzer et al., 2018).

The increasing number of robust iron measurements has sparked recent modeling efforts. However, few ob-
servational constraints are provided on a global scale, and the degree of complexity and assumptions on the 
mechanistic processes implemented in global marine iron models have varied dramatically (e.g., Tagliabue 
et al., 2016). For example, there is no consensus on the rates of key source fluxes to the ocean, particularly 
from atmospheric deposition (Anderson et al., 2016) and sedimentary release (e.g., Dale et al., 2015; Elrod 
et al., 2004) that vary between 1.4–30 Gmol yr−1 and 0–194 Gmol yr−1, respectively, in state-of-the-art ma-
rine iron models (Tagliabue et al., 2016). Since uncertainties associated with scavenging and removal of DFe 
are also high, global marine iron models can tune scavenging rates to reproduce the global iron inventory 
with large ranges of sources fluxes (Frants et al., 2016; Pasquier & Holzer, 2017).
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Global Biogeochemical Cycles

Another key aspect of marine iron models is the representation of ligands that organically bind DFe and 
thereby prevent it from being scavenged to sinking particulates. Some models still prescribe a globally con-
stant ligand concentration typically at 1 nM, while others account for ligand distributions via a parameteri-
zation or directly simulating ligands as a prognostic tracer. Ligands are thought to be produced by microbes 
as a by-product during the production of organic matter (Gledhill & Buck, 2012), including by heterotrophic 
siderophores that flourish when systems become iron stressed (Bundy et al., 2018). This has led modelers 
to predict ligand concentrations by assuming they are produced during the production of organic matter 
(e.g., Völker & Tagliabue, 2015) or by prescribing a relationship to other organic tracers such as dissolved 
organic matter (DOM) and apparent oxygen utilization (AOU) (e.g., Misumi et al., 2013; Pham & Ito, 2018; 
Tagliabue & Völker, 2011).

The uncertainties associated with external source fluxes and scavenging represent key gaps in understand-
ing the global marine iron cycle. This hampers accurate estimates of the DFe budget, residence time and, 
consequently, its sensitivity to environmental perturbations and climate change. While the rapidly increas-
ing amount of DFe measurements is improving our knowledge of the distribution and inventory of dis-
solved iron in the ocean, constraining external fluxes has proved to be more difficult. As a result, the range 
of residence times estimated by the current global marine iron cycle models ranges from less than a decade 
to multiple centuries (Tagliabue et al., 2016), which limits our ability to confidently predict the impact of 
changes to the marine iron cycle on productivity in a future ocean. Observational estimates fall within a 
similar range (Johnson et al., 1997), noting that more recent studies estimate much shorter residence times 
in the upper ocean (∼10 days–4 years) (Croot et al., 2004; Sarthou et al., 2003) depending on the local dy-
namics, iron pools considered, and source inputs in different regions (Black et al., 2020).

In this study, we use a global marine DFe data set to constrain the iron cycle fluxes in a global marine bioge-
ochemical model. We analyze model sensitivity simulations that focus on three key uncertainties: varying 
source fluxes of (a) atmospheric soluble iron deposition and (b) reductive sedimentary iron release, as well 
as the role of a (c) variable ligand distribution on DFe distribution and scavenging rates. The resulting DFe 
concentrations in each model simulation are evaluated against observations to determine the most realistic 
marine iron cycle fluxes among the model scenarios.

2.  Model Description
We used the UVic Earth System Climate Model (Weaver et al., 2001) version 2.9 (Eby et al., 2009). In the 
following section, we provide a general overview of the model components then focus on improvements 
made to the marine iron cycle in this study, whereas other modifications applied to all model simulations 
are described in the supplementary information.

2.1.  Physical Model

The physical ocean-atmosphere-sea ice model includes a three-dimensional (1.8° × 3.6°, 19 vertical levels) 
general circulation model of the ocean (Modular Ocean Model 2) with parameterizations such as diffu-
sive mixing along and across isopycnals and eddy-induced tracer advection (Gent & McWilliams, 1990). 
The physical configuration is based on Somes et al. (2017) and includes parameterizations such as com-
putation of tidally induced diapycnal mixing over rough topography on the sub-grid scale (Schmittner & 
Egbert, 2014), anisotropic viscosity (Large et al., 2001; Somes et al., 2010), and enhanced zonal isopycnal 
mixing schemes in the tropics to better represent zonal equatorial undercurrents (Getzlaff & Dietze, 2013). 
A two-dimensional, single level energy-moisture balance atmosphere and a dynamic-thermodynamic sea 
ice model are used, forced with prescribed monthly climatological winds (Kalnay et al., 1996) and constant 
ice sheets (Peltier, 2004).

2.2.  Marine Biogeochemical Model

The updated marine ecosystem-biogeochemical model coupled within the ocean circulation model is based 
on the Model of Ocean Biogeochemistry and Isotopes (MOBI), version 2.0. Briefly, MOBI includes three 
prognostic inorganic nutrient tracers (nitrate [NO3], phosphate [PO4], iron [DFe]) and two organic phases 
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(dissolved organic nitrogen [DON] and dissolved organic phosphorus [DOP]), three phytoplankton (or-
dinary, N2-fixing diazotrophs, calcifying coccolithophores), one zooplankton, sinking detritus (i.e., dead 
particulate organic matter [POM]), as well as dissolved oxygen (O2), dissolved inorganic carbon, alkalin-
ity, and Δ14C (Figure S1). It combines latest features from previous studies focusing on the nitrogen cycle 
(Somes & Oschlies, 2015), iron cycle (Muglia et al., 2017), and carbon chemistry (Kvale et al., 2015), and 
is also constrained by isotope systems of 13C and 15N (Schmittner & Somes, 2016) (not shown here). Our 
model experiments were simulated for over 5,000 years under pre-industrial boundary conditions as they 
approached their quasi steady state.

2.3.  Marine Iron Cycle Model

2.3.1.  Base Configuration

The marine iron model configuration is based on the previous UVic Kiel Marine Biogeochemistry Model 
(KMBM) (Nickelsen et al., 2015), including improvements implemented in Muglia et al. (2017) (Figure 1). 
The marine iron model includes explicit tracers for DFe and particulate iron (PFe). All phytoplankton grow 
with a constant elemental stoichiometry ratio of iron relative to nitrogen. The sources of DFe to the ocean 
are atmospheric soluble deposition (Luo et  al.,  2008), reductive dissolution and release from sediments 
(Elrod et al., 2004; Moore & Braucher, 2008), and hydrothermal fluxes (Tagliabue et al.,  2010) (Table 2, 
Figure 2). The ligand concentration determines the fraction of DFe that is organically complexed and thus 
unavailable for scavenging, whereas the remaining free DFe (DFe’) pool can be scavenged to PFe, which 
then sinks and remineralizes at the same rate as POM (Table S1). In the base simulation #1, ligands are 
prescribed to be globally constant at 1 nM as in previous iterations of the model. This simulation is given 
the name SrcLow_LigCon to reflect its differences (i.e., low source inputs of atmospheric soluble deposition 
and reductive sedimentary iron release, and constant ligand distribution) from further changes made to the 
marine iron model in this study (see subsections below and Tables 1 and 2).

2.3.2.  Scavenging

The formulation for scavenging and partitioning of free and organically complexed DFe is based on from 
previous model parameterizations (Nickelsen et  al.,  2015; Galbraith et  al.,  2010). Scavenging of DFe’ to 
PFe occurs via two mechanisms in the model: (a) absorption onto POM following (Honeyman et al., 1988; 
Parekh et al., 2004)

 0.58,OrgSc orgFe kFe DFe POC� (1)
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Figure 1.  Schematic of the marine iron (Fe) model. See Section 2.3 for a full description.
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which is a function of particulate organic carbon (POC), free DFe (DFe’), and the particle scavenging rate 
constant (kFeorg); and (b) inorganic scavenging

 2,InSc prpFe kFe DFe� (2)

which depends only on DFe’ and the inorganic scavenging rate constant (kFeprp) following the scheme of 
Galbraith et al. (2010). This inorganic scavenging term primarily represents colloidal aggregation into larg-
er, sinking particles as well as lithogenic scavenging not explicitly accounted for in our model. Here we use 
a non-linear formulation for inorganic scavenging following Galbraith et al. (2010) which was designed to 
account for high lithogenic scavenging rates to better reproduce DFe where atmospheric deposition is high 
(e.g., tropical and subtropical North Atlantic) (Pham & Ito, 2019; Ye & Völker, 2017). Note that we included a 
slightly higher non-linear exponent (2.) compared to Galbraith et al., 2010 (1.5) that better reproduced DFe 
in high atmospheric deposition areas in our model. This difference may be related to the fact that Galbraith 
et al., 2010 model included higher phytoplankton iron quotas when DFe is high which further reduces DFe 
in that model, whereas our model formulation assumes constant iron stoichiometry due to high uncertain-
ties associated with this process. Thus, our model performed better with higher scavenging rates to reduce 
the overestimation of DFe in these high deposition areas.

In each model simulation, the scavenging rate constants (kFeorg, kFeprp) were manually tuned so that each 
simulation contains a nearly identical global iron inventory with an average global DFe concentration of 
0.7 ± 0.03 nM (Table 2). The inorganic scavenging rate constant was adjusted until the model reproduced 
the mean observed DFe concentration in the ocean interior since it is the dominant form of scavenging 
there, whereas the POM scavenging rate constant was adjusted to reproduce declining DFe concentrations 
toward the surface ocean (Figure 4). The globally integrated rates of the different scavenging processes are 
shown in Table 2, vertically integrated rates from high and low source input simulations in Figure 2, and 
total basin-scale averages in Figure 4.

2.3.3.  Ligand Parameterization

In the base model configuration, a constant ligand concentration of 1 nM is applied globally, and thus has 
LigCon in its model name (see Table 1). However, the distribution of ligands in the real ocean is variable 
(e.g., Völker & Tagliabue, 2015). Since iron-binding ligands are thought to be produced during the produc-
tion of organic matter (Gledhill & Buck, 2012), which might explain why DOM and AOU may qualitatively 
reflect some observed ligand concentration patterns (Misumi et al., 2013; Pham & Ito, 2018; Tagliabue & 
Völker, 2011). However, a first global model-data comparison with ligands simulated as prognostic tracers 
found ligand distributions difficult to constrain with available observations and is further complicated by 
large variations in binding strength of different types of ligands (Völker & Tagliabue, 2015). Therefore, to 
maintain computational efficiency, we pragmatically chose to implement ligand concentrations as a func-
tion of existing tracers rather than include additional prognostic tracers.
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# Simulation name
Atmospheric soluble 

deposition
Reductive sedimentary 

release
Ligand 

distribution
Inorganic scavenging 

(kFeprp
a)

Particle scavenging 
(kFeorg

b)

1 SrcLow_LigCon Lowc Lowd Constante 0.0069 1.2

2 SrcLow_LigVar Low Low Variablef 0.0052 1.5

3 SedMid_LigVar Low Midg Variable 0.0069 2.2

4 SedHigh_LigVar Low Highh Variable 0.0081 2.9

5 Atm + SedHigh_LigVar Highi High Variable 0.0098 2.9
aInorganic scavenging parameter has units of (mmol Fe/m3)−2d−1. bParticle scavenging parameter has units of (gC/m3)−0.58  d−1. cLuo et  al.  (2008). dElrod 
et al. (2004) parameterization with low flux rate (see Section 2.3.4). eConstant concentration of 1 nM everywhere in the ocean. fVariable ligand parameterization 
(see Section 2.3.3). gDale et al. (2015) parameterization with intermediate maximum flux rate 100 μmol Fe m−2 d−1. hDale et al. (2015) parameterization with 
suggested maximum flux rate 170 μmol Fe m−2 d−1. iMyriokefalitakis et al. (2018).

Table 1 
Marine Iron Model Configurations
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We implemented a variable ligand parameterization to estimate ligand concentrations based on a function 
of DON and AOU:

  0.8 0.8,Lig AOU DON� (3)

where α (0.015 nmol ligand/(mmol O2 m−3)0.8) and β (0.21 nmol ligand/(mmol DON m−3)0.8) are generic pa-
rameters that determine ligand concentration associated with the tracers AOU and DON, respectively. The 
parameters α and β were chosen so that the global ligand mean concentration remained at 1 nM, consistent 
with simulation #1 with constant ligands, but now reflects changes in their spatial distribution (Figure 3). 
Model simulations with this variable ligand parameterization (simulations #2–5, see Table 1) have LigVar 
in their respective model simulation name.

Although we follow previous studies for the variable ligand parameterization (Misumi et al., 2013; Pham & 
Ito, 2018; Tagliabue & Völker, 2011), a few notable changes have been made in our version. Since AOU can 
be negative in the surface ocean due to dissolved oxygen supersaturation, we applied a minimum ligand 
concentration of 0.5 nM. Previous ligand parameterizations have also applied minimum ligand concentra-
tions to account for ligands associated with more refractory forms of DOM not explicitly included in our 
model (Aumont et al., 2015; Tagliabue & Völker, 2011). We also applied an exponential parameter (0.8) to 
the AOU and DON terms, which reduces ligands associated to these tracers particularly when their con-
centrations are high. This helped the model from overestimating DFe concentrations when AOU and DON 
concentrations are at their highest concentrations in the model.

2.3.4.  Reductive Sedimentary Iron Release Parameterization

The base model version uses reductive sedimentary iron release based on the Moore and Braucher (2008) 
implementation of Elrod et al. (2004),

 ,sed FeSed oxFe C� (4)

where the Fe flux from the sediments (Fesed) is determined by the sedimentary iron release rate (𝛾FeSed = 
0.27 μmol Fe/mmol Cox m−2 d−1), and organic carbon oxidation (Cox) in the sediments. The base model ver-
sion uses the DFe flux rate from Nickelsen et al. (2015) that is lower than suggested by Elrod et al. (2004) 
(0.72 μmol Fe mmol Cox

−1 m−2 d−1). Since this formulation yields lower global rates of this source input 
in the model compared with other implemented sedimentary functions included in this study (described 
below), model simulations with this sedimentary iron release implementation (#1–2) contain the name 
SrcLow, noting they also include a low source input of atmospheric soluble iron deposition (see Section 
2.3.5 below).

We also implemented the sedimentary iron release function proposed by Dale et al. (2015), who compiled 
a global data set of sedimentary DFe fluxes to constrain their model estimate. While it has a strong depend-
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# Simulatiosn name

Atmospheric 
soluble deposition 

(Gmol yr−1)

Reductive 
sedimentary release 

(Gmol yr−1)

Hydro-
thermal 

(Gmol yr−1)

Inorganic 
scavenging 
(Gmol yr−1)

Particle 
scavenging 
(Gmol yr−1)

Dissolved 
iron (nM)

Global 
residence 
timea (yr)

Surface 
residence 
timeb (yr)

1 SrcLow_LigCon 1.4 15.1 11.4 34.3 22.5 0.68 33.3 3.12

2 SrcLow_LigVar 1.4 14.6 11.4 30.9 29.3 0.73 35.9 2.56

3 SedMid_LigVar 1.4 68.6 11.4 99.3 55.9 0.73 12.2 1.35

4 SedHigh_LigVar 1.4 117 11.4 159 83.9 0.73 7.66 0.87

5 Atm + SedHigh_LigVar 3.4 114 11.4 162 81.5 0.71 7.49 0.83
aSince our iron model simulates active (re)cycling between particulates and dissolved forms and thus scavenging does not permanently remove bioavailable 
iron from the system, we calculate residence time based on global external fluxes and bulk inventory, that is, global Fe inventory/∑Source Inputs. bFor surface 
residence time, we follow Black et al. (2020) by including the upper 250 m and account for sinking particulate iron out of this layer as the sink flux. Since our 
particulate iron pool includes both biogenic (i.e., produced during primary production) and authigenic (i.e., produced by scavenging) iron in the model, this 
model residence time is comparable to their mean dissolved, biogenic + authigenic estimate, which ranges from 0.1 to 4 years depending on location.

Table 2 
Global Marine Iron Cycle Results
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ence on the flux of POM to the seafloor similar to Elrod et al. (2004), the data set in Dale et al. (2015) also 
revealed a strong dependence on bottom water oxygen concentration. Dale et al. (2015) thus parameterized 
sedimentary DFe release as

  2: ,sed FeSedMax oxFe tanh C bwO� (5)

where γFeSedMax is the maximum flux under steady-state conditions, and bwO2 is dissolved oxygen concentra-
tion in bottom waters interacting with the sediments.

We test two scenarios with the Dale et al. (2015) parameterization by altering the maximum flux constant (γFeSed-

Max). The SedHigh simulations apply the value suggested by Dale et al. (2015) (γFeSedMax = 170 μmol m−2 d−1), 
whereas the SedMid simulation reduces the maximum flux value to 100 μmol m−2 d−1 to test more a inter-
mediate level of sedimentary DFe release (see Tables 1 and 2). This reduced value was chosen to test a global 
sedimentary DFe flux approximately halfway in between SedHigh and SedLow since their fluxes differ by a 
large amount. Note that the SedMid simulation does not produce a significantly different spatial distribu-
tion compared to SedHigh.

2.3.5.  Atmospheric Soluble Iron Deposition

We applied the atmospheric soluble iron deposition mask from Luo et al. (2008) in model simulations #1–4. 
This atmospheric soluble iron deposition estimate delivers 1.4 Gmol yr−1 of soluble iron to the global ocean, 
which is on the low-end (AtmLow; see Figure 2) compared to other estimates applied in the marine iron 
model intercomparison study (Tagliabue et al., 2016). This estimate from Luo et al. (2008) is one of the first 
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Figure 2.  Vertically integrated fluxes of atmospheric soluble iron deposition (top row) prescribed on model simulations #1–4 from Luo et al. (2008) (AtmLow) 
(a), high scenario (AtmHigh) from the GESAMP intermodel average (Myriokefalitakis et al., 2018) (b), and their difference (c). Center row: Vertically integrated 
sedimentary iron release using parameterizations based on Elrod et al. (2004) (SedLow from simulation #2) (d) and Dale et al. (2015) (SedHigh from simulation 
#4) (e), and their difference (f). Bottom row: Vertically integrated total scavenging rates from simulation #2 with low source inputs and scavenging rates 
(SrcLow) (g) and simulation #5 with highest rates (Atm + SedHigh) (h), and their difference (i).
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Figure 3.  Distribution of variable ligand concentrations in the surface (0–250 m) ocean (a), and basin-scale averages in 
the Atlantic (b), Indian (c), Pacific (d), and Southern (e). Note that the Southern Ocean region (>40°S) from within the 
other basins (b)–(d) is excluded there since it is shown in (e).
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Figure 4.  Annually averaged depth profiles of marine iron source inputs (left column), scavenging rates (center-left column), dissolved iron concentrations 
(center-right column), and dissolved iron (DFe) standard deviation (Std Dev) (right column) in the Global, Atlantic, Indian-Pacific, and Southern Ocean for 
model simulations (colored symbols) and dissolved iron observations (black circles). Source inputs (left column) are atmospheric soluble deposition as large 
filled symbols in the low scenario (AtmLow, green down-pointing triangle) and high (AtmHigh; red diamonds) scenarios, sedimentary iron release in the low 
(SedLow; blue hexagons) and high scenarios (SedHigh; purple triangles), and hydrothermal flux (green square, applied to all simulations). For dissolved iron 
concentrations (center-right column), lines show model averages in the entire selected domain, while symbols include model results only where dissolved iron 
observations exist. Note that the Southern Ocean region (>40°S) from within the Atlantic and Indian-Pacific basins is excluded there since it is shown in the 
Southern Ocean panels.



Global Biogeochemical Cycles

deposition models that explicitly accounted for the soluble iron deposition rather than assuming a constant 
solubility from total deposition.

Another estimate we test in this study applies the average flux from four recent atmospheric soluble iron 
deposition models (Myriokefalitakis et al., 2018). The intermodel average global soluble deposition rate is 
3.4 Gmol yr−1 with similar patterns to Luo et al. (2008) but higher rates most notably in the North Atlantic. 
This simulation with high atmospheric soluble iron deposition (AtmHigh; Figure 2) is applied to the simu-
lation with high sedimentary release and variable ligands and is therefore named Atm + SedHigh_LigVar.

3.  Model Results and Data Comparison
3.1.  Global Dissolved Iron Data Set

The DFe database used in this study is a collection of observations from both GEOTRACES Intermedi-
ate Data Product 2017 (7,520 points; Schlitzer et al., 2018) and prior observations compiled by Tagliabue 
et al. (2012) (12,371 points). Note that we excluded 37 measurements (19 from GEOTRACES, 18 from pri-
or) with high DFe concentrations between 10 and 216 nM mainly from locations with high hydrothermal 
activities, but also some near-shore settings (e.g., Laptev Sea, Bristol Bay, Peruvian coastal waters near ur-
ban area of Trujillo) and around small islands not resolved in the model (e.g., Kerguelen, Indonesian and 
Coronation), and thus the data set used here contains concentrations up to 10 nM. We then interpolated 
the data onto the UVic model grid using the PyFerret SCAT2GRIDGAUSS function developed by NOAA’s 
Pacific Marine Environmental Laboratory, which is a Gaussian interpolation function based on Kessler 
and McCreary  (1993). This gridded data was used for the model-data comparison (Figures  3–7) and to 
calculate model-data statistical metrics (i.e., correlation coefficient, (uncorrected) standard deviation, and 
root-mean-squared error) (Figure 8). It covers 5,917 grid points since many observations overlap and thus 
are averaged on corresponding grid points. Since we compare to annual model results, we interpolated all 
observations onto the grid and thus temporal aspects and variability of the data are not taken into account 
or investigated in this study.

Model-data misfit statistical metrics are sensitive to unresolved outlier concentrations and spatial extent 
of the data interpolation onto the model grid. However, these aspects do not affect which simulations best 
reproduce the global data set according to statistical metrics. This is illustrated by comparing metrics cal-
culated from all observations (triangles) to only GEOTRACES (circles) in Figure 8. The statistical metrics 
slightly improve when comparing against only GEOTRACES observations, with the only exception being 
root-mean-squared error for model simulation #1 in the surface ocean, but the relative improvements in 
the model simulations are nearly identical. The arbitrary exclusion concentration threshold of 10 nM was 
chosen as a balance between including as many observations as possible while still being able to calculate 
useful statistical metrics that are not dominated by these outlier concentrations.

3.2.  Variable Ligand Distribution

The simulation with constant ligands does not reproduce the major basin-scale features of the observed 
DFe distribution, despite that its globally averaged depth profile is generally consistent with observations 
(Figure 4c). Most notably, simulations with constant ligands significantly overestimate the DFe in the inte-
rior Southern Ocean (Figure 4o), a critical ocean basin for Fe-limited phytoplankton growth. LigCon thus 
overestimates supply of DFe via upwelling, and underestimates Fe limitation of phytoplankton growth, 
which is a key deficiency in the base configuration and previous model versions (e.g., Muglia et al. (2017)). 
They also underestimate DFe in intermediate waters in the Indian and Pacific Ocean (Figures 4k and 5b), 
which we have averaged together since they have similar deep ocean biogeochemical tracer profiles relative 
to the global average (Figure S1).

The simulations with variable ligand concentrations (#2–5; LigVar) better reproduce the ocean interior dis-
tribution of DFe (Figure 5). This is primarily due to the AOU dependence of the variable ligand param-
eterization that mainly determines ligand concentrations in the deep ocean since semi-refractory DOM 
concentrations are low there in the model. This is most obvious when comparing intermediate depths of the 
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Figure 5.  Annual, zonally averaged dissolved iron concentrations in the Indian-Pacific and Atlantic basins in observations (a), SrcLow_LigCon (b), SrcLow_
LigVar (c), SedHigh_LigVar (e), and Atm + SedHigh_LigVar (g). Right column highlights individual effects on dissolved iron concentrations by showing model 
differences from variable ligands (i.e., SrcLow_LigVar − SrcLow_LigCon) (d), high sedimentary iron release (i.e., SedHigh_LigVar − SrcLow_LigVar) (f), and 
high atmospheric soluble deposition (i.e., Atm + SedHigh_LigVar − SedHigh_LigVar) (h). In locations where no observations exist (black region in a), zonal 
model averages are shown (b,c,e,g).
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Figure 6.  Annually averaged dissolved iron concentrations in the upper 250 m in observations (a), SrcLow_LigCon (b), SrcLow_LigVar (c), SedHigh_LigVar (e), 
and Atm + SedHigh_LigVar (g). Right column highlights individual effects on dissolved iron concentrations by showing model differences from variable ligands 
(i.e., SrcLow_LigVar − SrcLow_LigCon) (d), high sedimentary iron release (i.e., SedHigh_LigVar − SrcLow_LigVar) (f), and high atmospheric soluble deposition 
(i.e., Atm + SedHigh_LigVar − SedHigh_LigVar) (h).
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Southern and Indian-Pacific Oceans, which contain relatively low and high values of AOU and thus ligand 
concentrations, respectively, according to our parameterization (see Figures 3 and S1). Lower ligand con-
centrations in the Southern Ocean enhances scavenging causing lower DFe concentrations, with the oppo-
site effect occurring in the Indian-Pacific Ocean, resulting in better reproduced observations in both basins. 
Therefore, the interior DFe distribution with the variable ligand parameterization is better partitioned with 
respect to observations (Figures 4 and 5) and improves the global model-data misfit by 9.2% when averag-
ing across our three metrics (i.e., correlation coefficient (R), normalized standard deviation (nSTD), and 
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Figure 7.  Comparison of dissolved iron measurements from GEOTRACES (black circles) and others (black down-pointing triangles) in the upper 250 m with 
model simulations SrcLow_LigCon (green squares), SrcLow_LigVar (blue hexagons), SedHigh_LigVar (purple triangles), Atm + SedHigh_LigVar (red diamonds) 
across ocean the western equatorial Pacific (10°S–10°N) (a); eastern tropical South Pacific (5°S–15°S) (b); eastern North Atlantic (30°W–0°) (c); eastern tropical 
South Atlantic (35°W–15°) (d); central North Pacific (175°–150°W); and western Indian (zonal averaged from 20° to 100°E) (c). The intersecting continental 
margin or shelf sea at the end of the transect is given in parenthesis. Model results are included only at locations where observations exist. Since the core of 
oxygen deficient zones in the model does not directly overlap with the real ocean where high dissolved iron concentrations exist in the eastern tropical South 
Pacific (b) and northern Indian Ocean (f), we added dissolved iron concentrations directly above the core of the oxygen deficient zones (O2 < 5 mmol m−3) in 
the model as star symbols.
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normalized root-mean-squared error (nRMS); (∆R + ∆nSTD + ∆nRMS ⋅ −1)/3 × 100%) against all obser-
vations (Figure 8), which represents the largest improvement from any individual simulation in this study.

The concentration of semi-refractory DON largely determines ligand concentrations in the surface ocean 
(Figure 3a). DON concentrations are higher around the high productivity regimes in the low latitudes with 
generally decreasing values toward higher latitudes (Somes & Oschlies, 2015) (Figure S2). This pattern is 
reflected in the surface DFe distribution that shows the same latitudinal trend in the variable ligand model 
(Figures 6c–6d). While this meridional DFe pattern better reproduces low DFe concentrations in the open 
Southern Ocean, it creates larger model-data biases on high latitude continental shelves in the Bering Sea, 
Weddell Sea, and European shelf seas (Figures 6a–6d, 7c and 7e). This shows that while the overall variable 
ligand effect significantly improves the global DFe distribution (Figure 7), model-data biases in some re-
gions (e.g., high latitude continental shelf seas) still increase, which contributes to a smaller average metric 
improvement (3.9%) in the surface layer compared to the global ocean.

3.3.  Sedimentary Iron Release

The simulations with low sedimentary source inputs (#1–2 SrcLow) provide a relatively poor fit to observed 
DFe concentrations according to the statistical metrics (Figure 8). They fail to reproduce the high DFe con-
centrations near continental margins (Figures 6 and 7), suggesting higher sedimentary release rates are nec-
essary to explain these features. The simulated DFe distribution also lacks the strong spatial gradient toward 
depleted concentrations in many open ocean regions in the observations. These overly smooth gradients in 
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Figure 8.  Model-data statistical misfit metrics calculated using all observations (triangles) and using only GEOTRACES observations (circles). Correlation 
coefficient (left column), standard deviation (center column), root-mean-squared error (right column) are calculated for the global ocean (top rows) and 
upper 250 m of the water column (bottom rows). Standard deviation (b, e) and root-mean-squared error (c, f) are normalized by the standard deviation of 
observations. The root-mean-squared error vertical axis has been inverted so the upwards direction represents a better model misfit in all panels. Note a perfect 
representation of observations would yield the value 1 for correlation coefficient, 1 for normalized standard deviation, and 0 for normalized root-mean-squared 
error.
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SrcLow are the result of low sedimentary release rates and subsequent low scavenging rates that are then 
required to reproduce the global mean DFe inventory, resulting in a relatively long global mean residence 
time of 35 years among our simulations (Table 2).

The simulations with higher sedimentary release rates (Figure 2e) produce higher DFe concentrations in 
continental shelf seas (Figures 6 and 7), particularly where bottom water oxygen is low in the low latitudes. 
The simulations applying high-end sedimentary Fe release rates (SedHigh) modestly outperformed simula-
tions assuming lower rates across all calculated statistical metrics (Figure 8) on average by 3.3% in the global 
ocean and slightly higher by 3.8% in the surface layer, with the intermediate release rate scenario SedMid 
performed between SedLow and SedHigh. Therefore, our model-data analysis suggests that high-end esti-
mates for global reductive sedimentary iron release rates are the most realistic.

One region that was notably improved by high sedimentary release rates was the low latitude margins near 
oxygen deficient zones (ODZs) (Figures 6 and 7). Observations there in both the eastern tropical South 
Pacific off Peru (Figure 7a), eastern tropical South Atlantic off Namibia (Figure 7d), and northern Indian 
Ocean show high DFe concentrations that are best reproduced in SedHigh scenarios. Since SedHigh sim-
ulations also contain high scavenging rates, they better reproduce the lowest DFe concentrations in the 
offshore open ocean locations as well.

The high DFe concentrations on high latitude continental shelf systems (Figures 6, 7c and 7e) are not im-
proved in SedHigh_LigVar due to the interactions with ligands and scavenging. Decreasing surface ligand 
concentrations toward high latitude systems (Figure 3) allow scavenging to compensate the additional sed-
iment-derived DFe more efficiently, in contrast to low latitude systems near ODZs (e.g., Tropical Pacific) 
that contain higher ligands allowing DFe to be retained in the water column. This causes the simulation 
with constant ligands to retain slightly higher DFe compared to simulations with variable ligands in high 
latitude continental shelf systems (e.g., Bering Sea (Figure 7c) and European Shelf Seas (Figure 7e)), despite 
that these simulations with variable ligands include much higher sedimentary release rates there (e.g., Se-
dHigh_LigVar, Figure 2). This demonstrates that more efficient scavenging rates associated with low ligands 
can overcompensate the high sedimentary release rates in determining DFe concentrations in the model.

3.4.  Atmospheric Soluble Deposition

The two soluble atmospheric deposition scenarios tested here predict similar spatial depositional patterns 
(Figure 2), with the more recent GESAMP intermodel average (Myriokefalitakis et al., 2018) providing a 
significantly higher global deposition rate (3.4 Gmol yr−1) relative to the low estimate from Luo et al. (2008) 
(1.4  Gmol  yr−1). These enhanced rates cause higher DFe concentrations mainly from the Saharan dust 
plume in subtropical North Atlantic, but also to a lesser degree in the Arabian Sea and North Pacific (Fig-
ures 6g, 6h, 7c and 7f). The impact of including higher soluble deposition only slightly improves the global 
model-data statistical metrics by 0.7% globally and 1.5% in the surface layer, making it difficult to determine 
the most realistic rates based on our model-data DFe comparison alone.

3.5.  High Scavenging Effect

In model simulations with high source fluxes (e.g., #5 Atm + SedHigh_LigVar), higher scavenging rates are 
necessary to maintain a realistic global DFe inventory (Tables 1 and 2, Figures 2h–2i and 3). Scavenging is 
thus more efficient at reducing DFe concentrations in the high source flux simulations. In regions far away 
from the source fluxes, particularly in the deep ocean and open Southern Ocean (e.g., see Figure 6), the 
model simulations with higher source fluxes actually contain lower DFe because the enhanced scavenging 
outweighs the source fluxes in these areas (Figure 4). Lower DFe concentrations in these deep and open 
ocean regions better reproduce observations further improving the model-data misfit metrics (Figure 8). 
The combined effects of high atmospheric and sedimentary source inputs, which also includes highest 
scavenging rates, contributed to the largest improvement in the surface ocean across our metrics (5.5% im-
provement relative to SrcLow_LigVar).
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4.  Discussion
4.1.  Model-Data Constraints and Uncertainties

The variable ligand parameterization improved the model’s ability to reproduce the global distribution of 
DFe observations the most. This is most evident in the interior ocean due to AOU dependency of this pa-
rameterization. Since ligands are produced when dissolved oxygen is consumed during the respiration of 
POM via heterotrophic microbes in the variable ligand parameterization, their concentrations reach max-
imum values in old Pacific intermediate waters (Figure 3). High ligands reduce scavenging that causes the 
model to better reproduce high observed DFe concentrations there (Figures 4k and 5c), a feature that has 
also been demonstrated in other models (Misumi et al., 2013; Pham & Ito, 2018; Frants et al., 2016). This 
model improvement suggests that ligand production by heterotrophic bacteria is a key mechanism main-
taining the global marine iron cycle.

The model simulations that include higher source inputs and scavenging rates show a subtle but continu-
ous improvement in the model-data misfit metrics particularly in the surface ocean (Figure 8). This is in 
contrast to the intermodel comparison study of Tagliabue et al. (2016), which showed no clear relationship 
between model performance and source inputs, as well as an inverse modeling study of Pasquier and Hol-
zer (2017), which could not find an optimal solution among their large set of model simulations varying 
source inputs. However, Pasquier and Holzer  (2017) only tested relatively low sedimentary release rates 
(up to 22 Gmol/yr compared to 117 Gmol/yr in this study) and also did not include an oxygen dependency 
that has a strong influence in our parameterization. Our analysis emphasizes that future modeling studies 
should test these important factors associated with reductive sedimentary DFe release that contributed to 
the model improvements in this study.

The ligand and high sedimentary DFe release effects have similar impacts on DFe spatial distributions 
making it difficult to constrain their individual impacts with DFe concentrations alone. This spatial overlap 
is most pronounced above ODZs in the eastern tropical Pacific, eastern tropical Atlantic, and Northern In-
dian Ocean (Figure 6). This spatial covariance occurs because when AOU is high, bottom water oxygen is 
typically low. Therefore, DFe concentrations are enhanced both by reduced scavenging due to high ligands 
where AOU is high, as well as by higher sedimentary DFe release rates where bottom water oxygen is low. 
Future studies should examine the integrative DFe cycling in these systems (e.g., sedimentary release and 
scavenging rates, ligand concentrations) to give additional insights on individual processes contributions to 
total DFe concentrations.

Despite high sedimentary release rates, the SedHigh model simulations still underestimate DFe on most 
continental shelf systems (Figure  7). The poorly resolved coastal dynamics in our coarse resolution 
circulation model is likely a key model deficiency preventing the model from representing many coast-
al dynamics where sedimentary DFe fluxes are high. Coarse resolution models underestimate coastal 
upwelling and the nutrient input on narrow shelf systems that drive productivity. This bias causes un-
derestimated POM production as well as overestimated dissolved bottom water oxygen concentrations, 
both of which contribute to underestimating reductive sedimentary DFe release rates on coastal shelf 
systems.

Further complicating matters are interactions between sedimentary DFe release rates, ligands, and scav-
enging. For example, our SedHigh_LigVar model simulation releases significantly higher DFe on high 
latitude shelves (Figures 2e–2f). However, only a small part of this DFe remains in the dissolved pool 
since scavenging efficiently converts it to particulate iron that eventually sinks back to the sediments 
(Figures 2h–2i). Therefore, our model underestimation of DFe concentrations remains despite high DFe 
release rates. This strong spatial coupling between source and scavenging fluxes has also been demon-
strated in other modeling studies (Frants et al., 2016; Pasquier & Holzer, 2017), which also found that 
this tight spatial coupling significantly contributes to the difficulty in constraining source inputs. The 
exclusion of riverine inputs that may also directly include ligands could also contribute to overly efficient 
scavenging resulting in underestimated DFe. If our ligand parameterization predicted higher concentra-
tions on these high latitude shelf systems, which has been indicated by ligand observations (Völker & 
Tagliabue, 2015), this would prevent rapid scavenging of DFe released from sediments and better repro-
duce observations.
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Sedimentary DFe release rates may still be underestimated even in our high release scenario. Note that our 
highest tested global sedimentary release rate (117 Gmol yr−1) was not the highest from the marine iron 
model intercomparison (up to 194  Gmol  yr−1) (Tagliabue et  al.,  2016), and every model scenario tested 
here with increased source fluxes improved the model-data misfit metrics (Figure 8). Potentially important 
sedimentary processes not included in the model are non-reductive dissolution and release from reactive 
sediments in tectonically active or volcanic regions (Conway & John, 2014; Homoky et al., 2013) and sed-
imentary colloidal production (Homoky et al., 2021), which could further contribute to higher total sedi-
mentary DFe release rates that may improve the model-data misfit.

An important limitation of applying these empirical functions of reductive sedimentary DFe release (e.g., 
Dale et al., 2015; Elrod et al., 2004) in global models is that total iron balance within the sediments is not 
explicitly accounted for. Thus, these parameterizations can potentially represent an unlimited long-term 
supply of DFe to the ocean which is unrealistic. This simplification can be justified because many important 
sources of particulate Fe to the sediment are not yet included in the model, for example, atmospheric and 
riverine input of lithogenic material and in situ production at volcanic islands or active margins, which 
provide DFe for release. Also note that the Dale et al. (2015) parameterization applied in the SedHigh sim-
ulations sets a maximum rate determined under steady-state conditions which caps potentially unrealistic 
high release rates. While this simplification is likely not a significant deficiency in steady-state model sim-
ulations presented here, this should be considered in transient simulations with substantial enhancement 
of sedimentary DFe fluxes.

Atmospheric deposition often occurs at high rates over continental shelves (e.g., North Pacific, Patagonia) 
and ODZs (e.g., Arabian Sea), again making it difficult to constrain individual processes driving DFe con-
centrations when multiple processes act together in close spatial proximity. For example, our high atmos-
pheric soluble deposition scenario helps reproduce high DFe concentrations in the Arabian Sea (Figure 7f). 
However, our model underestimates the extent of the Arabian Sea ODZ which could be the real cause driv-
ing high DFe concentrations there via high sedimentary DFe release, reduced scavenging, and/or enhanced 
redox cycling (Moffett et al., 2007). Instead the model ODZ is mostly misplaced to the Bay of Bengal, where 
higher simulated DFe there in the model better matches observations within the real ODZ in the Arabian 
Sea (see star symbols in Figure 7f).

The model simulations do not resolve the high variance of the observations which is reflected in the un-
derestimated standard deviation (Figures 4 and 8). This occurs everywhere in the ocean and is most pro-
nounced in the Southern Ocean due to it containing very low DFe in the open ocean but also high concen-
trations near islands, continental margins, and hydrothermal vents (Figures  4–6). Although not a focus 
of this study, the model was not able to reproduce the full spatial extent of high DFe concentrations near 
hydrothermal vents at mid-ocean depths (Figures 4 and 5), despite that this source is included (Table 2). 
Previous modeling studies were only able to reproduce this high DFe extent when assuming that the hydro-
thermal vents were also a significant source of ligands (Frants et al., 2016; Resing et al., 2015) or included 
stabilization via reversible scavenging (Roshan et al., 2020), both of which we have not accounted for in our 
model. This emphasizes that future model versions should include all important ligands and scavenging 
dynamics to better represent their importance in marine iron models, but that a more robust global database 
of ligand concentrations including their binding strength would be required (Völker & Tagliabue, 2015).

High variance in the global data set may not reflect mean climatological conditions simulated by the prein-
dustrial steady-state model results given the highly dynamic nature of DFe cycling particularly in the sur-
face ocean with short residence times (Black et al., 2020). The spatial and temporal sparsity of the data set 
likely contribute to high variance as well. But note that the standard deviation was significantly improved in 
our best model simulation with variable ligands and high source/scavenging fluxes (Atm + SedHigh_LigVar; 
see Figures 4, 8b and 8e) suggesting that a model with low residence times can better reproduce the high 
variance and strong gradients in the DFe observations. Since most DFe observations have been collected in 
recent decades, there could already be a significant anthropogenic impact (e.g., enhanced deoxygenation, 
atmospheric/riverine pollutants) on the global marine iron cycle not included in these model simulations, 
especially if the marine DFe residence time operates on decadal timescales or less. Future additions and 
expansion to the global DFe data set as well as comparison with transient model simulations at the same 
period of data collection will improve uncertainties in future model-data analyses.
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4.2.  A Global Marine Iron Cycle With a Residence Time Under a Decade?

Our model simulations testing various external source fluxes in the global marine iron cycle result in global 
average residence times ranging from 7.5 to 36 years. The simulation that best reproduces the observations 
(Atm + SedHigh_LigVar) has the lowest residence time (global: 7.5 years; surface ocean: 0.83 years) among 
our model experiments. This low-end residence time is caused in large part due to the high source fluxes, 
with the reductive sedimentary release being the most important with the highest global rate in our simu-
lations. These high source fluxes need to be compensated by efficient scavenging and subsequent removal 
via burial in the sediments to reproduce the distribution and global mean inventory in DFe observations, 
a model feature that was also found in other modeling studies (e.g., see Frants et  al.,  2016; Pasquier & 
Holzer, 2017).

This is in general agreement with observational studies focusing on the surface layer (Black et al., 2020; 
Sarthou et al., 2003). For example, Black et al.  (2020) estimated similar residence times throughout the 
global surface ocean (0–250 m) for DFe ranging from approximately 1 month to 4 years depending on the 
region and specific iron pools considered, although noting that the uncertainties remain large (i.e., equal or 
greater than the absolute value of the estimate in each region). These generally low surface residence times 
are captured in our model simulations that range from 0.83 to 3.12 years (Table 2). However, residence times 
of individual molecules and regions can further vary depending on the local coupling of source inputs, 
scavenging efficiency, and regeneration (e.g., Holzer et al. (2016); Pasquier and Holzer (2018); Tagliabue 
et al., 2019). For instance, DFe in the ocean interior is more stable and controlled by the amount of ligands 
that reduces scavenging and removal to the sediments via sinking particulates, contributing to the longer 
global residence times.

4.3.  Marine Iron Flux Impacts on Global Ocean Biogeochemistry

An interesting feature of the model simulations is that there is surprisingly little change to globally aver-
aged marine productivity and export production (Table 3). This occurs in large part in the model because 
scavenging was also increased in high sedimentary iron release scenarios, and thus much of the additional 
DFe fluxes from the sediments is efficiently scavenged to particulate iron that sinks back to the sediments 
before it can be transported to the surface ocean where it may stimulate additional productivity. This gen-
eral impact was also found in a model study using a previous iteration of the model version used here but 
comparing different complexities of the marine iron configurations (Yao et al., 2019) as well as other inverse 
modeling studies (Pasquier & Holzer, 2017, 2018). However, it must be noted that all of these model studies, 
including this one, only evaluated steady-state simulations in which uncertain parameters were manually 
tuned or optimized to best reproduce observations. Therefore, they are not necessarily indicative to how the 
iron dynamics in the model may respond to and impact marine productivity in externally forced transient 
scenarios.

There is a notable decrease in marine productivity and export production in the Southern Ocean among our 
model simulations with better representations of the global iron distribution (Table 3). The variable ligand 
parameterization predicts less ligands in the Southern Ocean (Figure 3), which allows higher scavenging to 
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# Simulation name

Net primary production (Gt C yr−1) Export production (Gt C yr−1) Dissolved O2 (mmol m−3)

Global Southern Global Southern Global Southern

1 SrcLow_LigCon 47.0 8.11 8.1 2.12 167 206

2 SrcLow_LigVar 47.4 7.09 7.9 1.86 175 216

3 SedMid_LigVar 47.7 6.72 7.9 1.75 178 221

4 SedHigh_LigVar 48.0 6.67 7.9 1.74 179 222

5 Atm + SedHigh_LigVar 47.9 6.42 7.8 1.68 181 224

Table 3 
Global Marine Biogeochemistry Results
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reduce DFe that better reproduces observations. Furthermore, since external iron sources in the Southern 
Ocean are small (Figures 2 and 4m), the enhanced scavenging in the high source flux simulations removes 
more DFe than source fluxes add to the Southern Ocean. Therefore, DFe levels further decrease in the 
Southern Ocean (Figures 4o and 6) in the high source flux scenarios. The high scavenging in our best model 
simulation with variable ligands and high source fluxes (Atm + SedHigh_LigVar) reduces DFe, marine pro-
ductivity and resulting oxygen consumption during remineralization of POM, thereby increasing dissolved 
oxygen concentrations at depth. This effect is significant enough to increase average global dissolved oxygen 
concentrations by 8% in the model because water masses formed in the Southern Ocean contribute to much 
of the global deep ocean (Table 3). This emphasizes the importance of simulating a robust global marine 
iron cycle most importantly in the Southern Ocean.

5.  Conclusions
In this study we tested various rates of atmospheric soluble deposition, reductive sedimentary release, and 
variable ligand distributions within a marine iron component in a global ocean biogeochemical model. 
The simulations that best reproduce the global DFe observations include highest tested source fluxes and 
a variable ligand parameterization. The most striking feature in the global DFe observations that supports 
this hypothesis is the strong gradients that often occur with high concentrations near source fluxes and 
low concentrations in adjacent open ocean regions. This high source flux/scavenging iron cycling regime 
causes a relatively short residence times of less than a decade in the global oceans and less than a year in 
the surface ocean. The short residence time implies that the global marine iron cycle is highly sensitive 
to environmental perturbations in the Anthropocene and geological past. Uncertainties remain high due 
to model parameterizations of complex, poorly understood, and often intertwined processes (e.g., ligand 
production and subsequent control on scavenging near source inputs) and the sparsity of DFe and ligand 
measurements throughout the global ocean. Nevertheless, our model-data analysis suggests the marine 
iron cycle operates with high global source inputs and scavenging rates and low residence times compare 
to most previous estimates.

Data Availability Statement
Model code and output will be made publicly accessible at GEOMAR open access repository (https://
thredds.geomar.de).
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