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3D Convolutional Neural Networks for Computational Drug Discovery

Jocelyn Sunseri, PhD

University of Pittsburgh, 2021

This thesis describes aspects of the implementation and application of voxel-based con-

volutional neural networks (CNNs) to problems in computational drug discovery. It opens

by justifying the novelty of this approach by presenting a more mainstream approach to the

common tasks of virtual screening and binding pose prediction, augmented with more sim-

plistic machine learning methods, and demonstrating their suboptimal performance when

applied prospectively. It then describes my contributions to our group’s development of

voxel-based CNNs as we honed their implementation and training strategy, and reports our

library that facilitates featurization and training using this approach. It continues with a

prospective assessment of their performance, analogous to the first prospective evaluation,

with the addition of a novel CNN-based pose sampling strategy. Next it makes a foray into

model explanation, first in an oblique fashion, by examining the transferability of models to

tasks that are distinct from but related to the tasks for which they were trained, and by a

comparison with an approach based on exploiting dataset bias using other machine learning

methods. Finally it describes the implementation of a more direct approach to model ex-

planation, by using a trained network to perform optimization of inputs with respect to the

network as a whole or individual nodes and analyzing the content of the result as well as its

utility as a pseudo-pharmacophore.
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1.0 Introduction

Developing new drugs is time-consuming and expensive[126]. The process of navigat-

ing a drug through testing and trials to clinical application involves several phases, with

failures at each phase deriving from different causes and late-stage failure resulting in sig-

nificant sunk cost [45]. Identifying or designing truly novel drugs is scientifically challenging

and commercially risky. Employment of computational approaches to rapidly identify and

optimize promising (and perhaps novel) candidates and eschew late-stage failure therefore

tantalizes both the pharmaceutical manufacturer and consumer, though the accuracy and

efficiency of these approaches are still lacking [169]. This thesis motivates and describes the

implementation of a radical new method in computational drug discovery that attempts to

leverage deep learning to significantly improve the accuracy of small molecule drug candidate

identification. It assesses this method prospectively, in concert with preexisting state-of-the-

art methods. It also considers how machine learning approaches to drug discovery should

be evaluated given known problems with available data and attempts to rigorously do so.

Finally, it develops a novel approach to model explanation that has potential applications

to other aspects of the drug development process as well.

The field of structure-based drug discovery encompasses several conceptually related

tasks. These include predicting whether or not each among a set of compounds will bind

strongly to a selected protein target (virtual screening), ranking compounds by the strength

of their binding activity, accurately predicting the experimental binding affinity of those that

do bind, predicting how a compound and binding site interact and reconfigure during binding

(binding pose prediction), and predicting how changes to the structure of the protein or

compound will modify the way they interact [14]. Structure-based approaches are contrasted

with ligand-based approaches; the former class is based on and makes predictions about

the relative atomic locations of the protein and compound during binding, while the latter

makes predictions based on compound similarity to a query ligand compound known to bind

to the target of interest [46]. Structure-based approaches are therefore attractive due to

their potential to identify truly novel compounds that bind to a particular target, and they
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have a broader domain of applicability in terms of the targets for which they can be used

(e.g. those that have no currently known drugs) and the information they provide about the

intermolecular interactions from which their predictions derive.

Structure-based approaches are based on one or more functions used to map input

atomic locations for a protein and compound to predictions about their binding (e.g. a

measure of interaction strength, including both direct predictions of binding affinity as well

as more general scores that may just produce compound rankings intended to correlate with

binding quality). These scoring functions are commonly grouped into four major classes -

force fields, empirical, knowledge-based (i.e. statistical), and machine learning. Force fields

[68, 205, 25, 32, 55, 19, 112, 92, 91] derive from physics and directly model interatomic poten-

tial energy with terms representing electrostatics parametrized using experimental data and

quantum mechanical calculations. Empirical scoring functions [98, 187, 53, 15, 195, 100, 58]

feature terms expected to underlie or correlate with binding, including protein-ligand inter-

action terms as well as terms that represent solvation and entropy; these terms may be in-

cluded in a weighted sum with weights and other tunable parameters fit to experimental data.

Knowledge-based statistical potentials [78, 125, 63, 210, 123, 10, 77] use existing structural

data to identify conditional probabilities of observing specific features, for example pairwise

interatomic distances, torsion angles, or hydrogen bond geometry, which can be used to eval-

uate an input structure by comparing its values for the relevant features to the experimental

distributions. Modern machine learning scoring functions [111, 50, 11, 69, 203, 161, 110, 145]

may use a wide variety of input features, including any of the feature classes used by the

other types of scoring functions. They tend to impose fewer restrictions on the final func-

tional form compared with other methods, often making predictions that are a nonlinear

function of the input features; function parameters are fit to data.

Machine learning scoring functions may combine many types of input features, and this

includes starting from precomputed features or attempting to learn relevant features directly

from data. Starting from existing precomputed features yields models that are easily inter-

pretable, but that may be limited in their ability to outperform conventional methods since

they rely on extracting additional performance from the same basic information conventional

methods use. The great promise of these methods is arguably their ability to start directly

2



from a representation of structural data and derive potentially novel informative features

during model training (i.e. when their parameters are fit).

When attempting to learn features from input data, there are still choices to be made

about how that data will be represented. There are many formats commonly used for molec-

ular representation, including strings [200, 102], fingerprints[84, 190, 51, 120, 41], graphs

[95, 64, 159, 207, 29], summaries of the atoms and bonds that are neighbors of each input

atom (i.e. “atomic environments”) [171, 157], and more general numerical grids (which might

include vectors of coordinates and atom types or discrete samples of underlying continuous

atomic or electrostatic densities) [145, 90, 81, 174, 139, 153, 8, 164]. Most of these methods

have undergone significant innovation in tandem with the machine learning revolution of

the 2010s, including a particular interest in bringing a structural component to previously

ligand-only representations (e.g. developing protein-ligand interaction fingerprints rather

than relying on ligand-only fingerprinting, and developing graph representations based on

spatial adjacency rather than exclusively based on bond connectivity). Distinctions remain

between methods that impose specific constraints on the kinds of features that may be

learned (e.g. in order to guarantee energy conservation or equivariance to natural symme-

tries) and those that perform minimal featurization in order to provide maximum freedom

in learning informative features.

Our group was the first to report a complete, public implementation of voxel-based con-

volutional neural networks (CNNs) for drug discovery (initially focusing on pose prediction

and virtual screening) [145], for which we take the latter approach and perform as little

overt featurization as possible. Starting from a continuous representation of atomic posi-

tions, we create a grid-based input by sampling the input at discrete locations on a regular

three-dimensional lattice, with separate “channels” for each permitted atom type. Work I

performed at the beginning of my PhD (Chapter 2.1) helped justify this approach by demon-

strating the low ceiling on expected performance improvement imposed by restricting the

space of possible input features to those already in wide use in the field. Next we worked

on developing our own novel approach(Chapter 2.2), with my contributions including an

algorithm efficiently implementing conversions to and from our chosen grid-based input rep-

resentation. As we gradually honed our training strategy and imagined new applications
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that would benefit from access to libraries available for machine learning in the Python pro-

gramming language [189], I performed an important role in developing a general-purpose

library, libmolgrid, which exposes fundamental data re-sampling, augmentation, and grid

conversion capabilities for individuals interested in using grid-based approaches for molecular

modelling in their own work, especially when that involves machine learning. libmolgrid

features generic functionality, efficient performance, interoperability with several deep learn-

ing libraries, and native provision of data resampled and augmented in the manner we have

determined is necessary for effective machine learning from molecular data. These virtues

enable our group and others who have adopted it to address new research questions, includ-

ing novel gridding and data representation approaches (which may learn distinct classes of

features) and machine learning from binding dynamics.

The expressiveness afforded by a representation that imposes few limits on the features

on which it bases its predictions is a virtue that comes at a price. Of course all scoring

functions fit to data require some care when their performance is assessed, at least if the

goal is to assess how they might be expected to perform prospectively rather than merely

how well they were fit to their training data. Cross validation is typically used to assess

performance on a held-out subset of the data not used for training, with clustered cross

validation serving as the best way to reduce leakage of information from the test set to the

training set when performing fitting and evaluation on a single data corpus [115]. The utility

of cross validation and indeed benchmarking datasets as a whole is limited by their own bias

[82, 26]. Biases may include lack of diversity in protein classes included in the dataset,

high similarity among active compounds provided per-target as well as across targets, and

significant dissimilarity between actives and inactives in terms of simplistic features that

may correlate with activity due to historical artifacts deriving from the drug development

process, among other problems. Benchmarks in wide use for training and validation in

the virtual screening literature (including DUD [76], DUD-E [128], and MUV [151]) are

known to have biases that seriously undermine their utility in estimating generalization

performance [192, 184, 30, 165]; their continued use at the present time is assured due to

a lack of alternatives and a need to compare with prior work reported in the literature,

but better baselines are required for performance estimates of machine learning methods
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to control for this bias. Additionally, since this bias in some cases derives from historical

bias in the underlying data, it is likely that the bias problem is present in all available drug

discovery datasets unless they have been explicitly debiased. This thesis demonstrates that

the problem is larger than was previously determined, with bias affecting binding affinity

benchmarks as well as virtual screening benchmarks, and that it is possible to fit models

that exploit bias in one benchmark and make accurate predictions on another benchmark

for a distinct drug discovery task. This potentially undermines the basis of machine learning

performance reported previously in the literature which does not appear to outperform the

performance achievable via exploitation of dataset bias, including in areas like binding affinity

prediction that were previously untouched by this dataset bias controversy (Chapter 3.2).

This thesis proposes an improved performance baseline motivated by exploiting bias as an

alternative to baselines based on more sophisticated ligand-based methods, which due to their

less expressive features may be unable to learn biases and therefore underperform compared

with methods that are secretly learning something even more naive than a fingerprint.

Real-world performance involves making predictions about completely new data with

answers blinded when predictions are made. This happens during a real drug discovery cam-

paign, but it can be simulated using blinded community benchmarking challenges that invite

predictions about real drug discovery tasks for unpublished data and reveal answers at the

end of the challenge period. Examples in various subfields of drug discovery include CASP

[124] (protein structure prediction), CSAR [134] (virtual screening, binding affinity predic-

tion, and pose prediction), and D3R [177] (virtual screening, binding affinity prediction,

and pose prediction). These benchmarks were also used to evaluate our novel voxel-based

CNN scoring functions, and our progress in these blinded benchmarks as we moved from

predefined features to those learned from data is also discussed in this work (Chapter 3.1).

Finally, as suggested above, model interpretation is a fundamental problem with more

expressive “black box” machine learning models that may learn features from data but do not

immediately reveal what those features are. Without a direct indication of what a model has

learned, it is possible for the model to have learned something that is trivial or not expected

to generalize and this reduces the value of the resulting models in higher cost scenarios. Our

group has explored various model interpretation methods in the past [72], mostly focused
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on mapping a prediction back onto regions of the input that contribute to it. This type of

approach can be limited since it does not directly indicate what the network is detecting,

only that it was positively or negatively influenced by certain structures in the input, and

in some cases that positive or negative influence may be weak and spatially delocalized in

a way that provides very little explanatory power. Direct visualization of the structures

that maximally activate a convolutional filter is possible, and this approach is implemented

and explored in the final chapter of this thesis (Chapter 4). That approach involves using a

trained network to optimize its own input with respect to any of its internal neurons, and can

also be used (conditioned on a binding site of interest) to generate the network’s depiction of

the ligand that would optimally bind a given protein target. These “optimal binder” ligand

densities can be used to perform a virtual screen over a conformer library in a manner that

is distinct from (and faster than) using the network to rescore the conformers directly. This

input optimization approach is novel in the domain of machine learning for drug discovery

and could be useful for black-box model interpretation and rapid virtual screening.

1.1 Significance

The major contributions of this thesis are:

1. Chapter 2.1 examines how much performance can be gained over conventional scoring

functions if machine learning (ML) is used to fit new functions using the same set of

features used by the conventional methods. The result motivated our development of a

novel ML scoring function that learns its own features from data.

2. Chapter 2.2 describes libmolgrid, our library that provides gridding and input batch

composition functionality that distills what we have learned about training these machine

learning models as we have iterated on training and constructing molecular machine

learning scoring functions using voxelized grids derived from available structural data.

The efficient implementation enables the development of novel modeling approaches like

machine learning from dynamical information.
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3. Chapter 3.1 prospectively evaluates our CNN models in the third D3R community bench-

marking challenge, where our submission was among the best submitted for affinity rank-

ing. It provides some evidence that allowing the CNN to contribute to pose sampling

(rather than just rescoring poses generated by another method) may enhance its perfor-

mance.

4. Chapter 3.2 provides evidence that dataset bias is likely to affect any dataset used for

drug discovery that has not been explicitly debiased, and that bias learned from one

dataset and one drug discovery task (e.g. binding affinity prediction) provides informa-

tion that can be used to achieve significantly better than random performance on other

datasets and tasks (e.g. virtual screening), while not providing any insight that would

generalize to challenging real-world drug discovery tasks. It also demonstrates that while

other ML scoring functions may have just learned to recapitulate their training dataset

bias, our latest CNN scoring functions have not.

5. Chapter 4 implements a novel method for examining what a model has learned and

evaluates an extension of that method for virtual screening.

1.2 Outline

In Chapter 2 we justify the development of a novel machine learning scoring function

based on a prospective evaluation of the performance of techniques that reflected the state-

of-the-art at virtual screening and binding pose prediction at the beginning of my thesis

work. Then we discuss relevant details of implementing and testing our novel voxel-based

CNNs and describe the API for a general-purpose library we developed to facilitate the

community’s evaluation and extension of our approach.

In Chapter 3 we subject the resulting CNN-based scoring functions to a similar prospec-

tive evaluation as performed at the beginning of Chapter 2, with promising results. This

evaluation relied in part on poses that were refined using the CNNs themselves. We then

perform a more rigorous assessment of the CNN’s ability to generalize and transfer what it

has learned to virtual screening, a task for which it was not trained, comparing this method
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with other machine learning-based approaches and carefully analyzing the results for in-

formation about what the CNNs have learned and how that relates to their training data.

In particular we establish a performance baseline that thoroughly exploits known chemical

biases in available data in an attempt to delineate the performance that might be expected

if those biases reflected the total information a given machine learning model had extracted

during training.

In Chapter 4 we implement and test a more direct approach to model explanation, using

trained networks to optimize inputs with respect to either the full network or to individual

nodes. This allows us to interrogate which features the network has actually learned to be

optimal, and to potentially exploit that information in the context of virtual screening. We

describe how this approach was implemented and preliminary results.

Chapter 5 consists of a final discussion and conclusions, as well as an overview of future

work that could take “unfinished business” from this thesis as its starting point.
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2.0 Grid-based CNNs: Why and How

2.1 A prospective evaluation of preexisting approaches

The first half of this chapter describes our initial prospective evaluation of training simple

machine learning models to use 2D fingerprints and precomputed 3D structural descriptors

for pose and affinity prediction. We used these models to submit predictions to the Drug

Design Data Resource (D3R) Grand Challenge 2. The results demonstrated the potential

of training neural networks using three-dimensional information, since they had a broader

domain of applicability than the fingerprint-based models and performed comparably to the

best fingerprint models at affinity ranking; still, they did not consistently outperform Vina,

our empirical scoring function baseline.

Chapter 2.1 was reproduced with permission from Sunseri, Jocelyn, Matthew Ragoza,

Jasmine Collins, and David Ryan Koes. “A D3R prospective evaluation of machine learning

for protein-ligand scoring.” Journal of computer-aided molecular design 30, no. 9 (2016):

761-771.

2.1.1 Background

A scoring function that accurately represents and predicts ligand-protein interactions is

essential for molecular docking, energy minimization, and hit identification/lead optimization

in structure-based drug discovery [43, 121, 27, 197, 97, 198, 32, 31, 173, 79]. The development

of an accurate and reliable scoring function remains an unsolved problem [42, 156, 74, 148,

196, 79]. Ideally, given a protein-ligand structure, a scoring function would be able to

correctly place the true, crystal pose of a ligand at a global minimum (pose prediction) and,

if provided poses at this global minimum, correctly distinguish between active and inactive

ligands (virtual screening performance) by producing scores equivalent to the binding free

energy (binding affinity prediction).

Scoring function design philosophies generally span a continuum between force-field based
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scoring, empirical scoring, and knowledge-based scoring. Force-field based scoring [68, 205,

25, 32, 55, 19, 112, 92, 91] attempts to compute the physical interaction of the protein

and small molecule and includes terms such as van der Waals and electrostatic interactions.

These terms are typically parameterized from first principles. Empirical scoring functions

[98, 53, 15, 195, 100, 53, 58, 186] include physically meaningful terms that may not directly

map to physical forces, such as hydrophobic terms, and are parameterized to reproduce

binding affinities or other data. Knowledge-based scoring [78, 125, 63, 210, 123, 10, 77]

takes advantage of the growing amount of structural data to derive statistical potentials for

ligand-protein interaction patterns.

Parametric machine learning methods, such as linear regression, are often used to param-

eterize empirical scoring functions. In contrast, non-parametric machine learning methods,

such as neural networks [152, 107], provide greater flexibility and expressiveness as they learn

both their model structure and parameters from data. Such methods have successfully been

applied to scoring protein-ligand interactions [7, 93, 154, 47, 10, 35, 212, 93, 155, 48, 49, 40].

These scoring functions take as input a set of descriptors extracted from a protein-ligand

complex. These descriptors are either terms common to empirical scoring [48], such as mea-

sures of electrostatic attraction, atom interaction counts [49], or more abstract interaction

fingerprints [35]. A disadvantage of non-parametric methods is that their increased expres-

siveness increases the probability of overfitting the model to the data, in which case the

scoring function will not generalize to protein targets or ligand chemotypes not in the train-

ing data. The risk of overfitting increases the importance of rigorous validation [101, 59],

but the inherent increase in flexibility allows non-parametric methods to outperform more

constrained methods when trained on the identical input set [108].

As our entry in the Drug Design Data Resource (D3R) blind challenge, we investigated

a variety of machine learning techniques. We evaluated both structure-based classification

models and ligand-based regression models. For our structure-based classification we ex-

plored using the DUD-E dataset [127] for training. In contrast to the CSAR dataset [173]

we have previously used [98], DUD-E is much larger (more than 1 million ligands), but lacks

crystal structures for its more than 22,000 active ligands. Our goal in entering the D3R

evaluation was to prospectively assess the performance of using structure-based training
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Figure 1: The overall approach for our D3R 2015 Grand Challenge submission. D3R ligands

were ranked using a 2D QSAR approach trained using ChEMBL data (left side) or through a

structure-based docking and scoring approach that used the DUD-E data set to train custom

scoring functions for re-ranking poses docked using smina and the AutoDock Vina scoring

function (right side).

with generated DUD-E poses with both parametric and non-parametric machine learning

methods while also evaluating a purely ligand-based QSAR method.

2.1.2 Methods

Our overall approach is shown in Figure 1. We considered both a ligand-based Quanti-

tative Structure Activity Relationship (QSAR) approach and a structure-based docking and

scoring approach. For the ligand-based approach we train a regression model from binding

affinity data using RDKit [149] and a variety of chemical fingerprints. For the structure-

based approach we make extensive use of smina [98], a fork of AutoDock Vina with enhanced

capabilities for custom scoring function development, and the AutoDock Vina [186] scoring

function. We evaluated a unique approach where we train classification models on binary

binding data and used these classification models to rank and select docked poses.

The 2015 D3R Grand Challenge consisted of both affinity prediction and pose prediction
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exercises for two blinded collections of compounds for two targets: Heat Shock Protein 90

(HSP90) and mitogen-activated protein kinase kinase kinase kinase (MAP4K4). 180 ligands

were provided for HSP90 with IC50 activities ranging from 5nM to inactive and six crystal

structures were left blinded as part of the competition. The MAP4K4 dataset consisted of

30 compounds, all with co-crystal structures, but only 18 of which had measured IC50 data.

Consequently, the HSP90 target is most useful for assessing binding affinity prediction and

virtual screening performance while the MAP4K4 target is most suited for pose prediction

evaluation.

2.1.2.1 Ligand-Based Regression The goal of 2D QSAR modeling [33] is to generate

a predictive model of a desired property, in our case binding activity, from a training set of

molecules with known activity using descriptors generated from the 2D topology of the com-

pounds. Using three different 2D fingerprint descriptors, we created three different models

for HSP90 binding from the same training set. The code used to build our models is avail-

able under a permissive open source license at https://github.com/dkoes/qsar-tools

and complete details of our approach are provided in the Supplementary Information.

Compounds with published activity were extracted from the ChEMBL bioactivity database

[12]. Specifically, we collected active compounds from the CHEMBL3880 target (HSP90 al-

pha) that had IC50 values with an equality relation expressed in nM units and a pChEMBL

greater than zero (this is a negative logarithm used to standardize across different activity

measurements). The resulting 355 active compounds spanned a pChEMBL range from 4

(100µM ) to 9 (1nM). These compounds were then stripped of any salts and a variety of

descriptors were calculated.

We calculated Boolean fingerprint descriptors, which encode a molecule as a binary

string where each bit position corresponds to the presence or absence of a specific pattern of

atoms in the molecule. We evaluated three different fingerprints: default RDKit (2048 bits),

unfolded path (variable bits), and circular ECFP6 (2048 bits).

The default RDKit fingerprint enumerates all paths (including branched paths) of a

molecule with up to 7 bonds. These paths, including their atom and bond type information,

are then doubly hashed to a bit position within a 2048 bit vector. The use of a constant
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fingerprint size means the fingerprint is general and can be broadly applied for similarity cal-

culations, but introduces the likelihood of collisions where the same bit position corresponds

to multiple distinct atom patterns.

For our unfolded path fingerprints, we enumerated all possible unbranched paths, includ-

ing atom and bond type information, present in the molecules of the training set resulting

in 6628 distinct atom patterns. Each path was then assigned a unique bit in a bit vector. In

this case, every bit in the fingerprint unambiguously corresponds to a specific atom pattern.

If new atom patterns are encountered when fingerprinting molecules not in the training set

they are ignored.

Extended connectivity fingerprints [150] enumerate atom patterns that represent the

neighborhood of each atom up to a circular diameter, in our case 6, of bond lengths. These

descriptors are then folded into a 2048 bit fingerprint with RDKit.

We create predictive linear models from the training set and descriptors using the Elastic-

Net module of the popular scikit-learn [141] Python package. An elastic net model includes

both an L1 and L2 regularization factor:

min
w

1

2nsamples
||Xw − y||22 + αρ||w||1 +

α(1− ρ)

2
||w||22

where X are the input binary features, y are the labels (affinity values), w are the weights

of the model, and α and ρ are parameters controlling the degree of regularization. Increased

regularization drives weight values to zero, reducing the number of selected features. This re-

duces the amount of overfitting in the model at the cost of reduced expressiveness. In order to

set these regularization parameters we apply an internal cross-validation to identify the best

parameters for the training set. Using this approach we achieved internal cross-validation

R2 correlations of 0.52, 0.50, and 0.60 using the default RDKit fingerprints, unfolded path,

and circular ECFP6 fingerprints respectively.

2.1.2.2 Structure-Based Classification For our structure-based workflow, which un-

like the ligand-based regression also produces pose predictions, we use docked poses to train

models to distinguish between binders and non-binders. These models are then used to

re-rank and select docked poses of the D3R ligands.
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Figure 2: Our workflow for generating structural training sets from the DUD-E dataset.

The workflow for training set construction is shown in Figure 2. Somewhat unconven-

tionally, we chose to train structure-based models using a dataset, the Enhanced Directory

of Useful Decoys (DUD-E) [127], that lacks protein-ligand structures. The advantage of

DUD-E is its large size: it consists of 102 targets, more than 20,000 active molecules, and

more than a million decoy molecules. The disadvantage is that compounds are classified as

active/decoy (no binding affinity information) and structures are not available. To address

this, we train our models as binary classifiers on docked poses. The docked poses are gener-

ated using smina [98] using the AutoDock Vina scoring function. Input ligands are converted

to a single 3D conformer using RDKit which is then docked as a flexible ligand (hence the

need to only generate a single conformer as rotatable bonds are sampled during docking).

We dock against the reference receptor provided with DUD-E in a box centered around the

reference ligand with 8Å of padding and select the top ranked pose as the structure to use for

that ligand. This results in a highly imbalanced and noisy training set that is dominated by

decoys. To enhance the signal exhibited by the active set, we also create a balanced set with

equal numbers of decoy and active compounds. Since DUD-E includes an HSP90 target, we

also extract a target specific set from these two larger training sets.
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Figure 3: Structure-based descriptors used to train machine learning models. Italicized

features are computed outside of smina and include solvent accessible surface area (SASA)

atom type specific solvation terms (es 1 -es 6 ) and buriedness terms (bfO , bfN ).

We distill every protein-ligand pose in our training set into a numerical vector of inter-

action features computed using smina and custom code to produce the descriptors shown in

Figure 3. The custom code is primarily used to calculate descriptors that include a solvent

accessible surface area (SASA) term, since smina only computes pairwise interaction terms.

An assortment of parameterized smina terms are used and include steric, hydrophobic, van

der Waals, hydrogen bonding, solvation, electrostatic (partial charges computed using Open

Babel [136]), and non-interaction count/summation terms. Finally, we also include the

AutoDock Vina score for a total of 61 features.

For purposes of internal validation, we first evaluated our models using clustered cross-

validation [101] where we partitioned the DUD-E training set at a target granularity into

multiple folds. This provides a greater measure of generalizability since trained models are

tested on entirely new targets. For training, as we are performing classification, we evaluated

the ability of a model to properly rank compounds using the area under the curve (AUC)

of the receiver operating characteristic (ROC) curve. A perfect ranking of ligands produces

an AUC of 1.0 and a random ranking results in an AUC of 0.5. Models used for our D3R

predictions were trained on the entire training set.

Using scikit-learn [141] with default parameters we evaluated both linear regression and

logistic regression, which is more commonly used in classification tasks, and found they

produced nearly identical results in our cross-validation analysis. They both achieved an

average AUC of 0.77 in 10-fold cross-validation when trained on the balanced training set.

Since linear models are faster to evaluate and train, have more interpretable coefficients,

and produce a wider range of prediction values (unlike logistic regression which is capped

between zero and one), we selected a linear regression model for our D3R submission.

As an additional model, we trained a neural net with a single hidden layer of 20 nodes and
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two output classes (active or decoy) using the Caffe deep learning framework [85]. The model

used sigmoid activation in the hidden layer and a softmax function to normalize the output.

It was trained by stochastic gradient descent with an inverse learning rate decay function

(ηi = 0.01, γ = 0.0004, power = 2) and momentum (α = 0.9) to minimize the multinomial

logistic loss. Training occured for 10,000 iterations with a batch size of 20,000 examples.

When trained on the unbalanced dataset, class weights were applied when computing the

loss to balance the influence of the negative examples with the underrepresented positive

examples. The 10-fold cross-validated AUC for the model was 0.74 using the balanced

dataset and 0.73 on the unbalanced dataset.

2.1.2.3 Test Set The provided SMILES of the D3R ligands were converted into a single

conformer with RDKit and then docked with smina [98]. The binding site was defined using

the cognate ligand of the receptor. Unlike with the training set, we increased the amount of

sampling performed during docking (--exhaustiveness 50) to increase the chance of iden-

tifying high-quality poses. For the HSP90 target we limited ourselves to the four receptors

referenced by the D3R organizers: 2JJC, 2XDX, 4YKR, 4YKY. Since the presence of waters

was explicitly called out by the organizers, we docked to variations of these structures with

zero, one, or two waters within the binding site. For each receptor structure, we generated

up to 9 distinct poses for a total of 21,893 poses.

For MAP4K4, we also limited ourselves to the two structures referenced by the organizers:

4OBO and 4U44. In this case, since the organizers explicitly called out the flexibility of

the structure we ran a 100ns molecular dynamics simulation using Amber14 and and the

amberff14sb force field with TIP3P water under neutral conditions. In order to prepare

the structures for simulation, we modeled missing loops as needed with the FREAD loop

modeling server [34] and PyMOL. A greedy top-down clustering algorithm was then used to

select ten diverse, as measured by backbone RMSD, frames from the 100ns simulation. The

distributions of sampled backbone RMSDs are shown in Figure S1. Compounds were docked

to these ten structures and the original crystal and up to 9 distinct poses were generated for

each receptor for a total of 5,329 poses.

Our linear regression and neural network models were applied to all generated poses and
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the best scoring poses for each ligand were submitted as our predicted poses and the score

of the best scoring pose was used for our submitted affinity predictions.

2.1.3 Results

The MAP4K4 and HSP90 datasets each served as a specialized evaluation task based on

the nature of the data available: MAP4K4 had 30 blinded crystal structures that served to

test pose prediction performance, while HSP90 had blinded affinity data for 180 ligands that

could be used to evaluate virtual screening methodologies. Both sets had a relative paucity

of data available for the other task - affinity data for 18 ligands in the case of MAP4K4 and

crystal poses for 6 ligands in the case of HSP90 - and we thus focus much of the analysis of

our performance on each task on the dataset suited to that task.

There are several axes of analysis, each elucidating the utility of a particular method

we used to train and select classification models as well as generate instances to test them.

Broadly, there are differences in the type of classification model (linear regression, linear

regression including an L1 regularization term, and a neural net), the dataset used to train

the classifier (the balanced and reduced datasets, and the targeted datasets in the case

of HSP90), and the methods used to generate an ensemble of receptor structures used to

created poses for the test sets. Although we did not submit the predictions from our linear

classifier with an L1 lasso to the challenge, we include the data from its predictions here for

the purposes of evaluation.

2.1.3.1 Pose Prediction Given the 30 MAP4K4 crystal poses released at the close

of Stage 1 of the challenge, we computed RMSDs of our predicted poses to the provided

4OBO aligned crystal poses. This information was then used to assess the performance of

our training and testing methodologies across all the axes described above. In general we

wanted to know whether it was more likely to observe low RMSD poses using a particular

methodology, either in the top ranked pose for a given ligand or considering a subset of the

top-ranked poses.

Since a scoring function’s ability to rank low-RMSD poses is limited by our ability to
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sample low-RMSD poses, we first focus on our pose sampling in the test set. Figure 4 shows

that half of the ligands have at least one pose under 2.0 RMSD with the 4OBO crystal

structure, which outperforms all other receptor structures in generating low RMSD poses.

One of the 4U44 ensemble receptors outperforms the 4U44 crystal structure at generating

low RMSD poses, successfully yielding a pose under 2.0 RMSD 37% of the time, compared

to 23% of the time with the crystal structure. However, that structure is the first frame

from the molecular dynamics simulation, suggesting that the pre-simulation minimization of

the crystal structure may have been sufficient to produce better poses with 4U44. Of the

23 ligands for which we successfully sampled a pose under 2.0 RMSD, docking to one of the

crystal structures was sufficient to produce such a pose for all but one. However, considering

the lowest RMSD pose available in the test set for each of the ligands reveals that 14 ligands

exhibited their lowest RMSD pose when docked to a simulation derived receptor rather than

a crystal receptor structure, suggesting there was some value in performing the ensemble

docking.

Figure 5 shows the mean across all ligands of the RMSD of the best pose seen so far at

a given rank for each of the methods used to score and then rank poses. It indicates that

for the majority of the values shown, the scoring functions trained on the reduced datasets

outperformed those that were trained on the balanced datasets. The linear regression scoring

function trained with lasso was the method that performed best overall, returning a pose

within 4.0 RMSD on average by the fourth ranked pose; however, all methods except Vina

(included as a baseline) and the lasso method trained on the balanced dataset returned a

pose within 4.0 RMSD on average within the top five ranked poses. On average, no methods

returned a pose within 2.0 RMSD in the top 25 ranked poses, despite the fact that 23 ligands

had such a pose in the set of poses we generated via docking for the test set.

Figure 6 demonstrates that if only poses generated from the 4OBO crystal structure

had been scored, a greater number of poses within 4.0 RMSD would have appeared as the

top ranked pose chosen by all of the scoring methods except Vina. The assessment of the

poses generated by 4U44 is more equivocal; while the lasso- and neural net-based methods

demonstrate improved sampling of low RMSD poses if they are restricted to poses generated

using 4U44, only for the lasso method trained using the balanced dataset does the lower

19



Figure 4: Fraction of ligands with poses under a given RMSD, colored by the receptor

structure associated with the subset of poses used for the calculation. The starting PDB

crystal structures are shown with dashed lines in the darkest colors, while the structures

generated from molecular dynamics simulations are colored according to a gradient based

on their frame number, representing their distance from the initial crystal structure used to

start the simulation.

quartile improve by nearly 2.0 RMSD, with a weaker effect observed for the other methods.

The medians of the linear scoring function rankings improve by around 2.0 RMSD by using

the full set of poses generated via the complete receptor ensemble rather than the 4U44

crystal structure.

Figure 7 views the rank1 poses produced by each method based on the ligand with

which they were associated. One of our methods (not including Vina) gave top rank to a
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Figure 5: The average of the best RMSD observed for each ligand up to a given rank,

compared across all the methods with Vina’s performance used as a baseline.

pose within 4.0 RMSD for 13 of the ligands and within 2.0 RMSD for 6 of the ligands. Linear

regression or linear regression with lasso, both trained using the reduced dataset, were the

methods most successful at selecting low RMSD poses. Of the 17 ligands for which we failed

to place a pose under 2.0 RMSD at rank 1, seven had no such pose in the dataset. The

remaining ten had at least one pose under 2 RMSD in the dataset, but none of our methods

correctly identified any such pose at rank 1. The ligand the methods had the most trouble

with, despite the presence of a low (< 1Å) RMSD pose, was MAP07, which is shown in

Figure 8. MAP07 has a cyclopropane group that is solvent exposed in the crystal, but all

our methods (and Vina) prefer poses where this group is more buried.

A similar analysis was performed for the 6 ligands in the HSP90 dataset for which
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Figure 6: Assessment of the mean rank 1 pose RMSD across all 30 ligands, comparing the

different classifiers and the methods used to train them, as well as the receptor structures

used to generate poses. Boxes show quartiles, lines bisecting the boxes indicate the location

of the median, while stars indicate the location of the mean.

crystal structures were made available at the end of the challenge. The linear regression

model trained on the balanced dataset was the best performing method on that task, with an

average rank 1 pose RMSD of 1.9. However, Vina was more successful at predicting the lowest

RMSD poses found in the top 5 ranking, reaching 0.98 RMSD by rank 5. The other methods

performed significantly worse than Vina at every rank, and there was no clear consensus

regarding whether training with the balanced or the reduced datasets proved advantageous

for this task. The targeted training set produced scoring functions that performed the worst

overall, generating poses that were on average 1-2.5 RMSD worse than those generated by
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Figure 7: RMSD of the rank 1 pose each method selected for each ligand in the MAP4K4

test set. The dashed gray line shows the lowest RMSD that could have been obtained by

selecting poses from the test set.

the non-targeted version of the scoring function. In terms of sampling, two of the receptors

produced poses within 2.0 RMSD for five of the six ligands, ten receptors produced poses

within 4.0 RMSD for all of the ligands, and all receptors produced poses within 4.0 RMSD

for four of the six ligands. Of the seven receptors that produced poses within 2.0 RMSD for

at least four ligands, five used crystal waters in docking and two did not; of the two receptors

that produced poses within 2.0 RMSD for at least five ligands, one used crystal waters and

the other did not. This suggests that including crystal waters may enhance sampling of low

RMSD poses and, at a minimum, is not detrimental. However, the small size of the HSP90

test set prevents any definitive conclusion.
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Figure 8: An example of a challenging ligand for pose selection. The crystal pose for MAP07

is shown as thin yellow sticks while a pose top-ranked by a linear method for this receptor is

shown in magenta sticks. The surface of the top of the binding pocket is removed for clarity.

2.1.3.2 Virtual Screening Performance As the HSP90 set of 180 ligands included

inactive compounds, it provides a means to evaluate virtual screening performance, that is,

how well the various scoring methods discriminate between binders and non-binders. The

cutoff for activity was set at 50µM resulting in 136 active and 44 inactive compounds. The

score of the top ranked pose selected by each scoring method was used to rank each ligand.

The area under the curve (AUC) of the receiver operating characteristic (ROC) curve for the

various methods is shown in Figure 9 with 95% confidence intervals, and the ROC curves for

selected methods are shown in Figure 10. The best AUC of 0.65 was achieved by Vina, but

the structure-based methods trained using the balanced set and the ECFP6 ligand-based

method all performed similarly with AUCs of 0.63 or better.

Methods trained using the reduced set, in which decoy examples are not down-sampled to

balance the effect of active and inactive compounds on training, fared more poorly. Methods

trained on the HSP90 target-specific balanced set were worse than random. Of the ligand-
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Figure 9: Area under the curve (AUC) of the ROC curves generated using various methods

to rank HSP90 ligand poses. Error bars indicate the 95% confidence interval as determined

by bootstrapping with replacement (1000 iterations). Compounds with a reported activity

greater or equal to 50µM were considered inactive.

based methods, only ECFP6 fingerprints produced an AUC that was meaningfully above

random.

Although Vina, ECFP6, and the balanced methods perform similarly, they still score

ligands differently, as shown in Figure 11 which plots the ligand scores of the different

methods with respect to each other. The structure-based methods are more correlated with

one another than with the ligand-based method.

2.1.3.3 Affinity Prediction Both the HSP90 and MAP4K4 sets provide an opportu-

nity to assess the ability of the methods to accurately predict the reported activity. Overall

correlations between predicted and experimental activity for the HSP90 ligands are shown

in Figure 12. As with the virtual screening results, Vina and the structure-based meth-
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Figure 10: The ROC curves for HSP90 ligands generated using structure-based methods

trained on a balanced training set (left) and curves of ligand-based methods (right). Com-

pounds with a reported activity greater or equal to 50µM were considered inactive.

ods trained on the balanced set perform similarly and the methods trained on the HSP90

target-specific training set perform poorly. Methods trained on the reduced set have similar

performance to Vina, with the neural net model achieving the highest Spearman correlation

coefficient of 0.40. However, this is not a particularly high correlation and is not substan-

tially more than the dataset’s correlation with molecular weight (0.34). Both the ECFP6

and RDKit 2D QSAR regression models achieve statistically significant correlations, but do

not outperform the structure-based methods.

The MAP4K4 dataset has substantially fewer compounds with reported activities (17

ligands) which, as indicated by the 95% confidence intervals in Figure 13, makes it difficult

to meaningfully compare methods. However, since the MAP4K4 dataset has the advantage

of providing crystal structures for all 17 ligands, we also evaluated affinity prediction per-

formance when scoring the pose with the closest RMSD to the crystal ligand instead of the

pose top-ranked by the scoring function. Interestingly, as shown in Figure 13, scoring this
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Figure 11: Spearman correlations of HSP90 ligand scores for selected methods. The logit

function (an inverse sigmoid) was applied to the neural network score for visualization pur-

poses.

superior pose did not result in improved correlations, statistically significant or otherwise.

2.1.4 Discussion

The 2015 D3R Grand Challenge provided an excellent opportunity to prospectively eval-

uate pose prediction and scoring methods. We evaluated both structure-based and ligand-

based machine learning approaches. Somewhat surprisingly [182], the 3D structure-based

methods outperformed the 2D methods for the one target, HSP90, where there was sufficient
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Figure 12: Spearman correlation coefficients using various methods to rank HSP90 ligands.

Only ligands with reported IC50s below 50µM were considered. Error bars indicate the 95%

confidence interval as determined by bootstrapping with replacement (1000 iterations).

data to construct QSAR models. Although it is possible that the use of more expressive fea-

tures [116] or models [28] would improve the results, a more likely issue lies in the coverage

of the training set with respect to the D3R ligands. Figure 14 show the HSP90 datasets

plotted with respect to the first two principal components of the D3R ligands as computed

using OpenBabel FP2 fingerprints. The three congeneric series of the D3R set are clearly

distinguished as three separate clusters. The ChEMBL dataset used with the ligand-based

methods fully covers one cluster but only partially covers the remaining two. In contrast,

the DUD-E HSP90 set used for the target-specific structure-based scoring functions has little

overlap with the D3R ligands. This property, combined with the set’s small size (88 active
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Figure 13: Spearman correlation coefficients using various methods to rank MAP4K4 ligands

using the ligand pose top ranked by the given method (left) or the ligand pose with the

smallest RMSD to the crystal structure (right). Error bars indicate the 95% confidence

interval as determined by bootstrapping with replacement (1000 iterations).

ligands), was likely a major factor in the poor performance of these methods.

We used the D3R exercise to evaluate a variety of machine learning based scoring methods

that were trained using a novel classification approach. Rather than fitting to affinity data or

pose RMSDs, this approach seeks to leverage the large amount of high-throughput screening

data available from a wide variety of sources. Framing the problem as a classification between

binders and non-binders automatically normalizes for different assay outcomes. In order

to utilize binding data in a structure-based approach, protein-ligand structures must be

produced through docking. The end result is a large (the DUD-E set used here has more

than one million ligands), but extremely noisy (due to docking inaccuracies) dataset. A key

goal of this exercise was to evaluate the feasibility of such a training approach as well as

compare different approaches to training set construction (i.e., balanced vs reduced).

Although the machine learning approaches did not outperform the AutoDock Vina scor-

ing function, they did perform comparably at pose prediction, virtual screening, and affinity
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Figure 14: (Left) Structure-based (DUD-E) and ligand-based (ChEMBL) training sets

projected on the first two principal components of the D3R ligand set. (Right) Histogram

of the Tanimoto coefficient of D3R ligands with the most similar ligand in a given training

set. Similarities are computed using OpenBabel FP2 fingerprints.

prediction. This may not seem surprising as the terms of the AutoDock Vina scoring func-

tion were included as training features. In fact, one of the features was the AutoDock Vina

score itself, but omission of the Vina score from the training data produces essentially iden-

tical results (score predictions correlate with R>0.99). Nonetheless, we find it encouraging

that two distinct modeling methods, linear regression and neural networks, can exploit a

large, noisy dataset such as docked DUD-E poses, to achieve comparable results to a state-

of-the art scoring function. The comparison between training set construction approaches

was inconclusive with the reduced set producing somewhat better results for MAP4K4 pose

prediction and the balanced set outperforming on HSP90 screening and affinity prediction.

Larger, more accurate training data combined with more expressive structural input fea-

tures or alternative machine learning approaches should further improve the usability and

accuracy of scoring functions learned through classification of docked poses.
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2.2 A standalone library for molecular gridding and some simple extensions

Motivated by the results in the previous section, our group pursued a novel 3D neural

network approach based on convolutions mapped over a voxelized representation of ligands

bound to proteins. We developed methods for partitioning and sampling input data, using

data augmentation to overcome the coordinate frame-dependence of our input representation.

This work is described in:

Ragoza, Matthew, Joshua Hochuli, Elisa Idrobo, Jocelyn Sunseri, and David Ryan Koes.

‘Protein–ligand scoring with convolutional neural networks.” Journal of chemical information

and modeling 57, no. 4 (2017): 942-957.

Two of my specific contributions to that work included the algorithm we use to compute

grids on-the-fly from molecules, and the use of independent test sets for evaluation to avoid

problems associated with benchmarking dataset bias. The efficiency of our gridding approach

helps us leverage the trained CNNs to optimize input molecules, a process during which the

Cartesian and voxel representations are repeatedly interconverted. The approach we use is

derived from similar approaches described in [13]. Briefly, we generate grids using a two-step

parallel approach. GPU threads in the same block are assigned to the same spatial subgrid

consisting of as many voxels as there are threads; they will compute the amount of atom

density at a given location based on the atoms that overlap that location. The number of

atoms overlapping a given subgrid is much smaller than the total number of atoms in the

input, so if threads within the same region checked all atoms to determine whether they

overlap their location, they would do a large number of redundant, mostly negative checks.

Instead the threads in the subgrid first parallelize over the atoms to build up a boolean mask

of atoms that overlap any voxel within the subgrid; then they perform a parallel exclusive

scan using block-level shared memory and CUDA SIMD warp intrinsics to generate indices

from the atom mask. Threads then write a final array of the small number of atom indices

that could possibly overlap voxels in their spatial subgrid by parallelizing over the atom mask

once again; this time if the mask value at an index is true, the thread reads the exclusive scan

output at the same index - the exclusive scan value is the unique index in the output array

where the atom index should be written. This permits concurrent accesses to the final array
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of atom indices. An example in two dimensions is shown in Figure 15, and the performance

comparison between our approach and the simpler one based on simply parallellizing over

voxels is shown in Figure 16.

Figure 15: Graphical depiction of our approach to generating input grids from atoms with

a simplified two-dimensional example.

I also implemented functionality to process spatial and temporal recurrences over inputs,

which makes it possible to process sequences of molecular dynamics frames or arbitrarily-

sized inputs. These and other capabilities were refactored into a standalone library, libmolgrid,

written in C++ with Python bindings, described in the following section. We will revisit

effective model evaluation and benchmarking dataset bias in chapter 3.

Chapter 2.2 was reproduced with permission from Sunseri, Jocelyn, and David R. Koes.

“libmolgrid: Graphics Processing Unit Accelerated Molecular Gridding for Deep Learning

Applications.” Journal of Chemical Information and Modeling 60, no. 3 (2020): 1079-1084.
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Figure 16: Speedup for a 2D test implementation of our two-step parallel gridding approach

compared with the simpler approach of simply parallelizing over voxels. Numbers of atoms

tested were [100, 1000, 10000, 100000] and 25 trials with different random initializations of

the input were performed.

2.2.1 Background

Deep learning has emerged as an important area of research in computational chemistry.

It holds great promise for unprecedented improvements in predictive capabilities for such

problems as virtual screening[93], binding affinity prediction[10, 212], pose prediction[7, 35],

and lead optimization[52, 204, 211, 89]. The representation of input data can fundamentally

limit or enhance the performance and applicability of machine learning algorithms[117, 51,

66]. Deep learning can derive class-defining features directly from training examples. Com-

mon input representations include molecular formats like SMILES and/or InChi strings[66,

201], molecular graphs[117, 188, 51, 95, 143, 56], and voxelized spatial grids[191, 145] repre-

senting the locations of atoms.

Compared with other representation schemes, spatial grids possess certain virtues in-

cluding minimal overt featurization by the user (theoretically permitting greater model ex-

pressiveness) and full representation of three-dimensional spatial interactions in the input.

For regular cubic grids, this comes at the cost of coordinate frame dependence, which can be
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ameliorated by data augmentation and can also be theoretically addressed with various types

of inherently equivariant network architectures or by using other types of multidimensional

grids. Spatial grids have been applied successfully to tasks relevant to computational chem-

istry like virtual screening[191, 145, 167], pharmacophore generation[168], molecular property

prediction[94, 90], molecular classification[5, 94], protein binding site prediction[71, 88, 87],

molecular autoencoding[105], and generative modeling.[18, 17, 183]

Chemical datasets have many physical and statistical properties that prove problem-

atic for machine learning, and special care must be taken to manage them. Classes are

typically highly imbalanced, with many more known inactive than active compounds for a

given protein target; regression tasks may span many orders of magnitude, with nonuniform

representation of the underlying chemical space at particular ranges of the regressor; and

examples with matching class labels or regression target values may also be unequally sam-

pled from other underlying classes (e.g. there may be significantly more binding affinity data

available for specific proteins that have been the subject of greater investigation, such as the

estrogen receptors, or for protein classes like kinases). By offloading data processing tasks

required to manage these problems to an open source library specialized for chemical data,

computational chemists can systematically obtain better results in a transparent manner.

Using multidimensional grids (e.g. voxels) to represent atomic locations (and potentially

distributions) is computationally efficient - their generation is embarrassingly parallel and

therefore readily amenable to modern GPU architectures - and preserves three dimensional

spatial relationships present in the original input. Coordinate frame dependence can be

removed or circumvented. However, commonly available molecular parsing and conversion

libraries do not yet provide gridding functionality; nor do they implement the other tasks re-

quired to obtain good performance on typical chemical datasets, such as strategic resampling

and data augmentation. Thus we abstracted the gridding and batch preparation function-

ality from our past work, gnina[145], into a library that can be used for general molecular

modeling tasks but also interfaces naturally with popular Python deep learning libraries.

Implemented in C++/CUDA with Python bindings, libmolgrid is a free and open source

project intended to accelerate advances in molecular modeling via multidimensional spatial

arrays.

34



2.2.2 Implementation

Key libmolgrid functionality is implemented in a modular fashion to ensure maximum

versatility. Essential library features are abstracted into separate classes to facilitate use

independently or in concert as required by a particular application.

2.2.2.1 Grids The fundamental object used to represent data in libmolgrid is a mul-

tidimensional array which the API generically refers to as a grid. Grids are typically used

during training to represent voxelized input molecules or matrices of atom coordinates and

types. They can be constructed in two flavors, Grids and ManagedGrids. ManagedGrids

manage their own underlying memory, while Grids function as views over a preexisting

memory buffer. Grids and ManagedGrids are convertible to NumPy arrays as well as Torch

tensors. Additional exposition is available in Figure S59.

Because of automatic conversions designed for PyTorch interoperability, a user intend-

ing to leverage basic batch sampling, grid generating, and transformation capabilities pro-

vided by libmolgrid in tandem with PyTorch for neural network training can simply use

Torch tensors directly, with little to no need for explicit invocation of or interaction with

libmolgrid grids. Memory allocated on a GPU via a Torch tensor will remain there, with

grids generated in-place. An example of this type of usage is shown in the first example in

Listing 1.

A Grid may also be constructed explicitly from a Torch tensor, a NumPy array, or,

if necessary, from a pointer to a memory buffer. Examples of constructing a Grid from a

Torch tensor are shown in the second usage section in Listing 1. The third usage section

shows provided functionality for copying NumPy array data to ManagedGrids, while the

fourth usage section shows functionality for constructing Grid views over NumPy array data

buffers. In the fourth example, note that in recent NumPy versions the default floating-point

data type is float64, so the user should take care to match the data type between arrays and

Grids.
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# Usage 1: molgrid functions taking Grid objects can be passed Torch tensors directly,

# with conversions managed internally

tensor = torch.zeros(tensor_shape, dtype=torch.float32, device='cuda')

molgrid.gmaker.forward(batch, input_tensor)

# Usage 2: construct Grid as a view over a Torch tensor with provided helper function

tensor = torch.zeros((2,2), dtype=torch.float32, device='cuda')

grid = molgrid.tensor_as_grid(tensor) # dimensions and data location are inferred

# alternatively, construct Grid view over Torch tensor directly

grid = molgrid.Grid2fCUDA(tensor)

# Usage 3: copy ManagedGrid data to NumPy array

# first, construct a ManagedGrid

mgrid = molgrid.MGrid1f(batch_size)

# copy to GPU and do work on it there

mgrid.gpu()

# (do work)

# copy ManagedGrid data to a NumPy array with helper function;

# this copies data back to the CPU if necessary

array1 = mgrid.tonumpy()

# alternatively, construct NumPy array with a copy of ManagedGrid CPU data;

# must sync to CPU first

mgrid.cpu()

array2 = np.array(mgrid)

# Usage 4: construct Grid from NumPy array

array3 = np.zeros((2,2), dtype=np.float32) # must match source and destination dtypes

tensor = molgrid.Grid2f(array3)

Listing 1: Examples of Grid and ManagedGrid usage.

2.2.2.2 Atom Typing Several atom typing schemes are supported, featuring flexibility

in the ways types are assigned and represented. Atoms may be typed according to XS atom

typing, atomic element, or a user-provided callback function. Types may be represented by

a single integer or a vector encoding. For a typical user, typing (with either index or vector

types) can be performed automatically via an ExampleProvider.
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2.2.2.3 Examples Examples consist of typed coordinates that will be analyzed together,

along with their labels. An Example may consist of multiple CoordinateSets (which may

each utilize a different scheme for atom typing) and may be one of a sequence of Examples

within a group. For example, a single Example may have a CoordinateSet for a receptor and

another CoordinateSet for a ligand to be scored with that receptor, or perhaps multiple

CoordinateSets corresponding to multiple poses of a particular ligand. Examples may

be part of a group that will be processed in sequence, for example as input to a recurrent

network; in that case distinct groups are identified with a shared integer value, and a sequence

continuation flag indicates whether a given Example is a continuation of a previously observed

sequence or is initiating a new one.

2.2.2.4 ExampleProvider To obtain strategically sampled batches of data for training,

a user can employ an ExampleProvider. The desired sampling options are specified to

the ExampleProvider constructor, which can then be populated with one or more files

specifying examples. Properly sampled Examples are obtained via ExampleProvider::next

or ExampleProvider::next batch. Figure 17 shows graphically how an ExampleProvider

might obtain a batch of 10 shuffled, class-balanced, receptor-stratified Examples from a larger

dataset, with accompanying code.

Currently, the simplest way to initialize a provider is to populate it with one or more

files that specify metadata for Examples, with one Example per line. At a high level, that

line will specify class and regression target values for the Example, any group identification

associated with the Example (i.e. a shared integer label identifying Examples to be processed

sequentially, as with temporal data provided as input to a recurrent network), and then one

or more strings identifying filenames of molecules corresponding to that Example. The

default line layout is [(int)group][(float)label]*[molfile]+. An example is shown in

Figure 17. In the examples we provide with our project, these files have a .types suffix.

Listing S2 shows all the available options at the time of construction. These options are

described in more detail in the Supporting Information and online documentation.
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1 exprovider = molgrid.ExampleProvider(shuffle=True, balanced=True, stratify_receptor=True)

2 exprovider.populate('DUDe.types')

3 batch = exprovider.next_batch(10)

Figure 17: An illustration of molgrid::ExampleProvider usage, sampling a batch of 10

randomized, balanced, and receptor-stratified examples from a dataset.

2.2.2.5 GridMaker A GridMaker is used to generate a voxel grid from an Example,

an ExampleVec, a CoordinateSet, or paired Grids of coordinates and types. GridMaker

can operate directly on a user-provided Torch tensor or Grid, or it can return into a new

NumPy array via GridMaker::make ndarray or Torch tensor via GridMaker::make tensor.

GridMaker features GPU-optimized gridding that will be used if a compatible device is avail-

able. GridMaker options pertaining to the properties of the resulting grid are specified when

the GridMaker is constructed, while the examples from which a grid will be generated and

their instantiation properties (including any transformations) are specified by a particular

invocation of GridMaker::forward. Specifically, Listing S3 shows the possible constructor
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arguments, which are described in more detail in the Supporting Information. Figure 18

shows an example of basic GridMaker usage, default-constructing a GridMaker and using

it to populate a grid with densities for a batch of molecules. If desired, the values of ran-

dom translation and random rotation can be set in the call to gmaker::forward, thereby

applying random data augmentation to each example in the batch. If it is desirable to re-

tain the applied transformation, then transformations can be created explicitly as shown

in Figure 60. The GridMaker class also defines a backward function that computes atomic

gradients, which can be used for tasks ranging from visualizing what a network has learned

to using a trained network to optimize the coordinates and types of input molecules.

1 gmaker = molgrid.GridMaker()

2 gmaker.forward(batch, input_tensor, random_translation=0.0, random_rotation=False)

Figure 18: An illustration of molgrid::GridMaker usage, generating a 4-dimensional grid

from a batch of molecules, with data layout NxCxLxWxH.

2.2.2.6 Transformations Data augmentation in the form of random rotations and trans-

lations of input examples can be performed by passing the desired options to GridMaker::forward

as described in the previous section. Specific translations and rotations can also be applied

39



to arbitrary Grids, CoordinateSets, or Examples by using the Transform class directly.

Transforms can store specific rotations, described by a libmolgrid::Quaternion; an origin

around which to rotate, described by a libmolgrid::float3, which is also interconvertible

with a Python tuple; and a specific translation, expressed in terms of Cartesian coordinates

and also described by a float3. These prove useful for sophisticated networks such as the

spatial transformer. Additional examples of Transform constructor invocation are shown in

Listing S4, and information about Transform::forward is shown in Figure S60.

2.2.3 Results

We demonstrate model training with input tensors populated by libmolgrid and neural

networks implemented using Caffe, PyTorch, and Keras with a Tensorflow backend (code

available at https://gnina.github.io/libmolgrid/tutorials.html). Training loss per-

formance is similar across all three frameworks, as shown in Figure S61. libmolgrid is

fully functional with any of these popular libraries. Its overall speed and memory footprint

varies significantly with the user’s chosen library, however. As shown in Figure 19a and

Figure 19b, the performance when using a GPU for gridding and neural network training is

much faster when using Caffe and PyTorch than it is when using Tensorflow via Keras, with

modest improvements in performance for Caffe and PyTorch when using the newer Titan V

GPU rather than the older GTX Titan X. This is due to libmolgrid’s ability to directly

access underlying data buffers when interoperating with Caffe and PyTorch, thus avoiding

unnecessary data migration between the CPU and GPU; this is not currently possible with

Tensorflow, and so passes through the network involve grids being generated on the GPU

by libmolgrid, copied into a NumPy array on the CPU, and then copied back onto the

GPU by Tensorflow when training begins. This results in a significant performance penalty,

with memory transfers fundamentally limiting performance; future versions of libmolgrid

will seek to mitigate this issue with Tensorflow 2.0. The discrepancy in memory utilization

shown in Figure 19c is somewhat less dramatic, but similarly, memory utilization when doing

neural network training with Tensorflow is less efficient than using the other two libraries.

As an example of a more specialized task that uses the backwards gradients computed
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(a) (b) (c)

Figure 19: Performance information for using libmolgrid with each major supported neural

network library. All error bars are 98% confidence intervals computed via bootstrap sampling

of five independent runs. a Walltime for training the simple model shown training above

using a GTX Titan X. b Walltime for training the same simple model using a Titan V. c

Maximum GPU memory utilization while training.

by GridMaker, we demonstrate training a CNN to convert voxelized atomic densities to

Cartesian coordinates. Each training example consists of a single atom, provided to the

network as a voxelized grid for which the network will output Cartesian coordinates. The

loss function is a simple mean squared error grid loss for coordinates that fall within the grid,

and a hingelike loss for coordinates outside. As shown in Figure 20a, the model initially has

difficulty learning because the atomic gradients only receive information from the parts of

the grid that overlap an atom, but eventually converges to an accuracy significantly better

than the grid resolution of 0.5Å. Example predictions are shown in Figure 20b. This task

could be applicable to a generative modeling workflow, and also demonstrates libmolgrid’s

versatility as a molecular modeling tool.
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(a)

(b)

Figure 20: Cartesian coordinates from grid densities. (a) Loss per iteration for both

the grid loss and out-of-box loss for training with naively initialized coordinates, showing

libmolgrid’s utility for converting between voxelized grids and Cartesian coordinates. (b)

Sampled coordinate predictions compared with the true coordinates, demonstrating a root

mean squared accuracy of 0.09Å.

42



3.0 Evaluating the CNNs Prospectively, Including Pose Refinement and

Transfer Learning

This chapter revisits the problem of proper model evaluation for machine learning from

molecular data. It begins as the last chapter began, with a community benchmarking chal-

lenge that afforded an opportunity to perform a blinded assessment of our trained 3D CNN

models. This time our models performed close to the top among submissions to D3R Grand

Challenge 3 for affinity ranking, and several of our top-performing predictions were derived

from poses generated by a novel modification to our Monte Carlo sampling routine that

used an approximation of the Autodock Vina scoring function for initial pose sampling and

the CNN for the final minimization of those poses. Our pose prediction performance was

poor, due in large part to the large pocket and Vina’s preferential sampling of poses on

the opposite side of the pocket from where the challenge ligands bind, but there were some

positive indications that pose refinement with the CNNs could be useful, particularly for

virtual screening.

Chapter 3.1 was reproduced with permission from Sunseri, Jocelyn, Jonathan E. King,

Paul G. Francoeur, and David Ryan Koes. ”Convolutional neural network scoring and

minimization in the D3R 2017 community challenge.” Journal of computer-aided molecular

design 33, no. 1 (2019): 19-34.

3.1 Applying CNNs prospectively, with rescoring and pose sampling

3.1.1 Background

Predicting whether a given small molecule binds strongly to a protein target of interest

and explaining the strength of that interaction are topics of major importance in computa-

tional drug discovery [194, 36, 20, 142]. Developing new, more accurate methods for per-

forming these tasks holds significant promise in combating the blight of human disease [170],
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but these methods must be tested on de novo case studies or blinded challenges to ensure

that performance expectations are not inflated by inadvertent tuning to preexisting datasets

for which the answers were publicly known when the predictions were made [83, 16]. The

annual Drug Design Data Resource (D3R) blind challenge provides just such an opportunity

to evaluate new methods behind a veil of ignorance, assessing how the gamut of strategies

currently under development in the community perform on a series of novel tests [61, 60].

Typical problems to be solved in a drug discovery pipeline include predicting absolute

binding affinities [90, 122, 4], accurately ranking compounds in order of binding strength

[60, 175, 96, 6], predicting the probable molecular configuration during binding [194, 36],

and performing each of these tasks under various conditions of dataset construction with

relevance to drug design [61, 60, 22, 172, 23], e.g. congeneric compound series, wild type and

point-mutated forms of a target protein, and predicting target specificity for compounds that

bind to a set of related proteins. By designing challenges that are diverse in terms of both

their chemical content and predictive classes, computational models can be comprehensively

assessed in terms of their accuracy, ability to generalize, and (if applicable) their transfer

learning capacity. Specific strengths and weaknesses of a particular model compared to

others can be identified, and interrogating the failures of particular approaches is particularly

valuable as we continue to pursue methodological advances.

Methods of estimating the relative strength of binding broadly range from physics-based

to statistical in their approaches. Physics-based methods [68, 205, 25, 32, 55, 19, 112, 92, 91]

typically rely on force fields parameterized from first principles and experimental data and

may compute binding free energies directly using methods that are theoretically exact. In

practice their accuracy is limited by both the adequacy of their configurational sampling

and the accuracy of their force field parametrization; the former is generally limited by

time considerations, as are the methods chosen to compute binding free energies. Empirical

scoring functions [98, 53, 15, 195, 100, 53, 58, 186] use terms that represent features or

interactions known to be relevant to molecular binding, and they may be parametrized

(e.g. using parametric machine learning methods) to recapitulate experimental data such

as binding affinities. Knowledge-based methods [78, 125, 63, 210, 123, 10, 77] are statistical

potentials that favor contacts that appear with high frequency in the datasets from which
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they are computed.

Nonparametric machine learning methods, such as neural networks, learn both their

parameters and model structure from data [152, 107]. As a result, they are less constrained

by the frontiers of our knowledge during their construction - that is, they are not limited

to the set of structures we can imagine imposing on them, or the set of features we can

imagine providing them as input. They may take as descriptors the types of inputs found

in widespread use among empirical scoring methods, including measures of electrostatic

attraction or interaction fingerprints [48, 49, 35, 7, 93, 10, 212], but they may also be trained

using an approach that avoids overt featurization and instead provides minimally processed

experimental structural data as input to the network [90, 65, 191, 51, 158]. That has been our

approach in our recent work developing grid-based convolutional neural networks (CNNs),

which are remarkably successful at image classification [103, 179, 70], trained to perform

various tasks relevant to protein-ligand scoring and pose prediction [146, 147, 73].

We used the 2017 D3R Grand Challenge 3 (GC3) as an opportunity to evaluate the

performance of our default CNN-based scoring model (the version used for the challenge was

commit b3fa6ae) in comparison with other state-of-the-art methods, including Autodock

Vina [186, 185], a conventional empirical scoring function. Our CNN-based scoring models

are implemented as part of the gnina molecular docking program, which is available under

an open source license at https://github.com/gnina.

3.1.2 Methods

Our general workflow is shown in Figure 21. We used a structure-based docking and

scoring approach, with pose sampling fundamentally based on the Autodock Vina scoring

function as implemented in smina [98], a fork of the original project with increased support for

minimization and custom scoring function development. We used our CNN scoring function

to both further refine and simply rescore the poses generated by docking with smina, using

the CNN affinity prediction and pose score as the basis for distinct submissions. This yielded

a minimum of four unique CNN-based submissions for each subchallenge. We compare to

smina’s performance to test whether the CNN model is capable of improving on the accuracy
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Input ligand SMILES,

protein FASTA

Pocketome-assisted

curation of receptor ensemble

Initial docked poses
smina

Vina scoring

gnina
CNN pose scoring
and affinity models

CNN scoring rescore 
CNN affinity rescore 
CNN scoring refine 
CNN affinity refine                                 

Convolutional 
Neural Network

Figure 21: Workflow used to produce gnina convolutional neural network-based predictions

for binding poses and binding affinity rankings.

of an existing scoring model, and independently evaluate the performance of the affinity and

scoring outputs, as well as the CNN’s ability to score putative binding modes and sample

those modes itself.

D3R Grand Challenge 3 consisted of five subchallenges, the first of which consisted of

three phases. Only the multiphase subchallenge 1 involved a pose prediction component,

while all subchallenges involved predicting affinities and/or affinity rankings. Subchallenge

1, for which the target was Cathepsin S, involved both cross-docking (stage 1A) and redocking

(stage 1B) tasks for 24 ligands for which ligand-protein co-crystal structures were available

but unreleased until after stage 1B, and predicting affinity rankings for 136 compounds that

were a superset of those 24 both before (stage 1A) and after (stage 2) unblinding of the

co-crystal structures. The remaining four subchallenges all involved kinases. The stated aim

of subchallenge 2 was to test compound selectivity prediction; accordingly, it featured the
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kinases VEGFR2, JAK2, and p38α and 54 compounds for which Kd values were available

for all three of these proteins. Subchallenges 3 and 4 were both designed to test accuracy at

predicting large changes in binding affinity due to small changes in compound structure; in

subchallenge 3 the target was again JAK2 and it involved 17 congeneric compounds, while

in subchallenge 4 the target was TIE2 and it involved 18 congeneric compounds. Subchal-

lenge 5 was designed to test accuracy at predicting the effect of target protein mutations on

compound binding affinity, and its target was the wild type and five mutants of the target

ABL1, with only two compounds. Subchallenges 2-4 did not specify the phosphorylation

state of the target proteins, while subchallenge 5 noted that all proteins were unphosphory-

lated; we simply used the phosphorylation state of the reference receptors chosen from the

PDB. Subchallenge 3 noted that chiral compounds were measured as a racemic mixture, and

so for this subchallenge we docked all enantiomers of each compound.

3.1.2.1 CNN Training Our architecture, input format, and training approach have

been described previously [146, 147, 73]. Briefly, we designed a four-dimensional grid-based

input representation consisting of a vector of spatially distributed atom densities for each

supported atom type, where atom types fundamentally distinguish between protein and

ligand atoms, different elements, and the protonation states of those atoms. The density of

a particular atom within its relevant atom channel is represented as a piecewise continuous

function g(d, r), where d is the distance from the atom center and r is the van der Waals

radius:

g(d, r) =


e−

2d2

r2 0 ≤ d < r

4
e2r2

d2 − 12
e2r
d+ 9

e2
r ≤ d < 1.5r

0 d ≥ 1.5r

(3.1)

The CNN maps its input to an output value that is either a probability distribution over

class labels (i.e. whether or not a given input is a binding pose) or a real-valued affinity

prediction. The architecture used during D3R GC3 can be found in Figure 22.

The CNN was trained using poses generated by redocking the 2016 PDBbind refined

set [114] using the Autodock Vina scoring function as implemented in smina. Poses within
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Figure 22: Architecture of the neural network used to rescore and refine poses. The input is

a voxelized grid of Gaussian atom type densities.

2Å RMSD are labeled as actives for the binary classification output and given the binding

affinity as the target value for the regression output, while all other poses are labeled as

inactives for the purposes of binary classification and are penalized (via a hinge loss) only

if the predicted affinity is too high. In order to increase the number of active examples

in the training set, these docked poses were supplemented with crystal poses minimized

using the Autodock Vina scoring function. The training set was then further expanded by

performing three rounds of iterative training during which a model was trained, used to

refine the docked poses, and then the poses resulting from that process labeled based on

the crystal structure and added to the training set for the next round. Using this training

set of 250,000 poses, the final model was trained for 150,000 iterations with a batch size of

50 using our customized version of the GPU-optimized Caffe [86] deep learning framework.

Each batch was balanced to contain an equal number of positive and negative examples

(low and high RMSD poses) as well as stratified by receptor so that every receptor target

was uniformly sampled, regardless of the number of docked structures. At each iteration, a

random rotation and translation was applied to every input complex in order to prevent the

network from learning coordinate-frame dependent features.
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3.1.2.2 Pose Generation The basic information provided for each subchallenge con-

sisted of SMILES for the relevant compounds and FASTA sequences for the relevant pro-

teins. RDKit [149] was used to generate a three-dimensional conformer based on the provided

SMILES for each compound; only one conformer was required (or one conformer per enan-

tiomer in subchallenge 3) because the conformational space of the ligand was subsequently

explored during docking. Each protein was used to query Pocketome [104] for relevant PDB

accession IDs. All available holo structures were aligned and visually inspected to manually

select a conformationally diverse subset of reference structures for docking. Table 1 shows

the PDB accession IDs for the reference structures that were chosen. The IDs associated

with ABL1 include 1FPU, 1OPJ, and 2G1T (used as references for the wild type protein

and also point-mutated in PyMOL [39] as references for the F317I, F317L, and Q252H mu-

tations); 2G2F, 2G2H, and 2G2I (references for the H396P mutation); and 2V7A (reference

for the T315I mutation). The generated conformers for each compound were then docked

into the corresponding reference receptor ensemble using Vina; an additional set of docked

poses was generated by performing the final minimization of the poses sampled by Vina

during the Monte Carlo routine with the CNN pose scoring layer (“CNN refinement”) - this

is a hybrid technique where the fast Vina scoring is used for the Metropolis criterion during

Monte Carlo sampling and the slower CNN scoring is only used to minimize ligand poses

selected by the sampling. The Vina docked poses were then rescored using both the CNN

scoring and affinity layers, and the CNN refined poses were also rescored using the CNN

affinity layer. Ranking the poses by score thereby produces a maximum of five predictions

per subchallenge, although CatS phase1B (the redocking subchallenge) featured ten submis-

sions due to redocking either with crystal waters present or absent. The top five poses for

each method were submitted for the pose prediction tasks, while scoring tasks utilized the

top-scoring pose for each compound to make the scoring prediction and compound ranking.

Vina’s predictions were only submitted for CatS; for the other targets only the CNN-based

predictions were officially submitted, though we show the results of Vina scoring for compar-

ison in the ensuing analysis. Furthermore, we also show our results for ABL1 (subchallenge

5) using the same methods as were used in the rest of the challenge, although the required

calculations were completed after the end of the challenge period.
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Target
reference

PDB IDs

PDBbind/

similarity

mean/max

Tanimoto

CatS

2F1G, 2HXZ

2G7Y,3KWN

2HHN

2HHN/0.991 0.209/0.256

JAK2(SC2)

2W1I, 3E62

3JY9, 3UGC

4AGC, 5I4N

5UT2, 5UT5

5UT6

4JIA/0.980 0.291/0.437

VEGFR2

1VR2, 1YWN

2OH4, 2P2H

2P2I, 2GU5

3B8R, 3VNT

4ASE/0.657 0.214/0.414

p38α

1M7Q, 1OVE

1W82, 1W83

1WBS, 2GHL

2ZB1, 3ITZ

3L8S, 3NNU

1YQJ/0.978 0.278/0.488

JAK2(SC3)

2W1I, 3E62

3JY9, 3UGC

4AGC, 5I4N

5UT2, 5UT5

5UT6

4JIA/0.980 0.357/0.413

TIE2

2OO8, 2OSC

2P4I, 2WQB

3L8P, 4X3J

4V01/0.482 0.239/0.363

ABL1

1FPU, 1OPJ

2G1T,2G2F

2G2H,2G2I

2V7A

3K5V/0.979 0.302/0.332

Table 1: Targets that appeared in at least one of the subchallenges of D3R Grand Challenge

3, with the PDB IDs used as references for docking; the most similar target in the PDBbind

2016 refined set, used to train the CNN, with its similarity to the provided FASTA sequence

for the D3R target; mean and maximum Tanimoto coefficient of the crystal ligand associated

with the PDBbind refined set target to the compounds in the challenge.
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3.1.3 Results

General information about the targets used in D3R GC3 is found in Table 1, including

the aforementioned PDB IDs used to produce binding poses as well as basic measures of

the similarity of the challenge targets and compounds to their most comparable targets and

compounds used in the training set. In particular, the third column shows the PDB accession

ID of the target in the training set that has highest sequence similarity to each GC3 target,

and the fourth column shows the mean and maximum Tanimoto coefficient for that target’s

co-crystal ligand to the accompanying GC3 target’s compounds. Tanimoto coefficients were

calculated using OpenBabel [1] with FP2 fingerprints. Notably, while the most similar target

to TIE2 does not have high global sequence similarity compared with the other D3R targets

and their most similar training set target, it is FGFR1, whose catalytic domain is known

to be highly similar to TIE2[163]. From these data we can conclude that while our training

data included at least one target that was highly similar to each of the GC3 targets, the

associated poses used for training did not include compounds that were particularly similar

to the GC3 compounds; therefore GC3 may serve as a fair test of the CNN’s generalization

ability.

3.1.3.1 Pose Prediction The GC3 pose prediction task was limited to a 24 compound

subset of the Cathepsin S subchallenge. Participants were asked to provide predicted binding

poses without (stage 1A) and with (stage 1B) knowledge of the cognate receptor structure

for each compound. Up to five poses could be submitted. To maintain an automated and

general approach for the submission, we produced poses by docking into a diverse receptor

ensemble, using the entire binding site as the search space. Figure 23 shows the RMSD of

the best pose submitted per compound for each scoring method, grouped by the method

and showing the RMSD distribution for each challenge stage. The following statistics are

computed based on the best-submitted pose per compound. The method associated with the

lowest mean RMSD among all our submissions in stage 1A was using the CNN pose scoring

model to rescore Vina-generated docked poses (“CNN Scoring Rescore”); its mean RMSD

was 8.35Å and its rank among all submissions based on the mean RMSD was 31/44. The
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method associated with the lowest median RMSD among all our submissions in stage 1A

was using the CNN pose scoring model to refine poses sampled by Vina during the Monte

Carlo search (“CNN Scoring Refine”); its median RMSD was 8.16Å and its rank among all

submissions based on the median RMSD was 31/44. The method associated with the lowest

mean and median RMSD among all our submissions in stage 1B was using the CNN pose

scoring model to rescore Vina-generated docked poses; its mean RMSD was 9.70Å and its

rank among all submissions based on the mean RMSD was 23/47. Its median RMSD was

7.33Å and its rank among all submissions based on the median RMSD was 13/47.
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Figure 23: Per-compound best RMSDs for each method’s submissions in stage 1A (cross-

docking, left) and stage 1B (redocking, right). Pose prediction submissions consisted of the

top 5 poses according to each scoring method.

Our CatS pose prediction performance was generally poor, even when redocking. A pose

within 2.5Å RMSD was sampled for only a third of the test compounds. Nine poses were

52



sampled per ligand, per reference receptor, resulting in 45 poses per ligand in stage 1A and

18 poses per ligand in stage 1B. Redocking in particular was characterized by high variance

in the best-predicted RMSDs across the set of test compounds. Docking into the large CatS

binding site using our scoring methods yielded predictions that were distributed throughout

the search space, but in reality binding appears to be localized to a specific region.

Figure 24: Center of mass locations for the unblinded crystal poses of the GC3 CatS co-

crystal ligands (green), the co-crystal ligands of the reference PDB structures used during

phase 1 docking (blue), and the highest ranked docked poses for each compound generated

by redocking (the stage 1B task) with Vina (gray), and CNN refinement (gold). The left

subfigure shows the results from docking with crystal waters present, while the right subfigure

shows the results from docking without them.

Figure 24 shows the center of mass locations for available reference structures and for

our top-ranked predictions. The GC3 compounds are densely clustered in one region of

the pocket, while the available experimental data from the PDB support a somewhat larger

binding region (and potentially more diverse binding modes). However, both Vina and the

CNN produced many high-ranking poses that appeared in a different region of the pocket

altogether. In particular, when docking with water using Vina the average distance to the

closest center of mass in the set of D3R ligands is 8.11Å, and the average distance to the

closest center of mass in the set of reference receptor ligands is 6.00Å; when using the CNN

for the final refinement the average distance to the closest center of mass in the set of D3R

ligands is 5.00Å, and the average distance to the closest center of mass in the set of reference
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receptor ligands is 3.97Å. When docking without water using Vina the average distance to

the closest center of mass in the set of D3R ligands is 4.01Å, and the average distance to

the closest center of mass in the set of reference receptor ligands is 2.48Å; when using the

CNN for the final refinement the average distance to the closest center of mass in the set of

D3R ligands is 3.18Å, and the average distance to the closest center of mass in the set of

reference receptor ligands is 2.22Å. Thus both methods produced on average more poses in

the region of the pocket where the GC3 ligands actually bind when docking without crystal

waters, but the CNN was better in both cases at generating as top-ranked poses those that

were closer to the general region of the pocket where the crystal ligands appear.

While docking without crystal waters present resulted in more poses in the general region

of the pocket where the GC3 ligands bind, when low RMSD poses (here defined as those

within 2.5Å) were sampled, they were most often produced by docking and refinement that

utilized the crystal waters. Table 2 shows all 28 of the low RMSD poses sampled by any

docking method for both stage 1A (the cross-docking task) and stage 1B (the redocking

task). Rows are grouped by compound ID and sorted internally by the pose RMSD to the

crystal pose. Values that are not relevant in a particular column are indicated with N/A;

specifically, no waters were used during cross-docking and therefore the solvent category is

N/A for poses sampled during that task, and the Vina score is N/A for poses generated by

the CNN scoring model refinement method.

Significant categorical features are highlighted, including: cross-docking versus redock-

ing; poses produced by full Vina docking versus Vina Monte Carlo sampling followed by

refinement with the CNN scoring model; crystal waters used or removed; and rank among

all of that compound’s poses scored by a particular method, with any rank within the top

five highlighted. The CNN scoring model was used to both rescore Vina’s poses and produce

its own refined poses, and the CNN affinity model was used to rescore both Vina’s docked

poses and the CNN refined poses. Consequently, these methods have two associated sets

of rankings for each compound, which correspond to separate submissions to the challenge;

they may therefore have up to two poses at any given rank in the table. Additionally, poses

generated by docking with and without waters are grouped together to produce the ranking

shown in the table; the effect of solvent will be explored in greater detail in section 3.1.3.1.
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Only 8/24 compounds had any pose within 2.5Å RMSD of the crystal pose; only 3 had

a low-RMSD pose sampled during the cross-docking task, while 7 had a low-RMSD pose

sampled during redocking. It is notable that all five low-RMSD poses generated during the

cross-docking task were produced by using the CNN for final refinement, though these poses

were ranked in the top five only twice, once by the CNN scoring model (which sampled them)

and once by the CNN affinity model (which re-scored them). CNN refinement outperformed

Vina for only one compound during the redocking task (CatS 24), though it produced nearly

as many low-RMSD poses (11 poses to Vina’s 12). Though the CNN’s sampling was guided

at a coarse-grained level by Vina, which was used during Monte Carlo sampling, it is worth

noting that in most cases its refinement did not move “good” poses in such a way that they

were no longer “good” according to our threshold, and that in a few cases the CNN appears

to have succeeded in moving a pose closer to the crystal pose than Vina did, as evidenced

by succeeding in sampling a good pose during stage 1A, by improving on the best Vina pose

RMSD, or by producing more low-RMSD poses than Vina did. Examples of cases where

the CNN improved on a Vina pose (as shown in Table 2) include CatS 5, CatS 10, CatS 15,

CatS 17, CatS 20, and CatS 24. A notable exception is CatS 11; only Vina sampled a low

RMSD pose for that compound.
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Compound ID
cross-docking/

redocking
RMSD (Å)

generation

method
solvent Vina rank

CNN scoring

rank

CNN affinity

rank

CatS 5 re 1.463 Vina water 4 1 2

CatS 5 re 1.745 CNN refine water N/A 7 4

CatS 5 cross 1.743 CNN refine N/A N/A 15 18

CatS 5 cross 1.976 CNN refine N/A N/A 24 26

CatS 5 re 2.257 Vina water 11 2 3

CatS 5 re 2.498 CNN refine water N/A 6 5

CatS 10 cross 2.272 CNN refine N/A N/A 2 11

CatS 11 re 1.362 Vina water 11 1 4

CatS 15 re 0.915 Vina water 1 1 2

CatS 15 re 1.166 CNN refine water N/A 4 8

CatS 15 cross 1.436 CNN refine N/A N/A 26 15

CatS 15 cross 2.404 CNN refine N/A N/A 13 3

CatS 16 re 0.989 Vina water 2 1 6

CatS 16 re 1.522 CNN refine water N/A 1 6

CatS 16 re 1.535 Vina water 10 2 5

CatS 16 re 1.768 Vina water 14 5 12

CatS 16 re 2.072 CNN refine water N/A 7 12

CatS 16 re 2.254 Vina water 1 3 6

CatS 16 re 2.388 CNN refine water N/A 3 3

CatS 17 re 1.599 Vina water 1 2 10

CatS 17 re 1.643 CNN refine water N/A 3 15

CatS 17 re 1.762 CNN refine water N/A 1 14

CatS 20 re 1.679 Vina water 2 1 13

CatS 20 re 1.691 CNN refine water N/A 2 15

CatS 20 re 2.005 CNN refine no water N/A 14 10

CatS 20 re 2.217 Vina no water 5 8 4

CatS 24 re 0.998 CNN refine water N/A 2 10

CatS 24 re 1.043 Vina water 1 1 8

Table 2: Poses generated for CatS compounds that were within 2.5Å RMSD of the crystal

pose. Colors differentiate cross-docking (brown) from redocking (black); poses produced by

Vina alone (black) or with CNN refinement (purple); with solvent (blue) or without (pink);

and poses that were ranked in the top 5 (green) or outside of the top 5 (black). Entries

are marked as N/A if they do not apply for a specific row (solvent columns for cross-docked

poses and Vina’s rank for CNN-generated poses) and they are colored peach to reduce their

visual impact.
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Figure 25: Number of poses within a given RMSD that can be found as a top-ranked pose

using Vina or re-scoring Vina-generated poses with the CNN scoring or affinity models for

CatS stage 1A (a), stage 1B (combining poses sampled with and without solvent) (b), and

two ligand similarity-based methods ((c) and (d)). The performance that would be attained

if the sampled pose with the lowest RMSD were selected as the top pose is shown in red.

Vina and the CNN combined only sampled a low-RMSD pose for a third of the CatS

compounds. When Vina sampled a low-RMSD pose during the challenge, the CNN scoring
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model was more likely than either Vina or the CNN affinity model to identify it as the top-

ranked prediction for the associated compound. Fig 25 shows the best possible performance

given the poses sampled with Vina (red lines), and then shows how significantly each scoring

model deviated from that performance in its selection of top-ranked poses.

The CNN scoring model outperforms the other models when using the receptor ensemble

approach utilized during the challenge as well as when performing redocking. The CNN’s

improved performance on stage 1A, in Figure 25a, is marginal; the CNN scoring model

appears to be the only method to feature a top-ranked pose within 5Å RMSD when choosing

among the poses sampled by Vina. Figure 25b, showing stage 1B performance, is more

unequivocal, with the CNN scoring model nearly matching the best possible performance for

low RMSD poses while the other methods fail to identify several available low-RMSD poses.

Figures 25c and 25d show new analyses performed after the subchallenge ended; they

utilize preexisting experimental data to guide pose prediction. The available PDB structures

of CatS were queried to identify the crystal ligand with the highest Tanimoto coefficient

with each GC3 compound, and the GC3 compound was then aligned by scaffold to that

crystal ligand using up to 100 conformers. In (c) the scaffold was chosen by generating a

Murcko decomposition of each query and reference compound and the maximum common

substructure of these were aligned; in (d) the scaffolds were chosen by visual inspection. The

aligned poses were then minimized and rescored according to the same procedure used to

sample and rescore poses for the original submissions, and the compounds were also cross-

docked into a box defined by the binding pose of the chosen reference. This method is less

general than docking agnostically into regions of the pocket, since it relies on information

about similar ligands being available, but it produces significantly improved pose prediction

performance in this case. Using this procedure for sampling, Vina outperforms the CNN

at identifying available low-RMSD poses, though all methods fail to approach the “best

available” performance.
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Figure 26: Per-compound best RMSDs for each method’s submissions in stage 1B, split

between solvent (left) and no solvent (right).

Redocking in stage 1B, for which crystal waters were available, affords an opportunity to

examine whether Vina and the CNN scoring models differ in their abilities to correctly rank

poses generated with and without crystal waters. Figure 26 shows the RMSD of the best

pose submitted per-compound using each method. Including solvent increases the variance

in the best predicted RMSDs, producing an apparently bimodal distribution with peaks at

both lower and higher RMSDs than the medians of the distributions without solvent. The

method that used the CNN for both refinement and the final ranking (“CNN Scoring Refine”)
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may slightly improve on Vina’s performance by both reducing the density at high RMSD

when sampling with solvent and by shifting the median toward a slightly lower RMSD when

sampling without solvent.

Figure 27 considers how many times a given method provided a pose ranking that devi-

ated from that pose’s true ranking by specific amounts. A perfect classifier would have its

entire density at 0, and greater spread corresponds to a less accurate ranking; compared to

a correlation metric, this analysis gives information about where ranking deviations occur.

All methods have lower standard deviation of their ranking error when ranking poses sam-

pled with solvent than those sampled without it. They also have kurtosis closest to 0 when

sampling with solvent - Vina and CNN scoring both have kurtosis around 0 in that case,

compared with kurtosis of -0.393 and -0.492 respectively when sampling without solvent,

and -0.163 and -0.370 respectively when ranking all poses. CNN scoring is less skewed when

ranking poses sampled without solvent than Vina is (-0.026 versus -0.132), which corresponds

to making fewer errors in misclassifying high RMSD poses as low RMSD poses. Vina’s skew

is consistently negative, with its most negative skew when ranking poses sampled with sol-

vent, while CNN scoring has positive skew when ranking poses sampled with solvent. The

CNN affinity model has consistently more negative kurtosis and higher standard deviation

than the other two methods, which accords with its generally worse performance at pose

prediction.

60



−20 −15 −10 −5 0 5 10 15 20
Ranktrue −Rankmodel

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Vina

CNN Affinity
Rescore

CNN Scoring
Rescore

(a) docking with water

−20 −15 −10 −5 0 5 10 15 20
Ranktrue −Rankmodel

0.00

0.05

0.10

0.15

0.20

0.25

0.30

(b) docking without water

−20 −15 −10 −5 0 5 10 15 20
Ranktrue −Rankmodel

0.00

0.05

0.10

0.15

0.20

0.25

0.30

(c) ranking with poses combined

Figure 27: Deviation of pose rankings from their true ranking, for docking with (a) and

without (b) water. A classifier is more accurate if it is more strongly peaked around the

center; a perfect predictor would have all of its density at 0. Combining poses generated

with and without solvent produces (c).

Since so few low-RMSD poses were sampled, it merits investigating whether our poor

CatS pose prediction performance was primarily a sampling problem (potentially due to too

large a search space) or whether our scoring methods generally failed to score poses near the

crystal pose well when performing sampling in the CatS binding site. To do this, we both
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re-scored the crystal poses using all three scoring methods and also minimized those poses

using Vina and the CNN scoring model, then re-scored the minimized poses with the CNN

scoring and affinity models as appropriate.
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Figure 28: Performance of each method at ranking the re-scored crystal poses among all

other poses generated during stage 1B and the minimized crystal pose.
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Figure 29: Performance of each method at ranking the minimized crystal pose among all

other poses generated during stage 1B and re-scored crystal pose.

As one measure of the accuracy of a scoring method, we can use the re-scored crystal and

minimized crystal poses to determine at which rank they appear when ranking them among

the poses sampled during the challenge. Figures 28 (crystal poses) and 29 (minimized crystal

poses) show the results of performing that ranking. Vina and the two CNN refinement-based

methods rank the crystal poses for over half of the compounds at the lowest position in the

ranking (rank 20), while the CNN affinity model rescore of the crystal pose ranked with its

rescore of Vina-sampled poses (“CNN Affinity Rescore”) places the crystal poses for over

half the compounds in the last three positions of the ranking. In contrast, the CNN scoring

model rescore of Vina-sampled poses ranks the crystal poses for 8 compounds in its top 5
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poses, and it accounts for over half of the crystal poses by rank 8. Only Vina and the CNN

scoring model rank any crystal poses in their top 5 for any of the compounds.

Methods were somewhat more likely to place crystal poses minimized with respect to their

own scoring function at a high rank than the crystal poses themselves. The CNN refinement

method with the scoring model ranking has one such pose in its top 5, and all methods feature

at least one minimized crystal pose in their top 10. Vina has more mimimized crystal than

crystal poses in its top 5, and their average rank is higher; in contrast the CNN scoring model

applied to rescoring Vina’s poses (“CNN Scoring Rescore”) has fewer of Vina’s minimized

crystal poses in its top 5 than it had crystal poses, but it ranks half of the compound’s

minimized crystal poses in the top 10 compared with Vina’s ranking of half within the top

12.

These figures and the associated underlying data suggest that the CNN scoring model has

a slight preference for the true crystal poses over Vina’s minimized crystal poses. Specifically,

8 crystal poses appeared in its top 5 while 5 Vina-minimized crystal poses appeared in its

top 5. 10 of those poses were crystal/minimized crystal pairs, with 3 crystals appearing at

a higher rank than their minimized partner and 2 minimized poses appearing above their

crystal partner; when a minimized pose appeared above the crystal, the average deviation in

their ranks was 1, but when a crystal was ranked higher, the average deviation in their ranks

was 2.3. The remaining 3 poses were crystal poses for which the corresponding minimized

crystal pose appeared outside of the top 5. In contrast, Vina ranks 4 minimized crystals at

rank 1, followed by their corresponding crystal poses at rank 2, and then a lone minimized

crystal pose at rank 3. However, since CNN refinement generally produced poses even further

away from the crystal pose, and the CNN scoring refinement pose generation method mostly

ranked those poses over the crystal or minimized crystal poses, it is not the case that the

CNN scoring model generally has a global minimum closer to the CatS crystal pose than

Vina does; all that appears to be true is that the crystal pose is typically closer to a CNN

scoring model minimum or saddle than a Vina-produced pose is. Furthermore, across all

models it is true that the crystal pose or the nearest local minimum according to either Vina

or the CNN pose scoring model generally do not coincide with the global minimum.

Figure 30 takes a closer look at a projection of the landscape of the three scoring models
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in the region around the crystal poses for the CatS pose prediction compounds (the CNN

scoring model output, which is a probability, has had the logit transform applied). The left

column shows the RMSD of the poses produced by minimizing crystal poses with Vina and

the change in score associated with the CNN affinity model (30a), CNN scoring model (30c),

and Vina (30e). The right column shows the RMSD of the poses produced by minimizing

crystal poses with the CNN scoring model and the change in score associated with the CNN

affinity model (30b) and the CNN scoring model (30d).

One pattern that emerges is that minimizing with the CNN scoring model (middle right)

tends to produce poses that are further from the crystal than Vina does; it also produces a

larger range of changes in score, with a distribution that is potentially bimodal, including

examples for which it performed comparatively large rearrangements of the input to produce

correspondingly large changes in the final score. This does not appear to happen when

performing minimization with Vina, suggesting that the CNN scoring model has a smoother

landscape, at least around these minima, since it moves a larger distance before converging;

alternatively Vina may on average have minima nearer to the crystal pose than the CNN

scoring model does, or a combination of both factors may be relevant. Additionally, it is

evident that the CNN scoring model is not correlated with Vina, nor is it correlated with

the CNN affinity model; the only scoring model relationship that shows any correlation is

the CNN affinity model with Vina.

Figure 30f shows a related analysis for crystal pose minimization; challenge stages 1 and

2 involved submitting affinity predictions that were based on poses generated as described.

For stage 1 the analysis above demonstrates that these poses were typically far from the true

poses, while the process of minimizing the crystal poses produced low-RMSD poses that co-

incided with a scoring model local minimum for nearly every compound (one compound was

minimized to a configuration that was slightly outside of our definition of “low-RMSD” but

is still much closer to its crystal pose than the stage 1 poses were). Notably, our submission

for stage 1 produced the top-ranked correlation for predicting the affinity rankings of the

cocrystal ligand CatS subset among all GC3 submissions, and our overall affinity rankings

were also reasonably well-correlated during stage 1 (Table 3). However, in stage 2, with

unblinded cocrystal structures available, our affinity prediction performance for CatS actu-
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ally worsened. Additionally, the method that produced good correlations when predicting

affinities for the cocrystal ligand subset was the CNN affinity model, which we do not train

to predict poses. Thus we have some reason to suspect that our CNN affinity rankings for

CatS are pose insensitive, or at least that whatever aspect of the poses that is useful for

predicting affinities is not related to the experimental validity of those poses. Figure 30f

shows that while Vina’s affinity prediction correlation significantly improves when using just

the minimized crystal poses compared with the random poses from stage 1, and the CNN

scoring refinement method improves to a lesser extent, the CNN scoring method that simply

rescores Vina’s poses has virtually identical correlation in these two cases (i.e. the poses do

not matter) and the two CNN affinity-based methods actually have worse performance when

using the correct poses.
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Figure 30: (a-e) Change in score vs. change in RMSD for crystal pose minimization, showing

differences and correlation (or lack of correlation) in the functional landscape between the

different scoring methods. The logit of the CNN score was used to compute ∆Score on the

relevant plots. (f) Change in Spearman ρ when scoring with the high RMSD stage 1 CatS

poses versus scoring with the minimized crystal poses.

3.1.3.2 Affinity rankings Next we consider our performance at producing affinity rank-

ings. Table 3 shows the ranks and Spearman ρ correlations of our best performing CNN

models, as well as whether they outperformed Vina according to this metric. We find that

the CNN models, particularly CNN scoring, generally outperform Vina at producing scores

that correlate with compounds’ true affinity. Additionally, the correlations associated with

both JAK2 subchallenges, as well as the TIE2 subchallenge, are relatively strong, and the

overall rank of our best submissions for those subchallenges are competitive with others

who participated in GC3, as shown in the table’s rank column. It is notable that the best-

performing method for two of those three correlated sets of predictions is the CNN affinity

model. In contrast, our performance on target p38α in the original challenge was extremely

poor.

Table 4 shows the ranks and Matthews correlation coefficients in a manner similar to

the previous table; this statistic represents performance at binary classification of actives.

This analysis suggests that the CNN affinity model has an advantage at active/inactive

discrimination when compared with both the CNN scoring model and Vina.

68



Target Rank ρ Method Vina

CatS (1a) 6/53 0.37
CNN scoring

refine
0.19

JAK2 (SC2) 1/27 0.74
CNN scoring

refine
0.05

VEGFR2 14/33 0.39
CNN scoring

refine
0.51

p38α 7/29 0.04
CNN scoring

refine
-0.34

JAK2 (SC3) 2/18 0.75
CNN affinity

refine
-0.33

TIE2 3/18 0.67
CNN affinity

rescore
0.14

ABL1 N/A 0.56

CNN affinity

rescore/refine

(tie)

0.72

Table 3: The rank of our top-performing CNN method among all submissions to D3R GC3

affinity ranking tasks, along with the Spearman ρ associated with that method, and the

Spearman ρ associated with Vina’s predictions. The higher correlation between the best-

performing CNN method and Vina’s is bolded. The ABL1 results were not submitted during

the challenge period and all official submissions were partials, so we do not show a rank here.
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Target Rank MCC Method Vina

JAK2 (SC2) 3/27 0.44
CNN affinity

refine
0.07

VEGFR2 1/33 0.53
CNN scoring

rescore
0.34

p38α 9/29 0.21
CNN affinity

refine
0.15

JAK2 (SC3) 2/18 0.23
CNN affinity

refine
-0.55

TIE2
1/17

(tie)
0.78

CNN affinity

rescore
0.55

ABL1 N/A 0.56

CNN affinity

rescore/refine

(tie)

1.00

Table 4: The rank of our top-performing CNN method among all submissions to D3R GC3

affinity ranking tasks based on active/inactive discrimination, along with the Matthews

correlation coefficient associated with that method, and the Matthews correlation coefficient

associated with Vina’s predictions. The higher correlation between the best-performing CNN

method and Vina’s is bolded. The ABL1 results were not submitted during the challenge

period and all official submissions were partials, so we do not show a rank here.

Figure 31 shows the correlations associated with all the methods we used to generate

affinity rankings, as well as the correlation that can be obtained by simply using the com-

pounds’ molecular weight (the molecular weight ranking is misleading for target ABL1, since

there are only two compounds that have differing affinities for ABL1 mutants, and the molec-

ular weight gives a high correlation here but completely fails at the prediction task for which

the challenge was designed).

There is no one method that performs well across all targets. The CNN scoring model
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is the top-performing method on one of the JAK2 subchallenges, while the CNN affinity

model is the top-performing method on the other, and for each method it is the case that

in the subchallenge for which they are not the top-ranked method, they actually perform

very poorly. From this figure, it is not clear whether the CNN affinity or CNN scoring

model is better-suited to performing the affinity ranking task; each performed well on half

of the targets shown here, and the targets on which one method performed well preserve

the pattern seen with JAK2 - one CNN model having highly correlated scores for a target

is mutually exclusive with respect to the other CNN model.

Similarly, Figure 32 shows the Matthews correlation coefficients associated with all the

methods used to generate affinity rankings for each target for which this analysis is appropri-

ate, as well as the correlation obtained by using molecular weight. It again suggests that the

CNN affinity model has an advantage at active/inactive classification over the other meth-

ods, where it is the best-performing method on four of the targets and comparable to the

best-performing method on another; here its consistent good performance is unique among

the discrimination methods used.
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Figure 31: Spearman ρ of each scoring method with the associated experimental data for

each target; compounds with Kd ≥ 10µM have been omitted. Black lines indicate error bars

computed by bootstrapping the correlation for 10,000 iterations by resampling data points

with replacement. For the bootstrapped correlations, the experimental data was perturbed

with randomly generated Gaussian noise ε ∼ N (0, RT ln(Ierr)), where Ierr was taken to be

2.5.
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Figure 32: Matthews correlation coefficient of each scoring method with the associated

experimental data for each target. The Ki compounds with Kd ≥ 10µM were taken as

inactive, and the corresponding Ki bottom-ranked compounds for each prediction method

were also taken as inactive. The remaining compounds in both cases were taken as active,

and the resulting set of true/predicted pairs were used to compute the correlation. Error

bars are not shown as this procedure is not amenable to bootstrapped error estimates.

As an alternative view of the CNN ranking performance, Figure 33 shows the per-target

ROC plots for the six subchallenges that had compounds with affinities both above and

below 10µM , with affinities at or above that point being considered inactive and affinities

below that point considered active. Figure 34 instead shows boxplots of the AUCs derived

from the ROC plots in Figure 33. In this binding discrimination task, the CNN affinity
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model is clearly better than the CNN scoring model, and it is generally better than Vina

as well, especially when the poses it is scoring were produced via refinement with the CNN

scoring model.
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Figure 33: ROC curves for all GC3 targets for which there were compounds withKd ≥ 10µM

and compounds with Kd < 10µM ; the former were considered inactive and the latter active

for the purposes of this figure.
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Figure 34: Boxplots of AUCs across all methods and GC3 targets for which there were

compounds with Kd ≥ 10µM and compounds with Kd < 10µM ; the former were considered

inactive and the latter active for the purposes of this figure.

Since we did not use ligand similarity between prediction compounds and available ref-

erence structures to identify possible binding modes during the challenge, we considered

whether using this information would have been beneficial when producing affinity rankings

(particularly on the targets for which we performed poorly). To that end, we utilized the

approach described in section 3.1.3.1 to perform alignment, minimization, and docking based

on the available reference structure whose crystal ligand had highest similarity to each query

compound.
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Figure 35: Performing the scoring and affinity ranking process again using ligand struc-

tural information for (a) CatS and (b) p38α. The best and worst overall submissions from

the original challenge are shown with the new results. Using this process, we had worse

performance on predicting CatS affinity rankings but much better performance on p38α.

The results of this approach on pose prediction were shown in Figure 25c and Figure 25d,

while its effect on the correlation of the final scores (when taking the top-ranked prediction

for each compound as its predicted affinity) is shown for CatS in Figure 35a (which shows

the correlation produced by the same method used to generate 25d). In general, when using

our current scoring functions for CatS, methods that produce better poses also produce

worse correlation for the predicted affinities - for example, our original stage 1A Spearman

ρ was 0.37, while the ligand-similarity based method shown in 25d and 35a had a best-case

Spearman ρ of 0.14.

We also performed this analysis to generate new predictions for p38α using ligand simi-

larity. The best correlation produced by that analysis is shown in Figure 35b. This method
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produced good correlation using the CNN scoring model, particularly when the scoring model

was used to sample poses itself in the final refinement. Notably, these results were dependent

on the method used to identify similar ligands as well as the alignment method; for CatS,

Tanimoto distance computed with OpenBabel FP2 fingerprints and a scaffold alignment

(using the hand-selected scaffold) produced the best results for pose prediction (though no

similarity-based method we tried produced correlation that matched our original stage 1 sub-

mission), while for p38α the best result was produced using a Tanimoto distance computed

with RDKit Daylight-like fingerprints and O3A shape alignment.

3.2 Transfer learning and a foray into model explanation

While D3R Grand Challenge 3 was a prospective evaluation, it was small and consisted

of at least one affinity ranking task that was perfectly correlated with molecular weight. In

theory a virtual screening benchmark could provide a more expansive opportunity to evaluate

our latest CNN models, with two caveats: (1) we do not train our newest models with any

inactive compounds, only inactive poses, which some[202] have asserted to be inadequate

for good virtual screening performance (though we suspect based on the previous section

that knowledge transfer from one task to the other should occur), and (2) in the last year

several papers have reported[165][30][192] that existing virtual screening benchmarks are

highly biased due to historical artifacts in compound identification and synthesis. The latter

problem results in datasets that reward memorization of these historically biased features,

which when used to train statistical models produces scoring functions that work well on

many datasets compiled from the literature but fail to learn features that meaningfully

represent the interaction between a protein and ligand. They therefore fail to generalize

to examples that don’t conform to the bias, which primarily exists due to human-guided

compound search and optimization. One goal of the following section is to investigate how

well our models generalize to virtual screening, particularly in comparison with other existing

scoring functions (both machine learning and empirical). In light of the discussion about

model evaluation and dataset bias, we also propose a novel baseline based on fitting models to
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our training datasets using the known biases as features as part of a larger goal of attempting

to explain the performance of our models.

3.2.1 Introduction

Virtual screening poses this problem: given a target molecule and a set of compounds,

rank the compounds so that all those that are active relative to the target are ranked ahead

of those that are inactive. An in vitro screen is the source of ground truth for this binding

classification problem, but there are at least four significant limitations associated with

performing them: time and cost limit the number of screens that can be run; only compounds

that physically exist can be screened this way; the screening process is not always accurate;

and in vitro activity against a given target is necessary but not sufficient for identifying

useful drugs (perhaps this is a separate problem from virtual or in vitro screening, but

from a practical standpoint it would be desirable to exclude compounds with problematic

properties from the beginning of a drug discovery campaign, and in theory a virtual screening

method could penalize such compounds in a ranking). Thus virtual screening has attracted

significant interest as a way of overcoming these limitations to identify strong drug candidates

at reduced cost - in theory. In practice those benefits have yet to be realized.

Virtual screening methods can be broadly classified as ligand-based or structure-based.

Ligand-based methods rely on information about known active compounds and base their

predictions on the similarity between compounds in the screening database and these known

actives. No 3D structures are required, but at least one known active is. There are many

possible similarity metrics, but regardless of which is used, identifying truly novel actives

with this approach is unlikely. In contrast, structure-based approaches derive from a model

of the interaction between a protein and ligand, facilitating identification of truly novel

interactions betwen the two. A “scoring function” maps the input structure representing

the relative location and orientation of the pair of molecules to a score representing the

strength of their interaction. Several different approaches have been applied to scoring

function development, yielding four major classes. Force fields, empirical scoring functions,

and knowledge-based functions (also referred to as statistical potentials) are known collec-
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tively as “classical” scoring functions, distinguishing them from the newer machine learning

scoring functions. Briefly, force fields rely on physics-based terms mostly representing elec-

trostatic interactions; empirical scoring functions may include counts of specific features as

well as physics-inspired pairwise potentials; and knowledge-based statistical potentials cal-

culate close contacts between molecules in structural databases and fit potentials that favor

structures that resemble that existing data. In comparison, modern machine learning scoring

functions tend to impose fewer restrictions on the final functional form and often attempt

to learn the relevant features from data (for example, they may consist of a neural network

that processes the structural input directly).

Because structure-based approaches rely on a representation of the binding mode defined

between the protein and ligand structures, the first step in using them is often generating

one or more plausible binding modes. A typical approach is to start from a protein structure

and use a scoring function to identify favorably scored conformations of all compounds of

interest (i.e. “docking”) within a search space defined on the surface of the protein. That

scoring function may differ from the scoring function that will be used to generate the fi-

nal compound ranking for the virtual screen; a persistent problem in this domain has been

difficulty in simultaneously optimizing scoring functions for accurate binding pose scoring

and accurate compound ranking. This “pose prediction” task should be fundamental to

structure-based approaches to virtual screening, since these approaches aim to use the phys-

ical interactions underlying binding to guide scoring; if those interactions are not represented

accurately by a pose used for scoring, the scoring method is likely to primarily derive virtual

screening accuracy from the ligand alone - i.e. it would in theory offer minimal advantage

over purely ligand-based approaches. In practice it has been found that for existing scoring

functions, accurate input poses are not essential for good performance at binding affinity

prediction[109].

Well-designed benchmarks can be constructed to require more than simple descriptors

derived solely from the ligand to achieve good virtual screening performance; poorly designed

benchmarks are particularly susceptible to delivering “state-of-the-art” performance when

used to train and evaluate machine learning scoring functions merely because they can be

perfectly classified using descriptors so simple that classical scoring functions would never
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be so naive as to use them as the sole basis of a scoring model. Such biased benchmarks

may have limited utility for evaluating an existing scoring function - good performance on

the benchmark could derive from either a uselessly simple or a sophisticated model, and

the dataset’s bias means that if the goal of the benchmark is to predict a model’s ability to

perform well on an unknown dataset, the benchmark may only provide information about the

model’s prospective performance on another dataset with the same bias. These benchmarks

may be of limited utility for training machine learning scoring functions that generalize to

real-world tasks, since training on them may merely produce a model that recapitulates their

biases. Thus while these biased benchmarks could have served as acceptable assessments of

classical scoring functions, where the explicit design choices made by human researchers

eschewed the achievement of perfect performance via exploitation of dataset bias, fitting

modern machine learning scoring functions to them risks creating models that have been

“taught to the test” and cannot be expected to generalize beyond it.

Once problems with an existing dataset are identified, the challenge of constructing

an improved alternative remains; this problem, combined with the need to compare new

scoring functions with existing published results for older scoring functions (which may

have exclusively had access to benchmarks now deemed problematic), ensures the continued

relevance of now disfavored benchmarks. Such is the case with DUD[76], DUD-E[128], and

MUV[151], three virtual screening benchmarks that have been widely used to assess scoring

functions in the literature.

More recent literature[165, 192, 30] has demonstrated that both MUV and DUD-E are

biased and are likely to be unsuitable for training or even validating machine learning scor-

ing functions. Sieg et al[165] found that for DUD, DUD-E, and MUV, better-than-random

(and in the case of DUD and DUD-E, perfect) AUCs could be obtained merely by fitting

cross-validated models on exactly the simple chemical descriptors that the dataset devel-

opers had attempted to control for during dataset construction. For DUD-E, synergistic

effects were associated with using multiple descriptors together; the authors note that this

probably derives from the construction process, which matches each feature separately in its

one-dimensional feature space, unlike MUV, which considers distances within the multidi-

mensional feature space. Accordingly, the authors find that MUV does not afford synergistic
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performance when including additional features. Wallach et al[192] explain that MUV con-

sidered only the difference between active-active and active-inactive distances, omitting a

comparison of inactive-inactive and inactive-active distances; since class labels for machine

learning models are arbitrary, the MUV approach may produce datasets where “actives” are

not clumped but the “inactives” are, and a machine learning scoring function can in principle

learn from the intraclass similarity of either class. Further, as Sieg et al[165] point out, the

MUV dataset was constructed for ligand-based similarity search, and therefore it is likely

to be inappropriate for benchmarking machine learning methods due to inherent analogue

bias. Finally, Chen et al[30] note that there is high similarity among inactives across targets

in DUD-E, biasing that benchmark even futher.

In their paper describing the limitations of only considering distances relative to actives in

the MUV dataset construction approach, Wallach et al[192] propose Asymmetric Validation

Embedding (AVE), an improved measure of bias that considers clumping among inactives

and between examples from the same class used in the training and validation sets. They do

not construct a new dataset using AVE, however; rather, Tran-Nguyen[184] first reported a

novel dataset, LIT-PCBA, that used AVE for unbiasing and was explicitly designed for train-

ing and validation of machine learning scoring functions. It consists of 15 target sets, with

a total of 10033 actives and 2798737 inactives (though some of those are duplicated across

multiple targets) after initial filtering of 9780 actives and 407839 inactives after constructing

AVE-unbiased training and validation splits. 13 of these targets have more than one PDB

template provided. All compounds are taken from assay data and therefore all inactives are

confirmed rather than assumed. The authors also confirmed that the included actives were

not too biased toward high affinity compounds (i.e. the actives have typical potencies found

in HTS decks) and that they were diverse when compared with other actives included for

a given target. For all included targets, an EF1% > 2 was achievable by at least one of a

fingerprint-based, shape-based, or structure-based approach prior to AVE unbiasing.
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3.2.2 Methods
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Figure 36: Voxelized grid-based CNN architectures evaluated in this work.

Our approach to using machine learning for molecular modeling is based on using 3D

grids derived from voxelizing a fixed-size box centered on a protein binding site[147, 176].

We have experimented with pairing this input representation with several different model

architectures[147, 176, 72, 57] and have also evaluated several types of training data in terms

of their performance for pose and binding affinity prediction. We previously[147, 178, 176]

tested the use of CNNs for virtual screening, but always in the context of simpler model

architectures and training sets based on virtual screening benchmarks. Here we use our

latest model ensembles[57], based on two architectures as shown in Figure 36; the Def2018

architecture was trained on two sets of training data with one consisting of redocked poses

from the 2016 PDBbind General set and the other consisting of cross-docked poses generated

based on Pocketome v17.12. The Dense architecture (based on [75]) was only trained on

the cross-docked poses from Pocketome. The Def2018 architecture is a Bayesian optimized

version of our earlier architectures, while the Dense architecture includes densely connected

82



blocks that are intended to combine features at multiple levels of abstraction when making

a prediction. All models were trained with five random seeds, yielding an ensemble for each

model (for more details of the training procedure, see [57]). These ensembles allow us to

compare the effects of architecture and training data on virtual screening performance, as

well as approximate the uncertainty in our predictions.

Note that none of these models were trained to perform virtual screening; their outputs

do not classify an input as “active” or “inactive” directly, nor were they in general provided

distinctly “active“ or “inactive” compounds as input examples (i.e. they were not trained on

any virtual screening datasets). They were simultaneously trained to predict whether a given

input is a binding mode based on its distance from an available crystal structure and, if so,

what its affinity would be; if a pose is not a binding mode, the predicted affinity is instead

optimized to be lower (in pKa units) than the binding affinity. While accurate binding affinity

prediction might theoretically be expected to correlate with virtual screening performance, in

practice the available data distributions for these two tasks are very different. This has led to

a bifurcation in the machine learning scoring function/binding affinity prediction literature,

with a given model typically developed for and assessed on one task or the other despite the

theoretical transferability of knowledge between tasks.

We use DUD-E and the more recently published LIT-PCBA dataset to assess virtual

screening performance. DUD-E is primarily used to facilitate comparisons with published

work. LIT-PCBA is appealing due to its principled construction; even though we do not use

the training and validation splits and instead assess our performance on the full dataset, it

still features diverse actives, more typical (lower) potency actives, and topological similarity

between actives and inactives. Neither dataset was used for training, primarily because in

our past work[147] we found that when training without known poses (i.e. purely or mostly

with assay data and computer-generated poses), the learned models were effectively ligand-

based. DUD-E’s known bias also suggests that it is unsuitable for model fitting, but that does

not necessarily imply that it is useless for evaluating a model fit on other data. Further,

our past work suggests there is utility in comparing model performance when testing on

an independent dataset versus performing cross-validation, since improved performance at

classification on a dataset when training on a subset of it could be due to dataset-wide bias
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artificially enhancing performance (as appears to be the case with DUD-E, where similarity

among inactives between targets constitutes test set leakage[30]).

Since most of the poses we use for training and scoring are generated with the smina[99]

fork of Autodock Vina[187], we take Vina as our conventional scoring function baseline

on whose performance we hope to improve. We also compare with Vinardo[144], a mod-

ified version of the Vina scoring function that aims to improve performance at pose pre-

diction. However, machine learning scoring functions should always be compared to other

machine learning scoring functions, ideally trained on the same dataset; thus we also in-

clude virtual screening results from two versions of RFScore (RFScore-VS[202], which was

trained on DUD-E, and RFScore-4[109], which was trained on the 2014 PDBBind refined

set). These two random forest based scoring functions are an interesting contrast to our

approach: RFScore-4 has similar training data to ours but is a different type of statistical

model that was fit to predict binding affinity with a different training strategy and distinct

features, while RFScore-VS was trained specifically for virtual screening.

We used docked poses we had previously generated for DUD-E, obtained with the de-

fault smina arguments --seed 0 --autobox add 4 --num modes 9 and a box defined by

the crystal ligand associated with the DUD-E reference receptor. For rescoring poses sam-

pled with another function, we have since found it advantageous to generate a larger set

of more diverse poses (to give the alternative function opportunities to correct inaccura-

cies in the sampling function)[176]; thus for the LIT-PCBA evaluation we used --seed 0

--autobox add 16 --num modes 20. We used our CNN models, RFScore-VS, and RFScore-

4 to rescore these poses generated with the Vina scoring function, and we also compared

these with the performance of the Vinardo scoring function, which sampled a distinct set

of poses. A method’s maximum predicted score for a (target, compound) pair was taken

as its prediction except where noted otherwise, and the prediction per pose for each CNN

model was the mean computed over the five-model ensemble’s predictions except where noted

otherwise.
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DUD-E MUV

molecular weight

number of hydrogen bond acceptors number of hydrogen bond acceptors

number of hydrogen bond donors number of hydrogen bond donors

number of rotatable bonds

logP logP

net charge

number of all atoms number

number of heavy atoms

number of boron atoms

number of bromine atoms

number of carbon atoms

number of chlorine atoms

number of fluorine atoms

number of iodine atoms

number of nitrogen atoms

number of oxygen atoms

number of phosphorus atoms

number of sulfur atoms

number of chiral centers

number of ring systems

6 features 17 features

Table 5: Descriptors used in the construction of DUD-E and MUV

Finally, we also establish baseline performance using a variety of statistical models fit

to our training datasets with the simple chemical descriptors used in the construction of

DUD-E and MUV as their input features. These descriptors are shown in Table 5.

3.2.3 Results

First we will summarize virtual screening performance of our convolutional neural net-

works, initially comparing with Vina, Vinardo, RFScore-4, and RFScore-VS. We also assess

pose prediction performance on the reference receptors provided with LIT-PCBA, which in

13 out of 15 cases involve multiple templates and therefore constitute cross-docking tasks.

Next we attempt to explain aspects of the observed performance, in particular taking inspi-

ration from [165] and establishing a baseline ML model fit to the “simple” descriptors of our

training sets (Table 5) with which we can compare our performance. Finally we investigate

the utility of our CNN model ensembles for either enhancing or explaining virtual screening
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performance.

3.2.3.1 Virtual Screening Performance Virtual screening performance on DUD-E is

shown in Figure 37 and on LIT-PCBA in Figure 38. We provide AUCs for comparison with

other literature, but a metric intended to assess early enrichment is a better evaluation of

virtual screening performance; we use EF1% since the LIT-PCBA paper reports that value for

three baseline methods: fingerprints (1D), shape overlap (2D), and Surflex-Dock (SD). Each

target that was included in the final LIT-PCBA benchmark could reach at least EF1%=2

by at least one of those three methods prior to AVE unbiasing; the methods that achieved

that minimum performance level are labeled per-target in the legends of the LIT-PCBA

figures for comparison with our results. Later we also use the normalized EF1% (NEF) as in

[113], where the EF1% for a given target is normalized by the maximum possible EF1% for

that target. Notably, LIT-PCBA performance for all of the methods tested differs from the

performance achieved by Surflex-Dock in the LIT-PCBA paper. This could be due in part to

sampling differences between Surflex-Dock and Vina/Vinardo, but it could also be evidence

of shape or 2D descriptors being learned by the ML models. Notably the CNN pose models

achieved an EF1%≥6 for ADRB2, and several CNN models (pose and affinity) achieved an

EF1%≈4 for PPARG while neither Vina nor the RF-Score models did, and these were both

targets for which all models tested in the LIT-PCBA paper achieved an EF1%>2.

For all models, average performance according to either metric is much better on DUD-

E than on LIT-PCBA. In the case of RFScore-VS, the performance discrepancy between

the two benchmarks suggests that its cross-validation performance on DUD-E was not an

accurate representation of its generalization ability, perhaps due to the data biases discussed

previously. RFScore-4 has virtual screening performance comparable to other methods tested

(particularly Vina), despite not being trained with inactive examples, which have previously

been suggested to be essential[202] for good virtual screening performance. Among the CNN

models, the Dense models generally perform best (see Table 6 for 95% confidence intervals

and p-values for the difference in EF1% between the Dense affinity model and the non-CNN

models on each LIT-PCBA target). They were trained on the same data as the Cross-

Docked models, and while their greater number of parameters makes them more susceptible
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to overfitting, if that occurred, we would expect them to have worse performance on out-of-

sample tests (later we will examine how far “out-of-sample” these tests really are).
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Figure 37: Assessment of virtual screening performance on DUD-E, using (a) AUC and

(b) EF1% as the performance metrics. Note that while EF1% = 1 is equivalent to random

performance, we have annotated EF1% = 2 since that was the minimum enrichment required

for inclusion in LIT-PCBA[184].
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Figure 38: Assessment of virtual screening performance on LIT-PCBA, using a AUC and (b)

EF1% as the performance metrics. Targets are assigned a unique symbol; the legend notes

which method achieved an EF1%> 2 in[184], where ‘1D’ signifies fingerprints, ‘2D’ signifies

shape, and ‘3D’ signifies docking with Surflex-Dock. Targets in the legend are sorted in

order of increasing number of PDB reference templates provided (the legend of Figure 40

shows exactly how many templates were provided per target). Note that while EF1% = 1

is equivalent to random performance, we have annotated EF1% = 2 since that was the

minimum enrichment required for inclusion in LIT-PCBA[184].

3.2.3.2 Pose Prediction Performance Next we examine the CNN ensemble’s pose

prediction performance on the templates provided with LIT-PCBA. When more than one

template was provided, we redocked and cross-docked each crystal ligand into each available

receptor structure and used each scoring function to rank all available poses. The CNN

models were used to rescore Vina-generated poses, and all these were compared with Vinardo,

which was derived from Vina but intended to improve its pose prediction performance. Such

an improvement did not manifest on this benchmark, as shown by the average fraction of

compounds with a “good” (≤ 2.5Å RMSD) pose sampled at ranks 1, 3, and 5 in Figure 39a

and the actual fraction of compounds with a good pose sampled per-target in Figure 40.

The CNN models improve on Vina’s pose ranking, whether using the output from the pose

or affinity layer.
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Figure 39: (a) Percent of a target’s compounds with a good pose at ranks 1, 3, and 5,

averaged across all fifteen targets in LIT-PCBA. Labeled horizontal lines show the best

performance possible with the poses sampled by Vina (red) and Vinardo (chartreuse). (b)

Correlation between normalized EF1% for the virtual screening task and fraction of com-

pounds with a good pose ranked first in the pose prediction task.

There may be a slight positive correlation between virtual screening and pose prediction

performance on LIT-PCBA for the CNN pose models and Vina, as shown in Figure 39b.

The CNN affinity models have Spearman ρ values close to 0, though the Dense affinity

model data may suggest a relationship (NEF is higher when the fraction of low RMSD

compounds is higher). In general the evidence in support of a relationship for any model

is not particularly strong. Different compounds are used for the virtual screening and pose

prediction tasks (since the available data is disjoint with respect to the compounds), so

this is not evidence of whether accurate structural interactions are the basis of the relevant

CNN virtual screening scores. Finally, Figure 39b uses the normalized EF1% as its virtual

screening metric, and demonstrates that despite the high EF1% values for some targets,
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enrichment is universally much lower than its maximum possible value.
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Figure 40: Boxplots showing the fraction of compounds, per-target, that have a pose ≤
2.5Å RMSD from the provided crystal pose ranked first by each method. The two plots with

hatched markers show the fraction of compounds for which such a pose was sampled.

3.2.3.3 Explaining Performance The CNN predictions (particularly the affinity val-

ues) appear to be useful for virtual screening. On LIT-PCBA, which was designed to more

closely resemble true HTS experiments, they outperform the other methods tested, with the

Dense affinity score performing best. Table 6 provides 95% confidence intervals and p-values

computed for the difference (DenseAffinity − Non-CNN Model) for each LIT-PCBA target

and shows that it is probably statistically better than the other methods on five targets:

ALDH1 (better than RFScore-4), ESR1-ant (better than RFScore-4, RFScore-VS, Vinardo,

and Vina), FEN1 (better than RFScore-4, Vinardo, and Vina), GBA (better than RFScore-

4, RFScore-VS, Vinardo, and Vina), and VDR (better than Vina) though in some cases the

effect size is small; conversely, no methods appear to be statistically significantly better than

the Dense affinity model for any target in LIT-PCBA. The Dense models were also trained
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with more data than any other model except the CrossDocked models. In general we would

like to explain the mechanisms underlying good and bad performance; we would especially

like to examine whether our predictions are pose sensitive, whether trivial descriptors are

the primary basis of model performance, and whether performance is predictable based on

similarity to training data.

First, we check whether our virtual screening predictions are pose sensitive by comparing

EF1% when basing a compound’s prediction on its highest- versus its lowest-ranked pose.

Figure 41 shows this assessment for DUD-E (a) and LIT-PCBA (b). All methods exhibit

some pose sensitivity, with the top-ranked pose generally exhibiting better performance, but

there are also many cases where non-random performance is achievable with even the lowest-

ranked pose, and every model also has at least one task for which choosing the lowest-ranked

pose outperforms the highest-ranked one. This suggests that pose information is being used

but (1) it is not always correct and (2) it is not the sole basis of the prediction.

Next we investigated the set of “simple chemical descriptors” that are known to afford

perfect performance on DUD-E when used to fit models. Since none of our CNN models

were fit to DUD-E (nor indeed to any virtual screening dataset), we might hope to have

avoided fitting models that derive their performance from these descriptors. However, these

descriptors are useful because of historical bias in the underlying datasets from which most

benchmarks are drawn, so it is entirely possible for models fit to other datasets to have a bias

with respect to these descriptors. In [57], motivated by this consideration, we assessed sim-

ilar “Simple Descriptor” models for performance at binding affinity prediction on PDBbind

and Pocketome test sets and found them to have better-than-random and, in some cases.

competitive to state-of-the-art performance. Therefore it seems necessary to compare other

model performance to the baseline established by one or more reasonably trained models

that use these simple descriptors as a baseline.

To that end, we establish a performance baseline by fitting a variety of linear and nonlin-

ear regression models (Lasso, K-nearest neighbors, Decision Tree, Random Forest, Gradient

Boosted Tree, and Support Vector regressors) available through sklearn[140] to the ligand

and affinity data associated with each of our training sets, with either the descriptors used in

the construction of DUD-E, the descriptors used in the construction of MUV (see Table 5 for
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both), or ECFP4 fingerprints as implemented in OpenBabel[137] as features. Hyperparam-

eter optimization was performed for all models via cross-validation on the PDBbind-Refined

2016 set. We then evaluate how these “simple descriptor” models perform at virtual screen-

ing on each of our test sets.

In Figures 42-44, we take the maximum performance per-target across any of the simple

descriptor models and compare it with the “advanced” ML model with the same underly-

ing training data. The lighter line shows the maximum EF1% achieved on a target with

the simple descriptor models, while the darker line shows the difference between the “ad-

vanced” ML model EF1% and the simple descriptor EF1%. The lines are sorted by most to

least improvement, so more weight at the top of the hourglass indicates better performance.

Figures 62-64 show actual EF1% values per training dataset, with the simple descriptor mod-

els broken down into the best performance achievable for each set of descriptors. Increasing

training dataset size yields CNN models with performance gains relative to simple descriptor

models on both datasets, but no model achieves better performance than the best available

simple descriptor model for a majority of targets in LIT-PCBA.
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Figure 41: Change in EF1% per target for the evaluated methods when basing the score

on the top-ranked versus the bottom-ranked pose for each example. Results are shown for

DUD-E (a) and LIT-PCBA (b).
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Figure 42: Change in EF1% per target for CNN and RFScore models fit to the PDBbind

Refined Set relative to the best performance achievable with a basic model fit to simple

descriptors. Results are shown for DUD-E (a) and LIT-PCBA (b). Note that RFScore-4

was fit to PDBBind-Refined version 2014, but our CNN model was fit to PDBbind-Refined

version 2016.
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Figure 43: Change in EF1% per target for CNN models fit to the PDBbind General Set

relative to the best performance achievable with a basic model fit to simple descriptors.

Results are shown for DUD-E (a) and LIT-PCBA (b).
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Figure 44: Change in EF1% per target for CNN models fit to the Cross-Docked Set relative

to the best performance achievable with a basic model fit to simple descriptors. Results are

shown for DUD-E (a) and LIT-PCBA (b).
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The CNN models demonstrate improved benchmark performance with more training

data, which is a trend observed in the machine learning literature generally but has of-

ten not been observed in the drug discovery literature, particularly for binding affinity

prediction[90, 64]. It has been reported that models fit to the PDBbind-Refined set (∼4000

complexes) do not gain and sometimes lose performance when fit to the PDBbind-General

set (∼10,000 complexes). We have observed the performance improvement in our CNN mod-

els for the binding affinity prediction task[57], and our best performing models were fit to

our curated cross-docked dataset (∼20,000 complexes). We show the performance trends

for our CNN models and the simple descriptor models, broken down by descriptor type, in

Figure 45. Notably the models that were fit to simple descriptors exhibit no significant gain

in performance (and sometimes a loss) as the training dataset size increases, presumably

because the information content of the dataset with respect to those descriptors is identical.

The models fit to fingerprints exhibit generally worse performance than the models fit to

the descriptors that underlie the bias in the dataset. Performing better than a fingerprint

model may indicate that a more advanced model has simply learned the bias of the dataset

in simple descriptor space and that becomes more likely if increasing training data volume

does not yield a more accurate model.
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Figure 45: Comparison of the change in model performance for simple descriptor models

and CNN models as they are provided with more training data.

Next we consider similarity between training and test datasets. To motivate our ap-

proach, we first contrast the two test sets. LIT-PCBA contains six targets that have greater

than 50% sequence similarity to targets in DUD-E (one of those is ESR1, which constitutes

two distinct tasks — antagonist vs agonist identification — in LIT-PCBA). Of these, the

CNNs have comparable performance on four targets, but there appears to be a large dif-

ference between the virtual screening performance on the remaining two: adrb2/ADRB2

and fkb1a/MTORC1 (identifiers are arranged DUD-E/LIT-PCBA). The explanation for the

performance discrepancy must lie with the screening compounds. Indeed, as shown in Fig-

ures 46-47, the DUD-E tasks exhibit greater separation between actives and inactives as

well as higher similarity between the available actives. Notably the LIT-PCBA authors were

concerned that MTORC1 contained actives that were too similar to one another, which was
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anomalous when compared with the other targets included in the benchmark.
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Figure 46: Comparison between DUD-E target fkb1a and LIT-PCBA target MTORC1,

showing the separation between actives and inactives after projecting onto the first two

principal components from ECFP4 fingerprints derived from the actives for DUD-E (a) and

LIT-PCBA (b) and the distribution of maximum Tanimoto similarity between the provided

actives for DUD-E (c) and LIT-PCBA (d).
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Figure 47: Comparison between DUD-E target adrb2 and LIT-PCBA target ADRB2, show-

ing the separation between actives and inactives after projecting onto the first two principal

components from ECFP4 fingerprints derived from the actives for DUD-E (a) and LIT-PCBA

(b) and the distribution of maximum Tanimoto similarity between the provided actives for

DUD-E (c) and LIT-PCBA (d).

Motivated by this evidence of compound similarity as a possible explanation for differ-

ences in performance, we examine how much of our performance derives from identifying
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active compounds that were seen during training. To do this, we compare EF1% (Figure 48)

and the number of actives in the top 100 compounds (Figure 65) with all actives present ver-

sus after dropping actives based on their similarity to compounds in the training set. We use

a maximum Tanimoto similarity threshold of 0.8, and apply it in two ways: to compounds

that were observed during training in complex with a protein with at least 50% sequence

identity to the one with which the compound was observed at test time; and over all com-

pounds, agnostic to the protein with which they were in complex during training. We make

a distinction here because if an example was observed with a similar protein, it is possible

that relevant features of the interaction were learned, making their subsequent identification

more promising from a generalization standpoint than if the compound was seen with a very

different protein during training - in the latter case it is less likely that interactions relevant

to binding were identified, and more likely that the compound itself was merely memorized.

Both statistics suggest that training set compound similarity is not an explanatory factor

related to performance except for the two estrogen receptor tasks in LIT-PCBA, especially

the agonist, and the compounds that were identified that bore similarity to the training set

were not observed with a similar protein.
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Figure 48: Comparison of EF1% for DUD-E (a) and LIT-PCBA (b) with all compounds

included versus removing compounds based on their similarity to compounds seen in the

training set. The threshold for compound similarity was a Tanimoto coefficient of 0.8. We

applied that threshold to compounds that were provided as training examples as part of a

complex with a protein that had at least 50% sequence identity with the test set target being

evaluated, as well as across all compounds seen during training.
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3.2.3.4 CNN Model Ensembles Finally, we assess benefits afforded by the ensemble of

models fit for each combination of training dataset and CNN model architectures. Ensembles

of models are useful for stabilizing predictions and providing a means to estimate uncertainty.

First we note that the ensemble may not have better performance than individuals within the

ensemble have on a given benchmark, but the best performing replicate will generally depend

on the benchmark itself. A goal of the ensemble is to have more consistent performance across

benchmarks, reducing the risk of catastrophic failure due to replicate bias. Furthermore,

selecting replicates to include based on a dataset is a form of fitting to that dataset, so

it should be treated as carefully as any other way fitting is performed (i.e. not something

done on a test dataset with unblinded performance). See Figure 49 for a comparison of the

ensemble and individual replicate performance for each CNN model considered on the two

test datasets. In general different replicates achieve the best overall performance for the two

datasets (see e.g. the General Set model, for which seed 3 achieved the best performance

on DUD-E but second worst performance on LIT-PCBA; and the Cross-Docked model, for

which seed 4 achieved the best performance on DUD-E but the worst performance on LIT-

PCBA), but by averaging over the ensemble we achieve performance that is more stable

(maintaining nearly the same rank for different datasets), that is never the worst compared

with the individual replicates, and in the case of the best performing model (the Dense

Affinity model), the ensemble mean perfoms better than any individual replicate.
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Figure 49: Performance of ensemble mean and individual replicates within the ensemble for

the CNN for DUD-E and LIT-PCBA

Next we consider the ensemble variance and the role of pose information when making

a prediction. We have not yet performed the calibration necessary to convert the ensemble
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variance to a confidence interval via conformal prediction[133, 37], but we can still attempt to

use the variance to prioritize predictions that are more precise and assess whether it is bene-

ficial. We do this by dividing ensemble predictions by eσ, such that low variance predictions

are basically unaffected while high variance predictions are reduced. Additionally, we see

evidence of predictions being based on a combination of pose and non-pose information, and

it is more likely that the non-pose information derives from bias; we would therefore like to

test whether performance improves if its influence is reduced. We test two ways of doing this.

One is within-model, by inferring that the gap in score between the maximum and minimum

pose for a compound is evidence of whether a good pose was indeed found; most poses should

not be close to a binding mode, so the bottom-ranked poses for a compound should not (if

the method is pose-sensitive) accurately capture the protein-ligand interactions associated

with binding. If there is no gap in score between the top and bottom pose, that likely means

no good pose was found, or the score is derived from information that is not related to the

pose. Therefore we use the gap between the maximum and minimum score to recalibrate

the prediction. The other method we use is to combine the pose and affinity outputs to

produce a single prediction, with the expectation that the pose output may be more pose

sensitive and combining it with the affinity output will increase the overall pose sensitivity

(of course, it may also compound the effect of any biases they share). This was partially

motivated by Figure 67, where the CNN pose models show strong separation between the

classes in DUD-E. This does not appear to hold for LIT-PCBA, however (Figure 68). The

results for LIT-PCBA are shown in Figure 50 and for DUD-E in Figure 66. Calibrating the

scores to improve performance appears promising, but additional understanding of why (and

therefore when) they work is necessary before recommending them for use (for example, they

could work by increasing the influence of features that undergird dataset bias, in which case

they might be useful for model explanation but not for use in virtual screening).
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Figure 50: Effect of various score calibration approaches on LIT-PCBA EF1%.
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3.2.4 Conclusion

Dataset bias is a serious obstacle to applying data-driven approaches to solve problems

in drug discovery. Unless care has been taken to assess the bias of a dataset and un-bias

accordingly, machine learning models fit to that dataset will learn that bias. Since many of

the existing biases are historical, it is entirely possible to subsequently evaluate performance

on a test dataset that shares similar biases and inaccurately report improvements in gen-

eralization when in fact the resulting model is worse at generalizing than the conventional

scoring functions that predate it. We are still developing appropriate datasets and evalua-

tion methods to ensure that we can effectively leverage data without fitting to the artifactual

patterns it contains.

Here we have demonstrated that machine learning models fit for binding affinity pre-

diction and pose selection can be used for virtual screening. We have also demonstrated

that models fit using simple chemical descriptors on available binding affinity datasets can

achieve results comparable to “advanced” machine learning models fit to the same dataset.

These simple descriptor models do not benefit from increases in training set size over a

small threshold, and they outperform the topological fingerprint models commonly used as

a baseline for advanced model comparison in the literature.

We demonstrate that our CNN models exhibit pose sensitivity and our DenseNet-based

models in particular achieve performance that is better than other non-CNN models with

which they were compared on the LIT-PCBA benchmark. This benchmark may be better

suited to model evaluation than preexisting virtual screening benchmarks (e.g. DUD-E),

although we did not benefit from the AVE unbiasing they used to construct training and

validation splits because we used it as an independent test set rather than for training.

Improvements in the performance of these models as training dataset size increases is a

promising indicator that their performance does not derive exclusively from simple descrip-

tors and that they will continue to improve over time as more data becomes available.

A significant direction that was not explored in this work was the use of the trained CNNs

for pose sampling as well as scoring. This was used in [178] and it appeared to improve CNN

virtual screening performance. Evaluating different models using the LIT-PCBA training
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and validation splits should also be performed, as well as fine-tuning existing models on

LIT-PCBA. Identifying the problems with existing virtual screening benchmarks will enable

researchers to improve on them and ensure that models are extracting features that enhance

generalization performance. A recent study of 14 machine learning scoring functions for

virtual screening found that none of them outperformed classical scoring functions, except

for RFScore-VS, which only outperformed classical scoring functions on DUD-E (the dataset

to which it was fit)[162]. This is a sobering result, but we believe it derives from problems

with training data rather than with the data-driven approach itself.
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4.0 CNN Input Optimization for Screening and Model Explanation

The work in this final chapter is still preliminary. The basic approach is implemented,

but will require more effort to obtain good results. We will describe what is currently

implemented and the assessments we have performed so far, with directions for future work.

4.1 Background

Once a neural network is trained, its weights parametrize a mapping from a set of in-

put features to a prediction. If its predictions are accurate, then it has learned informative

predictors from the input domain that correspond to class-defining features (when perform-

ing classification) or positive or negative contributions to a real-valued prediction (when

performing regression). In the case of convolutional neural networks, these patterns are en-

coded in the weights of its convolutional filters. This information stored in the network can

be used to understand what a network has learned and explain its predictions, and it can

also be used to optimize input examples[138].

Model explanation is an important problem when working with neural networks, espe-

cially when overt human-directed featurization is limited. With the networks given free rein

to identify arbitrary patterns from the data, they may identify features beyond what we

know to be useful for a chosen problem - a powerful trait, with the potential for disap-

pointing results if the networks regurgitate the biases we ourselves have introduced into the

data rather than inferring scientific laws or meaningful relationships between discrete input

regions. As discussed in the last chapter, machine learning for molecular modelling can

sometimes make accurate predictions on preliminary assessments, even significantly outper-

forming conventional approaches, only to significantly underperform later because of exactly

this phenomenon. Thus we are motivated to explain what a network has learned in general,

as well as the justification for particular predictions, to reduce the risk of deploying models

that don’t generalize to real-world data and exhibit poor prospective predictive accuracy.
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There are multiple widely-adopted options for visualizing what a network has learned,

several of which were explored by members of our group in the past[72]. Those we have

previously explored include direct filter visualization, which is usually only readily inter-

pretable for the first layer; gradient visualization[166], where loss gradients are backprop-

agated onto the input and they or their magnitude are visualized; layer-wise relevance

propagation[9, 106], where the network’s output is propagated back onto the input, at-

tempting to explain each part of the input’s contribution to the final prediction; and itera-

tive masking of the input[180], which involves repeatedly removing parts of the input and

then rescoring it, attributing the score difference to the part of the input that was removed.

Other options include partitioning a corpus of input data based on their ability to induce a

large activation of a network’s internal filters, taking the (usually limited) attributes shared

by a collection of examples that maximally activate a particular filter as evidence of the fea-

ture that filter has learned to detect[206]; or using deconvolutions to highlight which input

regions contributed to a filter’s activation[208]. Finally, there is the option we have begun

investigating here: using one or more filters to synthesize an input that maximally activates

them[206, 138, 119, 129, 131, 199, 54, 179].

An approach based on synthesizing inputs via optimization has several advantages. It

can directly show us patterns that maximally activate a filter, rather than merely identifying

examples or patterns that correlate with activation. It can be performed with respect to

various parts of the network - with respect to a single filter, or jointly for multiple filters,

an entire channel or layer, or even the full network (by starting at the final layer before

the output layer). Regarding the network filters as basis vectors defining the network’s

“activation space”, we can consider the results of optimizing along the various directions

in activation space defined by combinations of filters; we can also define an optimization

objective that interpolates between two filters, similar to latent space interpolation used for

generative approaches[138]. We can also start from a real example and allow the network

to optimize it, perhaps conditioning on part of the input, which will be kept constant. For

example, we might start from a protein binding site and use one or more of the output layers

to optimize the ligand density while keeping the protein density constant. The resulting

ligand density is likely to be nonphysical, but it represents locations, relative to the binding
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site, where the network associates a higher predicted score with the presence of specific ligand

atom types. This is quite similar to a pharmacophore, representing molecular features that

characterize a strong interaction between a ligand and the protein of interest, thus I will call

the resulting optimized ligand density a “pseudo-pharmacophore”. This project therefore

has a dual purpose of implementing a new approach for explaining what our networks have

learned during training, as well as a means of generating pseudo-pharmacophores that could

in theory be used for tasks like virtual screening.

4.2 Methods

The basic approach here is quite simple, with two complications: the literature suggests

that, at least for images, uninformative high frequency information dominates the optimized

input unless appropriate priors are used[138, 119, 130, 129]; and to use optimized grids

(the result of optimizing ligand density grids with respect to a trained network) for virtual

screening, we need to consider how best to compute distances between grids.

4.2.1 Approach

For node visualization and other model explanation tactics, we start from a randomly

initialized input. For virtual screening, the receptor channels are initialized from the target

and the ligand channels are empty; only the ligand channels are updated later. We do a

forward pass from the input x to neuron i to compute the necessary activation ai(x), then

do a backward pass onto the input to obtain ∂ai(x)
∂x

. Then we apply the standard gradient

ascent update

x = x+ α · ∂ai(x)

∂x
(4.1)

repeatedly until convergence. We test performing optimization with respect to the net-

work as a whole by computing the loss as a function of the initial output and the target
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class (active) and/or affinity (an arbitrarily large pK ∈ R)) and performing gradient descent;

however, at least for the softmax output, the literature suggests[138, 181] that optimizing

the input through the softmax is problematic, possibly because it operates by reducing the

likelihood of the alternative class rather than maximizing the likelihood of the target class.

Therefore we also evaluate the alternative approach of maximizing the pre-softmax logits for

the classification output.

Unfortunately, employing this approach without any modification generates adversarial

examples[118], distinguished by the prominence of high frequency patterns that in the best

case have semantic meaning for humans as texture[62]. Typically they have no distinguish-

able visual differences from the starting example to a human observer and are considered

a classic failure mode and therefore attack vector for neural networks[3, 21]. One means

of establishing resistance to these attacks is by generating them as counterexamples during

training, e.g. via projected gradient descent[118, 67, 160, 80], which performs an initial opti-

mization step to generate maximally misclassified examples within some constraint set such

as the L∞ ball around the starting example. This is followed by standard training, where

these examples are provided as input to the network, paired with the labels associated with

the original example. We explored adversarial training as well, but found it provided little

benefit for virtual screening performance. Instead, priors must be included to regularize

optimization to generate interpretable visualizations.

4.2.2 Appropriate priors

The primary aim of the imposed priors is to reduce high frequency signals that would

otherwise characterize the optimized input, leading to rapid convergence to examples of little

explanatory or practical value. The image classification literature often describes them as

“imagelike” or “natural image” priors since they are often motivated based on the goal of

achieving generated images with spatial statistics that resemble real-world images. There

are three general classes of these priors[138]: those based on penalizing high frequency sig-

nals (by enforcing correlation of neighboring pixels, applying Gaussian or bilateral filters, or

using gradient preconditioning); those based on enforcing robustness to small, local trans-

113



formations like scaling, jitter, and rotations; and those based on learning a prior via a GAN,

autoencoder, or Gaussian Mixture Model. The first two are based on heuristics about what

the inputs should look like, while the third type learns a model of the data and attempts to

enforce that. We only employ the first type in the current work; while implementing them

during optimization is in progress, we currently only evaluate using thresholding on the final

grids.

4.2.3 Distance metrics for screening

Since the current study was performed as a proof-of-concept, we only consider the case

of using optimized ligand grids generated from a binding site to screen poses of screening

compounds docked into the same binding site. This avoids the problem of needing to align

or orient the grids to maximize their overlap, which would need to be addressed in the

more general case of conformer screening. To rank docked ligands, we score them based

on their similarity to the network-optimized pseudo-pharmacophore; we have implemented

five methods for computing similarity. These included the standard L1 and L2 distances;

the Hadamard (elementwise) product of the pair of grids; a method that thresholded low

magnitude densities to 0 and then provided a constant reward when the grids exhibited

concordance regarding the location of positive density and a constant negative penalty when

the screening grid had density in a location where the optimized grid had negative density;

and the Greenkhorn distance, an approximate earth mover’s distance. For the Greenkhorn

distance, “color” histograms (where the color channels correspond to distinct atom types as

usual) were computed as signatures that were provided as input to the transport calculation.

Only the first four methods are evaluated in the current results. All methods have parallel

CPU (via OpenMP[38]) and GPU (via CUDA[135]) implementations.

Both input optimization and adversarial training were implemented as custom solvers in

Caffe and are distributed as part of gnina at www.github.com/gnina/gnina, with combined

input optimization and virtual screening functionality provided in gninadream, a standalone

program.
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4.3 Results

Activation maximization for the purpose of examining what a network has learned and

optimization conditioned on an input binding site to generate pseudo-pharmacophores for

virtual screening are described below.

4.3.1 Activation Maximization

The result of optimizing randomly initialized input with respect to layers of each of our

three latest CNN models (Dense, Cross-Docked, and General, described in Chapter 3.2)

offers insight into the basis of the differences in their performance when applied to essential

drug discovery tasks. For illustrative purposes, visualization of inputs optimized with respect

to the affinity output layer is shown in Figure 51 and with respect to select filters in the final

convolutional layer is shown in Figure 52.

Figure 51: Visualization of inputs that maximally activate the affinity output of our lat-

est models. These inputs were generated from randomly initialized density by performing

gradient ascent with respect to the affinity output layer for each of our latest trained CNN

models.
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Figure 52: Visualization of inputs that maximally activate selected filters from the final

convolutional layer of our latest models. These inputs were generated from randomly ini-

tialized density by performing gradient ascent with respect to the center of the feature map

for a selected filter.

Broadly, both the affinity output- and final convolutional filter-optimized inputs suggest

that more sophisticated features have been learned by the Dense model compared with

the other two. The Cross-Docked and General models seem to have learned to broadly

detect the presence of specific atom types, to provide substantial rewards in proportion to

amounts of input density, they exhibit an obvious spatial relationship in which ligand density

primarily appears in the center of the grid and receptor density on the exterior, and they

also exhibit radial symmetry of the final features. In comparison, the Dense nets seem to

have learned more “natural” representations of optimal receptor-ligand relationships, with

the final convolutional filter depicting more specific input features with multiple atom types

in close proximity. To draw stronger conclusions about these features, more analysis will be

required.

4.3.1.1 Virtual screening First we evaluate the efficacy of the grid distance functions

for virtual screening by using the DUD-E reference crystal ligand for each target as the
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screening grid and measuring the grid distance between that and the benchmark compounds

to rank them for screening. The result is shown in Figure 53. It appears that the various

distances, especially the L1 distance (commonly used for comparing images) are reasonably

effective at ranking the benchmark compounds using the crystal ligand.
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Figure 53: Evaluating distance function performance based on using a provided crystal

ligand to screen for compounds, compared with the Dense CNN score and affinity models as

well as Vina as baselines.

In Figure 54 we look at using a generated pseudo-pharmacophore to screen, compared

with a centroid baseline and rescoring docked poses with the same model used to generate the

density. The Cross-Docked model and threshold distance generally have the best performance

for screening with the model-optimized input densities, so they are shown here. Note that

generating the pseudo-pharmacophore and screening with it via a grid distance function is

around 10 times faster than rescoring compound poses with the same model when there are

a large (>1000) number of conformers to be screened. Unfortunately there is a substantial

loss of accuracy, though the method still performs better than merely screening based on

centroid distances between the crystal ligand and docked poses of the screening ligands.
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Figure 54: Virtual screening performance comparison for optimized input versus rescoring

poses with the same model, using the centroid distance between test compounds and the

crystal ligand and Vina as baseline methods. This shows the boxplots of AUCs per-target

for DUD-E

Figure 55 shows the correlation between the AUCs per DUD-E target for pseudo-pharmacophore

screening for each of our latest CNN models and centroid screening. The Dense model has

no correlation in performance with centroid screening, while the other two models have weak

correlation. We can see for all three models that the pseudo-pharmacophore screening has

many targets for which good performance is achieved when centroid screening is basically

random; this suggests that more information is contained in the pseudo-pharmacophores

than just the location of the center of the binding site.
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Figure 55: Correlation between performing näıve unregularized input optimization and

screening based on centroid distance alone for DUD-E, based on AUCs computed per-target

Figure 56 shows the change in AUC per-target for using the pseudo-pharmacophores

generated by a given CNN model versus rescoring poses with the model directly, as well

as the actual AUC for ranking with the pseudo-pharmacophore. For all models, pseudo-

pharmacophore screening is worse than rescoring for most but not all DUD-E targets, sug-

gesting that the näıve approach is not a good substitute for rescoring with the underlying

model, despite its modest performance speedup. This approach is not universally worse,

however, and could be improved by incorporating methods discussed earlier such as the

“natural example” priors.
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Figure 56: The difference in AUC between generating optimized input and screening with

the “threshold” distance for a given model versus rescoring poses with the model directly,

as well as the actual AUC for screening with the overlap method.

An adversarial solver was implemented in Caffe to support training an adversarially-

resistant model via Projected Gradient Descent. The original goal was to prevent the model

from converging quickly during optimization in cases where very little density had been gen-

erated, based on the hope that adversarially resistant models would generate more density

overall. Screening performance for DUD-E did not improve with the adversarially trained

models, and the overall amount of density in pseudo-pharmacophores did not increase. How-

ever, the density may be more localized to the binding site rather than the optimization box

boundaries when optimizing with an adversarially trained model (Figure 57), and it could
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be worth exploring performance differences between models trained with this type of coun-

terexample during training.

Figure 57: Optimized input for the DUD-E target ABL1 from models trained with and

without adversarial perturbations have different distributions of density.

4.4 Conclusions

This project is only partially complete, but the work performed to date suggests that

even for the most näıve approach to using a trained network to optimize inputs it is possible

to obtain better than random virtual screening performance from the resulting pseudo-

pharmacophore, and that performance is not merely derived from centering the grid on the

binding site. Futhermore, while our CNN models are vulnerable to adversarially perturbed

inputs (a trait likely common to all neural networks[181]), this can be addressed by using

Projected Gradient Descent during training to augment input data and the resulting models

may have distinct properties worth investigating. Unfortunately the basic approach assessed

to date provides faster virtual screening than a conventional conformer rescoring approach
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(assuming a typical number of compounds to be screened), but that is accompanied by an

unacceptable reduction in accuracy. Improving the priors applied during training and the

distance functions used to compare the screening and test compound grids may result in a

beneficial improvement in both speed and accuracy, as well as the utility for model explana-

tion afforded by neuron-specific input optimization. Currently the activation maximization

approach for evaluating what a model has learned provides suggestive insight into the basis

of the improved performance of the Dense model compared with our other latest models,

but more analysis is required to explain what it has actually learned and whether chemical

insight can be gained from the features on which its predictions are based.
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5.0 Conclusions

The work in this thesis has focused on developing, evaluating, and extending a novel

machine learning approach to drug discovery. This approach uses 3D voxels with separate

channels for each recognized atom type to featurize input structural data, and over the last

few years we have experimented with various training strategies (including distinct tasks and

datasets), different ways of using trained CNNs to extend our molecular docking program

gnina, and more rigorous ways to assess and explain model performance.

In Chapter 2 we focused on motivating a novel approach to molecular modeling for drug

discovery by prospectively evaluating selected linear and nonlinear methods fit to molecular

fingerprints and precomputed 3D molecular descriptors. While those efforts were not en-

tirely unsuccessful, the methods we used initially could clearly be improved on. This led our

group to develop 3D voxel-based CNNs, a project to which I contributed, especially via the

algorithm used to generate grids and advocating for the use of independent benchmarks for

model evaluation, which I ultimately constructed. Our gridding approach and a desire to

support alternative gridding strategies and modern neural network libraries led to the devel-

opment of libmolgrid, which makes our approach to input featurization, transformation,

and batch construction available to Python users working with PyTorch or Keras.

In Chapter 3 we revisited the problem of model evaluation. We began by using our

novel CNN scoring functions to make submissions to a blinded community benchmark, as in

Chapter 2 - but this time we performed close to the top in the affinity prediction tasks. We

also tested allowing the CNN to do limited pose sampling by optimizing poses sampled by

an approximate version of the Autodock Vina scoring function during docking, with some

promising results. However, that challenge was small and somewhat limited, leaving us

with lingering questions about how well our models generalize and what they have actually

learned. This led us to evaluate their virtual screening performance, a task for which they

were not trained. While our initial assessment suggested they performed quite well, the

expected utility of many existing virtual screening benchmarks has recently been undermined

by reports of significant bias. This literature suggests it is possible to trivially partition
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actives from inactives in these benchmarks using simple chemical descriptors. Motivated

by this problem, we developed a “simple descriptor” baseline with which other models can

be compared after fitting to the same training set, and we attempted to understand what

underlies our CNN model performance at a high level.

Finally, in Chapter 4 we developed a new approach to understanding the features a

model has learned to recognize. This approach can also be used to generate a pseudo-

pharmacophore representing what the network has learned to bind to an input binding site.

The method is based on using a trained network to perform optimization on its input,

either with respect to the last layer before the output (to generate an overall optimal ligand

density) or with respect to the network’s internal nodes for the purpose of interrogating the

features the network has learned. We describe the implementation of this method, relate it to

adversarial examples (training with adversarially perturbed examples was also implemented),

and perform a preliminary evaluation of using the generated pseudo-pharmacophores for

virtual screening.

There are several projects that I started but left unfinished during my thesis work that

someone else could resume for theirs. Two of these involved generating a fairly substantial

amount of molecular dynamics trajectories, which are currently being used by two other

members of our group for their own projects. One of these projects was intended to evaluate

the effect of different ligand parametrization methods on the accuracy of free energy calcu-

lations; for it, I generated the required simulations for the MMGBSA and MMPBSA three-

trajectory method (i.e. receptor-only, ligand-only, and the complex, all in explicit solvent)

for all reference complexes in DUD-E with binding affinity data available, with up to three

different charge models. I also performed MMGBSA and MMPBSA free energy calculations.

The other was intended to evaluate using a Long Short-Term Memory (LSTM) network to

map a full molecular dynamics trajectory to the associated binding affinity for the complex,

attempting to use attention over the course of the trajectory to identify residues critical to

binding. For that project, I implemented a method for specifying simulation frames in gnina

(later moved to libmolgrid) and generated simulations for over half of PDBBind-Refined

2017 (again, I generated the simulations that would be required for a three-trajectory free

energy calculation). I also did a preliminary analysis of fitting an LSTM to trajectory data
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to predict binding affinity and it seemed promising. For these projects, I wrote scripts that

automate generating ligand parameters with Antechamber[193], setting up a complex with

multiple structures for simulation, and performing initial minimization and pre-production

MDs with Amber[24]; these scripts are now used by our entire group.

I was also interested in exploring alternative approaches to voxelizing and traversing

structural input data. The only of these that I actually implemented was decomposing

inputs into smaller subgrids that are traversed sequentially. This makes the representation

size extensive, in theory, although the preliminary evaluation I performed suggested that

accuracy degraded when generalizing to input grids that were larger than those on which

a network was trained. A reason this size extensiveness could be useful is that instead of

needing to choose a large enough training grid size to reasonably contain anything we might

like to score later, we might be able to train on a smaller-sized grid and still generalize to

larger examples if necessary. Attention could again be leveraged to allow the network to

direct its exploration of the input, which could improve the performance of this approach

(by avoiding the need to score the full input) and providing some model explanation insight

by evaluating what the network is attending to when making predictions.

Finally, more work could be done for the project described in Chapter 4. The virtual

screening capabilities could be combined with the outputs of generative adversarial networks

(GANs) or variational autoencoders (VAEs), to test whether their outputs are useful for

virtual screening. A GAN or VAE might also be used to generate a more effective “natural”

prior during the backward pass of input optimization for the approach I explored, evaluating

whether that improves the quality of filter activation visualization or pseudo-pharmacophore

generation.
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Appendix A Supplemental Information for Chapter 2.1

A.1 Ligand-Based Regression Protocol

The CHEMBL3880 HSP90-alpha target dataset was downloaded from https://www.

ebi.ac.uk/chembl/. The data was then processed to extract compounds with valid IC50

values using Python:

import pandas as pd

hsp = pd.read_csv('bioactivity -15_21_16_49.txt',sep='\t')

smi = hsp[(hsp.STANDARD_TYPE == 'IC50') & (hsp.RELATION == '=') &

(hsp.STANDARD_UNITS == 'nM') & (hsp.PCHEMBL_VALUE > 0)]

.loc[:,['CANONICAL_SMILES','PCHEMBL_VALUE']]

smi.to_csv('hsp90.smi',sep='\t',index=False,header=False)

Salts were then removed from hsp90.smi by extracting only the largest connected com-

ponent. Scripts from https://github.com/dkoes/qsar-tools were then used to create

models and make predictions.

A.1.1 RDKit

outputfingerprints.py hsp90.smi -o hsp90_rdkit_fp.gz --rdkit

trainlinearmodel.py -o hsp90_rdkit.model hsp90_rdkit_fp.gz --maxiter 10000 --elastic

outputfingerprints.py --rdkit hsp90_test.smi -o hsp90_test_rdkit_fp.gz

applylinearmodel.py hsp90_rdkit.model hsp90_test_rdkit_fp.gz > rdkit.out

join hsp90_test.smi rdkit.out | awk '{print $2,$3}' > LigandScores-1.csv

A.1.2 SMARTS

createsmartsdescriptors.py hsp90.smi -o hsp90.smarts

outputfingerprints.py hsp90.smi -o hsp90_smarts_fp.gz --smarts
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--smartsfile hsp90.smarts

trainlinearmodel.py -o hsp90_smarts.model hsp90_smarts_fp.gz --elastic

outputfingerprints.py hsp90_test.smi --smartsfile hsp90.smarts -o hsp90_test_fp.gz

--smarts

applylinearmodel.py hsp90_smarts.model hsp90_test_fp.gz > smarts.out

join hsp90_test.smi smarts.out | awk '{print $2,$3}' > LigandScores-2.csv

A.1.3 ECFP6

outputfingerprints.py hsp90.smi --ecfp6 -o hsp90_ecfp6_fp.gz

trainlinearmodel.py -o hsp90_ecfp6.model hsp90_ecfp6_fp.gz --elastic

outputfingerprints.py --ecfp6 hsp90_test.smi -o hsp90_test_ecfp6_fp.gz

applylinearmodel.py hsp90_ecfp6.model hsp90_test_ecfp6_fp.gz > ecfp.out

join hsp90_test.smi ecfp.out | awk '{print $2,$3}' > LigandScores-3.csv

Figure 58: Heatmaps of backbone RMSDs between frames within 100ns trajectories of

MAP4K4 molecular dynamics simulations.
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Appendix B Supplemental Information for Chapter 2.2

B.1 Grids

(a) (b)

Figure 59: ManagedGrids manage their own memory buffer, which can migrate data between

the CPU and GPU and copy data to a NumPy array as shown in (a). Grids are a view over

a memory buffer owned by another object; they may be constructed from a Torch tensor, a

ManagedGrid, or an arbitrary data buffer with a Python-exposed pointer, including a NumPy

array as shown in (b).

Figure 59 illustrates the behavior of ManagedGrids (59a) and Grids (59b). ManagedGrids

can migrate data between devices, and they create a copy when converting to or from other

objects that have their own memory. Grids do not own memory, instead serving as a view

over the memory associated with another object that does; they do not create a copy of

the buffer, rather they interact with the original buffer directly, and they cannot migrate it

between devices.

The explicit specialization of a grid exposed in the Python molgrid API has a nam-

ing convention that specifies its dimensionality, underlying data type, and in the case of

Grids, the device where its memory buffer is located. The structure of the naming conven-

tion is [GridClass][NumDims][DataType]["CUDA" if GridClass=="Grid" and DataLoc
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exprovider = molgrid.ExampleProvider(shuffle=False, balanced=False,

stratify_receptor=False, labelpos=0, stratify_pos=1, stratify_abs=True, stratify_min=0,

stratify_max=0, stratify_step=0, group_batch_size=1, max_group_size=0,

cache_structs=True, add_hydrogens=True, duplicate_first=False, num_copies=1,

make_vector_types=False, data_root="", recmolcache="", ligmolcache="")

Listing 2: Available arguments to ExampleProvider constructor, along with their default

values.

== "GPU"]. Since ManagedGrids can migrate their data from host to device, their names do

not depend on any particular data location. For example, a 1-dimensional ManagedGrid of

type float is an MGrid1f, a 3-dimensional Grid of type float is a Grid3f, and a 5-dimensional

Grid of type double that is a view over device data is a Grid5dCUDA.

B.2 ExampleProvider

Listing 2 shows the options that can be set via the ExampleProvider constructor. Ran-

domization is enabled with the shuffle option; oversampling of underrepresented classes

to provide equal representation from all available classes categorized by the Example la-

bel is enabled with balanced; resampling based on a specific molecule associated with an

Example (determined by the first filename encountered on a given metadata line) comes

from stratify receptor (as the name suggests, this is often used to sample equally from

Examples associated with different receptors); labelpos specifies the location of the binary

classification label on each line of the metadata file, in terms of an index starting from 0 that

numbers the entries on a line; stratify pos similarly specifies the location of a regression

target value that will be used to stratify Examples for resampling (for example a binding

affinity); stratify abs indicates that stratification of Examples based on a regression value

will use the absolute value, which is useful when a negative value has a special meaning

such as with a hinge loss; and stratify min, stratify max, and stratify step are used
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to define the bins for numerical stratification of Examples.

Additional options provide customization for interpreting examples and optimizations

for data I/O. When using a recurrent network for processing a sequence of data, such as the

case of training with molecular dynamics frames, group batch size specifies the number

of frames to propagate gradients through for truncated backpropagation through time and

max group size indicates the total number of Examples associated with the largest Example

group (e.g. the maximum number of frames). add hydrogens will result in protonation of

parsed molecules with OpenBabel. duplicate first will clone the first CoordinateSet

in an Example to be separately paired with each of the subsequent CoordinateSets in

that Example (e.g., a single receptor structure is replicated to match different ligand poses).

num copies emits the same example multiple times (this allows the same structure to be pre-

sented to the neural network using multiple transformations in a single batch). make vector types

will represent types as a one-hot vector rather than a single index. cache structs will keep

coordinates in memory to reduce training time. data root allows the user to specify a shared

parent directory for molecular data files, which then allows the metadata file to specify the

filenames as relative paths. Finally, recmolcache and ligmolcache are binary files that

store an efficient representation of all receptor and ligand files to be used for training, with

each structure stored only once. These are created using the create caches2.py script from

https://github.com/gnina/scripts. Caches combine many small files into one memory

mapped file resulting in a substantial I/O performance improvement and reduction in mem-

ory usage during training.

B.3 GridMaker

Listing 3 shows the available arguments to the GridMaker constructor. GridMaker op-

tions include the grid resolution; dimension along each side of the cube; whether to constrain

atom density values to be a binary indicator of overlapping an atom, rather than the default

of a Gaussian to a multiple of the atomic radius (call this grm) and then decaying to 0

quadratically at 1+2grm2

2grm
; whether to index the atomic radius array by type id (for vector
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gmaker = molgrid.GridMaker(resolution=0.5, dimension=23.5, binary=False,

radius_type_indexed=False, radius_scale=1.0, gaussian_radius_multiple=1.0)

Listing 3: Available arguments to the GridMaker constructor, along with their default values.

types); a real-valued pre-multiplier on atomic radii, which can be used to change the size

of atoms; and, if using real-valued atomic densities (rather than the alternative binary den-

sities), the multiple of the atomic radius to which the Gaussian component of the density

extends.

B.4 Transform

# Usage 1: specify a center, maximum distance for random translation,

# and whether to randomly rotate

transform1 = molgrid.Transform(center=molgrid.float3(0.0,0.0,0.0), random_translate=0.0,

random_rotation=False)

qt = molgrid.Quaternion(1.0, 0.0, 0.0, 0.0)

center = molgrid.float3(0.0, 0.0, 0.0)

translate = molgrid.float3(0.0, 0.0, 0.0)

# Usage 2: specify a particular rotation, to be performed around the molecule's center

transform2 = molgrid.Transform(qt)

# Usage 3: specify a particular rotation and the center around which it will be performed

transform3 = molgrid.Transform(qt, center)

# Usage 4: specify a particular rotation and center, along with a specific translation

transform4 = molgrid.Transform(qt, center, translate)

Listing 4: Available Transform constructors.
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1 for data in batch:

2 t = molgrid.Transform(center=(0,0,0), random_translate=2.0, random_rotation=True)

3 t.forward(data, transformed_data, dotranslate=True)

4 # do something with transformed_data

Figure 60: An illustration of molgrid::Transform usage, applying a distinct random rota-

tion and translation to each of ten input examples. These transformations can also be ap-

plied separately to individual coordinate sets. Transformations to grids being generated via a

molgrid::GridMaker can be generated automatically by specifying random rotation=True

or random translation=True when calling Gridmaker::Forward.

In order to provide some more detail about specialized use of molgrid::Transform, Fig-

ure 60 shows the behavior of Transform::forward, taking an input Example and returning

a transformed version of that Example in transformed example. Usage examples for the

Transformer constructors are shown in Listing 4.
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B.5 Results

(a) (b) (c)

Figure 61: Loss per iteration while training a simple model, with input gridding and trans-

formations performed on-the-fly with libmolgrid and neural network implementation per-

formed with (a) Caffe, (b) PyTorch, and (c) Keras with a Tensorflow backend.

Figure 61 shows successful training of a basic feed-forward network on a toy dataset using

each of these three deep learning frameworks to perform binary classification of active versus

inactive binding modes. Timing calculations for the main text performance figures were per-

formed using GNU time, while memory utilization was obtained with nvidia-smi -q -i 1

-d MEMORY -l 1. The Caffe data was obtained using caffe train with the model at https:

//github.com/gnina/models/blob/master/affinity/affinity.model with the affinity

layers removed; the PyTorch data was obtained using https://gnina.github.io/libmolgrid/

tutorials/train_basic_CNN_with_PyTorch.html, run for 10,000 iterations; and the Keras

data was obtained using https://gnina.github.io/libmolgrid/tutorials/train_basic_

CNN_with_Tensorflow.html, run for 10,000 iterations. The metadata file for training is at

https://github.com/gnina/libmolgrid/blob/master/test/data/small.types, using struc-

tures found at https://github.com/gnina/libmolgrid/tree/master/test/data/structs.

The Cartesian reduction example can be found at https://gnina.github.io/libmolgrid/

tutorials/train_simple_cartesian_reduction.html.
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Appendix C Supplementary Information for Section 3.2

C.1 Confidence Intervals for EF1% Differences Between Methods

There has been some debate about how to statistically assess claims made about ma-

chine learning model performance for drug discovery tasks like virtual screening. The norm

has been, as in much of the other recent machine learning literature that reports model

performance on community benchmarks, to avoid statistically evaluating them at all. More

recently some have used nonparametric tests like the Wilcoxon on a given benchmark as a

whole[2] to compute a p-value indicating the probability of whether a given pair of methods

could have had the observed or more extreme performance on the benchmark if they were

not actually performing differently. This is potentially problematic for a virtual screening

benchmark since the number of unique observations is equal to the number of targets, and

there are often fewer than the recommended number for using the Wilcoxon to make accu-

rate calculations; furthermore, a practitioner choosing between scoring functions probably

cares about whether a given method is likely to better than another on the target they are

working on, and it may be the case that the method appeared better on the benchmark

as a whole but exhibited worse performance on a similar target to the one of interest. A

reasonable approach when assessing models fit to a given dataset is to perform 5 × 2 cross

validation[44], which consists of five rounds of two-fold cross validation, but in the case of

an independent test benchmark we would like to avoid fitting to the test data. Instead we

chose to use bootstrapping to compute 95% confidence intervals on the difference in EF1%

values between methods per target[132], and permutation tests on the active ranks[209] to

calculate p-values indicating whether the methods could have had the observed or more ex-

treme differences in performance and still be expected to perform the same prospectively on

a screen for that target. Unfortunately this means many comparisons between methods were

made, and that data are difficult to summarize concisely. We have included the comparisons

made with respect to the Dense affinity model (Table 6 for LIT-PCBA only, since it con-

sists of real data from high throughput screens and therefore the assumption that the data
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distribution reflects real-world data distributions seems more likely to hold for LIT-PCBA

than for DUD-E.
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Target RF-Score-4 RF-Score-VS Vinardo Vina

ADRB2 0.000, [0.000, 0.000],

p=1.000

0.000 [0.000, 0.000],

p=1.000

0.000 [0.000, 0.000],

p=1.000

0.000 [0.000, 0.000],

p=1.000

ALDH1 0.698 [0.363, 1.088],

p=0.000

0.335 [-0.084,

0.740], p=0.127

0.433 [0.056, 0.851],

p=0.044

0.265 [-0.140,

0.656], p=0.244

ESR1 ago 7.692 [-15.385,

30.769], p=1.000

7.692 [-15.385,

30.769], p=1.000

15.385 [-7.692,

30.769], p=0.484

7.692 [-15.385,

30.769], p=1.000

ESR1 ant 4.902 [0.980,

12.745], p=0.208

6.863 [1.961,

12.745], p=0.007

5.882 [0.980,

12.745], p=0.033

4.902 [0.980,

11.765], p=0.212

FEN1 4.607 [1.897, 7.046],

p=0.001

2.981 [-0.271,

5.691], p=0.071

4.336 [1.355,

7.046], p=0.002

3.523 [0.542,

6.233], p=0.025

GBA 8.434 [3.012,

13.855], p=0.007

12.048 [6.627,

16.867], p=0.000

6.627 [0.602,

12.651], p=0.053

8.434 [3.012,

13.855], p=0.005

IDH1 5.128 [-5.128, 12.821],

p=0.613

0.000 [-12.821,

12.821], p=1.000

7.692 [0.000,

15.385], p=0.241

7.692 [-2.564,

15.385], p=0.243

KAT2A 1.546 [-1.031, 4.124],

p=0.446

0.000 [-3.093, 3.093]

p=1.000

1.546 [-1.031,

4.124], p=0.443

2.062 [-0.515,

4.124], p=0.213

MAPK1 0.649 [-0.974, 2.273],

p=0.694

0.325 [-1.299,

1.948], p=1.000

-0.974 [-2.922,

1.299], p=0.538

-1.623 [-3.896,

0.649], p=0.259

MTORC1 1.031 [-1.031, 2.062],

p=1.000

1.031 [-1.031,

2.062], p=1.000

1.031 [-1.031,

2.062], p=1.000

1.031 [-1.031,

3.093], p=1.000

OPRK1 4.167 [-8.333, 8.333],

p=1.000

4.167, [-4.167,

8.333], p=1.000

4.167 [-4.167,

8.333], p=1.000

4.167 [-8.333,

8.333], p=1.000

PKM2 -0.733 [-1.832, 0.366],

p=0.342

-0.183 [-1.099,

0.733], p=1.000

-0.183 [-1.099,

0.916], p=1.000

-0.549 [-1.648,

0.549], p=0.502

PPARG 3.704 [-3.704, 7.407],

p=1.000

3.704 [-3.704,

7.407], p=1.000

-3.704 [-14.815,

7.407], p=1.000

3.704 [-3.704,

7.407], p=1.000

TP53 0.000 [-5.063, 2.532],

p=1.000

1.266 [-2.532,

3.797], p=1.000

-2.532 [-7.595,

2.532], p=0.621

-1.266 [-6.329,

2.532], p=1.000

VDR 0.567 [-0.340, 1.587],

p=0.334

-0.907 [-2.041,

0.227], p=0.202

0.454 [-0.567,

1.361], p=0.492

0.907 [0.113,

1.701], p=0.059

Table 6: Actual difference, 95% confidence intervals, and p-values for difference in EF1%

between the Dense Affinity model and non-CNN methods, evaluated for the targets in LIT-

PCBA. Cells where the confidence interval does not include 0 are bolded.
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C.2 Simple Descriptor Model Performance

Actual virtual screening performance (measured by EF1%) is shown for models fit to the

PDBbind-Refined set (Figure 62), the PDBbind-General set (Figure 63), and the CrossDock

set (Figure 64). Simple descriptor model performance is broken down by input feature type,

with the performance shown the best performance achieved for the target for any of the

models fit to that set of features.
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Figure 62: Actual EF1% values for models fit to the PDBbind Refined Set. Simple descriptor

models are broken down by descriptor type. Results are shown for DUD-E (a) and LIT-

PCBA (b).
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Figure 63: Actual EF1% values for models fit to the PDBbind General Set. Simple descriptor

models are broken down by descriptor type. Results are shown for DUD-E (a) and LIT-

PCBA (b).
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Figure 64: Actual EF1% values for models fit to the Cross-Docked set[57]. Simple descriptor

models are broken down by descriptor type. Results are shown for DUD-E (a) and LIT-

PCBA (b).
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C.3 The effect of training set similarity on performance
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Figure 65: Comparison of EF1% for DUD-E (a) and LIT-PCBA (b) with all compounds

included versus removing compounds based on similarity to training set. The threshold

for compound similarity was a Tanimoto coefficient of 0.8. We applied that threshold to

compounds that were provided as training examples as part of a complex with a protein

that had at least 50% sequence identity with the test set target being evaluated, as well as

across all compounds seen during training.
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C.4 Reweighting scores to calibrate performance
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Figure 66: Effect of various score calibration approaches on DUD-E EF1%.
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C.5 Score Distributions Per Class

Figure 67: Score distributions and correlations for the different methods tested for DUD-E,

separated by class.
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Figure 68: Score distributions and correlations for the different methods tested for LIT-

PCBA, separated by class.
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[141] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, et al. Scikit-learn: Machine learning in python. The Journal of Machine
Learning Research, 12:2825–2830, 2011.
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