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Functional near-infrared spectroscopy (fNIRS) is a non-invasive technology that uses low-

levels of non-ionizing light in the range of 650 – 900 nm (red and near-infrared) to record

changes in the optical absorption and scattering of tissue. In particular, oxy-hemoglobin

(HbO) and deoxy-hemoglobin (HbR) have characteristic absorption spectra at these wave-

lengths, which are used to discriminate blood flow and oxygen metabolism changes. As

compared with functional magnetic resonance imaging (fMRI), fNIRS is less costly, more

portable, and allows for a wider range of experimental scenarios because it neither requires

a dedicated scanner nor needs the subject to lay supine.

Current challenges in fNIRS data analysis include: (i) a small change in brain anatomy

or optical probe positioning can create huge differences in fNIRS measurements even though

the underlying brain activity remains the same due to the existence of “blind-spots”; (ii)

fNIRS image reconstruction is a high-dimensional, under-determined, and ill-posed problem,

in which there are thousands of parameters to estimate while only tens of measurements avail-

able and existing methods notably overestimate the false positive rate; (iii) brain anatomical

information has rarely been used in current fNIRS data analyses.

This dissertation proposes two new methods aiming to improve fNIRS data analysis

and overcome these challenges – one of which is a channel-space method based on anatomi-

cally defined region-of-interest (ROI) and the other one is an image reconstruction method

incorporating anatomical and physiological prior information. The two methods are devel-

oped using advanced statistical models including a combination of regularization models and

Bayesian hierarchical modeling. The performance of the two methods is validated via numer-

ical simulations and evaluated using receiver operating characteristics (ROC)-based tools.

The statistical comparisons with conventional methods suggest significant improvements.
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1.0 Introduction

Functional near-infrared spectroscopy (fNIRS) is a non-invasive technology that uses

low-levels of non-ionizing light in the range of 650 – 900 nm (red and near-infrared) to

record changes in the optical absorption and scattering of tissue [1]. In particular, oxy-

hemoglobin (HbO) and deoxy-hemoglobin (HbR) have characteristic absorption spectra at

these wavelengths, which are used to discriminate blood flow and oxygen metabolism changes

[2]. Typically, light is sent into the tissue from source positions on the scalp. This light

diffuses through the tissue and a small fraction of the light is detected at a discrete set of

optical detector positions placed several centimeters from the originating source position.

These channel-space measurements are sensitive to changes in the optical properties of the

tissue along this diffuse volume between the light source and detector. During an evoked

functional task, the changes in blood flow and oxygenation in the brain result in fluctuations

in optical absorption due to hemoglobin in this local region and this gives rise to changes

in the fNIRS measurements in the source-detector pairs (channels) crossing this region.

Using a grid of these optical source and detector positions embedded in a head probe,

functional brain activity can be recorded from regions of the surface of the brain’s cortex.

Over the last three decades, fNIRS has been used in a variety of different brain imaging

studies and populations (reviewed in [3, 4, 5, 6]). In particular, the ability to noninvasively

record brain activity without participant immobilization or a specialized dedicated scanner

environment (cf. magnetic resonance imaging; MRI) make this technique well suited for

studies in pediatric populations (reviewed in [3, 7, 8, 9]). However, there exist limitations in

the current fNIRS data analysis.

Problem 1: Channel-space fNIRS measurements are highly dependent on

underlying brain structure.

fNIRS provides measurements of evoked functional changes in the brain during cognitive

tasks; however, this method does not give any direct information about either the underlying

structure or the anatomy of head. As a consequence, one challenge of fNIRS is that these

measurements highly depend on the relative sensor positions on the scalp, which vary from

1



subject to subject. Small displacements in the probe location, due to head size, anatomy

or probe setup, can lead to huge differences in the measurement values in the channel-

space, even if the underlying brain signals are exactly the same. Most current fNIRS studies

utilize what is called a nearest-neighbor measurement geometry in which measurements are

made between only the closest optical source-detector pairs. While these geometries are

easier to set up on participants, a limitation of this approach is that these probes contain

numerous “blind-spots” where there are underlying brain areas with little to no sensitivity

from the measurements. In these setups, small displacements in the location of sensors can

result in large differences in the measured amplitude of brain signals, even if the underlying

brain activity remains the same. An example of this is demonstrated in Fig. 1.1, which

shows how variations of probe placement with respect to changes in head size affect fNIRS

measurements. This simulation has been set up to reflect the measurement geometry of

the popular commercial Artinis Octomon fNIRS system. The top images show how the

same probe, anchored on Fpz site (middle frontal-parietal) of the 10-20 system, will stretch

to slightly different lateral positions as the head size varies. In this example using the

projection of area superior frontal gyrus, the sensitivity of this probe varies in a complex

way (by up to 5-fold) as this large area of the brain moves in and out of the measurement

sensitivity profiles. This effect is even more detrimental for smaller/more focal activation

areas. Note that the sensitivity “spikes” in Fig. 1.1 are actually due to the gyrus folding

positions relative to the probe for this individual subject.

This is particularly problematic in cross-sectional or longitudinal studies of child devel-

opment, where the head-size varies between sessions. Moreover, these measurements are

also sensitive to inter-subject differences in head anatomy, such as skull thickness and depth

of the brain relative to the skin’s surface. Thus, this uncertainty increases variance across

measurement sessions and reduces statistical effects sizes. This also makes studies of brain

activation changes with child age and development difficult.

This “blind-spot” issue can be solved by using more sophisticated probe geometries.

However, while we recognize this as a solution to this problem, currently more than 90%

of existing fNIRS studies are based on nearest-neighbor probes. With the exception of

the Cephalogics company and the NIRx DyNOT system, none of the commercial fNIRS

2
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Figure 1.1: Changing the head size of a frontal fNIRS probe anchored on the forehead (Fpz)

results in an up to 5-fold variation in the sensitivity to superior frontal gyrus. The top

images show the location and depth (from scalp) of this region relative to the fNIRS probe.

The two curves in the bottom plot are the relative sensitivity of the two correspondingly

colored channels against head circumference.

systems support high density fNIRS measurements. In addition, from past experience, these

high-density measurements generally take 2-3 fold longer to set up and adjust compared

to simpler probe geometries. Thus, at the moment, these high-density measurements are

neither practical nor possible for the majority of fNIRS labs and not a viable solution for

existing fNIRS data.

An alternative approach to this would be to use an individual’s response to a “localizer”

functional task to define consistent underlying brain regions across participants. While, this

data-driven approach makes less assumptions than atlas-based models (as will be detailed in
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this work) to define regions-of-interest, this method requires the ability to robustly measure

a specific localizer task response for a given brain-region in each subject. This is not always

possible since not all brain regions can be specifically and uniquely defined by localizer

tasks, which may involve multiple regions of the brain. In addition, single-subject statistics

are often not reliable enough to define individualized regions for many tasks or subject

populations. Thus, while the use of a localizer task is recommended when possible, more

generalizable solutions are also needed.

Methods for the spatial registration of the fNIRS head cap and measurement channels

with respect to the brain have been described in previous work [10, 11, 12, 13]. Although not

always possible or practical, fNIRS investigators often record this information with either

a three-dimensional camera and registration system (e.g. [14]) or simply by using a tape

measure to record head-size and potentially the location of the fNIRS sensors relative to the

international 10-20 system. However, although this registration information is recorded as

part of fNIRS experimental best-practices by many labs, there has been very little develop-

ment of quantitative methods to actually quantitatively use this information within fNIRS

analysis.

Problem 2: Image-space fNIRS estimates result in high type-I error.

A further consequence appears in fNIRS image reconstruction, which uses the optical

absorption changes recorded from light diffusely traveling between the source and detector

pairs to reconstruct low-resolution spatial images of the underlying blood flow changes. Such

images are often difficult to accurately recover due to optical scattering in the tissue and

the limited number of measurements. This means that there is not enough information in

the measurements alone to yield accurate and unique estimates of images. Hence, an inverse

model is used to estimate the changes within the brain from measurements made only on

the head surface. Several different statistical approaches (regularization, Bayesian theory,

etc.) for solving inverse problems have been used.

The current image reconstruction through implementations of statistical models are con-

siderably skewed towards high type-I error. According to the preliminary result of simula-

tions, `2 regularization models overestimates the false positive rate (FPR). In the simulation,

a null image (only noise exists) is generated, and `2 regularization is used to reconstruct the
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image. The p-value of the significance testing indicates the probability to reject the null

hypothesis that no activity is found in the region of interest (ROI). Since the null image

contains no activity, the p-values under the null hypothesis should be evenly distributed.

However, we found significantly more small p-values than expected. Fig. 1.2 is an example

of the histogram of p-values for simulations under null hypothesis, from which we can see

that the frequencies are skewed to zero. This problem is considered as the main limitation

of the current image reconstruction methods.
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Figure 1.2: The histogram of p-values for 10,000 simulations using current image recon-

struction and the ideal distribution under null hypothesis. It can be seen that the empirical

p-values are skewed towards 0, i.e., high type-I error.

As we know, `2 regularization can only make the coefficients close to zero but not exactly

equal to zero. However, there is no evoked activity (comparing with the baseline) in most

areas of the cerebral cortex during an fNIRS experiment. This could be the reason for the

overestimation of FPR that is the main limitation of the current `2-based reconstruction

method. Previous studies show that `1 regularization (a.k.a., lasso) leads to sparsity (some

of the regressors are zero in the result). Thus, a lower FPR is expected from `1 regulariza-

tion. In traditional regularization, the coefficients are varied to minimize the loss function
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from a mathematical perspective. However, the coefficients in this problem represent the

hemodynamic responses at each position in the cerebral cortex. The responses within each

predefined anatomy region are usually similar but different from some of the other regions,

since every region plays a role in the brain’s functionality. Therefore, another innovation

we propose is to group the coefficients per the anatomy information and use group lasso

for the image reconstruction instead of conventional `1 regularization. All coefficients in a

particular group will be included or excluded together in the model; this approach reduces

the degrees of freedom of the inverse model. The final result is consequently expected to be

more accurate and match the brain anatomy.

The overall objective of this dissertation is to develop more accurate statistical methods

utilizing advanced models to improve both channel-space and image-space results incorporat-

ing cerebral anatomical information. Two approaches are respectively proposed to address

the above two problems. First, we develop a fNIRS data analysis method based on anatom-

ically defined regions-of-interest (ROI) to eliminate the effects of probe location. For the

image reconstruction enhancement, we will use advanced statistical models to obtain a more

accurate reconstructed image incorporating anatomical and physiological prior information.

The two methods are developed using advanced statistical models including combination

of regularization models and Bayesian hierarchical modeling. The performances of the two

methods which will be compared to the existing reconstruction method using a receiver

operating characteristics [15] (ROC)-based method.

This dissertation is organized as follows. Chapter 2 describes the propagation of near-

infrared light in brain tissues and the forward model to describe the propagation. Chapter

3 shows several existing approaches for fNIRS data analysis. Chapter 4 provides the back-

ground of statistical approaches including the ROC analysis frequently used as the statistical

testing method in the dissertation and Bayesian hierarchical modeling that is the main frame-

work for the new image reconstruction model in Chapter 6. Chapter 5 and Chapter 6 fully

describes the two major contribution of this dissertation including study significance, formu-

lation of the new methods, simulation study setups, and results analyses, comparisons and

discussions. Finally, Chapter 7 summarizes the entire dissertation and gives a discussion on

potential future works.
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2.0 Light Propagation in Brain Tissues

In this chapter, the propagation of light in brain tissue is quantitatively described in-

cluding absorption, scattering, and reflection and refraction in Sections 2.1, 2.2, and 2.3.

Numerical methods for the computation of light path and the optical forward model in

fNIRS are covered in the last two sections.

2.1 Absorption

When light transmits through a medium, photons’ energy is taken away by the matter of

the medium, the phenomena of which is called light absorption. The probability of photon

absorption per unit propagation distance, regardless of scattering, is defined as the absorption

coefficient µa. The light absorption can be described by the following differential equation

dI

d`
= −µaI (2.1)

where I and ` are the light intensity and transmission length respectively. The relation

between the intensity before and after the transmission, named Beer-Lambert law [16, 17, 18]

in Eq. 2.2, can be derived from Eq. 2.1 as follows.

I(`) = I(0)e−µa` (2.2)

Fig. 2.1 shows the absorption and extinction coefficients [19, 20, 21] of the main chro-

mophores in brain tissue as functions of light wavelength between 600 – 1000 nm. It can

be seen from Fig. 2.1 that the hemoglobins have moderate extinction coefficients and the

absorption coefficients of water and fat are small for wavelength range of the near-infrared

(650 – 900 nm), where the light can transmit several centimeters in the tissue, and light with

a wavelength out of this range will be heavily absorbed. This is the main reason that this

interval of light is usually used for the measurements.
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Figure 2.1: The absorption and extinction coefficients of the main chromophores in brain

tissue as functions of light wavelength between 600 – 1000 nm. The extinction coefficients

(for HbO and HbR) and absorption coefficients (for water and fat) are respectively annotated

on the left and right axis in log scale. The chromophores are discriminated by line colors as

shown in the legend.

The total absorption coefficient of the brain tissue can be calculated as follows

µa =
∑
i

εici (2.3)

where cj and εi are the concentration and extinction coefficients of each chromophore re-

spectively.

2.2 Scattering

The phenomena of light direction change caused by photon collision with medium mat-

ter is defined as light scattering. There are two types of scattering – elastic and inelastic

scattering. Inelastic scattering is caused by the exchange of energy with the medium matter
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and changes light’s direction. Since inelastic scattering appears in only a very small portion

of photons (about 1 in every 10 million), we only discuss the elastic scattering in this section.

The probability of a photon transmitting a distance ` before scattering occurring is described

using an exponential distribution whose probability density function (PDF) is given by

p(`) = µse
−µs` (2.4)

where µs is the scattering coefficient. In a scattering event, the probability distribution of

direction change angle θ is model by the Henyey-Greenstein function [22] in Eq. 2.5.

p(θ) =
1

4π

1− g2

(1 + g2 − 2g cos θ)3/2
(2.5)

where g is a tissue-dependent anisotropy factor. Fig. 2.2 visualizes several example of the

PDF with different anisotropy factor.
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Figure 2.2: Probability density (in log scale) of scattering angle θ with different anisotropic

factors (discriminated by line color).

During the light propagation where many scattering events occur, the reduced scattering

coefficient µ′s defined as

µ′s = (1− 〈cos θ〉)µs (2.6)

where 〈cos θ〉 denote the mean of cos θ.
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According to Mie scattering theory [23], the reduced scattering coefficient of light with

wavelength λ can be modeled by a scaled linear combination of Rayleigh scattering and Mie

scattering effects given by Eq. 2.7.

µ′s = µ0

[
γ

(
λ

λ0

)−4

+ (1− γ)

(
λ

λ0

)−α]
(2.7)

where µ0 is the reduced scattering coefficient of light at the reference wavelength λ0, α

represents the power associated with Mie scattering off of large particles, and γ denote the

weight of Rayleigh scattering effect that indicates the intensity of the scattering light off

small particles decay proportionally to λ4.

The average pathlength of photons increases due to scattering. The Beer-Lambert law

can be corrected as follows:

I(`) = I(0)e−µa`·DPF+G (2.8)

where DPF is the differential pathlength factor determined by the light scattering, and G is

geometry dependent term. Eq. 2.8 is usually called modified Beer-Lambert law (MBLL).

2.3 Reflection and Refraction

Light reflection and refraction appear when traveling across the boundary of two medi-

ums. The refractive index of a medium is defined as n = c
ν

where c = 2.998× 108 m/s and

ν are the light speed in a vacuum and medium respectively.

Fig. 2.3 shows an example of light reflection and refraction when light travels across the

interface between two mediums with refractive indices ni and no. The angle of incidence

(θi), reflection (θr), and refraction (θo) have the following relations.

θi = θr

ni sin θi = no sin θo

(2.9)
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Figure 2.3: An example of light reflection and refraction when light travels across the interface

between two mediums with refractive indices ni and no.

The portion of photons reflected by the interface is defined as reflection coefficient R.

According to Fresnel’s law, R can be decomposed into s-polarized (Rs, perpendicular to the

interface) and p-polarized (Rp, parallel with the interface)that are defined as:

Rs =

(
ni cos θi − no cos θo
ni cos θi + no cos θo

)2

Rp =

(
ni cos θo − no cos θi
ni cos θo + no cos θo

)2

R =
Rs +Rp

2

(2.10)

2.4 Numerical Methods

The propagation path of light in homogeneous medium be calculated using radiative

transfer equation (RTE) [24]. However, for heterogeneous medium like brain tissue, ana-

lytical solution for RTE does not exist. Three numerical methods, diffusion approximation,

Monte Carlo and finite element, have been applied to the calculation of light propagation in

heterogeneous medium.
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Diffusion approximation methods approximate the light travel path in complicated medium

with the analytic solution existing for simple geometries (slab, sphere, etc.) assuming the

media is homogeneous. This method is fast but with limited accuracy because of approxi-

mate geometry and boundary conditions are used. However, it is still useful in some scenarios

where approximate sensitivity is enough. In Chapter 5, we validate that the analysis results

using the new method has a robust performance with the forward model calculated using

the approximation model or other numerical methods.

Monte Carlo methods simulate photo events using random probability distributions as

follows. Sample the travel distance between scattering events and polar scattering angle from

the exponential distribution in Eq. 2.4 and the Henyey-Greenstein function in Eq. 2.5. Then

the azimuthal angle is generated from a uniform distribution from 0 to 2π. Light absorption

is also regarded as a random event in the computation. Although Monte Carlo methods are

computationally expensive, they are considered as the “gold standard” when comparing to

other methods as the solutions have minimum assumptions and approximations. The Monte

Carlo methods have already been implemented in several previous studies [25, 26, 27, 28].

Finite element methods (FEM) [29, 30] are also popular methods to calculate light prop-

agation. The general idea is to discretize the heterogeneous tissue into many small mesh

elements that can be treated as homogeneous medium. The light propagation in the entire

tissue is obtained by connecting the light absorption, scattering, reflection, and refraction

in the small mesh elements. FEM are computationally efficient comparing to Monte Carlo

methods.
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Figure 2.4: Illustration of fluence field of light source ΦS, detector ΦD, and joint of ΦSΦD.

The joint fluence field shows that the light travels via a banana-shape path in the tissue.
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2.5 Optical Forward Model

With the light propagation in brain tissue calculated, we can derive the optical froward

model to describe the relationship between the optical density changes recorded by light

emitter-detector pairs to the hemoglobin concentration changes in the underlying tissue

from MBLL, which is given by

∆ODλ
i,j = Aλ

i,j

[
ελHbO

(
∆ [HbO] + ωHbO

)
+ ελHbR

(
∆[HbR] + ωHbR

)]
+ νλi,j (2.11)

where Aλ
i,j is the Jacobian of the optical measurement model describes the total absorption by

each voxel along the traveling path of light transmitted between the source to the detector

pair (i, j). εHbX is the molar extinction coefficient, ∆[HbX] is the vector containing the

hemoglobin changes, and ωHbX is the physiological noise vector, in which HbX represents

HbO or HbR for oxy- and deoxy-hemoglobin respectively. νi,j is the additive measurement

space noise. Note that Aλ
i,j, ∆[HbX], and ωHbX are vectors with a length same as the number

of voxels. For measurements between multiple channels (source-detector pair) at multiple

wavelengths, the model can be written in a compact linear expression as follows

y = X (β + ω) + ν (2.12)

where y contains the measurements between all source-detector pairs and β includes oxy-

and deoxy-hemoglobin concentration changes at each voxel in the brain image.

y =


∆ODλ1

i,j

∆ODλ2
i,j

...

 and β =

 ∆[HbO]

∆[HbR]

 (2.13)
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3.0 Background of fNIRS Data Analysis

This chapter introduces the background of fNIRS measurements in Section 3.1 and data

analysis consisting of channel- and image-space analyses in Sections 3.2 and 3.3.

3.1 fNIRS Imaging

Near-infrared spectroscopy (NIRS) is a measurement technology using near-infrared be-

cause of its ability of traveling into media. A common application is the fingertip oximeter

that is small device measures the oxygen saturation and heart rate via the optical density

changes. Similarly, we can use NIRS to measure the brain response to specific stimulus.

The brain is highly responsive to changes in blood oxygenation and blood flow. The con-

centrations of HbO and HbR change as the changes in blood oxygenation and blood flow, so

they are significant indicators used in neuroscience. Functional NIRS (fNIRS) is a method

of imaging using near-infrared spectroscopy for measuring the hemoglobin change in the

cerebral cortex.

As shown in Fig. 2.1, the extinction coefficients of HbO and HbR are relatively low

in the wavelength window 650 nm – 900 nm so are the absorption coefficients of other

main chromophores in brain tissues. Thus, the light within this wavelength range (near-

infrared) can travel into the brain cortex and the light intensity change is sensitive to the

changes in HbO and HbR concentrations. At least two wavelengths are usually used for

the measurement in each channel – one is more sensitive to HbO and the other one is more

sensitive to HbR so that the changes in HbO and HbR concentrations can be separated

in the analysis. Fig. 3.1 shows an illustration of the cap and probe used in an fNIRS

experiment. The two optodes with red label are the light sources and the three with blue

label are the detectors. The signal between each pair of source and detector is measured in

this experiment.
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Figure 3.1: This picture shows an illustration of the cap and probe used in an fNIRS exper-

iment. The two optodes with red label are the light sources and the three with blue label

are the detectors. The signal between each pair of source and detector is measured.

3.2 Channel-space Analysis

The channel-space analyses tests the statistical significance of the association between

the light intensity signal in probe channels (light emitter-detector pairs) and the expected

hemodynamic response in the underlying cerebral cortex.

3.2.1 Generalized Linear Model and Basis Functions

In an evoked task, the time-series channel-space data can be modeled using a generalized

linear model (GLM) as follows

y = Xβ + ε (3.1)
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where X denote the design matrix encoding the timing and duration of stimulus events, β

contains the coefficients representing the association of the stimulus condition to each source-

detector channel, and ε is the normally distributed random vector for the measurements noise

that E(ε) = 0 and Cov(ε) = Σ.

In fNIRS study, there are several popular options to create the design matrix X. For

example [31, 32],

1. Boxcar function is a lagged constant amplitude block for the duration of the stimulus

event;

2. Finite impulse response (FIR) basis function is an unconstrained deconvolution and

estimation of the full hemodynamic response using different number and width of

bins;

3. Gamma hemodynamic response function (HRF) defined by βα

Γ(α)
tα−1eβt where β is the

dispersion constant and α is the peak time;

4. Canonical HRF defined by
β
α1
1

Γ(α1)
tα1−1eβ1t − c · β

α2
2

Γ(α2)
tα2−1eβ2t where where β1 and β2

are the dispersion constant of the response and undershoot, α1 and α2 are the peak

and undershoot time, and c is the ratio between the height of the main response and

undershoot.

Fig. 3.2 illustrates examples of these HRFs for the stimulus events drawn on the top

row. With an appropriate basis function selected, the GLM in Eq. 3.1 can be solved using

generalized least squared (GLS) as Eq. 3.2.

β̂ =
(
XTΣ−1X

)−1

XTΣ−1y

Cov(β̂) =
(
XTΣ−1X

)−1 (3.2)

Although the equations are straightforward for calculation, they cannot be directly ap-

plied to fNIRS data since the normality,independence, and homoscedasticity assumptions for

measurement noise are violated. The previous paper [33] summarizes the properties of the

measurement noises in fNIRS including:

• The noise within a channel is auto-correlated due to strong but slower physiological

signals such as cardiac, respiratory, and blood pressure changes;
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Figure 3.2: Example of commonly used HRFs for the stimulus events shown on the first row

• The noise is not independent across channels due to superficial physiological signals

and the correlation between HbO and HbR changes;

• The noise shows a heteroscedastic pattern mainly because the existence of motion

artifacts during tasks, which makes the noise variance nonuniform;

• The noise may be nonergodic and nonstationary in physical movement tasks that will

cause changes in noise properties during tasks from baseline periods.

These problems have been address through different solutions. Preprocessing, including

prewhitening and precoloring, is usually adapted to fNIRS data for noise correlation correc-

tion before the GLM analysis. For the heteroscedasticity and nonstationarity of fNIRS data,

Autoregressive Iterative Reweighted Least Squares (AR-IRLS) algorithm [34] was proposed

to estimate the noise covariance matrix by down-weighting outliers in the noise. When the
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estimates of β and Cov(β) are obtained, t-statistics can be used to test linear combinations

of the β by defining the contrast vector c as follows.

t =
cTβ√

cTCov(β)c
(3.3)

For example, c = [1, 1, 0 . . . ]T and c = [1,−1, 0 . . . ]T can be used to test the significance

of the sum of and difference between the first and second regressors, respectively. In Chap-

ter 5, a novel tapered contrast vector will be introduced that can improve the statistical

performance.

3.2.2 Group-level Analysis

Once the GLM estimates for the fNIRS dataset of each subject are obtained, a mixed-

effect model can be used to test effects of group-level factors on the hemodynamic activity.

The group-level mixed-effect model can be written as [31]

β = AΓ + BΘ + ν (3.4)

where β is the vector containing the subject-level GLM estimates of all subjects, Γ and

Θ are the two vectors respectively consisting of the group-level fixed-effects and subject-

level random effects to be estimated, and A and B are the design matrices for fixed- and

random-effects, respectively.

Eq. 3.5 shows an example that there are three task conditions (L, M, H) and N subjects

in the experiment. βi,X denote the subject-level estimate of subject i on condition X. If some

demographic information is collected, such as age, gender, etc., the effects of these factors

can also be estimated. The matrices A and Γ in model 3.5 shows how to perform the analysis

on the main effects of task condition (ΓL, ΓM , and ΓH) and the the interaction effects of

condition and subject’s age (ΓL×AGE, ΓM×AGE, and ΓH×AGE). The vector Θ includes the

subject-level random-effects for the N subjects (subject as a random-effect in this example).

This model is flexible to estimate the effects of various factors as long as design matrices are

appropriately used. This model can also be solved using GLM approaches with interposing
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Cov(β̂) from the subject-level analysis into the group-level analysis as the noise covariance

matrix.



β1,L

β1,M

β1,H

...

βN,L

βN,M

βN,H


=



1 age1

1 age1

1 age1

. . . . . .

1 ageN

1 ageN

1 ageN





ΓL

ΓM

ΓH

ΓL×AGE

ΓM×AGE

ΓH×AGE


+



1

1

1
. . .

1

1

1




Θ1

...

ΘN

+ ν

(3.5)

As mentioned in Chapter 1, a major problem of group-level analysis is the variations

in anatomy and probe registration across the subjects in a group, which can cause notable

difference in the channel-space signals even if the underlying brain activity is the same. A

previous study [35] investigated the effects of anatomical variations in group-level analysis.

In this study, 90 segmented MRI volumes from children ages 5 to 11 years are used to

calculate the DPF, and tables of DPF, sensitivity, and suggested nearest location of each

Brodmann area are provided. It can be summarized from the results that there is about a

13% to 26% spatial difference going across the regions from the frontal or lateral to superior

of the head and about 13% to 18% difference between genders. These conclusions show the

significance of the analysis method addressing the subject-level variation in the group-level

analysis, which is the main goal of the study in Chapter 5.

3.3 fNIRS Image Reconstruction Methods

fNIRS image reconstruction methods estimate the HbO and HbR concentrations changes

at each voxel in the cerebral cortex by solving the model defined in Eq. 2.12. However,

Eq. 2.12 is an ill-posed and under-determined problem since there are thousands of hemoglobin

changes to be estimated but only tens of measurements usually available. Current existing
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image reconstruction methods involve regularizations or penalties to reduce the dimension-

ality of the problem.

3.3.1 Restricted Maximum Likelihood (ReML)

A previous study [36] solves the fNIRS image reconstruction model via the following

optimization.

β̂ = arg max
{β,CN,CP}

− 1

2
‖y −Xβ‖2

CN
− 1

2
‖β − β0‖2

CP
− 1

2
log |CN| −

1

2
log |CP| (3.6)

where β0 is a prior estimate of β, and CN and CP are the covariance matrices for the error

term and β respectively. In this study, these two matrices are parameterized based on the

prior information of wavelengths and hemoglobin types. Expectation-maximization (EM)

algorithm is applied to solve the problem – Gaussian-Markov equation is used to calculate

β̂ = β0 +
(
XTC−1

N X + C−1
P

)−1

XTC−1
N (y −Xβ0) (3.7)

given specific CN and CP in the expectation step while CN and CP are optimized by

maximizing the likelihood function in the maximization step.

3.3.2 Maximum Entropy on the Mean

The method of maximum entropy on the mean (MEM) [37, 38, 39] is a framework

of fNIRS image reconstruction based on the information theory that prior information is

minimized when a distribution with maximized entropy is chosen. Thus, the model is solved

by maximizing the Kullback’s µ-entropy defined as follows

Sµ(dp) = −
∫

log
dp

dµ
dp = −

∫
f(β) log f(β) dµ(β) (3.8)

where f is the µ-density and dµ(β) is a product of mixtures of a Dirac and multivariate

normal distribution. In the optimization process, the mixture fraction, mean and covariance

matrix of the multivariate normal distribution are varied to maximize the µ-entropy. Finally,

β is estimated from the optimal parameters of dµ(β).
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3.3.3 Depth Compensation

Depth compensation [40] is another approach of fNIRS image reconstruction based on

regularization. Unlike ReML involving optimization for covariance matrices, this method

simply solve the estimates from the common Tikhonov regularization as follows.

β̂ =
(
XTX + λI

)−1

XTy (3.9)

where λ is the tuning parameter. Before solving the equation, X is transformed as X := XM.

Here M is the depth compensation matrix containing the maximum singular value of X in

each layer of voxels with a same depth on the diagonal as follows.

M =


θ (Xn)

. . .

θ (X2)

θ (X1)



γ

(3.10)

where the subscript of X denote the elements for voxels at the layer (n layers in total), and

γ is the parameter to adjust the weight of depth compensation. The depth compensation

transformation reweights the sensitivity matrix by layers and consequently smooths the

estimates. This method was extended with `1 regularization in a later study [41].
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4.0 Background of Statistics

In this chapter, we will provide an overview of the main statistical tools used in this

dissertation. Section 4.1 introduces basics of ROC analysis, and Section 4.2 describes the

general idea and framework of Bayesian hierarchical modeling with derivations and examples.

4.1 Receiver Operating Characteristics

ROC curve is a tool to assess the performance of a binary classifier that is widely used

in medicine, radiology, biology, psychology, image detection, machine learning, etc. and also

frequently utilized for the evaluation of the newly proposed methods in this dissertation. In

this section, background knowledge of ROC analysis is covered including different paradigms

and the statistical testing methods.

4.1.1 Different ROC-based Evaluation Paradigms

Let us explain the definitions using an example where there are in total N cases to be clas-

sified. Among these cases, N0 and N1 cases are target-free (negative) and target-containing

(positive) in truth. A binary classifier (can be a statistical model, machine, person, etc.) is

asked to label case each as positive or negative and give a rating of being positive. True

positives (TP) and true negatives (TN) are defined as the positive/negative cases that are

correctly labeled as positive/negative, and similarly, false positive (FP) and false negatives

(FN) are the positive/negative cases that are incorrectly labeled as negative/positive. Sen-

sitivity and specificity are defined as the fraction of TPs and TNs. The false positive rate

(FPR) and true positive rate (TPR) can be calculated as follows [15, 42].

FPR =
NFP

N0

= 1− specificity

TPR =
NTP

N1

= sensitivity

(4.1)
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where NFP and NTP are the number of FPs and TPs respectively. For different rating

thresholds, the classifier will give different FPR and TPR pairs. The ROC curve for this

classifier is defined as the curve connecting the points (FPR, TPR) by varying the rating

threshold from −∞ to +∞. The area under the curve (AUC) is a widely used figure of

merit for the assessment of the classification performance of the classifier. The statistical

meaning of AUC is the probability that the classifier assigns a higher rating to a random

chosen positive case than a negative case. Thus, larger AUC implies a better classification

performance. In the worst case, the classifier randomly labels cases, which will result in an

AUC = 0.5 (a classifier with an AUC smaller than 0.5 is better with the classification results

inverted). On the contrary, the AUC in the perfect case is 1, in which the classifier correctly

labels all the cases. Fig. 4.1 shows example ROC curves with typical AUC values. Note

that ROC curves with same AUC can have different shapes. The curves in the plot are only

examples.
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Figure 4.1: Example of ROC curves with typical AUC values. Line color is used for different

AUC values indicated by the legend. A Larger AUC means a better classification perfor-

mance. AUC = 0.5 is the worst while AUC = 1 is for a perfect classifier. The remaining

curves are for classifiers with intermediate performances.
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In some image classification tasks, each case may include multiple predefined regions of

interest (ROI) due to clustering. Classifiers are required to rate each ROI independently.

ROI-ROC [43, 44] is an extension of ROC to handle the classification results of this type of

tasks where FPR and TPR are calculated in a similar way as in Eq. 4.1. The only difference

is that N0, N1, NFP , and NTP are the number of negatives, positives, FPs, and TPs in the

ROI level. With these extended definitions, the ROI-ROC curve and AUC for a classifier

can be calculated.

Another more complicated but practical situation is that a positive case may contain

multiple targets at various un-predefinable locations, e.g., there may be multiple lesions in

a CT image of a patient but the locations of the lesions cannot be predefined by ROIs

due to the anatomical difference across patients. In this type of tasks, named free-response

tasks, classifiers are required to mark the lesion localization on the image and give each

mark a rating representing the confidence of being positive (a −∞ rating is automatically

assigned to unmarked lesion loclizations). The evaluation is extended to free-response ROC

(FROC) [45, 46, 47]. Similarly, the FPR and TPR in the lesion level, named non-lesion

localization fraction (NLF) and lesion localization fraction (LLF), can be calculated with

the lesion localization numbers. The FROC curve is defined as LLF vs. NLF [45]. However,

NLFs of different classifiers are not comparable since they can provide different number of

non-lesion localizations, so the FROC AUC is unmeaningful. One solution is to derive the

inferred ROC (iROC) curve that can be obtained by calculating FPR and TPR using the

highest NL and LL rating as the FP and TP rating of the entire image. Another approach

is the alternative FROC (AROC) [45, 48, 49] curve defined by LLF vs. FPR, in which

FPR is calculated in the same way of iROC. These two approaches have their own problems

that iROC ignores multiple lesion localization information and the cases containing more

lesions make more contribution than those containing less lesions to AFROC AUC. Weighted

AFROC (wAFROC) [50] was proposed to address this problem, in which weighted LLF

(wLLF) is calculated by assigning each lesion a weight. The weights of lesions in a same case

is summed up to one. Thus, the contributions of positive cases containing different number

of lesions are equal. The AUC of iROC, AFROC, and wAFROC curves are all commonly

used as the figure of merit for classifiers in free-response tasks with different advantages.
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In this dissertation, ROC and ROI-ROC are the main paradigms used for the evaluation

of the new channel-space analysis model (Chapter 5) and image reconstruction method

(Chapter 6) respectively.

4.1.2 Non-parametric Test for the Difference Between AUCs

Once the AUCs of classifiers are calculated, using any paradigm described in Section

4.1.1, the statistical comparison between AUCs is usually necessary. To test if there is a

significant difference between two AUCs, the z-statistic is defined by

z =
|AUC1 − AUC2|

Se(AUC1 − AUC2)
(4.2)

where Se() is the standard error. Therefore, the key is to calculate the standard error of AUC.

There existing three methods to estimate the standard error of AUC, which are Bootstrap,

Jackknife, and DeLong’s [51]. Fig. 4.2 is the schematic diagram of Jackknife and Bootstrap

resampling, from which we can see that Jackknife resamples the original sample by taking

every case out one by one and Bootstrap generates new same-size samples by randomly

selecting cases with replacement. We can calculate the AUC with every new sample, then

the variance of original sample AUC can be determined by calculating the variance of the

bunch of new AUCs. Delong et al. [51] provided a method to estimate the variance-covariance

matrix of AUCs using the method of structural components, which is equivalent to Jackknife

but conceptually simpler. These three methods provides equivalent statistical inference.

A z-test can be performed to test the significance between two AUCs using the z-statistic

calculated by Eq. 4.2. With the methods of estimating standard error of AUC, the effects

of different factors, e.g., multiple classifiers, imaging modalities, can be tested via ANOVA

using t- and/or F -test. Two main frameworks, Dorfman-Berbaum-Metz (DBM) [52, 53, 54]

and Obuchowski-Rockette (OR) [53, 55] have been built for the test with different model

assumptions. Hillis et al. also made significant contributions to these frameworks including

correction of model degrees of freedoms [53], demonstration of the equivalency between the

two models [56], statistical power estimation [57, 58], sample size calculation [57, 58], and

model extensions to different conditions [59, 60, 61, 62].
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Figure 4.2: The schematic diagram of Jackknife (A) and Bootstrap (B) resampling. Each

colored square represents a case. The most left column is the original data and the remaining

columns are the newly generated samples. Jackknife resamples the original sample by taking

every case out one by one and Bootstrap generates new same-size samples by randomly

selecting cases with replacement. With each new sample set, an AUC can be calculated.

The sample standard error of the AUCs calculated using the new sample sets is the standard

error estimate of the original AUC.

In this dissertation, the z-test described in Eq. 4.2 is used to test the performance

difference between analysis methods utilizing Delong’s method for standard error estimation.

4.1.3 Parametric Models for ROC Curves

Besides the non-parametric methods for AUC testing, there are also parametric methods

to model ROC curves with assumptions. The parameterizations of several commonly used

models are briefly described in this section.
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1. Binormal model [63, 64, 65, 47] assumes the ratings of negative and positive cases

follows two normal distributions N (0, 1) and N (µ, σ2) respectively. The FPR and

TPR at a rating threshold ζ can be calculated as follows

FPR(ζ) = 1− Φ(ζ) = Φ(−ζ)

TPR(ζ) = Φ

(
µ− ζ
σ

) (4.3)

where Φ() denotes the cumulative distribution function (CDF) of the standard nor-

mal distribution. The AUC of the parametric curve can be calculated as A =∫ 1

0
TPR dFPR = Φ

(
µ√

1+σ2

)
2. Contaminated binormal model (CBM) [66, 67, 68] assumes the same distribution

for the negative ratings but a mixture of N (0, 1) and N (µ, 1) for ratings of positive

ratings. The TPR can be calculates as follows

TPF (ζ) = (1− α)(1− Φ(ζ)) + α(1− Φ(ζ − µ)) = (1− α)Φ(−ζ) + αΦ(µ− ζ)

(4.4)

where α is the mixture fraction of N (0, 1). The AUC of CBM can be derived as

A =
∫ 1

0
TPR dFPR = 0.5(1− α) + Φ

(
µ√
2

)
These two methods have been extended to bivariate models named CORROC2 [69, 70, 71]

and CORCBM [72], which models the ratings on the same set of cases from two classifiers

using bivariate normal distributions. Besides the individual parameters in the univariate

models, the bivariate models also include correlations between the ratings of two classifiers.

With the given classification results of a classifier, the model parameters can be estimated

via MLE. The AUC and its uncertainty can be derived from the model parameter estimates,

and a statistical conclusion on the difference between AUCs can then be drawn.
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4.2 Bayesian Hierarchical Modeling

Unlike commonly used optimization method in frequentist’s framework, such as maxi-

mum likelihood estimation (MLE), parameters are treated as random variables instead of

fixed values and their posterior probabilities are maximized in the Bayesian framework. Let

y and θ denote the observation and parameter vectors. In Bayesian models, we estimate θ

by maximizing the posterior probability as follows [73].

θ̂ = arg max
θ

[
p(θ | y)

]
(4.5)

Using Bayes’ theorem, the optimization can be rewritten as [73]

θ̂ = arg max
θ

[
p(θ | y)

]
= arg max

θ

p(y | θ)p(θ)

p(y)
= arg max

θ

[
p(y | θ)p(θ)

]
(4.6)

where the denominator p(y) is discarded because its value remains constant in the optimiza-

tion. The two components in the objective function – p(y | θ) and p(θ) – are the likelihood

function and prior probability respectively. p(y | θ) can be straightforwardly obtained based

on the model assumptions, e.g., normally distributed errors in linear regression models.

The calculation of the prior probability is the key step of Bayesian Modeling. As mentioned

above, θ is treated as a random variable following a prior probability distribution in Bayesian

modeling, which usually defined by some hyperparameters. The hyperparameter φ can be

treated as either some fixed values or a random variable following a hyperprior distribution.

Similarly, the hyperprior distribution also includes hyperparameters, and the modeling can

continue infinitely. For simplicity without losing generality, a three-layer Bayesian hierarchi-

cal model is used as an illustration in the remaining of this section, which can be formulated

as follows:

• Layer-I: y | θ,φ ∼ p(y | θ,φ)

• Layer-II: θ | φ ∼ p(θ | φ)

• Layer-III: φ ∼ p(φ)
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The posterior probability distribution of the parameter of interest θ can be calculated

as follows:

p(θ | y) =

∫
p(θ,φ | y) dφ ∝

∫
p(y | θ)p(θ | φ)p(φ) dφ (4.7)

In an ideal case, the analytical solution of above integration can be obtained and is the

PDF of a known probability distribution. Then we can use the mean, median, or mode of

the distribution as the estimate of θ. Unfortunately, this is not the case for most practical

problems. In these cases, we usually generate random samples via Markov chain Monte Carlo

(MCMC) using full conditional distributions of the parameters denoted p(θ | rest), which

can be easily obtained from the full joint PDF. Once the full conditionals of all parameters

are derived, we can sample each parameter using Gibbs sampler if the full conditional is

a known distribution or Metropolis-Hasting sampler otherwise. Let Θ denote the vector

containing all parameters and hyperparameters of the hierarchical model (assume there are

n parameters in total and Θi denote the i-th element in Θ). The MCMC sampling process

can be briefly described as follows [73]:

• Set initial value for each element of Θ denoted as Θ(0)

• For the t-th sampling iteration:

1. Generate Θ
(t)
1 from its full conditional using samples of the rest parameters from

iteration t− 1: Θ
(t)
1 ∼ p(Θ1 | Θ(t−1)

2 ,Θ
(t−1)
3 . . .Θ

(t−1)
n )

2. Generate Θ
(t)
2 from its full conditional using Θ

(t)
1 and samples of the rest param-

eters from iteration t− 1: Θ
(t)
2 ∼ p(Θ2 | Θ(t)

1 ,Θ
(t−1)
3 . . .Θ

(t−1)
n )

3.
...

4. Generate Θ
(t)
n from its full conditional using samples of the rest parameters from

iteration t: Θ
(t)
n ∼ p(Θn | Θ(t)

1 ,Θ
(t)
2 . . .Θ

(t)
n−1)

5. To next iteration

• Stop sampling when the maximum number of iterations is reached. Drop off the

beginning part of the Markov chain as burn-in iterations, and use the remaining

samples of the parameters of interest as the estimations.
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The estimate of a Bayesian model depends on the selection of prior distributions and hy-

perparameters. For well-determined problems with enough observations, the estimates are

not different too much if weakly informative priors (with large variance) are used. However,

for ill-posed under-determined problems, different prior distributions and hyperparameters

can result in very different results, in which case cross-validation is required to find appro-

priate prior distributions and hyperparameters.

Although solving Bayesian models is not straightforward and the sampling process is

computationally costly, Bayesian modeling becomes more and more popular because of its

good interpretability and the ability of incorporating prior information of the data. In this

dissertation, Bayesian hierarchical modeling is the main approach for solving the fNIRS image

reconstruction problem by incorporating useful prior information into the model described

in Chapter 6.

30



5.0 Using Anatomically Defined Regions-of-interest to Adjust for Head-size

and Probe Alignment in fNIRS

As mentioned in previous chapters, “blind-spots” effect is a main challenge in fNIRS.

In this chapter, we will fully describe a tapered contrast vector method for fNIRS data

analysis in the channel-space including the model and simulation results. This work has been

published in Neurophotonics [74] and available online at https://doi.org/10.1117/1.NPh.7.3.

035008.

5.1 Abstract

Significance: Functional near-infrared spectroscopy (fNIRS) uses surface-placed light

sources and detectors to record underlying changes in the brain due to fluctuations in

hemoglobin levels and oxygenation. Since these measurements are recorded from the sur-

face of the scalp, the mapping from underlying regions-of-interest (ROIs) in the brain space

to the fNIRS channel space measurements depends on the registration of the sensors, the

anatomy of the head/brain, and the sensitivity of these diffuse measurements through the

tissue. However, small displacements in the probe position can change the distribution of

recorded brain activity across the fNIRS measurements.

Aim: We propose a novel approach using either individual or atlas-based brain-space

anatomical information to define ROI-based statistical hypotheses to test the null-involvement

of specific regions, which allows us to test the analogous ROI across subjects while adjusting

for fNIRS probe placement and sensitivity differences due to head size variations without a

localizer task.

Approach: We use the optical forward model to project the underlying brain-space ROI

into a tapered contrast vector, which defines the relative weighting of the fNIRS channels

contributing to the ROI and allows us to test the null hypothesis of no brain activity in

this region during a functional task. In this paper, we demonstrate this method through
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simulation and compare the sensitivity-specificity of this approach to other conventional

methods’.

Results: We examine the performance of this method in the scenario where head size

and probe registration are both an accurately known parameter and where this is subject

to unknown experimental errors. This method is compared with the performance of the

conventional method using 364 different simulation parameter combinations.

Conclusion: The proposed method is always recommended in ROI-based analysis, since

it significantly improves the analysis performance without a localizer task, wherever the

fNIRS probe registration is known or unknown.

5.2 Introduction

Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging technique

that uses low levels of red to near-infrared light to measure changes in the optical absorption

due to hemoglobin in the brain. Typically, light is sent into the tissue from source positions

on the scalp. This light diffuses through the tissue and a small fraction of the light is

detected at a discrete set of optical detector positions placed several centimeters from the

originating source position. These channel-space measurements are sensitive to changes in

the optical properties of the tissue along this diffuse volume between the light source and

detector. During an evoked functional task, the changes in blood flow and oxygenation in the

brain result in fluctuations in optical absorption due to hemoglobin in this local region and

this gives rise to changes in the fNIRS measurements in the source-detector pairs (channels)

crossing this region. Using a grid of these optical source and detector positions embedded

in a head probe, functional brain activity can be recorded from regions of the surface of the

brain’s cortex. Over the last three decades, fNIRS has been used in a variety of different

brain imaging studies and populations (reviewed in [3, 4, 5, 6]). In particular, the ability

to noninvasively record brain activity without participant immobilization or a specialized

dedicated scanner environment (cf. magnetic resonance imaging; MRI) make this technique

well suited for studies in pediatric populations (reviewed in [3, 7, 8, 9]).
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A challenge of fNIRS measurements, however, is group-level registration of these signal

changes from these sparse surface-based measurements. Small displacements in the probe

position relative to the underlying brain region can change the distribution of recorded

brain activity across the fNIRS measurements. This is particularly problematic in cross-

sectional or longitudinal studies of child development, where the head-size varies between

sessions. Moreover, these measurements are also sensitive to inter-subject differences in head

anatomy, such as skull thickness and depth of the brain relative to the skin’s surface. Thus,

this uncertainty increases variance across measurement sessions and reduces statistical effects

sizes. This also makes studies of brain activation changes with child age and development

difficult.

An alternative approach to this would be to use an individual’s response to a “localizer”

functional task to define consistent underlying brain regions across participants. While, this

data-driven approach makes less assumptions than atlas-based models (as will be detailed in

this work) to define regions-of-interest, this method requires the ability to robustly measure

a specific localizer task response for a given brain-region in each subject. This is not always

possible since not all brain regions can be specifically and uniquely defined by localizer

tasks, which may involve multiple regions of the brain. In addition, single-subject statistics

are often not reliable enough to define individualized regions for many tasks or subject

populations. Thus, while the use of a localizer task is recommended when possible, more

generalizable solutions are also needed.

Methods for the spatial registration of the fNIRS head cap and measurement channels

with respect to the brain have been described in previous work [10, 11, 12, 13]. Although not

always possible or practical, fNIRS investigators often record this information with either

a three-dimensional camera and registration system (e.g. [14]) or simply by using a tape

measure to record head-size and potentially the location of the fNIRS sensors relative to

the international 10-20 system. Although this registration information is recorded as part of

fNIRS experimental best-practices by many labs, there has been very little development of

quantitative methods to actually quantitatively use this information within fNIRS analysis.

In this current work, we propose a new approach to quantitatively incorporate head-size,

probe registration, and/or individual anatomical information to define regions-of-interest
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(ROIs) for fNIRS analysis. In this proposed method, we make use of the optical “forward

model”, which describes the sensitivity of a particular fNIRS source-detector pair to the

underlying brain regions based on the diffusion/transport of light in the tissue. The optical

forward model is used to create a testable null hypothesis about the involvement of a partic-

ular region of the brain using a weighted average of the measurement channels. For example,

based on the registration of the fNIRS probe, brain activity from a particular Brodmann

area [75] region would be expected to be highest on a specific fNIRS channel with tapered

responses to nearby channels. Using this tapered spatial distribution of expected signal

changes allows us to create a statistical model of what the fNIRS data would be expected

to look like if this region were active in the task. Likewise, this creates a testable null hy-

pothesis – if this signal change in this region was not different from zero then a spatially

weighted average over this particular set of channels would also be not differ from zero. If the

weighted average over these channels was non-zero, then we can reject this null hypothesis.

The rejection of this null hypothesis means that we cannot rule out that this region was

active during the task, but does not actually imply that the signal definitely came from this

region as opposed to a nearby or smaller region of the brain which was also sampled by this

set of channels. Nonetheless, the interpretation of such a result would be that the recorded

brain signals are consistent with that particular region’s involvement in the task.

Since this method utilizes the optical forward model, it provides means to adjust the null

hypothesis based on head-size, probe registration, and/or individual anatomy. For example,

the expected projection of a region such as dorsal-lateral prefrontal cortex might be higher

on more lateral fNIRS channels in a subject with a smaller head size compared to a subject

with a larger head using the same fNIRS probe and spacings. In most cases, particularly in

studies of children, knowledge of individual brain anatomy (e.g. via MRI) is not practical,

but measurements of head-size, placement of the probe relative to 10-20 locations, or 3-D

positioning cameras are often recorded and can be used in this proposed method. In addition,

this approach does not require a separate localizer task condition to define the ROI. While

the activation maps from a separate localizer task provides an objective way to define an

ROI on an individual subject basis, this approach is not always practical. If the localizer

task is not exceptionally strong/statistical, there will be uncertainty in the region definitions.
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In this paper we describe the theory behind our approach to use individualized tapered

weights to define the statistical contrast for regions-of-interest and compare the use of tapered

and uniform weighted models. We also examine the effect of small errors in the probe

registration on the model performance to examine the method under realistic conditions.

5.3 Theory

5.3.1 Analysis of fNIRS Data

Functional NIRS data is recorded as changes in the light from a source position incident

on a detector position (e.g. transmitted between a source-detector pair) as a function of

time. These signals are first converted to changes in optical density (optical absorption)

over time as given by

∆OD(t) = − log

[
I(t)

I0

]
(5.1)

where ∆OD(t) denotes the change in optical density, I(t) is the intensity of the signal

recorded, and I0 is the reference signal intensity at baseline (usually taken as the mean of

the signal over the scan). The optical density changes at wavelength λ are then transformed

into estimates of oxy- and deoxy-hemoglobin (HbO/HbR) changes using the modified Beer-

Lambert law [76]:

∆ODλ = l ·DPFλ
[
ελHbO(∆[HbO]) + ελHbR(∆[HbR])

]
(5.2)

where l is the source-detector distance and DPF is the differential pathlength. ∆[HbX] is

the change in molar concentration, and εHbX is the molar extinction coefficient, where HbX

represents either HbO or HbR for oxy- and deoxy-hemoglobin respectively. Note that the

differential pathlength and molar extinction coefficient are wavelength dependent.

In most evoked fNIRS studies, a task(s) is repeatedly preformed whilst recording the

fNIRS signals. A first level statistical model (subject-level statistics) is then used to examine
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changes in the fNIRS signals during the task [77, 78, 33]. More formally, the linear regression

model is described by the equation

Y = Xβ + ε (5.3)

where X is the design matrix of the modeled hemodynamic response encoding the timing of

stimulus events and β is the coefficient (weight) of that stimulus condition for that source-

detector channel. This statistical model can be either a block average, deconvolution, or

canonical hemodynamic response method (see [33]), which results in an estimated statistical

parameter (typically and herein termed β) and its uncertainty across the spatial channels

(herein termed Covβ). Specifically, in the case of block averaging or deconvolution, β would

be the parameter of interest (mean over a time-window, maximum, etc.) computed from the

estimated response. In the case of a canonical linear model (or similar), then β would be the

estimated coefficient for the regression model. In general, βi, the i-th element of β, is just

a statistical parameter associated with the i-th spatial fNIRS measurement channel upon

which we are basing the hypothesis test (e.g. βi differs from zero). The spatial covariance

of this parameter is denoted as Covβ.

Based on the estimate of the parameters and their uncertainties over the multiple chan-

nels in a fNIRS probe, the calculation of a Students t-statistic for a region-of-interest is given

by:

t =
cTβ√

cTCov(β)c
(5.4)

The contrast vector (c) denotes the weights given to channels being averaged. In this

expression, β is a vector denoting the statistical parameter for each spatial channel of the

fNIRS probe. Note, this formalism allows for multiple task conditions for each channel, but

for simplicity of explanation, we will assume there is only one task-associated parameter (βi)

per measurement channel. In the case of multiple task conditions, the contrast vector is the

Kronecker product (⊗) of the spatial contrast vector and the per-task-condition contrast

vector and the β and Covβ terms contain all tasks and spatial channels.
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The statistic defined by Eq. 5.4 can be used to test the following null hypothesis:

H0 :
N∑
i=1

ci · βi = c · β = 0 (5.5)

where N is the total number of channels. For example, c =
[

1
3
, 1

3
, 1

3
, 0, 0, 0

]T
would be used

to average the values of the first 3 (of 6) spatial channels with uniform weights. This contrast

vector (c) encodes the null hypothesis being tested, which in this example is that the mean

of the first three channels is not different from zero. This is the same expression as used

to compute contrast between tasks for a single spatial channel (e.g. Task A verses Task B)

where the covariance described between the conditions (e.g. from linear regression analysis)

(see [31]).

5.3.2 Proposed Method

A statistically significant βi (different from 0) represents the signal in the i-th channel

has a strong relationship with the modeled hemodynamic response and consequently indi-

cates the area of the cortex efficiently covered by this channel is not inactive. The statistical

significance of a linear combination of βs implies the activity of the area covered by the

corresponding channels, and the coefficients (weights) of the linear combination can deter-

mine the shape of the area. In the previously (Section 5.3.1) shown example, the entire test

area consists of the regions covered by the first three channels with equal weights. However,

the region-of-interest in an experiment is rarely a combination of areas equally covered by

several channels especially the predefined anatomical areas, e.g., Brodmann Areas [75], since

the sensitivity to a given area is maximized in the nearest channel and decreases as the dis-

tancing from the channel. Thus, we propose that the contrast vector (c) in Eq. 5.4 to control

sequence can be used to test the null hypothesis of the non-involvement of specific underlying

regions of the brain. Specifically, instead of using uniform weights to sum over a specific set

of channels as used in the previous example, we propose to use a tapered contrast vector

that peaks on the spatial channel most expected to be active in the hypothesis and lowered

based on the relative sensitivity of other channels to this same region. Examining Eq. 5.4, we

note that the numerator in this expression is the inner product of the c and β vectors. This
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inner product is maximized when the two vectors point in the same direction, which implies

that the t-statistic will be largest when the spatial distribution of the c vector matches the

expected spatial distribution of the brain activity. Ergo, if the brain activity came from a

particular region such as BA-46 defined by Brodmann Areas [75], then the t-statistic will

be maximized when the contrast vector has the tapered spatial distribution consistent with

the fNIRS probe placement relative to this region. Comparing to the conventionally used

uniform weights, the tapered weights increase the contribution of the expected region and

decrease that of the noise from other areas. Thus, this is the most conservative test of the

null hypothesis. This approach allows us to first pose specific null hypothesis tests about

underlying regions of the brain. For example, if BA-46 were not active in the task, then the

specific spatial weighing of channels would not differ from zero. While the rejection of this

null hypothesis (e.g. finding that the value of the ROI average differs from zero) implies that

we cannot rule out that (e.g.) BA-46 was involved in the task, this however does not mean

that BA-46 specifically was involved rather than some other nearby region. Secondly, this

formalism allows us to statistically test the involvement of different regions. For example,

using two separate contrast vectors we can test if the brain activity was more consistent with

(e.g.) BA-46 or BA-45 [75] by statistically comparing those two t-statistics.

We propose that this tapered spatial weighting of channels is based on the optical forward

model, the registration of the fNIRS probe, and the underlying regional parcellations of the

cortex. The optical forward model (Eq. 5.2) defines the sensitivity of the measurements

in channel space to underlying changes in the brain space. This model is calculated by

estimation or simulation of the diffusion of light through the tissue (e.g. [79, 80]). The

optical forward model provides an estimate of the expected signal changes for the fNIRS

measurement geometry given by the expression

Y = Lµvolume (5.6)

where Y is the measurement for a specific fNIRS probe, L is the forward model relating that

probe layout and registration to the underlying head/brain, and µvolume is the underlying

change in optical absorption in the volume. Based on the registration of the fNIRS probe

to an anatomical atlas or individual anatomy (if available), the expected relative sensitivity
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of each fNIRS source-to-detector channel can be estimated from the location and depth of

anatomically defined regions through the optical forward model.

To test for statistical activity from specific anatomically based region-of-interest, we can

use the optical forward model and Eq. 5.6 to define the hypothesis of what the activity

pattern in channel-space should look like based on the location in volume (brain) space. In

other words, to form the null hypothesis testing for activity in a specific region-of-interest,

the contrast vector is given by

cROI = L ·MaskROI(r) (5.7)

where the mask vector for a specific region-of-interest is defined by Eq. 5.8, in which r

represents each point of cerebral cortex.

MaskROI(r) =

 1 if r ∈ ROI

0 otherwise
(5.8)

To generalize this method for multiple conditions comparison, the contrast vector used

in Eq. 5.4 can be replaced by

c = cROI ⊗ cCOND (5.9)

Here cCOND is the contrast vector for the pooling of conditions. Then a t-test can be

performed using the statistic define by Eq. 5.4 with the proposed contrast vector given by

Eq. 5.9.

5.3.3 Example

In this section, we demonstrate the process of contrast vector calculation for a specific

ROI and the analysis with the contras vector. Suppose we are interested in whether BA-45

left or BA-46 left is involved in an experiment. In this example, we would also like to test

the difference between the activities of the two ROIs. Fig. 5.1 shows the two regions in

Colin27 atlas [81] and an example probe registered to the 10-20 system. See Section 5.4.1.1

and Fig. 5.2 for the details of the probe.
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Figure 5.1: The position of the two ROIs – BA-45 L and BA-46 L in Colin27 atlas with

a head circumference of 420 mm. The color map represents the depth from each node in

the ROI to the head surface. Yellow area indicates a depth greater than 40 mm which is

unreachable by the light.

Based on the registration of this probe and the labeled parcellations of the brain (in this

case the Taliarach-deamon [82] parcellation of the Colin27 atlas [81]), we can construct a

spatially tapered contrast vector using Eq. 5.6 - 5.8. Table 5.1 shows the weights of each

channel in the contrast vector. The first two columns are the weights for the two ROIs –

BA-45 L and BA-46 L respectively, and the third column contains the weights to test the

difference between them, which are obtained by simply subtracting the second from the first

column. As a comparison, the conventionally used uniform weights are also listed in the

table, which are obtained by assigning equal weights to the nearest four channels to each

region.

5.4 Methods

In this chapter, we compare the proposed tapered contrast vector method to the con-

ventional analysis methods using simulation data. We compare two different approaches to
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Table 5.1: Each row of the table contains the weights of the channel for the two ROIs and the

difference between them. The weights are calculating using Eq. 5.6 - 5.8. It can be seen that

a nearer channel has a larger weight. S and D represent source and detector respectively,

whose indices can be found in Fig. 5.2. Both the proposed tapered and conventional uniform

weights are listed. Note that the remaining channels are omitted from visualization in this

table because of their small weights.

fNIRS Channel

Weights of channels for ROI

BA-45 L BA-46 L BA-45 L – BA-46 L

Proposed Uniform Proposed Uniform Proposed Uniform

S 1 : D 1 0.193 0.25 0.027 0 0.166 0.25

S 2 : D 1 0.209 0.25 0.121 0 0.089 0.25

S 2 : D 2 0.314 0.25 0.224 0.25 0.09 0

S 3 : D 2 0.213 0.25 0.23 0.25 -0.017 0

S 3 : D 3 0.053 0 0.137 0.25 -0.084 -0.25

S 4 : D 3 0.014 0 0.13 0.25 -0.116 -0.25

S 4 : D 4 0.003 0 0.095 0 -0.092 0

S 5 : D 4 0.001 0 0.026 0 -0.026 0

S 5 : D 5 0 0 0.007 0 -0.007 0
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computing the region-of-interest contrast: 1) in the uniform weighting scheme, the four

channels closest to the underlying region-of-interest are selected, and these channels are

given a uniform weighting in the contrast vector; 2) in the tapered weighting scheme, the

forward model is used to compute the relative contribution of the region to each channel

based on head size and probe registration. For the both weighting schemes, we additionally

examined the case in which this registration information is known accurately and where it

is subject to experimental measurement errors, which is described in Section 5.4.1.3. Here

the weights are calculated based on the head-size and probe registration of each subject.

The unknown condition was examined to mimic the realistic case of experimental error in

the registration, in which the weights are calculated based on the average head-size regard-

less of probe registration error and individual head-size differences. In each iteration of the

simulation, we generate a group set of fNIRS data containing five subjects with the same

stimulus within the region of the brain and perform group-level channel-space analyses using

contrast vectors containing weights of different channels using both the proposed tapered

weights for all channels and uniform weights for the nearest channels with both assumptions

that the probe registration is known and unknown. In total, there are four analysis con-

ditions, tapered-known, tapered-unknown, uniform-known, and uniform unknown, in each

simulation iteration. The analysis results of the two methods are investigated via receiver

operating characteristic (ROC) and compared to each other.

5.4.1 Probe Configuration

In this work, two types of probe configuration: low-density and high-density probe,

are used for simulations. While the low-density style of probe configuration is much more

frequently used in fNIRS studies due to practical reasons, this style of probe has “blind-

spots” due to regions of low-sensitivity to underlying brain activity [83]. Thus, low-density

probes are more sensitive to displacements in the registration of the fNIRS probe and/or

variations in subject head-size. In contrast, high-density fNIRS probes (e.g. [83]) have more

uniform spatial sensitivity and less blind-spots, but are more complex to record from and

only supported by a few instrument manufacturers.
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5.4.1.1 Low-density Probe The low-density probe contains nine light sources and eight

detectors. The distance between source and detector alignments is 25 mm. The optical

density is only measured between the nearest source-detector pairs. Hence, there are 16 ×

2 (two wavelengths, 16 channels for HbO and the other 16 for HbR) channels defined in the

low-density probe. An equal weight, 1
4
, is assigned to each of the nearest four channels to

construct the uniform contrast. Fig. 5.2(a) shows the 2D layout of the probe.
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Figure 5.2: The topology of the low-density probe used in the simulation: (a) The 2D layout,

(b) The registered probe with 10-20 International System, and (c) The registered 3D probe

geometry. A head with 420 mm circumference is used in (b) and (c).

The registration of the probe is defined by an anchor and three attractor positions on

the probe . Similar to the use of these terms in the AtlasViewer program [10], anchors

and attractor positions help to register the fNIRS probe onto the 10-20 coordinate system.

In the Brain AnalyzIR toolbox [31], an anchor forcibly fixes a point of the probe layout

(Fig. 5.2(a)) on the 10-20 system placement. In this case, the origin of the probe (0, 0)

in the two-dimensional layout is anchored to the 10-20 site Fpz. An attractor provides

directional information to the probe. Here, three attractors are placed at positions (±200,
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0) and (0, 100) in the two-dimensional layout are attached to T7, T8, and Cz respectively,

which define three forces pulling the probe along negative/positive X-axis and positive Y-

axis pointing to T7, T8, and Cz. The registration algorithm uses an iterative least-squares

minimization algorithm based on the optimal source-detector pair spacings and the location

of the anchor/attractor points. Attractor points are used to construct unit vectors to provide

direction, which are updated with every iteration of the algorithm. The registered probe used

in this example is shown in Fig. 5.2(b) and (c) using 10-20 (Mercator) projection and 3D

geometry on an example head with 420 mm circumference.

5.4.1.2 High-density Probe The high-density probe used in this work is suggested by

Zeff et al. [83]. Measurements are made between the first-, second-, third-, and fourth-nearest

neighboring source-detector pairs, the separation of which are 13, 30, 40, and 48 mm [83]

respectively. The distance between two neighboring sources or detectors can be consequently

calculated as 13
√

2 = 18.385 mm. Instead of 24 sources and 28 detectors used in the previous

study [83], we added six sources and detectors for covering a similar length of area with the

low-density probe used in Section 5.4.1.1. Thus, our high-density probe contains 30 sources

and 36 detectors, which form 460 × 2 channels in total. To be comparable with the low-

density probe, a quarter of the channels (115/460) are used to calculate the uniform contrast

vector with equal weights. The 2D layout of the high-density is shown in Fig. 5.3(a).

The anchor and attractors used in the high-density probe registration are same as those

for low-density probe defined in Section 5.4.1.1. Fig 5.3(b) and (c) present the high-density

probe registration in 10-20 system and 3D geometry on a head with 420 mm circumference.

5.4.1.3 Probe Registration with Head Size and Displacement Consideration In

this work, in addition to examining the ideal case in which the fNIRS probe registration and

head/brain size are perfectly known, we also examined the realistic case in which these

parameters had unknown errors associated with them. In particular, it is conceivable that

using error-prone prior (miss-)registration information could actually hurt the accuracy of

the analysis methods and we wished to examine the sensitivity of the method to these errors.

Fig. 5.2(b) and Fig. 5.3(b) show the ideal situation of the probe registration, in which the
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Figure 5.3: The topology of the high-density probe used in the simulation: (a) The 2D

layout, (b) The registered probe with 10-20 International System, and (c) The registered 3D

probe geometry. A head with 420 mm circumference is used in (b) and (c).

head size is known, and the anchor and attractors are placed without any errors. However,

in most practical fNIRS experiments, the subjects’ head circumferences are not recorded,

and placement errors are unavoidable. We use random head-sizes and probe registration

errors in this study. In our simulation, the head circumferences are generated from a normal

distribution with a mean of 420 mm and a standard deviation of 50 mm. The lower and upper

2.5% quantiles of this distribution are 318.08 mm and 521.92 mm. This was chosen such

that the simulated head circumference falls into the head-size range of 0 – 36 months infants

[84] with a 95% probability. To simulate the registration error, the anchor and attractors

are placed at a position that deviates from the original position by a random distance. The

displacements along X- and Y-axis are both randomly generated from a normal distribution

45



with a zero mean and a standard deviation of 10 mm. Since the upper 2.5% quantile of this

distribution is 19.60 mm, Fpz falls into a square with a center at (0, 0) of the probe layout

and an edge of 39.20 mm with a probability of 1 – 5% × 5% = 99.75%. Similarly, in 95%

cases, The X- and Y-axis of the probe are pulled to T7/T8 and Cz with angle errors in the

ranges of ±5.60◦ (arctan(19.60/200)) and ±11.01◦ (arctan(19.60/100)) respectively.

 Error: -11.01° to 11.01° 
Anchor: Fpz 

Figure 5.4: An example of probe registration with displacement error. Comparing to

Fig. 5.2(b), the registered probe is asymmetric. The red dashed line is the centerline of

the probe, which is not coincide with the brain centerline (the vertical black dashed line).

As explained above, the middle light source, S5 at (0, 0), deviates from the anchor point Fpz,

and the angle between the two centerlines is in the range of (-11.01°, 11.01°). The left and

right part of the probe may independently rotate around the probe centerline (red dashed

line) by an angle between -5.60° and 5.60°

Fig. 5.4 is an example of probe registration with a larger head circumference (485 mm)

and random error. Comparing to Fig. 5.2(b), the middle light source of the probe is not

placed exactly on the anchor point, which is caused by the placement error. It can also be

seen that there is an angle between the two centerlines in a range of ± 11.01°. The left and

right part of the probe may independently rotate around the centerline of the rotated probe

by an angle within ± 5.60°. Therefore, even in the worst case, each of the left and right part

is unlikely to deviate from the ideal position more than 16.61° (the probability exceeding

this value is 5% × 2.5% = 0.125%).

5.4.2 Region-of-Interest Selection

As mentioned in Section 5.3.2, two types of analysis are performed in this work – the

involvement of a specific ROI and the difference between the activities of two ROIs, which can
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be described as two statistical tests: (1) test if the hemodynamic response within a specific

ROI is significantly different from zero, and (2) test if there is a statistically significant

difference between the hemodynamic responses in two nearby ROIs. For the single ROI

analysis, the size of the region is considered as a factor in the simulation. Besides, the

distance between the two nearby ROIs is taken into account as another factor in the ROI

difference analysis. The selection of ROIs for these two types of analyses is described in the

following two subsections.

5.4.2.1 Single ROI Analysis The ROI used in this work is created using a spherical

surface with a center at a node (brain coordinate) from Colin27 atlas [81] and a specified

radius. All nodes included within the sphere define the ROI. Because of the symmetry in

cerebral cortex, we only select ROIs and generate stimulation in the left cerebral hemisphere

while the mirrored ROIs in the right hemisphere are used as the null regions (containing

noise only) to evaluate the false positive rate (FPR) of the analysis. Fig. 5.5 is an example

of ROI selection.
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Figure 5.5: An example of ROI selection. The color map represents the depth from each

node in the ROI to the head surface. Yellow area indicates a depth greater than 40 mm

which is unreachable by the light. The stimulation is generated within the ROI in the left

hemisphere while the right one is used as the null region.

Note that the distance between the center node of each ROI and the nearest optode must

not exceed the specified radius of the ROI, so the ROI can be reasonably covered by the
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probe. Another consideration for ROI selection is the head size. To perform a reasonable

group-level analysis, the relative size of each ROI to the entire cerebral cortex must be

comparable between subjects. In this study, the nodes included in an ROI are selected using

the standard Colin27 atlas, then the coordinates of the nodes are scaled according to the

head circumference ratio.

5.4.2.2 Statistical Testing between Two ROIs The selection process for ROI differ-

ence analysis is similar to that for single ROI analysis but involving the distance between

two ROIs as a new factor. Fig. 5.6 is an example of ROI selection for difference analysis.

For the same reason, which is described in Section 5.3.1, we only generate stimulation within

one of the two ROIs in the left hemisphere and calculate the difference. The two mirrored

ROIs in the right hemisphere are considered as null region, the difference which is used to

evaluate the FPR.
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Figure 5.6: An example of ROI selection for region difference analysis. The legend is same

as that in Fig. 5.5. Note that it looks like the ROIs in left and right hemispheres overlap to

each other, but they do not actually because of the existence of cerebral fissure.

One more factor, the distance between the two ROIs, is taken into consideration besides

head size and ROI radius. We firstly select an ROI using the method described in Section

5.3.1 and generate stimulation within it, then find out all nodes that deviate the center of the

ROI by a specified distance, from which the second ROI used to calculate the hemodynamic

difference is randomly selected.
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5.4.3 Stimulus Generation

The fNIRS data is simulated by adding stimulation on autoregressive noise. The time

difference between two neighboring stimuli is exponentially distributed. The hemodynamic

response to the stimulus is simulated using canonical hemodynamic response function. In

brief, simulated “brain” activity within the ROI (true positive) is computed and projected

to fNIRS channel/measurement space via the optical forward model. The contralateral ROI

is used to define the true negative region for ROC analysis. Additive autoregressive noise is

added to all channels at an SNR level of 1. The details are described in Ref. [31].

5.4.4 ROC Analysis

With the p-value reported from the t-test (Eq.5.4), we calculate the FPR and true

positive rate (TPR) using (1 - p-value) as the threshold, since smaller p-value indicates

more significant HbO and HbR changes. The ROC curve can then be constructed, and

the area under the curve (AUC) is the probability that the hemodynamic responses within

the stimulus-containing ROIs are more significant (with a smaller p-value) than that in the

null ROIs. Thus, AUC is utilized as the indicator for analysis performance evaluation. To

determine whether a method is significantly better than another, the null hypothesis that

their AUCs are equal is tested. The z -statistic is defined as

z =
|AUC1 − AUC2|

Se(AUC1 − AUC2)
(5.10)

where Se() is the standard error. The standard error of the AUC difference is estimated

using DeLong’s method [51]. The p-value for the abovementioned null hypothesis can finally

be reported.

An appropriate statistical model should give evenly distributed p-values when the null

hypothesis is true, i.e., p-values smaller than a threshold (commonly called type-I error

control, α) will be considered as false positives, and the FPR is the empirical type-I error

rate. Thus, we check the relationship between empirical FPR and the model-reported p-

value. In an ideal situation, they are equal and the plot of FPR vs. p-value is the diagonal

of the plotting square. Otherwise, the type-I error rate is over- or under-estimated.

49



5.4.5 Summary of Simulation

The probe registration, noise and stimulus generation, and data analysis are implemented

using Brain AnalyzIR toolbox [31]. A total of 20 individual ROIs were selected. For each

ROI, the radius of the region was examined from 10 mm to 36 mm by 2 mm steps (14

values total). This yielded a total of 280 regions which were used to generate simulated

activity for the five subjects for the group analysis with randomly selected head sizes. In

the case of simulations with additional registration error, uncertainty was added between

the probe registration and forward model used to generate the data and the one used in the

analysis. Each group simulation for each ROI was repeated 100 times, for a total of 28,000

simulations. For examining the statistical test between two ROIs, a second ROI of the same

radius was added at a distance between 20 mm and 80 mm at 5 mm steps (13 values in total)

for each of the simulations (364,000 total simulations for each of the two probe types). For

each simulation parameter combination, the analyses are respectively performed with two

assumptions: (1) head-size and probe registration error are known, where the contrast vectors

are calculated based on the actual registered probe, (2) head-size and probe registration error

are unknown, where the contrast vectors are calculated based on the probe registered to the

average head size (420 mm circumference) without registration error.

5.4.6 Implementation in the Brain AnalyzIR (nirs-toolbox)

The calculation of the contrast vector for a given ROI has already been implemented

in the Brain AnalyzIR toolbox [31]. This is an open-source analysis toolbox written in

MATLAB for fNIRS. The main components in the implementation are described in this

section.

5.4.6.1 Forward Model The AnalyzIR toolbox includes interfaces to several third-party

optical forward model solvers including NIRFAST [79, 85], Mesh-based Monte Carlo (MMC;

[86, 87]) and Monte Carlo Extreme (MCX; [25, 88]). This code allows construction and

import of individual head models from anatomical MRI volumes to generate subject-specific

optical forward models and registration. These solvers can be used with either atlas-based or
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individual head models to generate this optical forward model. However, since the computa-

tion of multiple optical forward models is often time consuming and furthermore this level of

anatomical modeling is often not available for all subjects (e.g. pediatric fNIRS studies), the

default options in the AnalyzIR toolbox make use of a pre-segmented head model derived

from the Colin-27 atlas [81]. Furthermore, to achieve fast computation of the sensitivity of a

particular fNIRS channel to the underlying brain region, a simplified optical forward model is

approximated using the closed-form solution for the semi-infinite homogenous slab geometry

[89] to compute a particular two-point Green’s function solution to the diffusion model (e.g.

the relationship light traveling from a point on the surface to a point in the volume). The

sensitivity of a source-detector pair is then computed as the three-point Green’s function

combining two obliquely oriented slab-based two-point functions. This approximation of the

optical forward model (termed the ApproxSlab forward model in the toolbox) was found to

give a reasonable approximation compared to formal solutions using finite element or Monte

Carlo methods, particularly given the existing approximations and errors associated with

the use of the Colin-27 atlas. We note also that the Brain AnalyzIR toolbox does support

the use of these proper finite element or Monte Carlo solvers to compute a more accurate

forward solution, but as mentioned due to the computational time involved (several minutes

per contrast vector compared to a few hundred milliseconds for the ApproxSlab model), the

default in the toolbox is to use this approximate solution. All results in this work used this

approximate solution.

In addition, to avoid the complexities of multi-variate statistical testing between oxy-

and deoxy-hemoglobin and multiple optical wavelengths inherent to the Beer-Lambert law,

we approximate the forward model using only a single wavelength (default at 808 nm),

which allows us to compute the spatially tapered contrast weight that can be applied to

the statistical parameters (β) defined in oxy- or deoxy-hemoglobin. Note that the tapered

contrast vector used in the ROI definitions is normalized such that the value of the extinction

coefficient for oxy- or deoxy-hemoglobin at that wavelength is irrelevant to the calculation.

5.4.6.2 Labeling of Regions As mentioned previously, Colin27 atlas is used as the de-

fault anatomical model for probe registration in this work. To identify the voxels contained
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in a specific ROI, a parcellation of the anatomical model is required. Considering the gener-

ality, random self-defined ROIs are used in this study rather than the predefined Brodmann

Areas [75]. Thus, instead of the Broadmann labeling [75], here the Talairach daemon [90]

defines the ROIs, which gives a high-resolution parcellation of the brain and allows us to

define high-resolution ROI.

5.4.6.3 Resizing of Colin27 Atlas Since the effect of the head size is investigated in

this study, the anatomical model needs to be scaled for different head circumference and

dimensions. In the AnalyzIR toolbox, the atlas head size can be rescaled based on the

experimental measurements of the head circumference, nasion-inion (Nasion – Cz – Inion)

and left/right periocular point (LPA – Cz – RPA) distances over the top of the head where the

head circumference is computed 10% above the contour of nasion – right preauricular point

(RPA) – inion – left preauricular point (LPA) – nasion. These three measurements uniquely

define the resizing of the head as an ovoid shape to match each subject. Alternatively, when

only one of these three measurements is available (e.g. head circumference only) the head

can be resized proportionately keeping the ratios of the major and minor axis of ovoid fixed.

In this case, for a given head size, we calculate the ratio of the given head circumference to

the standard model’s, then resize the atlas by multiplying the Talairach coordinates [91, 92]

of every point by the ratio of their head circumferences. As a result, the portion of a specific

ROI will be the same in the scaled atlas. In the Brain AnalyzIR toolbox, registration of a

fNIRS head cap to a brain model is done in two steps to i) first register the cap to the ovoid

(spherical) 10-20 coordinate system and then ii) register and resize the head/brain model

into the same ovoid 10-20 space.

5.5 Results

The results of ROC analysis and statistical testing of the simulations are shown in this

section. To be concise, we use “known” and “unknown” registration to respectively denote

the analysis conditions that the contrast vectors are calculated based the actual probe reg-
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istration (known head size and registration error) and average registration (unknown head

size and registration error) in the following context. For the same purpose, ROI radius and

separation are used to denote the radius of the spherical surfaces defining the ROIs and the

distance between the center nodes of them.

5.5.1 Single ROI Analysis

In this section, we examined the performance of the uniform and proposed tapered

contrast vector methods to infer changes about a single region of interest in the brain. The

size of the region-of-interest was varied from 10 – 36 mm. The methods were examined in

the case of both ideally known and unknown (errors) in the probe registration model.

Fig. 5.7 is an example of ROC curves of the two analysis methods. The images in

panel (a) demonstrate the full ROC plots for the case of the 14 mm ROI radius. In the

case where the probe registration information is known, the area-under-the-curve (AUC) for

the uniform and tapered contrast vectors, for HbO/HbR, are 0.910/0.868 and 0.937/0.897

respectively for the 14 mm radius. When additional registration error is introduced and

unknown as described in Section 5.4.1.3, the AUC values are 0.897/0.850, and 0.913/0.865.

In both the known and unknown cases, the AUCs are statistically smaller (p < 10−5) for the

uniform compared to the tapered contrast vector. Panel (b) shows the AUC as a function

of the ROI radius, in which the AUC values were fairly consistent across the tested ROI

radius sizes. The tapered contrast vector performs consistently better under all conditions

than those with the uniform contrast vector. We also observed that the method using the

uniform contrast vector demonstrates more fluctuation when the ROI radius is greater than

28 mm. We believed that this is caused by the gyrus and sulcus since this size is close to

the thickness of gyrus and depth of sulcus. In this case, the ROI would include multiple

gyrus, the space between which may reduce the statistical power of the analyses. Since

the contrast vector for weighted-channel is calculated based on the forward model, it already

takes the anatomy into consideration and consequently reduces the AUC fluctuation for large

ROIs. Statistical tests for the AUC difference between the analyses using the two types of

contrast vector are performed for each simulation ROI radius, i.e., 56 tests (14 radius values
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× known/unknown conditions × HbO/HBR) are conducted in total. The p-values of the

tests for the 28 AUC differences knowing the registration error are all less than 10−6, which

implies that the proposed method performs significantly better than the uniform contrast

vector method under this condition. For the unknown condition, although the AUCs of the

tapered contrast vector method decrease comparing to that when registration information

is known, most of the 28 p-values of the tests for the difference between the two methods

are smaller than 0.05. The only exception is the AUC for HbR analysis with a ROI radius

of 20 mm, the p-value for which is 0.109. It exceeds the commonly used significance level

0.05, however, just slightly larger than 0.1. It can still be concluded that the proposed

method performs significantly better than the conventional uniform contrast vector method

no matter the head size and probe registration error is known or not.

In addition to examining the performance of the ROC analysis with the AUC, we exam-

ined the control of the type-I error by comparing the empirically determined false-positive

rates (FPR) with the theoretical values (denoted as p̂ [p-hat]). Mismatch between the FPR

and p̂ indicates either over- or under-estimation of the true significance of the results. Fig. 5.8

(a) shows the results of the plot of the FPR vs. p̂ for the simulation with ROI radius of 14

mm. It can be seen from Fig. 5.8 (a) that the empirical curves are both below the ideal one

at the beginning part where FPR and p̂ are small. However, they do not remarkably deviate

from the ideal curve, so we do not think it is a serious problem. Fig. 5.8 (b) shows the em-

pirical FPR for the two analysis methods calculated from simulations with different ROI size

under the commonly used type-I error control, a.k.a., significance level α, of 0.05. All data

points lay below the dotted line, which indicates that these two methods both underestimate

the type-I error with a similar performance. Although type-I error is underestimated by both

methods for all ROI radii, we also checked every the empirical curves to make sure the p-

values are still generally evenly distributed (similar to Fig. 5.8 (a)). One usually worries

about the underestimation of type-I error because it may result in an overestimated type-II

error and consequently affect the ROC performance. However, the large AUCs demonstrate

the good performances of both methods under all conditions. Thus, we believe the concern

for the underestimation of type-I error at small p̂ is unnecessary.
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Figure 5.7: Comparison of analysis methods with uniform and tapered contrast vector using

receiver operating characteristic (ROC). (a) Each subplot shows the ROC curves of recog-

nizing the hemoglobin activity within a single ROI using the two type of contrast vector

(indicated by color) for data with ROI radius = 14 mm from 2000 iterations of simula-

tion under the conditions where the probe registration information (including head size and

registration error) is known or not (indicated by column). The two rows indicate oxy-/deoxy-

hemoglobin respectively. (b) Each subplot shows the ROC AUC as a function of ROI radius.

Every data point represents the AUC calculated from 2000 simulation iterations against the

corresponding ROI radius (in mm) used in the simulation.

5.5.2 Comparison of Two ROIs

In addition to testing the null involvement of a specific region-of-interest, our proposed

approach can be used to compare multiple regions-of-interest to each other. In order to

examine this, we performed a series of simulations as previously outlined. In addition to

varying the location, ROI radius, and probe type, to compare two regions, we also varied

the distance between the two regions to examine the limits of this approach. Similar to the
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 (a) Type-I Error Control  

(b) Type-I Error Rate vs. ROI Size 
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Figure 5.8: Comparison of analysis methods with uniform and tapered contrast vector us-

ing type-I error control. (a) Each subplot shows the empirical FPR vs. reported p-value

curves of recognizing the hemoglobin activity within a single ROI using the two type of con-

trast vector (indicated by color) for data with ROI radius = 14 mm from 2000 iteration of

simulations under the conditions where the probe registration information (including head

size and registration error) is known or not (indicated by column). The two rows indicate

oxy-/deoxy-hemoglobin respectively. In an ideal situation, the empirical FPR equals to the

model-reported p-value, which is represented by the dotted diagonal of each plot. Both meth-

ods underestimate the FPR at smaller p-values (zoomed in and embedded at the corner) (b)

Each subplot shows the ROC AUC as a function of ROI radius. Every data point represents

the AUC calculated from 2000 simulation iterations against the corresponding ROI radius

(in mm) used in the simulation. Every data point represents the empirical FPR calculated

from 2000 simulation iterations against the corresponding ROI radius (in mm) used in the

simulation. Here 0.05 is used as the type-I error control (threshold) that is indicated by the

dashed line.
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characterization of the single ROIs, we preformed simulations to quantify the sensitivity and

specificity of the approach in comparison to the use of a fixed and uninform ROI.

Fig. 5.9 is an example of ROC curves of the two analysis methods for both the low-

density and high-density probes, in which 10 mm and 80 mm are used as the ROI radius and

separation respectively. For the low-density probe, the AUCs of the two methods, uniform

and proposed tapered contrast vector for HbO/HbR when the probe registration informa-

tion is known are 0.622/0.605 and 0.696/0.673 respectively, and the values when the probe

registration information is unknown are 0.576/0.570 and 0.684/0.671. For the high-density

probe, these values were 0.550/0.529 and 0.724/0.685 for the known probe registration case

and are 0.531/0.530 and 0.691/0.654 for the unknown case. In all comparisons, the tapered

contrast vector approach preformed statistically better (p < 10−5) than the uniform weighing

approach.

Fig. 5.10 shows the AUC of the two methods for the ROI difference analysis by varying

the ROI size and separation in the simulation, from which we can see that the analysis

using the spatially tapered contrast vector performs consistently better than that using

uniform contrast vector under all conditions since its AUCs are in a higher color range.

By performing statistical tests for the AUC differences between the two methods for the

simulations using low-density probe, i.e., comparing each pair of small colored rectangles at

a corresponding position in the lattices of panels (a) and (b), we obtained significant p-value

(smaller than 0.05) for each pair of AUCs using tapered and uniform contrast vector across all

ROI radius, separation distance, and analysis conditions. The maximum p-values is 0.0257

for the AUCs comparing the HbR changes within two ROIs with 16 mm radius separated

by 25 mm knowing the probe registration error. Similar tests are conducted for the high-

density probe simulations, i.e., panels (c) and (d), as well, in which the all obtained p-values

are smaller than 0.05. uniform contrast vector across all ROI radius, separation distance,

and analysis conditions. The maximum p-values is 0.0250 for the AUCs comparing the HbO

changes within two ROIs with 36 mm radius separated by 80 mm without knowing the probe

registration error. We can conclude that the proposed method performs significantly better

than the conventional methods for ROI difference test using both low- and high-density

probes.
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Figure 5.9: Each subplot shows the ROC curves of recognizing the hemoglobin activity

difference between two ROIs using the two types of contrast vector (indicated by color) for

data from 2000 iterations of simulation under the conditions where the probe registration

information (including head size and registration error) is known or not. The simulated

activities are generated within one of the two 10 mm (radius) ROIs separated by 80 mm,

and two types of probe, low-density (panel a) and high-density (panel b), are used in the

simulation. The column and row of each subplot indicate known/unknown probe registration

and oxy-/deoxy-hemoglobin respectively.

Finally, we examined the type-I error control for the comparison of two ROIs using the

tapered and uniform approaches. In Fig. 5.11, we demonstrate these results for simulations

using ROI radius of 10 mm and separation of 80 mm. In comparison to the single ROI analysis

(shown in Fig. 5.8), we found that using uniform contrast vector consistently underestimates

the FPR in the case of the low-density probe. It can be seen from the panel (a) that the

p̂ reach 1 where the FPRs using uniform contrast vector are only 0.55 and 0.74 when the

probe registration is known and unknown respectively. This means that in 45% and 26%

of cases, this method is not able to distinguish between the two ROIs anyway. The reason

is that the uniform contrast vectors for the two ROIs can be exactly the same when the
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Figure 5.10: The heatmap showing the AUCs of recognizing the hemoglobin activity differ-

ence between two ROIs for simulation data under the conditions where the probe registration

information is known or not. The color of each small rectangle in the lattices, whose scale is

indicated by the legend, represents the AUC calculated from 2000 simulation iterations using

its abscissa and ordinate as the ROI radius and separation respectively. Two types of probe,

low-density (panels a and b) and high-density (panels c and d), are used in the simulations,

and the left (a and c) and right (b and d) two panels contain the results using uniform

contrast vector and tapered contrast vector respectively. Within each panel, the column and

row of each subplot indicate known/unknown probe registration and oxy-/deoxy-hemoglobin

respectively.
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two ROIs are close enough to each other, which results in an all-zero contrast vector for the

ROI difference test and consequently a zero t-statistic giving a unity p-value. In the case

of using tapered contrast vector, the two contrast vectors will never be the same no matter

how close they are as long as not completely overlapping to each other. Therefore, the p̂

reported by the tapered contrast vector method appropriately estimate the empirical FPR,

which demonstrates this method has a higher spatial resolution than the other two. This

also explains why ROC curves of uniform contrast vector-based method achieve the diagonal

at 0.55 and 0.74 in Fig. 5.9 (a). This is the motivation we investigated this problem again

using high-density probe who has a higher spatial resolution and is expeted to improve the

type-I error rate with the uniform contrast vector. For the high-density probe (Fig. 5.11 (b)),

the type-I error is slightly underestimated for the uniformly weighted model which results in

increased false-positives. However, the two ROIs are more distinguishable. In both probes,

the proposed tapered contrast vector appropriately estimates the FPR.

In Fig. 5.12, the FPR at p̂ = 0.05 is shown for various ROI radii and separation distances.

The four panels represent same analyses as those in Fig. 5.10. The colors in the heatmap

of the tapered contrast vector method, i.e., panels (b) and (d), fall into the range around

0.05 with both low-and high-density probes, which indicates the FPR estimation is generally

appropriate. For the uniform contrast vector method, i.e., panels (a) and (c), the colors are

completely out of the appropriate range when low-density probe is used. For a given ROI

separation distance, the FPRs reported by the uniform contrast vector method decrease and

deviate further from the type-I error control p̂ = 0.05 because the enlarging overlap of the

two ROIs makes it more difficult to distinguish between the two ROIs. For the case of using

high-density probe, although most of the colors are in an appropriate range, it can still be

seen that the type-I error rate is overestimated for small ROIs with large separation (note

that darker color represents a larger value in panel (c) and (d)). However, the plots of the

worst case (10 mm radius and 80 mm separation) have been shown in Fig. 5.11(b), from

which we can see that the empirical curves do not significantly deviate from the ideal curve.
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Figure 5.11: Each subplot shows the empirical FPR vs. reported p-value curves of recog-

nizing the hemoglobin activity difference between two ROIs using the two types of contrast

vector (indicated by color) for simulation data analyses under the conditions where the probe

registration information is known or not. The simulated activities are generated within one

of the two 10 mm (radius) ROIs separated by 80 mm, and two types of probe, low-density

(panel a) and high-density (panel b), are used in the simulation. The column and row of

each subplot indicate known/unknown probe registration and oxy-/deoxy-hemoglobin re-

spectively. For a single curve, the abscissa of each data point is the FPR using its ordinate

as the threshold. In an ideal situation, the empirical FPR equals to the model-reported

p-value, which is represented by the dotted diagonal of each plot.

5.6 Discussion and Conclusions

In this paper, we show the analysis results of thousands of simulations using 2 (probe

layouts) × 14 (radius lengths) × 13 (separation distances) = 364 parameter combinations.

Here we discuss the findings and draw conclusions in the following aspects.
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Figure 5.12: The heatmap showing the empirical FPRs of recognizing the hemoglobin activity

difference between two ROIs using the two types of contrast vector for simulation data

analyses under the conditions where the probe registration information is known or not.

The color of each small rectangle in the lattices, whose scale is indicated by the legend,

represents the FPR calculated from 2000 simulation iterations using its abscissa and ordinate

as the ROI radius and separation respectively. Two types of probe, low-density (panels a

and b) and high-density (panels c and d), are used in the simulations, and the left (a and c)

and right (b and d) two panels contain the results using uniform contrast vector and tapered

contrast vector respectively. Within each panel, the column and row of each subplot indicate

known/unknown probe registration and oxy-/deoxy-hemoglobin respectively. Here 0.05 is

used as the type-I error control (threshold) that is indicated by the bright color. Within

each panel, the column and row of each subplot indicate known/unknown probe registration

and oxy-/deoxy-hemoglobin respectively.
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5.6.1 Comparison of Multiple ROIs

It can be seen from Fig. 5.10 that the two factor – ROI radius and separation jointly affect

the results. The effects of channel selection, uncovered area, and blind-spot can be different

with different ROI radius and separation. Generally, the channels selected for calculating

contrast vectors of the two ROIs tend to be same as the two ROIs getting larger and closer,

larger ROIs with a further separation are more possible to have a larger portion exceeding

the probe coverage, and smaller ROIs are easier to fall into the blind-spot of the probe.

The statistical power and AUC will reduce under these three conditions. We will explain

the AUC changes in terms of these three effects here. Let’s first look at the heatmaps of

the analysis using uniform contrast vector with known registration information in the left

column of panel (a). With this analysis method, the AUC increases as the two ROIs are

separated by a further distance given a specific ROI radius and decreases as the radius

of ROIs increases given a specific ROI separation when the registration is known. This

pattern is not difficult to understand. Since the nearest four channels are used with equal

weights, the contrast vectors of smaller ROIs with larger separation will have fewer shared

channels and the contrast vector for their difference is further from 0 resulting in a more

significant t-statistic/p-value, and vice versa. Another negative effect of large ROI is that

ROIs with larger radius are easier to partially fall out of probe coverage area, especially for

further separated ROIs, as they are more likely to be close to the edge of the probe, which

reduces the statistical power when stimulus exists within the ROI. These are the reasons

that the AUCs are larger for the small-radius-large-separation condition. For the condition

using uniform contrast vector without knowing the registration in the right column of panel

(a), the AUC still increases as ROI separation increases given a specific ROI radius for the

same reason, while the decreasing pattern of AUC along ROI radius does not always hold.

There is an increase in AUC when the ROI radius is around 20 mm. Unlike the analysis

given the registration error, here the four channels used for contrast vector generation are

selected based on the Colin27 atlas with an average head-size and no registration error.

The selected channels can be different from the nearest four channels in truth if there is a

large enough difference in the head-size or probe registration between the subject probe and
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the average probe. Thus, the channel selection error is another factor affecting the analysis

using this method. For a fixed probe registration difference including both effects of head-size

difference and registration error, the relative registration difference for a smaller ROI will be

larger than that for a larger one, which means that the possibility using wrong channels for

contrast vector calculation of smaller ROIs is higher. Although the contrast vector of the

difference between two larger ROIs has a negative effect in AUC (as explained for known

registration condition), the possibility using wrong channels for larger ROIs is reduced.

Hence, the AUC change against ROI radius for a specific ROI separation is nonmonotonic.

This is the reason we see a sudden increase in AUC around ROI radius = 20 mm. The

change of AUCs using tapered contrast vector is more complicated. We can see that the

increasing/decreasing pattern found for uniform contrast vector analysis is only true in the

upper triangle whereas an opposite pattern appears in the lower triangle of subplot (b). The

effects of factors affecting the AUCs using uniform contrast vector analysis still hold for the

analysis with tapered contrast vector. However, the difference between two tapered contrast

vectors is further from 0 than that of the uniform contrast vectors, especially for closer and

larger ROIs that are more likely to result in two exactly same uniformly weighted contrast

vectors. This implies that the AUC decrease caused by contrast vector decrease is smaller

than the uniform method for closer and larger ROIs (the lower triangle area). Specifically,

i) larger ROIs with a given separation are more possible to have uncovered area by the

probe, so the effect of decreasing this possibility dominates that of smaller contrast vector,

as explained before, with the decrease in ROI separation; ii) closer ROIs with a fixed size are

expected to have smaller uncovered areas by the probe, and smaller ROIs are more possible

to fall into the “blind-spots”, so the effect of decreasing this possibility dominates that of

the uncovered and smaller contrast vector with the increase in ROI size. The increase in

AUC can be consequently seen as ROI separation decrease and ROI radius increases for large

ROIs with smaller separation. These are the reasons that we see an opposite pattern in the

lower triangle area of the plot.
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5.6.2 Effect of Probe Registration Errors

To evaluate the effect of using probe registration errors in the analysis, we compared the

results of analyses with known or unknown registration errors for all simulation parameters

and conditions. In the single ROI analysis, we can see from Fig. 5.7 (b) that the AUCs of

both tapered and uniform methods are improved with the registration errors provided (left

two subplots) comparing to the analysis without knowing the errors (right two subplots). It

can also be found that the improvements of tapered contrast method are larger. We also

conducted statistical tests on the significance of these improvements, from which significant

p-values (smaller than 0.05) are reported for all of the improvements using tapered contrast

vector but the p-values are only significant for small ROIs (radius < 30) using the uniform

contrast vector. This means that no significant improvements are found for large ROIs

when uniform contrast vector is used. As explained in Section 5.6.1, there is a possibility

that the four channels identified without registrations are different from the nearest four

channels in the truth. In the single ROI analysis, the information of registration errors

can help with determining the correct four channels when using uniform contrast vector.

However, the possibility of choosing wrong channels to larger ROIs is smaller comparing to

smaller ROIs. This explains why the improvements for large ROIs are insignificant. For the

tapered contrast vector, the registration errors can correct the calculation of the weights in

the contrast vector. The contrast vectors calculated with and without registration errors

can never be the same regardless the size of the ROI. Thus, the using the registration errors

always significantly improves the ROC performance of the tapered contrast vector. In the

comparison of two ROIs, the analyses using the registration errors also improve the AUCs

comparing to those without the errors. We performed similar statistical testing between

the AUCs with and without knowing the registration errors. However, only about 30% of

the tests report significant p-values for both uniform and tapered contrast vectors, and the

appearance of these p-values shows a random pattern, which does not make too much sense

to discuss. In summary, utilizing the information of registration errors can improve the

analysis performance especially cooperating with the tapered contrast vector in single ROI

analysis.
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5.6.3 Probe Comparison

The effects of factors affecting the AUCs of low-density probe, as explained in Section

5.6.1, still hold for the high-density probe (Fig. 5.10 (c) and (d)). For the analyses using

uniform contrast vector, although we can see a similar changing pattern to the one shown

in Fig. 5.10 (a), the AUCs do not that notably change as the change in ROI radius. The

reason for this is that the possibility of obtaining an all-zero contrast vector high-density is

rare unless the two ROIs are close enough, since much more channels are used to construct

the uniform contrast vector comparing to the low-density probe. Hence, the detrimental

effect of large ROIs on the contrast vector is reduced. For the tapered contrast vector,

the AUC changing pattern is also similar to Fig. 5.10 (b) except that the AUC rise for

large-size-small-separated ROIs is smaller. It is because the high-density probe also reduces

the number and size of “blind-spots” and the possibility of small ROIs falling into “blind-

spots” is smaller than that with low-density probe, i.e., the negative effect of “blind-spots”

is reduced. Thus, although increasing the radius for short-separated ROIs can get rid of the

effect of “blind-spots,” this effect itself is smaller and so is the AUC rise.

It might be noted that the AUCs using high-density probe do not show a remarkable

improvement comparing to that using low-density probe. It is because a different signal-

to-noise ratio is used for high-density probe, which is indicated in the title of each panel.

The signal-to-noise ratios used in the ROC simulations were chosen to generate non-trivial

comparisons of the methods being tested (e.g. too high SNR and all methods converge on

AUC = 1 while too low SNR and all methods approach chance levels). In practice, one

is expected to see an improvement when switching to high-density probe from low-density

probe for same experiments. Due to the same reason, it is impossible to conduct direct

statistical testing between the performances of the two probes.

5.6.4 Robustness of the Analysis

The analyses conducted in this study demonstrate that the proposed method constructs a

channel-space statistic that can be used to statistically test the non-involvement of a specific

ROI and the activity difference between two ROIs during a functional task utilizing the
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optical forward model as the channel weights without solving the underdetermined ill-posed

image reconstruction inverse model. Although the computation of the tapered contrast

vector depends on many factors including the forward model approximation, wavelength,

brain anatomy, etc., the differences in these factors do not remarkably change the tapered

shape of the contrast vector. Moreover, we also check the difference between different forward

models as well as the contrast vectors calculated using various wavelengths. The computation

shows the correlations between the forward models generated via the slab approximation and

using NIRFAST is 0.921, the error between which is around 1−0.9212 = 15%, and the change

in wavelengths between 660 nm to 890 nm only makes a 4.6% difference in the contrast vector

magnitude. Thus, the computation precision using ApproxSlab forward model and 808 nm

wavelength is acceptable. Introducing the complexity of forward model approximation and

wavelength will not notably change the analysis results.

5.6.5 Comparison of Uniform and Tapered Weighting Methods and Overall

Recommendations

Going through all the results shown above, we can conclude that the proposed tapered

contrast vector performs better than the conventional uniform one. In terms of ROC perfor-

mance, its AUC is significantly larger than conventional method for both single ROI analysis

and two-ROI comparison regardless of ROI size, separation distance, and probe layout se-

lection. The p-values for the difference between the AUCs are smaller than 0.05 with only

one exception slight larger 0.1. For the type-I error control, both methods are generally

appropriate with low-density probe in single ROI analysis, although the type-I error rates

are underestimated at the commonly used threshold 0.05. However, in the comparison of two

ROIs, the proposed tapered contrast vector method always appropriately estimates the type-

I error while the conventional method always underestimates and sometimes overestimates

the type-I error rate when the low- and high-density probe is respectively used. In conclu-

sion, the novelly proposed tapered contrast vector is always recommended for ROI-based

analysis.
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5.6.6 Limitations and Future Plan

Although this work demonstrates that the proposed method is significantly better than

the conventionally used method, it still has several limitations. First, in the single ROI

analysis, type-I error rate is underestimated at the widely used significance level, i.e., 0.05.

Although using high-density probe could be able to solve this problem, considering the small

improvement space in AUC and the time and cost consumption of high-density probe, we do

not think it is worth to use high-density probe in this problem. Second, the performance for

the comparison of two ROIs is not good enough. There is still a large space for ROC AUC

improvement. Third, the model is still based on a mis-registered probe when the registration

information is unknown, and the anatomical difference between subjects is not involved.

Therefore, the next step of this work will include introducing anatomy variation and

optimizing probe based on image reconstruction model considering the probe is a random

factor that deviates from an optimal average probe position. It is reasonable to believe that

the tapered contrast vector calculated based on the optimal probe would provide a better

analysis.
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6.0 Brain Space Image Reconstruction of fNIRS Using a Novel Adaptive

Fused Sparse Overlapping Group Lasso Model

6.1 Introduction

Functional near-infrared spectroscopy (fNIRS) is a non-invasive brain imaging technique,

which uses scalp-placed optical sensors to record changes in the optical absorption of the

underlying tissue and to infer changes in blood flow and oxygenation in the brain during

cognitive tasks [1]. A limited spatial localization of these changes can be made by image

reconstruction using the discrete set of measurements made between optical sources and

detectors. However, this is a greatly under-determined problem with typically hundreds of

unknown parameters in the brain (image) space compared to the dozens of actual measure-

ments. This problem is also ill-poised; having multiple solutions of the underlying image that

would generate indistinguishable channel-space measurements [93]. Thus, the reconstruction

of fNIRS data into brain-space images requires additional constraints through mathematical

regularization and/or additional prior information.

There are existing and active studies on the fNIRS image reconstruction problem, which

is reviewed in Section 3.3. Most of them applies the constraints using statistical models, but

the anatomical prior information is rarely used.

In this work, we describe an adaptive fused sparse overlapping group lasso (a-FSOGL)

regularization approach for fNIRS image reconstruction. The a-FSOGL model uses brain-

space voxel grouping priors, for example from atlas-based regions-of-interest, to regular-

ize the image reconstruction process. To make a better use of the prior information, we

develop a Bayesian framework to solve this model by incorporating the prior information

with appropriate statistical distributions. The framework is built based on previous stud-

ies [94, 95, 96, 97, 98] of Bayesian lasso model and its extensions. Our model extend the

Bayesian lasso models a step further by combining existing models and involving more prior

parameters. In this paper, we will first briefly review the principals of the optical forward

and inverse models. We will then derive the a-FSOGL model and its associated statisti-
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cal properties before demonstrating the approach using simulated fNIRS measurements and

data. In this work, we focus on the example of a nearest-neighbor bilateral fNIRS probe

over the forehead and examine the ability to infer changes in frontal and dorsolateral brain

regions as defined by atlas-based Brodmann area parcellations, however, this approach is

applicable to any brain space parcellation model as prior information.

6.2 Theory

6.2.1 The Optical Forward Model

The optical forward model has been described in detail in previous literature [1]. Here

we only depict it briefly. In an experiment using fNIRS, a set of light sources and detectors is

placed on the scalp surface. The light is emitted from each source and transmitted through

the tissue at two or more wavelengths. The light spreads after it is sent into the brain

due to the scattering property of the tissue. The propagation path of light through brain

tissue depends on its anatomical structure, including scalp, skull, cerebral spinal fluid (CSF),

gray/white matter, etc., which can be approximated by a diffusion-based random walk of

the photons of light and modeled through Monte Carlo, finite difference, finite element, or

boundary element methods. During brain activity, the fluctuation of the blood flow in the

cerebral cortex leads to the alteration of the hemoglobin concentration and consequently

changes the light absorption ability of the brain tissue. The optical forward model describes

the relationship between the optical density changes recorded by light source-detector pairs

on the surface and the hemoglobin concentration changes in the underlying tissue. For a

typical amount of hemoglobin concentration change, the change in the optical density at a

given wavelength l can be modeled by the modified Beer-Lambert law as Eq. 6.1.

∆ODl
i,j = Xl

i,j

[
εlHbO

(
∆[HbO] + ξHbO

)
+ εlHbR

(
∆[HbR] + ξHbR

)]
+ νli,j (6.1)

where Xi,j is the Jacobian of the optical measurement model describes the total absorption by

each voxel along the traveling path of light transmitted between the source to the detector
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pair (i, j). εHbX is the molar extinction coefficient, ∆[HbX] is the vector containing the

hemoglobin changes, and ξHbX is the physiological noise vector, in which HbX represents

HbO or HbR for oxy- and deoxy-hemoglobin respectively. νi,j is the additive measurement

space noise. Note that Xi,j, ∆[HbX], and ξHbX are vectors with a length same as the number

of voxels. For measurements between multiple channels (source-detector pair) at multiple

wavelengths, the model can be written in a compact linear expression

y = X (β + ξ) + ν (6.2)

where y contains the measurements between all source-detector pairs and β includes oxy-

and deoxy-hemoglobin concentration changes at each voxel in the brain image.

y =


∆ODl1

i,j

∆ODl2
i,j

...

 and β =

 ∆[HbO]

∆[HbO]

 (6.3)

Thus, y and ν are the measurement and measurement-space noise vector, respectively,

having a length ofN , which equals to the number of source-detector pairs times the number of

wavelengths. β and ξ are two vectors containing the parameters of interest – the hemoglobin

concentration changes – and the physiological noise at each voxel, respectively, so both of

them have a length of P , which equals to the double of the total number of voxels (HbO

and HbR for each voxel). X is a N × P matrix whose each row contains the Jacobian for a

channel.

6.2.2 The Inverse Problem of fNIRS Image Reconstruction

The fNIRS brain image is obtained by solving Eq. 6.2, which is a high-dimensional, un-

derdetermined, and ill-posed (P � N) inverse problem since we usually have hemoglobin

changes at thousands of voxels to estimate but only tens of measurements available, i.e., the

number of unkonwns is extremely greater than that of the knowns, and there exist multi-

ple equivalent solutions. Regularization approaches are commonly used for stabilizing the
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solution of the inverse problem by minimizing an objective function including an additional

penalty terms to the least-squares cost function, which can be represented by Eq. 6.4.

β̂ = arg min
β
‖y −Xβ‖2

C−1
ν

+ λJ (β) (6.4)

where λ ≥ 0 is a tuning parameter adjusting the weight of the regularization. ‖y−Xβ‖2
C−1

ν

is the least-squares cost function, in which Cν is the covariance matrix of the channel space

error ν and ‖A‖B =
√

ATBA denotes the weighted `2 norm calculation. J (β) is the penalty

term applying the constraints on the sparsity and/or structure to the estimation of β, which

allows to incorporate prior information about the elements in β. Some commonly used

penalties terms are shown in Table 6.1.

6.2.3 Prior Information on Cerebral Anatomy and Hemodynamics

In an evoked-task study, the observable brain activity usually only appears within a

certain area. The location of the active region depends on the type of the task, e.g., Broca’s

area is evoked in most speech- or language-related tasks [105, 106, 107], and voluntary

movement- or control-involved tasks often activate the motor cortex area [108, 109]. Thus,

for a specific task, one can have the prior information on the potential areas-of-interest and

the anatomical divisions, for example, the movement of different parts of the body can be

mapped to the motor cortex according to the motor homunculus [110, 111].

Brain activity leads to a growth in blood flow and oxygen consumption. The growth in

blood flow increases the blood volume, brings more HbO, and moves more HbR away, while

the growth in oxygen consumption results in an increase in the concentration of HbR and

a decrease in that of HbO. The two effects jointly increase the concentration of HbO and

decrease that of HbR during the brain activity. It is also known that the change in the HbR

concentration is smaller than that in the HbO concentration.
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Table 6.1: Summary of commonly used penalties terms for regularization approaches and

their properties

Penalty J (β) Property

Lasso [99]
‖β‖1 where ‖β‖1 =

∑P
p=1

∣∣βp∣∣ de-

noting the `1 norm βp ∈ β

Shrink some parameters to exact

0; proper for sparse solution space;

no analytical solution

Tikhonov [100]
‖β‖2

C−1
β

where Cβ is the covariance

matrix of β coefficients

Cannot shrink parameters to exact

0; have a unique analytical solu-

tion for a given tuning parameter;

easy to interpose covariance of β

Elastic net [101]
γ‖β‖1 + (1− γ)‖β‖2

C−1
β

where γ ∈

[0, 1]

A weighted combination of lasso

and Tikhonov regularization

Fused lasso

[102]

γ‖β‖1+(1−γ)‖Dβ‖1 where D en-

codes the spatial structure

Shrink the difference between

neighboring elements in β to 0, i.e.,

constraining them to be equal, in

addition to the lasso penalty

Group lasso

[103]

∑G
g=1

√
pg

∥∥∥βg∥∥∥
C−1

βg

where β is split

into G groups, βg contains the el-

ements in the g-th group, and Cβg

is the covariance matrx of βg

The penalty is intermediate be-

tween lasso and Thkhonov; per-

form variable selection at the

group level

Sparse group

lasso [104]
γ‖β‖1 +(1−γ)

∑G
g=1

√
pg

∥∥∥βg∥∥∥
C−1

βg

A weighted combination of lasso

and group lasso; perform variable

selection at both individual and

group level
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6.3 Methods

In this paper, we apply an adaptive fused sparse overlapping group lasso (a-FSOGL)

regularization to the inverse problem of fNIRS image reconstruction and validate the model

via numerical simulations. This section describes the model and the Bayesian algorithm to

solve the model in detail followed by the procedures of the simulation and evaluation.

6.3.1 Adaptive Fused Sparse Overlapping Group Lasso Model

The a-FSOGL model is an extension of the combination of fused and sparse group lasso,

which can handle overlapping groups of β and allows different tuning parameters for each

group. As shown in Table 1, the sparse group penalty can perform variable selection at both

individual and group level. Thus, this penalty term incorporates the prior information on the

potential areas-of-interest and the anatomical divisions by splitting β into groups, which in-

cludes/excludes each area entirely and allows some individual voxels to be excluded/included.

The elements of a group of β correspond to the HbO and HbR concentration changes at the

voxels in a division of the potential area. The covariance matrix of β can be used to apply

the hemodynamics prior to constraining the HbO and HbR concentration changes at the

same voxel to be anti-correlated. In addition, since the hemoglobin concentration changes

within a group are not independent, the fused lasso penalty term is added to minimize the

hemoglobin concentration changes at neighboring voxels. Previous study [112] shows that

the variable selection exhibited by the lasso model is inconsistent except for a specific non-

trivial condition and develops the adaptive lasso model to reach consistent variable selection

by using different tuning parameter for each coefficient. For the same reason, adaptive fused

lasso [113] and adaptive groups [114] have also been proposed. Similarly, here we also use

the adaptive version of regularization.

It is difficult to precisely split the cortex into regions-of-interest (ROI) at the voxel level,

since some voxels can potentially belong to multiple groups depending on how the atlas

is defined. For example, we found the specific parcellation of Brodmann Areas for which

came from the Talriarch Daemon atlas [90], which is used in the simulation study of this
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paper, assigns some voxels into multiple groups, especially those around and on the border

between two areas, i.e., the neighboring two groups overlap to each other. Previous studies

[115, 116] demonstrated that the overlapping group lasso is equivalent to a regular group

lasso by duplicating the covariates belonging to multiple groups as shown in Fig. 6.1.

𝛃!

𝛃"

𝛃#

𝐗 #

↑
𝛃

= 𝛃!

𝛃"

𝛃#

𝐗 #

0

+ 𝐗 #

0

0

+ 𝐗 #

0

= 𝐗#, 𝐗!, 𝐗" # 𝛃!

𝛃"

𝛃#

= 𝐗& # 𝛃&

Figure 6.1: An example demonstrating the equivalence between an overlapping group lasso

and a regular group lasso with duplicated covariates. β1, β2, and β3 are the three groups of β

where there exist overlaps between β1, β2 and β2, β3. X1, X2 and X3 are the submatrix of X

corresponding to β1, β2, and β2 respectively. X̃ and β̃ are the constructed by concatenating

X1, X2, X3 and β1, β2, β3 with duplicating the overlapping parts, respectively.

From previous studies [34, 33], we can obtain the covariance matrix of the measurements

error, Cν , from the channel space analysis of the given fNIRS dataset. To reduce the

number of optimization parameters in the model, the correlation of the error term can be

removed through whitening transformation. Let W denote the Cholesky decomposition of

C−1
ν , i.e., WTW = C−1

ν . X and y can be transformed via X∗ = WX and y∗ = Wy.

The optimization problem using the transformed variables is equivalent to the original one

involving the covariance matrix. To maintain conciseness of the notation, X, y, and β will

represent the expanded and decorrelated variables, X̃∗, y∗, and β̃ in the remaining part of

this paper.
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The a-FSOGL is proposed to estimate β by minimizing the cost function shown in

Eq. 6.5.

β̂ = arg min
β

‖y −Xβ‖2 +
G∑
g=1

λg

[
θγ
∥∥∥βg∥∥∥

1
+ (1− γ)

∥∥∥Dgβg

∥∥∥
1

+ (1− θ)γ
∥∥∥βg∥∥∥

C−1
βg

]
(6.5)

Here λg ≥ 0 is the tuning parameter for the g-th group controlling the overall level of

regularization, and θ, γ ∈ [0, 1] are the two parameters jointly define the weights of the three

penalty terms [117]. When θ or γ = 0 or 1 , some penalty terms are dropped and the

minimization degenerates into a subset of a-FSOGL. For example, when θ = 1 and γ = 1,

the model reduces to a standard adaptive lasso, etc. Let mg denote the number of elements

in βg and qg denote the number of connected voxel pairs in βg. Note that mg equals double

of the number of voxels (HbO and HbR for each voxel in the group, and
∑G

g=1mg = P .

Then Dg is a qg ×mg matrix encoding the spatial structure of βg. A simple example of Dg

is shown in Fig. 6.2.

𝛽!,#

𝛽!,$
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Figure 6.2: A simple example of Dg. The left diagram shows the structure of βg where there

are four elements (represented by the solid circles) and five connected pairs (connections

represented by the solid lines). Thus, Dg is a 5 × 4 matrix, in which each row represents

a connected pair by assigning 1 and -1 to the columns corresponding to the indices of the

two elements of the pair and 0 to the remaining columns. Finally,
∥∥∥Dβg∥∥∥

1
provides the

summation of the absolute differences between βs of each paired connection in the spatial

structure.

Note that in this paper we arrange the HbO changes as the first mg
2

elements of βg and

the HbR changes as the second half elements. Dg can be decomposed into four qg
2
× mg

2

submatices. The two submatrices on the diagonal are identical, and each of them represents
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the spatial structure of the voxels. The two off-diagonal submatrices are both zero matrix

as HbO and HbR changes are not expected to be equal.

6.3.1.1 Bayesian Hierarchical Modeling and Prior Distributions The number of

parameters need to be optimized in a-FSOGL is usually more than 1,000 including βg and

its covariance matrix. Searching in such a high-dimensional solution space and maintaining

the semipositive definiteness of the covariance matrix are challenging using the conventional

gradient-based minimization algorithms. In this subsection, we propose the hierarchical

Bayesian a-FSOGL (Ba-FSOGL) based on the contributions of previous studies [94, 95, 97,

98] and extend it to handle correlated coefficients by involving the covariance matrix.

Similar to previous studies [94], the conditional prior of β for the model in Eq.6.5 can

be written as Eq. 6.6.

π
(
β | σ2,Cβg ,Dg

)
∝ exp

− 1

σ

G∑
g=1

λg

[
θγ
∥∥∥βg∥∥∥

1
+ (1− γ)

∥∥∥Dgβg

∥∥∥
1

+ (1− θ)γ
∥∥∥βg∥∥∥

C−1
βg

]
(6.6)

We introduce the hierarchical model with the latent parameters:

y | X,β, σ2 ∼ NN
(
Xβ, σ2I

)
(6.7)

where Nn(µ,Σ) denotes a n-dimensional multivariate normal distribution with a mean

vector µ and a covariance matrix Σ, and σ2 is the noise variance in the measurement space.

For the g-th group, we introduce the prior distribution of βg as follows.

βg | X,Σg, σ
2 ∼ Nmg

(
0, σ2Σg

)
(6.8)

The inverse of the covariance matrix Σg should have the following structure reflecting

the constrains from the three penalty terms in the model from Eq. 6.5.

Σg =

[
Ψ−1
g + DT

g Φ−1
g Dg +

(
τ 2
gCβg

)−1
]−1

(6.9)
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The Ψg matrix defines the variance of each element of βg, which allows variable selection

at individual level with the following structure.

Ψg =


ψ2
g,1 0 · · · 0

0 ψ2
g,2

. . . 0
...

. . . . . .
...

0 0 · · · ψ2
g,mg


(6.10)

The matrix DT
g Φ−1

g Dg incorporates the effect of fused lasso into the model where

Φg =


φ2
g,1 0 · · · 0

0 φ2
g,2

. . . 0
...

. . . . . .
...

0 0 · · · φ2
g,qg


(6.11)

The matrix τ 2
gCβg holds the group level variable selection where τ 2

g is the common vari-

ance term of βg and Cβg is a semi-positive definite matrix constraining the relationship

between the elements among βg. In the case of fNIRS image reconstruction, the first half

elements of βg represents the HbO and the other half represents the HbR changes within a

region. Hence, considering the common variance has been determined by τ 2
g , Cβg only needs

to reflect the anti-correlation between HbO and HbR changes as well as the fraction of HbR

changes to HbO changes. Thus, we define Cβg as a mg ×mg matrix.

Cβg =

 1 ρgζg

ρgζg ζ2
g

⊗ Img/2

ρg ∼ U(−1, 0) and ζg ∼ U(0, 1)

(6.12)

where ⊗ stands for Kronecker product and U(a, b) denotes a uniform distribution between

[a, b]. The −1 ≤ ρg ≤ 0 ensures the negative correlation between HbO and HbR changes,

and 0 ≤ ζg ≤ 1 maintains the amplitude of the HbR change is smaller than that of HbO

change at the same voxel.

We place the following multivariate prior in Eq. 6.13 on Σg (ψ2
g,1, · · ·ψ2

g,mg , φ
2
g,1, · · ·φ2

g,qgτ
2
g )

to achieve the expected form of marginal posterior π
(
β | σ2,Cβg ,Dg

)
.
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π
(
Σg

)
=π
(
ψ2
g,1, · · ·ψ2

g,mg , φ
2
g,1, · · ·φ2

g,qgτ
2
g

)
= constant · det

(
Σg

) 1
2

·
mg∏
p=1

(ψ2
g,p

)− 1
2

(
λgθγ

)2

2
exp

−(λgθγ)2
ψ2
g,p

2




·
qg∏
k=1

(φ2
g,k

)− 1
2

(λg(1−γ))2

2
exp

−(λg(1− γ)
)2
φ2
g,k

2




·
(
τ 2
g

)− 1
2

(
λg(1− θ)γ

)2

2
exp

−(λg(1− θ)γ)2
τ 2
g

2

 (6.13)

For each g = 1, . . . , G, similar to Eq. (16) in [94], the marginal distribution of βg can

be derived by Eq. 6.14 . The number below the ellipsis in Eq. 6.14 denotes the number of

integral operators omitted.

∫ +∞

0

· · · · · ·︸ ︷︷ ︸
mg−1

∫ +∞

0

· · · · · ·︸ ︷︷ ︸
qg−1

∫ +∞

0

π
(
βg | X,Σg, σ

2
)
π
(
Σg

)
·
mg∏
p=1

dψ2
g,p

qg∏
k=1

dφ2
g,k dτ 2

g

∝
∫ +∞

0

· · · · · ·︸ ︷︷ ︸
mg−1

∫ +∞

0

· · · · · ·︸ ︷︷ ︸
qg−1

∫ +∞

0



det
(
Σg

) 1
2
∏mg

p=1

[(
ψ2
g,p

)− 1
2 (λgθγ)

2

2
exp

(
−(λgθγ)

2
ψ2
g,p

2

)]

·
∏qg

k=1

[(
φ2
g,k

)− 1
2 (λg(1−γ))

2

2
exp

(
−(λg(1−γ))

2
φ2g,k

2

)]

·
(
τ 2
g

)− 1
2

(λg(1−θ)γ)2

2
exp

(
−(λg(1−θ)γ)

2
τ2g

2

)
·
∏mg

p=1 dψ2
g,p

∏qg
k=1 dφ2

g,kdτ
2
g


∝
∫ +∞

0

· · · · · ·︸ ︷︷ ︸
mg−2

∫ +∞

0

exp

(
−
βT
g Ψ−1

g βg
2σ2

)
mg∏
p=1

(
ψ2
g,p

)− 1
2

(
λgθγ

)2

2
exp

−(λgθγ)2
ψ2
g,p

2

 dψ2
g,p

·
∫ +∞

0

· · · · · ·︸ ︷︷ ︸
qg−2

∫ +∞

0

exp

(
−
βT
g DT

g Φ−1
g Dgβg

2σ2

)
qg∏
k=1


(
φ2
g,k

)− 1
2 (λg(1−γ))

2

2

· exp

(
−(λg(1−γ))

2
φ2g,k

2

)
dφ2

g,k


·
∫ +∞

0

exp

(
−
βT
g C−1

β βg
2σ2τ 2

g

)(
τ 2
g

)− 1
2

(
λg(1− θ)γ

)2

2
exp

−(λg(1− θ)γ)2
τ 2
g

2

 dτ 2
g
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∝ exp

−λgσ
[
θγ
∥∥∥βg∥∥∥

1
+ (1− γ)

∥∥∥Dgβg

∥∥∥
1

+ (1− θ)γ
∥∥∥βg∥∥∥

C−1
βg

] (6.14)

where π
(
βg | X,Σg, σ

2
)

is the probability density function of the prior distribution of βg

defined by Eq. 6.8. The last step of Eq. 6.14 is based on Eq. 6.15, which demonstrates the

double-exponential (Laplace) distribution is a scale mixture of a Gaussian distribution with

an exponential density.

a

2
exp(−a|z|) =

∫ ∞
0

1√
2πt

exp

(
−z

2

2t

)
a2

2
exp

(
−a

2

2
t

)
dt (6.15)

The conditional prior can be calculated by the product of Eq. 6.14 for g = 1 through G

given by Eq. 6.16, which satisfies the conditional prior of βg anticipated in Eq. 6.6.

G∏
g=1

constant · exp

λgσ
[
θγ
∥∥∥βg∥∥∥

1
+ (1− γ)

∥∥∥Dgβg

∥∥∥
1

+ (1− θ)γ
∥∥∥βg∥∥∥

C−1
β

]
= constant · exp

 1

σ

G∑
g=1

λg

[
θγ
∥∥∥βg∥∥∥

1
+ (1− γ)

∥∥∥Dgβg

∥∥∥
1

+ (1− θ)γ
∥∥∥βg∥∥∥

C−1
β

]
(6.16)

6.3.1.2 Gibbs Sampling from Full Conditional Distributions With the hierarchi-

cal model described in Section 6.3.1.1, βg can be estimated using its empirical posterior

distribution obtained by Gibbs sampling, which requires the full conditional distribution –

the posterior distribution depending on all remaining parameters – of every model parameter.

This section will show the steps for calculating the full conditional distributions.

Similar to previous studies, we can interpose an inverse gamma (ig) hyperprior for σ2 in

addition to the prior distributions given in Section 6.3.1.1 defined in Eq. 6.17.

σ2 ∼ ig(r, s) (6.17)

where r and s are the shape and scale hyperparameter of inverse gamma distribution. The

joint posterior probability density function (PDF) of β, Ψ2, Φ2, τ 2, ρ, ζ given X, y is shown

in Eq. 6.18.
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Let Ag = XT
g Xg + Σ−1

g where Xg is a submatrix of X containing the columns corre-

sponding to βg. The terms involving βg can be written as Eq. 6.19, which is proportional

to the PDF of a multivariate normal distribution.
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The full conditional posterior of βg is therefore

βg | rest ∼ Nmg

A−1
g XT

g

y −
∑
g′ 6=g

Xg′βg′

 , σ2A−1
g

 (6.20)
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where rest represents all the remaining parameters. Following similar steps, we can derive

the full conditional posterior of the other parameters shown as follows.

1
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where iG(µ, υ) denotes an inverse Gaussian distribution with mean µ and scale parameters

υ.

Let βHbO
g,1 . . . βHbO

g,
mg
2

and βHbR
g,1 . . . βHbR

g,
mg
2

respectively denote the HbO and HbR changes at

the mg
2

positions in the g-th group. The term involving Cβg can be expanded as Eq. 6.25
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The full conditionals for ζg and ρg are respectively proportional to Eq. 6.26
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With the full conditional distributions of the parameters in the model, one can estimate

the marginal distribution of β using a Markov chain Monte Carlo (MCMC) method – Gibbs

sampler. In each sampling iteration, every parameter is sampled from its full conditional dis-

tribution using the values of the remaining parameters sampled from the previous iteration.

Note that full conditionals of ρ, ζ are not known distributions, which cannot be sampled

directly. We plug in Metropolis-Hastings sampler within each Gibbs sampling iteration to

obtain the samples of ρ, ζ [73]. After the sampling chain converges, β can be estimated by

the mean or median of its samples.

6.3.1.3 Choosing the Tuning Parameters The tuning parameter λg determines the

level of regularization. In this study, we choose the tuning parameter using a stochastic

approximation-based single-step approach proposed by previous studies [95, 118] for a given

dataset X, y, which is a computationally economical single-step approach.

In the i-th sampling iteration of our framework, transforming the tuning parameter by

δg = log λg, we update δg following the rule δ
(i)
g = δ

(i−1)
g + uj ·

(
∂LL
∂δg

)
where LL is the log-

likelihood function of λg and {ui} is a positive sequence satisfying the following conditions:

1. ui monotonically decreases and converges to 0 as i increases;

2.
∑+∞

i=1 ui =∞;

3.
∑+∞

i=1 u
2
i <∞

In the simulation study of this paper, ui is set to be the terms of a scaled harmonic

series ui = 10−3

i
. The scaling factor, 10−3, determines the optimization step size selected by

preliminary trials. We need to find a moderate value, with which the algorithm coverges

within reasonable iterations time without diverging.
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6.3.1.4 Statistical Inference In frequentist framework, statistical inference of lasso-

based model is usually unnecessary since insignificant variables are forced to be zero. How-

ever, the probability to exactly hit any specific number from a continuous distribution is

zero. The samples from Gibbs sampler cannot give exact zero estimates no matter how

small they are. Statistical inference is required to determine the significance of variables in

Bayesian framework.

Two interval-based approaches [96] are used for the inference on every individual variable,

βp, in this study. First, βp is statistically significant if its credible interval (CI) excludes 0

and insignificant otherwise. Second, we calculate the posterior probability that βp is within

the scaled neighborhood interval

[
−
√

Var
(
βp | X,y

)
,
√

Var
(
βp | X,y

)]
. βp is considered

to be insignificant if this probability exceeds a certain threshold and significant otherwise. In

addition to the inference on individual variables, we also perform statistical inference on the

significance of the variables in a group, βg, as an entirety. The CIs of the random variable

βT
g Σ−1

g βg for all groups are compared. If the two intervals overlap to each other, the two

groups are not significantly different and vice versa.

Let α denote the level of the CI and η denote the probability threshold described above.

The selection of α and η affects the statistical inference. Previous studies show 95% (α =

0.05) CIs are usually too wide. Setting large values for α and η – narrow CI and difficult

threshold – would lead to high sensitivity but low specificity, and vice versa. The previous

study [96] suggests moderate values α = 0.05 and η = 0.05 in practice, which are used in

this paper.

6.3.2 Simulation Study

In this paper, we validate the proposed model by applying Ba-FSOGL to simulated

fNIRS datasets and comparing the reconstructed images with the simulated truth images.

The fNIRS datasets are simulated using the Brain AnalyzIR toolbox [31]. In each iteration

of simulation, brain activities are simulated within a specific Brodmann area (BA). The BA

membership of each voxel of the atlas is used as the anatomical prior information for the

image reconstruction.
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6.3.2.1 Probe Configuration The probe used in the simulation study is the same as

the one used in a previous publication. It contains nine light sources and eight detec-

tors. Sources and detectors are respectively aligned, and the distances between neighboring

sources/detectors are 20 mm. The source alignment is placed 25 mm apart from the detector

alignment. The optical density is only measured between the nearest source-detector pairs.

Hence, there are 32 (two wavelengths, 16 for HbO and the other 16 for HbR) channels defined

in this probe. Fig. 6.3(a) shows the 2D layout of the probe in Cartesian coordinate system.

The registration of the probe is constrained by an anchor and three attractors. Similar to

the use of these terms in the AtlasViewer program [10], in the Brain AnalyzIR toolbox [31]

, an anchor forcibly places a point of the probe layout (Fig. 6.3(a)) on the 10-20 system,

and an attractor defines the direction to pull the probe. In this case, the origin of the probe

(0, 0) in the 2D layout is anchored to the site Fpz. Three attractors are placed at positions

(±200, 0) and (0, 100) in the 2D layout and attached to T7, T8, and Cz respectively, which

define three forces pulling the probe along negative/positive horizontal axis and positive

vertical axis to T7, T8, and Cz. An iterative least-squares minimization algorithm is used

to register the probe based on the optimal source-detector pair spacings and the location

of the anchor/attractor. Unit vectors are constructed using attractors to provide direction,

which are updated with every iteration of the algorithm. The registered probe is shown in

Fig. 6.3(b) and (c) using 10-20 (Mercator) projection and 3D geometry on an example head.

6.3.2.2 Pre-selection on Regions-of-interest The probe used in this study has a

low-density style configuration that is frequently used in fNIRS studies due to the ease and

economicalness of use. This style of probe has “blind-spots” because of regions of low-

sensitivity to underlying brain activity [83]. The brain activity within the areas falling into

blind-spots cannot be detected by the probe. Thus, we need to determine the detectable

regions-of-interest before the simulation study.

Fig. 6.4 is a bar chart for the relative sensitivity to each Brodmann area (BA) using the

probe. Due to the symmetry of the probe and the two brain hemispheres, we only simulate

activities within the Brodmann areas on the left hemisphere. Thus, the Brodmann areas

on the right side are omitted in Fig. 6.4. The values in the plot are calculated by summing
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Figure 6.3: The topology of the probe used in the simulation: (a) The 2D layout in Cartesian

coordinate system, (b) The registered probe with 10-20 system, and (c) The 3D geometry of

the probe registered on an example head.

up the forward model of all voxels within each area, then scaling the values by the largest

sensitivity among all areas. From the figure, we can see that the probe is most sensitive

to BA-10 followed by BA-46, BA-45, and BA-11. For the remaining regions, considering

the sensitivities are less than 1
30

of BA-10, which means the brain activity in any one of

these regions cannot survive from the physiological noise in BA-10 unless the signal-to-noise

(SNR) is impractically greater than 900, a reasonable brain activity in these regions is not

observable using this probe, so we will not generate brain activity in these regions. BA-11

is located at the bottom of the frontal lobe of brain, i.e., right beneath BA-10. The two

regions are covered by the same source-detector pairs of the probe used in this study, and

the light sent from those sources goes through both regions. A brain activity in BA-11

consequently always results in a smaller false positive (FP) in BA-10, since it is closer to

the probe and regularization-based approaches tend to select variables with smaller values.

Therefore, BA-11 is another region that will not be used in the simulation.
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Figure 6.4: Scaled sensitivity of each Brodmann area to the probe. The values in the plot

are calculated by summing up the forward model of all voxels within each area, then scaling

the values by the largest sensitivity among all areas. Due to the symmetry of the brain,

only the left regions are shown here. Note that 1) the scaled sensitivities in this plot are

calculated based on the specific probe in this study; 2) voxels apart from the nearest channel

further than 5 cm are excluded, so the entirely excluded regions are not shown in this plot

(e.g., BA-39, etc.)

Brain activities in BA-10, BA-45, and BA-46, both left and right side, will be considered

as the regions-of-interest using the probe. Fig. 6.5 (a) – (c) show the locations of the three left

regions on the cortex as well as their relative positions to the probe. Fig. 6.5 (d) demonstrates

the most sensitive area from each channel where we can see the middle four channels are

more sensitive to BA-10 while the lateral two channels are more sensitive to BA-46. There

is no channel most sensitive to BA-45 because it is further from all channels of the probe

than BA-10 and BA-46.

6.3.2.3 Stimulus Generation The fNIRS data is simulated by adding stimulation on

autoregressive noise. The time difference between two neighboring stimuli is exponentially
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(d) Channel Sensitivity

Figure 6.5: (a) – (c) The locations of left BA-10, BA-45, and BA-46 on the cortex as well as

their relative positions to the probe. (d) The most sensitive area from each channel. Note

that the right side is omitted due to the symmetry.

distributed. The hemodynamic response to the stimulus is simulated using canonical hemo-

dynamic response function. The peaks of HbO and HbR concentration changes are 7 and

-2 µM (micromolar, a.k.a., µmol/L) respectively. In brief, simulated “brain” activity within

the ROI (true positive) is computed and projected to fNIRS channel/measurement space

via the optical forward model. The details are described in Ref. [31]. In each iteration of

simulations, we simulate the stimulus in only one ROIs, and both stimulus added data and

the corresponding noise data will be reconstructed using Ba-FSOGL. Since the left and right

three ROIs are mirrored correspondingly, only the left three regions are used to generate

stimulus to avoid complexity. For each of the three regions, BA-10 left, BA-45 left, and

BA-46 left, we simulate 100 datasets by adding stimulus in the corresponding regions to

noise data using Brain AnalyzIR toolbox, and the 100 noise-only datasets are also retained

for estimating false positive rate (FPR). To sum up, 600 datasets – 300 activity-present and

300 noise-only – are simulated in this study.
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6.3.2.4 Image Reconstruction Evaluation We will evaluate the reconstructed images

using conventional indicators and receiver operating characteristics (ROC) performance. The

two conventional indicators are mean squared error (MSE) and contrast-to-noise (CNR)

defined as follows:

MSEHbX =
1

P/2

∥∥∥βHbX − β̂HbX

∥∥∥2

2
(6.27)

CNRHbX = 10× log10


∥∥∥β̂HbX

∥∥∥2

2∥∥∥βHbX − β̂HbX

∥∥∥2

2

 (6.28)

where βHbX and β̂HbX are the ground truth and estimates for HbO/HbR changes from a

given dataset. Note that the averaging factor of MSE is P
2

because βHbO and βHbR are the

two halves of β with an equal length. MSE measures the average of the difference between

the truth and the reconstructed images and CNR shows the ability to distinguish brain

activities from the background noise.

The ROC used in this study is called ROI-ROC [43, 44]. Note that the term “ROI” used

in this paragraph has a different definition from that in the remaining sections of this paper.

Here the ROI refers to any area with a rating. In the evaluation of the image reconstruction

results, two levels of ROI are used – voxel and BA level. The ROC performance of the

model is evaluated per the active region. For brain activity in each of the three BAs, the

estimated HbO and HbR changes at each voxel of the 200 datasets (100 activity-present

and 100 noise-only) are respectively concatenated, in which the hemoglobin changes for the

voxels in an active region will be considered as true positives (TP) and FPs otherwise. The

values of βT
g Σ−1

g βg for the six BAs are concatenated with the same definitions of TP and

FP from the 200 datasets. Thus, we can draw three ROC curves – two at the voxel level

(HbO and HbR) and one at the BA level, in which the estimated HbO change, the negative

estimated HbR change (as the HbR change in an active region is negative), and βT
g Σ−1

g βg

are respectively used as the ROI-ROC rating to construct the ROI-ROC curve.
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6.3.2.5 Choosing Hyperparameters and Initial Values Bayesian approach requires

a reasonable selection on the hyperparameters and initial values, especially for high-dimensional

problems. We will discuss how to determine these values in this section.

First, the hyperparameters r and s for the hyperprior distribution of σ2, given in Eq. 6.17,

are determined by preliminary trials. In this study, we find that the magnitude of the samples

of σ2 should be around 0.005 so that the samples of β can fluctuate from zero but not be too

large to break the Gibbs sampler. To limit σ2 within a reasonable range, we set r = 2500

and s = 0. Then it is found that the initial value of the tuning parameter λg can affect the

image reconstruction result, although the algorithm optimizes it during the Gibbs sampling

process, which is a common problem that different start points may lead an optimization

process to different local optimass. In this study, we perform channel-space ROI analysis for

all ROIs before the image reconstruction following the method described in a previous study

[74]. The channel-space analysis can provide the prior information on which ROI has the

most significant activity by comparing their channel-space ROI statistics. Then we apply

Ba-FSOGL to the dataset to reconstruct images with multiple initial λg. Note that λg starts

from the same value for all ROIs in each time of image reconstruction. After obtaining

the reconstructed images using multiple initial values, we can determine which is the best

estimation based on the channel-space analysis. If no significant activity is found from any

ROI (no p-value ¡ 0.05), this dataset will be considered as a noise-only dataset, for which

we know the ground truth is all zeros. The initial λg generating the minimum MSE will be

selected as the final result of the image reconstruction. If significant activities are found in

at least one ROI, the most significant (with the smallest p-value) ROI will be considered to

contain the brain activity. Although the values of HbO and HbR changes are unknown, we

can construct an ROC curve for the reconstructed image using each initial λg. In addition,

the MSE for the remaining ROIs can be calculated since we know there is no activity in these

ROIs and the HbO and HbR changes are expected to be zero. The optimal initial value of

λg can be selected based on the area under the ROC curve (AUC) and the MSE. Fig. 6.6

is an example of image reconstruction for a simulation dataset containing brain activity

within BA-46 left area. The channel-space analysis demonstrates that BA-46 left area is

the most active one among the six Brodmann ROIs. The left panel of the figure shows the
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image reconstruction on HbO while the right panel is for HbR. The bottom two heatmaps

concludes the image reconstruction results using 50 initial λg values from 0.05 to 2.5. Each

column represents a reconstructed image using the initial λg indicated on the horizontal axis.

The image is split into six parts along the vertical axis whose ROI membership is indicated

on the axis. The color of the heatmap represents the value of the HbO/HbR change. The

truth values are annotated on the legends. The four line plots show the ROC AUC and

MSE described above. From this figures, we can see that image reconstructions with initial

λg < 0.3 are completely off the target where a brain activity stronger (brighter color) than

the simulated ground truth is estimated at a different ROI (BA-45 left instead of BA-46 left),

so it is not surprised that the ROC AUCs are lower and the MSEs are higher in this range

of initial λg. It is widely known that the solution for an underdetermined inverse problem is

not unique. As the level of regularization increases, the optimization tends to select variables

with smaller coefficients. This nature of regularization methods can be seen from this figure.

Since BA-45 left is further from the probe than BA-46 left, a same measurement vector y

can be obtained with a larger brain activity in BA-45 left or a smaller one in BA-46 left with

different noise. Thus, the larger activity in BA-45 left is preferred by small initial λg while

the smaller on in BA-46 left is preferred by larger initial λg. To select the best initial λg, we

can compare their AUCs and MSEs. As we can see from the line plots of Fig. 6.6, the AUCs

are stable around a high level for initial λg > 0.5 while the MSE continues decreasing until

2.4. Thus, the optimal initial value of λg for this dataset is about 2.4.

A question may be raised about the search range of the initial λg. From this study, we

find that the results for initial λg > 2.5 are stable and similar until it is over-regularized

around initial λg = 10 and gives an all-zero estimation. Thus, we will omit the results for

initial λg > 2.5 and only select initial λg from the range shown in Fig. 6.6.

Two more hyperparameters need to be determined are θ and γ controlling the weights

of the three penalty terms. These two hyperparameters can be selected based on prior

knowledge and preliminary trials. For example, simulation datasets are used in this study,

in which the brain activities are uniform within the active region and anti-correlation between

HbO and HbR changes are properly simulated. Thus, we need a large weight for the fused

and group lasso penalty terms but a small weight for the sparse penalty term. After some
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Figure 6.6: An example of image reconstruction for a simulation dataset containing brain

activity within BA-46 left area. The left panel of the figure shows the image reconstruction

on HbO while the right panel is for HbR. The bottom two heatmaps conclude the image

reconstruction results using 50 initial λg values from 0.05 to 2.5. Each column represents a

reconstructed image using the initial λg indicated on the horizontal axis. The image is split

into six parts along the vertical axis whose ROI membership is indicated on the axis. The

color of the heatmap represents the value of the HbO/HbR change. The truth values are

annotated on the legends. The two line plots shows the ROC AUC and MSE.

preliminary trials, we select θ = 0.125 and γ = 0.4, which assigns 0.05, 0.6, and 0.35 as the

weight of the sparse, fused, and group lasso penalty term respectively. This combination of

weights results in fairly uniform brain activity and anti-correlated HbO and HbR changes. If

there is little prior information on the penalty weights is known, we can still use the approach

described in this section for selecting λg to determine θ and γ.
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6.3.3 Implementation of fNIRS Data Simulation and Gibbs Sampler

The simulation of fNIRS brain image data has already been implemented in the Brain

AnalyzIR toolbox – an open-source MATLAB-based analysis toolbox for fNIRS data. This

section describes the main components of fNIRS data simulation in the toolbox as well as

the Gibbs sampler implementation.

6.3.3.1 Forward Model The AnalyzIR toolbox provides accesses to third-party optical

forward model solvers including NIRFAST [79, 85], Mesh-based Monte Carlo (MMC; [86, 87])

and Monte Carlo Extreme (MCX; [25, 88]), which allow construction and import of individual

head models from anatomical MRI volumes. We can use these solvers to generate the

optical forward model with either atlas-based or individual MRI head models. However, since

the computation of optical forward models is usually time consuming and furthermore the

individual-level anatomical modeling is not always available for all subjects (e.g. pediatric

fNIRS studies), the default options in the AnalyzIR toolbox, which are also used in this

study, utilize a pre-segmented head model derived from the Colin-27 atlas [81].

6.3.3.2 Brodmann Area Parcellation The fNIRS AnalyzIR toolbox contains atlas-

based parcellations of the Colin-27 atlas brain [81] based on several packages including

the automatic-anatomical labeling model (AAL2) [119], the Freesurfer Desikan-Killiany atla

[120], Human-Connectome Project MSM atlas [121], and Broadmann area labels from both

the Talairach Daemon [90] and the MRIcron provided atlas [122]. In this work, the Talairach

Daemon labeling of the Brodmann areas was used.

6.3.3.3 Gibbs Sampler Implementation For each of the 600 datasets, we apply the

proposed Ba-FSOGL model with 50 different initial λg for image reconstruction and select the

optimal estimated images following the method described in Section 6.3.1.3. The Gibbs sam-

pler for the Ba-FSOGL model is implemented in MATLAB using its built-in random number

generators for sampling from multivariate normal, inverse gamma, and inverse Gaussian dis-

tributions. For a specific fNIRS dataset with a given value of initial λg, the Gibbs sampler
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runs 100,000 sampling iterations, in which the first 10,000 iterations are abandoned as the

burn-in period and the samples are extracted every 9 iterations in the remaining 90,000

iterations to maintain the independence among the output samples as nearby samples in

a Markov chain are not independent. Finally, 10,000 samples are finally retained from the

Gibbs sampling process for estimating β.

6.4 Results

In this study, we run the image reconstruction model 600 (simulation datasets) × 50

(initial values for λg) = 30,000 times in total. Each time the model costs approximately an

hour to return the final result using MATLAB R2020a on macOS 10.15.6, Intel Core i7 2.6

GHz 6-core CPU, and 16 GByte memory. The entire 30,000-hour task was parallelly com-

pleted on a large-scale computer cluster. The results of the image reconstruction, statistical

inference, and image evaluation are summarized in this section.

6.4.1 Reconstructed Image

Fig. 6.6 – Fig. 6.10 show the truth and averaged reconstructed images for the datasets

with BA-10 left, BA-45 left, BA-46 left, and no area (noise-only) active respectively, which

provide a visual comparison of the image reconstruction to the ground truth. In each figure,

the two rows contain the images for HbO and HbR, respectively. The left column displays

the two ground truth images whose colors are annotated on the color bar. The images in the

remaining column(s) are the averaged reconstructed images where true and false positives

are listed separately. Note that the color for the ground truth is preserved on the same color

scale, i.e., 0, 7, and -2 are colored the same across the four figures while the color scales

for other values are different (see the color bar). The fraction under the column title of

true/false positive indicates the proportion of successful/failed image reconstructions that

are obtained to generate the averaged images. From Fig. 6.7 – Fig. 6.9, we can see that

most of the datasets containing brain activity – 100%, 81%, and 96% for activity within
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BA-10 left, BA-45 left, and BA-46 left respectively – are successfully reconstructed as TPs,

although the reconstructed activities are slightly smaller (lighter color) than the simulated

truth. However, a small fraction of FPs can still be seen in Fig. 6.8 – Fig. 6.10. Since

BA-45 left and BA-46 left are at the side of the probe and BA-45 left is further to the

probe, the optical measurements for the activity within BA-45 left are sometimes similar to

those for a smaller activity within BA-46 left, and vice versa, as explained in Section 6.3.1.3.

Therefore, smaller activity (lighter color) in BA-46 left is reconstructed as FPs from 19%

of the datasets containing activity within BA-45 left, and 4% FPs are obtained from BA-46

left active datasets with larger brain activity (darker color) in BA-45 left. In addition, slight

FPs are shown in BA-10 left in 1% of the noise datasets.
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Figure 6.7: The ground truth and averaged reconstructed image for the datasets with activity

in BA-10 left. The two rows indicate the images for HbO and HbR respectively. The left

column displays the two ground truth images whose colors are annotated on the color bar.

The two images in the right column are the averaged images that successfully recover a brain

activity in BA-10 left (true positives). In this case, all 100 datasets are successfully recovered

with a slightly smaller activity.
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Figure 6.8: The ground truth and averaged reconstructed images for the datasets with

activity in BA-45 left. The two rows indicate the images for HbO and HbR respectively.

The left column displays the two ground truth images whose colors are annotated on the

color bar. The two images in the middle column are the averaged images that successfully

recover a brain activity in BA-45 left (true positives). The two images in the right column

are the averaged images that recover a brain activity in regions other than BA-45 left (false

positives). In this case, 81 TPs and 19 FPs are obtained.

6.4.2 Statistical Inference

Fig. 6.11 – Fig. 6.14 show the statistical inference results for the image reconstruction

of datasets with brain activity simulated in BA-10 left, BA-45 left, BA-46 left, and no area

(noise-only) active respectively. Each of the four figures consists of four subplots. Subplots

in panels (a) are line plots showing a clear comparison between the ground truth and the

median of the estimates where we can see the absolute estimates for the voxels contained in

active regions are slightly lower than the ground truths from Fig. 6.11 (a) – Fig. 6.13 (a) and

the estimates for the noise data fluctuate around the truths within a small range in Fig. 6.14
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Figure 6.9: The ground truth and averaged reconstructed images for the datasets with

activity in BA-46 left. The two rows indicate the images for HbO and HbR respectively.

The left column displays the two ground truth images whose colors are annotated on the

color bar. The two images in the middle column are the averaged images that successfully

recover a brain activity in BA-46 left (true positives). The two images in the right column

are the averaged images that recover a brain activity in regions other than BA-46 left (false

positives). In this case, 96 TPs and 4 FPs are obtained.

(a). Subplots (b) – (d) summarize the inference using the three methods described in Section

6.3.1.4 respectively. Note that each point on the lines of the truth, estimate, CI limit, and

posterior probability in subplots (a) – (c) is calculated from the one million samples (10,000

samples/dataset × 100 datasets) for a specific HbO/HbR change at the voxel belonging

to the area distinguished by the white/grey color and indicated at the x-axis, i.e., every

point of the estimate line (dark blue in subplots (a) and (b)) represents the median, that

of the lower/upper limit line (red/green line in subplot (b)) represents the lower/upper 50%

quantile, and that of the posterior probability line (light blue line in subplot(c)) represents

the fraction of samples with in the scaled neighborhood interval. The boxplots in subplots
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Figure 6.10: The ground truth and averaged reconstructed images for the datasets without

brain activities. The two rows indicate the images for HbO and HbR respectively. The left

column displays the two ground truth images whose colors are annotated on the color bar.

The two images in the right column are the averaged images that recover a brain activity in

any region (false positives). In this case, three FPs out of 300 datasets are obtained.

(d) are calculated from the one million samples of βT
g Σ−1

g βg for the six regions. Note that

the number of samples used for generating Fig. 6.14 (a) – (d) is three million instead of one

million used in Fig. 6.11 – Fig. 6.13, since there are 300 noise-only datasets.

From the four subplots in Fig. 6.11 – Fig. 6.14, we can see the three approaches for

statistical inference described in Section 6.3.1.4 provide a consistent conclusion. It can be

seen from subplots (b) that only the CI of the active areas exclude 0. In subplots (c),

the posterior probability of the Gibbs samples within the scaled neighborhood interval is

only below the 50% threshold for the active areas. Subplots (d) show that only the active

areas have a non-overlapping CI with the remaining areas. That is to say that statistical

significance only appears in the truly active regions. Although there are a few exceptional
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Figure 6.11: Four subplots showing the statistical inference for the image reconstruction of

100 datasets with brain activity simulated in BA-10 left. (a) The line plot of the ground

truth and the estimated hemoglobin changes. (b) The estimated hemoglobin changes and

the 50% CIs. (c) The posterior probability that βp is within the scaled neighborhood interval[
−
√

Var
(
βp | X,y

)
,
√

Var
(
βp | X,y

)]
and the 50% probability threshold. (d) The boxplot

of βT
g Σ−1

g βg for all available Brodmann Areas. Note that each point of the lines in (a) –

(c) represents the value at a voxel belonging to the region indicated on the horizontal axis

and separated using the grey-shaded/white areas. Subplots (b) – (d) respectively show the

statistical inference via the three approaches described in Section 6.3.1.4, from which we can

conclude that the hemoglobin changes at most individual voxels in BA-10 left are significant

based on the CI and the probability within the scaled neighborhood interval, and the brain

activity in BA-10 left is significantly larger than that in the remaining ROIs as an entirety.
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Figure 6.12: Four subplots showing the statistical inference for the image reconstruction of

100 datasets with brain activity simulated in BA-45 left. (a) The line plot of the ground

truth and the estimated hemoglobin changes. (b) The estimated hemoglobin changes and

the 50% CIs. (c) The posterior probability that βp is within the scaled neighborhood interval[
−
√

Var
(
βp | X,y

)
,
√

Var
(
βp | X,y

)]
and the 50% probability threshold. (d) The boxplot

of βT
g Σ−1

g βg for all available Brodmann Areas. Note that each point of the lines in (a) –

(c) represents the value at a voxel belonging to the region indicated on the horizontal axis

and separated using the grey-shaded/white areas. Subplots (b) – (d) respectively show the

statistical inference via the three approaches described in Section 6.3.1.4, from which we can

conclude that the hemoglobin changes at all individual voxels in BA-45 left are significant

based on the CI and the probability within the scaled neighborhood interval, and the brain

activity in BA-45 left is significantly larger than that in the remaining ROIs as an entirety.

100



H
bO

H
bR

BA−10L BA−45L BA−46L BA−10R BA−45R BA−46R

−2.5

0.0

2.5

5.0

7.5

−2.5

0.0

2.5

5.0

7.5

Region

b

Estimate Truth

H
bO

H
bR

BA−10L BA−45L BA−46L BA−10R BA−45R BA−46R

−2.5

0.0

2.5

5.0

7.5

−2.5

0.0

2.5

5.0

7.5

Region

b

Estimate Lower Limit Upper Limit

H
bO

H
bR

BA−10L BA−45L BA−46L BA−10R BA−45R BA−46R

0

0.25

0.50

0.75

1

0

0.25

0.50

0.75

1

Region

Po
st

er
io

r P
ro

ba
bi

lit
y

Probability Threshold

0

2

4

6

8

BA−10L BA−45L BA−46L BA−10R BA−45R BA−46R
Region

b gT S
gb

g

μM μM(a) (b)

(c) (d)

𝛃 𝛃
𝛃 !"
𝚺 !#

$ 𝛃
!

Figure 6.13: Four subplots showing the statistical inference for the image reconstruction of

100 datasets with brain activity simulated in BA-46 left. (a) The line plot of the ground

truth and the estimated hemoglobin changes. (b) The estimated hemoglobin changes and

the 50% CIs. (c) The posterior probability that βp is within the scaled neighborhood interval[
−
√

Var
(
βp | X,y

)
,
√

Var
(
βp | X,y

)]
and the 50% probability threshold. (d) The boxplot

of βT
g Σ−1

g βg for all available Brodmann Areas. Note that each point of the lines in (a) –

(c) represents the value at a voxel belonging to the region indicated on the horizontal axis

and separated using the grey-shaded/white areas. Subplots (b) – (d) respectively show the

statistical inference via the three approaches described in Section 6.3.1.4, from which we can

conclude that the hemoglobin changes at most individual voxels in BA-46 left are significant

based on the CI and the probability within the scaled neighborhood interval, and the brain

activity in BA-46 left is significantly larger than that in the remaining ROIs as an entirety.
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Figure 6.14: Four subplots showing the statistical inference for the image reconstruction of

100 datasets with no brain activity simulated in any areas. (a) The line plot of the ground

truth and the estimated hemoglobin changes. (b) The estimated hemoglobin changes and

the 50% CIs. (c) The posterior probability that βp is within the scaled neighborhood interval[
−
√

Var
(
βp | X,y

)
,
√

Var
(
βp | X,y

)]
and the 50% probability threshold. (d) The boxplot

of βT
g Σ−1

g βg for all available Brodmann Areas. Note that each point of the lines in (a) –

(c) represents the value at a voxel belonging to the region indicated on the horizontal axis

and separated using the grey-shaded/white areas. Subplots (b) – (d) respectively show the

statistical inference via the three approaches described in Section 6.3.1.4, from which we can

conclude that the hemoglobin changes at all individual voxels are insignificant based on the

CI and the probability within the scaled neighborhood interval, and there is no brain activity

in any ROI that is significantly larger than that in the remaining ROIs as an entirety.
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voxels in active regions do not show statistical significance (type-II error), we never see any

statistical significance in any inactive regions (type-I error).

6.4.3 Image Evaluation

6.4.3.1 Mean Squared Error and Contrast-to-noise Ratio The results of MSE and

CNR are summarized in Table 6.2. For each dataset, the MSE and CNR are calculated using

Eq. 6.27 and 6.28. The median of MSE and CNR of each 100 datasets with activity in BA-10,

BA-45, and BA-46 left are shown in the table. Since CNR is not available for noise data,

we only list the MSE median of the 300 noise datasets here. The reason we use median

instead of mean of MSE and CNR here is because the FPs make remarkable detrimental

contributions to the mean values although there are only a few FP cases. The values in

this table indicate small discrepancies between the estimations and the simulation truths as

well as large contrasts to distinguish the reconstructed brain activities from the background

noise.

Table 6.2: The median of mean squared errors and the contrast-to-noise ratios (dB) of the

HbO and HbR changes estimation for the datasets with different active regions

MSE Median CNR Median (dB)

Active Region HbO HbR HbO HbR

BA-10 Left 0.42 0.07 12.03 9.01

BA-45 Left 0.55 0.11 10.42 7.29

BA-46 Left 1.34 0.12 7.24 6.61

None (noise) 1.84× 10−10 2.37× 10−10 NA NA

6.4.3.2 ROC Performance Fig. 6.15 shows the ROI-ROC curves for the image recon-

struction of the datasets with simulated activity in three different Brodmann Areas against

the corresponding noise data. The three active regions are indicated by the line color, and
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the two levels of ROC curve are indicated by the title of the three panels – two at voxel level

(HbO and HbR) and one at ROI level. The AUCs of the ROC curves are shown at the lower-

right corner of each panel. The AUC means the probability that the active voxels/regions

have a higher rating than the inactive ones. As we can see, the AUCs are all greater than

0.89, which indicates the good ROC performance of the Ba-FSOGL model on fNIRS image

reconstruction.
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Figure 6.15: The ROI-ROC curves for the image reconstruction of the datasets with simu-

lated activity in three different Brodmann Areas against the corresponding noise data. The

three active regions are indicated by the line color, and the two levels of ROC curve are

indicated by the title of the three panels – two at voxel level (HbO and HbR) and one at

ROI level. The large AUCs indicate the good ROC performance of the Ba-FSOGL model

on fNIRS image reconstruction.

In addition to the ROI-ROC performance, we also checked where FPs are easier to appear.

Our hypothesis is that it is more common to see FPs in the neighboring regions next to the

active region due to the low spatial resolution of fNIRS imaging. To test this hypothesis,

we report the FPR in different regions when the TPR in the active region achieves 80% in

Fig. 6.16, in which the subplots on the main diagonal of the plot matrix show the FPR in

the contralateral ROI whereas the remaining subplots show that in the neighboring ROIs.

As we can see, the FPRs in the contralateral ROIs are always smaller than those in the

neighboring ROIs especially when BA-45 left is active. Therefore, our hypothesis is valid.
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Figure 6.16: The bar chart showing the FPR in the region annotated at the up-left corner of

each subplot when the TPR in the active region achieves 80%. The active region is indicated

by the title of each column. The subplots on the main diagonal of the plot matrix show the

FPR in the contralateral ROI whereas the remaining subplots show that in the neighboring

ROIs. It can be seen that the FPRs in the contralateral ROIs are always smaller than those

in the neighboring ROIs especially when BA-45 left is active.

6.5 Discussion

In this paper, we have described the proposed Ba-FSOGL model that involves anatomical

and hemodynamics prior information in fNIRS image reconstruction and validated the model

via numerical simulations. Now we will discuss the findings from the results in the following

aspects.
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6.5.1 Advantages of Ba-FSOGL

The model proposed in this paper combines several common regularization terms. Each

of them applies a type of constraint to the model based on the prior information. The fused

lasso penalty minimizes the difference between neighboring connected coefficients. The group

lasso term selects or excludes variables in the same group as much as possible and maintains

the correlation between variables. The sparse term allows every individual variable in a group

to be selected or excluded. The variable transformation of overlapping group lasso resolves

the overlapping challenge by converting the problem into an equivalent regular minimization.

From the results we show in Section 6.4, we can see that the anatomy and hemodynamics

priors are all reflected in the reconstructed images. Thus, we can conclude the penalty terms

we include in the proposed model are all appropriate and necessary. In addition, we use the

adaptive version of regularization in this model, which allows different tuning parameters

for groups. This is also an important feature will be discussed in Section 6.5.2. Finally,

the model is solved in a Bayesian framework, which has several advantages over frequentist

approaches. First, the samples from the Markov chain can be used for uncertainty estimation

and statistical inference. Second, the optimization of the tuning parameters is integrated

into the Gibbs sampling process. Third, it is fairly easy to incorporate the prior information

into the model by involving multiple level latent variables. Lastly, the hierarchical approach

reduces the sensitivity of the latent variables to the measurement noise, especially in this

high-dimensional inverse problem. Although the model’s hierarchy is enough to include the

prior information of fNIRS image reconstruction, it is straightforward to extend the model

for a more complex problem if necessary. For example, if the measurement noise cannot

be easily decorrelated via whitening transformation, we can extend the model by replacing

the identity matrix in Eq.6.7 with the noise covariance matrix and adding an extra layer to

model its pattern. Although we only validate this method using Brodmann parcellation as

the anatomical prior, our model can actually handle different parcellation as long as the group

membership of each β is reasonably determined. For instance, one may use the parcellation

of motor cortex according to the motor homunculus for a movement-involved experiment.

Besides the anatomy and hemodynamic prior information considered in this paper, some the
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other types of prior information can also be incorporated using this model. For example,

taking the advantage of the adaptive tuning parameter, one may assign small penalty weight

for the group representing the area that is expected to be active in the experiment, e.g.,

Broca’s area for speech- or language-related tasks.

To sum up, each penalty term of the proposed Ba-FSOGL model appropriately incor-

porate a type of prior information of fNIRS image reconstruction. The Bayesian algorithm

allows statistical inference and provides extensionality.

6.5.2 Convergence of the Algorithm

The convergence for the algorithm usually needs to be examined for MCMC-based ap-

proaches. Here we show an example trace plot of λg for a dataset containing brain activity

in BA-46 left in Fig. 6.17.

It can be seen from the figure that the tuning parameter for the active region achieves

a stable range while those for the inactive regions still increase at the end of the sampling

chain. It looks diverging, however, the truth values of βg for inactive regions are zero.

Thus, the diverging tuning parameter indicates the estimates converges to the truth. We

examined all the trace plots and found they are all similar to Fig. 6.17. Therefore, we would

consider the algorithm successfully converges. This also proves that the use of the adaptive

regularization is necessary, since it allows the tuning parameter for different regions to be

different. Otherwise, the algorithm would be impossible to converge to the same results with

an equal tuning parameter for all regions.

6.5.3 Missed voxels

It can be clearly seen from Fig. 6.11 and Fig. 6.13 that the image reconstruction of

datasets containing brain activity in BA-10 and BA-46 left have several false negatives where

the estimates of the hemoglobin changes for some active voxels are insignificant. The two

voxels missed in the BA-10 left image reconstruction can be seen in the brain space (Fig. 6.7),

which indicates in the truth image that there are two voxels on a different gyrus. The two

voxels are not connected to any other voxels in the spatial structure encoding matrix for
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Figure 6.17: An example trace plot of λg for a dataset containing brain activity in BA-46

left. (a) plot the value of tuning parameters for all regions (indicated by the line color) in the

log scale as a function of sampling iteration. (b) plot the value of the tuning parameter for

the active region (BA-46 left in this example) in the original scale as a function of sampling

iteration. It can be found from the plots that the tuning parameters of inactive regions

increase as the sampling iteration while that of the active region fluctuates at the beginning

and converges to a stable value at the end.

BA-10 left. Since they are not connected to the main part of the region and further from

the probe than the main part, the regularization approach would tend to drop them as the

estimates on them are larger but the difference between the main region is not constrained.

The reason caused missed voxels in BA-46 left is the same, although they cannot be seen in

the brain space (Fig. 6.9). The missed voxels are located on a layer under and not connected

to the recovered part of BA-46 left either. Therefore, we can conclude that the missed voxels

are caused by the anatomical prior information, and the algorithm does not have a problem.
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6.5.4 Effects of Channel-space Prior

A question might be raised about the selection on the initial value of the tuning param-

eter. Since there is a possibility that the most active region indicated by channel-space ROI

analysis is different from the truth, one may worry about the channel-space results mislead

the image reconstruction model. In our simulation study using the 600 datasets, we also

tried to provide the ground truth prior of the active region, which is impossible to known in

a practical situation, to the image reconstruction model, however, the results do not change.

In other words, the datasets leading the channel-space analysis a false active region are im-

possible to be correctly reconstructed regardless of the initial value of the tuning parameter.

Thus, we can conclude that the prior information of active region provided by channel-space

ROI analysis does not negatively affect the image reconstruction model.

6.5.5 Limitations and Future Plans

Although this paper demonstrates the good performance of the novelly proposed image

reconstruction model – Ba-FSOGL, there are still several limitations. First, the Gibbs

sampling algorithm is time consuming. As we mentioned in Section 6.4, this work costs about

30,000 hours in total, which cannot be completed without a computer cluster. Second, we

assume only one region is active in the datasets. Since it is challenging for the channel-space

analysis to compare the significance in a small active region and a larger region containing

a small active region, we make this assumption at this point. Third, unlike a frequentist

approach, there is no p-value reported by the Bayesian model, so cannot analyze the type-I

error level of the model by comparing the empirical FPR to the type-I error control.

Therefore, the next steps of this work will include implementing this model using a faster

optimization algorithm, investigating on a more effective approach to determine the initial

value of tuning parameter, and a frequentist approach for statistical inference.
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6.6 Conclusion

In this work, we propose a novel approach for fNIRS image reconstruction by combining

multiple lasso-based regularizations and solving the model in a Bayesian framework. The

model is validated via numerical simulation. The results of image reconstruction and sta-

tistical inference indicates the prior information on cerebral anatomy and hemodynamics

is appropriately incorporated. The MSE, CNR, and ROC curves demonstrate the good

performance of the model.
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7.0 Conclusions and Future Works

The overall goal of this dissertation is to development statistical models that improve

fNIRS imaging. In Chapter 1, we reviewed the challenges in fNIRS data analysis. First,

a small change in brain anatomy or optical probe positioning can create huge differences

in fNIRS measurements even though the underlying brain activity remains the same due

to the existence of “blind-spots” when using a common nearest-neighbor probe. Second,

fNIRS image reconstruction is a high-dimensional, ill-posed, and under-determined problem,

in which there are thousands of parameters to estimate while only tens of measurements

available and existing methods notably overestimate the false positive rate. The major

contribution of this dissertation is to propose and validate novel statistical models addressing

these two problems.

Chapter 2, 3, and 4 provide an overview of background knowledge relative to this project

including the calculation of light propagation in brain tissues, existing models and methods

for fNIRS data analyses, and statistical tools used in this dissertation.

The work presented in Chapter 5 investigates the non-involvement of specific cortex re-

gions in an evoked task using an ROI-based statistical test. The method is implemented

based on the definition of contrast in statistics, which is a linear combination of variables.

In this chapter, a novel tapered contrast vector is proposed and compared with the con-

ventionally used uniform contrast vector. The calculation of the tapered contrast vector

depends on brain anatomy and probe registration. Simulation studies are conducted to val-

idate this new method. The tapered and uniform vector are both used in the statistical

test on a same simulated dataset. Two types of analysis are performed – analyses on single

ROI and difference between ROIs – with different simulation parameters such as ROI size

and distance. ROC curves are constructed for each method on each analysis. According to

the significance testing on the AUC difference between the two methods, we find that the

tapered contrast vector performs consistently better than the conventional uniform contrast

vector in both types of analysis regardless of changes in simulation parameters. From the

AUC change pattern across ROI size and distance, it can be found that the analysis results
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using the uniform contrast vector are remarkably affected by the “blind-spots” while this

effect is reduced if the tapered contrast vector is used.

Chapter 6 explores the fNIRS image reconstruction problem by incorporating anatomi-

cal and physiological prior information that a specific region is usually active in an evoked

task and the changes in HbO and HbR are negatively correlated. The prior information is

conveyed via a penalty combination of fused and group lasso regularization. The fused lasso

regularization constrains the difference of hemoglobin changes within a same ROI while the

group lasso regularization controls the ROI level variable selection and maintains the corre-

lation between HbO and HbR changes. The model is optimized in a Bayesian hierarchical

modeling framework whose hyperparameters are determined by cross-validation using the

channel-space ROI analysis results with the model described in Chapter 5. The method

is also validated via numerical simulations. The results demonstrate that the new method

successfully reconstructed the simulated images in most cases without generating excessive

false positives.

To sum up, the two methods proposed in this dissertation properly addressed the two

major challenges in fNIRS data analysis using statistical methods incorporating anatomical

information of brain. However, they still have limitations and can be extended. First of

all, an obvious future plan is to validate these two new methods using multi-modal clinical

dataset. The other modality, such as fMRI, can be used as the ground truth. Considering

the limitations of the proposed channel-space analysis, potential future plans are as follows.

First, a close check on the underestimation of type-I error using small significance level. Al-

though the overall performance is appropriate. solving this problem is necessary as smaller

significance levels, e.g., 0.05, are commonly used. Second, the performance for the compari-

son of two ROIs is not good enough. There is still a large space for ROC AUC improvement.

Third, the model is still based on a mis-registered probe when the registration information

is unknown. An optimization of a common probe as a random effect across subjects could

potentially improve the analysis further. Last, anatomical difference between subjects is not

considered in this study. The validation of this method involving anatomy variation is ex-

pected. Regarding the limitations of the image reconstruction problem, we propose following

future works. First, a single active regions is assumed in this project. A method searching for
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prior of multiple active regions will be useful for a more complicated situation. Second, the

Bayesian modeling and MCMC algorithm is time-consuming. A better optimization method

is required to perform a real-time analysis. Third, it can be extended to a group-level model

using mixed-effects model where the group-level image and the deviation of subject-level im-

ages from it can be treated as a fixed- and random-effect respectively. Taking the advantages

of Bayesian hierarchical modeling, two more layers for the individual random-effects can be

easily inserted to the current subject-level image-reconstruction model. The group-level

model is expected to handle variation in anatomy and probe registration across subjects.
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