
data

Article

Learning Parsimonious Classification Rules from
Gene Expression Data Using Bayesian Networks
with Local Structure
Jonathan Lyle Lustgarten 1,†, Jeya Balaji Balasubramanian 2,∗,†, Shyam Visweswaran 2,3

and Vanathi Gopalakrishnan 2,3

1 Red Bank Veterinary Hospital, 2051 Briggs Road, Mount Laurel, NJ 08054, USA; jon.lustgarten@gmail.com
2 Intelligent Systems Program, University of Pittsburgh, 5113 Sennott Square, 210 South Bouquet Street,

Pittsburgh, PA 15260, USA; shv3@pitt.edu (S.V.); vanathi@pitt.edu (V.G.)
3 Department of Biomedical Informatics, University of Pittsburgh, 5607 Baum Boulevard,

Pittsburgh, PA 15206, USA
* Correspondence: jeya@pitt.edu; Tel.: +1-412-648-9415
† These authors contributed equally to this work.

Academic Editor: Pufeng Du
Received: 30 September 2016; Accepted: 9 January 2017; Published: 18 January 2017

Abstract: The comprehensibility of good predictive models learned from high-dimensional gene
expression data is attractive because it can lead to biomarker discovery. Several good classifiers
provide comparable predictive performance but differ in their abilities to summarize the observed
data. We extend a Bayesian Rule Learning (BRL-GSS) algorithm, previously shown to be a significantly
better predictor than other classical approaches in this domain. It searches a space of Bayesian
networks using a decision tree representation of its parameters with global constraints, and infers
a set of IF-THEN rules. The number of parameters and therefore the number of rules are combinatorial
in the number of predictor variables in the model. We relax these global constraints to learn
a more expressive local structure with BRL-LSS. BRL-LSS entails a more parsimonious set of rules
because it does not have to generate all combinatorial rules. The search space of local structures is
much richer than the space of global structures. We design the BRL-LSS with the same worst-case
time-complexity as BRL-GSS while exploring a richer and more complex model space. We measure
predictive performance using Area Under the ROC curve (AUC) and Accuracy. We measure model
parsimony performance by noting the average number of rules and variables needed to describe the
observed data. We evaluate the predictive and parsimony performance of BRL-GSS, BRL-LSS and
the state-of-the-art C4.5 decision tree algorithm, across 10-fold cross-validation using ten microarray
gene-expression diagnostic datasets. In these experiments, we observe that BRL-LSS is similar to
BRL-GSS in terms of predictive performance, while generating a much more parsimonious set of
rules to explain the same observed data. BRL-LSS also needs fewer variables than C4.5 to explain
the data with similar predictive performance. We also conduct a feasibility study to demonstrate the
general applicability of our BRL methods on the newer RNA sequencing gene-expression data.

Keywords: rule based models; gene expression data; Bayesian networks; parsimony

1. Introduction

Predictive modeling from gene expression data is an important biomedical research task that
involves the search for discriminative biomarkers of disease states in a high-dimensional space.
Comprehensible models are necessary in order to easily extract the predictive biomarkers from learned
classifiers. The number of candidate biomarkers in a high-dimensional dataset is often in the order of
several thousand measurements made from much smaller numbers of bio-specimens, often leading to
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many models that are equally good at the predictive task but differ in their abilities to summarize the
observed data.

We have previously demonstrated that rule learning methods can be successfully applied to
biomarker discovery from such high-dimensional and low sample-size biomedical data [1–8]. Recently,
we developed and extensively evaluated a novel probabilistic method for learning rules called Bayesian
Rule Learning (BRL) [7]. This BRL algorithm was shown to perform on par or better than three
state-of-the-art rule classifiers (Conjunctive Rule Learner [9], RIPPER [10], C4.5 [11]) on 24 biomedical
datasets. Therein, BRL was shown to outperform even C4.5, which was the best among the other
methods. BRL used a global search of the space of constrained Bayesian network structures to infer
a set of classification rules containing a posterior probability representing their validity. These rules
are readily comprehensible and contain biomarkers and their cut-off values that discriminate among
the states of the target/class variable.

In this paper, we relax some of the constraints on the BRL search space of global structures by
introducing a more general local structure search that we call BRL-LSS (Bayesian Rule Learning-Local
Structure Search). Henceforth, we refer to the global structure search as BRL-GSS (Bayesian Rule
Learning-Global Structure Search) to distinguish it from BRL-LSS. We hypothesize that the more
expressive local structure will lead to more parsimonious rule sets that enhance the comprehensibility
of the rule model while maintaining classification performance.

In this work, we develop an algorithm to perform the local structure search, the BRL-LSS,
and evaluate it for parsimony and classification performance using recent gene expression data
obtained from public repositories. We hypothesize that the more expressive representation obtained
from the local structure search results in a more parsimonious set of rules that describes the observed
data as well as the global structure. Parsimony in the rule set representation contributes towards model
comprehensibility by presenting a more concise summary of the observed data. In the Materials and
Methods section, we introduce the BRL algorithm followed by a description of the global and local
structure search. We then describe our experimental design to test our hypothesis and discuss the
results in subsequent sections.

2. Materials and Methods

2.1. Bayesian Rule Learning

A classifier is learned from gene expression data to explain disease states from historical data.
The variable of interest that is predicted is called the target variable (or simply the target), and the
variables used for prediction are called the predictor variables (or simply features).

Rule-based classifiers are a class of easily comprehensible supervised machine learning models
that explain the distribution of the target, in the observed data, using a set of IF-THEN rules described
using predictor variables. The ’IF’ part of the rule specifies a condition, also known as the rule antecedent,
which, if met, fires the ’THEN’ part of the rule, known as the rule consequent. The rule consequent
makes a decision on the class label, given the value assignments of the predictor variables met by
the rule antecedent. A set of rules is called a rule base, which is a type of knowledge base. The C4.5
algorithm learns a decision tree, where each path in the decision tree (from root of the tree to each leaf)
can be interpreted as a rule. Here, the variables selected in the path compose the rule antecedents as
conjunctions of predictive variables and value assignments to those variables. We infer a rule based
on the distribution of instances over the target that match this rule antecedent.

Bayesian Rule Learning (BRL) infers a rule base from a learned Bayesian network (BN). BN is
a probabilistic graphical model with two components—a graphical structure and a set of probability
parameters [12]. The graphical structure consists of a directed acyclic graph. Here, the nodes represent
variables and variables are related to each other by directed arcs that do not form any directed cycles.
When there is a directed arc from node A to node B, node B is said to be the child node, and node
A is said to be the parent node. A probability distribution is associated with each node, X, in the
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graphical structure, given the state of its parent nodes, P(X|Pa(X)), where Pa(X) represents the
different discrete value assignments of the parents of node X. This probability distribution is generally
called a conditional probability distribution (CPD). For discrete-valued random variables, the CPD can be
represented in the form of a table called conditional probability table (CPT). Furthermore, any CPT can
be represented as a rule base. Here, we consider only the CPT for the target variable. Each possible
value assignment of the parents represents a different rule in the rule base. The evidence in the form of
the distribution of instances, for each target value in the training data, helps infer the consequent rule.
The resulting rule base consists of rules that are mutually exclusive and exhaustive. In other words,
at least one rule from the rule base matches a given instance and only one rule matches that instance.

We learn a BN from a training dataset using a heuristic search of the decision tree that results
from the CPT described above. We evaluate how likely our learned BN generated the observed data
using the Bayesian score (the K2 metric [13]). We demonstrated this process in our previous work [7].

Decision trees are popular compact representations of the CPT of a node in a BN. Most of the
BN literature is dedicated to learning global independence constraints in the domain. The global
constraints only capture the dependent and independent variables that are parents to the node in the
graphical representation. The number of parameters needed to describe the CPT is the number of joint
assignments for the different parent variables of the node. The size of this CPT grows combinatorially
as the number of parents of the node.

As an example, consider a node representing a disease state. Let there be 10 genes (henceforth,
when we mention a gene as a variable, we are referring to its expression) that lead to the change
of disease state. Let each gene take two discrete values (UP: upregulated, DOWN: downregulated).
This requires 210 = 1024 parameters to be represented by the CPT. Consequently, our rule base has
1024 rules, one for each value assignment of the parent variables. Biomedical research, especially
gene expression data, rarely have enough training data to provide sufficient evidence to make class
inference from the 1024 rules in our example scenario. It is therefore important to derive a more
efficient representation of the CPT.

2.1.1. Bayesian Rule Learning-Global Structure Search (BRL-GSS)

We constrained our model to only those models with variables being a direct parent of the target
variable. BRL uses breadth-first marker propagation (BFMP) for this algorithm, which provides
significant speed up since database look-up is an expensive operation [14]. BFMP [14] permits
bi-directional look-up using vectors of pointers by linking a sample to its respective variable-values,
and the variable value to those samples that have it. It enables efficient generation of counts of matches
for all possible specializations of a rule using these pointers.

Figure 1 depicts a BN (Figure 1a), the corresponding global CPT representation using decision tree
(Figure 1b), and the rules corresponding to the decision tree (Figure 1c). The BN in Figure 1a contains
one child variable that is the binary target, D, and two parent variables (the predictor variables), Gene
A and Gene B. Each predictor variable, Gene A and Gene B is binary. When the gene is upregulated,
they take the value UP. When the gene is downregulated, they take the value DOWN. Figure 1b shows
the CPT represented as a decision tree with global constraints. Since both of the predictor variables
are binary, the decision tree has 22 = 4 parameters, each represented by a leaf in the decision tree.
Each leaf of the decision tree is a parameter, the conditional probability distribution over the target,
given the values assigned to the predictor variables that are in the path in the tree. This distribution
for target D is shown in the leaf node. For example, given that Gene A takes value UP and Gene B
takes value UP, the probability of D = true is 0.89 and the probability of D = f alse is 0.11.

Figure 1c depicts a decision tree represented as a rule base. The rule antecedent (IF part) contains
a conjunction of predictor variable assignments as shown in the path of the decision tree. The rule
consequent is the conditional probability distribution over the target values (in square brackets)
followed by the the distribution of the instances from the training data for each target value that
matches the rule antecedent. In rule 1, we see the evidence to be (50, 5) where there are 50 instances in
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the training dataset (that matches the rule antecedent) that have value D = true. There are only five
instances that match the rule antecedent that have value D = f alse. They are then smoothed with
a factor α, set to 1 as a default. This simplifies the posterior odds to the ratio of (TP + α)/(FP + α),
where TP is the number of true positives for the rule (where both the antecedent and consequent match
with the test instance) and FP is the number of false positives (antecedent matches, but consequent
does not match the test instance).

During prediction, the class is determined simply by the higher conditional probability. In our
example, since D = true has a probability of 0.89, the prediction for a test case that matches this rule
antecedent is D = true. If there is a tie, by default, the value of the majority class is the prediction.

Figure 1. Bayesian Rule Learning (BRL): (a) Bayesian Network for target D and predictor variables
Gene A and Gene B; (b) BRL Global Structure Search (BRL-GSS) with the conditional probability table
(CPT) represented as a decision tree with global constraints. The circular nodes represent the predictor
variables and the emerging arrows assign a value to that variable. The leaf node is represented by a
rectangle with two values, the upper value corresponds to D = true and the lower value corresponds to
D = f alse; (c) BRL-GSS Decision tree represented as a BRL rule base. The ’THEN’ symbol is preceded by
the rule antecedent and succeeded by the rule consequent. The rule consequent shows the probability
distribution over the states of the target node in square brackets, [D = true, D = f alse]. The parenthesis
shows the number of true positives and false positives for the rule, (TP, FP); (d) BRL Local Structure
Search (BRL-LSS) CPT represented as a decision tree with local constraints; and (e) BRL-LSS Decision
tree represented as a BRL rule base.

We developed and tested two variants of global structure search using BRL, BRL1 and BRL1000

in [7]. The subscripts indicate the number of BN models that are kept in memory during the best-first
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search. We concluded that BRL1000 was statistically significantly better than BRL1 and C4.5 on Balanced
Accuracy, and RCI (relative classifier information). For this paper, we choose the BRL1000 version of
the algorithm and rename it BRL-GSS to be consistent with nomenclature for the local structure search
algorithm that we present in the next section. For a dataset with n variables and m instances , where
each variable i has ri discrete values and r = max ri, the worst-case time-complexity is O(n2mr). If we
constrain the maximum number of discrete values that a variable can take (for example, assume all
variables are binary-valued), then the time-complexity reduces to O(n2m).

2.1.2. Bayesian Rule Learning-Local Structure Search (BRL-LSS)

We adapted the method developed by [15] that can be used for developing an entire global
network based on local structure. In Figure 1a, we see the same BN with two parents as the one we saw
in BRL-GSS. Figure 1d shows the local decision tree structure. In Figure 1, we saw that the distribution
of the target, when Gene A = DOWN, is the same regardless of the value of Gene B. To be precise,
P(D|GeneA = DOWN, GeneB = UP) = P(D|GeneA = DOWN, GeneB = DOWN) = [0.34, 0.66].
The more general representation in Figure 1d merges the two redundant leaves into a single leaf. As a
result, Figure 1e, reduces the number of rules to three down from four. Thus, Figure 1e provides
a more parsimonious representation of the data when compared to Figure 1c.

Next, we describe our algorithmic implementation to learn local decision trees as seen in Figure 1d.
At a high level, our algorithm initializes a model with a single variable (gene) node as the root.
For each unique variable in the dataset, there can be a unique root at the decision tree. A leaf in the
initial model represents a specific value assignment of the root variable. By observing the classes
of instances in the dataset that match this variable value assignment, we infer the likely class of
a matching test instance. To evaluate the overall model, we use the Bayesian Score to obtain the
likelihood that this model generated the observed data. The algorithm then iteratively explores
further specialized models by adding other variables as nodes to one of the leaves of the decision tree.
The model is then re-evaluated using the Bayesian Score. The model space here is huge at O(n!).
Our algorithm adds some greedy constraints to reduce the space. In the following paragraphs, we
specify how we constrain the search.

Algorithm 1 is the pseudocode of the local structure search module in the BRL. This algorithm
takes as input the data D and two parameters maxConj and beamWidth similar to BRL-GSS. We also
used the heuristic of a maximum number of parents (maxConj) to prevent overspecialization as well
as to reduce the running time (default is set to eight variables per path). The beamWidth parameter is
the size of the priority queue (beam) that limits the number of BNs that the search algorithm stores
in memory at a given step of the search. This beam sorts the BNs in reducing order of their Bayesian
score. Line 2 initializes this beam with singleton models. These BNs have a single child and a single
parent. The child is fixed to be the target. The parent is set iteratively to all the predictor variables in
the training data D. During the search, this initial parent variable is set as the root node of the tree.
A variable node is split in two ways: (1) binary split and (2) complete split. In binary split, the variable
is split into two values. If the variable has more than two discrete values (say |v|), the binary split
creates (|v|2 ) different combinations of local decision trees. The complete split generates |v| different
paths, one for each discrete value of the variable.

In line 3, the search algorithm specializes each model on the beam by adding a new parent variable
as a candidate conjunct for each leaf in the decision tree. The best models from this specialization
step are added to the final beam (line 6), which keeps track of the best models seen by the search
algorithm so far. Line 7 checks to ensure that any candidate models for further specialization do
not exceed the maxConj limit for the number of parents of the target in the BN. The loop at line 8
iterates through each unexplored variable in D for specialization. The loop in line 10 iterates through
all the leaves of the local structure decision tree inferred from the BN. From lines 11 through 17, the
algorithm performs a binary and complete split using the variable currently being explored at the
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specific leaf of the decision tree. It stores only the best model (as determined by the Bayesian Score)
seen in this iteration.

Algorithm 1: Bayesian Local Structure Search
Input : Data (D), maximum number of unique variables in one model (maxConj), number of

models in search memory (beamWidth).
Output :A Priority Queue f inal with beamWidth models with the highest Bayesian Scores

saved during the search.
Initialize a Priority Queue f inal with capacity beamWidth;
/* Create a Priority Queue of beamWidth Bayesian networks, each with one child

(target variable) and one parent variable with each predictor variable in
D. */

modelsToDevelop← Initialize-Models(D, beamWidth);
while modelsToDevelop 6= ∅ do

Initialize a Priority Queue temp;
foreach Model Mcurr ∈ modelsToDevelop do

Add Mcurr to f inal;
if |Mcurr.parents| < maxConj AND Mcurr.unexplored 6= ∅ then

foreach Variable v ∈ Mcurr.unexplored do
Mv

best ← Mcurr;
foreach Leaf f ∈ Mv

best.leaves do
if v /∈ f .path then

/* Splits variable v to the number of discrete values it
takes. */

Mtemp ← Complete-Split (Mv
best, f , v);

if Mtemp.score > Mv
best.score then

Mv
best ← Mtemp;

end
/* Splits variable v as a binary variable, by |v|, chooses 2

different splits and returns the one with the best
Bayesian Score. */

Mtemp ← Binary-Split (Mv
best, f , v);

if Mtemp.score > Mv
best.score then

Mv
best ← Mtemp;

end
end

end
if Mv

best.score > Mcurr.score then
Mv

best.explored← Mv
best.explored + v;

Mv
best.unexplored← Mv

best.unexplored− v;
Add Mv

best to temp;
end

end
end

end
modelsToDevelop← temp

end
return f inal;
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Lines 18 through 21 check if the specialization process led to an improvement (better Bayesian
score) to the model it started with. If the score improves, the new model is queued for further
specialization in the subsequent iterations of the search algorithm.

Finally, in line 23, the best model seen during the search so far is returned by the search algorithm.
This best-first search algorithm uses a beam to search through a space of local structured CPTs of BNs.
As described in Figure 1e, BRL interprets this decision tree as a rule base.

The worst-case time-complexity of BRL-LSS remains O(n2mr) as with BRL-GSS. We achieve this
by the same global constraint on the maximum number of parents that the model can have in line 7
of the algorithm. However, in practice, BRL-LSS tends to be generally slower than BRL-GSS. This is
because, in BRL-GSS, we keep track of the variables already explored for the entire beam. In BRL-LSS,
we keep track of the explored variables for each model separately. We still only have a constant number
of models as constrained by the beam width. As a result, the worst-case time-complexity remains the
same as BRL-GSS. If we restrict the maximum number of discrete values that each variable can take,
the complexity reduces to O(n2m). As a result, with BRL-LSS, we now explore a much richer space of
models with the same time-complexity as BRL-GSS.

2.2. Experimental Design

For each biomedical dataset, we split the data into train and test sets using cross-validation split.
BRL-GSS and BRL-LSS require discrete data so the training dataset is discretized. After learning the
discretization scheme for each of the features from the training data, we apply the discretization
scheme on those features in the test dataset. Finally, we learn a rule model from our different
algorithms on the training data. We use this model to predict on the test data and we evaluate
our performance. The detailed description on the cross-validation design, discretization method,
classification algorithms, and performance metrics used for evaluation is described below.

2.2.1. Classification Algorithms

We test three algorithms in the modeling step of the experimental design framework in order to
generate our rule models: (1) the BRL-GSS, which was significantly the best model from our previous
study [7] comparing other state-of-the-art rule models; (2) BRL-LSS, which is our proposed method
in this paper with a promise on model parsimony; and, finally, (3) as we have shown previously [7]
that C4.5 outperforms other readily available rule learners we consider C4.5 as state-of-the-art for the
purposes of comparison in this paper. Decision trees can be translated into a rule base by inferring
a rule from each path in the decision tree. C4.5 [11] is the most popular decision tree based method.
It was an extension to an earlier ID3 algorithm.

Both the BRL methods take in two parameters—maxConj (maximum number of features used
in the Bayesian network model) and beamWidth (maximum number of models stored in the search
memory). For both BRL-GSS and BRL-LSS, we set maxConj = 8, and beamWidth = 1000. These were
arbitrary choices that we use as defaults for the BRL models. The C4.5 uses default parameters as
specified by Weka (Version 3.8) [16].

2.2.2. Dataset

We performed our experiments on 10 binary class, high-throughput, biomedical sets of data.
Each of the 10 datasets chosen here represent a cancer diagnostic problem of distinguishing cancer
patients from normal patients using their gene expression profile. The gene expression data is generated
from high-throughput microarray technology. Table 1 shows the dataset dimensions and sources for
the 10 datasets.
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Table 1. The 10 datasets used in our experiments (sorted by the number of instances). The columns
indicate the data ID number, number of instances, number of features, the class label distribution
among the instances, and the source of the data.

Data ID # Instances # Features Class Distribution Source

1 249 12,625 (201, 48) [17]
2 175 6019 (159, 16) [18]
3 103 6940 (62, 41) [19]
4 100 6019 (76, 24) [20]
5 96 5481 (75, 21) Dr. Kaminski
6 86 5372 (69, 17) [21]
7 72 7129 (47, 25) [22]
8 63 5481 (52, 11) Dr. Kaminski
9 60 7129 (40, 20) [23]
10 36 7464 (18, 18) [24]

In addition to the high-throughput microarray technology data for gene expression used in our
experiments, we also conduct a case study using data generated from the newer RNA-sequencing
(RNA-Seq) technology for gene expression. We obtain Illumina HiSeq 2000, RNA-Seq Version 2,
normalized, gene expression data of patients with Kidney Renal Clear Cell Carcinoma (KIRC),
processed using the RNA-Seq Expectation Maximization (RSEM) pipeline from The Cancer Genome
Atlas (TCGA) [25]. The samples are primary nephrectomy specimens obtained from patients with
histologically confirmed clear cell renal cell carcinoma, and the specimens conform to the requirements
for genomic study by TCGA. We develop a model to differentiate the gene expression in tumor samples
from matched normal samples (normal samples from patients with tumors). This KIRC dataset has
606 samples (534 tumors, 72 normal) and 20, 531 mapped genes.

We pre-process the KIRC dataset by removing genes with sparse expression (more than 50% of
the samples have value 0). We are left with 17,694 genes. As recommended in RNA-Seq analysis
literature [26], we use Limma’s voom transformation [27] to remove heteroscedasticity from RNA-Seq
count data and to be unaffected by outliers in the data. In this case study, described in the results
Section 3.1, we demonstrate the feasibility of our rule learning methods in analyzing RNA-Seq data.

As described in the experimental design framework, our datasets need to be discretized for
applying our algorithms. All the biomedical datasets in Table 1 contain continuous measurements of
the markers. Each training fold of data is discretized using the efficient Bayesian discretization method
(EBD) [28] with a default parameter, λ = 0.5, which controls the expected number of cut-points for
each variable in the dataset.

2.2.3. Evaluation

For each of the 10 datasets, we performed a 10-fold stratified cross-validation for sampling from
a dataset. We measure each performance metric (described below) for each fold in the cross-validation
and then average that metric across the 10 folds to get an estimate of that performance metric.

We measure four performance metrics. We use two metrics to evaluate the classifier predictive
performance and another two to evaluate model parsimony. The first metric for classifier predictive
performance is the Area Under the Receiver Operator Characteristic Curve (AUC). It indicates the class
discrimination ability of the algorithm for each dataset. It ranges from 0.0 to 1.0. Higher value
indicates a better predictive classifier. The second metric for classifier performance is Accuracy,
given as a percentage. Again, higher value indicates a better predictor.

The first parsimony metric is the Number of Rules. All the algorithms tested have rule bases that
are mutually exclusive and exhaustive. This means that each instance in the dataset is covered by at
least one rule, and exactly one rule. A small number of rules in the rule base indicates greater coverage
by individual rules. The coverage of a rule is the fraction of the instances in the training data that
satisfies the antecedent of the rule. A large number of rules indicates that each rule has small coverage,
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and, as a result, lesser evidence. A small number here is attractive because a parsimonious model
with few rules to describe all the observed data indicates generalized rules with stronger evidence
per rule. The second parsimony metric is the Number of Variables. Typically in a biomarker discovery
task that involves a high-dimensional gene expression data, we would like fewer variables to describe
the observed data. This is because the validation of those markers is time consuming and expensive.
Having fewer variables to verify is appealing in this domain. Therefore, we prefer a smaller number of
variables that give us the best predictor.

3. Results and Discussion

Table 2 shows the summary of the predictive performance of the tested classifiers averaged across
the 10 folds of the cross-validation study. For each of the 10 datasets, we report the AUC and the
Accuracy. We average the results across the 10 datasets at the bottom of the table. We also provide the
standard error of the mean.

Table 2. Predictive performance using the Average and Standard Error of Mean (SEM) of Accuracy
and the Area Under the Receiver Operator characteristics Curve (AUC).

Data ID Average AUC Average Accuracy
BRL-GSS BRL-LSS C4.5 BRL-GSS BRL-LSS C4.5

1 0.864 0.809 0.821 73.08 74.63 69.92
2 0.596 0.570 0.528 90.33 85.16 83.46
3 0.948 0.936 0.929 90.36 90.18 93.09
4 0.694 0.807 0.469 73.00 80.00 61.00
5 0.815 0.921 0.807 86.56 92.67 88.44
6 0.497 0.540 0.732 72.22 67.22 85.14
7 0.898 0.877 0.877 85.71 84.64 87.50
8 0.857 0.847 0.807 92.38 90.71 90.71
9 0.463 0.494 0.594 55.00 60.00 61.67
10 0.950 0.950 0.950 94.17 94.17 94.17

Average 0.758 0.775 0.751 81.28 81.94 81.51
SEM 0.06 0.05 0.05 3.96 3.62 3.98

BRL-GSS: Bayesian Rule Learning using Global Structure Search algorithm; BRL-LSS: Bayesian Rule
Learning using Local Structure Search algorithm; C4.5: The C4.5 decision tree learning algorithm.

In terms of predictive performance, BRL-GSS, BRL-LSS, and C4.5 appear to be comparable.
There seems to be a fractional gain in performance by BRL-LSS with an average AUC of 0.775.

Table 3 shows the summary of the parsimony statistics of the tested classifiers averaged across
the 10 folds of the cross-validation study. For each of the 10 datasets, we report the number of rules in
the rule base and the number of variables used. We provide the average and standard error of mean at
the bottom of the table.

The results show that BRL-LSS is notably more parsimonious than BRL-GSS. It has a lesser average
number of rules, 5.76, when compared to BRL-GSS, which needs an average of 53.61 rules to obtain
similar performance. The number of rules in BRL-LSS is almost comparable to the state-of-the-art
classifier, C4.5, with an average of 4.77 rules. BRL-LSS needs a fractionally greater number of variables
to meet the predictive performance of BRL-GSS. It uses an average of 4.37 variables, while BRL-GSS
needs fractionally fewer variables at an average of 3.84. However, C4.5 needed almost twice as many
variables (average of 8.49) to obtain the same performance as BRL-LSS.

In summary, in terms of classification tasks where model parsimony is important, as in
the case of biomarker discovery, BRL-LSS is preferred since it selects fewer variables than C4.5
and requires fewer rules than BRL-GSS, while having very similar predictive power to the other
two methods.
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Table 3. Model Parsimony using the Average and Standard Error of Mean (SEM) of the Number of
Rules and Features.

Data ID Average Number of Rules Average Number of Features
BRL-GSS BRL-LSS C4.5 BRL-GSS BRL-LSS C4.5

1 307.10 18.00 13.30 8.00 15.70 25.60
2 105.60 6.50 5.30 6.50 5.40 9.60
3 5.40 3.90 2.90 2.30 2.70 4.70
4 33.60 6.10 6.50 4.80 4.70 11.90
5 7.60 3.30 2.50 2.60 2.00 4.00
6 42.40 6.30 5.30 5.10 4.30 9.40
7 4.40 3.10 2.80 2.10 2.10 4.60
8 3.20 2.60 2.00 1.60 1.60 3.00
9 24.80 5.80 5.10 4.40 4.20 9.10
10 2.00 2.00 2.00 1.00 1.00 3.00

Average 53.61 5.76 4.77 3.84 4.37 8.49
SEM 29.89 1.46 1.08 0.72 1.34 2.15

BRL-GSS: Bayesian Rule Learning using Global Structure Search algorithm; BRL-LSS: Bayesian Rule
Learning using Local Structure Search algorithm; C4.5: The C4.5 decision tree learning algorithm.

3.1. Case Study

In this sub-section, we analyze the RNA-Seq dataset (KIRC) as described in Section 2.2.2. We run
BRL-GSS, BRL-LSS, and C4.5 on the KIRC dataset to learn predictive models over 10-fold
cross-validation. We observe that the task of differentiating the tumor gene expression from matched
normal samples is an easy task for the three algorithms. Each of the tested classifiers were evaluated
using the predictive performance metrics (AUC and Accuracy) and the model parsimony metrics
(average number of rules and variables used). BRL-LSS emerged as the best predictor with AUC = 0.984
(Accuracy = 99.17%), BRL-GSS as the next best with AUC = 0.975 (Accuracy = 98.69%), and C4.5
achieved an AUC = 0.961 (Accuracy = 98.35%).

We evaluate model parsimony by the average number of rules and variables appearing in models
across 10-fold cross-validation. BRL-GSS on average required 10 rules and 2.4 variables. BRL-LSS
required fewer rules on average: 7.7 rules with more variables (2.9). C4.5 required the least number of
rules (4.3 on average) but needed the largest number of variables on average (7.2 variables) to model
the data.

With high performing models, there can be several models that can perform more or less equally
well. Thus, there can be different rule sets learned with BRL (and C4.5) composed of other variables
that can match the performance achieved by the greedy best-first search algorithm. We now observe
the results we obtained from the greedy best-first algorithms: BRL-GSS and BRL-LSS. The models
were learned on the entire KIRC training dataset.

The rule set learned by BRL-GSS is shown in Figure 2. It uses two variables (genes): APQ2 and
C1orf116. APQ2 takes three discrete values (as determined by EBD during discretization). C1orf116
takes four discrete values. As expected, this generates twelve rules (four times three). Each rule
also shows the number of true positives (TP) and false positives (FP) as computed by the rule on the
training dataset. The posterior probability is computed by the smoothed expression— (TP+1)

((TP+1)+(FP+1)) .
The posterior odds are the odds of the rule assigning the predicted class against all other
classes— (TP+1)

(FP+1) . We provide the posterior odds to the users to assist them in decision
making. We notice that rules 3 through 9 have no evidence assigned from the training
dataset. BRL produces rule models that are mutually exclusive and exhaustive. This means that,
for a given test instance, BRL explains the instance using utmost and at least one rule. The consequence
is having rules with no evidence in the training dataset. This was the primary motivation for the
development of BRL-LSS that limits the creation of these branches by merging them.
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We observe this change in the rule set learned by BRL-LSS as shown in Figure 3. We immediately
notice that the number of rules required by the model is fewer but needs more variables to explain
the data. In this scenario, it also leads to an improvement in performance. The BRL-LSS model uses
three variables (genes): AIF1L, AMPH and C1orf116. AIF1L takes two discrete values (as determined
by EBD during discretization). AMPH takes three discrete values. C1orf116 takes four discrete values.
Note that a BRL-GSS model with the same performance as this BRL-LSS model would require 24 rules
(2 × 3 × 4) that is largely composed of rules with no evidence in the training dataset. Using BRL-LSS,
we manage to maintain the property of the rule set being mutually exclusive and exhaustive while
achieving parsimony. The BRL-LSS rule set only requires seven rules to describe the training data,
while needing three variables to do so. We still end up with rules with no evidence (rule 4), but they
are much fewer.

1. IF ((−∞ < AQP2 < 7.1) AND (−4.9 ≤ C1orf116 < 4.0)) THEN (Class = Tumor)
Posterior Odds = 476.0, Posterior Probability = 0.998, TP = 475, FP = 0

2. IF ((−∞ < AQP2 < 7.1) AND (4.6 ≤ C1orf116 < ∞)) THEN (Class = Tumor)
Posterior Odds = 51.0, Posterior Probability = 0.981, TP = 50, FP = 0

3. IF ((7.1 ≤ AQP2 < 9.3) AND (−4.9 ≤ C1orf116 < 4.0)) THEN (Class = Tumor)
Posterior Odds = 9.0, Posterior Probability = 0.9, TP = 8, FP = 0

4. IF ((9.3 ≤ AQP2 < ∞) AND (−∞ < C1orf116 < −4.9)) THEN (Class = Tumor)
Posterior Odds = 1.0, Posterior Probability = 0.5, TP = 0, FP = 0

5. IF ((7.1 ≤ AQP2 < 9.3) AND (−∞ < C1orf116 < −4.9)) THEN (Class = Tumor)
Posterior Odds = 1.0, Posterior Probability = 0.5, TP = 0, FP = 0

6. IF ((9.3 ≤ AQP2 < ∞) AND (−4.9 ≤ C1orf116 < 4.0)) THEN (Class = Tumor)
Posterior Odds = 1.0, Posterior Probability = 0.5, TP = 0, FP = 0

7. IF ((9.3 ≤ AQP2 < ∞) AND (4.0 ≤ C1orf116 < 4.6)) THEN (Class = Tumor)
Posterior Odds = 1.0, Posterior Probability = 0.5, TP = 0, FP = 0

8. IF ((−∞ < AQP2 < 7.1) AND (4.0 ≤ C1orf116 < 4.6)) THEN (Class = Tumor)
Posterior Odds = 1.0, Posterior Probability = 0.5, TP = 0, FP = 0

9. IF ((7.1 ≤ AQP2 < 9.3) AND (4.0 ≤ C1orf116 < 4.6)) THEN (Class = Tumor)
Posterior Odds = 1.0, Posterior Probability = 0.5, TP = 0, FP = 0

10. IF ((9.3 ≤ AQP2 < ∞) AND (4.6 ≤ C1orf116 < ∞)) THEN (Class = Normal)
Posterior Odds = 70.0, Posterior Probability = 0.986, TP = 69, FP = 0

11. IF ((−∞ < AQP2 < 7.1) AND (−∞ < C1orf116 < −4.9)) THEN (Class = Normal)
Posterior Odds = 2.0, Posterior Probability = 0.667, TP = 1, FP = 0

12. IF ((7.1 ≤ AQP2 < 9.3) AND (4.6 ≤ C1orf116 < ∞)) THEN (Class = Normal)
Posterior Odds = 1.5, Posterior Probability = 0.6, TP = 2, FP = 1

Figure 2. Rule set learned by BRL-GSS on the entire Kidney Renal Clear Cell Carcinoma (KIRC)
training data.
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1. IF ((−∞ < AIF1L < 9.2) AND (−4.9 ≤ C1orf116 < 4.0)) THEN (Class = Tumor)
Posterior Odds = 484.0, Posterior Probability = 0.998, TP = 483, FP = 0

2. IF ((−∞ < AIF1L < 9.2) AND (4.6 ≤ C1orf116 < ∞)) THEN (Class = Tumor)
Posterior Odds = 45.0, Posterior Probability = 0.978, TP = 44, FP = 0

3. IF ((9.2 ≤ AIF1L < ∞) AND (−∞ < AMPH < 0.6)) THEN (Class = Tumor)
Posterior Odds = 8.0, Posterior Probability = 0.889, TP = 7, FP = 0

4. IF ((−∞ < AIF1L < 9.2) AND (4.0 ≤ C1orf116 < 4.6)) THEN (Class = Tumor)
Posterior Odds = 1.0, Posterior Probability = 0.5, TP = 0, FP = 0

5. IF ((9.2 ≤ AIF1L < ∞) AND (1.6 ≤ AMPH < ∞)) THEN (Class = Normal)
Posterior Odds = 60.0, Posterior Probability = 0.984, TP = 59, FP = 0

6. IF ((9.2 ≤ AIF1L < ∞) AND (0.6 ≤ AMPH < 1.6)) THEN (Class = Normal)
Posterior Odds = 13.0, Posterior Probability = 0.929, TP = 12, FP = 0

7. IF ((−∞ < AIF1L < 9.2) AND (−∞ < C1orf116 < −4.9)) THEN (Class = Normal)
Posterior Odds = 2.0, Posterior Probability = 0.667, TP = 1, FP = 0

Figure 3. Rule set learned by BRL-LSS on the entire KIRC training data.

The purpose of this case study was to demonstrate the application of BRL-GSS and BRL-LSS
in data from RNA-Seq technology. A complete data analysis of the KIRC dataset would involve
further exploratory data analysis and examination of multiple rule sets to explain different hypotheses.
Such thorough analysis of this dataset is beyond the scope of this paper.

4. Future Work

We previously extended BRL-GSS with a Bayesian Selective Model Averaged version of BRL called
SMA-BRL [29]. We showed that SMA-BRL was a significantly better predictor than BRL-GSS. In the
future, we would like to study the selective model averaged version of BRL-LSS. For the remainder
of this paper, we refer to the collection of classifiers—BRL-GSS, BRL-LSS, and their Selective Model
Averaged versions as the BRL system. The descriptive capability and predictive power enables us to
envision the applications of the BRL system to other high-profile genomic problems. We discuss two
possible applications in the following paragraphs.

An important problem in genomics is the classification of an SNP as either neutral or
deleterious. Deleterious SNPs can disrupt functional sites in a protein and can cause several
disorders. SNPdryad [30] is one such classifier that uses only orthologous protein sequences to
derive features (Sequence Conservation Profile) that assist in this classification task. In addition
to the Sequence Conservation Profile, they use other features like the physicochemical property
of amino acids, the functional annotation of the region with the SNP, the number of sequences in
the multiple sequence alignment, and the number of distinct amino acids for the classification task.
They compare 10 different classifiers for the task and report excellent predictive performance using
Random Forests [31]. However, they do not explore any classifier that offers readily interpretable
descriptive statistics. We propose exploring this problem using the BRL system, since it readily offers
descriptive statistics in the form of rule sets. It would be interesting to learn which features lead to
deleterious non-synonymous human SNPs.

Another problem of interest is the in silico evaluation of target sites for the CRISPR/Cas9 system.
CCTop [32] is an experimentally validated tool that is used to select and evaluate targeting sites for
the CRISPR/Cas9 system. CCTop evaluates target sites in a genome by using a score derived from
the likelihood of the stability of the heteroduplex (formed from the single guide RNA and the DNA)
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and the proximity of an exon to the target. The BRL system can be used to learn rules that indicate a
good target site for the CRISPR/Cas9 system. The classifiers in the BRL system are composed of rules,
each with a posterior probability indicating the uncertainty in the validity of the rule. This probability
score can be used to rank the target sites. In addition, it would be interesting to explore other candidate
variables to improve the performance of the rule sets.

5. Conclusions

In this paper, we presented extensions to the BRL-GSS by relaxing the constraints on the decision
tree representation using local structures of the conditional probability table of the learned Bayesian
network. This led to the creation of BRL-LSS, which explores a richer and more complex model space
while maintaining the worst-case time-complexity with BRL-GSS. BRL-LSS is now incorporated as
part of the BRL system, which is provided in the Supplementary Materials. This system can be used
for predictive modeling of any quantitative datasets, even though it has been developed primarily for
the analysis of biomedical data. The advantages of this system over state-of-the-art machine learning
classifiers include: (1) comprehensibility and ease in extracting discriminative variables/biomarkers
from interpretable rules; (2) parsimonious models with comparable predictive performance; and (3) the
ability to handle discretization of high-dimensional biomedical datasets using simple command line
parameters integrated into the BRL system. We hope that the BRL system will find applications in
other challenging domains, especially the ones with high-dimensional data.
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