
Distributed Sparse Computing and Communication for Big Graph Analytics

and Deep Learning

by

Mohammad Hasanzadeh Mofrad

Master of Science, Amirkabir University of Technology, 2013

Submitted to the Graduate Faculty of

the School of Computing and Information in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2020

UNIVERSITY OF PITTSBURGH

SCHOOL OF COMPUTING AND INFORMATION

This dissertation was presented

by

Mohammad Hasanzadeh Mofrad

It was defended on

October 30, 2020

and approved by

Dr. Rami Melhem, Department of Computer Science, University of Pittsburgh

Dr. Alexandros Labrinidis, Department of Computer Science, University of Pittsburgh

Dr. John Lange, Department of Computer Science, University of Pittsburgh

Dr. Balaji Palanisamy, Department of Informatics and Networked Systems, University of

Pittsburgh

Dr. Mohammad Hammoud, Department of Computer Science, Carnegie Mellon University

in Qatar

Dissertation Director: Dr. Rami Melhem, Department of Computer Science, University of

Pittsburgh

ii

Distributed Sparse Computing and Communication for Big Graph Analytics

and Deep Learning

Mohammad Hasanzadeh Mofrad, PhD

University of Pittsburgh, 2020

Sparsity can be found in the underlying structure of many real-world computationally

expensive problems including big graph analytics and large scale sparse deep neural networks.

In addition, if gracefully investigated, many of these problems contain a broad substratum of

parallelism suitable for parallel and distributed executions of sparse computation. However,

usually, dense computation is preferred to its sparse alternative as sparse computation is not

only hard to parallelize due to the irregular nature of the sparse data, but also complicated

to implement in terms of rewriting a dense algorithm into a sparse one. Hence, foolproof

sparse computation requires customized data structures to encode the sparsity of the sparse

data and new algorithms to mask the complexity of the sparse computation. However, by

carefully exploiting the sparse data structures and algorithms, sparse computation can reduce

memory consumption, communication volume, and processing power and thus undoubtedly

move the scalability boundaries compared to its dense equivalent.

In this dissertation, I explain how to use parallel and distributed computing techniques

in the presence of sparsity to solve large scientific problems including graph analytics and

deep learning. To meet this end goal, I leverage the duality between graph theory and sparse

linear algebra primitives, and thus solve graph analytics and deep learning problems with the

sparse matrix operations. My contributions are fourfold: (1) design and implementation of a

new distributed compressed sparse matrix data structure that reduces both computation and

communication volumes and is suitable for sparse matrix-vector and sparse matrix-matrix

operations, (2) introducing the new MPI ∗ X parallelism model that deems threads as basic

units of computing and communication, (3) optimizing sparse matrix-matrix multiplication

by employing different hashing techniques, and (4) proposing the new data-then-model par-

allelism that mitigates the effect of stragglers in sparse deep learning by combining data

and model parallelisms. Altogether, these contributions provide a set of data structures and

algorithms to accelerate and scale the sparse computing and communication.

iii

Table of Contents

1.0 Introduction . 1

1.1 Distributed Sparse Computing and Communication for Graph Analytics . . 2

1.1.1 Identifying Sources of Sparsity in Graph Analytics 2

1.1.2 Exposing Challenges of Sparsity in Graph Analytics 3

1.1.3 Achieving scalability in Distributed Graph Analytics 4

1.2 Distributed Sparse Computing and Communication for Deep Learning . . . 5

1.2.1 Identifying Sources of Sparsity in Sparse Deep Neural Networks Inference 5

1.2.2 Exposing Challenges of Sparsity in Deep Learning 6

1.2.3 Achieving scalability in Distributed Deep Learning 7

1.3 Research Contributions . 8

2.0 Background and Related Work . 10

2.1 Sparse Matrix Data Structures and Primitives 10

2.1.1 Sparse Matrix Data Structures . 10

2.1.2 Sparse Matrix Primitives . 11

2.2 Sparse Matrix Partitioning . 13

2.3 Linear Algebra-based Graph Analytics . 15

2.3.1 The Case for Duality Between Graph Theory and Linear Algebra . . . 15

2.3.2 Linear Algebra-based Graph Analytics Systems 16

2.4 Linear Algebra-based Sparse Deep Learning 16

2.4.1 Dense Deep Neural Networks . 16

2.4.2 Sparse Deep Neural Networks . 17

2.4.3 Sparse Deep Neural Networks Parallelism Models 17

2.5 Traditional (Non-algebraic) Graph Analytics 17

2.5.1 Graph Theory-based Graph Analytics Systems 17

2.5.2 Graph Data Structures and Operations 18

2.5.3 Graph Partitioning . 19

iv

2.6 Summary . 20

3.0 Efficient Distributed Graph Analytics using Triply Compressed Sparse

Format . 21

3.1 Column Compressed Sparse Formats . 21

3.1.1 CSC Format . 22

3.1.2 DCSC Format . 23

3.2 Motivation . 24

3.3 Triply Compressed Sparse Format . 26

3.3.1 Triply Compressed Sparse Column (TCSC) 26

3.3.2 Comparison of Space Requirements 28

3.3.3 Translating Graph Algorithms onto SpMSpV2 Operations 29

3.4 GraphTap: Distributed Graph Analytics using Triply Compressed Sparse

Format . 31

3.4.1 Matrix Partitioning . 32

3.4.2 Vertex Program Execution . 32

3.4.2.1 Scatter-Gather . 33

3.4.2.2 Combine . 33

3.4.2.3 Apply . 34

3.4.2.4 Activity Filtering and Computation Filtering 34

3.5 Results . 35

3.5.1 Experimental Setup . 35

3.5.1.1 Hardware and Software Configurations 35

3.5.1.2 Counterpart Systems . 35

3.5.1.3 Graph Datasets . 36

3.5.1.4 Graph Applications . 36

3.5.2 Single Node Results . 36

3.5.2.1 Space Utilization . 36

3.5.2.2 Cache Analysis . 37

3.5.2.3 Time Analysis . 38

3.5.3 Distributed Processing Results . 39

v

3.5.3.1 Speedup Comparison of CSC, DCSC, and TCSC in GraphTap 39

3.5.3.2 Scalability Comparison of CSC, DCSC, and TCSC in GraphTap 40

3.5.4 Runtime Comparison of GraphPad, LA3, and GraphTap 41

3.5.5 Discussion of Results . 43

3.6 Conclusion . 44

4.0 Graphite: A NUMA-aware HPC System for Graph Analytics Based

on a new MPI ∗ X Parallelism Model . 45

4.1 2D-process-based Matrix Tiling & Placement 46

4.2 2D-Thread-based Matrix Tiling & Placement 49

4.3 NUMA-aware placement in 2D-thread-based Tiling 53

4.4 Summary of MPI ∗ X Features . 54

4.5 The Graphite . 56

4.5.1 Multithreaded MPI Input Processing 56

4.5.2 Distributed SpMSpV2 using 2D-thread-based Tiling & Placement . . . 57

4.5.3 Matrix Computing Model . 57

4.5.3.1 Broadcast Operation . 58

4.5.3.2 Combine Operation . 60

4.5.3.3 Apply Operation . 61

4.5.4 Leveraging NUMA in Graphite . 61

4.5.4.1 NUMA-aware Shared Memory Communication 61

4.5.4.2 Processor & Memory Affinity 62

4.5.5 Enabling Compiler Optimization . 62

4.5.6 Activity & Computation Filtering . 63

4.6 Results . 64

4.6.1 Experimental Settings . 64

4.6.1.1 Cluster Configuration . 64

4.6.1.2 Counterpart Systems . 65

4.6.1.3 Graph Datasets . 65

4.6.1.4 Graph Applications . 65

4.6.2 Multithreading Spectrum . 66

vi

4.6.3 Sensitivity to Different Optimizations 67

4.6.4 Execution Time Analysis . 68

4.6.5 Comparisons with other Systems . 69

4.6.5.1 Weak Scaling Comparison . 69

4.6.5.2 Strong Cluster Scaling Comparison 71

4.6.5.3 Strong Data Scaling Comparison 72

4.6.5.4 Discussion of Evaluated Systems 72

4.7 Conclusions . 73

5.0 Studying the Effects of Hashing of Sparse Deep Neural Networks on

Data and Model Parallelisms . 75

5.1 Background . 76

5.1.1 Inference using Sparse Matrix-Matrix Multiplication 76

5.1.2 Data and Model Parallelisms . 76

5.2 The Duality Between Left and Right SpMM 77

5.2.1 Data Parallelism with Left SpMM . 78

5.2.2 Model Parallelism with Right SpMM 80

5.3 Neural Network Hashing . 80

5.4 Results . 82

5.4.1 Experimental Settings . 82

5.4.1.1 Datasets . 82

5.4.1.2 Hardware Specifications . 83

5.4.1.3 Software Specifications . 83

5.4.2 Single Machine Benchmarking . 83

5.4.2.1 Runtime Variability . 84

5.4.2.2 Cache Utilization . 85

5.4.2.3 Implications of hashing . 86

5.4.3 Wide-scale Benchmarking . 87

5.5 Conclusion . 90

6.0 Accelerating Distributed Inference of Sparse Deep Neural Networks

via Mitigating the Straggler Effect . 91

vii

6.1 Motivation . 92

6.2 Inference using Data-then-Model Parallelism 94

6.2.1 Elastic Locking Mechanism . 95

6.2.2 Thread Scheduling Algorithms . 98

6.3 Results . 99

6.3.1 Experimental Settings . 99

6.3.1.1 Hardware Specifications . 99

6.3.1.2 Implementation Details . 99

6.3.1.3 Parallelism Models . 100

6.3.1.4 Parameter Settings . 100

6.3.1.5 Datasets . 101

6.3.2 Studying the Impact of Neural Network Hashing 101

6.3.3 Single Node Comparison with other Parallelisms 102

6.3.4 Distributed DNN Inference Performance Analysis 103

6.4 Conclusion . 104

7.0 Conclusions and Future Work . 105

7.1 Conclusions . 105

7.2 Future Work . 107

Bibliography . 108

viii

List of Tables

1 Contributions overview . 8

2 Space required for storing matrix, vector, and row and column indirections of

different compression schemes. 27

3 Datasets used for experiments. Zc and Zr are the percentage of zero columns and

rows. T is the type (including web crawl, social network and synthetic graphs).

N is the number of machines used to process the graph. 37

4 2D-process-based tiling versus 2D-thread-based tiling. The utilized function

Factorize(p) returns pr and pc such that pr . pc = p and abs(pr - pc) is

minimized. 51

5 The traditional MPI + X versus the new MPI * X parallelism models. 55

6 Datasets used for experiments, and the number of nodes used to process them. . 64

7 Summary of features of the studied systems. 73

8 Sparse DNNs dataset. m, n, nnz & L are numbers of instances, features/ neurons,

nonzeros, and layers, respectively. First column is used as an ID for DNN scale. . 82

ix

List of Figures

1 The transformation of a graph into its adjacency list and then its adjacency matrix.

In addition to many zero entries, there are even empty rows (third row) and

columns (second column) that can be ignored when executing an algorithm. . . . 3

2 Matrix multiplication where the multiplication of first and second input matrices A

and B produces the output matrix C. These matrices can efficiently be represented

by sparse formats to reduce in both storage and computation. 6

3 Matrix and vector tiling for n x n matrix A and n x 1 vector s with p=4 processes. 14

4 Process placement for n x n matrix A and n x 1 vector s with p=4 processes. . . 14

5 (a) An input graph with 6 vertices and 8 edges. (b) The adjacency list where

each entry is an edge from the source endpoint (Src) to a destination endpoint

(Dst) with a weight (Wgt). (c) The adjacency matrix. (d) The transpose of the

adjacency matrix denoted by A. 22

6 CSC format for Figure 5d. 23

7 DCSC format for Figure 5d. 23

8 Comparison of different compression formats and their primitives using PR . . . 25

9 TCSC format for Figure 5d. 26

10 Space of different compressions using (3.1). 28

11 Calculating weighted outgoing degree of Figure 5d. 30

12 (a) Partitioning a matrix into a p x p grid of tiles and a vector into p segments

where p=4 is the number of processes. (b) Assigning processes to tiles and seg-

ments where. 31

13 Figure 5d matrix partitioned into four TCSC tiles. 31

14 Normalized space, speedup, and cache misses of different compression techniques

on a single node for PR with CSC as baseline. 38

15 Normalized speedup of compressions on GraphTap for PR with CSC as baseline . 40

16 Scalability tests for different compressions. 41

x

17 Runtime of GraphPad, LA3, and GraphTap . 41

18 Matrix and vector 2D layouts (p = 4). (a) 2D-process-based partitioning of matrix

and vector, (b) 2D-Cyclic process placement (e.g. the shaded tiles are assigned to

P0), (c) 2D-Staggered process placement, and (d) 2D-Staggered leader/follower

configuration for distributed SpMV. 46

19 GraphPad tile processing (MPI + X) with p = 4 processes and t = 2 threads.

Tiles are processed in a row-wise order where each tile is split into m smaller sub-

tiles where m is much bigger than t for balancing load among threads. (a) Steps

taken to process tiles/segments by process zero: (1) and (2) are row group SpMVs

followed by their communication episodes, (3) is the accumulation of results for

the row group owned by process zero, and (4) is P0’s synchronization with other

processes. (b) Compulsory forks/joins of t threads while processing each tile. . . 48

20 Tile layout for p = 4 and t = 2. The 2D grid has (p . t)(p . t) = 64 tiles with p . t

= 8 tiles per thread and (p . t)(p . t) = 16 tiles per process. In (a), rows marked

as shifted are shifted to guarantee having t diagonal tiles per process. In (b), Pi

Tj denotes thread j of process i. Leader threads are at diagonal tiles, and follower

threads have the same ids as their leader. Note that each thread is responsible for

8 tiles (e.g., the 8 tiles and 1 segment processed by thread P0 T 0 are shaded in (b). 49

21 Tiles processed by thread P0T 0; shaded tiles in Figure 20b (MPI * X). P0T 0 has

a single fork/join, and the synchronization is delayed till the end of an iteration

to maximize the overlapping of computation and communication. 52

22 (a) A cluster with two dual-core dual-socket NUMA machines, and (b) NUMA-

aware assignment of threads to cores with p = 4 and t = 2. 53

23 Integrating the matrix computing model (Broadcast, Combine, and Apply) with

2D-thread-based tiling to run SpMSpV2 (p = 4 and t = 2). 59

24 Runtime of Graphite and others with (# processes per machine, # of threads per

process) = (1, 28), (2, 14), (4, 7), (7, 4), (14, 2), and (28, 1). 66

25 Normalized speedup (weak scaling) of NUMA, COMP-OPTI, CMPT-FLTR, and

ACTY-FLTR with ALL-OFF/ALL-ON as baseline/headline. GM (grand geomet-

ric mean). 67

xi

26 Graphite Execution time breakdown (s) from running PR on R28 using 16 nodes. 68

27 Runtime of Graphite and other systems (weak Scaling). GM is the grand geometric

mean over all datasets. 69

28 Strong cluster scaling of different systems on R28. X -axis is the number of nodes. 71

29 Strong data scaling (R26-28 with 16 nodes) . 72

30 Data and model parallelisms for two threads (t=2). 76

31 Data*data and data*model parallelisms for two processes and two threads per

process (p=2, t=2). 77

32 Parallel Left SpMM C=A x B for data parallelism using two threads (t=2, i.e.,

Tk is the kth thread). (a) In data parallelism matrices are stored in CSR and

each thread multiplies a row of Ak by the entire B to produce a row of Ck. (b)

CSR storage for matrices A, B, and C. (c) pseudocode of the left SpMM algorithm. 78

33 Parallel right SpMM C =A * B using two threads (t=2, i.e., Tk is the kth thread).

(a) In model parallelism matrices are stored in CSC and each thread multiplies

a column of Bk by the entire A to produce a column of C. (b) CSC storage for

matrices A, B, and C. (c) pseudocode of the left SpMM algorithm. 79

34 First layer of A0 of Table 8 with white dots as weights. (a) E.g., column 1 is only

connected to rows 1,2, 64, and 65. (b) E.g., column 1 is connected to rows 1-15. . 81

35 Runtime comparison of different parallelisms processing D2 of Table 8 on a 28

core machine with p=1 and t=28. (a) - (d) are different hashing types with y-axis

as the input size varying from 6.3 M (1,000 sample) to 392 M nonzeros (60,000) . 84

36 Cache utilization of different parallelisms processing D2 of Table 8 on a 28 core

machine with p=1 and t=28. (a) - (d) are different hashing types with x-axis as

the input size varying from 6.3 M (1,000 sample) to 392 M nonzeros (60,000). . 85

37 Runtime (s) of data*data parallelism with CSR for different hashings (1-32 nodes). 87

38 Runtime (s) of data*data parallelism with CSC for different hashings (1-32 nodes). 88

39 Runtime (s) of data*model parallelism with CSC for different hashings (1-32 n.). 89

40 Performance of different parallelisms running different hashing types on D2 DNN

of Table 8 using a 28-core CPU (0 to 27 thread IDs). Horizontal bars, zig-zag line,

and vertical line show model, data, and data-then-model parallelisms, respectively. 92

xii

41 In data-then-model parallelism, all threads start off with data parallelism. Once a

thread becames idle, it gets recruited by an active thread and only those threads

collectively switch onto model parallelism. Here, T 0 gets recruited by T 1. 94

42 #threads running different parallelisms on C2 DNN of Table 8 on a 28-c. CPU. . 98

43 Effect of hashing on runtime (left y-axis) and cache performance (right y-axis) for

different parallelisms on D2 (Hashing Type: No = no hashing; Input = input hashing;

Layers = layer hashing; and Input + Layers = input & layer hashing). 101

44 Runtime of different parallelisms on a single machine for different DNN sizes. . . 102

45 Scalability of different parallelism models. 103

xiii

1.0 Introduction

The current disruptive state of High Performance Computing (HPC) and Cloud comput-

ing is made possible by emerging CPU and GPU architectures [18, 95], parallel processing

substrates [43], and scalability techniques to name just a few. These technologies are de-

signed to meet the processing challenges of Big Data produced in healthcare, government,

IT, and other sectors. Presently, with the impending information explosion of Big Data,

most of the raw Big Data is dominated by data produced by the web, social networks, road

networks, recommendation systems, location services, and biomedical domain.

Scalable systems for Big Data analytics are invaluable tools for efficiently extracting

insights from vast volumes of raw data generated mainly by billions of Internet-connected

users and devices. Big Data domains that focus on the relationships between data points,

(e.g., the Web, social networks, road networks, etc.) often model such data as graphs and

use graph analytics tools to interpolate or extract graphs’ relationships.

Scalable systems for Big Data Classification apply machine learning techniques

to Big Data. Deep learning [67] has delivered promising advancement in many large-scale

practical problems such as natural language processing [33, 81], speech recognition [4, 56],

and computer vision [32, 101]. Emergence of commercial virtual assistants, self-driving cars,

online item recommendation systems, and AI stock trading are dramatically accelerated by

the research conducted in deep learning. This dramatic change in IT industry is significantly

accredited to the research on the scalability of neural networks via revamping their archi-

tecture. Often, these complex architectures can simply be represented by graphs where the

relational representation of graphs makes it possible to exploit graph structures for weight

propagation of neural networks [107].

The goal of this dissertation is to leverage sparse linear algebra for graph analytics

and deep learning. Graphs are inherently heavily sparse structures. Exploiting this property,

many algebraic methods can be applied to graph problems by converting a graph into an

adjacency matrix [49]. Thus, a linear algebra approach to graph analytics is an alternative

for a graph theory approach.

1

Traditionally, the architecture of the majority of neural networks is dense. However, spar-

sity can be found in graph representation of large neural networks. Despite the conventional

wisdom implying that a neural network cannot classify accurately unless the network is fully

connected (dense), the recent introduction of sparse deep neural networks [42, 63, 72, 85]

has shown that sparse networks can deliver comparable accuracy to their dense counterparts

while consuming significantly less memory and computing power. Hence, a linear algebra

approach can be used to reformulate the computation of neural networks.

Sparse linear algebra-based techniques are mostly designed around a set of simple yet

powerful primitives. The two primary kernels widely utilized in this dissertation are gen-

eralized Sparse Matrix-Vector (SpMV) and Sparse Matrix-Matrix Multiplication

(SpMM) [64, 126]. Combining these primitives with efficient sparse data structures and

algorithms can potentially accelerate compute- and memory-intensive applications while hav-

ing a small memory requirement. The SpMV primitive allows implementation of a wide array

of iterative graph applications in the language of linear algebra including PageRank, shortest

path, breadth first search and connected component. Chapter 3 introduces a new optimized

sparse data structure that accelerates the SpMV primitive. Also, Chapter 4 reports a new

parallelism model that scales this primitive. Furthermore, SpMM primitive -which is more

complex than the SpMV- is the core kernel behind training/inference of sparse deep neural

networks. Chapter 5 studies the effect of hashing on the performance of DNN inference and

Chapter 6 introduces a new parallelism model that scales the DNN inference.

1.1 Distributed Sparse Computing and Communication for Graph Analytics

1.1.1 Identifying Sources of Sparsity in Graph Analytics

Graph analytics is about determining the strength or direction of a relationship between

vertices of an input graph. Most traditional graph analytics systems employ vertex-centric

computation schemes [50, 52, 54, 73, 75, 76, 79, 80, 111, 129]. However, many recent systems

have opted alternatively for linear algebra-based computation schemes, leveraging decades of

2

Src Dst Wgt
1
1
1
2
2
4
5
5

1
3
4
3
4
1
1
4

0.1
0.2
0.4
0.3
0.5
0.9
0.3
0.8

0 1 2 3 4 5
0
1 .1 .2 .4

2 .3 .5

3
4 .9

5 .3 .8

1

3

2 4

5

0.1

0.2

0.3

0.3

0.8
0.4

0.5

0.9

Graph G Adjacency List Adjacency Matrix A

Figure 1: The transformation of a graph into its adjacency list and then its adjacency matrix.

In addition to many zero entries, there are even empty rows (third row) and columns (second

column) that can be ignored when executing an algorithm.

work by the HPC community on optimizing the performance and scalability of basic linear

algebra operations [2, 5, 9, 21, 36, 41, 59, 64, 77, 115].

From Figure 1, we can identify multiple potential sources of sparsity. Mainly, having an

n×n dense matrix with n2 entries, a sparse representation reduces the time complexity of the

matrix from O(n2) to O(nnz) where nnz is the number of nonzero entries. In light of this,

the majority of literature [2, 5, 115] have overlooked the dimensionality of a sparse matrix

problem and leave it to be n×n whereas the true dimensionality of a sparse matrix problem

is nzr×nzc where nzr and nzc are the number of nonzero rows and columns. Moreover, the

SpMV primitive constitutes operating on a sparse matrix and two dense input and output

vectors. Most solutions [2, 5, 115] aim to optimize the computation for the sparse matrix

independent of vectors and keep them of size n; neglecting the sparsity distribution of input

and output vectors completely. However, employing a sparse vector representation, sizes of

input and output vectors can be reduced from O(n) to O(nzr) and O(nzc) which can save

in both storage size and the communication volume.

1.1.2 Exposing Challenges of Sparsity in Graph Analytics

Graphs are intrinsically sparse, and their sparsity is primitively encoded in their underly-

ing structure. Hence, an adjacency matrix of a graph essentially contains many zero entries.

3

In linear algebra-based graph analytics, sparsity exists in two types: sparsity derived from

the adjacency matrix of the input graph and sparsity produced by the semantic of the graph

application. Indexing nonzero entries of a sparse matrix is among certain challenges of the

former type of sparsity and identifying and exploiting the runtime sparsity characteristics of

an application is among challenges of the latter type.

Big real-world graphs tend to produce highly sparse matrices and thus the data structures

and algorithms associated with these operations need to be optimized for sparsity. Often,

such optimizations are pursued independently, resulting in various algorithms that do not

inherently exploit certain common data structural optimizations and vice-versa. Therefore,

tightly coupling specific algorithmic and data structural optimizations can yield significant

performance and scalability benefits in both centralized and distributed settings. Chapter

3 introduces a new sparse matrix format that co-compresses both matrix and vectors and

provides an efficient indexing algorithm to access their compressed data.

1.1.3 Achieving scalability in Distributed Graph Analytics

Given the limited hardware resources of a single computing node, it is always of com-

munity interest to scale out the computation over a cluster of machines using partitioning

techniques. MPI + X [118, 112, 11] is the defacto High Performance Computing (HPC)

parallelism model that achieves scalability through partitioning. Many distributed graph

theory-based systems [50, 54, 73, 75, 76, 129] rely on this model, where first a big graph is

divided into multiple equal-sized subgraphs based on the number of available MPI (Message

Passing Interface) [58] processes for scaling out, and then inside each machine, a subgraph

is further partitioned based on the number of available threads for scaling up. Here, MPI

is used to launch processes inside each machine and a threading library such as OpenMP

[97] or Pthread [71] (the X part) is used to launch threads inside each process. Similarly,

many distributed linear algebra-based systems [2, 5, 21, 36, 41, 59, 115] follow MPI + X

model and use sparse matrix partitioning [2, 47] to break the adjacency matrix of a graph

into multiple tiles for scaling out among machines, and further partition each tile based on

the number of threads for scaling up within a machine. In MPI + X parallelism model,

4

the units of computation and communication are processes which is not resourceful. Later,

Chapter 4 presents a new parallelism model called MPI ∗ X that deems threads as basic

units of computation and communication and diagonally scales over a cluster of machines.

This new parallelism model has less synchronization overhead and offers better overlapping

of computation with communication.

The key to achieving scalability in parallel and distributed graph/matrix computing is

to first partition the graph/matrix using the total number of available computing endpoints.

Usually, partitioning is followed by a placement algorithm which assigns the computing

endpoints to partitions. The goal of the placement algorithm is to balance the computation

across machines while keeping the communication cost low. While many systems [2, 5,

19, 59, 115] run the placement algorithm independent of system configuration; an efficient

placement, however, allows better utilization of hardware resources if certain architectural

characteristics such as Non-uniform Memory Access (NUMA) is utilized. Chapter 4 presents

a NUMA-aware placement algorithm that bridges the gap between the placement algorithm

and microarchitectural characteristics.

1.2 Distributed Sparse Computing and Communication for Deep Learning

1.2.1 Identifying Sources of Sparsity in Sparse Deep Neural Networks Inference

The architecture of a neural network is defined using its number of layers (depth) and the

number of neurons per layers (height/width). A layer of a neural network can be modeled

using graph representation where neurons are vertices and their connections are edges [61].

This representation is adequate to model both computation of neurons and the state on

which the neural network operates [1] as a directed acyclic graph [75]. Exploiting this

property, an adjacency matrix representation is used to model layers of a neural network

where connections of each layer is shown using a separate matrix. Often, these matrices are

filled densely with weights due to the fully connected feature of neural networks, however,

for sparse neural networks layer matrices are sparse as a result of following a predefined

5

0 1 2 3 4 5
0
1 .1 .2 .4

2 .3 .5

3
4 .9

5 .3 .8

1st Input Adjacency Matrix A

0 1 2 3
0 .4

1
2 .3 .6 .7

3 .1

4 .5

5

2nd Input Adjacency Matrix B

0 1 2 3
0
1 .2 .2

2 .25 .3

3
4
5 .4

×=

Output Adjacency Matrix C

Figure 2: Matrix multiplication where the multiplication of first and second input matrices

A and B produces the output matrix C. These matrices can efficiently be represented by

sparse formats to reduce in both storage and computation.

architecture [74, 85, 102] or pruning a network after being trained [72].

The bulk of computation of a fully connected (dense) neural network belongs to opera-

tions applied to its weights where all weights are presented. On the other hand, in sparsely

connected (sparse) neural networks with less available weights, the amount of computation

is greatly reduced to the number of available weights. Hence, deep neural networks have less

processor and memory requirements and are incredibly faster to train and infer.

The key linear algebra primitive for training/inference of neural networks is the SpMM

primitive. In SpMM, the result of multiplying two input matrices produces the output

matrix. As shown in Figure 2, sparsity can be found in the first and second input matrices,

where, e.g., in the context of neural networks the first input matrix is the input dataset,

the second input matrix is the first neural network layer, and the output matrix is the first

input matrix for the second layer of the neural network. In addition, the resulting matrix of

the SpMM is also sparse with extreme changes in its nonzero distribution compared to the

input matrices.

1.2.2 Exposing Challenges of Sparsity in Deep Learning

As the key algorithm behind the training of DNNs, Backpropagation algorithm [51] com-

prises of two passes. In the forward pass, the algorithm computes the network response for an

input and in the backward pass, it updates the weights backward using the error calculated for

each neuron. Backpropagation algorithm usually uses a variant of gradient decent algorithm

6

[106] to calculate the error for updating the weights backward. The Inference algorithm is

identical to the first pass of the DNN training where an input instance is feed to the trained

network and the network outputs a prediction. Training/inference shares the same algebraic

operations where an input is multiplied by the receptive weights and the summation of their

inner products fans out to the connected neurons of the next layer. Therefore, SpMM turns

out be to be the key primitive behind DNN training/inference. Note that DNN inference is

the target application of this dissertation.

Parallel and distributed training/inference of a sparse deep neural network can essentially

be reduced to the problem of parallel execution of SpMM. The theory of parallel matrix - ma-

trix multiplication spans over decades of research with Cannon’s algorithm [24] and Scalable

Universal Matrix Multiplication Algorithm (SUMMA) [122] as examples of parallel dense

matrix-matrix multiplication. Additionally, Gustavson’s algorithm [53], Sparse Accumula-

tor (SPA) [46], sparse Cannon [20], and Sparse SUMMA [22] are among the state-of-the-art

SpMM algorithms. SpMM performance is highly sensitive to the nonzero distribution of

input matrices as frequent sequential accesses to a same region of input matrices can drasti-

cally enhance the cache utilization. Moreover, due to the nature of sparsity, SpMM requires

a graceful memory allocation strategy that can efficiently allocate memory for sparse oper-

ations while avoiding excessive memory operations at runtime. Chapters 6 and 5 carefully

studies these challenges and propose solutions to them.

1.2.3 Achieving scalability in Distributed Deep Learning

Deep neural networks are usually trained using a variant of gradient descent optimization

algorithm [106]. Until recently, due to the sequential nature of this algorithm, training of

neural networks was only limited to a single machine. In such a configuration, not only

training a modest neural network takes too long, but also the size of the network is limited by

the computing resources of that machine. Recently, with the introduction of new distributed

gradient descent algorithms [1, 39], neural networks can be scaled out to a distributed setting

[1, 6, 13, 30, 29, 35, 39, 45, 57, 93, 110].

7

Table 1: Contributions overview

Scalability

Distributed Chapter 3 and 4 Chapter 5 and 6

Multicore Chapter 3 Chapter 5 Operator
(Application)

SpMV (Graph Analytics) SpMM (Deep Learning)

Often, distributed training/inference of neural networks is achieved via data parallelism,

or model parallelism. Data parallelism is the partitioning of the input dataset and model

parallelism is the partitioning of the network among multiple processes [45]. Chapter 6

introduces the data-then-model parallelism that combines data and model parallelisms to

facilitate the parallel execution of neural network inference.

1.3 Research Contributions

In this section, I introduce the key research contributions of this dissertation. As depicted

in the quadrant of Table 1, these contributions are studied in two dimensions, including

operator (application) and scalability. From the X-axis of Table 1, the studied operators are

SpMV which is studied in the context of graph analytics and SpMM which is studied in the

context of deep learning. From the Y-axis of Table 1, the scalability issue is studied in two

modes, multi-core and distributed. The Following is a more descriptive explanation of the

contributions of this dissertation that will be presented in the following chapters:

1. I design and implement a new sparse matrix compression format called Triply Com-

pressed Sparse Column (TCSC) that co-compresses a sparse matrix and the input and

output vectors. This compression technique removes empty rows and columns of a sparse

matrix before compressing it. Similarly, it removes empty rows/columns of a sparse 1D

row/column vector. Adopting the conventional Sparse Matrix - Vector (SpMV) primi-

tive, I redesign the SpMV primitive and devise a new primitive called Sparse Matrix -

8

Sparse input and output Vectors (SpMSpV2). Chapter 3 shows how coupling the TCSC

data structure and SpMSpV2 primitive accelerates the execution of graph applications.

2. Scalability through partitioning is a common practice in distributed computing. Fol-

lowing MPI + X parallelism model, traditionally, scaling direction is independent of

partitioning where the data is first partitioned based on the number of MPI processes

for scaling out and then if possible, threads for scaling up. In contrast to this model, I

couple the partitioning algorithm and scalability direction and propose MPI ∗ X paral-

lelism model that uses thread-based data partitioning. In this model, data is partitioned

based on the total number of threads and computation and communication is directly of-

floaded to threads. In addition, certain microarchitectural characteristics such as NUMA

are leveraged to maximize the shared memory communication among threads. Chapter

4 presents these contributions.

3. Data and model parallelisms are two common techniques to parallelize the computation of

neural networks where data parallelism parallelizes over that data and model parallelism

parallelizes over the network. Data parallelism suffers from the straggler effect, while

model parallelism undergoes frequent synchronizations. Chapter 5 studies the effects of

hashing of neural networks. Furthermore, Chapter 6 introduces data-then-model par-

allelism which combines data and model parallelisms and mitigates their disadvantages

using a lightweight thread scheduling algorithm.

9

2.0 Background and Related Work

In this chapter, I present the background needed for this dissertation and survey the

related work. First, in Section 2.1, I introduce sparse matrix data structures and primi-

tives which are the pillars of this dissertation. Next, in Section 2.2, I review sparse matrix

partitioning. Then, in Section 2.3 and 2.4, I show the connection between graph theory

and linear algebra and review the linear algebra-based approaches to graph analytics and

deep learning. Then, in Section 2.5, I survey the non-algebraic (theory-based) approaches

to graph analytics. Finally, in Section 2.6, I present a summary of this chapter.

2.1 Sparse Matrix Data Structures and Primitives

2.1.1 Sparse Matrix Data Structures

Sparse matrix data structures are the backbone of sparse computations. These data

structures only store the nonzero entries of a 2D sparse matrix using a set of 1D arrays.

In case of hypersparse matrices, sparse data structures help saving huge amounts of mem-

ory compared to their equivalent dense representations. Depending on requirements of an

algorithm, sparse data structures can provide either sequential row-major access using Com-

pressed Sparse Row (CSR) or column-major access using Compressed Sparse Column (CSC)

format to consecutive nonzero entries of rows or columns of a sparse matrix [46].

CSR and CSC formats [46] are two widely used sparse data structures that compresses

the nonzero entries of a matrix. Doubly Compress Sparse (DCSR) and Doubly Compress

Sparse Column (DCSC) [10, 19] are descendants of CSR and CSC formats which further

removes empty rows and columns of a matrix before compressing its nonzero entries. These

data structures have been implemented in many programming languages and libraries. For

example, Matlab’s sparse data structure uses CSC [46, 84], the Combinatorial Basic Linear

Algebra Subprogram (CombBLAS) [21] supports distributed DCSC data structure, and the

SciPy library for Python [109] supports both CSR and CSC.

10

In the context of linear algebra-based graph analytics, column compressed sparse data

structures are preferred to row compressed as there is often more empty columns than empty

rows. Recent linear algebra-based systems such as CombBLAS [19] and LA3 [2] use DCSC to

represent sparse matrices. DCSC removes empty columns of a matrix and hence it is asymp-

totically faster than CSC. Moreover, in the context of deep learning, a sparse deep neural

network [3, 63, 102, 103] can encode the sparsity of its hidden layers using the compressed

sparse data structures. For example, Compressed Deep Neural Network (CDNN) [55] and

Sparse CNN (SCNN) accelerator [82] utilize CSC, and Sparse Evolutionary Training - Multi

Layer Perceptron (SET-MLP) [74] uses CSR. Chapter 3 gives a thorough introduction on

CSC and DCSC and introduces a new sparse data structure called Triply Compressed Sparse

Column (TCSC) [86, 89] which is faster and more space saving than CSC and DCSC.

2.1.2 Sparse Matrix Primitives

Sparse matrix primitives are the key building blocks of many computing systems dealing

with Big Data. They are small components of a larger orchestrated workflow. For example,

Google Map-Reduce programming model [40] introduces map and reduce operations that can

be customized by users depending on their algorithmic needs. Using these two operations

many numerical problems such as counting, sorting, etc. can be implemented and solved in

parallel. Similarly, a linear algebraic approach to graph algorithms and sparse deep learning

boils down to a small yet powerful set of primitives including Sparse Matrix-Vector (SpMV),

Sparse Matrix-Matrix Multiplication (SpMM), sparse matrix-matrix elementwise, and sparse

matrix indexing primitives [21]. Among these, SpMV and SpMM are two broadly used sparse

linear algebra primitives.

Utilizing the duality between a graph and its adjacency representation; a graph G =

(V,E) can be represented by its analogous adjacency representation A where V is a set of n

vertices (|V | = n) and E is a set of nnz edges (|E| = nnz). The matrix A is an n×n matrix

with n rows and columns where A(i, j) = 1 means there is an edge from vertex vi to vertex

vj. A generic way of applying linear algebra to graph algorithms is to use semiring which is

a broader definition of SpMV multiplication. In this context, the SpMV operation becomes

11

A op1. op2 v where A is a sparse matrix, v is a vector, and op1.op2 is a pair of additive and

multiplicative semiring.

To elaborate, given an input graph G with n vertices, a graph algorithm on G can be

translated onto an iteratively executed SpMV primitive, y = A ⊕.⊗ x, where A is the G’s

n × n adjacency matrix, x and y are input and output vectors of length n, and ⊕.⊗ is a

pair of overridable additive and multiplicative operations [64]. The algorithm would then

iteratively apply the results from y back to x, looping until it converges or stopped after

certain numbers of iterations. The sparse matrix A is commonly stored using a variant of

CSC, which essentially compresses its nonzero elements into an array [19, 64]. As for x and

y, they are commonly stored using dense vectors of length n [8, 64].

Similarly, SpMM, C = A ⊕.⊗ B is also a widely used linear algebraic operation, where

results of operating on two sparse input matrices A and B produces an output sparse matrix

C. Here, A is the first m × n input sparse matrix, B is the second n × p input sparse

matrix, and C is the n × p product output matrix. Moreover, ⊕.⊗ is a semiring equipped

with addition and multiplication. Like SpMV primitive, the sparse matrices, A, B, and C

are commonly stored using a variant of CSC, which compresses the nonzero elements and

offers column-major access to the data [64].

In the context of linear algebra-based graph analytics, SpMV is a widely used primitive

that semantically covers a wide array of graph algorithms. For example, SpMV is used

to implement PageRank (PR), Single Source Shortest Path (SSSP), Breadth First Search

(BFS), Connected Component (CC), Collaborative Filtering and Between Centrality (BC)

algorithms [2, 5, 115]. SpMV is implemented in CombBLAS [19], Knowledge Discovery

Toolbox (KDT) [77], GraphMat [115], GraphPad [5], LA3 [2], GraphBLAS [37] ,GraphTap

[86], and Graphite [89].

In the context of deep learning, the key kernel behind training of sparse neural networks

is the SpMM primitive with multiplication and addition as the two operators of the SpMM

semiring. For training of sparse neural networks, Liu et al. [72] implemented a sparse matrix

- dense matrix multiplication kernel, Han et al. [55] decomposed the convolutional layers

and used sparse matrix - dense vector multiplication, and Kepner et al. [63] used SpMM

multiplication. Compared to dense matrix-matrix primitive, SpMM primitive [46, 53] has less

12

computation complexity and memory requirement. However, efficient application of SpMM

requires addressing certain challenges such as the SpMM algorithm, SpMM accumulation

strategy, and SpMM memory allocation. Later, Chapter 5 studies these challenges and

introduces solutions to them.

The SpMV and SpMM performances are highly sensitive to their selected sparse data

structures. Chapter 3 presents Triply Compressed Sparse Column (TCSC) data structure

and its designated primitive Sparse Matrix - Sparse input and output Vectors (SpMSpV2).

This data structure and primitive show how tightly coupling specific algorithmic and data

structural optimizations can result in significant performance and scalability benefits in

sparse computation and communication.

2.2 Sparse Matrix Partitioning

Matrix partitioning (tiling) partitions a 2D matrix into smaller partitions (sub-matrices

or tiles) [47, 92, 91]. Later these tiles are distributed among machines. Here, the number of

nonzero entries within each tile translates into the computational load of a partition and the

number of tiles translates into the communication cost. When it comes to the distributed

in-memory computing, partitioning turns out to be a sensitive task because first, imbalanced

partitions cannot effectively harvest available computational resources proportional to the

size of partitions and thus limit the scalability. Second, imbalanced partitions impose com-

munication overhead on a subset of overloaded machines. Therefore, in the case of a large

distributed cluster, communication time totally dominates the execution time.

In sparse matrix partitioning, vertex-cut partitions are preferred to edge-cut. This is

because a vertex-cut partitions the 2D matrix rows and/or columns into independent blocks

ready to use by SpMV and SpMM operations. Furthermore, many matrix partitioning

algorithms first hash and then break the 2D matrix into tiles. Hashing provides better load

balance for power-law graphs since it uniformly distributes edges among partitions [2, 5].

Partitioning is applied to both matrix and vectors used in the computation. Having an

n×n matrix A and a n× 1 vector s, Figure 3 shows the layouts of three matrix partitioning

13

A0 s0

A1 s1

A2 s2

A3 s3

m

n x n

n/p

n x 1

(a) 1D-Row

A0 A1 A2 A3 s0

n/p

n x 1

n

n x n

(b) 1D-Column

A00 A01 A02 A03 s0

A10 A11 A12 A13 s1

A20 A21 A22 A23 s2

A30 A31 A32 A33 s3

n/p

n x n

n/p

n x 1

(c) 2D

Figure 3: Matrix and vector tiling for n x n matrix A and n x 1 vector s with p=4 processes.

P0 P0

P1 P1

P2 P2

P3 P3

(a) 1D-Row

P0 P1 P2 P3 P0

(b) 1D-Column

P0 P0 P1 P1 P0

P0 P0 P1 P1 P1

P2 P2 P3 P3 P2

P2 P2 P3 P3 P3

(c) 2D-Block

P0 P1 P0 P1 P0

P2 P3 P2 P3 P1

P0 P1 P0 P1 P2

P2 P3 P2 P3 P3

(d) 2D-Cyclic

P0 P1 P0 P1 P0

P0 P1 P0 P1 P1

P2 P3 P2 P3 P2

P2 P3 P2 P3 P3

(e) 2D-Staggered

Figure 4: Process placement for n x n matrix A and n x 1 vector s with p=4 processes.

algorithms including 1D-Row, 1D-Column, and 2D. In 1D partitioning, number of partitions

is p and in 2D it is p2 where p is the number of processes.

Partitioning is followed by a placement algorithm which assigns processes to tiles. Figure

4 shows different process placement strategies including 1D-Row, 1D-Column, 2D-Block, 2D-

Cyclic [5], and 2D-Staggered [2]. 1D-Row and 1D-Column place a unique process in each

row and column of tiles. 2D-Block assigns contiguous blocks of 2D matrix to each process

and 2D-Cyclic assigns processes to tiles in a cyclic fashion. Finally, 2D-Staggered is like the

2D-Cyclic except for the fact it swaps rows to assign unique processes to diagonal tiles in

14

order to layout the communication pattern among processes.

In 1D tiling, each process will communicate with all p processes, whereas, in 2D tech-

niques the communication is limited to
√
p processes per row and column of tiles. Therefore,

2D tiling strategies are more common due to their less communication cost. Traditionally,

2D partitioning and placement algorithms are designed for processes; Chapter 4 introduces

a new 2D tiling technique that is designed for threads from scratch.

2.3 Linear Algebra-based Graph Analytics

2.3.1 The Case for Duality Between Graph Theory and Linear Algebra

A linear algebraic approach to graph processing consists of a fine transition from graph

representation of a set of vertices to adjacency matrix representation of matrix elements

[64]. Leveraging the duality between a graph and its adjacency representation, many graph

algorithms can be translated into linear algebra domain effortlessly. However, matrices have

not been traditionally adapted for parallel implementations of graph algorithms because a

dense matrix representation is not an efficient representation for a sparse graph. With recent

advances in sparse data structures and algorithms, practical approaches have been put forth

to enable processing of large sparse graphs using their adjacency matrix representation.

A linear algebraic approach to graph algorithms offers a number of advantages: 1) many

canonical graph algorithms are already developed and available to the community and with

little or no effort they can be implemented in the language of sparse linear algebra [50, 52,

54, 73, 75, 76, 79, 80, 111, 129], 2) a wide range of dense linear algebra algorithms has been

already developed which can simply be adopted for sparse linear algebra [24, 122], 3) over

the past decades numerous parallel and distributed techniques and infrastructures on sparse

computations have been introduced by the community [2, 5, 9, 21, 36, 41, 59, 64, 77, 115]

and linear algebra can benefit from them, and 4) compared with graph computations, matrix

computations are easier to code and optimize due to their predefined access strategy [64].

15

2.3.2 Linear Algebra-based Graph Analytics Systems

Pegasus [59] is one of the initial attempts to use linear algebra for solving graph problems

which uses the Apache Hadoop implementation of MapReduce [40]. CombBLAS [21] is

an edge-centric distributed graph analytics system that offers a rich set of primitives for

operating on sparse matrices including SpMV, SpMM, SpAsgn (sparse matrix assignment)

and SpRef (sparse matrix indexing). Knowledge Discovery Toolbox (KDT) [77] adapts

CombBLAS to support semantic graphs (graphs with attributes on both edges and vertices).

Also, GraphBLAS [37] tries to define the basic building blocks of graph algorithms in the

language of linear algebra. GraphMat [115] is a multi-core graph analytics system that fills

the gap between performance and productivity of graph analytics platforms. It abstracts a

vertex program through a generalized iterative SpMV operation. Furthermore, GraphPad [5],

the distributed version of GraphMat uses MPI for scalability and distributes the adjacency

matrix of a graph among machines. Akin to GraphPad [5], LA3 [2] is a distributed linear-

algebra based graph analytics system that incorporates communication and computation

filtering to cut down the amount of SpMV operations.

2.4 Linear Algebra-based Sparse Deep Learning

2.4.1 Dense Deep Neural Networks

Often, (dense) deep neural networks consists of a series of fully connected layers. Stochas-

tic Gradient Descent (SGD) [106] is the learning algorithm empowers training of deep neural

networks. Due to being ill-suited for parallelism, training of neural networks using SGD

was limited to single-machines for many years and often can only scale-up within a machine

[34, 12, 127]. With the introduction of DistBelif [39] and its distributed SGD algorithms,

Google broke the long-lasting barriers of SGD and extended it to distributed settings. Tensor-

flow [1], Project Adam [30], MXNet [29], SINGA [96], SparkNet [93], VGG-A [35], FireCaffe

[57], TernGrad [124], and Hadoov [110] are among distributed CPU-based deep learning

solutions. Also, S-Cffe [7] and [23] are distributed GPU solutions.

16

2.4.2 Sparse Deep Neural Networks

Conventionally, deep neural networks are fully connected. Sparse deep neural networks

[87, 88, 90] are a new type of neural networks where the connections among hidden layers

are sparse, however, compared with their dense peers, they can still offer comparable clas-

sification accuracy. The sparsity of these neural networks can derive from multiple sources

such as: decomposing the neural network topology into sparse matrices [72], using Sparse

Evolutionary Training (SET) to adaptively alter and drop the neural network connections

[74, 85], sparsifying the topology of the neural network [63, 102], or using activation functions

like Rectified Linear Unit (ReLU) that results in some neurons always producing zero [48].

2.4.3 Sparse Deep Neural Networks Parallelism Models

Neural network training is a computationally expensive task. To accelerate the training

process, either a faster training algorithm like downpour SGD [39], sandblaster [39], or

codistillation [6], or a scalable parallelism model such as data parallelism which parallelizes

over the input [45] or model parallelism which parallelizes over the network [45] can be used.

Like training, inference can also be scaled using data and model parallelisms. Chapter 6

combines data and model parallelisms and introduces a new parallelism model called data-

then-model for neural network inference.

2.5 Traditional (Non-algebraic) Graph Analytics

2.5.1 Graph Theory-based Graph Analytics Systems

The community interest toward big graph analytics has been triggered with the intro-

duction of Pregel [80] by Google and later Apache Giraph [31]. Both adapted the Bulk Syn-

chronous Parallel (BSP) computing model [121] which expresses an application with multiple

iterations where each iteration constitutes a sequence of computation, communication, and

synchronization. Both Pregel [80] and Giraph [31] follow a vertex-oriented programming

17

model where a vertex maintains a partial view of the adjacency of the graph and can change

state in each iteration and the new state is sent to the adjacent vertices (the ones a vertex

has immediate connections/edges) at the end of each iteration.

Graph theory-based systems use neighborhood-based operations such as fan-in/fan-out

explorations to implement a graph algorithm. The current graph analytics platforms can be

examined from different angles. More precisely, in terms of computing needs they can be

divided into three types: 1) single node non-scalable solutions such as Gunrock [123],

Ligra [111], Polymer [128] and Galois [94], 2) single node out-of-core solutions such

as GraphChi [66], X-Stream [105], GridGraph [130] and Mosaic [79], and 3) distributed

solutions such as Apache Giraph [31], Google Pregel [80], GraphLab [75, 76], PowerGraph

[50], PowerLygra [27], PowerSwitch [125], and Gemini [129].

Graph Theory-based analytics platforms can also be categorized based on programming

models, namely: 1) vertex-centric in Pregel [80] and Giraph [31], 2) edge-centric in X-

stream [105], 3) sub-graph-centric in GoFFish [113], and 4) graph-centric in Giraph++

[119]. In addition, they can be classified in terms of two major execution models, namely:

1) synchronous model, where vertices progress in a lock-step fashion such as in Giraph

[31], and 2) asynchronous model, where vertices can change values anytime and be several

steps apart during execution; an example asynchronous system is PowerGraph [50]. Last,

MapGraph[41], Gunrock [123], mGPU [99], and Garaph [78] are among recent multi-GPU

graph analytics systems.

2.5.2 Graph Data Structures and Operations

Graphs are mostly represented using their adjacency list where each vertex utilizes a

data structure such as an array or a linked list to represent its outgoing edges [92, 91].

In addition, other systems developed more efficient data structures to represent vertices

and their connections. Ligra [111] uses vertex subset data structure to extract subsets of

vertices and update vertices that are active currently. Gemini [129] uses a dual-mode edge

representation where outgoing edges are organized in CSR and ingoing edges in CSC. Also,

Mosaic [79] uses CSR to represent edges.

18

Graph algorithms are adopted to work with fan-in and fan-out operations where fan-

in operation operates on ingoing edges of vertices and fan-out operation operates on their

outgoing ones. PowerGraph [50] introduces a new vertex programming abstraction called

Gather, Apply, and Scatter (GAS) model. In GAS, gather operation collects information

on adjacent vertices, apply changes the central vertices state, and scatter updates adjacent

vertices. Ligra [111] operates on a set of vertices called frontier vertices which are vertices

that are accessible. It uses edge map to operate on edges in sparse and dense modes and

uses vertex map to operate on vertices. Gemini [129] adopts the sparse-dense representation

of Ligra and introduces a push (sparse) - pull (dense) model to decouple the propagation of

vertices from processing of edges.

2.5.3 Graph Partitioning

The objective of the K-way balanced graph partitioning is to partition a graph

G = (V,E) into k > 1 balanced partitions. A vertex-centric k-way graph partitioning uses

vertex-cut to divide V into k distinct partitions of almost equal-sized (|V |/k).(1 + ε) i.e.

ε > 0 [100]. On the other hand, an edge-centric partitioning which uses edge-cut results

into k partitions of roughly size (|E|/k).(1 + ε) [92, 91]. Also, other algorithms might use

hybrid-cut to create partitions (a combination of those vertex- and edge-cut) [28, 120]. In the

context of graph partitioning, a cut means extra communication. For real-world graphs that

follows power-law distribution, e.g., social networks, an edge-cut can create better partitions

compared to vertex-cut because a huge number of edges belong to a small subset of vertices

(e.g., Twitter graph is a good example of a power-law graph) [28, 50].

Upon running a graph application in a distributed fashion, the biggest partition bounds

the amount of computation and the number of inter-partition edges bounds the amount of

communication under each processing step. Hence, a K-way balanced partitioning poten-

tially lowers the runtime of a distributed graph analytics platform via enforcing near-uniform

resource utilization across machines while reducing the communication volume. Kernighan-

Lin [65], Spectral partitioning [26], and Metis [60] are examples of state-of-the-art balanced

partitioning algorithms. Moreover, Ja-Be-Ja [100] (a local search partitioning), Fennel [120]

19

(a streaming balanced partitioning), Spinner [83] (a label propagation-based partitioning),

and Revolver [92, 91] are four vertex-centric balanced partitioning algorithms.

2.6 Summary

In this chapter, I review the sparse matrix data structures and primitives, and partition-

ing algorithms. I depicted the link between graph theory and linear algebra and argued that

many graph operations can be converted into basic linear algebra primitives such as SpMV

and SpMM. Also, I reviewed sparse and dense deep learning and their parallelism models.

Reporting the related work, in the following section, a new optimized compressed sparse

format which is inspired by the CSC data structure will be introduced.

20

3.0 Efficient Distributed Graph Analytics using Triply Compressed Sparse

Format

This chapter presents Triply Compressed Sparse Column (TCSC), a novel compression

technique designed specifically for matrix-vector operations where the matrix as well as

the input and output vectors are sparse. These operations are referred to as SpMSpV2.

TCSC compresses the nonzero columns and rows of a highly sparse matrix representing a

large real-world graph. During the compression, TCSC encodes the sparsity patterns of the

input and output vectors within the compressed representation of the sparse matrix itself.

Consequently, it aligns the compressed indices of the input and output vectors with those of

the compressed matrix columns and rows, thus eliminating the need for extra indirections

when SpMSpV2 operations access the vectors. This results in fewer cache misses, greater

space efficiency and faster execution times. I evaluate TCSC’s performance and show that

it is more space and time efficient compared to Compressed Sparse Column (CSC) [64]

and Doubly Compressed Sparse Column (DCSC) [19]. I integrate TCSC into GraphTap, a

suggested linear algebra-based distributed graph analytics system and compare GraphTap

against [5] and LA3 [2], two state-of-the-art linear algebra-based distributed graph analytics

systems, using different dataset scales and numbers of processes.

This chapter is organized as follows. Section 3.1 provides an overview of two well-known

compressed sparse matrix formats CSC and DCSC. Section 3.2 describes the motivation

behind TCSC. Section 3.3 introduces TCSC. GraphTap -a new distributed graph analytics

system that uses TCSC- is introduced in Section 3.4. Section 3.5 reports experimental

results. Finally, Section 3.6 concludes this chapter.

3.1 Column Compressed Sparse Formats

Graphs are highly sparse structures. Many linear-algebra based graph processing systems

use CSC or DCSC to store the adjacency matrix of a graph since they are both space efficient

21

1

3

2 4

5

0.1

0.2

0.3

0.3

0.8

0.4

0.9

0.5

(a) Input Graph G

Src Dst Wgt
1
1
1
2
2
4
5
5

1
3
4
3
4
1
1
4

0.1
0.2
0.4
0.3
0.5
0.9
0.3
0.8

(b) Adjacency List

0 1 2 3 4 5

0

1 .1 .2 .4

2 .3 .5

3

4 .9

5 .3 .8

(c) Adjacency Matrix

0 1 2 3 4 5

0

1 .1 .9 .3

2

3 .2 .3

4 .4 .5 .8

5

(d) Transposed A. M., A

Figure 5: (a) An input graph with 6 vertices and 8 edges. (b) The adjacency list where each

entry is an edge from the source endpoint (Src) to a destination endpoint (Dst) with a weight

(Wgt). (c) The adjacency matrix. (d) The transpose of the adjacency matrix denoted by A.

and fast to traverse [21, 115, 5, 2]. I next delve deeper into CSC and DCSC to set the stage for

the proposed TCSC. A running example of the adjacency matrix from Figure 1 is replicated

in Figure 5 for convenience, to explain the CSC and DCSC formats.

3.1.1 CSC Format

Figure 6 is the CSC format of A (Figure 5d). In CSC, JA is an array of column pointers,

IA is an array of row numbers, and V A is an array that contains the nonzero values (or

weights) in A. As such, |JA| = n+1, |IA| = nnz, and |V A| = nnz, where n is the number of

vertices and nnz is the number of edges. The space requirement of CSC (without considering

the space required for storing vectors) is n+ 2 nnz + 1.

The SpMV operation y = A ⊕.⊗ x is a widely used linear algebra operation. In this

operation, A is highly sparse, and x and y vectors are uncompressed. For many applications,

this operation is repeated multiple times with changes in input vector x. Although CSC is

a common way of compressing A, it fundamentally lacks direct indexing of sparse input and

output vectors. Figure 6 shows how an SpMV kernel runs on a CSC data structure. From

this figure, the row and column indices retrieved by CSC essentially belong to the original

number of rows and columns, n. With the presence of compressed vectors, CSC requires

mappings from uncompressed to compressed vectors for converting JA and IA indices.

22

0 1 2 3 4 5

0

1 .1 .9 .3

2

3 .2 .3

4 .4 .5 .8

5

A
n x n

0

1

2

3

4

5

0

1

2

3

4

5

⊕=

⊗

x
n x 1

y
n x 1

for(j = 0; j < n; j++) {
for(i = JA[j]; i < JA[j+1]; i++)

y[IA[i]] ⊕= (VA[i] ⊗ x[j])
}

JA 0 0 3 5 5 6 8

IA 1 3 4 3 4 1 1 4

VA .1 .2 .4 .3 .5 .9 .3 .8

CSC SpMV Diagram

CSC Data Structures

CSC SpMV Algorithm

Figure 6: CSC format for Figure 5d.

0 1 2 3

0

1 .1 .9 .3

2

3 .2 .3

4 .4 .5 .8

5

�̅
n x nzc

1

2

4

5

0

1

2

3

4

5

⊕=

⊗

y
n x 1

JA 0 3 5 6 8

IA 1 3 4 3 4 1 1 4

VA .1 .2 .4 .3 .5 .9 .3 .8

DCSC SpMV Diagram

DCSC Data Structures

DCSC SpMV Algorithm

JC 1 2 4 5

for(j = 0; j < nzc; j++) {
for(i = JA[j]; i < JA[j+1]; i++)

y[IA[i]] ⊕= (VA[i] ⊗ x[JC[j]])
}

x
n x 1

Figure 7: DCSC format for Figure 5d.

3.1.2 DCSC Format

DCSC [19] is an extension of CSC, whereby it further compresses matrix A by remov-

ing the zero (empty) columns avoiding thereby repeated elements in array JA. Since zero

columns are removed, a level of indirection is required to index the retained nonzero columns.

To this end, DCSC introduces an array for column indices, JC, which provides constant time

access to nonzero columns (see Figure 7). In DCSC, |JC| = nzc, |JA| = nzc+1, |IA| = nnz,

and |V A| = nnz, where nzc is the number of nonzero columns. Subsequently, the space re-

23

quirement of DCSC is 2 nzc+ 2nnz + 1, without considering the space needed for vectors.

CSC can scale poorly if the number of zero columns grows significantly [129]. DCSC

tackles this problem by converting A to Ā, which does not contain zero columns. Figure 7

shows how SpMV operations are executed on top of DCSC, wherein Ā is multiplied by an

uncompressed input vector x and the results are stored in an uncompressed output vector

y. Note that Sparse Matrix - Sparse Vector (SpMSpV) operations can also be ran on top of

DCSC, with x being compressed (which can be represented by (index, value) pairs) and y

being uncompressed or dense [8]. Although, if x is compressed, it can be indexed through y

using JC, most implementations do not exploit such an option [5, 115] in order to use the

output of one SpMSpV as an input to the next SpMSpV operation [8].

3.2 Motivation

The standard CSC and DCSC runs SpMV kernels without any changes. CSC SpMV

does not need any indirection to access the uncompressed input and output vectors x and

y, whereas DCSC SpMV requires one indirection because it compresses the JA. Luckily, in

DCSC if there are enough zero columns to remove, the cost of this indirection would not

hurt the runtime.

In a distributed setting where the elements of input and output vectors are transported

over the network, vector sizes become highly important because they are acting as a proxy

for communication. The communication volume can be reduced by compressing the in-

put/output vectors through removing the zero columns/rows and then adding indirection

to the CSC and DCSC formats to support SpMSpV2 kernels on the compressed vectors.

To index the compressed vectors, CSC SpMSpV2 requires two indirections (both rows and

columns) and DCSC SpMSpV2 requires only one (given it has already supported compressed

column, hence it only needs one indirection for indexing rows).

To demonstrate the tradeoff between communication reduction and runtime increase due

to indirection, I profile the execution of 20 iterations of PageRank (PR) on two large graphs,

Twitter and Rmat29 (see Table 3 for details), running on my GraphTap distributed platform

24

0

20

40

60

80

Ti
m

e
(s

)

Communication Computation

(a) Twitter (1.46 B edges)

0

5

10

Ti
m

e
(s

)

Communication Computation

(b) Rmat29 (8.58 B edges)

Figure 8: Comparison of different compression formats and their primitives using PR

using CSC and DCSC. As shown in Figure 8a, CSC/DCSC SpMV have roughly identical

amounts of communication, whereas the computation time of DCSC SpMV is more than

CSC SpMV. This is due to the DCSC SpMV’s extra level of indirection. For a relatively less

sparse graph like Twitter which only has a small number of empty columns, this indirection

turns out to cause a computation penalty. Yet, this is not the case for a sparser graph

like Rmat29 (Figure 8b), where DCSC SpMV’s indirection contributes to a better runtime

compared to CSC SpMV. Last, SpMV compressions are spending approximately 1/2 and

3/4 of their runtime on sending/receiving vectors, where a good portion of them are zeros.

Figure 8a shows that for Twitter graph, compressing vectors does not help CSC/DCSC

SpMSpV2 to achieve a better communication time because vectors are relatively dense.

Whereas, for Rmat29 (Figure 8b) the communication time is cut in half compared to SpMV

because there is a good number of zero columns/rows to remove. Finally, the computation

time of SpMSpV2 increases significantly in both Twitter and Rmat29 graphs because of the

extra levels of indirections added to support SpMspV2 kernels.

Hence, there is a trade-off between SpMV and SpMSpV2. As communication time goes

down in SpMSpV2 due to compressing the vectors, the computation time goes up due to

adding the levels of indirections (note that this trade-off is beneficial when sparsity is large

and detrimental when sparsity is small). Hence, it would be desirable to compress the vectors

while adding no indirection to the SpMSpV2 kernel, which is the rationale behind TCSC.

25

0 1 2 3

0 .1 .9 .3

1 .2 .3

2 .4 .5 .8

�̿
nzr x nzc

1

2

4

5

1

3

4

⊕=

⊗

�̅
nzc x 1

��
nzr x 1

for(j = 0; j < nzc; j++) {
for(i = JA[j]; i < JA[j+1]; i++)
��[IA[i]] ⊕= (VA[i] ⊗ �̅[j])

}

JA 0 3 5 6 8

IA 0 1 2 1 2 0 0 2

VA .1 .2 .4 .3 .5 .9 .3 .8

TCSC SpMSpV2 Diagram

TCSC Data Structures

TCSC SpMSpV2 Algorithm

JC 1 2 4 5

IR 1 3 4

Figure 9: TCSC format for Figure 5d.

This desirable feature is shown in the last columns of Figure 8 which shows TCSC with the

SpMSpV2 kernel always decreases the computation time while decreasing (in Rmat29) or

sustaining (in Twitter) the communication time.

3.3 Triply Compressed Sparse Format

In this section, I propose a simple yet highly efficient, co-compression technique called

Triply Compressed Sparse Column (TCSC) (or Triply Compressed Sparse Row (TCSR) for

row compressed data). By removing nonzero columns and rows of a sparse matrix, TCSC

does not only store the sparse matrix in an efficient and cost-effective way, but further

extends that to input and output sparse vectors. TCSC supports SpMSpV2 operations on

sparse matrix and vectors without requiring any indirection to access compressed vectors.

3.3.1 Triply Compressed Sparse Column (TCSC)

DCSC compresses matrix A by removing only its zero columns while retaining its zero

and nonzero rows. TCSC capitalizes on DCSC’s compression strategy via removing A’s

26

Table 2: Space required for storing matrix, vector, and row and column indirections of

different compression schemes.

Array CSC SpMV DCSC SpMV CSC SpMSpV2 DCSC SpMSpV2 TCSC SpMSpV2

JC nzc nzc nzc

JA n+ 1 nzc+ 1 n+ 1 nzc+ 1 nzc+ 1

Matrix IA nnz nnz nnz nnz nnz

V A nnz nnz nnz nnz nnz

IR nzr

Vector
x/x̄ n n 2 nzc nzc nzc

y/ȳ n n 2 nzr 2 nzr nzr

Indices
c nzc→ n nzc→ n

r nzr → n nzr → n

zero rows as well. Like array JC for indexing nonzero columns, TCSC introduces array

IR, the row indices array for indexing nonzero rows, where |IR| = nzr. As illustrated in

Figure 9, TCSC utilizes IR to populate IA with values within the range of nonzero rows.

This eliminates the problem of row indexing upon executing SpMSpV2 operations. Figure

9 shows how an SpMSpV2 kernel can run on top of TCSC with fully compressed matrix ¯̄A

and fully compressed input and output vectors x̄ and ȳ, without requiring any additional

support from a bitvector or a list of (index, value) pairs. More precisely, by using JC and

IR together, TCSC provides direct accesses to x̄ and ȳ. Lastly, the space requirement of

TCSC is 2 nzc+ nzr + 2 nnz + 1.

TCSC consolidates the sparsity of matrix and vectors in a co-designed data structure

to enable efficient executions of SpMSpV2 operations. CSC and DCSC can also be used to

run SpMSpV2. However, to support SpMSpV2, CSC requires two levels of indirections for

indexing compressed input and output vectors, while DCSC requires only one indirection

for indexing the compressed output vector. Last, given these extra levels of indirections are

already incorporated in TCSC data structure, TCSC is the right choice to execute SpMSpV2

operations.

27

0n

3n

6n

9n

0 0.4n n

Sp
ac

e

Z

CSC SpMV

DCSC SpMV

CSC SpMSpV2

DCSC SpMSpV2

TCSC SpMSpV2

Figure 10: Space of different compressions using (3.1).

3.3.2 Comparison of Space Requirements

Table 2 shows a comparison between different compression techniques. For SpMSpV2

operations, CSC requires using data structures like two lists of (index, value) pairs for input

and output vectors. In addition, it needs to store metadata for column and row indirections.

Therefore, its space requirement evaluates to 3 n+3 nzc+3 nzr+2 nnz+1. DCSC requires

maintaining information on input and output vectors and metadata for row indirection.

Thus, its space requirement for SpMSpV2 operations is n+3 nzc+3 nzr+2 nnz+1. TCSC

total space requirement is 3 nzc+ 2 nzr + 2 nnz + 1.

In comparing space requirements for SpMSpV2 operations, TCSC demands the least

space due to uniquely addressing the sparsity of vectors in conjunction with the sparsity

of the matrix. It can be proved that under certain conditions TCSC can save space when

at least 40% of rows/columns of the matrix are empty compared to CSC and DCSC with

SpMV (see Figure 10; more on this shortly). Alongside space savings, TCSC provides faster

SpMSpV2 operations because: 1) it averts two levels of indirections compared to CSC and

one level of indirection compared to DCSC, 2) it requires sending/receiving only values of

compressed vectors (especially in distributed settings) without exchanging any metadata

since it retains internally the nonzero indices, 3) it results in smaller vectors, which can

potentially fit in cache, and 4) it exhibits sequential access patterns on the input vector (like

DCSC), thus exploiting more cache locality (as compared to CSC).

28

Given the information reported in Table 2, a relaxed space formulas for all the compres-

sion schemes can be derived by ignoring the IA and V A arrays and the plus one in JA array,

which are equivalent across all the schemes. Thus, the term 2 nnz + 1 can be eliminated.

Furthermore, assuming nzc ≈ nzr ≈ nz, then nz = n−z, where nz is the number of nonzero

elements and z is the number of zeros agnostic to rows and columns. Finally, by removing

2 nnz+1 and, subsequently, substituting nzc and nzr with n−z, the following approximate

space formulas are obtained:

CSC SpMV→ 3 n

DCSC SpMV→ 2 n+ 2 (n− z) = 4 n− 2 z

CSC SpMSpV2 → 3 n+ 3 (n− z) + 3 (n− z) = 9 n− 6 z

DCSC SpMSpV2 → n+ 3 (n− z) + 3 (n− z) = 7 n− 6 z

TCSC SpMSpV2 → 3 (n− z) + 2 (n− z) = 5 n− 5 z

(3.1)

By varying the value of z in equations (3.1) over the range [0, n], the space of each

compression can be computed in terms of n. As demonstrated in Figure 10, from z = 0.4 n

onward (marked by the vertical gray line), TCSC will require less space as opposed to other

schemes. Section 3.5 presents experimental results that corroborate this observation.

3.3.3 Translating Graph Algorithms onto SpMSpV2 Operations

Leveraging the duality between graphs and sparse matrices, many graph theory opera-

tions can be mapped onto certain linear algebra primitives on sparse matrices [21]. As a

brand new yet simple linear algebra primitive, SpMSpV2 primitive, ȳ = ¯̄A ⊕.⊗ x̄ can be

formalized as follows:

• ¯̄A is the nzr × nzc sparse matrix with nnz entries (edges), where nzr and nzc are the

number of nonzero rows and columns, respectively.

• x̄ is the nzc× 1 sparse input vector with nzc entries (columns), which is multiplied in ¯̄A

using the multiplication and addition operators.

• ȳ is the nzr× 1 sparse output vector with nzr entries (rows), which stores the results of

multiplying ¯̄A and x̄.

29

⊕=

⊗

.1 .9 .3

.2 .3

.4 .5 .8

1 1 1 1

x �̅
n x 1 nzc x 1

1

1

1

1

1.3

.5

1.7

y ��
n x 1 nzr x 1

A �̿
n x n nzr x nzc

∑ ��= 2.5

for(j = 0; j < nzc; j++) {
for(i = JA[j]; i < JA[j+1]; i++)

��[IA[i]] ⊕= (VA[i] ⊗ �̅[j])
}

TCSC SpMSpV2 Algorithm

2

13

Figure 11: Calculating weighted outgoing degree of Figure 5d.

• ⊕.⊗ is a semiring equipped with (+,×) operators.

SpMSpV2 requires a way of encoding the sparsity for both x̄ and ȳ vectors. Previous

works have used bitvectors [115, 5] or lists of (index, value) pairs [2] to encode this informa-

tion. In contrast, TCSC coalesces this information in the compressed sparse matrix format

and assumes that sparse input and output vectors are of sizes nzc and nzr, respectively.

Hence, TCSC cuts down memory usage while eliminating unnecessary computation resulted

from compressing the vectors.

To exemplify, consider the weighted degree calculation which calculates the outgoing

degree of a graph ponderated by the weight of each edge (Figure 11). This problem can be

solved via multiplying the outgoing edges of each vertex by one and summing up the results.

Using SpMSpV2 operations, first x̄ is initialized with ones. Second, the weighted outgoing

degree of each vertex is calculated by multiplying each entry of x̄ to its corresponding column

of ¯̄A. Third, the result of each row is stored in the respective entry of ȳ, which will eventually

hold the weighted outgoing degrees of all vertices.

30

(a)

(b)

Figure 12: (a) Partitioning a matrix into a p x p grid of tiles and a vector into p segments

where p=4 is the number of processes. (b) Assigning processes to tiles and segments where.

0 1 0 1

0 .1 .9 .3

0 .2 .3

1 .4 .5 .8

�̿
nzr x nzc

�̅1

��0

�̿00

JC = [1, 2]
JA = [0, 1, 1]
IA = [0]
VA = [.1]
IR = [1]

�̿01

JC = [4, 5]
JA = [0, 1, 2]
IA = [0, 0]
VA = [.9, .3]
IR = [1]

�̿10

JC = [1, 2]
JA = [0, 2, 4]
IA = [0, 1, 0, 1]
VA = [.2, .4, .3, .5]
IR = [3, 4]

�̿11

JC = [4, 5]
JA = [0, 0, 1]
IA = [1]
VA = [.8]
IR = [3, 4]

Tiled TCSC Format

�̅0

��1

Tiled TCSC SpMSpV2 Diagram

⊗

⊕=

Figure 13: Figure 5d matrix partitioned into four TCSC tiles.

3.4 GraphTap: Distributed Graph Analytics using Triply Compressed Sparse

Format

This section introduces GraphTap, a new distributed system for scalable graph analytics

that features a TCSC-based SpMSpV2 system mated with a vertex-centric programming

interface. As such, GraphTap can execute any user-defined vertex program on any input

graph. This is done in two steps. First, GraphTap loads and partitions the input graph

into TCSC tiles distributed across multiple processes. Next, it executes the user’s vertex

program in an iterative fashion via its distributed SpMSpV2 core. The followings describe

these steps in details.

31

3.4.1 Matrix Partitioning

GraphTap can read graphs given in an edge-list format. It loads edges into an adjacency

matrix representation that is partitioned in two dimensions and distributed for scalability [17,

5, 2, 47]. To elaborate, given p processes, GraphTap partitions the matrix into p2 tiles and

any associated vector into p segments, as exemplified in Figure 12a.

GraphTap assigns tiles and segments to processes while accounting for both load bal-

ancing and locality [2]. As Figure 12b shows, each process is assigned p tiles and one of p

vector segments. In particular, the process owning the ith diagonal tile, Aii, also owns the

ith vector segment, si. This process is called the leader of the ith row group (i.e., the set of

processes that own tiles in the ith row) and column group (i.e., the set of processes that own

tiles in the ith column). During distributed SpMSpV2 execution, each leader communicates

with its row and column group followers (members) via MPI. For example, in Figure 12b,

process P0 owns tiles A00, A02, A30, and A32. Also, P0 is the leader of the first row and

column groups; thus, P1 is P0’s follower in the first row group and P2 is P0’s follower in the

first column group.

GraphTap stores each tile using the TCSC format. The compressed height of any given

tile, ¯̄Aij, is the number of nonzero rows across the entire ith row of tiles. Similarly, the

compressed width of any given tile, ¯̄Aij, is the number of nonzero columns across the entire

jth column of tiles. Moreover, in order to eliminate indirections during SpMSpV2, the com-

pressed sizes of the ith input (or output) vector segments are equal to the compressed width

(or height) of the ith column (or row) of tiles. For example, in Figure 13, tiles ¯̄A00 and ¯̄A10

both have a compressed width of two, as does input segment x̄0. Similarly, tiles ¯̄A00 and ¯̄A01

both have a compressed height of one, as does output segment ȳ0.

3.4.2 Vertex Program Execution

Similar to other recent graph analytics systems [2, 5, 115], GraphTap translates a user-

defined vertex-centric program into iteratively-executed SpMSpV2 operations. Like these

systems, GraphTap applies a variant of the Gather, Apply, Scatter (GAS) model [50]. To be

more precise, GraphTap involves three method calls per SpMSpV2 iteration: Scatter-Gather,

32

Combine, and Apply, which will be elaborated upon shortly.

In order to map a vertex-centric program to its SpMSpV2 system, GraphTap maintains

– in addition to the compressed input and output vectors, x̄ and ȳ – a state vector, v, which

stores vertex states. The state vector is not compressed, and its size equals the number of

vertices, because all vertices have states, even if some states may remain unchanged. The

state vector is partitioned into p segments, each assigned to its corresponding leader process.

Thus, each process initializes the states of its own vertices. Thereafter, GraphTap launches

its iterative SpMSpV2 execution. Per iteration, each process calls the following methods.

3.4.2.1 Scatter-Gather To begin an iteration, each ith leader, in parallel, prepares its

new x̄i and scatters it to its column group followers. x̄i is essentially an interpolation of the

old state, vi (i.e., resulting from the previous iteration).

Consequently, TCSC offers the following advantages during Scatter-Gather: 1) Since

|x̄| = nzc < |x| = n, less communication is required (per column group). 2) Given that

TCSC already incorporates the sparsity information inside its data structures, there is no

need to send the indices of the nonzero elements. Therefore, the communication volume

is only limited to sending the values themselves, which is less compared to sending a list

of (index, value) pairs in [5, 2]. 3) When calculating the new x̄ from v, TCSC’s JC array

efficiently enables direct indexing on both x̄ and v (i.e., without requiring any extra levels

of indirection).

3.4.2.2 Combine After the scattered x̄ is gathered at all processes, each process starts

processing the tiles that it owns in a row-wise fashion. For each tile, Tij, in the ith row, the

SpMSpV2 operation is called on its TCSC value array, V A, and the x̄j belonging to the jth

column group. The result is combined (accumulated) locally in ȳi, which is indexed directly

using the IA array. After processing all its tiles belonging to the ith row, each follower

sends its ȳi to its row group leader, which combines it into its own ȳi. Given GraphTap

uses asynchronous communication, leaders/followers post their receives/sends and move on

to their next row of tiles.

Thus, TCSC offers the following advantages during Combine: 1) No indirections are

33

needed while running SpMSpV2 operations on x̄, V A, or ȳ (for storing the results). This is

because, ∀ Tij, |x̄j| = |JA| and |ȳi| = |IA|. 2) Since |ȳ| = nzr < |y| = n, less communication

is required (per row group). 3) When followers send ȳis to their leader, only the actual values

are sent without their indices, further reducing communication volume. 4) Asynchronous

communication allows GraphTap to overlap communication with computation.

3.4.2.3 Apply To complete an iteration, each ith leader, in parallel, waits until its ȳi

is finalized, and then uses it to update its vi (to be used in the next iteration). Although

|ȳ| = nzr 6= |v| = n, TCSC’s IR array circumvents an undesired indirection when computing

v from ȳ since it contains the original row ids of the nonzero indices of v.

GraphTap continues iterating until v converges or a specified maximum number of iter-

ations is reached.

3.4.2.4 Activity Filtering and Computation Filtering Graph applications may be

classified as stationary or non-stationary [5, 2]. In a stationary application, all vertices

remain active over all iterations. In a non-stationary application, only a subset of vertices

is active during each iteration and this subset can change dynamically. GraphTap skips the

communication and computation of inactive vertices in non-stationary applications. Activity

filtering is implemented by communicating (index, value) pairs of active vertices only.

For directed graphs, it is possible to make the SpMV more efficient via computation

filtering [2]. This firstly requires classifying vertices into regular vertices (have both incoming

and outgoing edges), source vertices (have only outgoing edges), sink vertices (have only

incoming edges), and isolated vertices (have no edges). Subsequently, processing only regular

and source vertices in the first iteration, only regular vertices in the middle iterations, and

only regular and sink vertices in the final iteration. Computation filtering is implemented

for stationary applications on directed graphs only.

34

3.5 Results

Experiments are conducted in two settings: single node processing and distributed pro-

cessing, both written in C/C++. The single node implementation is a single thread PageR-

ank application which basically compares CSC, DCSC, and TCSC SpMSpV2. The dis-

tributed implementation uses GraphTap1, the proposed distributed graph analytics system

which utilizes TCSC as its default compression technique and MPI for both inter and intra-

node communication. GraphTap’s experiments include both weak scaling comparison where

graph size is scaled alongside the cluster size, and strong scaling where graph size is fixed,

and the cluster size is varied.

3.5.1 Experimental Setup

3.5.1.1 Hardware and Software Configurations Experiments are ran on a cluster

of machines that uses Slurm workload manager for batch job queuing [108]. Intel MPI

[58] is used to compile programs on the cluster. Moreover, for single node experiments, a

machine with 12-core Xeon processor (@ 3.40 GHz speed) and 512 GB RAM is used. For the

distributed experiments, a sub-cluster of 32 machines each with 28-core Broadwell Processor

(@ 2.60 GHz speed), 192 GB RAM, and Intel Omni-path network (10 Gbps transfer speed)

is used. At largest scale, all these 32 machines are utilized and 16 processes (cores) per

machine are launched without over subscription of cores (512 cores in total). Finally, any

data point reported here is the average of multiple individual runs.

3.5.1.2 Counterpart Systems GraphTap has been tested against GraphPad [5], a lin-

ear algebra-based system developed by Intel, and LA3 [2], a linear-algebra based system with

sophisticated communication and computation optimizations. After a careful assessment, I

noticed that GraphPad works best when launched with two threads per MPI process and

LA3 with one thread per MPI process (without multithreading). Furthermore, 16 cores are

allocated per machine and thus GraphPad is launched with 8 processes and two threads

1GraphTap source code is online at https://github.com/hmofrad/GraphTap

35

(cores) per process, and LA3 and GraphTap are launched with 16 processes (cores) per

machine.

3.5.1.3 Graph Datasets Table 3 shows the collection of six real-world graphs and five

synthesized graphs alongside their characteristics and the number of processes allocated to

process them. This collection includes multiple web crawls and social network from LAW

[16], and RMAT 26 - 30 graphs from the Graph 500 challenge [25].

3.5.1.4 Graph Applications To evaluate TCSC, two types of graph applications are

implemented: 1) stationary applications including Degree, and PageRank (PR) on un-

weighted directed graphs, and 2) non-stationary applications including Single Source Shortest

Path (SSSP) on weighted directed graphs, and Breadth First Search (BFS) and Connected

Component (CC) on unweighted undirected graphs. Note that similar to the setting used in

[2, 5], I ran PR for 20 iterations and SSSP, BFS, and CC until convergence and report the

average execution.

3.5.2 Single Node Results

To experimentally measure the performance of TCSC, I implemented a single thread

PageRank application and reported its space, number of L1 cache misses, and speedup in

Figure 14. PageRank is chosen as it is a compute-intensive application and the focus in this

section is more on identifying the computational characteristics of TCSC.

3.5.2.1 Space Utilization Figure 14a shows the space utilization measured for different

compressions. Similar to the TCSC space analysis (Section 3.3.2), only the space required

for vectors and indirections is reported for this comparison as the amount of storage required

for storing the graph edges is the same across all compressions (see Table 2).

From Figure 14a, note that CSC and DCSC have approximately similar space utilization

and TCSC has the least space requirement in both real-world and synthetic graphs. Com-

pared to CSC, on average TCSC requires 45% and 70% less space in real-world and synthetic

36

Table 3: Datasets used for experiments. Zc and Zr are the percentage of zero columns and

rows. T is the type (including web crawl, social network and synthetic graphs). N is the

number of machines used to process the graph.

Graph |V | |E| Zc Zr T N

UK’05 (UK5) [16] 39.4 M 0.93 B 0 0.12 Web 4

IT’04 (IT4) [16] 41.2 M 1.15 B 0 0.13 Web 4

Twitter (TWT) [16] 41.6 M 1.46 B 0.09 0.14 Soc 8

GSH’15 (G15) [16] 68.6 M 1.80 B 0 0.19 Web 8

UK’06 (UK6) [16] 80.6 M 2.48 B 0.01 0.14 Web 16

UK Union (UKU) [16] 133 M 5.50 B 0.05 0.09 Web 24

Rmat26 (R26) [25] 67.1 M 1.07 B 0.55 0.72 Syn 4

Rmat27 (R27) [25] 134 M 2.14 B 0.57 0.73 Syn 8

Rmat28 (R28) [25] 268 M 4.29 B 0.59 0.74 Syn 16

Rmat29 (R29) [25] 536 M 8.58 B 0.61 0.75 Syn 24

Rmat30 (R30) [25] 1.07 B 17.1 B 0.62 0.76 Syn 32

graphs. Also, compared to DCSC, on average TCSC requires 15% and 25% less space in

real-world and synthetic graphs. This space efficiency roots in the indexing algorithm of

TCSC where it stores the sparsity of vectors while constructing the compressed matrix data

structure by renumbering its column and row indices and removing zero (empty) columns

and rows. This successfully allows TCSC to trivially expand or compress the input and

output vectors and at the same time consumes the least space.

3.5.2.2 Cache Analysis CPU performance counters are used to collect data on L1 cache

misses. Figure 14b shows the number of cache misses of different compressions. Comparing

CSC and DCSC with TCSC, on average TCSC has 20% to 40% less cache misses across all

real-world and synthetic graphs. TCSC is a cache friendly compression since it can access the

compressed input and output vectors without requiring any level of indirection while avoid

37

0

0.2

0.4

0.6

0.8

1

UK5 IT4 TWT G15 UK6 UKU R26 R27 R28 R29 R30

Sp
ac

e

CSC DCSC TCSC

(a) Space

0

0.2

0.4

0.6

0.8

1

UK5 IT4 TWT G15 UK6 UKU R26 R27 R28 R29 R30

C
ac

h
e

m
is

se
s

CSC DCSC TCSC

(b) Cache misses

0

0.5

1

1.5

2

UK5 IT4 TWT G15 UK6 UKU R26 R27 R28 R29 R30

Sp
ee

d
u

p

CSC DCSC TCSC

4.9 10.9

(c) Speedup

Figure 14: Normalized space, speedup, and cache misses of different compression techniques

on a single node for PR with CSC as baseline.

trashing the L1 cache. TCSC sequentially indexes the input vector. This avoids unnecessary

cache invalidations of the input vector and provides more cache locality. Moreover, TCSC can

access the output vector with no level of indirection compared to CSC and DCSC, providing

faster access to output vector entries. Last, given the compressed input and output vectors

are essentially smaller than the original SpMV vectors, they can possibly fit in L2 cache

which further yields better cache utilization.

3.5.2.3 Time Analysis Figure 14c compares the speedup for different compressions.

From this figure, compared to CSC and DCSC, TCSC is up to 2.2× and 11× faster in

real-world and synthetic graphs, respectively. This performance gain is mainly due to the

direct indexing algorithm of TCSC which offers a better cache locality. CSC and DCSC

underperform compared to TCSC because they suffer from access indirections and poor

cache locality.

38

In Figure 14c, DCSC is slightly faster than CSC on average because it collapses the

nonzero columns and skips the computation for nonzero columns. Furthermore, TCSC is

faster than both CSC and DCSC because it additionally collapses the nonzero rows which

further reduces the chances of L2 cache and memory thrashing. Moving to larger scales

synthetic graphs such as RMAT30, the cache thrashing effect becomes more prominent and

TCSC is 11× faster than CSC and DCSC.

There are two levels of indirection while running the SpMSpV2 kernel: 1) indirection

used for the input vector while accessing column data using pairs of (index, value), and 2)

indirection used for sparse output vector while writing the result of executing the operation.

Although CSC and DCSC are adapted to work with sparse vectors, CSC requires both levels

of indirections and DCSC requires the latter one. TCSC, on the other hand does not need

these levels of indirections because for the former one, like DCSC the number of columns in

the sparse matrix are aligned with the size of input vector. For the latter indirection, since

TCSC’s row indices array is populated using values derived from the number of nonzero

rows, the row indices stored in the compressed matrix are essentially able to directly index

the output vector.

3.5.3 Distributed Processing Results

This section discusses the experimental results of GraphTap. In the first and second

experiments different compression techniques implemented inside GraphTap are compared

and in the third experiment, GraphTap is compared with GraphPad [5] and LA3 [2], two

state-of-the-art linear algebra-based graph analytics systems. The graphs and cluster sizes

used for these experiments are reported in Table 3.

3.5.3.1 Speedup Comparison of CSC, DCSC, and TCSC in GraphTap CSC,

DCSC, and TCSC SpMSpV2 are implemented in GraphTap and benchmarked them using

PR (a stationary application). As shown in Figure 15, on real-world and synthetic graphs,

CSC and DCSC perform comparatively with DCSC performing slightly better. Also, TCSC

performs the best compared to CSC and DCSC with up 3.5× and 5.7× speedup in real-

39

0

1

2

3

4

UK5 IT4 TWT G15 UK6 UKU R26 R27 R28 R29 R30

Sp
ee

d
u

p

CSC DCSC TCSC

5.7

Figure 15: Normalized speedup of compressions on GraphTap for PR with CSC as baseline

wold and synthetic graphs, respectively. From the results, CSC and DCSC are not scaling

well compared to TCSC as while solving PR they become slower as dataset size increases

(especially in synthetics). TCSC on the other hand is scalable because as dataset size

increases, the runtime also improves in both real-world and synthetic graphs. This is because

TCSC not only compresses vectors leading to less communication, but also has a better

indexing algorithm, leading to more efficient computation.

3.5.3.2 Scalability Comparison of CSC, DCSC, and TCSC in GraphTap Figure

16a shows the results of cluster scalability test. In this experiment, the number of processes

per machine is kept to 16 but change the number of machines from 2 to 32 and run PR

on R29. Here, TCSC improves the runtime as more machines (or processes) are added to

solve the problem because TCSC’s communication volume is smaller compared to CSC and

DCSC. Thus, increasing the communication volume by having more machines does not hurt

its performance. It is worth noting that in a distributed computing scenario, communication

volume is a factor of intermediate vectors. Given TCSC efficiently compresses the vectors,

it is being resilient to the size of cluster.

Figure 16b shows the process scalability test of different compressions. In this experiment,

PR is ran on R30 using 32 machines while changing the number of processes per machine

from 1 to 16. From this figure, TCSC is scalable because it can efficiently harvest the added

processes to achieve a better runtime while maintaining a decent gap with other compressions.

Moreover, CSC is not scalable because it achieves worse or comparable runtimes with more

40

0

50

100

150

200

250

300

350

2 4 8 16 32

Ti
m

e
(s

)

#Machines per cluster

CSC DCSC TCSC

(a) Cluster scalability test using PR on R29
with 8.58 B edges.

0

50

100

150

200

1 2 4 8 16

Ti
m

e
(s

)

#Processes per machine

CSC DCSC TCSC

(b) Process scalability test using PR on R30
with 17.1 B edges.

Figure 16: Scalability tests for different compressions.

0

10

20

30

40

50

UK5 IT4 TWT G15 R26 R27 R28

Ti
m

e
(s

)

GraphPad LA3 GraphTap

(a) PR

0

1

2

3

4

5

6

7

UK5 IT4 TWT G15 R26 R27 R28

Ti
m

e
(s

)

GraphPad LA3 GraphTap

 11.9 11.2

(b) SSSP

0

1

2

3

4

UK5 IT4 TWT G15 R26 R27 R28

Ti
m

e
(s

)

GraphPad LA3 GraphTap

(c) BFS

0

2

4

6

8

10

12

14

UK5 IT4 TWT G15 R26 R27 R28

Ti
m

e
(s

)

GraphPad LA3 GraphTap

(d) CC

Figure 17: Runtime of GraphPad, LA3, and GraphTap

than two processes, whereas TCSC even with 16 processes can still improve the runtime.

3.5.4 Runtime Comparison of GraphPad, LA3, and GraphTap

In this experiment, GraphTap is compared with GraphPad and LA3 using PR, SSSP,

BFS, and CC applications on selected datasets from Table 3. GraphPad [5] uses DCSC for

compressing the sparse matrix and bitvectors for representing the sparse vectors. Similarly,

41

LA3 [2] uses DCSC for sparse matrices, but uses lists of (index, value) pairs for representing

sparse vectors. On the other hand, GraphTap uses TCSC that compress both matrix and

vectors simultaneously and uses lists of (index, value) pairs for representing sparse vectors.

Figure 17a reports the results for PR. Based on this figure, GraphTap is up to 1.5× faster

than GraphPad and 7× faster than LA3 in real-world datasets. Also, GraphTap is up to 2×

faster than GraphPad and 4× faster than LA3 in synthetic datasets. LA3 uses aggressive

communication optimizations that tailor the communication per tile while sending the input

vectors. The overhead of this optimization becomes a bottleneck when running on a cluster

with a fast communication infrastructure. Specifically, LA3 spends a significant amount of

time on constructing these tailored input vectors. GraphTap, on the other hand, tailors

input vectors for each column group of tiles so that it can skip the overhead of constructing

individual input vectors per a receiver process, while still efficiently utilizing the network

bandwidth. Also, GraphPad is better than LA3 because of its efficient communication.

Figure 17b and Figure 17c show the results for the non-stationary applications SSSP

and BFS. From these figures, GraphTap is 2–3× faster than GraphPad and LA3. SSSP runs

on weighted directed graphs, it starts from a source vertex and converges when it finds the

shortest path to all vertices inside the connected component the source vertex is belonged to.

Clearly, executing vertices which are not at the same component with source is unnecessary.

Thus, activity filtering removes them from the main loop of computation. Moreover, vertices

that have converged already are also factored out of the computation. For non-stationary

applications, activity filtering significantly reduces the volume of communication compared to

stationary applications like PR. Therefore, having less communication is the reason that LA3

performs better than GraphPad while running BFS on synthetic graphs. Also, GraphTap

performs worse than GraphPad in SSSP and BFS on TWT; this is because TWT is among

the relatively high-density real-world graphs where there is a small number of zero rows and

columns to filter for TCSC.

Figure 17d shows the result for CC. GraphTap is 1.2− 4.5× faster than GraphPad and

2− 4× faster than LA3 in real-world graphs. Also, GraphTap is 2× faster than GraphPad

and 3× faster than LA3 in synthetic graphs. From Figure 17d, GraphPad performs better

than LA3 because CC deals with significant amount of messaging to identify the connected

42

components and the communication optimizations of LA3 are extremely expensive for such

an application. Also, comparing GraphTap’s TCSC with DCSC used in GraphPad, DCSC

uses a bitvector to locate the nonzero entries of output vectors, whereas TCSC can directly

index the output vectors.

Last, in Figure 17 on average GraphTap is 2−4× faster than others on all scales which is

due to the proposed TCSC format. Moreover, GraphTap scales better compared to Graph-

Pad and LA3 because while adding more processes for larger graphs, it can efficiently utilize

the additional processes with a negligible increase in runtime (this trend is more visible in

Rmat synthesized graphs).

3.5.5 Discussion of Results

TCSC has significant space and indexing advantages over CSC and DCSC. Moreover,

GraphTap which uses TCSC as its core compression format, outperforms GraphPad and

LA3 distributed systems with DCSC compression scheme. The following are a summary of

TCSC and GraphTap results:

1. TCSC is more cache friendly than CSC and DCSC. The input and output vectors are

intrinsically smaller for TCSC and are accessed directly without indirection. The smaller

vector sizes and the locality of access patterns cause fewer cache misses and less cache

pollution in TCSC.

2. GraphTap communication volume is less than GraphPad and LA3 because the sizes of

its vectors are equal to the number of nonzero columns/rows. There is no need for an

auxiliary mechanism to index input and output vectors as they are aligned to the number

of nonzero columns/rows. Therefore, input vectors are scattered without any change in

their size and partial output vectors are aggregated without requiring any extra indexing

metadata.

3. The proposed triple compression can be applied to row major compression resulting in

a TCSR scheme. However, TCSC is picked for the same reason CSC and DCSC are

preferred over CSR and DCSR. Specifically, in column major compressions, like CSC,

DCSC or TCSC, access to the input vector is sequential and infrequent and access to the

43

output vector is random and frequent providing better cache locality for input vectors.

This flips for row major compressions like CSR, DCSR and TCSR. In non-stationary

applications, given that input vector only carries information about active vertices, a

column compression can immediately locate the active columns and runs the SpMV

kernel, whereas in row compression, the algorithm first needs to scan all rows and locates

the active vertices and then runs the SpMV which requires more effort. Thus, column

compressions have been shown to perform better for graph applications.

4. TCSC is a scalable compression format. It has been used to process big graphs as large

as 17.1 B edge on up 32 machines with 16 processes per machine (512 processes in

total). From the experiments, by adding more machines per cluster or more processes

per machine, TCSC can harvest additional processes efficiently because it compresses

empty rows/columns and reduces the problem space.

3.6 Conclusion

In this chapter, I propose Triply Compressed Sparse Column (TCSC), a novel compres-

sion technique which leads to efficient Sparse Matrix - Sparse input and output Vectors

(SpMSpV2) operations. TCSC logically compresses both columns and rows of a sparse ma-

trix and hence integrates the sparsity of input and output vectors within the sparse matrix.

The performance of TCSC on real-world and synthetic graphs with different sizes is analyzed

and demonstrated that TCSC has less space requirement while offering up to 11× speedup

compared to common CSC and DCSC. TCSC is implemented in GraphTap, a new linear

algebra-based distributed graph analytics system introduced in this chapter. GraphTap is

compared with GraphPad and LA3, two state-of-the-art linear algebra-based distributed

graph analytics systems on different graph sizes and numbers of machines and cores. Ex-

periments showed that GraphTap is up to 7× faster than these distributed systems due

to its efficient sparse matrix compression format, faster SpMSpV2 algorithm, and smaller

communication volume.

44

4.0 Graphite: A NUMA-aware HPC System for Graph Analytics Based on a

new MPI ∗ X Parallelism Model

In the previous chapter, the details of a new compressed sparse data structure called

TCSC which saves in memory requirement, and computation and communication time were

discussed. TCSC is utilized in a MPI + X distributed system called Graphite and showed

promising results. However, having an efficient data structure is not enough to achieve

linear scalability as the scalability of a distributed system is limited to the its parallelism

model. In this chapter, I propose a new parallelism model denoted as MPI ∗ X and suggest

a linear algebra-based graph analytics system, namely, Graphite, which effectively employs

this new parallelism model. The MPI ∗ X promotes thread-based partitioning to distribute

computation and communication across threads on a cluster of machines, while eliminating

the need for unnecessary thread synchronizations. Consequently, it contrasts with the tra-

ditional MPI + X parallelism model, which utilizes process-based partitioning to distribute

data among processes as a way to scale out on a cluster of machines (the MPI part), then

splits each partition into subpartitions among the threads of each process as a method to

scale up within a machine (the X part). Besides adopting MPI ∗ X, Graphite is NUMA-

aware. In particular, it assigns threads to partitions in a way that exploits CPU and memory

affinity, alongside leveraging faster MPI shared memory transport. Moreover, it adopts a

variant of the popular GAS (Gather, Apply, and Scatter) computing model, thus decoupling

the computation of partitions from the communication of partial results. Lastly, it supports

thread-level asynchrony, which does not only overlap the computation with communication,

but further interleaves multiple communications. Graphite is compared against GraphPad,

Gemini, and LA3 graph analytics systems in an HPC setting using different graph applica-

tions. Results show that Graphite is roughly up to 3× faster than these systems.

The rest of this chapter is organized as follows. Section 4.1 discusses the classical

2D-process-based matrix partitioning and placement approaches. Section 4.2 proposes the

new 2D-thread-based matrix partitioning and placement paradigms. Section 4.3 discusses

NUMA-aware thread placement and Section 4.4 summarizes features of the new MPI ∗ X

45

A00 A01 A02 A03 s0

A10 A11 A12 A13 s1

A20 A21 A22 A23 s2

A30 A31 A32 A33 s3

Seg
m

en
t

1
 (s

1)

Column Group1 (CG1)

R
o

w
 G

ro
u

p
1

(R
G

1
)

n/p

n/p

p x 1p x p

n/p

sA

(a)

P0 P1 P0 P1 P0

P2 P3 P2 P3 P1

P0 P1 P0 P1 P2

P2 P3 P2 P3 P3

(b)

Sw
ap
p
ed

P0 P1 P0 P1 P0

P2 P3 P2 P3 P3

P2 P3 P2 P3 P2

P0 P1 P0 P1 P1

(c)

Le
a

d
er

p
ro

ce
ss

o
f
R
G

1
an

d
C
G

1

Follower process of RG1

Fo
llo

w
er

p

ro
ce

ss
 o

f
C
G

1

Owner process of x1

P0 P0 P1 P0 P1 P0

P3 P2 P3 P2 P3 P3

P2 P2 P3 P2 P3 P2

P1 P0 P1 P0 P1 P1

xy A

⊕ = ⊗

(d)

Figure 18: Matrix and vector 2D layouts (p = 4). (a) 2D-process-based partitioning of

matrix and vector, (b) 2D-Cyclic process placement (e.g. the shaded tiles are assigned to

P0), (c) 2D-Staggered process placement, and (d) 2D-Staggered leader/follower configuration

for distributed SpMV.

model. Section 4.5 puts it altogether and introduces Graphite. Results are reported in

Section 4.6 and Section 4.7 concludes with some remarks.

4.1 2D-process-based Matrix Tiling & Placement

A graph can be represented by an adjacency matrix, in which an edge is denoted by a non-

zero element in the matrix. Many real-world graphs consist of billions of vertices and tens

of billions of edges. Typical linear-algebra based systems use 2D-process-based partitioning

46

(tiling) to decompose a matrix into a 2D grid of tiles and achieve load balancing among

processes [2, 5, 21, 115]. Having p processes, 2D tiling partitions the adjacency matrix of a

graph G (say, A) with n vertices into a 2D p by p grid of tiles, producing p2 tiles where each

tile covers n/p rows and columns. This tiling creates a 2D layout of p Row Groups (RGs)

and Column Groups (CGs) of tiles, where Aij denotes the tile placed at ith row group (RGi)

and jth column group (CGj). Similarly, a vector that can be involved in computation with

the matrix (more on this shortly) is also partitioned into p segments, where each segment

contains n/p elements.

Figure 18a shows the 2D-process-based partitioning of an exemplified matrix and a vector

using p = 4. After partitioning, a process placement is pursued. To assign p processes to

the 2D grid, many 2D-process-based placements put
√
p processes per row/column group to

limit the communication between processes [21]. Examples of this are 2D-Cyclic [5], which

assigns processes in a cyclic order (Figure 18b), and 2D-Staggered [2], which further reorders

row groups of the 2D-Cyclic to guarantee that each diagonal tile is assigned to a unique

process, and thus aligns the assignment of row/column groups to processes (Figure 18c).

Many graph operations can be converted into simple linear algebra primitives. A common

linear algebra primitive is SpMV operation y = A⊕.⊗x, where A is the n×n adjacency matrix

of G, x and y are n×1 input and output vectors, and ⊕.⊗ is a semiring equipped with (+,×)

operators. Overloading the semiring with operators specific to the application allows SpMV

to run different applications. The iterative SpMV algorithm repeatedly uses the result vector,

y, from one iteration to compute the input vector, x, for the next iteration until convergence.

Often, y is transformed to an intermediate vector v, which is then used to compute x.

Figure 18d shows the assignment of tiles to processes in the 2D-Staggered placement.

Processes are classified into two distinct categories, leaders and followers. The leaders (or pro-

cesses assigned to diagonal tiles) are responsible for aggregating/broadcasting data from/to

followers (or processes assigned to off-diagonal tiles) of their row/column group of tiles. In

other words, leaders are the owners of their corresponding row/column group of tiles. Also,

the leader of a row/column group of tile is the owner of the associated x and y vector

segments and is responsible for maintaining/updating those segments.

2D-Cyclic and 2D-Staggered are classified as 2D-process-based placements, which can be

47

y0 A00 A02 x0

y2 A20 A22 x2

Com

Com

Acc 1

2

3

⊕ = ⊗

Sync
4

(a)

V
er
ti
ce
s

Iteration

n/p

C
o
m
m
u
n
ic
at
io
n

Sy
n
ch
ro
n
iz
at
io
n

…Jo
in

Fo
rk

…

A
cc
u
m
u
la
ti
o
n

Jo
in

Fo
rk

Jo
in

Fo
rk

C
o
m
m
u
n
ic
at
io
n

A000

…

A00m

A020

…

A02m

(b)

Figure 19: GraphPad tile processing (MPI + X) with p = 4 processes and t = 2 threads.

Tiles are processed in a row-wise order where each tile is split into m smaller sub-tiles where

m is much bigger than t for balancing load among threads. (a) Steps taken to process

tiles/segments by process zero: (1) and (2) are row group SpMVs followed by their com-

munication episodes, (3) is the accumulation of results for the row group owned by process

zero, and (4) is P0’s synchronization with other processes. (b) Compulsory forks/joins of t

threads while processing each tile.

used by the MPI + X model. Hence, systems relying on this parallelism model such as Graph-

Pad [5], LA3 [2], Gemini [129], and CombBLAS [21] are not well suited for multithreading.

As an example, Figure 19 shows how tiles are processed in GraphPad [5]. Specifically, Figure

19a is the sequence of processing tiles executing SpMV and accumulating the results for P0

instructed by 2D-Cyclic (Figure 18b), while Figure 19b shows the steps taken by P0 for tile

processing. From these figures, this scheme comes with multiple caveats, namely (1) tiles

have to be further split based on m which is a multiple of number of threads per process

t (m sub-tiles in Figure 19b), (2) there are unnecessary compulsory thread forks and joins

before and after the processing of each tile, (3) the main MPI process is responsible for the

entire row group communication, (4) there are mandatory thread forks and joins for partial

accumulation of results, and (5) the final synchronization point for checking the convergence

is offloaded to the main process. These issues are potential performance bottlenecks and are

applicable to other state-of-the-art graph processing systems such as Gemini [129] and LA3

[2]. Next section shows how thread-based tiling can fix these issues.

48

��0 ��1 ��0 ��1 ��0 ��1 ��0 ��1 ��0

��2 ��3 ��2 ��3 ��2 ��3 ��2 ��3 ��3

��4 ��5 ��4 ��5 ��4 ��5 ��4 ��5 ��4

��6 ��7 ��6 ��7 ��6 ��7 ��6 ��7 ��7

��2 ��3 ��2 ��3 ��2 ��3 ��2 ��3 ��2

��4 ��5 ��4 ��5 ��4 ��5 ��4 ��5 ��5

��6 ��7 ��6 ��7 ��6 ��7 ��6 ��7 ��6

��0 ��1 ��0 ��1 ��0 ��1 ��0 ��1 ��1

Sh
if

te
d

(p.t) x (p.t) (p.t) x 1

n/(p.t)

n/(p.t) n/(p.t)

s
0 : s

7

A
0
j:
A

7
j

Ai0: Ai7
A s

(a) 2DT-Staggered global thread assignment

P0T0 P1T0 P0T0 P1T0 P0T0 P1T0 P0T0 P1T0 P0T0

P2T0 P3T0 P2T0 P3T0 P2T0 P3T0 P2T0 P3T0 P3T0

P0T1 P1T1 P0T1 P1T1 P0T1 P1T1 P0T1 P1T1 P0T1

P2T1 P3T1 P2T1 P3T1 P2T1 P3T1 P2T1 P3T1 P3T1

P2T0 P3T0 P2T0 P3T0 P2T0 P3T0 P2T0 P3T0 P2T0

P0T1 P1T1 P0T1 P1T1 P0T1 P1T1 P0T1 P1T1 P1T1

P2T1 P3T1 P2T1 P3T1 P2T1 P3T1 P2T1 P3T1 P2T1

P0T0 P1T0 P0T0 P1T0 P0T0 P1T0 P0T0 P1T0 P1T0

Le
a

d
er

th
re

ad
 o

f
R
G

1
an

d
 C
G

1

Follower thread of RG1

O
w

n
er

th
read

 o
f s

1

Follower thread of CG1

N
o

t
a

Fo
llo

w
er

 t
h

re
ad

o

f
C
G

1

A s

(b) 2DT-S. process and local thread assignment

Figure 20: Tile layout for p = 4 and t = 2. The 2D grid has (p . t)(p . t) = 64 tiles with p .

t = 8 tiles per thread and (p . t)(p . t) = 16 tiles per process. In (a), rows marked as shifted

are shifted to guarantee having t diagonal tiles per process. In (b), Pi Tj denotes thread j

of process i. Leader threads are at diagonal tiles, and follower threads have the same ids as

their leader. Note that each thread is responsible for 8 tiles (e.g., the 8 tiles and 1 segment

processed by thread P0 T 0 are shaded in (b).

4.2 2D-Thread-based Matrix Tiling & Placement

To address the problems of process-based partitioning and placement, including compul-

sory synchronization points for threads and heavy communication load for MPI processes,

I propose 2D-thread-based matrix partitioning and placement, a scheme implied by

MPI ∗ X parallelism, which intrinsically deems threads as the basic units of computation

and communication and reduces synchronization points.

Let A be the n by n adjacency matrix of a graph G with n vertices. To distribute the

computation of A to p processes each with t threads, 2D-thread-based partitioning divides A

into a grid of (p · t) by (p · t) tiles, each with height/width of n/(p · t). Afterwards, it assigns

p · t tiles to each thread and, subsequently, p · t2 tiles to each process. To this end, each

row group has
√
p threads/processes and each column group has

√
p · t threads and

√
p/t

processes. Also, each thread/process has tiles in
√
p row groups and each thread has tiles

49

Algorithm 1 2D-thread-based Staggered tile to process/thread assignment (See Table 4).

1: Input: # of processes p and # of threads per process t
2: Output: Assignment of Tiles[p · t][p · t] to global thread ids T̂k, k = 0, ..., (p · t)− 1 (Figure 20a)
3: Derivation of process id Pk, k ∈ [0, p − 1], and local thread id Tk, k ∈ [0, t − 1] from global

thread id (Figure 20b).
4: gcd = GCD(tr, tc)
5: for i = 0 to p.t do
6: for j = 0 to p.t do
7: Tiles[i][j].T̂ = ((i mod tc) · tr) + (j mod tr)
8: Tiles[i][j].T̂+ = (bi/(p.t/gcd)c · rt) mod (p · t) . Assignment of tiles to global threads
9: Tiles[i][j].P = Tiles[i][j].T̂ mod p . Grouping of threads into processes

10: Tiles[i][j].T = Tiles[i][j].T̂ /p . Derivation of local thread ids

in
√
p/t column groups. Alongside, each process has tiles in

√
p · t column groups. These

values only hold when both p and p.t are square numbers. In general, however, an integer

factorization method [5] shall be used to determine the number of processes and threads per

row/column group of tiles (pr/pc and tr/tc) (Algorithm 1).

Partitioning and placement are two intertwined concepts, whereby partitioning pro-

duces the tiles, and placement assigns threads (or processes) to tiles. This chapter extends

the process-based 2D-Staggered placement [2] to a thread-based 2D-Staggered (2DT-

Staggered) placement. The input to the 2DT-Staggered is the 2D grid of (p · t)2 tiles

produced by 2D-thread-based partitioning.

In 2DT-Staggered, if a diagonal tile, Ai,i, i = 0, ..., (p · t) − 1, is assigned to a thread,

then that thread becomes the leader of the ith row group RGi and ith column group CGi.

Also, that thread renders the owner of the ith segments of the input and output vectors,

yi and xi. So, before executing the iterative SpMV yi = Aij⊕.⊗xj (in a right-multiplication

fashion), the leader thread of CGj sends xj to its follower threads (threads that have tile(s)

in CGj). Later, after executing the SpMV of RGi by all threads, the leader thread of RGi

receives partial results from the follower threads of that row group and accumulates them in

yi. Next, yi is used to produce xi via vi (a segment of an intermediate vector v that stores

results permanently) for the next iteration.

Figure 20a shows the 2DT-Staggered placement for eight global threads (p = 4, t = 2).

From Algorithm 1: line 7 - 8, the 2DT-Staggered is materialized in two steps: (1) p · t thread

ids are cyclically assigned to tiles, and (2) these ids are shifted so that each global thread T̂k

50

Table 4: 2D-process-based tiling versus 2D-thread-based tiling. The utilized function

Factorize(p) returns pr and pc such that pr . pc = p and abs(pr - pc) is minimized.

2D-process-based 2D-thread-based

of row/ column group of tiles p p · t

of tiles p · p = p2 (p · t) · (p · t) = (p · t)2

Tile height/ width n/p n/(p · t)

Tile area (n/p)2 (n/(p · t))2

of processes per (pr, pc) = Factorize(p) (pr, pc) = Factorize(p)

row/column group (pr / pc)

of threads per tr = pr,

row/column group (tr/ tc) tc = (p · t)/tr
of row/column groups rp = p/pc, rp = (p · t)/pc,

per process (rp/ cp) cp = p/pr cp = (p · t)/pr
of row/column groups rt = (p · t)/tc ,

per thread (rt/ ct) rc = (p · t)/tr

is assigned to exactly one diagonal tile. Figure 20b shows the process ids and local thread ids

derived from Algorithm 1: lines 9 - 10. Each process Pk is assigned to exactly t diagonal tiles,

and each local thread in Pk receives one diagonal tile. RGs are distributed among processes

in a staggered way, and then among their local threads in a row-wise way. In 2DT-Staggered,

the staggered property balances the computation and communication among threads, while

the row-wise property eliminates concurrent writes onto similar segments of y by multiple

threads 1.

Generally, quick bursts of computation are interleaved with bursts of communication as

a result of overlapping computation with communication and, accordingly, achieving scal-

ability. As summarized in Table 4, the area of tiles in 2D-thread-based partitioning is t2

1The uniqueness of diagonal processes/threads ids can be proved by derangement, which is a permutation
of elements of a set i.e. no element appears in its original position [44] (Algorithm 1: lines 7-8 creates deranged
id permutations).

51

n/(p.t)
A06

…

Fo
rk A00

Iteration

… …

C
o
m

Vertices

A
cc

Sy
n
c

Jo
in

C
o
m

A
cc

Sy
n
c

C
o
m

Figure 21: Tiles processed by thread P0T 0; shaded tiles in Figure 20b (MPI * X). P0T 0 has

a single fork/join, and the synchronization is delayed till the end of an iteration to maximize

the overlapping of computation and communication.

times smaller than in 2D-process-based partitioning (which is reasonably small and suitable

for overlapping). Moreover, the MPI + X model, which uses 2D-process-based partition-

ing, considers p processes for carrying out communication. Conversely, MPI ∗ X, which

uses 2D-thread-based partitioning, utilizes p.t threads to pursue communication. Hence, the

MPI ∗ X has t times more communication endpoints and, as such, a better degree of overlap-

ping computation with communication. In summary, MPI ∗ X is a cost-effective parallelism

since it overlaps the computation of reasonably smaller tiles with the communication of fairly

smaller messages per thread. Also, by considering threads as basic units of computation and

communication, this parallelism delivers better scalability.

Figure 21 demonstrates the advantages of 2D-thread-based over 2D-process-based: (1)

2D-thread-based inherently distributes the computation of tiles among threads, resulting in

each thread being only forked/joined before/after the first/last iteration. Clearly, this avoids

the overhead of frequent thread creation/termination and enables cooperative thread syn-

chronization at the end of each iteration. (2) 2D-thread-based evenly splits the row/column

group communication among threads, eliminating thereby the communication bottleneck

caused by offloading communication to only MPI processes in the process-based variant. (3)

2D-thread-based offers a higher degree of overlapping between computation and communi-

cation because of its smaller tiles and larger number of MPI endpoints.

52

M0 M1

RAM RAM

S0
Q/
UPI

S1
TCP
/IP

S0
Q/
UPI

S1

C0 C0 C0 C0

C1 C1 C1 C1

(a)

M0 M1

RAM RAM

S0
Q/
UPI

S1
TCP
/IP

S0
Q/
UPI

S1

P0T0 P1T0 P2T0 P3T0

P0T1 P1T1 P2T1 P3T1

(b)

Figure 22: (a) A cluster with two dual-core dual-socket NUMA machines, and (b) NUMA-

aware assignment of threads to cores with p = 4 and t = 2.

4.3 NUMA-aware placement in 2D-thread-based Tiling

The 2DT-Staggered placement assigns P0, ..., Pp−1 process ids to tiles in a staggered way.

Also, it assigns local thread ids of a process, e.g., P0T0, ..., P0Tt−1 for P0 to different rows. In

Figure 20b, threads placed in the same row/column group, but belong to different processes

(e.g., P0T0 and P1T0), use MPI to communicate with each other. Also, threads placed in the

same row/column group, but belong to the same process (e.g., P0T0 and P0T1 in P0), use

shared memory to communicate. MPI has two transports, TCP/IP transport with 4 GB/s

speed [104] used for inter-machine communication, and shared memory transport with 60

GB/s speed [104] used for intra-machine communication. Thus, a NUMA-aware assignment

of MPI endpoints to tiles will benefit from the faster shared memory transport.

The linear order of process/thread ids does not necessarily imply assignments of pro-

cesses to machines/NUMA sockets and threads to cores. These assignments are done by the

MPI/threading environments before launching an MPI application and do not necessarily

follow an expected order such as a sequential assignment order. However, knowing these

assignments, processes/threads can be reordered before populating the 2D grid to efficiently

exploit MPI’s shared memory transports. To reorder processes, at first five pieces of informa-

tion are gathered, namely, the topology of the cluster (using MPI [58]), the microarchitecture

of machines (using NUMActl [70]), the number of processes per machine (using MPI [58]), the

number of threads per process (using OpenMP [97]), and the number of processes/threads

per row/column group (using the integer factorize method [5]). Finally, tapping into these,

processes are reordered to maximize the MPI shared memory communication.

53

For instance, consider a simple cluster consisting of two NUMA machines as shown in

Figure 22a, and its NUMA-aware assignment of processes/threads to machines/sockets/ cores

as shown in Figure 22b. Combining the information of thread assignment to tiles (from Figure

20b) with the information of thread assignment to cores from Figure 22b), a NUMA-aware

assignment of threads to cores can maximize the usage of the MPI shared memory transport

for inter-socket communication among different MPI endpoints. Furthermore, experiments

show that assigning one MPI process per socket provides faster MPI communication as the

usage of integrated memory controller of NUMA sockets like Intel’s QuickPath Interconnect

(QPI) or Ultra Path Interconnect (UPI) with 16 GB/s speed [104] is only limited to the

threads of the two processes placed in different sockets of a machine. Alongside, the controller

is not used for shared memory accesses of threads inside the same process (because the shared

memory communication of threads is limited to a single socket.)

4.4 Summary of MPI ∗ X Features

Table 5 outlined the main characteristics of the MPI ∗ X parallelism model and contrast

them with those of the classical MPI + X model. The key advantages of MPI ∗ X stem

from the 2D-thread-based partitioning which elevates threads to first-class citizens across

the computation, communication, and synchronization. Specifically partitioning the input

matrix into smaller tiles based on the total number of threads, thus evenly balancing the

computation load among threads in a fine-granular way (1 in Table 5). Moreover, threads are

communicating endpoints which provides a finer degree of computation and communication

overlapping when using MPI asynchronous primitives (2 in Table 5). In addition, in MPI ∗ X,

threads are persistent throughout computation, and synchronization is performed directly

among threads at the end of each iteration. Thus, MPI ∗ X has less synchronization overhead

(3 in Table 5). Conversely, in MPI + X, threads are forked and joined at every iteration and

synchronization is applied between threads in each MPI process then among MPI processes.

MPI ∗ X leverages NUMA where this micro-architectural property provides the following

benefits (4 through 6 in Table 5). Specifically, by launching one process per socket, MPI ∗ X’s

54

Table 5: The traditional MPI + X versus the new MPI * X parallelism models.

MPI + X
parallelism

MPI * X
parallelism

MPI * X
advantages

1. Partitioning
& placement Process-based Thread-based

More overlapping of
computation
and communication

2. Computation
& communication
units

Processes Threads

Front-loading the
computation &
communication patterns

Synchronization
3. Process-based
barriers

Thread-based
barriers

Avoids compulsory
forks/joins, &
minimizes synchronization

4. Process layout
One process
per machine

One process
per socket

Enabling NUMA-aware
computation &
communication, &
cache locality

5. Communication
among multiple
processes

Process-based
inter-machine
MPI-TCP/IP

Thread-based
inter-socket
MPI-SH.-MEM./
Thread-based
inter-machine
MPI-TCP/IP

Enabling faster MPI
shared memory transport
via Q/UPI interconnect

6. Communication
among threads
within a process

Intra-/Inter-socket
shared memory

Intra-socket
shared memory

Avoid inter-socket
communication

7. Scaling
Horizontal then
vertical scaling

Horizontal &
vertical
(diagonal) scaling

Removing the
boundaries between
processes & threads

threads enjoy processor/memory affinity where threads are bound to unique processors and,

subsequently exploit L1 cache locality. Also, threads’ memory accesses are local to their host

sockets, restricting the shared memory communication of threads to those sockets which also

avoids overloading the QPI/UPI interconnect. Moreover, combining the 2D-thread-based

tiling with the micro-architectural information allows MPI ∗ X to take advantage of the MPI

shared memory transport for inter-socket communication within a machine. Accordingly,

MPI ∗ X offers fast inter-socket communication using the QPI/UPI interconnect.

55

Finally, MPI ∗ X incorporates diagonal scaling (7 in Table 5), which blurs the boundaries

between processes and threads, and front-loads computation, communication, and synchro-

nization among threads. The diagonal scaling is possible because the abstraction model, the

library specification, and hardware properties are seamlessly integrated.

4.5 The Graphite

This section discusses Graphite, a new linear algebra-based distributed graph analytics

system that employs the MPI ∗ X parallelism model. Graphite uses 2D-thread-based par-

titioning and placement (,i.e., 2DT-Staggered placement) to equally break the computation

and communication of a sparse matrix among threads, while avoiding non-compulsory syn-

chronizations. It scales diagonally and treats threads as basic units of computation and com-

munication. Internally, Graphite utilizes MPI’s MPI THREAD MULTIPLE option in conjunction

with splitting the MPI communicator to enable collective and point-to-point communication

between computing threads.

4.5.1 Multithreaded MPI Input Processing

Graphite supports distributed reading of plaintext and binary unweighted/weighted edge

lists (which represent input graphs). For unweighted edge lists, it only stores the source

and destination of each edge without a weight. Graphite has a built-in graph converter to

manipulate an input graph based on problem constraints such as transposing it, making it

acyclic, removing self-loops, or removing parallel edges. The 2D-thread-based partitioning

used in Graphite instructs threads to collectively read edges from an edge list and insert

them in their associated tiles. Tiles are compressed using Triply Compressed Sparse Column

(TCSC) [86], a new sparse matrix compression format offering a compact representation of

given sparse matrix and vectors. In addition, TCSC supports a new optimized variant of the

SpMV primitive that takes advantage of the sparsity distribution of the matrix and vectors.

This variant is called SpMSpV2 (Sparse Matrix - Sparse input and output Vectors) which

filters the empty rows and columns of a sparse matrix and vector.

56

4.5.2 Distributed SpMSpV2 using 2D-thread-based Tiling & Placement

As pointed out earlier, in Graphite, tiles are compressed using TCSC [86], which enables

distributed execution of SpMSpV2 at scale. Rendering an n by n matrix A that represents

a graph G with n vertices, a graph operation can be translated into an SpMSpV2 primitive

ȳ = ¯̄A ⊕.⊗ x̄; where ¯̄A is a nzr×nzc compressed matrix holding no empty rows and columns,

and x̄ and ȳ are nzc×1 and nzr×1 compressed input and output vectors, with nzc and nzr

standing for the numbers of nonzero columns and rows, respectively. Graphite is a vertex-

centric system that abstracts the iterative computation of a large graph from the standpoint

of a vertex. A vertex has a value (or state) containing some information about the problem

being solved. Hence, there is a value (state) vector v of length n, which is divided into

multiple segments like the x̄ and ȳ vectors. To run an application, first, v is interpolated to

construct the new compressed input vector x̄. Second, the SpMSpV2 primitive ȳ = ¯̄A ⊕.⊗ x̄

is executed to produce the compressed vector ȳ. Finally, ȳ is expanded to an uncompressed

value vector v to interpolate and store the results permanently; as it will be used to construct

the new x̄ in the next iteration. In the following, this sequence is formalized as an iterative

matrix computing model which closely works with the new 2D-thread-based partitioning.

4.5.3 Matrix Computing Model

Many Vertex-centric systems [2, 5, 31, 76, 80] assume graph-parallel abstractions such as

vertex programs for encapsulating the operations executed on vertices of a graph. To collect

and disseminate information, the GAS (Gather, Apply, and Scatter) model [50] adds fan-

in/fan-out operations to a vertex program and characterizes the differences between vertex

and edge computations. The Gather operation collects information about adjacent vertices

and edges via a centralized sum. The Scatter operation propagates the new value of a

central vertex through its adjacent edges. Finally, the Apply operation updates the value of

the central vertex. Graphite adopts a similar model and iterates through Broadcast (Scatter

in GAS), Combine (Gather in GAS), and Apply operations.

Graphite’s computing model suggests a vertex program that can be overloaded with

the desired code for the Broadcast, Combine, and Apply operations. Before running the

57

Algorithm 2 Matrix Computing Model

1: Input: Tiles of matrix ¯̄A and x̄, ȳ and v vectors
2: Input: Overloaded functions to implement the operators for combine (⊗,⊕), apply (←a) and broadcast

(←b)
3: Temporary vector: ˆ̄y
4: for k = 0 to t do fork(Tk) . Pin Tk to a unique core

5: Initialize vk . Every thread Tk executes the following:
6: do
7: x̄k ←b vk . Broadcast
8: for ∀j ∈ CG do
9: MPI Ibcast(x̄j , leaderj , MPI COMM COLj)

10:
11: for i, j ∈ ¯̄A do . Combine
12: ȳi ⊕ = (¯̄Aij ⊗ x̄j)
13: if RGi tiles are processed then
14: if Tk is leaderi then
15: for Tl ∈ RGi followers do
16: MPI Irecv(ˆ̄yil, Tl, MPI COMM ROWi)

17: else
18: MPI Isend(ȳi, Tk, MPI COMM ROWi)

19: ȳi ⊕ =
∑
l
ˆ̄yil

20:
21: vk ←a ȳk . Apply
22: while Not CONVERGED(Tk) . Check convergence

vertex program, tiles of ¯̄A and segments of x̄, ȳ and v are distributed among threads using

2DT-Staggered, where ¯̄Aij is the tile placed at the intersection of ith and jth row and column

groups of tiles. In 2DT-Staggered, each thread is the leader of a unique row/column group of

tiles and their corresponding segments of ȳ/x̄ vectors (although it may have tiles in multiple

row/column groups). Therefore, the kth thread Tk | k ∈ [0, t − 1] of a process is the leader

of the kth uniquely owned row/column group and the associated vectors segments.

Algorithm 2 demonstrates the pseudocode of Graphite’s GAS-like matrix computing

model. Also, Figure 23 sketches the operations of the matrix computing model of Graphite

which is used in conjunction with 2D-thread-based partitioning and placement for matrix

parallel computations. In the following, I delve deeper into Graphite’s computing model and

discuss Broadcast, Combine, and Apply operations in details.

4.5.3.1 Broadcast Operation At the beginning of each iteration, each kth leader thread

(the leader of the kth owned column group) calls the Broadcast operation (Algorithm 2: lines

58

ഥ𝒙 ഥ𝒙0 ഥ𝒙1 ഥ𝒙2 ഥ𝒙3 ഥ𝒙4 ഥ𝒙5 ഥ𝒙6 ഥ𝒙7

P0T0 P3T0 P0T1 P3T1 P2T0 P1T1 P2T1 P1T0

v ഥ𝒚 ന𝑨

v0 P0T0 ഥ𝒚0 P0T0 RG0 P0T0 P1T0 P0T0 P1T0 P0T0 P1T0 P0T0 P1T0

v1 P3T0 ഥ𝒚1 P3T0 RG1 P2T0 P3T0 P2T0 P3T0 P2T0 P3T0 P2T0 P3T0

v2 P0T1 ഥ𝒚2 P0T1 RG2 P0T1 P1T1 P0T1 P1T1 P0T1 P1T1 P0T1 P1T1

v3 P3T1 ഥ𝒚3 P3T1 RG3 P2T1 P3T1 P2T1 P3T1 P2T1 P3T1 P2T1 P3T1

v4 P2T0 ഥ𝒚4 P2T0 RG4 P2T0 P3T0 P2T0 P3T0 P2T0 P3T0 P2T0 P3T0

v5 P1T1 ഥ𝒚5 P1T1 RG5 P0T1 P1T1 P0T1 P1T1 P0T1 P1T1 P0T1 P1T1

v6 P2T1 ഥ𝒚6 P2T1 RG6 P2T1 P3T1 P2T1 P3T1 P2T1 P3T1 P2T1 P3T1

v7 P1T0 ഥ𝒚7 P1T0 RG7 P0T0 P1T0 P0T0 P1T0 P0T0 P1T0 P0T0 P1T0

CG0 CG1 CG2 CG3 CG4 CG5 CG6 CG7

Broadcast (ഥ𝒙)

A
p

p
ly

 (
v

a
ഥ 𝒚

)

C
o

m
b

in
e

 (
ഥ 𝒚
⊕

=
A
⊗
ഥ 𝒙

)

1

23

Figure 23: Integrating the matrix computing model (Broadcast, Combine, and Apply) with

2D-thread-based tiling to run SpMSpV2 (p = 4 and t = 2).

7 - 9, where ←b is the broadcast operator) to produce the new input segment x̄k from an

interpolation of vk values (e.g., new ranks in PageRank). This transformation is marked by

arrow 0 in Figure 23. Later, as signified by arrow 1, each Tk thread broadcasts the new

input segment x̄k to its followers in its column group, which enables every thread to receive

new inputs required for the Combine operation. This is equivalent to the GAS’s Scatter

operation, which fans out on outgoing edges and sends new inputs to neighboring vertices.

In systems like GraphPad [5] and LA3 [2], GAS’s Scatter operation is implemented using

point-to-point primitives (MPI Isend()/MPI Irecv()) on the global MPI communicator. In

Graphite, the two exemplified MPI primitives are merged into a single MPI Ibcast() func-

tion (which is faster than point-to-point primitives due to using a tree-based communication

algorithm [69]) via splitting the MPI communicator. To enable broadcasting messages in-

side a column group, first independent MPI column group communicators MPI COMM COLj

are created for the threads in the same column group, CGj, of tiles. While MPI COMM WORLD

enables broadcast and collective communication among all processes, splitting the communi-

59

cator into subgroups enables broadcast and collective communication among threads hosted

by the same column group. Broadcasting across column group communicators mitigates the

pressure on the global communicator and avoids potential delays and contentions. Also,

since each thread Tk is the leader in only one of its column groups (the root process of the

MPI Ibcast()) and a follower in the rest, a nonblocking broadcast can overlap communica-

tion among threads. So, threads can simultaneously send/receive different input segments

associated with different column groups and interleave the communication of sends/receives.

4.5.3.2 Combine Operation As marked by arrow 2 in Figure 23, after broadcasting

the new input x̄, the Combine operation runs the SpMSpV2 kernel. This is similar to GAS’s

Gather operation, which fan-ins and calculates a generalized sum over a neighborhood of

a vertex. In the Combine operation (Algorithm 2: lines 11 - 19), each thread Tk iterates

over its tiles in a row order fashion and executes the SpMSpV2 kernel on its edges (i.e.,

ȳi ⊕ = (¯̄Aij ⊗ x̄j), where i and j are the indices of ith/jth row/column group of tiles, or

ith/jth segments of ȳi/x̄j). After consuming tiles related to ith row group, follower threads

post their sends to the leader thread of the ith row group, while leader threads post receives

for partial output segments ˆ̄yi’s from their followers. Afterwards, all threads move on to

their next row group of tiles asynchronously. Once, all tiles are consumed, each Tk adds the

partial result segments of ˆ̄yi to its ȳi segment, which later will be used to update the ith

segment of value vector vi.

To expedite the communication of the Combine operation, the global communicator is

split into row group communicators, whereby threads inside the same row group of tiles,

RGi, use the same row group communicator MPI COMM ROWi for sending/receiving partial

results. Combine uses the row group communicator to send/receive partial accumulation

results. Moreover, for row group communication, the number of communicators is set equal

to the number of row groups per process in order to provide concurrent race-free commu-

nication for all threads. Furthermore, Combine uses the MPI asynchronous communication

routines, including MPI Isend() and MPI Irecv() to overlap the computation of tiles with

the communication of partial ˆ̄y segments. Hence, at the end of each row group, follower

threads post their sends and leader threads post their receives. Subsequently, all threads

60

carry on independently with processing their next row group of tiles, while MPI buffers are

still being sent/received in the background. Since the communication is only performed

when the last tile of a row group is consumed, only a single pair of send/receive is required

to transfer the partial results from a follower to the leader thread of that row group. Lastly,

the accumulation of the segment owned by each leader, Tk, is done when all receives are

completed as Tk’s receives are sufficient for accumulation.

4.5.3.3 Apply Operation Marked by arrow 3 in Figure 23, in the Apply operation, each

leader thread Tk interpolates its owned output segment ȳk and constructs the new vertex

values vk (Algorithm 2: line 21, where ←a is the apply operator). This is similar to the

GAS’s Apply operation, which updates the state of the central vertex.

Finally, the matrix computing model operations, including Broadcast, Combine, and

Apply are followed by a check for convergence, which is also run concurrently by all threads.

Depending on the application requirements, this sequence repeats until executing a certain

number of iterations or reaching convergence.

4.5.4 Leveraging NUMA in Graphite

4.5.4.1 NUMA-aware Shared Memory Communication As discussed in Section

4.5.3.2, the proposed computing model relies on point-to-point primitives for the Combine

operation, which can be effectively accelerated using the MPI shared memory transport.

Guided by the MPI ∗ X model, which suggests launching one MPI process per socket,

threads that belong to two processes launched at the same machine are placed in the same

row group of tiles in the 2D grid of tiles. Therefore, the inter-socket communication can

be highly optimized using the MPI shared memory transport (see Section 4.3). Having this

setting, the communication of the Combine operation is overlapped with its computation of

tiles, which further alleviates the use of point-to-point MPI primitives. Contrarily, column

group communication cannot benefit from the MPI shared memory transport because column

group processes run mostly on different machines. However, MPI Ibcast() already offers

swift TCP/IP communication which mitigates the lack of having a better transport.

61

4.5.4.2 Processor & Memory Affinity Processor/memory affinity avoids excessive

migrations of processes/threads, thus allowing them to benefit from hot caches and NUMA.

GraphPad [5] and Gemini [129] leverage MPI [58, 98] and OpenMP [97] to control CPU and

memory affinity at runtime. In contrast, Graphite explicitly controls affinity by launching

one MPI process per socket and pinning threads to cores. In particular, the processor affinity

forces threads to be launched at the same NUMA socket as the MPI process. This translates

to fewer context switches, TLB flushes, and L1 cache invalidations. Also, it offers efficient

L2/L3 cache accesses because an access to L2 is limited to the working thread pinned on

a core and an access to L3 is limited to the working threads running on that cores’ socket.

Moreover, memory affinity enforces contiguous allocation of memory for matrix tiles and

vector segments on a NUMA node when the MPI process uses numa alloc onnode [70].

Memory affinity avoids overloading the memory interconnect across sockets such as QPI/UPI

and offers faster main memory accesses. Also, binding a core to a thread allows all data

structures of tiles and segments to be allocated at the same NUMA socket of the core. All in

all, threads can subsequently enjoy hot caches while running SpMSpV2s on x̄ and ȳ segments.

Moreover, within a process, there is only one x̄ segment per column group from which all

threads can safely read in parallel.

4.5.5 Enabling Compiler Optimization

Based on my experience with multithreaded programming, compiler optimizations are

not fully supported (or are degraded– e.g., from -O3 to -O2) while developing programs

with cross-function and/or cross-file invocations by threads. The loss from the absence

of compiler optimizations and the presence of sandboxing (where programs are sandboxed

in multithreading runtimes, thus inducing overhead) may completely offset the gain from

multithreaded programming [15, 116, 117]. As such, I keep the iterative compute-intensive

SpMSpV2 kernels concise and overload them locally with basic mathematical operators in-

stead of using expensive cross-function calls. In addition, I avoid using virtual methods

because they enforce each function call to go through a virtual table to look up and invoke

the callee method. To this end, I utilize inline methods, which allow the compiler to see

62

the majority of code in advance and, accordingly, exploit vectorization and loop unrolling.

Lastly, to effectively break the code and computation among threads, I use Pthread instead

of OpenMP, which is about 20% faster [114].

4.5.6 Activity & Computation Filtering

Graph applications are divided into stationary applications, where all vertices remain

active during execution, and non-stationary applications, where the number of active vertices

varies during runtime.

Activity filtering is a technique used in non-stationary applications to remove unnecessary

computation and communication of inactive vertices [2, 5, 129]. In Graphite, if less than

60% of vertices render inactive, only a list of (index, value) pairs representing active vertices

are used for communication, precluding thereby any traffic data that pertains to inactive

vertices. Otherwise, Graphite falls back to sending the original arrays of nonzero elements,

which encompass actual values for active vertices and dummy values for inactive ones. When

activity filtering is enabled, a SpMSpV2 kernel only executes the received list of (index, value)

pairs, skipping naturally the computations of inactive vertices. When activity filtering is

disabled (i.e., when Graphite falls back to sending original arrays), a SpMSpV2 kernel skips

the computations of inactive vertices using the dummy placeholders.

Besides activity filtering, computation filtering is used in stationary applications [2] to

skip the computation of unnecessary edges of a sparse matrix. First, computation filtering

classifies vertices into four categories: 1) regular vertices, which are vertices with both ingoing

and outgoing edges, 2) source vertices, which are vertices with only outgoing edges, 3) sink

vertices, which are vertices with only ingoing edges, and 4) isolated vertices, which are vertices

with no edges. Next, it leverages these types of vertices to avert unnecessary computations

as follows: 1) regular vertices are executed in all iterations because their values are used by

other vertices via the input vector, 2) source vertices are only executed in the first iteration

because their values will not be changed afterwards, 3) sink vertices are only executed in the

last iteration because their values are not used in earlier iterations, and 4) isolated vertices

are discarded completely from the execution loop because their values are never used in

63

Table 6: Datasets used for experiments, and the number of nodes used to process them.

Graph |V | |E| Type Nodes

UK’05 (UK5) [16] 39.4 M 0.93 B Web Crawl 4

IT’04 (IT4) [16] 41.2 M 1.15 B Web Crawl 4

Twitter (TWT) [16] 41.6 M 1.46 B Social 8

GSH’15 (G15) [16] 68.6 M 1.80 B Web Crawl 8

UK’06 (UK6) [16] 80.6 M 2.48 B Web Crawl 16

UK Union (UKU) [16] 133 M 5.50 B Web Crawl 20

Rmat26 (R26) [25] 67.1 M 1.07 B Synthetic 4

Rmat27 (R27) [25] 134 M 2.14 B Synthetic 8

Rmat28 (R28) [25] 268 M 4.29 B Synthetic 16

Rmat29 (R29) [25] 536 M 8.58 B Synthetic 20

any iteration. Graphite adopts computation filtering for directed graphs, only since these

four types of vertices exist only in them. For undirected graphs, all vertices are regular or

isolated, rendering computation filtering less effective.

4.6 Results

4.6.1 Experimental Settings

4.6.1.1 Cluster Configuration Experiments are conducted on a HPC cluster of 20

nodes, each with 28-core (14 cores per socket) Broadwell Processor (2.60GHz) and 192GB

RAM. The cluster has Intel Omni-path interconnect (10 Gb/s speed) and all nodes are

connected to an OFA network fabric. Nodes run Red Hat Enterprise Linux Server 7.6.

The cluster uses Slurm workload manager for batch job queuing [108]. Intel MPI [58] with

multithreading is used to support for communication across machines and Pthread [71] for

launching threads inside an MPI process. OpenMP [97] is utilized to collect information of

allocated cores within a process, Pthread to provide CPU affinity, NUMActl [70] to enable

memory affinity, and Linux sysconf to get the cache information at runtime.

64

Experiments on the cluster follow two settings. Weak scaling where the number of

machines (and cores) used for processing is proportional to the size of the graphs and Strong

scaling where the graph size is fixed and the number of machines (cores) is varied. At scale,

all 20 nodes of the cluster (560 cores) are used. Finally, any reported number is the average

of multiple individual runs.

4.6.1.2 Counterpart Systems Graphite2 has been tested against two linear algebra-

based systems GraphPad [5] and LA3 [2], and one graph theory-based system Gemini [129].

For all systems, the number of processes per machine π and the number of threads per

process t are fine-tuned and the configuration that demonstrates the best runtime is picked.

Thus, GraphPad is ran with π = 2 and t = 14, LA3 with π = 14 and t = 2, and Gemini with

π = 1 and t = 28. Similarly, Graphite is ran with different combinations of π and t and use

π = 2 and t = 14 as it delivers the best results. Note GraphPad, LA3, and Gemini crashed

for some experimental settings because of limitation memory or number of processes.

4.6.1.3 Graph Datasets Table 6 shows graphs used in the experiments including six

real-world graphs (web crawls and social network from LAW [16]), and four synthesized

graphs (RMAT 26 - 30 graphs from the Graph 500 challenge [25].3). In Table 6, the last

column, Node reports the number of nodes used to process a graph dataset in the experiments

(unless otherwise stated). To provide the weak scaling property, starting from four nodes up

to 20 (the cluster size), the number of nodes are increased relative to the graph size.

4.6.1.4 Graph Applications Graphite has an extensible API supporting different

graph applications. Graphite supports PageRank (PR) for unweighted directed graphs as a

prime stationary application. PR includes degree application as well. In addition, Graphites

supports three non-stationary applications including Single Source Shortest Path (SSSP) for

weighted directed graphs, Breadth First Search (BFS) and Connected Component (CC) for

unweighted undirected graphs. Similar to the setting used in GraphPad [5], LA3 [2], and

2Graphite’s source code is available at https://github.com/hmofrad/Graphite
3RMATs follow power of two growth rate, i.e., RMATn has 2n vertices and 2n+4 edges.

65

1

10

100

1 2 4 7 14 28

Ti
m

e
(s

)
(l

o
g-

sc
al

e)

Number of processes per machine (π)

LA3 (MPI+X)
GraphPad (MPI+X)
Graphite (MPI*X)

(a) PR on TWT (8 nodes)

1

10

100

1 2 4 7 14 28

Ti
m

e
(s

)
(l

o
g-

sc
al

e)

Number of processes per machine (π)

(b) CC on TWT

1

10

100

1 2 4 7 14 28

Ti
m

e
(s

)
(l

o
g-

sc
al

e)

Number of processes per machine (π)

(c) PR on R28 (16 nodes)

1

10

100

1 2 4 7 14 28

Ti
m

e
(s

)
(l

o
g-

sc
al

e)

Number of processes per machine (π)

(d) CC on R28

Figure 24: Runtime of Graphite and others with (# processes per machine, # of threads

per process) = (1, 28), (2, 14), (4, 7), (7, 4), (14, 2), and (28, 1).

Gemini [129] PR is ran for 20 iterations and SSSP, BFS, and CC until convergence.

4.6.2 Multithreading Spectrum

This experiment shows how the number of processes per machine π and the number

of threads per process t affect the scalability of GraphPad [5] and LA3 [2] (two MPI + X

systems), and Graphite (an MPI ∗ X system). Figure 24 shows the results of GraphPad, LA3,

and Graphite with different configurations of π and t (x-axis), i.e., π · t = 28 (total number

of cores per machine) using PageRank (PR) and Connected Component (CC). For Graphite,

certain observations can be made from its Double-u (W) shaped trends of Figure 24. The

optimal configuration for Graphite is π = 2 and t = 14 where one process per socket is

launched and faster inter-socket communication is leveraged. Also, there is a spike at runtime

for π = 7 which is due to having an odd number of processes; with this configuration there is

a process in each machine that has threads on both sockets, therefore stressing the QPI/UPI

interconnect for shared memory communication among threads. Moreover, neither the pure

multithreading (π = 1) nor the pure multi-processing (π = 28) per machine produces good

results. From the viewpoint of a single machine, pure multithreading imposes communication

overhead on QPI/UPI for accessing input vector segments across sockets, and pure multi-

processing imposes communication overhead on QPI/UPI for inter-process communication.

From Figure 24, GraphPad has comparable performance when launched with one or two

processes per machine and its performance drops as it moves to more processes per ma-

chine (perfect multiprocessing). Also, LA3 cannot utilize threads effectively, and therefore

as it utilizes more processes than threads its performance first improves (up to 14 processes

66

0

1

2

3

UK5 TWT UK6 UKU R26 R27 R28 R29 GM

Sp
ee

d
u

p
ALL-OFF NUMA-ON COMP-OPTI-ON CMPT-FLTR-ON ALL-ON

7.9 9 3.3 3.9 3.3

(a) PR

0

1

2

3

UK5 TWT UK6 UKU R26 R27 R28 R29 GM

Sp
ee

d
u

p

ALL-OFF NUMA-ON COMP-OPTI-ON ACTY-FLTR-ON ALL-ON

4.8 7.4 4.5 6.6 3.3

(b) CC

Figure 25: Normalized speedup (weak scaling) of NUMA, COMP-OPTI, CMPT-FLTR, and

ACTY-FLTR with ALL-OFF/ALL-ON as baseline/headline. GM (grand geometric mean).

per machine) and then drops (for 28 processes) which roots in LA3’s poor work distribu-

tion among threads. Comparing with GraphPad and LA3, Graphite has a decent runtime

difference across the majority of configurations.

4.6.3 Sensitivity to Different Optimizations

Graphite offers a set of features for scalable graph processing including NUMA-aware

shared memory MPI communication (NUMA), compiler optimization (COMP-OPTI), com-

putation filtering (CMPT-FLTR), and activity filtering (ACTY-FLTR). From Figure 25a,

on PageRank (PR) (a stationary application), NUMA, compiler optimization, computation

filtering, and the combination of these features give 27%, 43%, 2×, and 3.3× speedups, re-

spectively. From this figure, smaller graphs benefit more from compiler optimization whereas

larger graphs benefit more from NUMA and computation filtering. Also, from Figure 25b,

on Connected Component (CC) (a non-stationary application), NUMA, compiler optimiza-

tion, activity filtering, and the combination of them give 53%, 62%, 2×, and 3.3× speedups,

respectively. From this figure, NUMA and compiler optimization are more effective in syn-

thetic graphs (which has uniform distribution with constant edge factor), whereas activity

filtering is more effective in real-world graphs (which follows power-law distribution with

high variance in number of edges per vertex). From the last bars of each dataset of Figure

25, enabling all features results in a better speedup which shows their effects are cumulative.

Figure 25 shows that NUMA is more effective for larger graphs which stems from lever-

aging memory and processor architecture to maximize the usage of MPI shared memory

67

Bcast-comp
2%

Bcast-comm
44%

Combine-SpMSpV2+comm
34%

Combine-accu+comm
7%

Apply
7%

Convergence
6%

Figure 26: Graphite Execution time breakdown (s) from running PR on R28 using 16 nodes.

transport. Also, enabling the compiler optimization to its fullest extent is vital for run-

ning an iterative compute-intensive SpMSpV2 kernel, because this kernel includes the bulk of

computation done by threads, and any optimization that can slightly improve on this kernel,

will largely improve the overall runtime. Finally, the computation filtering advantage

comes from passing over the computation of subsets of unnecessary vertices in stationary

applications (e.g., PR), and the activity filtering advantage comes from skipping the com-

munication and computation of inactive vertices in non-stationary applications (e.g. CC).

4.6.4 Execution Time Analysis

Graphite’s matrix computing model iterates over Broadcast, Combine, and Apply op-

erations. In addition, Graphite checks for convergence and enforces synchronization among

threads at the end of each iteration. Figure 26 shows the breakdown of execution time of 20

iterations of PR on R28. It is clear that Broadcast and Combine operations are both compu-

tation and communication intensive, and constitutes about 90% of the runtime. Broadcast

time (46%) consists of the time for preparing the new input segments (Bcast-comp), plus

the overlapped communication time (Bcast-comm). Combine time (41%) constitutes the

time spent for running the SpMSpV2 (Combine-SpMSpV2+comm), and the accumulation

time of the partial output segments which is overlapped with background communication

(Combine-accu+comm). Apply time is the time for interpolating and updating the values

of the vertices. Combine-accu+comm and Apply times are roughly equal as both are oper-

ating on similar segments. Finally, Convergence time is the total synchronization time of

threads at the end of each iteration which includes the time for checking the convergence.

68

0

10

20

UK5 IT4 TWT G15 R26 R27 R28 GM

Ti
m

e
(s

)
Graphite GraphPad Gemini LA3

31.1

(a) PR

0

3

6

UK5 IT4 TWT G15 R26 R27 R28 GM

Ti
m

e
(s

)

Graphite GraphPad Gemini LA3

11

(b) SSSP

0

1

2

UK5 IT4 TWT G15 R26 R27 R28 GM

Ti
m

e
(s

)

Graphite GraphPad Gemini LA3

3.1

(c) BFS

0

5

10

UK5 IT4 TWT G15 R26 R27 R28 GM

Ti
m

e(
s)

Graphite GraphPad Gemini LA3

(d) CC

Figure 27: Runtime of Graphite and other systems (weak Scaling). GM is the grand geo-

metric mean over all datasets.

4.6.5 Comparisons with other Systems

4.6.5.1 Weak Scaling Comparison Weak scaling of Graphite versus GraphPad, Gem-

ini, and LA3 are reported in Figure 27. Based on the grand geometric mean of results

(geometric mean of geometric mean of each subfigure), Graphite acheives superior speedup

and is 2.9×, 60%, 80%, and 2.1× faster than these systems in PR, SSSP, BFS, and CC

applications.

From Figure 27a, in PageRank (PR), Graphite is on average (geometric mean) 81%,

91%, and 7.1× faster than GraphPad, Gemini, and LA3. PR is a computation- and

communication-intensive non-stationary application which needs to visit all vertices and

their associated edges in order to rank them. For PR, computation filtering helps Graphite

to skip the computation of subsets of vertices4. Also, compared to others, LA3 does not

perform good on PR because it has rigorous communication optimizations which are not

effective in an HPC cluster with fast interconnect.

4In R29, computation filtering skips 5% of SpMSpV2 ops.

69

Having a look at Figure 27b, Graphite is 18%, 2×, and 73% faster than GraphPad,

Gemini, and LA3 on average in Single Source Shortest Path (SSSP). Running SSSP

on a directed graph, the source vertex is an important factor regardless of the size of graph.

Starting from the source, SSSP traverses all vertices connected to the source with an incoming

link from the source. So, if source is sampled from a small connected component, all vertices

of that component will be visited quickly and that is why for some graphs like UK5 or R26

the runtime is small compared to other graphs. Graphite performs the best in SSSP except

for TWT because the complex structure of the largest component of TWT causes a huge load

imbalance among threads5. In addition, GraphPad outperforms Gemini and LA3 because of

its better communication and compression optimizations.

On BFS (Figure 27c), Graphite outperforms GraphPad, Gemini, and LA3 with 33%,

2.3×, and 90% better runtime on average. Given Breadth First Search (BFS) uses undi-

rected graphs, unlike SSSP, it eventually visits all vertices of the connected component where

the source is chosen from. Therefore, BFS deals with more communication and computation

than SSSP. Gemini is relatively slow because it does not have a good communication strategy

and relies on a single thread per process to communicate messages of a row of tiles which

works fine only for small number of nodes e.g. 8 nodes. LA3’s communication optimiza-

tions work better in BFS (and SSSP) because communication pattern of BFS (and SSSP)

include(s) small bursts of data transfer which can quickly be compressed in LA3.

As shown in Figure 27d, on average Graphite performs 77%, 31%, and 3.7× faster than

GraphPad, Gemini, and LA3 for Connected Component (CC). CC tries to find a set

of vertices that are connected to each other by paths (a strongly connected subgraph) and

accomplishes this task by iteratively visiting all vertices inside components. Gemini out-

performs GraphPad and LA3 because it uses NUMA-aware partitioning which offers faster

local memory access and higher cache utilization. Both GraphPad and Gemini use a pair

of dense vectors accompanied by a bitvector for fast random access of compressed vectors.

However, GraphPad is slower than Gemini in CC because for this application Gemini can

effectively switches between its sparse and dense representations using its push/pull model,

whereas, GraphPad compression threshold is ineffective here. On the other hand, Graphite’s

5The largest component of TWT includes 80% of its edges.

70

1

10

100

1 2 4 8 16 20

Ti
m

e
(s

)
(l

o
g-

sc
al

e)

Number of machines

LA3 (MPI+X)
GraphPad (MPI+X)
Gemini (MPI+X)
Graphite (MPI*X)

(a) PR on TWT

1

10

100

1 2 4 8 16 20

Ti
m

e
(s

)
(l

o
g-

sc
al

e)

Number of machines

(b) CC on TWT

1

10

100

1 2 4 8 16 20

Ti
m

e
(s

)
(l

o
g-

sc
al

e)

Number of machines

(c) PR on R28

1

10

100

1 2 4 8 16 20

Ti
m

e
(s

)
(l

o
g-

sc
al

e)

Number of machines

(d) CC on R28

Figure 28: Strong cluster scaling of different systems on R28. X -axis is the number of nodes.

decision for switching between sparse and dense representations is made in Broadcast oper-

ation and reused in Combine operation. Although this approach poses a small overhead to

the Broadcast operation, altogether it results in a better performance for CC as it skips the

computation of activities in the Combine operation.

From Figure 27, Graphite outperforms GraphPad, Gemini, and LA3 systems, where this

outperformance is largely due to the usage of MPI ∗ X parallelism model and 2D-thread-

based partitioning and placement. Conversely, other systems follow MPI + X parallelism

and process-based partitioning that underperform in iterative applications. For example,

GraphPad and Gemini use process-based 2D-Cyclic and 1D-Row placements, which are less

scalable than thread-based 2D-Staggered placement used in Graphite.

4.6.5.2 Strong Cluster Scaling Comparison Figure 28 shows the runtime of different

systems for different number of machines for PR and CC on TWT and R28. Overall, Graphite

scales very well on both TWT (real-world) and R28 (synthetic). It can effectively leverage

the added processing power and improve the runtime. This scalability is highly due to

MPI ∗ X parallelism model which balances the computation and communication of tiles

among threads. Moreover, GraphPad which follows the MPI + X parallelism model exhibits

comparable scalability on TWT and poorer scalability on R28. Next, Gemini starts with a

good performance, but fails to scale for larger clusters due to the limitations of MPI + X

parallelism, e.g., only MPI processes carry out communication. Last, LA3 does not scale

well as its communication strategy is not suitable for HPC clusters.

71

1

10

100

R26 R27 R28

Ti
m

e
(s

)
(l

o
g-

sc
al

e)

Dataset size

LA3 (MPI+X)

GraphPad (MPI+X)

Gemini (MPI+X)

Graphite (MPI*X)

(a) PR

0.1

1

10

R26 R27 R28

Ti
m

e
(s

)
(l

o
g-

sc
al

e)

Dataset size(b) CC

Figure 29: Strong data scaling (R26-28 with 16 nodes)

.

4.6.5.3 Strong Data Scaling Comparison Figure 29 shows the runtimes of different

systems on R26 - R28 using 16 machines for PR and CC. From Figure 29a, Graphite, which

follows MPI ∗ X exhibits a better data scaling with minimal changes in the runtime for PR.

In this figure, Graphite outperforms GraphPad, Gemini and LA3 which all follow MPI + X.

Additionally, a similar trend for CC can also be seen in Figure 29b.

4.6.5.4 Discussion of Evaluated Systems Table 7 thoroughly reports different fea-

tures of the studied systems. From this table, GraphPad [5], Gemini [129], and LA3 [2] use

MPI + X model with processes being the basic units of computation and communication,

whereas Graphite uses MPI ∗ X model where threads are the basic units of computation and

communication. GraphPad, Gemini, and LA3 use process-based 2D-Staggered, 2D-Cyclic,

and 1D-Row placements, whereas Graphite uses 2DT-Staggered that is devised for threads.

Moreover, although all these systems utilize GAS-like computing models, Graphite carefully

incorporates asynchronous collective MPI primitives in its model enabling faster commu-

nication. Also, Graphite leverages NUMA for both computation (CPU/memory affinity)

and communication (MPI shared memory communication) purposes, whereas Gemini inter-

nally supports memory affinity but relies on OpenMP for processor affinity. In addition,

Graphite carefully follows strict programming guidelines to completely enable compiler op-

timizations for multithreaded SpMSpV2 kernels. Last, all systems use activity filtering, but

only Graphite and LA3 use computation filtering.

72

Table 7: Summary of features of the studied systems.

Feature Graphite GraphPad LA3 Gemini

1. Parallelism Model MPI*X MP+X MP+X MP+X

2. Unit Thread Process Process Process

3. Tiling 2DT-Staggered 2D-Cyclic 2D-Staggered 1D-Row

4. Computational Model GAS GAS GAS Push/pull

5. NUMA Full No No Memory

6. Computation Optimization Targeted Default Default Default

7. Computation Filtering Yes No Yes No

8. Activity Filtering Yes Yes Yes Yes

The performance difference between Graphite and LA3 is due to three design decisions

made in LA3: (1) Communication strategy: LA3 is designed for cloud environments (not

HPC) with low-bandwidth and high-latency interconnection networks. It has an extensive

communication optimization that tailors input messages per tile to reduce the communication

volume at the expense of more computation overhead. In a cloud environment, this strategy

works well because the communication delay is more expensive than the time spent for

constructing the optimized messages. In contrast, in an HPC environment, this strategy

is not productive because of fast interconnects. (2) Parallelism model: LA3 follows the

MPI + X model. It relies on OpenMP runtime to distribute the computation of tiles across

threads while bounding the communication to only MPI processes. Thus, compared to an

MPI ∗ X system like Graphite, LA3 has less MPI communication endpoints and larger tiles,

which reduces the overlapping of computation with communication. (3) Matrix compression:

LA3 uses Doubly Compressed Sparse Column (DCSC) [19], whereas Graphite uses Triply

Compressed Sparse Column (TCSC) [86], which is more cache friendly.

4.7 Conclusions

In this chapter, I introduced Graphite, a new linear algebra based graph analytics system

that uses the MPI ∗ X parallelism model with 2D-thread-based partitioning and placement.

73

In Graphite, threads are treated as first-class citizens of a distributed system where com-

putation and communication are fairly distributed among all threads while minimizing the

synchronization points. Graphite utilizes a GAS-like matrix computing model for fast ex-

ecution of iterative analytics that takes advantage of MPI and distributed shared memory

capabilities. It exploits NUMA for both computation (CPU/memory affinity) and commu-

nication (MPI shared memory communication). Compared against GraphPad, Gemini and

LA3 analytics systems, the proposed Graphite achieves a speedup of roughly up to 3× due

to its thread-level asynchronous communication and computation, high degree of concurrent

communications, and NUMA-ware computation and communication.

74

5.0 Studying the Effects of Hashing of Sparse Deep Neural Networks on Data

and Model Parallelisms

Thus far, SpMV primitive and its diverse application in graph analytics is discussed. In

this chapter, SpMM primitive and its application in sparse neural network inference will be

discussed in details.

Deep Neural Network (DNN) training and inference are two resource-intensive tasks that

are usually scaled out using data or model parallelism where data parallelism parallelizes

over the input data and model parallelism parallelizes over the network. Also, dense matrix-

matrix multiplication is the key primitive behind training/inference of dense DNNs. On

the contrary, sparse DNNs are less resource-intensive compared to their dense counterparts

while offering comparable accuracy. Similarly, they can be parallelized using data or model

parallelism with Sparse Matrix-Matrix Multiplication (SpMM) as the key primitive. To scale

out, both data and model parallelisms initially use data parallelism to partition the input

data among multiple machines. This initial partitioning of the input makes data and model

parallelisms performance prone to load imbalance as partitions may be imbalanced. As part

of this chapter, I take a deeper look into data and model parallelisms and closely study the

mechanics of the SpMM used for each. Moreover, to intuitively remedy their load imbalance

problem, I incorporate hashing as a simple yet powerful method to address load imabalance.

Results suggest that with hashing, data and model parallelisms achieve super-linear speedup

due to better load balance and cache utilization.

The rest of this chapter is organized as follows. Section 5.1 presents the background and

surveys the related work. Section 5.2 investigates data and model parallelisms. Section 5.3

studies the effect of neural network hashing. Section 5.4 reports the results. Finally, Section

5.5 concludes this chapter.

75

T0

T1

× × × …

B0 n x n B1 n x n

m/t

Am x n

(a) Data parallelism

× × × …m T0 T1

n/t

Am x n

B0 n x n B1 n x n

(b) Model parallelism

Figure 30: Data and model parallelisms for two threads (t=2).

5.1 Background

5.1.1 Inference using Sparse Matrix-Matrix Multiplication

Neural network connections can be represented using the triplet format [87], where a

triplet (i, j, w) implies a connection from neuron i of layer l to neuron j of the following layer

l + 1 with w being the weight of their connection. Hence, inference can be boiled down to

the iterative SpMM of Cl+1 = h((Al ×Bl) + bl), where l is the index of the hidden layer, Al

is the lth m×n input sparse matrix with A0 being the input layer, Bl is the lth n×n hidden

layer, and Cl+1 is the m × n sparse matrix resulting from the lth layer SpMM which will

be copied to Al+1. Also, the function h is a nonlinear mapping function such as the ReLU

activation function h(y) = max(y, 0) and bl is the bias vector of the lth layer.

5.1.2 Data and Model Parallelisms

Inference can be parallelized in different ways including input size, DNN’s breadth

(height/width), and depth. Having t processes, model parallelism uses 1D-Column

partitioning (vertical stripes) to divide the network of breadth n (height/width) into t

partitions of size n/t neurons. Here, all threads are synchronized at the end of each layer

since the output of a current layer becomes the input of the following layer (see Figure 30b).

Data parallelism uses 1D-Row partitioning (horizontal stripes) to divide the input

with m input instances into t partitions of size m/t instances. Then, each thread indepen-

dently processes its partition without requiring any synchronization (see Figure 30a). Both

parallelisms do not require concurrency control as threads execute on separate partitions.

76

× ×
P0T0

P0T1

P1T0

P1T1

m x n input

P0

P1

n x n layers

× …

× × × …

n x n layers

m/(p.t)

(a) Data*data parallelism

× ×
P0

T1

m x n input

P0

P1

n x n layers

× …

× × × …

n x n layers

m/p
P0

T0

P1

T1

P1

T0

n/t

(b) Data*model parallelism

Figure 31: Data*data and data*model parallelisms for two processes and two threads per

process (p=2, t=2).

In a distributed setting with p processes and t threads per process, data∗model and

data∗data parallelisms are applied where the network is replicated for each process to

avoid unnecessary network communications and the input is partitioned into p partitions to

provide a load balance among processes. Afterward, in data∗model the network is broken

into t partitions of size n/t, and in data∗data each input partition is further broken into t

subpartitions of size m/(p · t) (see Figure 31a and Figure 31b).

5.2 The Duality Between Left and Right SpMM

Gustavson’s algorithm [53] is a widely used SpMM algorithm. This algorithm is often

combined with other data structures such as Sparse Accumulator (SPA) [46], heap, or hash to

produce a row/column of the output matrix C. In the following of this section, Gustavson’s

left and right SpMMs are described in the context of data and model parallelisms. Note that

a symbolic SpMM step to pre-allocate C precedes these SpMM algorithms. Hence, enough

memory for C is already allocated.

77

0 1 2 3 4 5

0 9 1 63 3
1

2

3

0

1

2

3

0 1 2 3 4 5

0 9 1
1

2

3 8 3 4
0 6 3
1 5 2 7
2

3 1

0 9
1 0
2 0
3 0
4 1
5 0

0 1 2 3 4 5

0 1 7
1 4 9
2 5 8
3 8 2
4 1 3
5 2 5

0 1 2 3 4 5

9 1 0 63 3 0

1 2

3

4

C A

B

SPA0

T0

T1T1

T0 x

+=

1

2

3

4

IAA 0 2 2 2 5

JAA 0 4 1 2 5

VAA 9 1 8 3 4

IAB 0 2 4 6 8 10 12

JAB 0 3 1 4 2 5 0 3 1 4 2 5

VAB 1 8 4 1 5 2 7 2 9 3 8 5

IAC 0 4

JAC 0 1 3 4

VAC 9 1 63 3

for(i = 0; i < endk; i++) {
for(l = IAA[i]; l < IAA[i+1]; l++) {

c = JAA[l]; v = VAA[l]
for(j = IAB[c]; i < IAB[c+1]; j++) {

SPAk[JAB[j]] += (v × VAB[j]);
}

}
SPAk→ (IAC, JAC, VAC, i)

}

IAA 0 2 5 5 6

JAA 1 4 1 3 4 2

VAA 6 3 5 2 7 1

T0: A0 CSR T1: A1 CSR

T0: C0 CSR

B CSR

IAC

JAC

VAC

T1: C1 CSR

(a) Data parallelism row-by-row left SPMM using CSR

0 1 2 3 4 5

0 9 1 63 3
1

2

3

0

1

2

3

0 1 2 3 4 5

0 9 1
1

2

3 8 3 4
0 6 3
1 5 2 7
2

3 1

0 9
1 0
2 0
3 0
4 1
5 0

0 1 2 3 4 5

0 1 7
1 4 9
2 5 8
3 8 2
4 1 3
5 2 5

0 1 2 3 4 5

9 1 0 63 3 0

1 2

3

4

C A

B

SPA0

T0

T1T1

T0 x

+=

1

2

3

4

IAA 0 2 2 2 5

JAA 0 4 1 2 5

VAA 9 1 8 3 4

IAB 0 2 4 6 8 10 12

JAB 0 3 1 4 2 5 0 3 1 4 2 5

VAB 1 8 4 1 5 2 7 2 9 3 8 5

IAC 0 4

JAC 0 1 3 4

VAC 9 1 63 3

for(i = 0; i < endk; i++) {
for(l = IAA[i]; l < IAA[i+1]; l++) {

c = JAA[l]; v = VAA[l]
for(j = IAB[c]; i < IAB[c+1]; j++) {

SPAk[JAB[j]] += (v × VAB[j]);
}

}
SPAk→ (IAC, JAC, VAC, i)

}

IAA 0 2 5 5 6

JAA 1 4 1 3 4 2

VAA 6 3 5 2 7 1

T0: A0 CSR T1: A1 CSR

T0: C0 CSR

B CSR

IAC

JAC

VAC

T1: C1 CSR

(b) CSR data structure

0 1 2 3 4 5

0 9 1 63 3
1

2

3

0

1

2

3

0 1 2 3 4 5

0 9 1
1

2

3 8 3 4
0 6 3
1 5 2 7
2

3 1

0 9
1 0
2 0
3 0
4 1
5 0

0 1 2 3 4 5

0 1 7
1 4 9
2 5 8
3 8 2
4 1 3
5 2 5

0 1 2 3 4 5

9 1 0 63 3 0

1 2

3

4

C A

B

SPA0

T0

T1T1

T0 x

+=

1

2

3

4

IAA 0 2 2 2 5

JAA 0 4 1 2 5

VAA 9 1 8 3 4

IAB 0 2 4 6 8 10 12

JAB 0 3 1 4 2 5 0 3 1 4 2 5

VAB 1 8 4 1 5 2 7 2 9 3 8 5

IAC 0 4

JAC 0 1 3 4

VAC 9 1 63 3

for(i = 0; i < endk; i++) {
for(l = IAA[i]; l < IAA[i+1]; l++) {

c = JAA[l]; v = VAA[l]
for(j = IAB[c]; i < IAB[c+1]; j++) {

SPAk[JAB[j]] += (v × VAB[j]);
}

}
SPAk→ (IAC, JAC, VAC, i)

}

IAA 0 2 5 5 6

JAA 1 4 1 3 4 2

VAA 6 3 5 2 7 1

T0: A0 CSR T1: A1 CSR

T0: C0 CSR

B CSR

IAC

JAC

VAC

T1: C1 CSR

(c) CSR SpMM pseudocode

Figure 32: Parallel Left SpMM C=A x B for data parallelism using two threads (t=2, i.e.,

Tk is the kth thread). (a) In data parallelism matrices are stored in CSR and each thread

multiplies a row of Ak by the entire B to produce a row of Ck. (b) CSR storage for matrices

A, B, and C. (c) pseudocode of the left SpMM algorithm.

5.2.1 Data Parallelism with Left SpMM

Data parallelism partitions the input A into t partitions where each thread processes a

separate partition independently. Since data parallelism horizontally partitions the input

instances, a row-major format like CSR perfectly fits this parallelism. Figure 32a depicts

the SPA-based Gustavson’s left SpMM algorithm with CSR for data parallelism.

In this algorithm, (1) each thread Tk extracts a row from Ak (its partition in A), and (2)

multiplies it by the entire B, (3) while accumulating in SPAk, and (4) finally outputs a row

78

0 1 2 3 4 5

0 9
1

2

3

4

5 16
6

7

0 1 2 3 4 5

0 9 1
1

2

3 8 3 4
4 6 3
5 5 2 7
6

7 1

0 9
1 0
2 0
3 0
4 0
5 16
6 0
7 0

0 1 2 0 1 2

0 1 7
1 4 9
2 5 8
3 8 2
4 1 3
5 2 5

0 1 2 3 4 5

1 8
1

2

3

4 C A

B

SPA0

T0 T1T1
T0 x

+=

JAA 0 1 4 6 7 10 11

IAA 0 3 4 5 3 7 5 0 4 5 3

VAA 9 8 6 5 3 1 2 1 3 7 4

JAB 0 2 4 6

IAB 0 3 1 4 2 5

VAB 1 8 4 1 5 2

JAC 0 2

IAC 0 5

VAC 9 16

for(j = 0; j < endk; j++) {
for(l = JAB[j]; l < JAB[j+1]; l++) {

r = IAB[l]; v = VAB[l]
for(i = JAA[r]; i < JAA[r+1]; i++) {

SPAk[IAA[i]] += (v x VAA[i]);
}

}
SPAk→ (JAC, IAC, VAC, j + offk)

}

1

2

4

3

A CSC

T0: B0 CSC

C CSC

JAB 0 2 4 6

IAB 0 3 1 4 2 5

VAB 7 2 9 3 8 5

T1: B1 CSC

off0

(a) Model parallelism column-by-column right SpMM using CSC

0 1 2 3 4 5

0 9
1

2

3

4

5 16
6

7

0 1 2 3 4 5

0 9 1
1

2

3 8 3 4
4 6 3
5 5 2 7
6

7 1

0 9
1 0
2 0
3 0
4 0
5 16
6 0
7 0

0 1 2 0 1 2

0 1 7
1 4 9
2 5 8
3 8 2
4 1 3
5 2 5

0 1 2 3 4 5

1 8
1

2

3

4 C A

B

SPA0

T0 T1T1
T0 x

+=

JAA 0 1 4 6 7 10 11

IAA 0 3 4 5 3 7 5 0 4 5 3

VAA 9 8 6 5 3 1 2 1 3 7 4

JAB 0 2 4 6

IAB 0 3 1 4 2 5

VAB 1 8 4 1 5 2

JAC 0 2

IAC 0 5

VAC 9 16

for(j = 0; j < endk; j++) {
for(l = JAB[j]; l < JAB[j+1]; l++) {

r = IAB[l]; v = VAB[l]
for(i = JAA[r]; i < JAA[r+1]; i++) {

SPAk[IAA[i]] += (v x VAA[i]);
}

}
SPAk→ (JAC, IAC, VAC, j + offk)

}

1

2

4

3

A CSC

T0: B0 CSC

C CSC

JAB 0 2 4 6

IAB 0 3 1 4 2 5

VAB 7 2 9 3 8 5

T1: B1 CSC

off0

(b) CSC data structure

0 1 2 3 4 5

0 9
1

2

3

4

5 16
6

7

0 1 2 3 4 5

0 9 1
1

2

3 8 3 4
4 6 3
5 5 2 7
6

7 1

0 9
1 0
2 0
3 0
4 0
5 16
6 0
7 0

0 1 2 0 1 2

0 1 7
1 4 9
2 5 8
3 8 2
4 1 3
5 2 5

0 1 2 3 4 5

1 8
1

2

3

4 C A

B

SPA0

T0 T1T1
T0 x

+=

JAA 0 1 4 6 7 10 11

IAA 0 3 4 5 3 7 5 0 4 5 3

VAA 9 8 6 5 3 1 2 1 3 7 4

JAB 0 2 4 6

IAB 0 3 1 4 2 5

VAB 1 8 4 1 5 2

JAC 0 2

IAC 0 5

VAC 9 16

for(j = 0; j < endk; j++) {
for(l = JAB[j]; l < JAB[j+1]; l++) {

r = IAB[l]; v = VAB[l]
for(i = JAA[r]; i < JAA[r+1]; i++) {

SPAk[IAA[i]] += (v x VAA[i]);
}

}
SPAk→ (JAC, IAC, VAC, j + offk)

}

1

2

4

3

A CSC

T0: B0 CSC

C CSC

JAB 0 2 4 6

IAB 0 3 1 4 2 5

VAB 7 2 9 3 8 5

T1: B1 CSC

off0

(c) CSC SpMM pseudocode

Figure 33: Parallel right SpMM C =A * B using two threads (t=2, i.e., Tk is the kth thread).

(a) In model parallelism matrices are stored in CSC and each thread multiplies a column

of Bk by the entire A to produce a column of C. (b) CSC storage for matrices A, B, and C.

(c) pseudocode of the left SpMM algorithm.

of Ck (its partition in C) by storing the nonzero values of SPAk. Note that Ck acts as the

input to the next iteration Ak. Figure 32b shows the CSR representations of A, B, and C

where each thread Tk has a separate CSR for its Ak and Ck partitions. Also, B has a single

CSR that is shared among threads. Finally, Figure 32c depicts the row-by-row left SpMM

algorithm used for data parallelism where endk is the number of rows in Ak. Note that rows

of Ak are re-indexed from 0 to endk since each partition is allocated separately per thread.

79

Data parallelism can also be implemented using right SpMM with CSC. However, at

scale this algorithm is not as efficient as the left SpMM with CSR as it cannot exploit the

locality existed in horizontal partitions of data parallelism. Especially, if the partition is

balanced and each row is receiving roughly equal number of nonzeros, a row compressed

data parallelism like CSR is more efficient. In the experiments, these two variants of data

parallelism will be thoroughly compared.

5.2.2 Model Parallelism with Right SpMM

Model parallelism partitions the network B into t partitions where each thread is respon-

sible to execute on a sub-range of columns. The CSC data structure is suitable for model

parallelism since this parallelism vertically partitions the network. Figure 33a shows the

SPA-based Gustavson’s right SpMM algorithm with CSC for model parallelism.

In this algorithm, (1) each thread Tk extracts a column of Bk, and (2) multiplies it by the

entire Ak, (3) while accumulating in SPAk, and (4) finally outputs a column of Ck by storing

the nonzeros of the SPAk. Figure 33b shows the CSC format of A, B, and C with B being

vertically partitioned among threads. Note that to allow threads randomly access A and

C, a single CSC is allocated for each. Figure 33c shows the column-by-column right SpMM

algorithm where endk is the number of columns in Bk and offk is the offset of Bk from the

beginning of B.

Model parallelism can also be implemented using left SpMM with CSR. However, such

an implementation requires an extra step to accumulate partial SPAs per row of A which is

extremely expensive. So, the discussion on model parallelism is tailored around right SpMM

with CSC and the left SpMM variant of model parallelism is not explored.

5.3 Neural Network Hashing

A common approach to balance nonzero distribution of a matrix is to hash its rows and

columns. Considering an input matrix A and a DNN layer B, hashing can be applied to

80

0 1024
0

128

1280
0

1024

(a) An unhashed Radix-Net Layer

0 1024
0

1280
0

128

1024

(b) A hashed Radix-Net Layer

Figure 34: First layer of A0 of Table 8 with white dots as weights. (a) E.g., column 1 is only

connected to rows 1,2, 64, and 65. (b) E.g., column 1 is connected to rows 1-15.

these matrices in different ways including 1) Input hashing which hashes the rows of A.

2) Layers hashing which hashes columns of A, and rows and columns of Bs in order to

achieve locality in accessing DNN. 3) Input & layers hashing which hashes rows and

columns of both A and B. Input hashing benefits data*data and data*model parallelisms

since it produces balanced input partitions by reordering the input rows. Also, it is a cheap

way to mitigate the straggler effect. Furthermore, layer hashing may benefit the SpMM

algorithm itself when it yields an optimal access pattern. Hence, a hashing function that

provides localized access can effectively benefit the cache hierarchy.

Figure 34a shows the first layer of A0 DNN of Table 8 where each column (neuron)

has 32 connections. These connections are spread over the entire column where, e.g., first

column has connections in row IDs 1, 2, 64, 65, ..., and second column has connections in row

IDs 2, 3, 66, 67, ..., etc. Considering model parallelism, this layout leads to an extremely

poor access pattern for its right SpMM algorithm because: 1) Those 32 connections are

scattered throughout the columns and thus it forces the SpMM algorithm to almost traverse

the entire A for each column of B which is expensive. 2) Connections that are placed in

each column are different from the ones placed in its next column. Hence, per column the

SpMM algorithm should index a completely different set of columns in A. Based on these

two characteristics, the original layout of the DNNs generated by Radix-Net [102] is not

81

Table 8: Sparse DNNs dataset. m, n, nnz & L are numbers of instances, features/ neurons,

nonzeros, and layers, respectively. First column is used as an ID for DNN scale.

Input Network

Each Layer All Layers

ID Size (m× n) nnz Size (n× n) nnz L nnz

A0 60 K × 1 K 6.3 M 1 K × 1 K 32 K 120 3.9 M

A1 60 K × 1 K 6.3 M 1 K × 1 K 32 K 480 15.7 M

A2 60 K × 1 K 6.3 M 1 K × 1 K 32 K 1920 62.9 M

B0 60 K × 4 K 25 M 4 K × 4 K 131 K 120 15.7 M

B1 60 K × 4 K 25 M 4 K × 4 K 131 K 480 62.9 M

B2 60 K × 4 K 25 M 4 K × 4 K 131 K 1920 251 M

C0 60 K × 16 K 98.8 M 16 K × 16 K 524 K 120 62.9 M

C1 60 K × 16 K 98.8 M 16 K × 16 K 524 K 480 251 M

C2 60 K × 16 K 98.8 M 16 K × 16 K 524 K 1920 1 B

D0 60 K × 65 K 392 M 65 K × 65 K 209 K 120 251 M

D1 60 K × 65 K 392 M 65 K × 65 K 209 K 480 1 B

D2 60 K × 65 K 392 M 65 K × 65 K 209 K 1920 4 B

cache efficient. To address this disadvantage, a 2D bucket hashing algorithm [2] is used to

hash rows and columns of the DNN. Figure 34a shows the first layer of A0 DNN of Table 8

after its rows and columns are hashed. From this figure, e.g., the 32 connections of column

IDs 1-6 are to row IDs 1-15, 512-527, and 1024. So, hashing congregate the connections

around the diagonal of the matrix instead of being dispersed within the matrix. This layout

is extremely in favor of cache hierarchy because same subsets of contiguous rows of A are

recurrently being accessed.

5.4 Results

5.4.1 Experimental Settings

5.4.1.1 Datasets Table 8 illustrates the IEEE HPEC sparse DNN challenge dataset [62].

This dataset is generated by RadiX-Net sparse DNN generator [102] with 120, 480, and 1,920

layers; 1,024, 4,096, 16,384, and 65,536 neurons per layer, and 32 connections per neuron.

82

The input to these DNNs is MNIST dataset [68] with 60,000 instances and respective number

of features (equals to the number of neurons).

5.4.1.2 Hardware Specifications A cluster of 32 machines (896 cores) is used to

run experiments. Each machine has 28-core Intel Xeon CPU @ 2.60GHz and 192 GB mem-

ory. Intel MPI [58] is used for building and executing binaries as well as distributing input

partitions among machines. Two MPI processes are launched for each machine (one per

socket) and Pthread [71] is used to launch threads inside MPI processes.

5.4.1.3 Software Specifications I developed a new DNN inference engine in C++1

that supports SPA-based left and right SpMM kernels which are backed by CSR, and CSC

formats. These SpMMs consist of two steps including, symbolic SpMM step that estimates

the size of the output matrix and allocates memory for it, and the real SpMM step that

runs the SpMM algorithm and generates the output matrix. Leveraging these kernels, I

implement data parallelism in two flavors of left and right SpMM and model parallelism in

right SpMM flavor only. At scale, data*data and data*model parallelisms are used where

data parallelism is first used to distribute the input among multiple processes and then data

or model parallelism used inside each process. Last, 2D bucket hashing [2] with 128

buckets is used to uniformly hash rows/columns of input, network, or both of them. Note if

hashing applied to the rows of network, columns of the input should also be hashed.

5.4.2 Single Machine Benchmarking

Figure 35 and 36 are the results for left and right SpMM data parallelism with CSR and

CSC, and right SpMM model parallelism with CSC on D2 DNN of Table 8 using a 28 core

machine with p = 1 and t = 28. The y-axis represents different input sizes from the set of

6.3 M, 13 M, 25.8 M, 53.3 M, 106 M, 210 M, 392 M nonzeros (associated with 1,000, 2,000,

4,000, 8,000, 16,000, 32,000, 60,000 input samples).

1The source code is available at https://github.com/hmofrad/DistSparseDNN

83

392M

210M

106M

52.3M

25.8M

13M

6.3M

0 1000 2000 3000

#I
n

p
u

t
N

o
n

ze
ro

s

Time (s)

Data-CSR(min)

Data-CSR(max)

Data-CSC(min)

Data-CSC(max)

Model-CSC

(a) No hashing

392M

210M

106M

52.3M

25.8M

13M

6.3M

0 500 1000 1500 2000 2500
Time (s)

(b) Input hashing

392M

210M

106M

52.3M

25.8M

13M

6.3M

0 500 1000 1500 2000 2500
Time (s)

(c) Layers hashing

392M

210M

106M

52.3M

25.8M

13M

6.3M

0 500 1000 1500 2000 2500
Time (s)

(d) Input + layers hashing

Figure 35: Runtime comparison of different parallelisms processing D2 of Table 8 on a 28

core machine with p=1 and t=28. (a) - (d) are different hashing types with y-axis as the

input size varying from 6.3 M (1,000 sample) to 392 M nonzeros (60,000)

.

5.4.2.1 Runtime Variability Figure 35 reports the effect of different hashing types

on runtime of different parallelisms. It presents the runtime variation of data parallelism

by showing the min and max runtime associated with the fastest and slowest threads. The

variation only exists in data parallelisms as threads can progress independently. According to

this figure, the variation escalates when inputs are larger which is due to the load imbalance

among threads. Although this property allows some thread to finish early, it creates the

undesirable effect of stragglers. On the other hand, the end-to-end runtime does not have

any variation in model parallelism since threads should strictly abide synchronization barriers

to correctly accumulate the results for each layer.

Comparing Figure 35a (no hashing is applied) with Figure 35b (input data is hashed),

hashing of the input mitigates the straggler effect by balancing the partitions and hence

reducing the variation of runtime in data parallelisms. Input hashing does not affect model

parallelism because hashing of the input only reorders the computation of its right SpMM.

84

0

25

50

75

6.3M 13M 25.8M 52.3M 106M 210M 392M

C
ac

h
e

 M
is

s
R

at
e

 (
%

)

#Input Nonzeros

Data-CSR(L3)
Data-CSC(L3)
Model-CSC(L3)
Data-CSR(L1)
Data-CSC(L1)
Model-CSC(L1)

(a) No hashing

0

25

50

75

6.3M 13M 25.8M 52.3M 106M 210M 392M

#Input Nonzeros

(b) Input hashing

0

25

50

75

6.3M 13M 25.8M 52.3M 106M 210M 392M

#Input Nonzeros

(c) Layers hashing

0

25

50

75

6.3M 13M 25.8M 52.3M 106M 210M 392M

#Input Nonzeros

(d) Input + layers hashing

Figure 36: Cache utilization of different parallelisms processing D2 of Table 8 on a 28 core

machine with p=1 and t=28. (a) - (d) are different hashing types with x-axis as the input

size varying from 6.3 M (1,000 sample) to 392 M nonzeros (60,000).

Moreover, comparing 35a (no hashing) with Figure 35c (layers are hashed), hashing of DNN

significantly reduces the end-to-end runtime of CSC-based data parallelism along with its

runtime variability. By reordering the rows, layer hashing renders rows together which turns

out to be exceptionally suited the right SpMM (see Figure 34b). Last, as shown in Figure

35d, if hashing is applied on both input and layers, the runtime for both CSR and CSC data

parallelisms improve.

5.4.2.2 Cache Utilization Figure 36 shows L1 and L3 cache miss rate of different par-

allelisms. As a rule of thumb, increasing the number of input instances from left to right

should cause cache miss rate to increase due to putting more stress on the cache hierarchy.

However, data parallelism with CSC does not conform to this observation when the input

data is large enough. The reason behind this will be discussed shortly.

Comparing Figure 36a with Figure 36b, hashing of the input does not affect the cache

utilization. To retrace this, let us take a deeper look into the left and right SpMMs. In

85

left SpMM (data parallelism with CSR), hashing of the input only reordered the input rows

and hence it essentially does not alter the nature of the SpMM algorithm. Moreover, in

right SpMM (data and model parallelisms with CSC), input hashing does not provide any

advantage as it does not change the overall nonzero distribution (count) of the input columns.

Finally, a typical use case of input hashing is for data*data and data*model to achieve load

balance when scaling out which will be discussed in the next section.

Inherently, w/ or w/o input hashing data parallelism does not have a good L3 perfor-

mance because each thread can progress independently. Therefore, at any point of time

copies of different layers sits in L3 that may be invalidated/evicted shortly by any thread.

However, based on Figure 36a and Figure 36b model parallelism has a decent L3 utilization

since all threads are accessing a single shared layer matrix. Oddly enough, when layers

(Figure 36c) or both input and layers (Figure 36d) are hashed data parallelism with CSC

offers superior L3 utilization with a peak utilization at 106 M nonzeros. This phenomenon is

highly accredited to its right SpMM that multiplies L1-friendly hashed DNNs by a smaller

input partition that fits into L3.

5.4.2.3 Implications of hashing The left multiplication of data parallelism accesses

input rows sequentially and layers rows randomly. This parallelism can benefit from having

balanced partitions since balanced partitions (created by hashing) uniformly distribute the

input among threads while amortizing the access latency to the DNN rows. Hence, this

parallelism has a decent cache utilization. On the other hand, the right multiplication of

data and model parallelisms with CSC can highly exploit the underlying structure of DNN (if

existed or created by hashing) and boost the cache performance. These parallelisms access

the DNN sequentially and the input randomly. Hence, a cache-friendly DNN architecture

can perfectly elevate their input’s random access pattern to a pseudo-sequential pattern.

Last, model parallelism offers better cache utilization for smaller input sizes. This indicates

model parallelism would perform better in a distributed setting where many threads process

small input partitions. Next section studies the scalability of these parallelisms.

86

 #Machines

 1 2 4 8 16 32

D
N

N
 S

iz
e

A0 1.5 0.6 0.4 0.3 0.2 0.1

A1 5.6 2.2 1.3 1.2 1.0 0.6

A2 21.8 8.5 5.2 4.7 3.8 2.3

B0 6.6 2.5 1.5 1.3 1.1 0.6

B1 24.8 9.7 5.7 5.1 4.1 2.4

B2 97.3 38.6 22.3 20.1 16.2 9.6

C0 66.9 27.6 16.3 13.2 10.6 6.5

C1 259.3 108.6 64.5 52.3 42.5 26.0

C2 1029.6 433.4 256.9 208.9 169.8 104.1

D0 273.7 115.1 66.6 50.4 40.9 24.9

D1 1074.4 459.9 266.9 201.8 165.0 100.8

D2 4266.4 1840.9 1067.0 808.0 660.4 404.5

(a) No hashing

 #Machines

 1 2 4 8 16 32

 1.4 0.4 0.2 0.1 0.1 0.1
 5.2 1.4 0.8 0.6 0.3 0.2

 20.4 5.4 3.3 2.2 1.2 0.8
 5.9 1.6 1.0 0.6 0.3 0.2
 22.1 5.9 3.7 2.2 1.3 0.9

 86.8 23.2 14.5 8.6 5.3 3.7
 53.8 15.1 9.4 5.9 3.3 2.2
 204.8 58.6 36.4 23.0 12.7 8.8

 810.2 232.5 144.6 91.5 50.5 35.0
 223.3 66.5 38.0 26.2 14.3 9.1
 861.5 261.3 149.6 103.6 57.1 36.6
 3425.0 1041.1 596.7 413.4 227.6 146.7

(b) Input hashing

 1 2 4 8 16 32

D
N

N
 S

iz
e

A0 1.5 0.6 0.4 0.3 0.3 0.2

A1 5.6 2.2 1.3 1.2 1.0 0.6

A2 21.8 8.6 5.1 4.6 3.8 2.3

B0 6.3 2.4 1.4 1.2 1.0 0.6

B1 23.7 9.2 5.3 4.8 4.0 2.4

B2 93.3 36.6 21.3 19.1 15.3 9.0

C0 30.0 11.4 6.6 5.2 4.1 2.5

C1 118.9 45.9 26.5 20.6 16.3 9.8

C2 475.4 183.8 105.9 82.4 65.0 39.5

D0 165.4 66.4 38.3 28.0 22.2 13.4

D1 664.6 270.5 155.8 114.3 91.3 55.4

D2 2671.4 1086.8 627.1 460.4 368.3 223.9

(c) Layers hashing

 1 2 4 8 16 32

 1.4 0.4 0.2 0.1 0.1 0.1
 5.2 1.4 0.8 0.6 0.3 0.2

 20.3 5.4 3.3 2.2 1.2 0.8
 5.6 1.5 0.9 0.5 0.3 0.2
 21.2 5.7 3.5 2.1 1.3 0.9

 83.4 22.3 13.9 8.3 5.1 3.5
 25.2 7.0 4.2 2.6 1.4 0.9
 99.6 27.9 16.8 10.1 5.6 3.7

 397.5 111.7 66.7 40.4 22.0 14.6
 137.6 40.0 22.7 15.1 8.4 5.3
 548.4 162.2 91.6 61.4 33.7 21.5
 2200.2 649.2 367.9 246.0 135.4 86.1

(d) Input+Layer hashing

Figure 37: Runtime (s) of data*data parallelism with CSR for different hashings (1-32 nodes).

5.4.3 Wide-scale Benchmarking

This section gives a comprehensive overview of the performance of data*data parallelism

with CSR and CSC (left and right SpMM), and data*model parallelism with CSC (right

SpMM) using different types of hashing.

Figures 37 - 39 show the results of data*data parallelism (CSR & CSC) and data*model

parallelism (CSC) on DNNs reported in Table 8. X-axis represents the number of ma-

chines (cluster scalability) and y-axis represents the DNN size (data scalability). Results

are shown using heatmaps to improve data visualization. From this figure, data*data with

CSR performs best for smaller DNNs (A0 to B2), whereas, data*model with CSC produces

the best results for larger DNNs (C0 to D2). Overall, from this numbers, input hashing im-

proves data*data parallelism a lot by balancing the input partitions to the data parallelism.

furthermore, network (layers) hashing helps model parallelism since it hashes the network

nonzeros to a distribution highly in favor of right SpMM used in model parallelism.

87

 #Machines

 1 2 4 8 16 32

D
N

N
 S

iz
e

A0 1.1 0.7 0.4 0.3 0.3 0.2

A1 4.0 2.5 1.5 1.3 1.1 0.7

A2 15.3 9.7 5.7 5.1 4.4 2.8

B0 6.1 3.4 1.9 1.7 1.4 0.9

B1 21.7 13.0 7.2 6.4 5.3 3.4

B2 88.0 51.4 28.6 25.6 21.1 13.0

C0 35.9 22.2 11.5 8.2 6.2 4.2

C1 147.0 89.2 46.4 32.0 25.2 17.3

C2 574.1 362.2 189.4 127.5 104.2 69.3

D0 186.8 120.0 77.4 54.8 40.6 23.0

D1 701.0 511.2 323.6 230.0 168.7 98.0

D2 2904.9 2047.3 1305.0 929.4 661.9 386.3

(a) No hashing

 #Machines

 1 2 4 8 16 32

 0.9 0.5 0.3 0.2 0.1 0.1
 3.2 1.7 1.1 0.7 0.4 0.3

 12.5 6.5 4.2 2.8 1.7 1.1
 4.4 2.1 1.3 0.8 0.5 0.4
 16.7 7.9 5.0 3.0 1.9 1.5

 63.2 31.0 19.9 11.8 7.7 5.6
 27.6 14.4 7.5 4.4 2.4 1.9
 110.9 57.1 30.0 17.2 9.5 7.5

 443.9 230.4 121.0 69.0 37.9 29.2
 133.9 84.6 51.4 33.9 18.3 10.7
 545.7 350.6 213.2 139.8 76.1 45.2
 2197.7 1407.2 863.9 572.0 305.4 182.2

(b) Input hashing

 1 2 4 8 16 32

D
N

N
 S

iz
e

A0 1.0 0.6 0.4 0.3 0.3 0.2

A1 3.8 2.4 1.4 1.2 1.0 0.6

A2 14.9 9.4 5.4 4.8 3.9 2.5

B0 4.4 2.8 1.6 1.4 1.1 0.7

B1 16.6 10.7 6.0 5.3 4.3 2.8

B2 65.5 42.1 23.9 20.7 17.0 10.7

C0 18.0 11.5 7.0 5.4 4.6 3.2

C1 70.1 45.9 28.0 21.6 17.9 12.7

C2 279.2 185.3 110.8 88.3 72.3 51.0

D0 84.7 55.6 32.6 25.3 20.5 13.7

D1 340.7 228.4 132.5 103.2 85.7 52.7

D2 1377.5 897.8 544.7 415.1 349.5 228.6

(c) Layers hashing

 1 2 4 8 16 32

 0.9 0.4 0.3 0.2 0.1 0.1
 3.1 1.6 1.0 0.7 0.4 0.3

 12.2 6.2 3.9 2.5 1.5 1.0
 3.4 1.8 1.1 0.7 0.4 0.3
 12.7 7.0 4.5 2.6 1.6 1.2

 50.1 27.4 17.5 10.2 6.4 4.7
 14.7 7.9 5.2 3.4 2.1 1.6
 55.7 31.3 20.3 13.3 8.2 6.2

 221.8 123.4 81.1 53.7 32.8 24.5
 65.2 37.2 22.6 16.4 9.9 7.2
 255.2 149.6 91.5 66.0 41.0 30.3
 1036.9 598.0 367.4 256.2 165.2 121.0

(d) Input+Layers hashing

Figure 38: Runtime (s) of data*data parallelism with CSC for different hashings (1-32 nodes).

Figures 37a - 37d shows the result for data*data parallelism with CSR. For D2 with 32

machines, input, layers, and input & layers hashing offer 2.6×, 1.7×, and 4.7× speedups

over the unhashed results, respectively. These results suggest input hashing improves the

runtime significantly and its improvement is even reinforced further if combined with layers

hashing.

Figures 38a - 38d are the results for data*data parallelism with CSC compression format.

From these figures, for D2 with 32 machines, input, layers, and input & layers hashing offer

2.1×, 1.7×, and 3.2× speedups over the unhashed results, respectively. This parallelism

(data*data with CSC) is not as scalable as the CSR variant due to its poor cache efficiency

when input partitions are small.

Figures 39a - 39d shows the results obtained from data*model parallelism with CSC

format. From these figures, for D2 with 32 machines, input, layers, and input & layers

hashing offer 1.9×, 1.9×, and 3× speedups over the unhashed results, respectively. Both

input and DNN hashing can improve the runtime of this parallelism, however, if combined

88

 #Machines

 1 2 4 8 16 32

D
N

N
 S

iz
e

A0 2.4 0.6 0.3 0.2 0.1 0.1

A1 8.2 2.0 1.1 0.6 0.4 0.3

A2 31.1 7.5 4.1 2.3 1.5 1.2

B0 10.0 2.4 1.2 0.7 0.4 0.3

B1 35.6 8.3 4.3 2.5 1.4 1.1

B2 138.1 32.0 16.7 9.8 5.6 4.3

C0 40.9 11.2 6.8 3.5 1.8 1.4

C1 151.0 41.9 26.1 13.6 6.8 5.3

C2 588.2 164.4 102.3 53.6 27.5 22.6

D0 165.4 47.2 29.7 19.2 12.7 9.2

D1 624.1 182.1 116.7 76.6 51.2 37.6

D2 2483.8 722.5 464.8 305.7 204.6 157.6

(a) No hashing

 #Machines

 1 2 4 8 16 32

 2.5 0.6 0.3 0.2 0.1 0.1
 8.5 2.0 1.0 0.6 0.3 0.2

 32.5 7.5 3.8 2.1 1.3 0.9
 10.3 2.2 1.1 0.6 0.3 0.2
 37.2 7.9 3.8 2.1 1.2 0.7

 142.1 30.3 14.5 8.1 4.5 2.7
 41.6 10.9 5.9 2.9 1.4 0.8
 154.4 39.8 23.9 11.0 5.3 3.1

 605.9 158.9 94.5 43.2 20.6 12.0
 168.9 44.9 27.7 16.4 9.2 5.1
 638.6 172.4 108.0 64.8 35.1 20.9
 2536.2 680.9 427.5 259.0 148.1 83.7

(b) Input hashing

 1 2 4 8 16 32

D
N

N
 S

iz
e

A0 2.5 0.6 0.3 0.2 0.1 0.1

A1 8.2 2.0 1.1 0.6 0.4 0.3

A2 31.2 7.5 4.1 2.2 1.4 1.1

B0 9.7 2.4 1.2 0.6 0.4 0.3

B1 33.5 8.2 4.0 2.1 1.3 1.0

B2 128.5 31.4 15.7 8.2 5.0 3.8

C0 42.1 10.1 5.2 2.7 1.5 1.1

C1 150.2 35.7 18.7 9.7 5.6 4.3

C2 582.8 138.9 72.5 37.7 22.3 16.9

D0 172.1 47.0 26.1 13.8 7.5 5.3

D1 639.5 177.0 100.5 53.1 29.2 21.0

D2 2499.8 698.7 396.9 211.6 115.9 83.3

(c) Layers hashing

 1 2 4 8 16 32

 2.5 0.6 0.3 0.2 0.1 0.1
 8.5 2.0 1.0 0.5 0.3 0.2

 32.2 7.5 3.7 2.0 1.2 0.8
 10.0 2.3 1.1 0.6 0.3 0.2
 34.5 7.7 3.5 1.9 1.1 0.6

 132.2 29.3 13.3 7.3 4.1 2.5
 43.4 9.7 4.8 2.4 1.2 0.7
 153.9 34.5 17.2 8.5 4.5 2.6

 594.2 133.7 65.8 33.2 17.3 10.1
 175.8 44.1 23.3 10.9 5.7 3.6
 653.8 165.3 88.5 41.5 22.0 12.8
 2586.6 654.7 348.6 164.0 86.8 51.2

(d) (Input+Layers hashing

Figure 39: Runtime (s) of data*model parallelism with CSC for different hashings (1-32 n.).

they can offer a significant runtime improvement.

Different speedup trends can be observed if input and/or DNN are hashed. These effects

can be explained in terms of cache performance and load imabalance. A super-linear

speedup occurs when the number of machines is small and hence cache subsystem is under

severe pressure. In this case doubling the number of machines results in more than doubling

of the speedup since more cache is available. Conversely, when the number of machines

is large, the cache conflict is less hence doubling the number of machines does not have

a significant effect on the cache conflict and speedup. Therefore, a sub-linear speedup

happens when the number of machines is large and the effect of load imbalance kicks in and

become dominant (whilst cache conflict is no longer dominant).

89

5.5 Conclusion

DNN inference is an embarrassingly parallel compute- and memory-intensive task. Data

and model parallelisms can be leveraged to run the inference at scale. In this chapter, I

thoroughly investigated the internals of data and model parallelisms by focusing on their

core SpMM kernels. In addition, I studied the effects of hashing on the performance of these

parallelisms. A cluster of 32 machines (896 cores) are used to run inference on sparse neural

networks of different sizes. Results suggest data parallelism is suitable for smaller DNNs and

model parallelism for larger ones. Also, I found out input hashing improves load balance

and network hashing improves cache utilization. Lastly, I observed that these parallelisms

can achieve super-linear speedup by hashing the DNN layers.

90

6.0 Accelerating Distributed Inference of Sparse Deep Neural Networks via

Mitigating the Straggler Effect

Once a Deep Neural Network (DNN) is trained, an inference algorithm retains the learn-

ing and applies it to batches of data. The trained DNN can be sparse because of pruning

or following a preset sparse connectivity pattern. Inference in such sparse networks requires

less space and time complexities compared to dense ones. Data and model parallelisms

are two common parallelism models used for parallelizing training/inference of dense/sparse

neural networks, where data parallelism partitions the input among multiple threads and

data parallelism partitions the network among multiple threads. In the previous chapter, I

showed that hashing of the input matrix helps data parallelism to balance its computation

and hashing of the the DNN provides a better access pattern to model parallelism. However,

hashing can not completely remove the imabalance in data parallelism, or data*data and

data*model parallelisms. To remedy this imabalance problem, in this chapter, a new hybrid

parallelism model for DNN inference is proposed.

Model parallelism efficiently utilizes the Last Level Cache (LLC) but has a heavy syn-

chronization cost because of compulsory reductions per layer. In contrast, data parallelism

allows independent execution of partitions but suffers from a straggler effect due to a load

imbalance among partitions. I combine data and model parallelisms through a new type of

parallelism that I denote data-then-model. In data-then-model, each thread starts with

data parallelism, thus mitigating the per-layer synchronization cost of model parallelism. Af-

ter it finishes its partition, it switches to model parallelism to support a slower active thread,

hence, alleviating the straggler effect of data parallelism. I compare data-then-model paral-

lelism with data and model parallelisms as well as task-based parallelisms on a HPC cluster.

On average, up to 65% speedup is achieved compared to these parallelisms.

The rest of this chapter is organized as follows. Section 6.1 motivates the straggler effect

in data parallelism and introduces workarounds to mitigate it. Section 6.2 proposes the new

data-then-model parallelism. Section 6.3 reports the results. Finally, Section 6.4 concludes

this chapter.

91

0 1000 2000 3000

27

0

Time (Seconds)

Th
re

ad
 ID

Model
Data
Data/Model

(a) No hashing

0 1000 2000 3000

27

0

Time (Seconds)

(b) Input is hashed

0 1000 2000 3000

27

0

Time (Seconds)

(c) DNN layers are hashed

0 1000 2000 3000

27

0

Time (Seconds)

(d) Input & DNN are hashed

Figure 40: Performance of different parallelisms running different hashing types on D2 DNN

of Table 8 using a 28-core CPU (0 to 27 thread IDs). Horizontal bars, zig-zag line, and

vertical line show model, data, and data-then-model parallelisms, respectively.

6.1 Motivation

Model parallelism enforces strict synchronization among threads before progressing to

the next layer. In this parallelism, each thread takes a separate partition of the layer matrix,

multiplies it by the input matrix, and emits a portion of the output. Finally, the coalescing

of these partial results makes the input to the next layer. Model parallelism is more sensitive

to the sparsity distribution of nonzeros in the layers than in the input. However, DNN layers

are usually architected to be balanced [63] and thus threads will not typically linger behind

barriers placed at the end of each layer. Contrarily, each thread in data parallelism processes

a separate partition of the input matrix and can independently progress. Not tying threads

to synchronization barriers causes data parallelism performance to be extremely sensitive

to the sparsity distribution of nonzeros in the input partitions which can lead to straggler

threads.

92

Figure 40 demonstrates the runtimes of data and model parallelisms using the D2 DNN of

Table 8 over a 28-core processor sharing the same memory. The horizontal bars of Figure 40a

are runtimes of different threads of model parallelism, which finish together because they are

synchronized. The zig-zag line represents data parallelism, which shows significant runtime

variations due to threads receiving imbalanced partitions. A remedy to these variations is to

hash the input and/or DNN with the objective of creating balanced partitions. This idea

is studied using 2D bucket hashing [2] in three ways, including hashing of input (Figure

40b), DNN layers (Figure 40c), and both input & DNN layers (Figure 40d).

In Figure 40b, although data parallelism still cannot perform better than model paral-

lelism, input hashing reduces the runtime imbalance significantly by creating uniform input

partitions. Next, if the layers are only hashed, data parallelism improves significantly. This is

because D2 belongs to the family of X-Nets [103] and follows a deterministic topology, hence

hashing serves in rearranging the topology to a cache-friendly configuration that boosts data

parallelism performance. On the contrary, hashing does not help model parallelism, as in

model parallelism threads compute balanced vertical chunks of the network which are often

designed symmetrically to evenly propagate the weights along the network. Moreover, model

parallelism asymptotically does not have runtime variation, let alone that any variation will

be amortized over the runtime due to threads being synchronized at each layer. Nonetheless,

when only layers are hashed, the variation of data parallelism appears again and the key to

virtually remove this variation is to hash both input&DNN as shown in Figure 40d.

From Figures 40a - 40d, the runtime ratios of fastest to slowest thread in data parallelism

are 2.5×, 1.4×, 2.3×, and 1.4×. This suggests a full rectification of straggler threads is not

possible through hashing and there is still room for other mitigation strategies. As such, I

suggest addressing the runtime variation through a scalable hybrid parallelism with minimal

overhead. To elaborate, I allow data parallelism to create the runtime difference where

some threads finish earlier than others and become idle due to load imbalance. Afterwards,

idle threads are identified and directed to support other non-idle (or active) threads, thus

gradually and eventually switching altogether into model parallelism. The solid vertical lines

in Figure 40 represent this new parallelism which I coin data-then-model (data/model)

which improves on data parallelism by 1.45×, 1.12×, 1.45×, and 1.10× on different hashings.

93

×

A

× … ×

B0

T0

T1

BL-1

B0 Bx

Bx

T1

T0

×

Synch.

… ×

BL-1

BL-1

T1

T0

… ×

Synch.

Id
le

Time

Th
re

ad

Data parallelism Model parallelism

… ×

Bx-1

×

A

Figure 41: In data-then-model parallelism, all threads start off with data parallelism. Once a

thread becames idle, it gets recruited by an active thread and only those threads collectively

switch onto model parallelism. Here, T 0 gets recruited by T 1.

6.2 Inference using Data-then-Model Parallelism

As discussed earlier, data parallelism suffers from straggler threads due to load imbalance.

Typically, task-based parallelisms such as work-sharing [38] or work-stealing [14] are utilized

to remedy this problem. In task-based parallelisms, one or multiple queues of tasks protected

by lock(s) are created per process or thread where a task is a small input subpartition. On

one hand, this involves no data movement and thread migrations since all threads often

have data to process. On the other hand, for this to be efficient, it requires scalable queue

and locking mechanisms alongside inputting balanced subpartitions, which makes it quite

expensive. To mitigate the straggler effect of data parallelism and not completely discount

the benefits of model parallelism, data-then-model parallelism is introduced which is a

new lazy load balancing technique. This new parallelism allows stragglers to be created but

enables them to recruit faster threads that finish earlier.

Figure 41 depicts this process where faster thread T0 gets recruited by slower thread

T1. Initially, forked threads, both T0 and T1 execute data parallelism while also looking

for idle threads. After T0 becomes idle, it gets recruited by T1. Finally, T1 divides DNN

columns into two partitions and delegates half of its SpMM computation to T0. This shift

from data to model parallelism requires careful concurrency control for retaining idle threads.

94

Algorithm 3 Data-then-model parallelism (vanilla)

1: Input: Ak input partition, B layers and Ck output partition i.e. k is the thread ID. L is the
number of layers. list is the global shared list of idle threads, and mutex & cond are the
shared lock and condition variable protecting the list. listsκ is the list of idle threads recruited
by leader Tκ including itself, and mutexesκ & condsκ are Tκ’s shared mutex and condition
variable.

2: for k = 0 to t do fork(Tk) . Fork thread Tk

3: DATA(Tk)

4: if l < L then MODEL(Tκ)

5: while ENLIST(Tk) do MODEL(Tk)

6: VALIDATE(Ck) . validate Tk’s partition

Algorithm 4 Data method

1: function data(Tk) . Data parallelism
2: for l = 0 to L do
3: if not RECRUIT(Tk) then Ck = Ak ×Bl

In the next section, I describe my solution to this dynamic problem, which is captured in

Algorithm 3. Note that although the following discussion is on data-then-model parallelism,

it also extends to data∗data-then-model parallelism when having multiple processes, whereby

each process will run data-then-model on a separate input partition with no communication.

Moreover, thread recruiting strategy can have different flavors which will be discussed in the

next section. Lastly, I refer henceforth to any active recruiting thread as a leader, to idle

threads as helpers, and to a list including both as a group of threads.

6.2.1 Elastic Locking Mechanism

Data-then-model parallelism utilizes an elastic locking system that encompasses two levels.

The first level is a global list that helpers (idle threads) enlist in (list). This list is protected

by a mutex lock (mutex) to guarantee mutual execution. Moreover, threads in this list are

synchronized using a condition variable (cond). Here, after forking each thread Tk (kth

thread), it proceeds to data parallelism (DATA(Tk) in Algorithm 4), whilst looking for

idle threads. Concurrently, if a thread finishes its computation (either data and/or model

parallelisms) it enlists in the list of helpers list and goes to sleep until it receives a wake-up

signal from a leader thread (ENLIST(Tk) in Algorithm 5).

95

Algorithm 5 Enlist method

1: function enlist(Tk) . Enlisting as an idle thread (helper)
2: lock(mutex)
3: list.add(Tk)
4: if list.size() == t then
5: broadcast(cond,mutex), unlock(mutex)
6: return false

7: else
8: wait(cond,mutex), unlock(mutex)
9: if list.size() == t then return false

10: else return true

Algorithm 6 Recruit method

1: function recruit(Tκ) . Recruiting idle threads (helpers)
2: lock(mutex)
3: if list.size() > 0 then
4: listsk.insert(list), list.clear()
5: repartition(B’s column indices)
6: reinit(mutexesκ, condsκ, barriersκ)
7: broadcast(cond,mutex), unlock(mutex)
8: return true

9: unlock(mutex)
10: return false

The second level is an array of lists (lists) along with associated arrays of synchroniza-

tion primitives (mutexes and conds) that provide decentralized independent synchronization

channels to groups of threads. These arrays are of size t (the number of threads per pro-

cess). Here, listsκ is used to maintain the group information of each Tκ leader (κth leader).

Once helpers are inserted in the designated list for Tκ, they are removed from the global list.

Subsequently, columns of the network are partitioned based on the number of threads inside

Tκ’s group (listsκ). Given layers are already compressed using the CSC format (a column

major compression), this process is fairly lightweight and only involves redistributing indices

of columns of the remaining network layers among the threads of the group (repartition()

in Algorithm 6). As mentioned, alongside the global lock and condition variable, there is an

array of mutexes and condition variables for each leader (mutexesκ and condsκ in Algorithm

6). Since each leader Tκ periodically probes for idle threads, member threads of its group

may monotonically grow. Hence, an elastic yet efficient way of group synchronization is

necessary.

96

Algorithm 7 Model method

1: function model(Tk) . Model parallelism
2: for l to L do
3: RECRUIT(Tκ) . Leader thread Tκ, n = 0
4: lock(mutexesκ), n++ . Sync idle threads (helpers)
5: if n == listsκ.size() then
6: broadcast(condsκ,mutexesκ)
7: else wait(mutexesκ)

8: unlock(mutexesκ)
9: Cκ = Aκ ×Blk

10: barrier(barriersκ)

In order to have an elastic locking mechanism, a pair of mutexesκ and condsκ is used

to implement a counting semaphore for Tκ’s group. In addition, an array of barriers is

employed where barrierκ is used to synchronize Tκ’s group within and at the end of each

layer. In the implementation, these synchronization constructs are (re)initialized on demand

and administered independently by each leader Tκ (reinit(Tκ) in Algorithm 6). Also,

allocating these constructs inside arrays allows helpers to easily index them using Tκ thread

ID. Finally, after recruiting helpers, all threads in Tκ’s group proceed to model parallelism.

Model parallelism (MODEL(Tκ) in Algorithm 7) is executed by threads within a group,

however, these threads converged to this method through different ways, either via ENLIST

or DATA functions. Also, the leader iteratively probes the global list of helpers to seek more

help, and thus threads might be added to the group at any time. To meet synchronization

requirements of these situations, mutexesκ and condsκ are used to implement a counting

semaphore right before executing the SpMM kernel for model parallelism. It is worth noting

that SpMM execution does not need any concurrency control among threads because each

thread produces a disjoint partition of the output. Lastly, barriersκ is used within and at

the end of each layer to protect memory allocation and synchronize the accumulation.

Task-based parallelisms [38, 14] rely on a central unit to distribute tasks, whereas the

introduced locking system makes data-then-model parallelism decentralized. Hence, this

parallelism converts the execution imbalance of data parallelism into a leverage for model

parallelism without requiring any central unit. The locking system is elastic because leaders

dynamically recruit helpers as they appear in the list of idle threads. Lastly, the system’s

capacity to help slower threads keeps growing as current leaders turn into future helpers.

97

0

28

0 100 200 300 400 500 600

#T
h

re
ad

s
R

u
n

n
in

g
D

at
a

P
ar

al
le

lis
m

Time (s)

Data (unhashed)

D/M-Earliest First (unhashed)

D/M-Slower First (unhashed)

D/M-Faster First (unhashed)

Data (hashed)

D/M-Earliest First (hashed)

D/M-Slower First (hashed)

D/M-Faster First (hashed)

D/M-EF (H) = 185
D/M-SF (H) = 183

D/M-FF (H) = 185

Figure 42: #threads running different parallelisms on C2 DNN of Table 8 on a 28-c. CPU.

6.2.2 Thread Scheduling Algorithms

In data-then-model parallelism, a recruiting algorithm is a scheduling policy that dis-

tributes helpers among leaders. Due to the largely unpredictable nature of the inference

problem, designing an optimal scheduling strategy is a non-trivial job. Therefore, the fol-

lowing simple scheduling algorithms are explored: 1) Earliest first: The first leader that

acquires the shared lock will recruit all helpers. In the previous section, this vanilla version

is used to describe the locking system. 2) Slower first: The first slow thread that acquires

the shared lock is able to recruit all helpers. Here, the speed of a leader Tκ is defined by a

score scoresκ which is the number of layers that are processed by that thread so far. Also,

any thread that satisfies (scoresκ− scores.min()) < η is considered as a slow thread, where

η is the scheduling threshold. The threshold η helps reduce the shared lock contention as

the earliest leader that gets the lock and is within the window of the threshold can recruit

all threads. 3) Faster first: The first fast thread to acquire the shared lock recruits all

helpers, where any thread that satisfies (scores.max()− scoresκ) < η is a fast thread.

Figure 42 shows the number of threads executing data parallelism where finished threads

become completely idle in data parallelism but turn into helpers in data-then-model paral-

lelism. Here, data parallelism tends to have less runtime variation when the input & DNN

98

are hashed. Also, for data-then-model the recruiting algorithm gets triggered in the middle

or at the end of the execution for unhashed and hashed DNNs. This suggests utilizing a

probing threshold θ to allow threads to skip calling the recruiting strategy until reaching a

certain layer that makes the probing useful. Hence, this simple tweak increases the volume

of useful work by avoiding unnecessary lock contentions when there is no helper to recruit.

Note that this tweak is already demonstrated in Figure 42. Lastly, the slower first tends to

perform better than other strategies especially when both input & DNN are hashed.

6.3 Results

6.3.1 Experimental Settings

6.3.1.1 Hardware Specifications A cluster of 16 machines is used to run the experi-

ments. Each machine has 28-core Intel Xeon CPU @ 2.60GHz and 192 GB memory. Intel

MPI [58] is used for building and executing binaries as well as distributing input partitions

among machines. One MPI process is launched for each machine. Lastly, Pthread [71] is

used to launch threads inside MPI processes. Experiments are conducted in two scales: sin-

gle machine and distributed with up to 16 machines (448 cores). Distributed experiments

consist of weak scaling (the number of machines scales proportionally to the DNN size),

strong cluster scaling (DNN size is fixed and the number of machines is varied), and strong

data scaling (the number of machines is fixed and DNN size is varied). Note that the average

of maximum execution time is reported here.

6.3.1.2 Implementation Details The sparse DNN inference implementation is open

source and freely available1. It is written in C/C++ and supports different weight types via

template metaprogramming. It allows CPU affinity via Pthread [71] and memory affinity

via NUMActl [70]. CPU affinity is strictly implemented for thread scheduling algorithms

where each socket has a separate list for idle threads. In addition, threads cannot recruit

1The source code is available at https://github.com/hmofrad/DistSparseDNN

99

idle threads from the other socket unless all the remote socket’s threads are idle. The

NUMA-aware scheduling provides 70% improvement over the NUMA-oblivious version due

to prioritizing the remote memory accesses across sockets. The implementation uses CSC [64]

along with a SPA-based right multiplication SpMM algorithm [64]. The CSC data structure

and the SpMM algorithm are scaled using data parallelism via partitioning. Finally, a custom

4 KB page-aligned memory allocator backed by mmap()/mremap() is also utilized.

6.3.1.3 Parallelism Models Having p processes and t threads per process, experiments

are conducted in two settings of single machine (single process) and distributed (multiple

processes). For single machine experiments, I study: (1) Model parallelism that breaks

the network’s layers into t partitions, (2) Data parallelism that splits the input into t parti-

tions, (3) Data-then-model that starts with data parallelism and gradually switches to model

parallelism, (4) Work-sharing [38] that breaks the input into t ·σ small partitions and places

them in a central queue protected by a single shared lock; σ is the split factor, (5) Work-

stealing [14] which is similar to the work-sharing, but for each thread employs a separate

queue of σ partitions protected by a unique lock; if a thread finishes its partitions it starts

probing queues owned by other threads in a circular fashion. Also, I compare against LA-

Graph [38] which employs manager-worker (a.k.a. work-sharing) strategy. For distributed

experiments, the input is first partitioned using the number of processes p to scale out and

then on each process, the requested parallelism is ran as mentioned above to scale up. For

example, data*data parallelism, first divides the input into p partitions, then runs data par-

allelism with t threads on each partition. In distributed, no communication happens during

the inference since partitions are disjoint and the only communication is for final validation

of inference.

6.3.1.4 Parameter Settings For data-then-model, the results for slower-first scheduling

with NUMA-aware lists of idle threads per socket are reported as it offers the best results

for the majority of DNNs. Also, scheduling threshold η and probing threshold θ are set to

4 and 0.3 as they produce the best results. Finally, for work-sharing and work-stealing split

factor σ is set as 8.

100

0

25

50

75

0

1

2

3

N
o

In
p

u
t

La
ye

rs

In
p

u
t+

La
ye

rs N
o

In
p

u
t

La
ye

rs

In
p

u
t+

La
ye

rs N
o

In
p

u
t

La
ye

rs

In
p

u
t+

La
ye

rs

Model Data Data/Model

C
ac

h
e

M
is

s
R

at
e

(%
)

Ti
m

e
(S

ec
o

n
d

s
in

 T
h

o
u

sa
n

d
s)

Hashing Type

LLC

L1

Figure 43: Effect of hashing on runtime (left y-axis) and cache performance (right y-axis)
for different parallelisms on D2 (Hashing Type: No = no hashing; Input = input hashing; Layers
= layer hashing; and Input + Layers = input & layer hashing).

6.3.1.5 Datasets For the experiments, the IEEE HPEC sparse DNN challenge dataset

[62] is utilized. Please refer to Table 8 for more information on datasets.

6.3.2 Studying the Impact of Neural Network Hashing

Figure 43 shows the effects of different types of hashing. For model parallelism hashing

does not help (No or Input in the figure) or even hurt (Input and/or Layers) as it already

exploits cache locality (particularly LLC) due to all threads accessing a single shared copy

of the layer matrix simultaneously. In addition, when dealing with a large DNN which does

not fit in cache, model parallelism incurs a huge L1 cache miss rate as threads are randomly

accessing the input matrix and continuously invalidating/overwriting L1 entries. On the

other hand, data parallelism benefits from hashing a great deal since hashing the input

and/or layers produces balanced partitions which alleviate the straggler problem. Finally,

like data parallelism, data-then-model also improves with hashing.

From Figure 43, compared to model parallelism, data and data-then-model parallelisms

have better L1 cache utilization because their input partition is smaller. Moreover, with No

and Input hashing these parallelisms tend to have poor LLC performance which stems from

having multiple copies of layers in memory due to threads progressing and accessing different

layers individually. Conversely, Layers and Input & Layers hashing significantly improves

101

0

15

120 480 1920

Ti
m

e
(s

)

#Layers

LAGraph

Work-Sharing

Work-Stealing

Model

Data

Data/Model

26.4 21.8

(a) A0, A1 and A2

0

50

120 480 1920

#Layers

87.3

(b) B0, B1 and B2

0

300

120 480 1920

#Layers

441.7

(c) C0, C1 and C2

0

500

1000

1500

120 480 1920

#Layers

2109

(d) D0, D1 and D2

Figure 44: Runtime of different parallelisms on a single machine for different DNN sizes.

LLC utilization for these parallelisms. This is because when a DNN generated by RadiX-Net

topology [102] is hashed, it offers a pseudo-sequential access pattern to the input matrix.

6.3.3 Single Node Comparison with other Parallelisms

Figure 44 shows the single machine results of different parallelisms on DNNs described

in Table 8. Overall, based on the geometric mean of all reported numbers, data-then-model

parallelism is about 10% to 65% faster than data parallelism. As threads become idle,

data-then-model utilizes idle threads to support slower threads, switching thereby to model

parallelism and suppressing pure data parallelism. Here, data parallelism is faster than

work-sharing and work-stealing as their threads waste time contending on locks. Model

parallelism tends to produce poor results because if the DNN is large it will quickly pollute

the cache. Also, from this figure LAGraph [38] demonstrates decent results, but still trails

102

0

50

100

150

200

250

(6.3M,62.9M),
(2)

(25M,251M),
(4)

(98.8M,1B),
(8)

(392M,4B),
(16)

Ti
m

e
(s

)

(#Input Nonzeros, #Layers Nonzeros), (#Nodes)

Data*Work-Sharing

Data*Work-Stealing

Data*Model

Data*Data

Data*Data/Model

(a) Weak Scaling (A2, B2, C2 and D2)

0

50

100

150

200

250

(6.3M,62.9M),
(16)

(25M,251M),
(16)

(98.8M,1B),
(16)

(392M,4B),
(16)

(#Input Nonzeros, #Layers Nonzeros), (#Nodes)

(b) Strong Data Scaling (A2, B2, C2 and D2)

0

300

600

900

1200

1500

(28),
(1)

(56),
(2)

(112),
(4)

(224),
(8)

(448),
(16)

(#Cores), (#Nodes)

2109

(c) Strong Cluster Scaling (D2)

Figure 45: Scalability of different parallelism models.

behind data-then-model. Finally, two general observations are: 1) As the number of layers

is increased from 120 to 1920, e.g., A0 to A2 (deeper DNNs), the runtime increases due to

the added depth, 2) As the number of neurons is increased, e.g., from 1k to 4K, scale A to

B (wider DNNs), the runtime increases due to the added breadth.

6.3.4 Distributed DNN Inference Performance Analysis

This experiment reports the distributed results of different parallelisms on some selected

DNNs from Table 8. Figure 45a shows the weak scaling results where the number of

machines is increased along with the DNN size. Overall, data-then-model offers superior

weak scaling and delivers the best results on different scales. It is followed by model and

data parallelisms, and lastly by work-sharing and work-stealing, which perform comparably.

Figure 45b illustrates the strong data scaling results where the DNN size is increased

while the number of machines is fixed. Also, Figure 45c shows the strong cluster scaling

103

results where the number of machines is increased while the DNN size is fixed. In these

figures, data-then-model offers the best strong data and cluster scalings. One interesting ob-

servation is that in Figure 45c model parallelism under cluster scaling improves significantly

as more machines are added. The reason behind this is that smaller partitions consumed by

each thread result in less cache thrashing.

6.4 Conclusion

In this chapter, I propose data-then-model parallelism, a lightweight scheme which capi-

talizes on performance variation exhibited by data parallelism. Threads in data-then-model

parallelism start with data parallelism, where faster threads can progress and finish early.

Then, instead of terminating these fast threads, data-then-model recruits them to assist

stragglers, switching all threads eventually and dynamically to model parallelism. Experi-

ments over single and distributed machines with DNNs as large as 4B nonzeros show that

on average data-then-model can deliver up to 65% speedup versus data parallelisms.

104

7.0 Conclusions and Future Work

7.1 Conclusions

The future of Big Data analytics and classification is shifting toward sparse Big Data

which is an undercurrent of Big Data. I do believe that, with correct designs, sparse Big

Data can offer agile and cost-effective analytics. Recently, sparse Big Data is becoming more

and more important as IT companies want to build/update their data models in faster and

cheaper ways on Cloud servers, HPC clusters or lightweight edge devices. However, designing

scalable solutions for rendering analytics on sparse Big Data is a challenging task. In this

dissertation, I investigated different dimensions of parallel and distributed sparse computing

and communication including distributed sparse data structures and primitives. I showed

how simple yet efficient changes in partitioning and parallelism models can help accelerate

or scale an existing distributed computing strategy.

My first major contribution is that I could identify the gap between sparse matrix and

sparse vectors compressions and introduced a new co-compression technique called Triply

Compressed Sparse Column (TCSC). TCSC bundles up with the Sparse Matrix - Sparse

input and output Vector (SpMSpV2) primitive offering faster memory accesses, less cache

pollution, and asymptotically less space compared to the state-of-the-art compression tech-

niques. Specifically, TCSC reduces the time and space complexities of both sparse matrix

and vectors where in a distributed setting reducing the vector sizes yields less accumulation

and communication volumes.

My second major contribution is that I combined the partitioning with the scalability

direction and introduced the MPI ∗ X parallelism model. The proposed MPI ∗ X leverages

a new 2D-thread-based sparse matrix partitioning and placement that deems threads as

basic units of computing instead of processes and can scale diagonally over a cluster of

machines. The MPI ∗ X model offers balanced computation and communication per thread

while reducing the cost of accumulation and synchronization. It leverages the topology and

microarchitectural information including Non-uniform Memory Access (NUMA) to enable

105

faster main memory access and hot caches, and maximize the usage of MPI shared memory

transport for communication among threads.

My third contribution is to thoroughly study, data and model parallelisms, two well-

known parallelism models for parallel and distributed training/inference of sparse neural

networks, where data parallelism parallelizes over the input and model parallelism parallelizes

over the DNN. I motivated SpMM as the key primitive behind training/inference of sparse

neural networks using either of data or model parallelism and experimentally showed that

picking a right compression format for the SpMM algorithm can significantly impact the

runtime. I further investigated the effects of hashing in sparse DNN inference and showed

input hashing helps reducing the input data imbalance of data parallelism and DNN hashing

improves cache utilization of model parallelism.

My fourth contribution is data-then-model parallelism which is a new parallelism

for parallel and distributed inference of sparse DNNs. As the core kernel behind the DNN

training/inference, SpMM is usually parallelized using data (input partitioning) or model

(network partitioning) parallelism. Data parallelism allows threads to progress indepen-

dently whilst suffering from straggler threads due to load imbalance. To the contrary, Model

parallelism incurs a heavy synchronization cost due to compulsory reductions at the end of

each layer. To address these limitations, I proposed data-then-model parallelism where all

threads start with data parallelism and incrementally switch to model parallelism. When a

thread becomes idle, it gets recruited by an active thread which has not yet finished process-

ing its partition and progressively all threads switch into model parallelism. This upcycling

of threads removes the straggler effect inherent in data parallelism while postponing the

synchronization overhead of model parallelism to the last layers.

Altogether, the contributions of this dissertation provide a set of highly efficient and

scalable data structures and algorithms to accelerate and scale big graph analytics and deep

learning applications. Additionally, my proposed SpMV and SpMM primitives can be applied

to a wide class of sparse linear algebra problems.

106

7.2 Future Work

In this dissertation, I propose the TCSC matrix compression format in the context of

graph analytics. TCSC co-compresses both matrix and vectors to the computation and

reduces time and space complexities of the SpMV operations. SpMM is the core kernel

behind many scientific applications such as sparse DNN inference or training. Here, CSC

is used as the key compression format behind the SpMM kernel implemented for sparse

DNN inference. However, with small changes in the SpMM primitive, TCSC can also be

utilized as a sparse matrix compression technique for SpMM. When used for SpMM, TCSC

co-compresses first and second input matrices and hence can potentially save in both memory

and processing power.

Distributed sparse DNN inference is a compute-intensive application that consists of a

single forward pass that propagates the weights in the network to infer an instance. SpMM

is the key kernel behind inference of sparse DNNs. Although my contributions are mainly

tested against inference, all of them are applicable to the training of sparse DNNs as well.

Distributed sparse DNN training is a compute- and communication-intensive application

which comprises of the iterative execution of a forward pass that propagates the weights

and a backward pass that updates the weights. Data-then-model parallelism can be effec-

tively utilized in both forward/backward passes of training where faster threads help slower

straggler threads to propagate/update weights faster.

107

Bibliography

[1] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow:
A system for large-scale machine learning. In Proceedings of the 12th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI). Savannah, Georgia,
USA, 2016.

[2] Yousuf Ahmad, Omar Khattab, Arsal Malik, Ahmad Musleh, Mohammad Hammoud,
Mucahid Kutlu, Mostafa Shehata, and Tamer Elsayed. La3: a scalable link-and
locality-aware linear algebra-based graph analytics system. Proceedings of the VLDB
Endowment, 11(8):920–933, 2018.

[3] Simon Alford, Ryan Robinett, Lauren Milechin, and Jeremy Kepner. Pruned and
structurally sparse neural networks. arXiv preprint arXiv:1810.00299, 2018.

[4] Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang Bai, Eric
Battenberg, Carl Case, Jared Casper, Bryan Catanzaro, Qiang Cheng, Guoliang Chen,
et al. Deep speech 2: End-to-end speech recognition in english and mandarin. In
International conference on machine learning, pages 173–182, 2016.

[5] Michael J Anderson, Narayanan Sundaram, Nadathur Satish, Md Mostofa Ali Pat-
wary, Theodore L Willke, and Pradeep Dubey. Graphpad: Optimized graph prim-
itives for parallel and distributed platforms. In Parallel and Distributed Processing
Symposium, 2016 IEEE International, pages 313–322. IEEE, 2016.

[6] Rohan Anil, Gabriel Pereyra, Alexandre Passos, Robert Ormandi, George E Dahl, and
Geoffrey E Hinton. Large scale distributed neural network training through online
distillation. arXiv preprint arXiv:1804.03235, 2018.

[7] Ammar Ahmad Awan, Khaled Hamidouche, Jahanzeb Maqbool Hashmi, and Dha-
baleswar K Panda. S-caffe: Co-designing mpi runtimes and caffe for scalable deep
learning on modern gpu clusters. In Acm Sigplan Notices, volume 52(8), pages 193–
205. ACM, 2017.

[8] Ariful Azad and Aydin Buluç. A work-efficient parallel sparse matrix-sparse vector
multiplication algorithm. In Parallel and Distributed Processing Symposium (IPDPS),
2017 IEEE International, pages 688–697. IEEE, 2017.

108

[9] David Bader, Aydın Buluç, John Gilbert, Joseph Gonzalez, Jeremy Kepner, and
Timothy Mattson. The graph blas effort and its implications for exascale. In SIAM
Workshop on Exascale Applied Mathematics Challenges and Opportunities (EX14),
2014.

[10] Satish Balay, Kris Buschelman, Victor Eijkhout, William D Gropp, Dinesh Kaushik,
Matthew G Knepley, Lois Curfman McInnes, Barry F Smith, and Hong Zhang. Petsc
users manual. Technical report, Technical Report ANL-95/11-Revision 2.1. 5, Argonne
National Laboratory, 2004.

[11] Richard F Barrett, Dylan T Stark, Courtenay T Vaughan, Ryan E Grant, Stephen L
Olivier, and Kevin T Pedretti. Toward an evolutionary task parallel integrated mpi+
x programming model. In Proceedings of the Sixth International Workshop on Pro-
gramming Models and Applications for Multicores and Manycores, pages 30–39. ACM,
2015.

[12] James Bergstra, Frédéric Bastien, Olivier Breuleux, Pascal Lamblin, Razvan Pas-
canu, Olivier Delalleau, Guillaume Desjardins, David Warde-Farley, Ian Goodfellow,
Arnaud Bergeron, et al. Theano: Deep learning on gpus with python. In NIPS 2011,
BigLearning Workshop, Granada, Spain, volume 3, pages 1–48. Citeseer, 2011.

[13] Saman Biookaghazadeh, Yitao Chen, Kaiqi Zhao, and Ming Zhao. Knowledgenet:
Disaggregated and distributed training and serving of deep neural networks. In 2019
{USENIX} Conference on Operational Machine Learning (OpML 19), pages 47–49,
2019.

[14] Robert D Blumofe and Charles E Leiserson. Scheduling multithreaded computations
by work stealing. Journal of the ACM (JACM), 46(5):720–748, 1999.

[15] Hans-J Boehm. Threads cannot be implemented as a library. In ACM Sigplan Notices,
volume 40, pages 261–268. ACM, 2005.

[16] Paolo Boldi and Sebastiano Vigna. The webgraph framework i: Compression tech-
niques. In 13th ACM WWW, pages 595–601, 2004.

[17] Erik G Boman, Karen D Devine, and Sivasankaran Rajamanickam. Scalable ma-
trix computations on large scale-free graphs using 2d graph partitioning. In SC’13:
Proceedings of the International Conference on High Performance Computing, Net-
working, Storage and Analysis, pages 1–12. IEEE, 2013.

109

[18] Pat Allen Buckland. Numa system with redundant main memory architecture, Au-
gust 31 2004. US Patent 6,785,783.

[19] Aydin Buluc and John R Gilbert. On the representation and multiplication of hy-
persparse matrices. In Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE
International Symposium on, pages 1–11. IEEE, 2008.

[20] Aydin Buluc and John R Gilbert. Linear algebraic primitives for parallel computing
on large graphs. University of California, Santa Barbara, 2010.

[21] Aydın Buluç and John R Gilbert. The combinatorial blas: Design, implementation,
and applications. The International Journal of High Performance Computing Appli-
cations, 25(4):496–509, 2011.

[22] Aydin Buluç and John R Gilbert. Parallel sparse matrix-matrix multiplication and
indexing: Implementation and experiments. SIAM Journal on Scientific Computing,
34(4):C170–C191, 2012.

[23] Vı́ctor Campos, Francesc Sastre, Maurici Yagües, Mı́riam Bellver, Xavier Giró-i Nieto,
and Jordi Torres. Distributed training strategies for a computer vision deep learning
algorithm on a distributed gpu cluster. Procedia Computer Science, 108:315–324,
2017.

[24] Lynn Elliot Cannon. A cellular computer to implement the Kalman filter algorithm.
PhD thesis, Montana State University-Bozeman, College of Engineering, 1969.

[25] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. R-mat: A recursive
model for graph mining. In Proceedings of the 2004 SIAM International Conference
on Data Mining, pages 442–446. SIAM, 2004.

[26] Pak K Chan, Martine DF Schlag, and Jason Y Zien. Spectral k-way ratio-cut par-
titioning and clustering. ransactions on computer-aided design of integrated circuits
and systems, 13(9):1088–1096, 1994.

[27] Rong Chen, Jiaxin Shi, Yanzhe Chen, and Haibo Chen. Powerlyra: Differentiated
graph computation and partitioning on skewed graphs. In 10th EuroSys, 2015.

[28] Rong Chen, Jiaxin Shi, Yanzhe Chen, Binyu Zang, Haibing Guan, and Haibo Chen.
Powerlyra: Differentiated graph computation and partitioning on skewed graphs.
ACM Transactions on Parallel Computing (TOPC), 5(3):13, 2019.

110

[29] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun
Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. Mxnet: A flexible and effi-
cient machine learning library for heterogeneous distributed systems. arXiv preprint
arXiv:1512.01274, 2015.

[30] Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman.
Project adam: Building an efficient and scalable deep learning training system. In 11th
{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI}
14), pages 571–582, 2014.

[31] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and Sambavi
Muthukrishnan. One trillion edges: Graph processing at facebook-scale. Proceed-
ings of the VLDB Endowment, 8(12):1804–1815, 2015.

[32] François Chollet. Xception: Deep learning with depthwise separable convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
1251–1258, 2017.

[33] Ronan Collobert and Jason Weston. A unified architecture for natural language pro-
cessing: Deep neural networks with multitask learning. In Proceedings of the 25th
international conference on Machine learning, pages 160–167. ACM, 2008.

[34] Henggang Cui, Hao Zhang, Gregory R Ganger, Phillip B Gibbons, and Eric P Xing.
Geeps: Scalable deep learning on distributed gpus with a gpu-specialized parameter
server. In Proceedings of the Eleventh European Conference on Computer Systems,
page 4. ACM, 2016.

[35] Dipankar Das, Sasikanth Avancha, Dheevatsa Mudigere, Karthikeyan Vaidynathan,
Srinivas Sridharan, Dhiraj Kalamkar, Bharat Kaul, and Pradeep Dubey. Dis-
tributed deep learning using synchronous stochastic gradient descent. arXiv preprint
arXiv:1602.06709, 2016.

[36] Timothy Davis. Algorithm 9xx: Suitesparse: Graphblas: graph algorithms in the
language of sparse linear algebra. submitted to ACM Trans on Mathematical Software,
2018.

[37] Timothy A Davis. Graph algorithms via suitesparse: Graphblas: triangle counting and
k-truss. In 2018 IEEE High Performance extreme Computing Conference (HPEC),
pages 1–6. IEEE, 2018.

111

[38] Timothy A Davis, Mohsen Aznaveh, and Scott Kolodziej. Write quick, run fast: Sparse
deep neural network in 20 minutes of development time via suitesparse: Graphblas.
In 2019 IEEE High Performance extreme Computing Conference (HPEC), pages 1–6.
IEEE, 2019.

[39] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao,
Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. Large scale distributed deep
networks. In Advances in neural information processing systems, pages 1223–1231,
2012.

[40] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large
clusters. Communications of the ACM, 51(1):107–113, 2008.

[41] Zhisong Fu, Michael Personick, and Bryan Thompson. Mapgraph: A high level api
for fast development of high performance graph analytics on gpus. In Proceedings of
Workshop on GRAph Data management Experiences and Systems, pages 1–6. ACM,
2014.

[42] Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural
networks. arXiv preprint arXiv:1902.09574, 2019.

[43] Alexandros V Gerbessiotis and Leslie G Valiant. Direct bulk-synchronous parallel
algorithms. Journal of parallel and distributed computing, 22(2):251–267, 1994.

[44] Ira M Gessel and Christophe Reutenauer. Counting permutations with given cycle
structure and descent set. Journal of Combinatorial Theory, Series A, 64(2):189–215,
1993.

[45] Amir Gholami, Ariful Azad, Peter Jin, Kurt Keutzer, and Aydin Buluc. Integrated
model, batch, and domain parallelism in training neural networks. In Proceedings of
the 30th on Symposium on Parallelism in Algorithms and Architectures, pages 77–86.
ACM, 2018.

[46] John R Gilbert, Cleve Moler, and Robert Schreiber. Sparse matrices in matlab:
Design and implementation. SIAM Journal on Matrix Analysis and Applications,
13(1):333–356, 1992.

[47] Gurbinder Gill, Roshan Dathathri, Loc Hoang, and Keshav Pingali. A study of par-
titioning policies for graph analytics on large-scale distributed platforms. Proceedings
of the VLDB Endowment, 12(4):321–334, 2018.

112

[48] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural
networks. In Proceedings of the fourteenth international conference on artificial intel-
ligence and statistics, pages 315–323, 2011.

[49] Chris Godsil and Gordon F Royle. Algebraic graph theory, volume 207. Springer
Science & Business Media, 2013.

[50] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
Powergraph: distributed graph-parallel computation on natural graphs. In OSDI,
volume 12, page 2. Usenix, 2012.

[51] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,
2016.

[52] Samuel Grossman, Heiner Litz, and Christos Kozyrakis. Making pull-based graph
processing performant. In ACM SIGPLAN Notices, volume 53(1), pages 246–260.
ACM, 2018.

[53] Fred G Gustavson. Two fast algorithms for sparse matrices: Multiplication and
permuted transposition. ACM Transactions on Mathematical Software (TOMS),
4(3):250–269, 1978.

[54] Minyang Han and Khuzaima Daudjee. Giraph unchained: barrierless asynchronous
parallel execution in pregel-like graph processing systems. Proceedings of the VLDB
Endowment, 8(9):950–961, 2015.

[55] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz, and
William J Dally. Eie: efficient inference engine on compressed deep neural network.
In 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture
(ISCA), pages 243–254. IEEE, 2016.

[56] Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel-rahman Mohamed, Navdeep
Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Brian Kingsbury, et al.
Deep neural networks for acoustic modeling in speech recognition. IEEE Signal pro-
cessing magazine, 29, 2012.

[57] Forrest N Iandola, Matthew W Moskewicz, Khalid Ashraf, and Kurt Keutzer. Fire-
caffe: near-linear acceleration of deep neural network training on compute clusters.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 2592–2600, 2016.

113

[58] Intel. Intel mpi library. https://software.intel.com/en-us/mpi-library.

[59] U Kang, Charalampos E Tsourakakis, and Christos Faloutsos. Pegasus: A peta-
scale graph mining system implementation and observations. In Data Mining, 2009.
ICDM’09. Ninth IEEE International Conference on, pages 229–238. IEEE, 2009.

[60] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM Journal on scientific Computing, 20(1):359–392,
1998.

[61] Jeremy Kepner, Simon Alford, Vijay Gadepally, Michael Jones, Lauren Milechin,
Ryan Robinett, and Sid Samsi. Sparse deep neural network graph challenge. MIT
Graphchallenge (http: // graphchallenge. mit. edu) , 2019.

[62] Jeremy Kepner, Simon Alford, Vijay Gadepally, Michael Jones, Lauren Milechin,
Ryan Robinett, and Sid Samsi. Sparse deep neural network graph challenge. In 2019
IEEE High Performance Extreme Computing Conference (HPEC), pages 1–7. IEEE,
2019.

[63] Jeremy Kepner, Vikalo Gadepally, Hayden Jananthan, Lauren Milechin, and Sid
Samsi. Sparse deep neural network exact solutions. In 2018 IEEE High Performance
extreme Computing Conference (HPEC), pages 1–8. IEEE, 2018.

[64] Jeremy Kepner and John Gilbert. Graph algorithms in the language of linear algebra.
SIAM, 2011.

[65] Brian W Kernighan and Shen Lin. An efficient heuristic procedure for partitioning
graphs. The Bell system technical journal, 49(2):291–307, 1970.

[66] Aapo Kyrola, Guy E Blelloch, Carlos Guestrin, et al. Graphchi: Large-scale graph
computation on just a pc. In OSDI, volume 12, pages 31–46, 2012.

[67] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,
521(7553):436, 2015.

[68] Yann LeCun, Corinna Cortes, and Christopher J.C. Burges. The mnist database of
handwritten digits. http://yann.lecun.com/exdb/mnist/.

114

https://software.intel.com/en-us/mpi-library
http://graphchallenge.mit.edu)

[69] Shigang Li, Torsten Hoefler, and Marc Snir. Numa-aware shared-memory collective
communication for mpi. In Proceedings of the 22nd international symposium on High-
performance parallel and distributed computing, pages 85–96. ACM, 2013.

[70] Linux. Numa - numa policy library. http://man7.org/linux/man-pages/man3/

numa.3.html.

[71] Linux. Posix thread (pthread) library. http://man7.org/linux/man-pages/man7/

pthreads.7.html.

[72] Baoyuan Liu, Min Wang, Hassan Foroosh, Marshall Tappen, and Marianna Pensky.
Sparse convolutional neural networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 806–814, 2015.

[73] Hang Liu and H Howie Huang. Graphene: Fine-grained {IO} management for graph
computing. In 15th {USENIX} Conference on File and Storage Technologies ({FAST}
17), pages 285–300, 2017.

[74] Shiwei Liu, Decebal Constantin Mocanu, Amarsagar Reddy Ramapuram Matavalam,
Yulong Pei, and Mykola Pechenizkiy. Sparse evolutionary deep learning with over one
million artificial neurons on commodity hardware. arXiv preprint arXiv:1901.09181,
2019.

[75] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola, and
Joseph M Hellerstein. Distributed graphlab: a framework for machine learning and
data mining in the cloud. Proceedings of the VLDB Endowment, 5(8):716–727, 2012.

[76] Yucheng Low, Joseph E Gonzalez, Aapo Kyrola, Danny Bickson, Carlos E Guestrin,
and Joseph Hellerstein. Graphlab: A new framework for parallel machine learning.
arXiv preprint arXiv:1408.2041, pages 1–10, 2014.

[77] Adam Lugowski, Aydın Buluç, John R Gilbert, and Steve Reinhardt. Scalable com-
plex graph analysis with the knowledge discovery toolbox. In 2012 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 5345–5348.
IEEE, 2012.

[78] Lingxiao Ma, Zhi Yang, Han Chen, Jilong Xue, and Yafei Dai. Garaph: Efficient
gpu-accelerated graph processing on a single machine with balanced replication. In
2017 {USENIX} Annual Technical Conference ({USENIX}{ATC} 17), pages 195–
207, 2017.

115

http://man7.org/linux/man-pages/man3/numa.3.html
http://man7.org/linux/man-pages/man3/numa.3.html
http://man7.org/linux/man-pages/man7/pthreads.7.html
http://man7.org/linux/man-pages/man7/pthreads.7.html

[79] Steffen Maass, Changwoo Min, Sanidhya Kashyap, Woonhak Kang, Mohan Kumar,
and Taesoo Kim. Mosaic: Processing a trillion-edge graph on a single machine. In
12th ACM EuroSys, pages 527–543, 2017.

[80] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale graph pro-
cessing. In Proceedings of the 2010 ACM SIGMOD International Conference on Man-
agement of data, pages 135–146. ACM, 2010.

[81] Christopher Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven Bethard,
and David McClosky. The stanford corenlp natural language processing toolkit. In
Proceedings of 52nd annual meeting of the association for computational linguistics:
system demonstrations, pages 55–60, 2014.

[82] Huizi Mao, Song Han, Jeff Pool, Wenshuo Li, Xingyu Liu, Yu Wang, and William J
Dally. Exploring the regularity of sparse structure in convolutional neural networks.
arXiv preprint arXiv:1705.08922, 2017.

[83] Claudio Martella, Dionysios Logothetis, Andreas Loukas, and Georgos Siganos. Spin-
ner: Scalable graph partitioning in the cloud. In 2017 IEEE 33rd International Con-
ference on Data Engineering (ICDE), pages 1083–1094. Ieee, 2017.

[84] Matlab. Create sparse matrix in matlab. https://www.mathworks.com/help/

matlab/ref/sparse.html.

[85] Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen,
Madeleine Gibescu, and Antonio Liotta. Scalable training of artificial neural networks
with adaptive sparse connectivity inspired by network science. Nature communica-
tions, 9(1):2383, 2018.

[86] Mohammad Hasanzadeh Mofrad, Rami Melhem, Yousuf Ahmad, and Mohammad
Hammoud. Efficient distributed graph analytics using triply compressed sparse for-
mat. In 2019 IEEE International Conference on Cluster Computing (CLUSTER),
pages 1–11. IEEE, 2019.

[87] Mohammad Hasanzadeh Mofrad, Rami Melhem, Yousuf Ahmad, and Mohammad
Hammoud. Multithreaded layer-wise training of sparse deep neural networks using
compressed sparse column. In 2019 IEEE High Performance Extreme Computing
Conference (HPEC), pages 1–6. IEEE, 2019.

116

https://www.mathworks.com/help/matlab/ ref/sparse.html
https://www.mathworks.com/help/matlab/ ref/sparse.html

[88] Mohammad Hasanzadeh Mofrad, Rami Melhem, Yousuf Ahmad, and Mohammad
Hammoud. Accelerating distributed inference of sparse deep neural networks via
mitigating the straggler effect. In 2020 IEEE High Performance Extreme Computing
Conference (HPEC), pages 1–6. IEEE, 2020.

[89] Mohammad Hasanzadeh Mofrad, Rami Melhem, Yousuf Ahmad, and Mohammad
Hammoud. Graphite: a numa-aware hpc system for graph analytics based on a new
mpi* x parallelism model. Proceedings of the VLDB Endowment, 13(6):783–797, 2020.

[90] Mohammad Hasanzadeh Mofrad, Rami Melhem, Yousuf Ahmad, and Mohammad
Hammoud. Studying the effects of hashing of sparse deep neural networks on data and
model parallelisms. In 2020 IEEE High Performance Extreme Computing Conference
(HPEC), pages 1–6. IEEE, 2020.

[91] Mohammad Hasanzadeh Mofrad, Rami Melhem, and Mohammad Hammoud.
Partitioning graphs for the cloud using reinforcement learning. arXiv preprint
arXiv:1907.06768, 2019.

[92] Mohammad Hasanzadeh Mofrad, Rami Melhem, and Mohammad Hammoud. Re-
volver: vertex-centric graph partitioning using reinforcement learning. In 2018 IEEE
11th International Conference on Cloud Computing (CLOUD), pages 818–821. IEEE,
2018.

[93] Philipp Moritz, Robert Nishihara, Ion Stoica, and Michael I Jordan. Sparknet: Train-
ing deep networks in spark. arXiv preprint arXiv:1511.06051, 2015.

[94] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. A lightweight infrastruc-
ture for graph analytics. In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, pages 456–471. ACM, 2013.

[95] John Nickolls and William J Dally. The gpu computing era. IEEE micro, 30(2):56–69,
2010.

[96] Beng Chin Ooi, Kian-Lee Tan, Sheng Wang, Wei Wang, Qingchao Cai, Gang Chen,
Jinyang Gao, Zhaojing Luo, Anthony KH Tung, Yuan Wang, et al. Singa: A dis-
tributed deep learning platform. In Proceedings of the 23rd ACM international con-
ference on Multimedia, pages 685–688. ACM, 2015.

[97] OpenMP. The openmp api specification for parallel programming. https://www.

openmp.org/.

117

https://www.openmp.org/
https://www.openmp.org/

[98] OpenMPI. Open mpi: Open source high performance computing. https://www.

open-mpi.org/.

[99] Yuechao Pan, Yangzihao Wang, Yuduo Wu, Carl Yang, and John D Owens. Multi-
gpu graph analytics. In 2017 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pages 479–490. IEEE, 2017.

[100] Fatemeh Rahimian, Amir H Payberah, Sarunas Girdzijauskas, Mark Jelasity, and Seif
Haridi. Ja-be-ja: A distributed algorithm for balanced graph partitioning. In 7th
IEEE SASO, pages 51–60, 2013.

[101] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-
net: Imagenet classification using binary convolutional neural networks. In European
Conference on Computer Vision, pages 525–542. Springer, 2016.

[102] Ryan Robinett and Jeremy Kepner. Radix-net: Structured sparse matrices for deep
neural networks. In 2019 IEEE International Parallel and Distributed Processing
Symposium Workshop (IPDPSW). IEEE, 2019.

[103] Ryan A Robinett and Jeremy Kepner. Neural network topologies for sparse training.
arXiv preprint arXiv:1809.05242, 2018.

[104] Wolf Rödiger, Tobias Mühlbauer, Alfons Kemper, and Thomas Neumann. High-speed
query processing over high-speed networks. PVLDB, 9(4):228–239, 2015.

[105] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. X-stream: Edge-centric graph
processing using streaming partitions. In SOSP, page 472, 2013.

[106] Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv
preprint arXiv:1609.04747, 2016.

[107] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele
Monfardini. The graph neural network model. IEEE Transactions on Neural Net-
works, 20(1):61–80, 2008.

[108] Schedmd. Slurm workload manager. https://slurm.schedmd.com/.

[109] SciPy. Scipy: open-source software for mathematics, science, and engineering. https:
//docs.scipy.org/doc/scipy/reference/sparse.html.

118

https://www.open-mpi.org/
https://www.open-mpi.org/
https://slurm.schedmd.com/
https://docs.scipy.org/doc/scipy/reference/sparse.html
https://docs.scipy.org/doc/scipy/reference/sparse.html

[110] Alexander Sergeev and Mike Del Balso. Horovod: fast and easy distributed deep
learning in tensorflow. arXiv preprint arXiv:1802.05799, 2018.

[111] Julian Shun and Guy E Blelloch. Ligra: a lightweight graph processing framework for
shared memory. In ACM Sigplan Notices, volume 48(8), pages 135–146. ACM, 2013.

[112] Min Si, Antonio J Peña, Pavan Balaji, Masamichi Takagi, and Yutaka Ishikawa. Mt-
mpi: multithreaded mpi for many-core environments. In Proceedings of the 28th ACM
international conference on Supercomputing, pages 125–134. ACM, 2014.

[113] Yogesh Simmhan, Alok Kumbhare, Charith Wickramaarachchi, Soonil Nagarkar, San-
tosh Ravi, Cauligi Raghavendra, and Viktor Prasanna. Goffish: A sub-graph centric
framework for large-scale graph analytics. In European Conference on Parallel Pro-
cessing, pages 451–462. Springer, 2014.

[114] Alexandros Stamatakis and Michael Ott. Exploiting fine-grained parallelism in the
phylogenetic likelihood function with mpi, pthreads, and openmp: A performance
study. In IAPR International Conference on Pattern Recognition in Bioinformatics,
pages 424–435. Springer, 2008.

[115] Narayanan Sundaram, Nadathur Satish, Md Mostofa Ali Patwary, Subramanya R
Dulloor, Michael J Anderson, Satya Gautam Vadlamudi, Dipankar Das, and Pradeep
Dubey. Graphmat: High performance graph analytics made productive. Proceedings
of the VLDB Endowment, 8(11):1214–1225, 2015.

[116] Saeed Taheri, Ian Briggs, Martin Burtscher, and Ganesh Gopalakrishnan. Difftrace:
Efficient whole-program trace analysis and diffing for debugging. In 2019 IEEE In-
ternational Conference on Cluster Computing (CLUSTER), pages 1–12. IEEE, 2019.

[117] Saeed Taheri, Sindhu Devale, Ganesh Gopalakrishnan, and Martin Burtscher. Par-
lot: Efficient whole-program call tracing for hpc applications. In Programming and
Performance Visualization Tools, pages 162–184. Springer, 2017.

[118] Rajeev Thakur, Pavan Balaji, Darius Buntinas, David Goodell, William Gropp,
Torsten Hoefler, Sameer Kumar, Ewing Lusk, and J Larsson Träff. Mpi at exascale.
Procceedings of SciDAC, 2:14–35, 2010.

[119] Yuanyuan Tian, Andrey Balmin, Severin Andreas Corsten, Shirish Tatikonda, and
John McPherson. From think like a vertex to think like a graph. Proceedings of the
VLDB Endowment, 7(3):193–204, 2013.

119

[120] Charalampos Tsourakakis, Christos Gkantsidis, Bozidar Radunovic, and Milan Vo-
jnovic. Fennel: Streaming graph partitioning for massive scale graphs. In 7th ACM
WSDM, pages 333–342, 2014.

[121] Leslie G Valiant. A bridging model for parallel computation. Communications of the
ACM, 33(8):103–111, 1990.

[122] Robert A Van De Geijn and Jerrell Watts. Summa: Scalable universal matrix multi-
plication algorithm. Concurrency: Practice and Experience, 9(4):255–274, 1997.

[123] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel, and
John D Owens. Gunrock: A high-performance graph processing library on the gpu.
In ACM SIGPLAN Notices, volume 51(8), page 11. ACM, 2016.

[124] Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li.
Terngrad: Ternary gradients to reduce communication in distributed deep learning.
In Advances in neural information processing systems, pages 1509–1519, 2017.

[125] Chenning Xie, Rong Chen, Haibing Guan, Binyu Zang, and Haibo Chen. Sync or
async: Time to fuse for distributed graph-parallel computation. ACM SIGPLAN
Notices, 50(8):194–204, 2015.

[126] Carl Yang, Aydın Buluç, and John D Owens. Design principles for sparse matrix
multiplication on the gpu. In European Conference on Parallel Processing, pages
672–687. Springer, 2018.

[127] Hao Zhang, Zeyu Zheng, Shizhen Xu, Wei Dai, Qirong Ho, Xiaodan Liang, Zhiting Hu,
Jinliang Wei, Pengtao Xie, and Eric P Xing. Poseidon: An efficient communication
architecture for distributed deep learning on {GPU} clusters. In 2017 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 17), pages 181–193, 2017.

[128] Kaiyuan Zhang, Rong Chen, and Haibo Chen. Numa-aware graph-structured analyt-
ics. In ACM SIGPLAN Notices, volume 50(8), pages 183–193, 2015.

[129] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. Gemini: A
computation-centric distributed graph processing system. In OSDI, pages 301–316,
2016.

120

[130] Xiaowei Zhu, Wentao Han, and Wenguang Chen. Gridgraph: Large-scale graph pro-
cessing on a single machine using 2-level hierarchical partitioning. In USENIX Annual
Technical Conference, pages 375–386, 2015.

121

	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Tables
	1. Contributions overview
	2. Space required for storing matrix, vector, and row and column indirections of different compression schemes.
	3. Datasets used for experiments. Zc and Zr are the percentage of zero columns and rows. T is the type (including web crawl, social network and synthetic graphs). N is the number of machines used to process the graph.
	4. 2D-process-based tiling versus 2D-thread-based tiling. The utilized function Factorize(p) returns pr and pc such that pr . pc = p and abs(pr - pc) is minimized.
	5. The traditional MPI + X versus the new MPI * X parallelism models.
	6. Datasets used for experiments, and the number of nodes used to process them.
	7. Summary of features of the studied systems.
	8. Sparse DNNs dataset. m, n, nnz & L are numbers of instances, features/ neurons, nonzeros, and layers, respectively. First column is used as an ID for DNN scale.

	List of Figures
	1. The transformation of a graph into its adjacency list and then its adjacency matrix. In addition to many zero entries, there are even empty rows (third row) and columns (second column) that can be ignored when executing an algorithm.
	2. Matrix multiplication where the multiplication of first and second input matrices A and B produces the output matrix C. These matrices can efficiently be represented by sparse formats to reduce in both storage and computation.
	3. Matrix and vector tiling for n x n matrix A and n x 1 vector s with p=4 processes.
	4. Process placement for n x n matrix A and n x 1 vector s with p=4 processes.
	5. (a) An input graph with 6 vertices and 8 edges. (b) The adjacency list where each entry is an edge from the source endpoint (Src) to a destination endpoint (Dst) with a weight (Wgt). (c) The adjacency matrix. (d) The transpose of the adjacency matrix denoted by A.
	6. CSC format for Figure 5d.
	7. DCSC format for Figure 5d.
	8. Comparison of different compression formats and their primitives using PR
	9. TCSC format for Figure 5d.
	10. Space of different compressions using (3.1).
	11. Calculating weighted outgoing degree of Figure 5d.
	12. (a) Partitioning a matrix into a p x p grid of tiles and a vector into p segments where p=4 is the number of processes. (b) Assigning processes to tiles and segments where.
	13. Figure 5d matrix partitioned into four TCSC tiles.
	14. Normalized space, speedup, and cache misses of different compression techniques on a single node for PR with CSC as baseline.
	15. Normalized speedup of compressions on GraphTap for PR with CSC as baseline
	16. Scalability tests for different compressions.
	17. Runtime of GraphPad, LA3, and GraphTap
	18. Matrix and vector 2D layouts (p = 4). (a) 2D-process-based partitioning of matrix and vector, (b) 2D-Cyclic process placement (e.g. the shaded tiles are assigned to P0), (c) 2D-Staggered process placement, and (d) 2D-Staggered leader/follower configuration for distributed SpMV.
	19. GraphPad tile processing (MPI + X) with p = 4 processes and t = 2 threads. Tiles are processed in a row-wise order where each tile is split into m smaller sub-tiles where m is much bigger than t for balancing load among threads. (a) Steps taken to process tiles/segments by process zero: (1) and (2) are row group SpMVs followed by their communication episodes, (3) is the accumulation of results for the row group owned by process zero, and (4) is P0's synchronization with other processes. (b) Compulsory forks/joins of t threads while processing each tile.
	20. Tile layout for p = 4 and t = 2. The 2D grid has (p . t)(p . t) = 64 tiles with p . t = 8 tiles per thread and (p . t)(p . t) = 16 tiles per process. In (a), rows marked as shifted are shifted to guarantee having t diagonal tiles per process. In (b), Pi Tj denotes thread j of process i. Leader threads are at diagonal tiles, and follower threads have the same ids as their leader. Note that each thread is responsible for 8 tiles (e.g., the 8 tiles and 1 segment processed by thread P0 T0 are shaded in (b).
	21. Tiles processed by thread P0T0; shaded tiles in Figure 20b (MPI * X). P0T0 has a single fork/join, and the synchronization is delayed till the end of an iteration to maximize the overlapping of computation and communication.
	22. (a) A cluster with two dual-core dual-socket NUMA machines, and (b) NUMA-aware assignment of threads to cores with p = 4 and t = 2.
	23. Integrating the matrix computing model (Broadcast, Combine, and Apply) with 2D-thread-based tiling to run SpMSpV2 (p = 4 and t = 2).
	24. Runtime of Graphite and others with (# processes per machine, # of threads per process) = (1, 28), (2, 14), (4, 7), (7, 4), (14, 2), and (28, 1).
	25. Normalized speedup (weak scaling) of NUMA, COMP-OPTI, CMPT-FLTR, and ACTY-FLTR with ALL-OFF/ALL-ON as baseline/headline. GM (grand geometric mean).
	26. Graphite Execution time breakdown (s) from running PR on R28 using 16 nodes.
	27. Runtime of Graphite and other systems (weak Scaling). GM is the grand geometric mean over all datasets.
	28. Strong cluster scaling of different systems on R28. X-axis is the number of nodes.
	29. Strong data scaling (R26-28 with 16 nodes)
	30. Data and model parallelisms for two threads (t=2).
	31. Data*data and data*model parallelisms for two processes and two threads per process (p=2, t=2).
	32. Parallel Left SpMM C=A x B for data parallelism using two threads (t=2, i.e., Tk is the kth thread). (a) In data parallelism matrices are stored in CSR and each thread multiplies a row of Ak by the entire B to produce a row of Ck. (b) CSR storage for matrices A, B, and C. (c) pseudocode of the left SpMM algorithm.
	33. Parallel right SpMM C=A * B using two threads (t=2, i.e., Tk is the kth thread). (a) In model parallelism matrices are stored in CSC and each thread multiplies a column of Bk by the entire A to produce a column of C. (b) CSC storage for matrices A, B, and C. (c) pseudocode of the left SpMM algorithm.
	34. First layer of A0 of Table 8 with white dots as weights. (a) E.g., column 1 is only connected to rows 1,2, 64, and 65. (b) E.g., column 1 is connected to rows 1-15.
	35. Runtime comparison of different parallelisms processing D2 of Table 8 on a 28 core machine with p=1 and t=28. (a) - (d) are different hashing types with y-axis as the input size varying from 6.3 M (1,000 sample) to 392 M nonzeros (60,000)
	36. Cache utilization of different parallelisms processing D2 of Table 8 on a 28 core machine with p=1 and t=28. (a) - (d) are different hashing types with x-axis as the input size varying from 6.3 M (1,000 sample) to 392 M nonzeros (60,000).
	37. Runtime (s) of data*data parallelism with CSR for different hashings (1-32 nodes).
	38. Runtime (s) of data*data parallelism with CSC for different hashings (1-32 nodes).
	39. Runtime (s) of data*model parallelism with CSC for different hashings (1-32 n.).
	40. Performance of different parallelisms running different hashing types on D2 DNN of Table 8 using a 28-core CPU (0 to 27 thread IDs). Horizontal bars, zig-zag line, and vertical line show model, data, and data-then-model parallelisms, respectively.
	41. In data-then-model parallelism, all threads start off with data parallelism. Once a thread becames idle, it gets recruited by an active thread and only those threads collectively switch onto model parallelism. Here, T0 gets recruited by T1.
	42. #threads running different parallelisms on C2 DNN of Table 8 on a 28-c. CPU.
	43. Effect of hashing on runtime (left y-axis) and cache performance (right y-axis) for different parallelisms on D2 (Hashing Type: No = no hashing; Input = input hashing; Layers = layer hashing; and Input + Layers = input & layer hashing).
	44. Runtime of different parallelisms on a single machine for different DNN sizes.
	45. Scalability of different parallelism models.

	1.0 Introduction
	1.1 Distributed Sparse Computing and Communication for Graph Analytics
	1.1.1 Identifying Sources of Sparsity in Graph Analytics
	1.1.2 Exposing Challenges of Sparsity in Graph Analytics
	1.1.3 Achieving scalability in Distributed Graph Analytics

	1.2 Distributed Sparse Computing and Communication for Deep Learning
	1.2.1 Identifying Sources of Sparsity in Sparse Deep Neural Networks Inference
	1.2.2 Exposing Challenges of Sparsity in Deep Learning
	1.2.3 Achieving scalability in Distributed Deep Learning

	1.3 Research Contributions

	2.0 Background and Related Work
	2.1 Sparse Matrix Data Structures and Primitives
	2.1.1 Sparse Matrix Data Structures
	2.1.2 Sparse Matrix Primitives

	2.2 Sparse Matrix Partitioning
	2.3 Linear Algebra-based Graph Analytics
	2.3.1 The Case for Duality Between Graph Theory and Linear Algebra
	2.3.2 Linear Algebra-based Graph Analytics Systems

	2.4 Linear Algebra-based Sparse Deep Learning
	2.4.1 Dense Deep Neural Networks
	2.4.2 Sparse Deep Neural Networks
	2.4.3 Sparse Deep Neural Networks Parallelism Models

	2.5 Traditional (Non-algebraic) Graph Analytics
	2.5.1 Graph Theory-based Graph Analytics Systems
	2.5.2 Graph Data Structures and Operations
	2.5.3 Graph Partitioning

	2.6 Summary

	3.0 Efficient Distributed Graph Analytics using Triply Compressed Sparse Format
	3.1 Column Compressed Sparse Formats
	3.1.1 CSC Format
	3.1.2 DCSC Format

	3.2 Motivation
	3.3 Triply Compressed Sparse Format
	3.3.1 Triply Compressed Sparse Column (TCSC)
	3.3.2 Comparison of Space Requirements
	3.3.3 Translating Graph Algorithms onto Operations

	3.4 GraphTap: Distributed Graph Analytics using Triply Compressed Sparse Format
	3.4.1 Matrix Partitioning
	3.4.2 Vertex Program Execution
	3.4.2.1 Scatter-Gather
	3.4.2.2 Combine
	3.4.2.3 Apply
	3.4.2.4 Activity Filtering and Computation Filtering

	3.5 Results
	3.5.1 Experimental Setup
	3.5.1.1 Hardware and Software Configurations
	3.5.1.2 Counterpart Systems
	3.5.1.3 Graph Datasets
	3.5.1.4 Graph Applications

	3.5.2 Single Node Results
	3.5.2.1 Space Utilization
	3.5.2.2 Cache Analysis
	3.5.2.3 Time Analysis

	3.5.3 Distributed Processing Results
	3.5.3.1 Speedup Comparison of CSC, DCSC, and TCSC in GraphTap
	3.5.3.2 Scalability Comparison of CSC, DCSC, and TCSC in GraphTap

	3.5.4 Runtime Comparison of GraphPad, LA3, and GraphTap
	3.5.5 Discussion of Results

	3.6 Conclusion

	4.0 Graphite: A NUMA-aware HPC System for Graph Analytics Based on a new Parallelism Model
	4.1 2D-process-based Matrix Tiling & Placement
	4.2 2D-Thread-based Matrix Tiling & Placement
	4.3 NUMA-aware placement in 2D-thread-based Tiling
	4.4 Summary of Features
	4.5 The Graphite
	4.5.1 Multithreaded MPI Input Processing
	4.5.2 Distributed using 2D-thread-based Tiling & Placement
	4.5.3 Matrix Computing Model
	4.5.3.1 Broadcast Operation
	4.5.3.2 Combine Operation
	4.5.3.3 Apply Operation

	4.5.4 Leveraging NUMA in Graphite
	4.5.4.1 NUMA-aware Shared Memory Communication
	4.5.4.2 Processor & Memory Affinity

	4.5.5 Enabling Compiler Optimization
	4.5.6 Activity & Computation Filtering

	4.6 Results
	4.6.1 Experimental Settings
	4.6.1.1 Cluster Configuration
	4.6.1.2 Counterpart Systems
	4.6.1.3 Graph Datasets
	4.6.1.4 Graph Applications

	4.6.2 Multithreading Spectrum
	4.6.3 Sensitivity to Different Optimizations
	4.6.4 Execution Time Analysis
	4.6.5 Comparisons with other Systems
	4.6.5.1 Weak Scaling Comparison
	4.6.5.2 Strong Cluster Scaling Comparison
	4.6.5.3 Strong Data Scaling Comparison
	4.6.5.4 Discussion of Evaluated Systems

	4.7 Conclusions

	5.0 Studying the Effects of Hashing of Sparse Deep Neural Networks on Data and Model Parallelisms
	5.1 Background
	5.1.1 Inference using Sparse Matrix-Matrix Multiplication
	5.1.2 Data and Model Parallelisms

	5.2 The Duality Between Left and Right SpMM
	5.2.1 Data Parallelism with Left SpMM
	5.2.2 Model Parallelism with Right SpMM

	5.3 Neural Network Hashing
	5.4 Results
	5.4.1 Experimental Settings
	5.4.1.1 Datasets
	5.4.1.2 Hardware Specifications
	5.4.1.3 Software Specifications

	5.4.2 Single Machine Benchmarking
	5.4.2.1 Runtime Variability
	5.4.2.2 Cache Utilization
	5.4.2.3 Implications of hashing

	5.4.3 Wide-scale Benchmarking

	5.5 Conclusion

	6.0 Accelerating Distributed Inference of Sparse Deep Neural Networks via Mitigating the Straggler Effect
	6.1 Motivation
	6.2 Inference using Data-then-Model Parallelism
	6.2.1 Elastic Locking Mechanism
	6.2.2 Thread Scheduling Algorithms

	6.3 Results
	6.3.1 Experimental Settings
	6.3.1.1 Hardware Specifications
	6.3.1.2 Implementation Details
	6.3.1.3 Parallelism Models
	6.3.1.4 Parameter Settings
	6.3.1.5 Datasets

	6.3.2 Studying the Impact of Neural Network Hashing
	6.3.3 Single Node Comparison with other Parallelisms
	6.3.4 Distributed DNN Inference Performance Analysis

	6.4 Conclusion

	7.0 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work

	Bibliography

