
Master Thesis

in Statistics

at the Ludwig-Maximilians-University Munich

Department Institute for Statistics

Data-free meta-learning via knowledge distillation
from multiple teachers

Written by
Sebastian Gruber

Duty date
9th March 2021

Supervision
Prof. Dr. Volker Tresp

Ahmed Frikha

Erklärung

Hiermit versichere ich, dass ich diese Masterarbeit selbständig
verfasst und keine anderen als die angegebenen Quellen und
Hilfsmittel verwendet habe.

Die Arbeit wurde weder einer anderen Prüfungsbehörde vorgelegt noch veröffentlicht.

München, den 01.02.2021

. .
Sebastian Gruber

Acknowledgments

First of all, many thanks to Prof. Volker Tresp and Dr. Ulli Waltinger for making it
possible to write this thesis as a Master’s student at the Machine Intelligence Research
Group of Siemens AG. Also, I want to thank Ahmed Frikha for his supervision in the
form of valuable and appreciated feedback and his patience in our weekly discussions.
With the handing in of this thesis, my 2.5 years at Siemens have come to an end, and
every colleague in the different departments I worked with deserves a shoutout for
the time spent together. Also, I have to thank Erdinger Alkoholfrei for keeping me
well-nourished and energized. Last but not least, I want to thank my family for the
support, especially once my childhood room turned into my daily office due to Coronavirus.

Abstract

This work addresses the novel and challenging problem of data-free few-shot learning.
Previous few-shot learning works assume access to training data from auxiliary tasks to
train a few-shot learner, i.e., a model able to learn new tasks with only a few examples.
We consider a data-privacy-preserving version of the few-shot learning problem, where
models trained on auxiliary tasks are available instead of the data itself. By the convention
of knowledge distillation, these previously trained models are considered as teachers.
We construct an extensive methodology to investigate possible solutions, including an
algorithmic framework using data-free knowledge distillation to generate artificial data
acting as training data from auxiliary tasks to enable few-shot learning. Baseline methods
that leverage the teacher models challenge this framework and highlight promising
alternatives. Several experiments are conducted to assess the solutions’ performances and
challenges on different variations of the problem. To the best of the author’s knowledge,
the problem has not been explored in the literature so far, and the proposed methods
are novel solutions to a novel learning scenario.

iv

List of Abbreviations

ANN Artificial Neural Network

BN Batch Normalization

DI DeepInversion

FOMAML First-Order Model-Agnostic

MAML Model-Agnostic Meta-Learning Meta-Learning

MNIST Modified National Institute of Standards and Technology

SGD Stochastic Gradient Descent

v

Contents

Acknowledgments iii

Abstract iv

1. Introduction 1
1.1. Motivation . 1
1.2. Thesis Structure . 3

2. Background 4
2.1. Probability theory . 4
2.2. Machine learning . 7

2.2.1. Hyperparameter optimization . 10
2.3. Deep learning . 11

2.3.1. Optimization . 13
2.3.2. Layer types . 16
2.3.3. Benchmark data sets . 21
2.3.4. Meta-learning . 25
2.3.5. Meta-learning for few-shot learning 26
2.3.6. Data-free knowledge distillation . 33

3. Related Works 39
3.1. Meta-learning . 39

3.1.1. Optimization-based approaches . 39
3.1.2. Metric-based approaches . 40
3.1.3. Baselines for few-shot learning . 40
3.1.4. Meta-learning with artificial data 40

3.2. Knowledge Distillation . 41
3.2.1. Data-free knowledge distillation . 41
3.2.2. Multi-teacher knowledge distillation 43

3.3. Further privacy-preserving methods . 43

4. Methodology 45
4.1. Data-free few-shot learning . 45
4.2. Two classes of approaches . 45

4.2.1. End-to-End data-free meta-learning 47
4.2.2. Consecutive data-free distillation and meta-learning 47

vi

Contents

4.3. Few-shot learning without generated data 52
4.3.1. Random initialization . 52
4.3.2. Best teacher initialization . 52
4.3.3. Teachers’ features concatenation 53

5. Experiments 54
5.1. Research questions . 54

5.1.1. Optimization-based versus metric-based meta-learning 54
5.1.2. Meta-learning versus few-shot learning baselines 55
5.1.3. Few-shot learning with generated data versus without generated data 55
5.1.4. Few-shot learning with generated data versus with original data . 55
5.1.5. Teacher architectures and their training data amount 55
5.1.6. Few-shot versus many-shot learning 56

5.2. Datasets . 56
5.2.1. DoubleMNIST . 56
5.2.2. CIFAR-FS . 58
5.2.3. MiniImagenet . 58

5.3. Teacher training . 58
5.4. Experiment procedure . 58

6. Results 63
6.1. DoubleMNIST . 63

6.1.1. Conv-4 teachers . 63
6.1.2. ResNet-10 teachers . 64

6.2. CIFAR-FS . 67
6.2.1. Conv-4 teachers . 67
6.2.2. ResNet-10 teachers . 67

6.3. MiniImagenet . 70
6.3.1. Conv-4 teachers . 70
6.3.2. ResNet-10 teachers . 70

7. Discussion 73
7.1. Research questions . 73

8. Conclusion and Outlook 79
8.1. Conclusion . 79
8.2. Outlook . 79

8.2.1. Hyperparameter optimization . 80
8.2.2. Investigation of data generation with smaller architectures 80
8.2.3. Creation of novel datasets . 81
8.2.4. End-to-end-based data generation and meta-training 81
8.2.5. Usage of validation tasks . 82

Appendices 83

vii

Contents

A. Results in table-format 84
A.1. DoubleMNIST . 85

A.1.1. 4-layer CNN teachers . 85
A.1.2. ResNet-10 teachers . 87

A.2. CIFAR-FS . 89
A.2.1. 4-layer CNN teachers . 89
A.2.2. ResNet-10 teachers . 91

A.3. MiniImagenet . 93
A.3.1. 4-layer CNN teachers . 93
A.3.2. ResNet-10 teachers . 95

B. Experiments with training data available and more computational resources 97

List of Figures 99

List of Tables 103

Bibliography 104

viii

1. Introduction

1.1. Motivation

In the last decade, deep learning has experienced an uprising hardly seen by other
scientific fields [15]. A reason for its success is the wide range of possible applications to
different fields. Examples are image recognition [30], learning a policy in a simulated
environment [77], natural language processing [18] and speech recognition [28]. The
results may even surpass human performance [78]. However, deep learning also has
its limitations [56]. In most cases, to successfully train a deep learning model, big
quantities of data are required. For this, the collection of high amounts of data in
real-world or in simulations has to be performed, which require enormous compute
resources in either ways. This becomes problematic for applications where data is in-
trinsically rare, its acquisition is expensive [3], or compute resources are not sufficient [37].

Classical scenarios for this are those where privacy, safety, or ethics issues are present,
making the data instances with labels difficult or impossible to acquire [90]. A specific
example is drug discovery. Here, new molecules’ properties are searched for to identify
new, useful drugs [3]. However, new molecules do not have many biological records on
clinical candidates due to possible toxicity, low activity, and low solubility [90]. Other
examples, where the target task only has few examples, are language translation [41],
and cold-start item recommendation [88]. In the aforementioned scenarios, it is essential
to learn effectively from a small number of samples. Due to the high cost and time
consumption of manually labeling the data by human labor and the rarity of data,
traditional deep learning methods cannot be successfully applied [11]. This is a stark
contrast compared to the human visual ability to recognize new classes with very few
annotated examples [11]. We refer to learning new tasks with limited amount of labeled
instances as few-shot learning [11]. A task of this problem domain is also called a
few-shot task.

Meta-learning provides an alternative paradigm compared to conventional learning
algorithms to solve problems in the few-shot learning domain [33]. In meta-learning,
a machine learning model gathers experience over several learning iterations over a
distribution of tasks related to the target task [33]. This experience is then used to
improve its future learning performance on the target task [33]. Meta-learning means
‘learning-to-learn’ [85] and can lead to various benefits such as data and compute
efficiency. Thrun and Pratt [85] defines a learning-to-learn algorithm when the learner
trained by the algorithm improves its performance at solving a task with respect

1

1. Introduction

to the number of related tasks seen. In contrast, conventional machine learning
improves its performance as more data instances from a single task are encountered
[33]. Generally, meta-learning for the few-shot learning problem handles each task as an
observation instance. A multitude of different tasks is required by prior meta-learning
approaches. Often, the set of tasks consists in total of several thousands of unique data
instances, even though each task includes only very few data instances [22] [79] [67].
Meta-learning has proven useful in areas spanning few-shot image recognition [22] [79],
unsupervised learning [59], data efficient [20] [34] and self-directed [2] reinforcement
learning, hyperparameter optimization [23] and neural architecture search [52] [72]
[101]. Because different communities use the term meta-learning differently, multiple
perspectives and interpretations can be found in the literature [33].

Performing few-shot learning requires big amounts of data from similar tasks. Due to
data privacy concerns, these quantities may not be available. One possibility to protect
data is to release pretrained models instead of data. A popular method to extract the
knowledge from neural networks is knowledge distillation (KD). KD [32] was designed
to transfer the task solving abilities learned by a large, highly parameterized model to
a relatively simpler and smaller model. Possible realizations of the large model can
be an ensemble of multiple models or a single model with a large parameter space, a
long training phase, and strict regularization such as Dropout [81], or BatchNorm [38].
Generally, the large model is referred to as the teacher, while the smaller, newly trained
model is called student [64]. Original knowledge distillation approaches use real data
either from the teacher’s training data distribution or a different transfer set to perform
the distillation [64]. However, accessing the original training data of the teacher may not
always be possible. Often the training dataset is too large for the given computational
resources [53], e.g. ImageNet [74]. Another possible scenario is that datasets are
proprietary and not shared publicly due to privacy or confidentiality concerns [64].
Furthermore, the data may be inaccessible due to General Data Protection Regulation
(GDPR), IP restrictions, or the data is too difficult to extract again. For example GDPR
protect the biometric data of people and healthcare data of patients [64]. In summary,
data is highly precious in the modern information age and, as a consequence, access
to data may not always be possible [64]. This is the main motivation for introducing
data-free (or zero-shot) knowledge distillation approaches [53]. Data-free knowledge
distillation (DFKD) tries to accomplish the same task as the original KD approaches,
except that the teacher’s training data is not available. Most DFKD approaches train
the student on synthetic data generated by leveraging the teacher model [27].

Following the works regarding few-shot learning and data-free knowledge distillation,
one of the present thesis’s contributions is to formulate the novel problem of data-free
few-shot learning. Concretely, we aim to train a few-shot learner without having access
to data from related tasks, but, instead, by using multiple available teacher models
that were trained on such tasks. For this, in the first stage, we use data-free knowledge
distillation to extract knowledge from the given teachers in the form of generated

2

1. Introduction

data. In the second stage, meta-learning is used to train a student model (the few-shot
learner) from scratch on the generated data. Furthermore, we evaluate approaches
using conventional learning and propose baselines for this novel problem, which use the
teachers without relying on generated data.

The industrial scenario that motivated this thesis involves sensor data collected from
different production machines during manufacturing. Usually, the labeling of such data
requires specific human expert knowledge. This makes it very costly to construct the
large labeled dataset necessary for conventional deep learning approaches. Furthermore,
access to sensor data from similar production machines or processes, i.e., the tasks, may
also not be possible, due to data privacy concerns or unavailability of the data, making
traditional few-shot learning through meta-learning not possible. We assume access to
models trained on these auxiliary tasks, which guarantees data privacy. We use these
models as teachers for the approaches introduced by this thesis.

1.2. Thesis Structure

The present thesis is structured as follows. We begin by providing the reader with
the background needed to understand the thesis’ contributions in chapter 2. In the
following chapter 3, an extensive overview of works handling related problems is given.
Here, the differences between those works and the present thesis are also mentioned.
The methodology developed to address the problem is described in chapter 4. This
includes combining previous methods in a new algorithmic framework as well as novel
baselines. Subsequently, the research questions investigated in this master thesis and
the experiments designed to address these are defined in chapter 5. The results of these
experiments are presented in chapter 6 and, thereafter, interpreted and discussed in
chapter 7. At the end of the latter chapter, an outlook and suggested next steps guide
future research regarding the defined problem setting. Finally, the conclusion of this
work’s contributions is summarized in chapter 8.

3

2. Background

In this chapter, the background necessary to understand the addressed problem and the
methodology introduced in chapter 4 is presented. We start with a short introduction
to probability theory. Some of the definitions and principles are used throughout the
thesis. This is followed by introducing machine learning, which acts as a backbone for the
following deep learning approaches. Emphasis is laid on the optimization procedure. This
is a crucial cornerstone for understanding meta-learning approaches and hyperparameter
optimization, which is extensively used for the experiments in chapter 5. In the deep
learning section 2.3, neural networks, meta-learning, and knowledge distillation are
described. For neural networks, we define different layer types used in our work. In the
meta-learning subsection 2.3.4, a general description is given, followed by an introduction
of an optimization-based and metric-based approach. Here, an important baseline
challenging meta-learning advances is also explained. Section 2.3.6 presents data-free
knowledge distillation and focuses on a specific approach called DeepInversion.

2.1. Probability theory

In the following, the mathematical foundations of randomness in experiments and
observations of the real world are defined. Furthermore, we formally define random
variables and introduce joint and conditional probability distributions. These distributions
are common targets for modeling in machine learning, including deep learning [8; 36].
Next, the expectation of a random variable is defined. We show a way of how to
approximate this integral with the law of the large numbers. This law is implicitly used
throughout the thesis when the mean of a function of data instances is calculated.

Probability space

A probability space is a mathematical construct providing a formal framework for
stochastic observations or experiments. It consists of a sample space, a set of events, and
a probability measure. Formal definitions are presented in the following.

Let Ω be an arbitrary non-empty set. When making observations with stochastic
outcomes, we define Ω as the set of all possible outcomes. It is called the sample space
of an experiment or stochastic observations. A specific example would be the case of
flipping a coin, which gives Ω ={”head”, ”tails”}, the set of all possible outcomes.

Usually, describing each outcome on its own is not sufficient, so another set is required,
enclosing all possible combinations of outcomes. A combination of outcomes is seen as a

4

2. Background

subset of Ω and called an event in the following. Then, a σ-field F ⊂ 2Ω is defined as a
set of events, so a set of subsets of Ω, with the conditions

• Ω ∈ F (F contains the sample space),

• A ∈ F ⇒ (Ω \A) ∈ F (if an event is in F , so is its complementary event),

• Ai ∈ F(i = 1, . . . , n)⇒
⋃n
i=1Ai ∈ F (every arbitrary union of events in F is also

in F) [57].

Following the previous coin flip example, F would be {∅, {”tails”}, {”head”}, {”head”,
”tails”}}.

Next, we require a measurement to specify the frequency of an event having an outcome
as element relative to the whole sample space Ω. This frequency is called the probability
of an event. The probability of an event is meant as the probability of it holding an
arbitrary outcome of the sample space. Then, a probability measure is defined as a
function P : F → [0, 1] on a σ-field F ∈ 2Ω such that the following holds:

• P (∅) = 0 (the probability of an outcome appearing in the empty event is zero),

• P (Ω) = 1 (the probability of an outcome appearing in the sample space is one),

• P (
⋃∞
i=1Ai) =

∑∞
i=1 P (Ai) for Ai, Aj ∈ F and Ai 6= Aj (i, j = 1, . . . ,∞) (if multiple

events do not share the same outcomes, then the probability of all the events is
equal to the sum of the probability of each event) [57].

An example for P in the previous coin flipping context would be P ({”head”}) = 0.5,
P ({”tails”}) = 0.5, P ({”tails”, ”head”}) = 1.0, and P (∅) = 0.0.

To combine all the previous definitions, a probability space is then defined as the
tuple (Ω,F , P) of a sample space Ω, a σ-field F , and a probability measure P [57]. A
probability space is the minimum required definition to assign probabilities to stochastic
outcomes and observations of the real world consistently.

Random variable

A random variable is a real-valued function of the sample space [57]. So far, we can
assign probabilities to events. To do further calculations, e.g., for receiving the mean
outcome, the outcomes must be numeric values. For this, we need a function mapping an
outcome to a value while preserving the original events’ context. In probability theory,
these functions are called random variables [57]. We define a random variable X : Ω→ R
as a function on a σ-field F if

{ω ∈ Ω|X(ω) ≥ a} ∈ F (2.1)

5

2. Background

for all a ∈ R [57]. In the case of the previous coin flipping scenario, ”heads” could be
transformed to ”0” and ”tails” to ”1”. Based on these numerical values, calculations can
be done to gain insights into the experiments and observations. Furthermore, if X is a
random variable and f a real-valued function, then f(X) is also a random variable [57].
This is important as we do calculations on arbitrary functions, like losses (introduced in
section 2.2), which are only considered random variables if their input is.

The probability distribution PX of a random variable X for a set of outcomes A ∈ F
is defined as PX(A) := P ({ω ∈ Ω|X(ω) ∈ A}) [57]. For simplicity’s sake, we write P (X)
for the function x 7→ P (ω ∈ Ω|X(ω) = x), denoting the probability of X assuming the
value x.

Conditional probability

In stochastic experiments and observations, we are usually interested in several different
outcomes of the same trial. For example, on a single day, one may want to observe
the weather and the temperature. Then, having access to one random variable (the
weather) may influence the probabilities of observations of the other random variable
(the temperature). The conditional probability is used if we depend a random variable
on already known information of another random variable [57]. Both random variables
follow a joint distribution, i.e., let (X,Y) : Ω→ R2 be a vector of two random variables
defined on the same probability space (Ω,F , P) then

P(X,Y)(A) = P ({ω ∈ Ω|(X(ω), Y (ω)) ∈ A}) (2.2)

for arbitrary A ⊂ R2 [57]. If there is no A in a given context, then the last equation is of-
ten shortened to the more common term P (X,Y) [8]. In machine learning, P (X,Y) is usu-
ally a function of the form (x, y) 7→ P (X = x, Y = y) = P ({ω ∈ Ω|X(ω) = x, Y (ω)) = y})
[97].

The conditional probability of the random variable Y given the random variable X is
then

P (Y ∈ A|X ∈ B) =
P (Y ∈ A,X ∈ B)

P (X ∈ B)
=
P ({ω ∈ Ω|Y (ω) ∈ A,X(ω) ∈ B})

P ({ω ∈ Ω|X(ω) ∈ B})
(2.3)

for arbitrary A,B ⊂ R [57] as long as P (Y ∈ B) > 0.
In machine learning, the term P (X|Y) is more common and denotes a function

of the form (x, y) 7→ P (Y = y|X = x) = P ({ω∈Ω|X(ω)=x,Y (ω)=y})
P ({ω∈Ω|X(ω)=x}) [8; 97]. The joint

distribution P (X,Y) and the conditional distribution P (Y |X) are the target of most
learning algorithms introduced in the machine learning section 2.2 [8].

Finally, two random variables X and Y are said to be independent if P (Y,X) =
P (Y)P (X) [8]. This gives P (Y |X) = P (Y), meaning if we have information of the
outcome of X, the probabilities of the outcomes of Y are unchanged. Often, we talk
about independent variables when assessing the outcomes of repeated trials of the same

6

2. Background

observation or experiment. Observing the same coin flipped twice gives two independent
random variables while observing the weather of two consecutive days does not. This is
important for the approximation of the expectation introduced in the following subsection.

Expectation of a random variable

Having access to a random variable, it may be useful to aggregate all possible outcomes.
The most prominent aggregation is the expectation of a random variable [57]. It can
be interpreted as the mean value of the random variable over an infinite amount of
observations. The definition of the expectation of a random variable X on a probability
space (Ω,F , P) is the abstract integral given by equation 2.4 [57].

EX∼P [X] =

∫
Ω
XdP =

∫ ∞
−∞

xdPX(x) (2.4)

This integral is often either inaccessible or infeasible [97]. Thus, in machine learning
applications, a random variable’s expectation is not be calculated by integrating. The
transformation to Riemann-integrals or countable sums as done in Marek Capinski [57]
is skipped as it is not relevant for this thesis.

The expectation of a random variable can be approximated with the results of several
independent trials conducted in an experiment. More specifically, the approximation can
be made with the help of the law of the large numbers. The weak version is defined as
follows.

Let EX∼P [X] be the expectation of a random variable X we want to approximate.
Additionally, {Xi|EXi∼P [Xi] = EX∼P [X],EXi∼P [(Xi)

2] ≤ K, i = 1, . . . , n} (for∞ > K ∈
R) is a set of independent random variables we observe in an experiment. Then, the
expectation EX∼P [X] can be approximated by their mean, since

lim
n→∞

P ({ω ∈ Ω| | 1
n

n∑
1

Xn(ω)− EX∼P [X]| > ε}) = 0 (2.5)

for an arbitrary ε > 0 [57]. In other words, with increasing number of Xi (i = 1, . . . , n),
the probability of the difference between the mean and the unknown expectation to be
higher than some ε goes towards zero. So, the higher n, the better is the approximation.
We use this approximation through calculating the mean throughout the present thesis.

2.2. Machine learning

Machine learning aims to construct computer programs that learn from data [36]. A
succinct definition for this is given by Mitchell [61] [36]: ”A computer program is said
to learn from experience E with respect to some class of tasks T and performance
measure P, if its performance at tasks in T, as measured by P, improves with experience E.”

7

2. Background

Machine learning allows us to handle a task T, that is usually too difficult to solve
by programs relying on a manually defined set of rules. Here, the task T denotes the
problem that should be solved once learning is done. Examples of different tasks are [36]:

• Classification: Specifying to which of k categories some input belongs

• Classification with missing inputs: Predicting the correct category as in clas-
sification, except the input is incomplete

• Regression: Predicting a numeric value given some input

• Machine translation: Given a sequence of symbols of a certain language, return
a sequence of symbols in the target language

• Anomaly detection: Specifying if the input is an anomaly

The performance measure P quantifies the algorithm’s ability to perform task T [36].
P is usually used to improve the algorithm during its learning phase w.r.t. the given
task. It is also used to assess the final performance after the algorithm’s learning is done.
An example in the classification case is the accuracy, which measures the frequency of
correctly assigned labels [36].

Furthermore, E is the given dataset an algorithm should use for its learning. This
dataset acts as a noisy description of the dynamics of the task T. It is assumed it consists
of independent random variables of unknown distributions. In the case of unsupervised
learning, the algorithm aims to learn useful properties of the structure of the dataset
[36]. Unsupervised learning is not used in the scope of this thesis, but an extensive
overview is given in [8]. Another category of machine learning approaches is supervised
learning, where each random variable is associated with a label [36]. The labels are
often seen as realizations of a random variable since the labeling process is not always
consistent and random at times [8]. Here, the learning stage consists in associating
an input variable X with a target variable Y . Usually, Y is difficult to collect as it
is not available automatically but must be provided during the dataset construction
[36]. In most cases, X is high-dimensional, while Y is of lower dimension. We assume
both variables follow a joint distribution, i.e. (X,Y) ∼ P [8]. In the following, we fo-
cus on supervised learning since it is more relevant for the problem addressed in this thesis.

To learn the dependencies between the input and target variable of a dataset, a model f
is required to approximate the joint distribution P(X,Y) (generative approaches) or the
conditional distribution P(Y |X) (discriminative approaches) [8]. In the generative case, a

prediction is received by applying the Bayes’ theorem P(Y |X) = P(X,Y)
P(X) . This approach

has the advantage to sample new synthetic data using f but is also computationally
more demanding [8]. Thus, the focus is laid upon discriminative models in the following.
The performance measure P is a loss function L. Let F be a set of possible models we
consider for our learning algorithm. The theoretical objective of discriminative supervised
machine learning is to find the best f∗ ∈ F that minimizes the expectation of the loss
function L regarding the unknown data distribution P:

8

2. Background

f∗ = arg min
f∈F

E(X,Y)∼P [L(f(X), Y)] (2.6)

A common loss for a classification problem with C classes and model output space
PM ⊂ [0, 1]C is the cross-entropy loss LCE , defined in equation 2.7 [8].

LCE :PM × {1, . . . , C} → R

(p, y) 7→ −
C∑
i=1

1{i=y}log(pi)
(2.7)

One issue here is that the true distribution P is not available in practice. Another issue
is that some subsets of F are dependent on other subsets. For example, the parameter
space of a chosen model depends on the model architecture space. So a framework that
can cope with these limitations is needed.

Let D = {(Xi, Yi)|i = 1, . . . , n} of independent random variables be the available
dataset. It is assumed each Xi and Yi is identically distributed as the original, unknown
variables X and Y we want to model.

The available dataset D is split into a training set Dtrain, a validation set Dval, and
a test set Dtest. Each subset has its own purpose, which is illustrated in the following.
The purpose of the training set is to fit a model to improve its performance on the task
considered [8]. This process is also called (model) training or tuning. More specifically,
it is used for optimizing parameters of a specific model or as input of a non-parametric
function. The result of a model f tuned on the training set Dtrain is in most cases one of
the two forms

fDtrain :

{
x 7→ f(x, η∗), parametric

x 7→ f(x,Dtrain), non-parametric
(2.8)

with

η∗ := arg min
η∈Hf

1

|Dtrain|
∑

(x,y)∈Dtrain

L(f(x, η), y). (2.9)

Equation 2.9 denotes the training solution η∗ for the parametric case (Hf is the weight
space of the model f) [7]. The non-parametric case does not use parameter optimization.
So, we refer to the insertion of the training set into a kernel- or metric-like function as
the training.

During training, we cannot update parameters other model parameters depend on.
Such parameters are called hyperparameters and do not necessarily require a numeric
scale or be part of the model [68]. They can also shape the training process. The
hyperparameters are considered a fixed part of the model or the optimization algorithm
to solve the objective in equation 2.9. A bi-level optimization scheme is required to
optimize the hyperparameters, where updates with the training set loss are the inner
level [8]. As a consequence, training can also be called inner optimization [68]. The
outer level is called hyperparameter optimization, and, here, the hyperparameters are

9

2. Background

adjusted based on the validation set loss [8]. Since we make several algorithm, model,
and parameter decisions based on the model performance on the training and validation
set, the loss of the best configuration is too optimistic. Thus, the test set is supposed to
be only used for a realistic, final estimate of the trained model’s performance with the
best validation set loss [7] [36]. The test set loss approximates the model’s predictive
performance when applied to new data in practice.

2.2.1. Hyperparameter optimization

In this subsection, we give a brief overview of important concepts regarding hyperpa-
rameter optimization. We optimize the hyperparameters on the validation set based
on the solution of the inner optimization. Usually, the procedure used to optimize the
hyperparameter optimization objective is quite simple. Different models f are manually
chosen or randomly sampled from a set F , and optimized on the training set. The
model yielding the lowest loss on the validation set Dval is chosen to be the best model
f̂∗Dtrain of all considered models in F . Formally, the hyperparameter optimization solution
minimizes the objective given in equation 2.10 through the approximation of the expected
loss [92] [7].

f∗Dtrain := arg min
f∈F

1

|Dval|
∑

(x,y)∈Dval

L(fDtrain(x), y) (2.10)

fDtrain is a model f trained on a training set Dtrain. One common approach to select
f ∈ F is Random Search [4], which takes an interval hi = [hloweri , hupperi] of possible
values for each hyperparameter i and then samples uniformly or log-uniformly a set of
configurations H ⊂ h1 × · · · × hm,m ∈ N. This results in F = {fh|h ∈ H} as the set
of considered models. Here, fh denotes a model with hyperparameter configuration h.
Log-uniform sampling is useful for bounded hyperparameters. A concrete example is
to sample out of the interval [0.001, 1000]. Around 99.9% of the sampled values would
be > 1, even though the problem may require values < 1. Using log-uniform sampling
would approximately sample half of the values > 1, while the others are < 1.

Another strategy is called Grid Search and evaluates all configurations in
H = h1 × · · · × hm of different sets hi = {hi1, . . . , hiki} (ki ∈ N, i ∈ {1, . . . ,m}), where
each element is manually specified and corresponds to a hyperparameter i [4] [7].

The main challenge of machine learning algorithms is to perform well on new, previously
unseen data [36]. This ability is called generalization [8] [36]. The generalization error is
then defined as the expected value of the loss on the original distribution [36]. Since the
original distribution is not available, the generalization error has to be estimated on a
dataset not used during any optimization. This excludes the estimated performance on
the training set since the model was already trained with it. Furthermore, the validation
set has also been used for evaluating several hyperparameters and, thus, can give a too
optimistic loss similar to the training set. To give an example, think about two models
trained to predict a fair coin flip. Model A predicts ”Heads” by 51 percent due to training

10

2. Background

variances, while model B predicts ”Heads” by only 50 percent. If the amount of ”Heads”
are slightly more than the amount of ”Tails” in the validation set due to randomness,
the hyperparameter optimization procedure would call model A superior, even though,
as we know in this imaginary example, model B would give a better prediction.

Of course, we do not know the real solution in practice, but we can re-estimate the
real model performance. This is done by evaluating the hyperparameter optimization
solution f̂∗ of equation (2.10) on the unseen test set and computing the test set error.
The test set error is equivalent to the estimated generalization error [36]. Formally, the
estimated generalization error on the test set Dtest is then given by equation 2.11.

ĜE =
1

|Dtest|
∑

(x,y)∈Dtest

L(f∗Dtrain(x), y) (2.11)

It is often the case that L in equation (2.11) is different than during hyperparameter
and inner optimization because this value is the one reported and, thus, should allow
interpretability [7]. For classification, a classic choice is the accuracy of predicting the
correct class label. Additionally, it is of utter importance that no further modeling
decisions are made on this value. Otherwise, any estimation of the true performance is
lost [36].

2.3. Deep learning

Conventional machine learning algorithms already perform well on tabular data – data
where each feature is a single dimension of the input [8]. Issues appear once they are
applied to non-structured data, like images [36]. Each pixel and color channel is seen as
a variable in an image, but features of an image are randomly distributed across pixels
and areas. For example, a set of face images does not have the eyes on the same x- and
y-coordinates across several samples. Additionally, the resolution of images increases with
technological progress, giving single data instances with thousands of random variable
dimensions. As a consequence, a different group of methods arised to handle tasks
containing such unstructured data. This group of methods is called artificial neural
networks (ANN) and may just be called neural- or deep networks in the machine learning
context [36]. Similar to other parametric methods, an ANN can be seen as a function
mapping the input variable X to a target variable Y by an arbitrary (but manually
predefined) amount of adjustable parameters θ [36]:

P (Y |X) ≈ ANN(X, θ)

The parameters θ are also commonly called weights in the deep learning context
[36]. Being inspired by human brains, neural networks are originally constructed
as links between several single nodes (analogous to neurons in nature) [75]. This
analogy does not explain the sophisticated and complex structure of neural network
architectures developed in recent years [30]. A deep ANN consists of several layers
with the intention that each layer transforms its input to another feature space

11

2. Background

Figure 2.1.: Example scheme of a convolutional neural network with three layers. The
first two layers transform their respective input into representations of more
task relevant information. Due to this, random spatial information is removed
and replaced by well-structured features. Each plane in the figure represents
such a feature. These are then used by the output layer to make a prediction.

[36]. During this transformation, task-relevant information is preserved, while noise
or irrelevant information is removed from the output. Stacking several such layers
creates an operator decreasing the input size by several magnitudes to a usually
smaller embedding of features. Usually, this embedding is purposely of small enough
size to act as feature space for a light-weight classifier – the last layer of a neural
network [36]. This final classifier is also referred to as the output layer, while the
set of layers before it are called the feature extractor [70] [33]. The output layer is
the simplest part of a neural network and is responsible for predicting Y or P (Y |X)
[36]. It is supposed to transform a feature vector xfeat ∈ Rn to a probability vector

p ∈ [0, 1]C , with C being the number of classes in a classification task, with
∑

i pi = 1.
Usually, a fully connected layer (see section 2.3.2) or a similarity metric is used for this [42].

The feature extractor’s main responsibility is to transform the high-dimensional,
unstructured input into low-dimensional, well structured features xfeat ∈ Rn. The
features xfeat have to be structured so that the output layer can give accurate predictions
[36]. The transformations in the feature extractor are done iteratively by processing
the original input through different consecutive layers. Each intermediate layer takes
the previous layer’s output as the input and gives its output to the next layer. This
architecture of several consecutive layers in a row is also why the field is called deep
learning [36].

A sketch of a small neural network architecture for image data is given in figure
2.1. In the depicted example, a three layer neural network can be seen. Formally, its
transformations would be of the following form with intermediate layer operators Φ
giving results hidden layer1 and hidden layer2, an output layer operator σ and their

12

2. Background

layer weights θ1, θ2 and θ3, respectively:

hidden result1 ← Φ(input; θ1)

hidden result2 ← Φ(hidden result1; θ2)

output← σ(hidden result2; θ3)

The forward processing of input through the different layers is also called forward
propagation [36].

Due to such an architecture’s recursive nature, it is possible to fit models for tasks
of arbitrary complexity simply by increasing the number of layers and weights [14].
Nevertheless, there are also drawbacks of using models with such a high capacity:

• In general, neural networks have more weights than strictly required for a predictive
task. This is because a small ANN with perfectly adjusted weights may not fully
solve a task. On the other hand, starting with too many weights only has an
increased computational effort as a disadvantage at first. As a consequence of this,
ANNs are initialized with a high amount of weights. This makes them almost
always capable of fitting more complex patterns than those appearing in the data.
Therefore, after an unknown number of training iteration, ANNs start to fit random
noise, introducing a high generalization error. This effect is called overfitting [36].

• With the number of weights of a neural network, the training’s computational effort
increases. Thus, the run time (and power cost) for training can be extremely high.
Additionally, bigger datasets are required to fit the higher number of parameters,
compared to conventional machine learning models [21]. These datasets may
have several tens of thousands of images [17] [46] resulting in challenging memory
requirements.

• Several layer operations back-to-back make the interpretability and transparency
of intermediate layer results and model predictions extremely difficult. Interpreting
neural networks is considered as a separate research direction [62].

2.3.1. Optimization

In this subsection, we give a brief introduction to finding a neural network model with
good predictive performance on a task. This builds mostly on the elaborations in the
previous section 2.2. First, we talk about how the weights are adjusted to find a good
training solution. In general, it is not possible to find ’the’ solution since usually the loss
function w.r.t. the weights is non-convex and has an unknown amount of local solutions
[36]. Furthermore, we discuss how different model architectures and hyperparameters are
optimized.

13

2. Background

Training

When a neural network is initialized, its parameters are in the general case initialized
randomly. This model does not give accurate predictions, so the weights have to be
changed in some way to give the correct predictions w.r.t. the input. For this, neural
networks are trained to maximize the same objective as other machine learning algorithms,
given by equation 2.9 in section 2.2.

To find a minimum of the estimated expected loss in the weight search space, a first-
order optimization method called gradient descent is usually used. The more accurate
second-order methods are not practical due to the quadratic memory consumption w.r.t.
the number of weights [69].

The gradient descent algorithm consists of two steps. First, the objective function is
derived w.r.t. the weights to receive a gradient. Second, the weights are updated with
that gradient. These steps are applied repeatedly, each time moving the weights closer
to a (local) minimum in the weight space. Formally, the update for the whole weight
vector θt−1 in iteration t looks like the following with an update step size ε [36]:

θt ← θt−1 − ε∇θt−1L

ε is called learning rate in the context of training neural networks as it influences how
quickly updates change the weights. The updates can theoretically be applied for an
infinite amount of iterations, even if only marginal changes in the weights happen. At
the start of the training, the training and validation set’s loss functions decrease similarly.
However, after some training updates, the validation set loss stales and increases in its
value. This is due to fitting noise in the data. We can assume further training does not
improve the predictive capabilities of the network. Therefore, once the validation set loss
stops improving, training is stopped to prevent overfitting [36]. This procedure is called
early stopping. In figure 2.2 one can see the training progress with overfitting, where
early stopping was not done early enough.

Calculating the derivatives of the loss L is the most computationally expensive part
of the whole training [36]. Between the weights and the objective function, multiple
operations are performed for input data. To make the gradient calculations of all
layers feasible, an approach called backpropagation is used [36]. Backpropagation allows
information from the estimated loss to flow back through the ANN to calculate the
weight gradient [36]. More specifically, it uses the chain rule and stores intermediate
results to circumvent calculating the derivatives of higher layers several times to get
the derivatives of lower layers. Even with the usage of backpropagation, there are too
many weights in modern architectures to allow convergence with CPU computations.
To increase computation speed, backpropagation and forward propagation are done in
tensors on a GPU device [36]. This finally lowers the computation time to a feasible
level, but, as a consequence, also possibly raises the following issue. GPU devices require
their own memory, which is generally not as extendable and big as the normal working
memory of a computer [76]. Consequently, calculating the gradients of a full dataset
does not usually fit on a GPU device. This requires the use of another trick, which

14

2. Background

Figure 2.2.: A generic example of overfitting starting around episode 60 during the
training phase.

splits the full dataset into minibatches. Minibatches are small subsets forming a random
partition of the original set [36]. When calculating the derivatives for the weights update,
the loss of only a single minibatch is used. Because each minibatch is also a sample of
the original set, stochasticity is introduced in each weight update iteration, giving the
procedure the name stochastic gradient descent (SGD) [36]. Generally, this introduced
randomness does not worsen the generalization error.

Different optimization algorithms are applied in deep learning, besides SGD, even
though they are mostly just an extension of the original version. A common one is Adam,
which uses the first and second raw gradient update moment for the final weight update
[44; 80]. A saddle point in the objective function gives tiny or zero gradient values.
Consequently, no sufficiently sized weight update with (stochastic) gradient descent is
possible to overcome this point. Adam makes use of momentum. Momentum increases
gradient values if previous gradients had a similar direction in the weight space. When
gradients gradually decrease in their value by encountering a saddle point, momentum
keeps the gradient values high enough to overcome the saddle point. Due to momentum
usage, Adam does not fail when faced with a saddle point in the objective landscape [44].
Compared to the SGD gradient update 2.3.1, an iteration t of Adam is formally defined
as the sequence of operations in equation 2.12 [44]. Here, β1, β2 ∈]0, 1[act as update
rates for the moments and η > 0 as a small constant for numeric stability.

15

2. Background

gt ← ∇θt−1L
mt ← β1mt−1 + (1− β1)gt

vt ← β2vt−1 + (1− β2)g2
t

m̂t ←
mt

1− βt1
v̂t ←

vt
1− βt2

θt ← θt−1 − ε
m̂t√
v̂t + η

(2.12)

Hyperparameters

Tuning the hyperparameters of a deep neural network is similar to conventional machine
learning approaches and given by the same objective as in equation 2.10 [36]. In most
cases, the biggest difference is the amount of time the training takes. This is one reason
why we stop the training of a single hyperparameter configuration once it becomes clear
that further training leads to decreasing performance. Some methods apply early stopping
of the training more aggressively. E.g., the asynchronous successive halving algorithm
(ASHA) and hyperband cancel training runs once it becomes likely a configuration does
not beat the best other runs in terms of a specified loss [39] [48].

2.3.2. Layer types

The output layer of an artificial neural network has no scalability to higher input sizes
due to the features of the input having to be semantically ordered [36]. It cannot deal
with cases of features shifting positions as it appears in image data. As a consequence,
the feature extractor is the main reason why convolutional neural networks can give
accurate predictions [36]. A typical feature extractor consists of several layers, with
possibly different layer types to pre-process any unstructured input, like images, for the
output layer. An overview of the layer types used in this thesis is given in the following.

Fully connected layer

A fully connected layer transforms its input x ∈ Rn by multiplication with a weight
matrix W ∈ Rn×m, addition of a bias vector b ∈ Rm, and element-wise application of a
non-linear function f (called activation function) [36]. The layer operation is then given
by

x 7→ f(W Tx + b). (2.13)

A common choice for f is ReLU : x 7→ max(x, 0) (short for rectified linear unit) [36].
This layer type can lead to a high number of weight (every output is weighted with

every input) and tends to generalize badly to unseen data, so it often only occurs once at
the end of a neural network as the output layer [36; 30; 35]. In classification problems,

16

2. Background

the activation function applied to the output of the last layer is usually the softmax
operator

x1

x2

. . .
xm

 7→

expx1

expx2

. . .
expxm

(m∑
i=1

expxi
)−1

(2.14)

applied to the m-dimensional output vector [36]. The softmax operator gives a
meaningful output in the form of a probability vector.

Convolutional layer

In a fully connected layer, each additional input dimension adds m weights, with m being
the output dimension. During training, these weights are adjusted. Fully connected
layers lack scalability for higher-dimensional input. Furthermore, images usually grow
quadratic in their pixel amount (because for a sharper image, one has to increase the
resolution in the x-and in the y-direction). As a result, in the case of fully connected
layers, the number of weights required would grow quadratically. To enable accurate
predictions in this case, another layer type is introduced, called convolutional layer [36].
This layer type requires far fewer weights because, by design, it only has individual
weights in a ’window’ of predefined size [36]. These windows are usually called filters
[50]. Each filter is moved over all neighboring variables of the input and creates new
features as output for the next layer. All the outputs combined regarding a single filter
are called feature map. In the context of image data, a neighborhood is meant as a part
of an image cropped to the resolution h× h.

A convolution is defined as an operation between an input x and a filter w at index t
as

(x ∗ w)(t) =
∞∑

a=−∞
x(a)w(t− a) =

∞∑
a=−∞

x(t− a)w(a)[36]. (2.15)

The second equation follows from the convolution being commutative.
For a two-dimensional input I, e.g., a gray scale image, the filter W is also two-

dimensional and the convolution for pixel indices i, j is formulated as

(I ∗W)(i, j) =
∑
a

∑
b

I(i− a, j − b)W (i, j)[36]. (2.16)

Often, the input has an additional spatial dimension, denoting an image’s color channel
or the different feature maps of the previous layer. Then, the operation has to be further
expanded to

(I ∗W)(i, j) =
∑
a

∑
b

∑
c

I(i− a, j − b, c)W (i, j, c)[36]. (2.17)

17

2. Background

Figure 2.3.: One of the outputs of the convolution operator with kernel size h = 2. The
input has two spatial dimensions and a single channel, resulting in weights
w ∈ R2×2×1. The weights are in the blue box, a window of the input in the
red box, and the intermediate element-wise products of these are shown in
the purple box. The final result is the sum of all intermediate values.

The feature map of some input I ∈ RIH×IW×C (IH , IW , C ∈ N input dimensions) and
filter W is then returned by the function

φ :RIH×IW×C → R(IH−h+1)×(IW−h+1)

I 7→ ((I ∗W)(i, j))i,j∈{1,...,h} + b (2.18)

with filter size h, filter weights W ∈ Rh×h×C and bias weight b ∈ R. An example of
this operation applied to a single neighborhood is depicted in figure 2.3.

Applying the same weights on different input variables is called weight sharing [36].
This is implicitly done by the definition of the convolutional layer operation φ in equation
2.18. An abstract depiction of this is shown in the case of one spatial dimension in figure
2.4. Here, only three weights have to be trained even though the input size is much larger.
Similar to how a fully connected layer has several output dimensions, a convolutional
layer has several feature maps as output resulting from several different filters.

Furthermore, applying the same weights on all inputs makes the output invariant to
any shifts of the input [36]. In the case of image data, this is a critical property to detect
similar features, e.g., a face shifted across different image samples. Because h has usually

18

2. Background

Figure 2.4.: Convolution operator with kernel size h = 3. Connections with the same
colors share the same weights.

a low value (h < 10), this makes the convolutional layer very weight-efficient. Combined
with the translation invariance, better generalization and computation time is achieved
[36].

The drawback of having several feature maps as output is the lack of translation
invariance of the new features [36]. Additionally, if the amount of filters is higher than
the input channel size, the output can have a higher dimension than the input.

Consequently, an operation called pooling is used. It reduces the output to a smaller
size. Pooling is often implied in a convolutional layer because it is exclusively – but not
necessarily – used after the convolution [36]. Pooling works similar to the convolution
operation. Furthermore, we replace the filter multiplication and the bias addition by a
aggregation operator [36]. Each channel is handled independently of the other channels.
The most common aggregation operator is the max -operator [36]. It returns the maximum
value of its arguments. In all cases, pooling is supposed to make the output approximately
invariant to small translations of the input [36]. However, especially max-pooling focuses
on task-relevant information by giving the strongest signal in a neighborhood a pass-
through to the output [36]. An abstract example of max-pooling is depicted in figure
2.5.

In neural networks, the pooling kernel size is often set to k = 2, so, reducing the output
down to a quarter of the original size [30; 35]. By using pooling in several layers, the
input is gradually reduced in its size layer by layer. Consequently, only a small feature
vector resulting from the last convolutional layer is used as input for the output layer.

Batch normalization layer

During training an ANN, intermediate layer outputs often show a strong discrepancy in
their value magnitudes [38].

To resolve this, the operation batch normalization (BN) was introduced in Ioffe and
Szegedy [38]. The base idea is to normalize the outputs of each feature map of a whole
batch of datapoints. This leads to more similarly distributed intermediate feature maps.

19

2. Background

Figure 2.5.: Max-pooling operator with kernel size h = 2. Colors represent different
neighborhoods. Unlike the convolution, the max operation happens in each
channel on its own and not across all channels.

As a consequence, the training process of the whole network is stabilized and regularized
[38]. Furthermore, training converges faster and is less sensitive to changes in learning
rates. The formal definition of the BN operation on the c-th feature map of a convolutional
layer output x is

xc 7→ γc

 xc − µB,c√
σ2
B,c − ε

+ βc
(2.19)

with a small constant ε for numerical stability, mean µB,c and variance σ2
B,c of all

values in a training (mini-)batch B. γc and βc are scalar, real-valued weights optimized
during the training, for an input channel c. From its first introduction, BN is used in
almost all modern deep learning architectures due to its benefits [9].

To get meaningful batch statistics during validation and testing, the running mean of
each batch statistic is calculated and stored during the training [38]. These values are
then used for normalization on test data.

Residual layer

Deep neural networks are harder to train with an increasing number of layers [30]. As
more layers are added to a network, the generalization error increases, even though the
network has a higher capacity [30]. This observation is shown on the left side of figure
2.7.

To solve this problem, residual blocks were introduced by He et al. [30]. These
result from a modification of the convolutional layer to allow the input of a layer to

20

2. Background

Figure 2.6.: Residual block with two convolutional layers as it appears in ResNet-34 or
smaller. Figure used from [30].

circumvent the filter weights. Usually, a convolutional layer tries to fit the parameters
of a full mapping H(x) of some input x. In contrast to this, a residual operation fits
only the residual mapping F (x) := H(x)− x [30]. F (x) can be approximated by several
convolutional operations, as long as H(x) and x are of equal dimensions. The architecture
of a single residual block is depicted in figure 2.6.

A typical residual neural network consists of several residual blocks containing multiple
convolutional layers each, with pooling applied between blocks. ReLU is applied once
between the layers and once after the residuals are combined again with the input. BN
is implicitly done right after each convolutional operation and is considered to be part of
the weight layer. No pooling happens in a block. Such a model architecture is called
ResNet-X, with X describing the number of layers in the full network. Bigger ResNets,
like ResNet-50, use an even more sophisticated residual block. Since only small models
are used in this master thesis, an extensive description of further residual blocks is not
required to understand the results of the present thesis. More information is presented in
the original work of He et al. [30]. Experiments showing how residual layers successfully
enable deeper architectures can be seen in figure 2.7. The left and right sides depict the
same model architecture. While the right side uses residual blocks, the left side does not.

Even though we only use smaller models (less than five million weights) in the ex-
periment section, neural networks with residual blocks are widespread in recent neural
network architectures [43]. As a consequence, ResNet based teacher models are extensively
covered in the experiments.

2.3.3. Benchmark data sets

In this section, we give a short overview of benchmark datasets related to the ones used
in the experiments (Chapter 5) this thesis.

21

2. Background

Figure 2.7.: Benchmark showing the improved scaling of residual layers in deep networks.
On the left, normal convolutional layers have been used for a 18- and 34-layer
network. On the right, residual layers were used in networks of equal size
and number of weights. The thin lines represent the training errors, the bold
lines the validation errors. [30].

MNIST

The MNIST (Modified National Institute of Standards and Technology) dataset consists
of handwritten single digits [47]. It has 60000 train and 10000 test samples split evenly
across ten different classes. The resolution of a single data instance is 28×28. The images
have only a single channel since they are grayscale. MNIST is considered to be one of
the easiest and earliest datasets used to benchmark image processing methods. Even
older deep learning architectures show very high test accuracy with only little required
computation time [47]. Sampled images can be seen in figure 2.8.

CIFAR-10

The CIFAR-10 (Canadian Institute For Advanced Research) dataset is a collection of
60000 colored images, split into 50000 training and 10000 testing instances [46]. There
are ten classes in the set: airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and
trucks, with each class being represented by 6000 images. Each image has a resolution of
32× 32 with 3 channels. They show a wide variety of different features due to differing
classes. This makes CIFAR-10 a lightweight dataset of medium difficulty.

ImageNet

ImageNet is a database containing over 15 million high-resolution images of around 22000
classes [45]. The images are not all of a similar resolution, so often only a smaller subset
of ImageNet is used as a dataset. One such subset is ILSVRC (ImageNet Large-Scale
Visual Recognition Challenge 2010). It contains 1.2 million training, 50.000 validation,
and 150.000 testing images, spread across 1000 classes. It is common to scale all the
images to a resolution of 224 × 224 with 3 channels [45]. This makes ImageNet and

22

2. Background

Figure 2.8.: Sampled images of the MNIST dataset [47]. In recent years, the image values
are used inverted, making the digits white and the background black.

23

2. Background

Figure 2.9.: Sampled images of the CIFAR-10 data set and their respective classes [46].

24

2. Background

Figure 2.10.: Sampled images of the ImageNet data set and their respective classes [45].

its alterations a real challenge even for modern neural network architectures [1]. A few
example images of ImageNet can be seen in figure 2.10.

2.3.4. Meta-learning

Meta-learning is commonly understood as the procedure of ’learning to learn’ [33]. Its
purpose is to improve a learning algorithm over several learning episodes. Recalling
section 2.2, a conventional machine learning algorithm improves a model over several
data instances. So, the task of meta-learning is not to train a model but to train a
training algorithm. In this context, training the model is also called task adaptation [33].
Meta-learning makes use of a similar bi-level optimization scheme as conventional machine
learning for hyperparameter optimization introduced in section 2.2. Here, the inner
level is called the inner learning algorithm solving a task [33], e.g., image classification
[46]. The outer level is called the meta-learning. It uses an outer (or upper/meta)
algorithm to update the inner learning algorithm [33]. The outer updates are done in a
way that improves an outer/meta objective based on the model training. An example
is the model generalization error adapted to a task [33]. Based on these definitions,
hyperparameter optimization can also be seen as a special form of meta-learning [33].
Most meta-learning algorithms in deep learning explicitly optimize the inner learning
algorithm end-to-end w.r.t. the meta objective [33]. A gradient descent optimization
algorithm usually conducts this since the model weights often define the search space
[22] [79]. Meta-learning is applied with learning iterations on tasks sampled from a task
distribution. This results in a base learning algorithm that generalizes to learning unseen
tasks sampled from the same distribution [33].

25

2. Background

2.3.5. Meta-learning for few-shot learning

In this subsection, we introduce the few-shot learning problem and how meta-learning is
used to tackle it. In general, while meta-learning is considered as a class of algorithms,
few-shot learning denotes a class of problems [33]. In this thesis, we only consider
classification tasks for few-shot learning. The few-shot learning nomenclature is presented
in the following. A (few-shot) task is considered as a small dataset containing only very
few data instances. The training and test sets of a task are commonly called support and
query sets, respectively, and form the task together [90]. Furthermore, we talk about a
n-Way k-Shot task if the task has n classes and k data instances per class in the support
set. A dataset in the context of few-shot learning is usually a set of (≥ 100) classes [16].
Based on these classes, a set of tasks is constructed. This set of tasks is considered as
the task distribution of the few-shot learning problem. There are training, validation,
and testing classes. They are used to construct the training, validation, and test tasks
[16]. The training tasks are used for meta-learning training, also called meta-training
[33]. The purpose of the validation tasks is to optimize the meta-learning algorithm’s
hyperparameters, also called meta-validation, in this thesis. After receiving a meta-
trained inner learning algorithm, the test tasks are used to calculate the test error [33].
This stage is also called meta-testing. Here, the meta-trained inner learning algorithm is
applied to a test task support set. The inner learning algorithm returns a model adapted
to this support set. Then, the query set loss of the model is the generalization error.
This error is a quantity of the inner learning algorithm’s capability to adapt to new tasks
with unseen classes.

The classes of the dataset must be strictly split into training, validation, and test
classes. Otherwise, the generalization error of the task adapted model is computed on
already seen data instances. As a consequence, it would be too optimistic.

To create the training, validation, and test tasks, algorithm 1 is executed on the
respective classes [16]. In the implementation of Deleu et al. [16], these three sets of
classes are already specified. Based on the returned sets of tasks, we can approximate
the unknown task distribution.

To give a visual overview of how the final few-shot learning tasks are structured, figure
2.11 depicts the case of two training tasks and one test task, all with two classes (n = 2),
four shots (k = 4), and one query set sample. Few-shot learning in practice requires many
more training tasks to train a model, which generalizes to the test tasks successfully. The
tasks, in summary, should cover several thousands of unique data points.

After defining the problem setup, we can formally define the optimization objective
for a common meta-learning algorithm during the meta-training phase. The goal is to
minimize the generalization error over the distribution of tasks PT concerning a set of
hyperparameters of the inner learning algorithm similar to equation (2.8). The objective
is given in equation 2.20 [33]. For consistency reasons with previous notations, we write
fDsup,θ as the model f adapted to a support set Dsup by the inner learning algorithm
with parameters θ.

26

2. Background

Algorithm 1: Task sampling for few-shot learning as it is implemented by
Deleu et al. [16]. P̂class is the empirical distribution of the available class
instances.

Input : A set of classes Dclasses, n ways, k shots, l query shots
Output : A set of n-ways k-shots tasks with query set size l

1 tasks← {}
2 # iterate over all combinations of n sized pairs of classes
3 for n-classes in n-combinations(Dclasses) do
4 support set← {}
5 query set← {}
6 # class index of the new task
7 i← 0
8 for class in n-classes do
9 for = 1 . . . k do

10 # sample support set class instance

11 x ∼ P̂class (no replacement)
12 support set← support set ∪ {(x, i)}
13 end
14 for = 1 . . . l do
15 # sample query set class instance

16 x ∼ P̂class (no replacement)
17 query set← query set ∪ {(x, i)}
18 end
19 i← i+ 1

20 end
21 tasks← tasks ∪ {(support set, query set)}
22 end
23 return tasks

27

2. Background

Figure 2.11.: Example of a few-shot learning setup with two training tasks and one test
task. The tasks are 4-shot 2-way, i.e. two classes with four examples each.
This means the support set is of size 4× 2 = 8. The query set is usually
larger than the support set, but for demonstration purposes is only of size
one here (the image covered by a question mark) [91].

θ∗ = arg min
θ∈Θ

E(Dsup,Dquery)∼PT [
1

|Dquery|
∑

(x,y)∈Dquery

L(fDsup,θ(x), y)] (2.20)

θ∗ is the best inner learning algorithm parameter configuration of the given task
distribution. Θ is the search space of all parameters of the inner learning algorithm
optimized by meta-learning. Examples for Θ are weight initializations [22], weights for
an embedding function [79], or learning rates [51]. Most meta-learning algorithms try to
solve the objective in equation 2.20 with a gradient descent like optimization algorithm
[89; 79; 22], e.g., Adam introduced in equation 2.12. For this, the gradient is calculated
on a batch of training tasks. This batch consists of B amount of tasks and approximates
the true gradient by equation 2.21 [16; 22; 79].

∇θ
B∑
b=1

1

|Dbquery|
∑

(x,y)∈Dbquery

L(fDbsup,θ(x), y) (2.21)

The full meta-learning training algorithm can be seen in algorithm 2. For consistency
with previous notations, we imply with f.,θ the model f combined with its inner learning
algorithm with parameters θ. The inner learning algorithm solves its objective at once,

28

2. Background

e.g., by a fixed amount of gradient steps. The task adapted model is denoted by fDsup,θ
since it also depends on the parameters θ of the inner learning algorithm. The outer
optimization algorithm minimizes the outer optimization loss L with a single gradient
update on θ. For Aouter Adam is a common choice [79; 22]. A meta-trained learning
algorithm f.,θ with model f is returned at the end.

Algorithm 2: Meta-training algorithm for few-shot learning representing
common, recent meta-learning approaches [25; 89; 79; 22; 71; 70; 73; 65].

Input : Base model f and inner learning algorithm with parameters θ, outer
optimization updater Aouter (taking a loss value and a parameter set,
and updating the latter to minimize the former), set of training classes
Dclasses

Output : Meta-trained model with inner learning algorithm f.,θ
1 for amount of iterations do
2 Sample batch of tasks {Ti}Bi=1 from Dclasses with algorithm 1.
3 # set outer optimization loss
4 L ← 0
5 for (Dsup,Dquery) in {Ti}Bi=1 do
6 # do task adaptation with f.,θ (approximately solving eq. 2.8)
7 fDsup,θ ← (f.,θ,Dsup)
8 # update outer optimization loss
9 L ← L+ 1

|Dquery |
∑

(x,y)∈Dquery L(fDsup,θ(x), y)

10 end
11 # do outer optimization step with Aouter on outer optimization loss L
12 θ ← Aouter(L, θ)
13 end
14 return f.,θ

In general, the task adaptation depends on the meta-learning algorithm. Several
modern meta-learning algorithms can be categorized in optimization-based and metric-
based approaches [33]. Metric-based approaches, which use a non-parametric inner
learning algorithm, do not use gradient updates [79]. On the other hand, optimization-
based approaches do gradient updates on the model weights. Here, a gradient descent
based optimization algorithm is a common choice [22]. Examples of these two classes of
approaches, which we use in our experiments, are given in the following sections.

Optimization-based meta-learning

Optimization-based meta-learning makes use of gradient descent to approximate the
inner optimization objective (2.9) [22; 33]. Usually, only a fixed amount of adaptation
iterations are done on each task. An example for the hyperparameters of the inner
learning algorithm are the weight initialization of the model before task adaptation [22].
Based on this, the outer optimization does gradient updates to receive the optimal weight

29

2. Background

Figure 2.12.: Abstraction of optimization paths Algi of MAML and FOMAML [71]. θ is
the weight initialization and θ∗i the parameters adapted to task i after a
fixed amount of gradient steps. The green line denotes the backpropagation
path. FOMAML skips this calculation.

initialization.
MAML (Model-Agnostic Meta-Learning) introduced by Finn et al. [22] is one of

the most famous algorithms that use this approach. Most works in the direction of
optimization-based meta-learning are alterations [11; 51; 5; 71]. A major drawback of
MAML is its computational costs. When the outer gradient is calculated, backpropagation
through all the task adaptation steps is required [22]. For this, all intermediate updates
of each gradient step have to be stored. Consequently, MAML requires increasingly more
memory and computation the higher the number of task adaptation steps is.

Several solutions to overcome this issue have been suggested and are used in this
section. One is to approximate the original meta gradient to the gradient of the last
inner optimization update [22]. The sum of the last inner gradients of a batch of tasks
is then used for the outer optimization update. This approach is called FOMAML
(first-order MAML). FOMAML updates are an approximation of MAML updates, and
empirical trials showed the impact on generalization performance as negligible [22]. As a
consequence, FOMAML is computational more efficient at the cost of gradient accuracy.
An abstract overview of the gradient update paths of MAML and FOMAML is depicted
in figure 2.12.

Furthermore, it was discovered that the performance of MAML is a consequence of
feature reuse in the convolutional layers [70]. This means, when adapting weights to a
task, only the output layer of the neural network receives adaptation updates, while the
other layers remain unchanged. This can be seen on the left side of figure 2.13, which
shows the canonical correlation analysis (CCA) values of the layer weights before and
after adapting to a task. The CCA value [29] of two matrices Ak ∈ RN×pk (k = 1, 2) is
defined as

30

2. Background

Figure 2.13.: MAML only adapts majorly the last layer of a deep neural network on a
given task (left).
Consequently, ANIL was proposed (right), not updating the feature extractor
during inner learning on each task (Tb, Tc, Td) [70].

MiniImagenet 1-shot 5-way MiniImagenet 5-shot 5-way

Method Acc Time Acc Time

MAML 46.9% 0.15s 63.1% 0.68s

ANIL 46.7% 0.084s 61.5% 0.37s

Table 2.1.: Comparing accuracy values and computation times of a single outer update
between MAML and ANIL [70].

max
u1∈Rp1 ,u2∈Rp2

corr(A1u1, A2u2)

= max
u1,u2

uT1 ΣA1A2u2√
uT1 ΣA1A1u1

√
uT2 ΣA2A2u2

(2.22)

with ΣA1A2 denoting the cross-covariance matrix of A1 and A2.
The authors proposed that the feature extractor learns sufficient feature representations

during outer optimization [70]. An alteration of MAML called ANIL (Almost No Inner
Loop) abuses this property. ANIL only allows the output layer of the neural network
to be adjusted to a task. The feature extractor receives adjustments with the outer
optimization update. This reduces memory and computation requirements. A sketch can
be seen on the right side of figure 2.13.

Consequently, the lack of inner learning updates on most weights of the given neural
network greatly improves computation and memory requirements. The generalization
performance compared to MAML is similar, as shown in table 2.1.

Due to these findings, in the later experiment sections of this thesis, FOMAML is used

31

2. Background

to approximate MAML. Furthermore, we use the principle of only adapting the output
layer to a task for constructing baselines for data-free few-shot learning.

Metric-based meta-learning

Optimization-based meta-learning algorithms use gradient updates to adapt to each task.
In the case of MAML, this requires additional computational time and introduces one
more hyperparameter – the inner learning algorithm learning rate. Metric-based meta-
learning does not require gradient updates and can be non-parametric for task adaptation
[89; 79]. The task adaptation happens by evaluating a metric function on the support
and query set feature embeddings. The feature embeddings are computed by forward
propagating each set through a deep neural network feature extractor. The similarity
between each query set embedding and the average class embeddings of the support set
is computed. Then, the highest similarity of all classes indicates the predicted class.
The output layer is not required, neither during meta-training nor during meta-testing.
Consequently, in the context of metric-based meta-learning, we use the terms feature
extractor and neural network interchangeably.

This category of meta-learning approaches can be interpreted as learning feature
embeddings that are sufficiently general to make predictions based on metric differences
between unseen classes.

A popular metric-based algorithm used in this thesis is Prototypical Networks (Pro-
toNet) [79]. ProtoNet calculates its output probability vector with the softmax operator
applied on a negative distance metric −d. The distances are computed between the input
and the class centeroids (called prototypes) ck := 1

|Dksup|
∑

(x,k)∈Dksup gθ(x). Dksup ⊂ Dsup
is each class-specific subset of the support set. k is the class index. The discriminative
function is then given by equation 2.23 [79].

Pθ(Y = k|X = x) :=
exp−d(gθ(x), ck)∑
k′ exp−d(gθ(x), ck′) (2.23)

The outer optimization loss is the sum of the negative log-likelihood − logPθ(Y =
k∗|X = x) of each query set instance x. Here, k∗ is the true class label of an input x. A
sketch of a feature embedding space with support set class centeroids and a query set
instance can be seen in figure 2.14.

Baselines of meta-learning for few-shot learning

There are simple baselines that outperform some meta-learning algorithms, including
MAML and ProtoNet [11]. Constructing baselines for few-shot learning is an active
field of research [11] [12] [19]. Replacing meta-training with conventional neural network
training gives a significant computation boost. As a consequence, we prefer baselines in
cases where they show competitive generalization performance.

We define baselines for the problem addressed in this thesis based on Chen et al.
[11]. We call the approach Baseline-Chen in the following to avoid confusion with other

32

2. Background

Figure 2.14.: An abstraction of the embedding space of Prototypical Networks [79]. x is
an instance of the query set. ci are the prototypes of class i.

baseline methods. Baseline-Chen trains a deep neural network conventionally on all
training classes combined in a single dataset. The output layer of this network is bigger
compared to meta-learning approaches because all the classes are in a single task. For the
k-shot n-way meta-validation and meta-testing phase, we remove the output layer and
replace it with a randomly initialized output layer of output size n [11]. Furthermore, the
feature extractor is fixed after training, so only the new output layer is updated based
on the support set of validation or test tasks. The number of output layer updates by
SGD for task adaptation is fixed, too.

For task adaptation, this makes Baseline-Chen equivalent to ANIL but with more
gradient updates [11; 70]. We present an overview of the training phase, the task
adaptation, and the output layer in figure 2.15.

Baseline-Chen showed comparable results to MAML and ProtoNet [11]. The gener-
alization performance at domain drifts between training and testing classes is better
[11].

2.3.6. Data-free knowledge distillation

In modern deep learning applications, large neural networks are used [30; 18; 28]. Typical
applications or large models are computer vision [30], natural language understanding
[18], or speech recognition [28].

Consequently, knowledge distillation was introduced to transfer generalization
performance from a large network to a smaller network [32]. In this context, the large
network is called the teacher and the smaller network the student. As introduced in
Hinton et al. [32], knowledge distillation trains the student network with the teachers’
original training data. For this, the labels are discarded and replaced with the prediction
probabilities of the teacher. This allows the new network to be deployed to smaller
devices. The devices, e.g. cellphones, may not have enough computational capabilities to
predict with the teacher network [27].

Due to data privacy concerns, the original training data may not be available. For

33

2. Background

Figure 2.15.: The figure shows the different stages of Baseline-Chen and the output layer
denoted as classifier C with parameters W [11]. The fine-tuning stage
corresponds to the adaptation to a single validation or test task. The
output layer has the parameters Wb during the training stage. After the
training stage, the output layer is replaced with a new output layer. This
new output layer is randomly initialized and according to the task’s number
of classes resized. Wn are the new task-specific parameters.

this scenario, methods performing knowledge distillation without the training set have
been introduced [96] [60] [27]. Such methods perform data-free (or zero-shot) knowledge
distillation (DFKD). To train a student, DFKD generate artificial data by using the
teacher. We divide DFKD methods into two categories. We refer to one as generator-
based since a generator network produces artificial training data [60; 10]. The student
and generator are trained end-to-end in an adversarial manner [60; 10]. This can make
the whole training difficult due to mode-collapse or catastrophic forgetting [84].

We call the other category noise-optimization-based. Here, random noise is initialized
in the size of the desired training set. Then, the noise x̂ is optimized by a gradient
descent optimizer concerning an optimization objective in equation 2.24 [96].

min
x̂
L(pT (x̂), y) +R(x̂, pT) (2.24)

We denote the teacher model with pT . L and R are specified so that the optimized noise
resembles useful training data for the student [64; 96]. The noise-optimization-based
approaches are simpler than generator-based approaches since a single optimization
objective is used for each data instance [64; 96]. Generator-based approaches require
an algorithm training two models, the generator and the student [60; 10]. A drawback
is that the optimization has to start from scratch when new data is required. Out of
all considered methods, the most promising for the proposed problem is introduced and
explained in the following.

34

2. Background

DeepInversion

In this section, we present a brief overview of DeepInversion (DI). DI optimizes noise
with the objective given in equation 2.24 [96]. The primary loss L is the cross-entropy
loss and responsible for the class assignment. The regularization term R optimizes the
artificial data towards the domain of the original training data. This term of DI consists
of several sub-terms, each serving a different purpose. These sub-terms are RTV , L2,
Rfeature, and Rcompete, and will be explained in the following.

The term Rprior was first introduced by Mordvintsev et al. [63], and is of the form

Rprior(x̂) = αtvRTV (x̂) + αl2L2(x̂) (2.25)

with the L2 norm applied on x̂ flattened to a vector and the discrete total variation
(TV) loss RTV given in equation 2.26.

RTV (x̂) :=
∑
i,j

(
(x̂i+1,j − x̂i,j)2 + (x̂i,j+1 − x̂i,j)2

+(x̂i+1,j+1 − x̂i,j)2 + (x̂i+1,j − x̂i,j+1)2
) 1

2

(2.26)

Equation 2.26 is a finite approximation of the total variation (TV) loss [55] on a
continuous function f : RH×W ⊃ Ω→ R (H,W ∈ N) given by the mapping

f 7→
∫

Ω

((∂f
∂u

(u, v)
)2

+
(∂f
∂v

(u, v)
)2
)β

2

dudv. (2.27)

It should be noted that the regularization term RTV of DeepInversion uses additionally
diagonal shifts unlike Mahendran and Vedaldi [55]. It is responsible for smoothing each
image and minimize pixel artifacts. If the coefficients αtv and αl2 are high compared to
the other values, the resulting images will look very blurry with a lack of sharp edges
and corners [55].

DeepInversion introduces a further regularization term Rfeature, which helps to ap-
proximate the original data distribution. This requires accessing the BN statistics of
the teacher network, learned on the original data. The difference between the running
statistics µl and σl of a BN layer l of the teacher and the BN statistics µ̂l(B̂) and σ̂l(B̂)
of the current artificial data batch B̂ is minimized in equation 2.28 [96].

Rfeature(B̂) =
∑
l

‖µ̂l(B̂)− µl‖2 + ‖σ̂l(B̂)− σl‖2
(2.28)

We assume that the running BN statistics accumulated during the teacher training
are stored in a teacher. They give an approximation of the original distribution in the
form of feature map distributions. As a consequence, this allows strong adaptation of

35

2. Background

Teacher Network VGG-11 VGG-11 ResNet-34

Student Network VGG-11 ResNet-18 ResNet-18

Teacher Accuracy 92.34% 92.34% 95.42%

Noise (L) 13.55% 13.45% 13.61%
+Rprior (DeepDream [63]) 36.59% 39.67% 29.98%

+Rfeature (DI) 84.16% 83.82% 91.43%
+Rcompete (ADI) 90.78% 90.36% 93.26%

Table 2.2.: Accuracy values after training a student network with each additional loss
term [96].

the otherwise noisy data to the training set domain. The DI regularization term RDI is
defined in equation 2.29 for a batch B̂ of artificial data [96].

RDI(B̂) =
1

|B̂|

∑
x̂∈B̂

Rprior(x̂) + αfRfeature(B̂) (2.29)

Yin et al. [96] also introduce an variant of DI called Adaptive DeepInverson. This
approach uses another regularization term Rcompete given in equation 2.30. We refer to
the student with pS .

Rcompete(x̂) = 1−DJS

(
pT (x̂)‖pS(x̂)

)
(2.30)

Rcompete influences the noise optimization in parallel with the student training to
optimize the data in directions where the student does not fit the teacher predictions.
DJS denotes the Jensen-Shannon divergence. Combining with the previous terms, this
gives the total Adaptive DeepInversion regularization term in equation 2.31 [96].

RADI(B̂) = RDI(B̂) + αc
1

|B̂|

∑
x̂∈B̂

Rcompete(x̂) (2.31)

An overview of how each additional regularization term influences the generated images
is given in figure 2.16. Furthermore, an overview of how the student accuracy is influenced
is given in table 2.2. The differences between the performance yielded when using RDI to
Rprior are high. Using RADI gives further improvements. Using the Rcompete introduces
additional computations including the student model. Consequently, the optimization
with this term is computationally slower.

An example of how effective DeepInversion can generate in-domain looking data is
given in figure 2.17. By inspecting table 2.2, and comparing figure 2.16 with figure 2.17,
we note that the results of DeepInversion may depend on the size of the teacher network
and/or the resolution and/or size of the original training data.

36

2. Background

(a) Noise (L optimized) (b) DeepDream [63]

(c) DeepInversion (DI) (d) Adaptive DeepInversion (ADI)

Figure 2.16.: Example images generated with each method applied to a ResNet-34 model
trained on CIFAR-10 [96]. All images depict the same four classes: cat,
dog, car, horse.

37

2. Background

Figure 2.17.: Example images generated with DeepInversion applied to a ResNet-50v1.5
teacher trained on ImageNet [96]. Each row contains images of a single
class.

38

3. Related Works

So far, data-free knowledge distillation [27] and few-shot learning via meta-learning [33]
have been separately well studied. To the best of the author’s knowledge, no published
work has addressed their intersection, the data-free few-shot learning problem. We aim
to distill the knowledge of multiple teachers in a way that enables few-shot learning in a
student model. Works, that are built upon in this thesis, or that adress related problems,
are presented in this section.

3.1. Meta-learning

Meta-learning algorithms are used to tackle the few-shot learning problem [90]. Since
the problem addressed in this thesis is a variant of the few-shot learning problem, meta-
learning is fundamentally related. A general survey of meta-learning applied to other
settings is presented by [33]. In the scope of this thesis, we focus on meta-learning for
few-shot learning. An overview of meta-learning algorithms is presented in the following.

3.1.1. Optimization-based approaches

One of the most influential methods for optimization-based few-shot learning is model-
agnostic meta-learning (MAML) and its first-order approximation FOMAML introduced
by Finn et al. [22]. MAML optimizes the weight initialization of a model, such that
the model can successfully adapt to few-shot tasks with few gradient update steps. To
update the weight initialization during meta-training, backpropagation through all task
adaptation steps is done. This makes MAML memory and computationally expensive.

To address this issue, Nichol et al. [65] give an analysis on MAML and FOMAML.
The authors propose to skip the backpropagation calculations, and introduce a simpler
approach called Reptile. Reptile does not compute gradients for its outer optimization
update. Instead, it moves the weight initialization in the direction of the task-specific
weights.

Raghu et al. [70] show that MAML does not learn fast adaptation to new tasks.
Instead, MAML learns feature reuse between tasks. Consequently, they proposed the
ANIL (Almost No Inner Loop) algorithm. This algorithm adapts exclusively the output
layer of a model to a task. The feature extractor is only updated by the outer optimization.

The recent work of Rajeswaran et al. [71] introduced implicit MAML (iMAML).
iMAML enables a high number of task adaptation steps. This is achieved by using the
implicit Jacobian of the task-specific parameters. It removes the requirement of doing
backpropagation through all fine-tuning gradient steps as it exclusively depends on the
final solution.

39

3. Related Works

3.1.2. Metric-based approaches

Another category of meta-learning approaches uses a metric function. The metric
function calculates distances between support set classes and query set instances to give
a prediction. This does not require updating parameters of the model for task adaptation.
One such method is called Matching Networks introduced by Vinyals et al. [89]. It
compares the embeddings of the query set samples with the support set samples, and
classifies them with their cosine similarity. The embeddings are given by the outputs of
the last convolutional layer of a neural network. During outer optimization, the neural
network weights are updated to decrease the angle between embeddings belonging to the
same class.

Snell et al. [79] introduce Prototypical Networks (ProtoNet). ProtoNet compute the
mean of all embeddings for each class in the support set. These mean embeddings
are called prototypes. Distances between the prototypes and a query set instance are
calculated with a metric function. The prediction is computed by applying softmax to
the distances. The authors propose to use the Gaussian kernel as the metric function.

Sung et al. [83] replace the used metric with an additional neural network. This
is similar to a parametrized metric, which allows better task adaptation. Thus, a
better few-shot learning performance is achieved according to the authors’ benchmarks.
Rodŕıguez et al. [73] introduce Embedding Propagation for few-shot classification. It
builds upon previous advances by regularizing the embedding space to have smoother
decision boundaries. This is done by calculating a propagator matrix. The propagator
matrix is multiplied with the embeddings to compute propagated embeddings. The
propagated embeddings are used as inputs for the metric function.

3.1.3. Baselines for few-shot learning

There are other approaches for few-shot learning, besides meta-learning [90]. More simple
baseline methods were introduced, too. A baseline may enable few-shot learning without
a meta-training phase. Chen et al. [11] train a model conventionally on all training classes
merged into a single dataset. The adaptation to an unseen task consists in optimizing
a new output layer with a gradient-based optimization method. This is similar to how
ANIL performs meta-testing [70] or to transfer learning [100]. Chen et al. [11] show
competitive performance on few-shot tasks compared to meta-learning algorithms.

Chen et al. [12] introduce another baseline. Here, the model is trained conventionally,
too. Afterwards, an additional meta-training stage happens. The meta-training stage
resembles Prototypical Networks [79] with cosine similarity as the distance metric.

3.1.4. Meta-learning with artificial data

So far, all the mentioned methods work on thw original meta-training data. The problem
setting considered in this thesis does not allow access to the original training data, so
any meta-learning method is applied to artificial data. Using meta-learning approaches
with artificial data is already done by the following works.

40

3. Related Works

One approach introduced by Yin et al. [95] is ADML (ADversarial Meta-Learning). It
aims to improve the meta-learning algorithm by using additional generated data. ADML
uses the Fast Gradient Sign Method [26] to generate adversarial data with the given
meta-training data. The data is used to calculate a sum of two gradients for the outer
optimization update. One gradient is computed on the loss of adversarial data after
fine-tuning on normal data. The other is computed on the loss of normal data after
fine-tuning on adversarial data.

Another work published by Zhang et al. [99] introduces MetaGAN, which extends
normal meta-training with an additional noise-class. For this, each n-way task is expanded
with an additional class of samples produced by a generator. The task is considered to
be a (n+ 1)-way task. The generator is optimized to create fake images resembling the
task classes. On the other hand, the classifier has to assign these fake images to the
noise-class. This is done additionally to the original samples in the query set.

Both approaches share the property the artificial data to further enhance the meta-
training on real data. In contrast, this work uses normal data and does meta-learning on
artificially produced data.

3.2. Knowledge Distillation

In the context of this work, training data is inaccessible, and a set of trained models
are available. As a consequence, methods of the topic data-free knowledge distillation
have to be considered to successfully train a new model. An extensive survey of general
knowledge distillation is presented by Gou et al. [27]. In original knowledge distillation,
the goal is to compress a bigger model to a smaller one with minimal generalization
performance reduction. Hinton et al. [32] is one of the first works introducing knowledge
distillation. Here, a new student model is trained with the probability outputs of a
single teacher model as labels. The original labels are discarded. The Kullback-Leibler
divergence between the student’s outputs and the new labels is used as the loss function.
The training data of the teacher is used for training the student with the labels being
changed to the teacher probability outputs.

The work of Zhang et al. [98] applies knowledge distillation to a teacher model trained
with MAML. This gives a student capable of few-shot classification. The desired outcome
of the presented thesis is similar to the mentioned work with a different setting. In Zhang
et al. [98], the meta-training data of the teacher is available for the knowledge distillation
procedure. Furthermore, the purpose of the introduced method is the compression of the
teacher to a smaller model.

3.2.1. Data-free knowledge distillation

Further advances were made in the direction of data-free (zero-shot) knowledge distillation.
Here, the teacher’s training data is considered to be unavailable. Thus, methods focus

41

3. Related Works

on generating artificial data. One approach for this is the usage of a generator network.
The generator is tuned in parallel to the student network in an adversarial manner.
Micaelli and Storkey [60] introduced Zero-shot Knowledge Transfer. It optimizes the
student to minimize the Kullback-Leibler divergence between the student’s and teacher’s
output. The data is produced by a generator, which maximizes the student’s loss. To give
the student more guidance an additional attention term is used. This loss reduces the
difference between the student’s and teacher’s intermediate layer outputs. The authors
show that their approach produces data, which gives a continuously high discrepancy
between student and teacher throughout the training. This makes the student mimic the
teacher without knowing the domain of the teacher’s training data.

The same approach is used by Chen et al. [10] with a different loss. Here, for both
the student and the generator the cross-entropy is used instead of the Kullback-Leibler
divergence. Additionally, the generator receives two regularization terms. One is for
producing data with high activation values in the teacher’s last convolutional layer. The
other term is for producing data with uniform class frequency.

The Kullback-Leibler divergence for the student is equal to the cross-entropy up to an
additive constant, so the methods proposed in Micaelli and Storkey [60] and Chen et al.
[10] are similar.

Another work by Choi et al. [13] builds upon this generator-based training and adds
a generator pre-training phase. Here, before any update on the student is done, the
generator is optimized with three different loss terms. One loss forces the generator to
produce data close to the teacher training domain. This is done by minimizing the
Kullback-Leibler divergence between the BN statistics of the original data stored in
the teacher and the BN statistics received by forward propagating the generated data.
The other two losses maximize the teacher confidence scores on the produced data and
balance out the class frequencies.

A further approach for data-free knowledge distillation is by directly optimizing the
artificial data. This usually involves starting with random noise and a target label. The
noise is adjusted with the help of a gradient descent like method to resemble training data.
Afterwards, the student is trained conventionally on the produced data. In the following
we call such approaches noise-optimization-based. Compared to the generator-based
approach, the amount of generated data is fixed with the initialization of the optimization.
In contrast, a generator can theoretically produce an arbitrary amount of data after its
training phase. On the other hand, optimizing noise is simpler and quicker than training
two networks in an adversarial manner. The latter is prone to suffer from issues like
mode-collapse or catastrophic forgetting [84].

One way to do noise-optimization-based data-free knowledge distillation was introduced
by Nayak et al. [64]. The presented approach minimizes the cross-entropy between a
class-specific Dirichlet-sample and the teacher output of the noise data. The Dirichlet-
sample has concentration parameters according to the weights of each respective class of
the teacher’s output layer.

Yin et al. [96] introduce DeepInversion (DI) and its adversarial alteration Adaptive

42

3. Related Works

DeepInversion (ADI). DI optimizes the noise data w.r.t. several criteria. Cross-entropy
between teacher prediction and a class label is responsible for class affiliation of the noise
data. BN statistics discrepancy similar to Choi et al. [13] is used to approximate the
original training data distribution. Total variation and L2 norm losses of the noise image
are used to smooth out any pixel artifacts.

ADI uses the same losses as DI except for an additional adversarial loss. This loss
combines the noise optimization and the student training to a single training procedure.
The training happens in an adversarial manner, i.e. the student and the noise data are
updated alternately. The adversarial loss is the Jensen-Shannon divergence between the
student’s and teacher’s predictions on the noise data. Similar to Micaelli and Storkey
[60] or Chen et al. [10], the optimization is drawn towards regions of higher discrepancy
between the student and teacher outputs.

3.2.2. Multi-teacher knowledge distillation

Further works regarding the case of having multiple teacher networks have been pub-
lished in the context of knowledge distillation. This scenario is often called knowledge
amalgamation or ensemble distillation [27; 86].

The work of Ye et al. [93] uses unlabeled data and multiple teachers trained on different
tasks to train a student. The student is capable of performing two pixel-prediction tasks:
depth estimation and scene parsing.

Luo et al. [54] handle a more general case by training a student for an arbitrary task.
Here, the requirement is the availability of unlabeled data, and the teacher networks can
have differing architectures.

Another work of Tian et al. [86] tries to reformulate knowledge distillation by drawing
connections to representation learning. The proposed method makes use of a critic
model. The critic model forces the student to maximize the mutual information of its
output with the teacher’s output. The critic and the student are jointly optimized.
Furthermore, the loss covers the case of having several teachers. The authors claim to
have achieved state-of-the-art performance with this approach. Though, an extension for
a data-free case has not been proposed.

One work, which does data-free knowledge distillation with multiple teachers, is of Ye
et al. [94]. Here, every teacher layer receives its own generated input by a group-stack
generator. The algorithm is designed to train each student layer individually with the
teachers’ intermediate layer outputs. The paper did not publish its source code, and the
abstract algorithm description with a multitude of different losses makes reproducing the
results unfeasible in the scope of this thesis.

3.3. Further privacy-preserving methods

The motivation of this thesis is to enable few-shot learning in a privacy-restricted setting
without having access to the original training data of the available teacher models. A

43

3. Related Works

category of algorithms for preserving the privacy of training data is federated learning.
This was first introduced by McMahan et al. [58]. Federated learning aims to optimize
a model with gradients received from several devices. Furthermore, the training data
is exclusive to each device. Such a setting is given in the case of mobile phones, where
the data is either inaccessible due to privacy reasons or simply due to size [40]. This is
close to the proposed problem in this thesis. Instead of having gradients with no data,
we consider the case where models trained on data are available. The work of Kairouz
et al. [40] shows recent advances and problems in the field of federated learning.

44

4. Methodology

In this section, several methods for data-free few-shot classification given multiple pre-
trained models are introduced. The pre-trained models are called teacher models or
shortly teachers. At first, a detailed description of the novel problem setting addressed
in this thesis is presented. Then, we define two orthogonal solution approaches and focus
on one of them. We give an extensive specification of the proposed algorithm. Last, we
introduce several baselines without (meta-) training stage. These act as challenging lower
bounds for generative methods tackeling the defined problem.

4.1. Data-free few-shot learning

In the scope of this thesis, we introduce the novel problem setting of data-free few-shot
learning. The problem is defined as follows. We are given a n-way k-shot classification
task containing image data. This task is called the target task. We want to train a model
on the task’s support set such that the generalization error is as low as possible. For
the generalization error, the error on the query set of the task is used. Furthermore, we
assume a set T = {T1, . . . , TB} of different pre-trained models is available. We call these
models teachers, and neither their original training data is accessible nor any metadata.
Each teacher is trained on data similar to the target task. Here, ’similar’ means similarity
according to the training tasks and test tasks defined by Deleu et al. [16]. The different
training datasets are mutually exclusive, i.e., no two teachers are trained on the same
class or data instance. This mimics the real-world scenario, where owners of different
dataset are not willing to share data with each other, and a model is needed to learn a
new similar task using only few datapoints.

A comparison between the original few-shot learning setting and the proposed data-free
few-shot learning setting is depicted abstractly in figure 4.1.

The teachers have arbitrary architectures. Thus, any approach trying to solve this
scenario is supposed to work with arbitrary architectures. The proposed methods are
designed to work according to these assumptions. Though, the outcome may be dependent
on the given teachers. As a consequence, several different teacher architectures have to
be evaluated.

4.2. Two classes of approaches

We introduce approaches combining meta-learning with knowledge distillation. We
meta-train an inner learning algorithm with a student on generated data according to
sections 2.3.4 and 2.3.6.

45

4. Methodology

(a) Original few-shot learning provides training tasks similar to the target task.

(b) The novel data-free few-shot learning scenario provides teacher models trained on datasets
similar to the target task.

Figure 4.1.: Comparison of the traditional few-shot learning and the proposed data-free
few-shot learning setups. In both cases we want to adapt to an unseen task
using few data instances.

46

4. Methodology

To address our novel problem, we define two classes of approaches based on the data-
free knowledge distillation literature. As mentioned in the chapter 2 and 3, there are
currently two dominating classes of approaches in the latter. One is generator-based,
where the student model and the generator are trained adversarially. The other is
noise-optimization-based, where, noise data is optimized to resemble the original data
and then used to train the student model. In the following, we discuss the proposed
classes of approaches.

4.2.1. End-to-End data-free meta-learning

Similar to generator-based data-free knowledge distillation, we propose an approach
that generates data optimized for meta-training the student. This can be achieved by
optimizing the data generation and meta-training a few-shot learner End-to-End. In the
following, a brief outline of this class of approaches is presented. In each optimization
step, the negative value of the (meta-) training loss of the previous step is part of
the data generation loss. Thus, both generating the data and training the student
are part of the same optimization process. The generated data is optimized for the
meta-training. On one hand, this may give better results than just trying to replicate
the original training domain of the teacher. On the other hand, combining several
optimization procedures by iterative updates and a shared optimization objective can
make the training process non-transparent. Consequently, it can be expected the
algorithm is prone to issues similar to those of generative adversarial network training [84].

We focus on the following approaches as a first attempt in tackling the proposed
problem.

4.2.2. Consecutive data-free distillation and meta-learning

In this approach, we separate the generation of the artificial data and the training of the
student. The first stage focuses on generating data resembling the original training data
of the teachers. This is done prior to the meta-training. After generating a full set of
artificially data, the second stage applies (meta-) training on the generated data. This
allows any meta-learning method to be used.

This approach has the advantage of optimizing each part separately. Furthermore,
different methods for each stage can be easily replaced and compared. This allows using
state-of-the-art algorithms for both the data generation and the meta-training part.
Figure 4.2 shows an abstract depiction of the algorithm for a test task.

The validation loss of each stage can be evaluated to perform hyperparameter tuning
and algorithm selection.

Selecting the best method for the data generation is computational difficult compared
to the meta-training stage. We cannot evaluate the data generation stage according to the
mean validation performance of the considered meta-learning algorithms since this would
be computationally infeasible. So, we will only evaluate the data generation stage with a
computationally cheap algorithm trained on the generated data. We use Baseline-Chen

47

4. Methodology

Figure 4.2.: An abstraction of the proposed data-free meta-learning algorithm. In the
first stage (blue box), data is generated with the given teachers and an
arbitrary data-free knowledge distillation algorithm. The second stage is
conventional meta-learning (orange boxes). The generated data is used
within a meta-learning algorithm to produce a meta-trained student. Then,
the student is adapted to the support set of the target task. Last, the task
adapted student is used to evaluate the generalization error of the target
task query set.

48

4. Methodology

as this cheap algorithm. The evaluation value is the generalization error of Baseline-Chen
adapted to a new task. For validation, the generation process is optimized w.r.t. the
validation loss of Baseline-Chen. The prior-generation-based approach with validation
steps is summarized in algorithm 3. The trained student fθ can be used on unseen test
tasks. Or, a new (and possibly more computationally expensive) meta-learning algorithm
can run on the generated set X .

Algorithm 3: Consecutive data-free distillation and meta-learning algorithm
for data-free few-shot learning.

Input : Set of teachers T = {T1, . . . , TB}, data generation algorithm DI,
(meta-) training algorithm M , validation tasks Dval

Output : Student/inner learning algorithm fθ and artificial data X
1 # initialize data for each teacher
2 for b = 1, . . . , B do
3 initialize data Xb

4 end
5 while validation loss Lval improves do
6 # STAGE 1
7 for b = 1, . . . , B do
8 # update data for each teacher independently
9 Xb ← DI(Xb, Tb)

10 end
11 X ← {X1, . . . XB}
12 # STAGE 2
13 initialize new student fθ
14 while validation loss Lval improves do
15 # run M on X to update student
16 fθ ←M(fθ,X)
17 # calculate validation loss of student
18 Lval ← fθ(Dval)
19 end

20 end
21 return (fθ,X) according to the best Lval

Data generation stage

Like mentioned in section 2, optimizing noise is simpler than training a generator
network. Since the proposed problem is novel, we prefer simplicity in the used method.
Furthermore, compared to the other noise-optimization-based approach of Nayak et al.
[64] DI introduced by Yin et al. [96] shows the most promising in-domain looking
generated data. Consequently, we decided to use DI for the data generation stage [96].
For this, we require the teachers to have BN layers and stored running statistics of their

49

4. Methodology

original training set. This assumption holds in all encountered modern convolutional
neural network architectures [30; 35].

DI is applied to each teacher independently to generate a fixed number of images. Due
to memory constraints, for each teacher, several batches of noise-data are optimized
separately. After every batch of every teacher is optimized for a certain number of
iterations, all the batches are merged into a single dataset. The amount of optimization
iterations is determined by early stopping on the meta-validation loss of Baseline-Chen.
For this, a randomly initialized model is trained on all the batches combined after
every i ∈ N DI iterations. Since we assume the data noisy, we do not know how
long Baseline-Chen should run without overfitting to the strongly present noise. As a
consequence, another level of early stopping on top of Baseline-Chen early stopping is
required. Baseline-Chen is trained as long as the meta-validation loss improves by at least
one percent across multiple training iterations. The best validation loss of Baseline-Chen
is used as the validation loss of the current DI iteration. If this validation loss does not
improve more than one percent for several iterations, DI optimization is stopped. In our
implementation, we use 100 DI iterations between validation evaluations. A sketch of this
tuning procedure can be seen in figure 4.3. After the best hyperparameter configuration
is determined, a new set is generated. We optimize it by the through early stopping
determined amount of DI iterations.

Due to DI, we require that any teacher model was trained with several BN operations
in its architecture. Additionally, the running batch statistics have to be stored in the
teacher.

Meta-learning stage with generated data

The proposed algorithm 3 returns a model capable of learning a target few-shot task. To
achieve this final result, a meta-learning training stage is required. After hyperparameter
tuning the data generation stage, additional data is generated in higher volumes. This is
necessary since we produced fewer data instances during the hyperparameter tuning. We
expect better results with more generated data. We execute a meta-learning algorithm
or one of the few-shot learning baseline methods on the generated data. The algorithm
uses the generated data from the previous stage for its training.

To cover a variety of few-shot learning approaches, we decided to try an algorithm
for optimization-based meta-learning, metric-based meta-learning, and a baseline using
meta-training data, we present in the following.

We choose MAML [22] as the optimization-based meta-learning algorithm. Multiple
optimization-based meta-learning methods are modifications of it [70; 65; 71]. We use
its first-order approximation FOMAML due to its reportedly similar performance, yet
quicker run time and smaller memory consumption. During meta-training, five inner
learning update steps are executed for adaptation. For validation and test tasks, we use
ten inner learning steps.

50

4. Methodology

Figure 4.3.: An abstraction of the DI early stopping procedure during its hyperparameter
tuning. After a predetermined amount of optimization iterations on each
batch, a validation episode is triggered (green boxes). In each validation
episode, all the batches are merged and used for training a new Baseline-Chen
model (BC) (dotted arrows). Baseline-Chen is trained with early stopping
resulting in ni ∈ N (i = 1 . . .m, m ∈ N) amounts of validation evaluations
(orange boxes). The best validation value of a full Baseline-Chen run is used
for the corresponding DI validation step. Of the final

∑m
i=1 ni amount of

Baseline-Chen validation values, the best is picked as the validation loss for
the used DI hyperparameter configuration. This nested early stopping is
repeated for each configuration during hyperparameter tuning.

51

4. Methodology

We use ProtoNet [79] as a representation of metric-based meta-learners. We
consider it as a common method with a competitive performance compared to other
approaches [73; 11; 6]. Since the metric function is non-parametric, task adaptation is
computationally more efficient.

As the few-shot learning baseline approach, we use Baseline-Chen [11]. We consider it as
a simple approach without a costly bi-level optimization scheme. This strongly improves
run time and, as reported [11], maintains competitive generalization performance. It
shows the quickest training improvements w.r.t. computation time of all evaluated
algorithms for few-shot learning.

4.3. Few-shot learning without generated data

To assess the usefulness of the training on the artificial data, several baselines are
constructed. These are designed to not use training tasks. Because we are given a
few-shot task, we can optimize the model weights. This is done exclusively on the given
validation or test task’s support set.

Updates of one task are not allowed to leak to another task. So, for every encountered
task, the baseline model has to be re-initialized fully from scratch. Furthermore, the
baselines are designed to be always usable in any setup of the given scenario. In the
following sections, three baselines are introduced. Since they work without any (meta-)
training data, they can be considered a minimum lower bound for any data-free few-shot
learning method.

4.3.1. Random initialization

The most naive approach is to train a randomly initialized model on the support set
of the few-shot target task. The number of training iterations is determined using the
validation tasks. More specifically, the number of updates on a validation task is specified
with early stopping by calculating the generalization loss on the task’s corresponding
query set.

We expect that further updates give diminishing or harmful results. The optimal
number of iterations averaged across meta-validation tasks is used for test tasks.

This baseline can be used for any few-shot learning setting, if no teacher models are
given. It can be interpreted as a lower bound. If any algorithm is worse than this, the
(meta-) training can be seen as harmful and should not be used. We refer to it as the
Random-Initialization baseline in the following.

4.3.2. Best teacher initialization

As we mentioned in section 14, normally trained models are already decent at learning
few-shot tasks. The teacher was trained on a task similar to the target task. So, we expect
positive transfer when fine-tuning the teacher with a new, randomly initialized output
layer. If the student cannot outperform every teacher in a few-shot task, training a new

52

4. Methodology

student cannot be considered as beneficial. We aim for a learner with the best possible
generalization performance. For this baseline, every teacher is used as initialization for
fine-tuning on each validation task. We initialize a new output layer according to the
target task. The teacher with the best validation loss is used for the test tasks. We refer
to this baseline as Best-Teacher. The amount of update iterations on the support set is
tuned as done in the random initialization baseline case.

4.3.3. Teachers’ features concatenation

In this section, we propose another baseline combining the feature extractors of multiple
teachers.

The Best-Teacher baseline uses each teacher separately. Consequently, the baseline
fails to leverage the knowledge of several teachers. This may be neglectable if there are
few teacher models trained on high data amounts. However, for scenarios with lots of
smaller teachers, such a baseline may be inferior compared to combining the teachers.
Considering optimization-based meta-learning in section 14, we make the assumption that
the teachers’ feature extractors do not require major weight updates. As a consequence,
we introduce a baseline called Teacher-Concatenation. It concatenates the features of all
teachers. The feature concatenation is the input for a randomly initialized output layer.
The output layer is the only part of the model to be adapted to a task. Similar to the
task adaptation phase of ANIL [70], the teachers’ feature extractors remain frozen during
fine-tuning. This makes it possible to concatenate many bigger teacher architectures since
the output layer alone is relatively computationally cheap to optimize. The amount of
update iterations on the support sets of the validation and test tasks is equally specified
as in the other baselines, Best-Teacher and Random-Initialization.

This baseline allows using the feature extracting properties of all teachers combined
during task adaptation. Meta-training is not required to achieve strong few-shot learning
performance, as it was shown by Chen et al. [11]. Consequently, Teacher-Concatenation
may be the strongest baseline for our problem setting. It may outperform the proposed
data-free meta-learning method by a wide margin.

53

5. Experiments

In this chapter, a variety of experiments that have been conducted are explained in detail.
At first, we formulate research questions relevant for the addressed problem setting. We
designed our experiments to answer these as concisely as possible. Afterward, multiple
public datasets for few-shot learning are introduced, which are part of the experimental
evaluation and cover a range of possible real-world scenarios. This is followed by a
description of the teacher training. In the end, the full experiment procedure is described
in detail, including every hyperparameter optimization procedure with its evaluated
configurations.

5.1. Research questions

The introduced methodology motivates a variety of different research questions. We want
to determine which method performs best under a quick hyperparameter search and how
the performance depends on the initial setting, namely the teacher models. Furthermore,
we ask how much the generated data improves the final generalization performance and
how much accuracy is lost by training any method on the generated data instead of the
original data. Thus, an extensive description and the corresponding experimental setup
are introduced and explained in the following.

5.1.1. Optimization-based versus metric-based meta-learning

As explained in chapter 2, optimization-based and metric-based meta-learning algorithms
are often similar in their outer optimization update. On the other hand, fine-tuning on the
support set of a task happens fundamentally different. This raises the question if there is
a performance difference between meta-learning approaches. Additionally, Chen et al. [11]
shows results suggesting a discrepancy between the respective performance with out-of-
domain training tasks. Since we assume the generated data is not in the same domain as
the validation and test tasks, we compare each meta-learning approach in the given setting.
As a contender for optimization-based meta-learning, FOMAML is used. FOMAML is
computationally more efficient than MAML yet yields comparable performance [22]. To
achieve a fair comparison in the face of hyperparameter tuning, all few-shot learning
algorithms are allowed to perform the same amount of hyperparameter runs. However,
while the other methods’ most sensitive one is the learning rate, FOMAML has two
learning rates, of which the task adaptation learning rate has shown to be the more
sensitive one. Due to this reason, FOMAML’s meta-learning rate is fixed to the default
value 1e − 3 [22; 6; 65]. This default appeared to work on all previously encountered
datasets [22; 6; 65]. So, we optimize the inner learning rate for the task adaptation

54

5. Experiments

during meta-validation. Additionally, five task adaptation steps are used during meta-
training and ten during meta-validation and meta-testing. For the metric-based approach,
ProtoNet was the selected algorithm.

5.1.2. Meta-learning versus few-shot learning baselines

In the work of [11], Baseline-Chen shows strong few-shot learning performance compared
to meta-learning algorithms. This is remarkable since it trains a feature extractor
conventionally on the training data. The training data consists of the meta-training
tasks. So, a further research question is whether there is a benefit in using meta-learning
algorithms on our generated data. Thus, Baseline-Chen is included in our experiments
as a few-shot learning algorithm with the same hyperparameter optimization budget as
FOMAML and ProtoNet.

5.1.3. Few-shot learning with generated data versus without generated data

We construct further experiments, which compare the few-shot learning baselines without
generated data with the already mentioned algorithms that rely on the usage of generated
data. The considered baselines are Random-Initialization, Best-Teacher, and Teacher-
Concatenation. We give these baselines the same hyperparameter tuning budget under
identical settings. The number of task adaptation steps is not predefined, in contrast
to FOMAML and Baseline-Chen. This value is tuned on the validation tasks via early
stopping. For fine-tuning on the test tasks, the mean early stopping iteration of the
validation tasks is used. Because the learning rate has a substantial influence on the
stopping iteration, the resulting number of adaptation steps may be more than thousand.
This results in an advantage versus FOMAML using five or ten and Baseline-Chen using
100 task adaptation steps. Furthermore, this increases the tuning time drastically since
these thousands of adaptation steps have to be done on each validation task. Due to this,
we set an upper limit of 10000 adaptation steps.

5.1.4. Few-shot learning with generated data versus with original data

We investigate the performance decrease caused by using generated data instead of the
original data. We train Baseline-Chen, FOMAML, and ProtoNet on the generated data
and on the original training data of the teachers.

Baseline-Chen shows that a conventional training regime is sufficient to return a well-
performing few-shot learner [11]. Thus, as a consequence of the shallow hyperparameter
tuning and aggressive early stopping, teacher-based baselines (Best-teacher and teacher-
concatenation) may perform better than algorithms tuned on the original data.

5.1.5. Teacher architectures and their training data amount

The problem adressed in this thesis depends on the dataset and the given teacher models.
We investigate the impact of the model architecture on the quality of the generated data.
In our case, there are two main differences between pre-trained teacher models: the type

55

5. Experiments

of architecture and the amount of training data. We want to show how the proposed
methodology works with a different given architecture and if more training data increases
the quality of the generated images. For that, each experiment is repeated with Conv-4
and ResNet-10 as the teacher model architectures. Furthermore, we construct successive
runs for teachers trained on 2000 training samples and 8000 training samples. We aim
to use all the available data of a dataset. The datasets have 64 classes with 600 images
per class [82; 89; 46]. If we use fewer training samples per teacher, we will be able to
train more teachers. Thus, by using 2000 training samples, 16 different teachers can be
trained on available data. 8000 training samples allow four teachers.

5.1.6. Few-shot versus many-shot learning

Originally, few-shot learning is the main focus of this work. Furthermore, we want to
investigate if the number of shots of the test task influences the results. If so, specific
methods are more recommendable for a given number of shots. To examine this, meta-
training and meta-testing are repeated on tasks with shots in {1, 5, 50}. So, each (5-way)
task has a total of 5, 25, and 250 image instances, respectively.

5.2. Datasets

In our proposed scenario, the teacher networks are conventionally trained convolutional
neural networks with BN layers and no further specifications. This is a requirement of
DI [96] and explained in chapter 2. To evaluate the proposed methods, we have to train
the teachers additionally.

The library Torchmeta by Deleu et al. [16] offers a variety of few-shot learning datasets
of image data. Here, some datasets have classes with several hundred instances [82; 89; 46].
We assume this are enough instances to train a convolutional neural network as long as
enough classes are used for a task. The training data for each teacher is smaller in size
and, as a consequence, only smaller teacher architectures are viable [31]. Nevertheless,
they should be enough for a first assessment of the novel problem handled in this thesis.
Constructing larger sized datasets allowing bigger teacher architectures is left for future
research on this topic. An overview of the picked few-shot learning datasets is presented
in the following.

5.2.1. DoubleMNIST

DoubleMNIST is an alteration of the original MNIST dataset [82]. Instead of single
digits (0-9), it consists of 100 classes of double digits (00-99) with 64 classes used for
training tasks, 16 for validation tasks, and 20 for testing tasks. 1000 images represent
each class, and the images are grayscale with a resolution of 64× 64. Example classes
are depicted in figure 5.1. Because the classes are split arbitrarily for training, validation,
and testing, every single digit (0-9) is seen in training tasks. Consequently, generalization
from training tasks to validation and test tasks is easier compared to the other datasets,
making DoubleMNIST the easiest dataset used in the experiments.

56

5. Experiments

(a) ”00” (b) ”01” (c) ”04” (d) ”05”

(e) ”06” (f) ”08” (g) ”09” (h) ”11”

(i) ”12” (j) ”13” (k) ”14” (l) ”15”

(m) ”16” (n) ”18” (o) ”19” (p) ”20”

Figure 5.1.: Images of example classes out of 100 classes of DoubleMNIST [82].

57

5. Experiments

5.2.2. CIFAR-FS

CIFAR-FS is a restructured copy of the CIFAR100 dataset with a total of 100 classes
and 600 RGB images per class [46]. Each image has a resolution of 32× 32. The classes
are split into 64, 16, and 20 for training, validation, and testing, respectively. CIFAR-FS
is of medium difficulty due to the highly different classes, and we assume the used models
have significantly lower accuracy than in the case of DoubleMNIST. Example classes are
depicted in figure 5.2.

5.2.3. MiniImagenet

MiniImagenet is a dataset based on ILSVRC-12 (ImageNet challenge of 2012) [89]. Instead
of using the full set, 100 classes are sampled with each image colored and a resolution
of 84 × 84. Like the other datasets, these classes are split into 64 for training tasks,
16 for validation tasks, and 20 for testing tasks. Example images out of 16 distinct
classes are presented in figure 5.3. MiniImagenet is supposed to contain some of the
complexity and difficulty of the original ImageNet challenge while being manageable
by non-high-end GPU devices [89]. Thus, we intend it as the hardest challenge in our
experiments, resulting in mean model accuracy lower than CIFAR-FS and DoubleMNIST.

5.3. Teacher training

We train the teachers using only the meta-training data of the respective datasets. We
restrict the teachers to not share data instances or classes during their training. For
this, the classes of the dataset are evenly split by the amount of desired teachers so that
each teacher has its own exclusive training classes. Then, each teacher is trained and
its hyperparameters tuned on the images of the assigned classes. To do hyperparameter
tuning and get a realistic and reliable generalization accuracy, each teacher’s available
set of images is split into a training, validation, and test sets. For the hyperparameter
optimization, the learning rate is optimized. We consider the values 1e− 3, 1e− 4, and
1e− 5. The final teachers are used for the data-free few-shot learning problem.

5.4. Experiment procedure

Experiments on three datasets {DoubleMNIST,CIFAR-FS,MiniImagenet} with each
having four distinct teacher setups ({Conv-4,ResNet-10} trained on {2000, 8000} images)
give twelve independent trial runs.

Conv-4 is a 4-layer CNN architecture, which consists of approximately 120.000 parame-
ters (slightly fluctuating depending on the dataset) distributed across four convolutional
layers with 64 feature maps and an output layer. This architecture is used by the teach-
ers and the student independently of its training algorithm, i.e., FOMAML, ProtoNet,
Baseline-Chen, as well as for the Random-Initialization baseline. ProtoNet does not use
the output layer. Each convolutional layer consists of a convolution, a BN, a ReLU, and
a Maxpool operation executed in this order.

58

5. Experiments

(a) ”dolphin” (b) ”seal” (c) ”aquarium fish” (d) ”ray”

(e) ”trout” (f) ”orchid” (g) ”sunflower” (h) ”tulip”

(i) ”bottle” (j) ”bowl” (k) ”can” (l) ”cup”

(m) ”plate” (n) ”apple” (o) ”mushroom” (p) ”orange”

Figure 5.2.: Images of example classes out of 100 classes of CIFAR-FS.

59

5. Experiments

(a) ”house finch” (b) ”robin” (c) ”triceratops” (d) ”green mamba”

(e) ”harvestman” (f) ”toucan” (g) ”jellyfish” (h) ”dugong”

(i) ”Walker hound” (j) ”Saluki” (k) ”Gordon setter” (l) ”komondor”

(m) ”boxer” (n) ”Tibetan mastiff” (o) ”French bulldog” (p) ”Newfoundland”

Figure 5.3.: Images of example classes out of 100 classes of MiniImagenet.

60

5. Experiments

The ResNet-10 architecture consists of approximately 4.9 million parameters, nine
convolutional layers and an output layer. Since ProtoNet does not use this architecture
and to not vary from the ResNet naming conventions, the output layer is involved in the
layer count. The input layer is a convolutional layer with BN and max-pooling. Four
residual blocks follow with pairs of convolutional layers as described in section 2.3.2.

The hyperparameters of each teacher are tuned with grid search. {1e−3, 1e−4, 1e−5}
is the set of considered learning rates in each trial. The winning teachers of a trial are
used as the given teachers for the following evaluations.

Hyperparameter tuning of each method is executed with early stopping on the validation
loss with stopping patience of 3. I.e., if three consecutive evaluations of the validation
loss show no improvements larger than 1%, the respective hyperparameter configuration
run is stopped. The validation loss of Baseline-Chen is used for hyperparameter tuning
DI with early stopping. We use grid search with the configurations {1e−1, 1e−2, 1e−3},
{1e5, 1e6, 1e7}, and {1e3, 1e4, 1e5}, for the learning rate of the optimizer, the TV loss
term scaling, and the BN loss term scaling, respectively. For MiniImagenet, we use the
configurations {1e6, 1e7, 1e8} for the TV loss term scaling since manual tries showed
slightly more pixel artifacts. The defined hyperparameter values of DI are several
magnitudes greater than in the original DI implementation because we normalize each term
to scale with the image, batch, and teacher network size [96]. These normalizations are
not present in the original implementation [96]. There, a change of the BN layer amount,
the image size, or the batch size requires a change of the loss term hyperparameters
[96]. The L2 loss term is not used since it showed no influence. In the original work, the
term was not used or of neglectable size [96]. The Baseline-Chen learning rate during
the DI hyperparameter tuning is fixed to 1e− 3, a default used by the original work [11].
Since the defined DI tuning setup requires many evaluations, it was decided to use ASHA
(asynchronous successive halving algorithm) introduced by Li et al. [49]). ASHA is used
for DI hyperparameter tuning to terminate non-competitive configurations early.

Furthermore, during the hyperparameter tuning, we generate approximately 40 percent
of the original training data’s size due to computational limitations. After a winning con-
figuration is found, a bigger set of approximately 160-200 percent (160 for MiniImagenet,
180 for DoubleMNIST, 200 for CIFAR-FS, due to computational reasons) of the original
training data size is generated and used for the following.

After the data is generated, Baseline-Chen, ProtoNet, and FOMAML are hyperpa-
rameter tuned with validation tasks. Baseline-Chen and ProtoNet use the learning rate
configurations {1e− 2, 1e− 3, 1e− 4}. For FOMAML this is fixed to 1e− 3. We consider
the task adaptation learning rate from {1e − 1, 1e − 2, 1e − 3} for FOMAML. We use
Adam as optimizer for most algorithms. An exception is the task adaptation update of
FOMAML, for which we use SGD.

The baselines without generated data receive hyperparameter tuning to the same
extent for a fair comparison. Their learning rates are similarly considered from
{1e − 2, 1e − 3, 1e − 4} as those of Baseline-Chen and ProtoNet. However, they
are given the optimizer SGD instead of Adam since we make task adaptation

61

5. Experiments

similar to MAML-like algorithms. Because possible thousands of update steps are
done on every task, the maximum amount of fine-tuning steps is set to 10000. The
Teacher-Concatenation baseline uses a maximum of eight teachers due to memory reasons.

All the hyperparameter ranges are picked considering the best validation results of
manual trials or on defaults used by other works [96; 11; 79; 22]. The validation tasks
during the hyperparameter tuning are always 5-shot 5-ways since, for different task setups,
similar results can be expected. The increased computational effort of tuning different
shot settings would be enormous.

After the hyperparameter optimization of all algorithms is done, the testing stage is
executed. To reduce the influences of random initializations, the following is repeated
for three seeds, different from the seed used for hyperparameter tuning. Baseline-Chen,
Protonet, FOMAML, Random-Initialization, Best-Teacher, and Teacher-Concatenation
are evaluated with test tasks of {1, 5, 50}-shots and 5-ways. For this, Baseline-Chen,
Protonet, and FOMAML are trained from scratch on the generated data transformed to
the test tasks shots- and ways-layout, or without transformation in the case of Baseline-
Chen. The number of update iterations that are not fixed has been determined by early
stopping during the previously described hyperparameter tuning phase of each method.

62

6. Results

In this chapter, we present the results of the few-shot test stage described in chapter
5. This chapter gives an extensive and detailed overview of the accuracy of individual
methods before aggregating and discussing these in chapter 7. We present the results of
all three datasets.

The following bar plots depict the mean and standard deviation of the accuracy across
three seeds for each method. The exact accuracy values and the test losses are presented
in tables in the appendix A.

Throughout the chapter, the following plotting scheme is used. The warm colors
(yellow, orange, red) show the (meta-) training results with the original training data
and without using generated data. These results represent an upper bound for the
solutions in the assumed data-free setting. The light, medium and dark green colors
represent the baselines without any generated data. The light, medium, and dark blue
colors the case of different (meta-) learning algorithms using the data generated by DI.
The bars are grouped with the shots number of the test tasks. Beneath each barplot,
sampled generated images are shown for the respective teacher setting. These give a
visual indication about the generated data’s quality and domain similarity to the original
data. Here, the images of a row belong to the same class. We depict the results of
teachers with 2000 training instances on the left sub-figures. The results on the right
sub-figures correspond to teachers with 8000 training instances.

6.1. DoubleMNIST

In this section, the results of DoubleMNIST, are presented. We present the results of the
Conv-4 teachers and the ResNet-10 teachers.

6.1.1. Conv-4 teachers

Figure 6.1 presents the mean test task accuracy for each method (top) and some of the
images generated by DI (bottom). Moreover, it depicts results of teachers trained with
2000 images (left) and 8000 images (right). As it can be seen, DI fails to produce images
similar to the original training domain in both cases. The generated images look less like
noise with 8000 teacher training instances. The produced images appear significantly
more noisy than images produced by methods not considering the teacher source domain
[60]. Consequently, we assume that any algorithm trained on the generated data fails to
achieve competitive results. FOMAML achieves higher performance than ProtoNet and

63

6. Results

Baseline-Chen. FOMAML performs worse than the baselines not using the generated
data. On the other hand, the teacher-based baselines’ high accuracy values (Best-Teacher
and Teacher-Concatenation) compared to the algorithms accessing the original training
data are remarkable.

6.1.2. ResNet-10 teachers

In figure 6.2 the results of teachers with the ResNet-10 architecture are presented. We
present the mean test task accuracy for each method (top) and some of the images
generated by DI (bottom). Here, we show teachers trained with 2000 images (left) and
8000 images (right). Like in previous results, DI does not generate images resembling
the original training domain of the teachers. The resulting accuracy values of the
algorithms trained on the generated data are worse than the results shown in figure 6.1.
All algorithms using generated data are not predicting more accurate than a random
classifier. The teacher-based baselines seem to benefit extremely from the ResNet-10
architecture compared to figure 6.1. They outperform algorithms accessing the original
training data. Contrary to the results of Conv-4 teachers, the generated images with
2000 teacher training instances appears less noisy.

Overall, training on the DI generated data is counter-productive in all evaluated cases
of the DoubleMNIST dataset. The teacher-based baselines show competitive accuracy
values.

64

6. Results

Figure 6.1.: Results on DoubleMNIST with Conv-4 teachers. Upper row: Testing accuracy
of the various methods. Lower row: Samples of the DI generated images;
each row represents a class. Left column: Teachers trained on 2000 images.
Right column: Teachers trained on 8000 images.

65

6. Results

Figure 6.2.: Results on DoubleMNIST with ResNet-10 teachers. Upper row: Testing
accuracy of the various methods. Lower row: Samples of the DI generated
images; each row represents a class. Left column: Teachers trained on 2000
images. Right column: Teachers trained on 8000 images.

66

6. Results

6.2. CIFAR-FS

In this section, the results for CIFAR-FS are presented. Compared to DoubleMNIST,
CIFAR-FS is colored with a wider variety of different features, thus, presenting a higher
challenge.

6.2.1. Conv-4 teachers

Figure 6.3 presents the mean test task accuracy for each method (top) and some of the
images generated by DI (bottom). Moreover, the figure depicts results of teachers trained
with 2000 images (left) and 8000 images (right).

The sampled examples of the generated data show that DI does not produce images
similar to the original training domain. Unlike in the case of DoubleMNIST, training on
the generated data is not counter-productive compared to the random initialization at
lower shots. The Best-Teacher baseline benefits the most from additional training data of
the teachers. Teacher-Concatenation shows the best results. With more teacher training
data, it has better performance than the meta-learning algorithms and Baseline-Chen
trained on the original training set.

6.2.2. ResNet-10 teachers

Figure 6.4 shows the mean test task accuracy for each method (top) and some of the
images generated by DI (bottom). Moreover, it presents results of teachers trained with
2000 images (left) and 8000 images (right).

The sampled images generated by DI are substantially out of domain compared to the
original training data. The algorithms using the generated data perform similarly like in
the previous case of Conv-4 teachers depicted in figure 6.3. Nevertheless, the baselines
without generated data are worse than in previous results shown in figure 6.3. They are
the most competitive in this setting. More training data for the teachers improve the
teacher-based baselines. We observe relatively low accuracy values of ProtoNet with 8000
teacher training instances.

Overall, the performance differences between generated-data-based algorithms and
the baselines without generated data are smaller than in DoubleMNIST. However, we
note that the pattern of Teacher-Concatenation being the most dominating approach is
consistent.

67

6. Results

Figure 6.3.: Results on CIFAR-FS with Conv-4 teachers. Upper row: Testing accuracy
of the various methods. Lower row: Samples of the DI generated images;
each row represents a class. Left column: Teachers trained on 2000 images.
Right column: Teachers trained on 8000 images.

68

6. Results

Figure 6.4.: Results on CIFAR-FS with ResNet-10 teachers. Upper row: Testing accuracy
of the various methods. Lower row: Samples of the DI generated images;
each row represents a class. Left column: Teachers trained on 2000 images.
Right column: Teachers trained on 8000 images.

69

6. Results

6.3. MiniImagenet

In this section, the experiments for MiniImagenet are presented. MiniImagenet is the
most challenging of the used few-shot learning datasets in this thesis. The presentation
layout of the different setups is kept consistent with the previous sections.

6.3.1. Conv-4 teachers

In figure 6.5, we present the mean test task accuracy for each method (top) and some
of the images generated by DI (bottom). Moreover, we show results of teachers trained
with 2000 images (left) and 8000 images (right) in the same figure.

Like in the previous cases, DI does not generate images close to the original training
data domain. The algorithms using the generated images have low test task accuracy
values. Baseline-Chen performs well in the 1-shot case compared to the other results. It
almost beats all the baselines in the case of teachers trained with 2000 images. Teacher-
Concatenation is the most dominant method. FOMAML performs remarkably badly
and is outperformed by the random initialization in all cases. We observe that the
meta-learning algorithms perform worse with 8000 teacher training images than with
2000 teacher training images.

6.3.2. ResNet-10 teachers

Figure 6.6 presents the mean test task accuracy for each method (top) and some of the
images generated by DI (bottom). In the figure, we show results of teachers trained with
2000 images (left) and 8000 images (right).

Consistently to previous results, DI does not generate images resembling the original
training domain of the teachers. Baseline-Chen performs well compared to the other
algorithms. It performs the second highest after the teacher-based baselines without
considering algorithms using the original data. The teacher-based baselines benefit from
higher teacher training data sizes. We observe that Teacher-Concatenation performs the
worst of all baselines in the 50-shot case with 2000 train images. FOMAML is consistently
the worst performing method and does not perform better than the random initialization
baseline in any case.

In all MiniImagenet cases, ProtoNet and FOMAML yield a lower performance compared
to the other methods by a big margin. Using the generated data is more like a handicap
than a helpful support for better generalization performance. However, comparing the
performance of the algorithms trained with the original training data, it becomes clear
that the hyperparameter tuning settings for FOMAML and ProtoNet are inappropriate for
MiniImagenet and require a reassessment with more computational resources. Baseline-
Chen, FOMAML, and ProtoNet are supposed to perform approximately equally well
according to Chen et al. [11]. We present results confirming this claim in appendix B.

70

6. Results

Figure 6.5.: Results on MiniImagenet with Conv-4 teachers. Upper row: Testing accuracy
of the various methods. Lower row: Samples of the DI generated images;
each row represents a class. Left column: Teachers trained on 2000 images.
Right column: Teachers trained on 8000 images.

71

6. Results

Figure 6.6.: Results on MiniImagenet with ResNet-10 teachers. Upper row: Testing
accuracy of the various method. Lower row: Samples of the by DI generated
images; each row represents a class. Left column: Teachers trained on 2000
images. Right column: Teachers trained on 8000 images.

72

7. Discussion

In this chapter, we discuss the experiments’ results and aggregate subsets of these to
answer the research questions defined in chapter 5. The presented information and figures
are summaries of the previous chapter.

7.1. Research questions

This section aims to answer the research questions stated in section 5.1 by discussing and
analyzing the produced results of chapter 6. We do not use all the results for each question
and mention the aggregated subset in each subsection. In a new setting, we assume that
not all algorithms are evaluated during validation. We assume one algorithm is selected
randomly for evaluation. So, to not introduce a selection bias [66], we report the mean
value instead of the maximum value of the aggregated algorithm results. Furthermore,
we do not include results of the original training data in the aggregations unless explicitly
stated otherwise.

Optimization-based versus metric-based meta-learning

In the given setting, we want to investigate if an optimization-based meta-learning
algorithm performs better or worse than a metric-based one. Due to this, FOMAML and
ProtoNet have been included in the experiments as basic representatives of these two
categories of meta-learning algorithms. In figure 7.1 the results of all the different teacher
and task settings have been averaged for each dataset for FOMAML and ProtoNet. As
can be observed in the figure, FOMAML seems to do better on average on the easier
datasets CIFAR-FS and DoubleMNIST, while ProtoNet outperforms in MiniImagenet.
Based on these observations, we hypothesize that FOMAML is preferable for generated
datasets of lower resolution and ProtoNet for higher resolutions. However, this may be
due to too strict tuning settings. FOMAML with the given tuning settings shows worse
results on the original training data than originally reported [11].

Meta-learning versus conventional learning

Furthermore, we asked if meta-learning on generated data is beneficial compared to
conventional learning. Chen et al. [11] showed that Baseline-Chen is better for large
domain shifts in their evaluated experimental setting. Because we train on generated data,
the domain difference in our case is almost surely larger than between original training
tasks and test tasks. Figure 7.2 shows how the conventional learning algorithm Baseline-
Chen compares to the meta-learning algorithms FOMAML and ProtoNet. We observe

73

7. Discussion

Figure 7.1.: Average accuracy values across all settings of a given dataset for ProtoNet
and FOMAML.

no clear differences in the cases of CIFAR-FS and DoubleMNIST. In MiniImagenet, we
see a higher accuracy of conventional learning.

Few-shot learning with generated data versus without generated data

In this section we analyze whether training on the generated data is beneficial for learning
new tasks.

Figure 7.3 depicts the average performance of algorithms without generated data and
algorithms with generated data for all settings of each dataset. Algorithms without
generated data are Random-Initialization, Best-Teacher, and Teacher-Concatenation.
Algorithms with generated data are FOMAML, ProtoNet, and Baseline-Chen. We observe
that learning on generated data is unfavorable for CIFAR-FS and MiniImagenet, and
highly unfavorable in the case of DoubleMNIST. Following the sampled generated images
in chapter 6, we expect these results since the images generated by DI seem to be mostly
noise. Improving the data generation process has most likely the biggest impact on
performance.

Few-shot learning with generated data versus with original data

In the proposed setting, the original training data of the teachers is unavailable. Conse-
quently, using the original data should be seen as an upper bound, and is not applicable
in the adressed setting. We assess the performance decrease caused by the generation

74

7. Discussion

Figure 7.2.: Average accuracy values across all settings of a given dataset for meta-
learning algorithms FOMAML and ProtoNet, and the conventional learning
algorithms Baseline-Chen.

Figure 7.3.: Average accuracy values across all settings of a given dataset for algo-
rithms without generated data, i.e. Random-Initialization, Best-Teacher,
and Teacher-Concatenation, and algorithms with generated data, i.e. FO-
MAML, ProtoNet, Baseline-Chen.

75

7. Discussion

Figure 7.4.: Average accuracy values across all settings of a given dataset for algorithms,
i.e. FOMAML, ProtoNet, and Baseline-Chen, trained with generated data
and with the original training data of the teachers.

process by comparing the models trained in generated data to models trained on the
original data. The resulting accuracy values are depicted in figure 7.4 with FOMAML,
ProtoNet, and Baseline-Chen.. While the difference between MiniImagenet and CIFAR-
FS is substantial, the difference in the case of DoubleMNIST is extreme. This observation
can be interpreted as an indication that the data generation process for DoubleMNIST
was tuned with wrong settings.

The test task domain is closer to the domain of the training tasks in the case of
DoubleMNIST compared to CIFAR-FS and MiniImagenet. Every single digit occurring
in the testing classes (a random subset of 00-99) occurs several times in the training
classes (another subset of 00-99). E.g., if the class ”79” was not seen in the training
tasks, the digits ”7” and ”9” have been seen several times in other classes. This could
explain the extreme gap between original data and generated data. Such similarities are
not present in the CIFAR-FS and MiniImagenet dataset.

Teacher architectures and the teacher training data size

Another aspect we investigate is how different teacher architectures and teacher training
data sizes influence the average performance of the introduced methods. We assume
that larger teacher architectures and more data for the teacher training improve the
representation of the training domain by the BN statistics. We aggregate all algorithms
related to teachers over the different teacher settings. The considered algorithms are
FOMAML, ProtoNet, Baseline-Chen, Best-Teacher, and Teacher-Concatenation. The

76

7. Discussion

Figure 7.5.: Average accuracy values of all datasets and all teacher dependent meth-
ods, i.e. FOMAML, ProtoNet, Baseline-Chen, Best-Teacher, and Teacher-
Concatenation, for two different teacher training set sizes.

result can be seen in figure 7.5. The presented results show that a larger architecture
and more training data do not lead to better performance. This is contrary to the initial
assumption. The trained teachers in this thesis seem to not be diverse enough as neither
the architecture nor the amount of training data influence the outcome. On the other
hand, more teacher models are available for smaller training data sizes, which might have
covered up the expected discrepancy.

Few-shot versus many-shot learning

This chapter’s last research question is how much the number of shots of the few-shot
learning task influences the methods’ performance. We consider Random-Initialization,
Best-Teacher, and Teacher-Concatenation as the baseline algorithms without generated
data. FOMAML, ProtoNet, and Baseline-Chen are algorithms using generated data.

The figure 7.6 shows that methods without generated data perform better on average
on the evaluated datasets for all evaluated shots. Additionally, the baseline algorithms
without generated data benefit more from higher number of shots than algorithms using
generated data.

77

7. Discussion

Figure 7.6.: Average accuracy values of all datasets of algorithms without generated data,
i.e. Random-Initialization, Best-Teacher, and Teacher-Concatenation, and
algorithms with generated data, i.e. FOMAML, ProtoNet, Baseline-Chen,
for each evaluated amount of shots during testing.

78

8. Conclusion and Outlook

In this chapter, we present a conclusion of the findings and contributions in this work.
An outlook giving guidance for future research in this direction follows.

8.1. Conclusion

The presented thesis introduced and conducted extensive experiments on methods for
the novel setting of data-free few-shot learning given multiple pre-trained teacher models.
We defined data-free few-shot learning as learning a few-shot task without the assistance
of related auxiliary tasks. Instead, we assumed that a set of teacher models trained on
such tasks are available.

Furthermore, we proposed several novel methods. These can be categorized into
two groups. One group includes baselines, which do not require any generated data.
Consequently, they do not use a meta-training stage. The other group consists of methods
meta-training or pre-training a feature extractor with generated data. The considered
algorithms in this group were FOMAML [22], ProtoNet [79], and Baseline-Chen [11].
The generated data was produced by a data-free knowledge distillation algorithm, DI
[96], which was applied to each given teacher model. Moreover, we formulated the
data-free few-shot learning algorithm to allow using other data generation methods.
According to the evaluated experiments, the best performing solution is a novel baseline
called Teacher-Concatenation, which combines the feature outputs of multiple teachers.
The combined feature outputs are fed to a linear classifier, which is then adapted to the
few-shot task.

The experiments showed inferior performances of the methods using the generated data.
However, it is inconclusive if this is due to the data generation method or the available
teacher models. This inconclusiveness is a consequence of using few-shot learning datasets
of already available implementations [16]. The used datasets are too small in their size
to train large teacher architectures. Consequently, the teacher models are significantly
smaller than in the original work of DI [96]. Additionally, each teacher was trained with
a smaller dataset compared to the work of Yin et al. [96].

8.2. Outlook

Based on the results in chapter 6 and the discussion in chapter 7, we propose potential
next steps for further investigations of this topic.

79

8. Conclusion and Outlook

8.2.1. Hyperparameter optimization

For all the evaluated experiments, early stopping patience of 3 was used for each hy-
perparameter optimization process. As discussed in section 7.1, training on the original
dataset does not lead to the results reported in the original ProtoNet [79] and FOMAML
[22] works. This is a clear indication that the early stopping was too restrictive, given
that the hyperparameter ranges cover the optimal solution.

A small evaluation presented in appendix B strengthens this argument. The evaluated
setting shows that higher accuracy values can be reached with a higher computational
budget. Furthermore, we chose hyperparameter ranges for the learning methods based
on previous experiences. For this, several implementations and literature exist that had
acted as a guide [79; 22; 11; 6]. This may not be the case for DI. To the best of the
author’s knowledge, DI was not applied to such small teacher architectures trained with
few images compared to the original work. We used models with five million weights or
less, while Yin et al. [96] used models with at least ten million weights. Additionally,
we trained each teacher with less than a quarter of the data used in the original work
[96]. The hyperparameter ranges for DI were selected considering the results of manually
specified values.

This motivates to rerun the hyperparameter tuning of DI with wider hyperparameter
ranges. Furthermore, one could use a more sophisticated optimization algorithm given
the extremely long evaluation times of a single configuration. E.g., bayesian optimization
[24] may be an appropriate choice.

8.2.2. Investigation of data generation with smaller architectures

It is possible that the hyperparameter tuning was designed correctly, and the teacher
models do not hold enough information for generating images similar to the original
domain. Several different image generation methods [13; 94; 10] have to be compared
in a wide range of experiments involving different teacher architectures to check this
hypothesis.

So far, data-free knowledge distillation methods have been considered for the task of
generating images. However, it is possible that different methods [87] in other research
areas provide more suitable approaches for the given setting. The data generation process
may require more experiments outside the few-shot learning setting of the present thesis.

Investigation of DeepInversion

We observed that the implementation of DI has more hyperparameters than have been
reported in the paper [96]. We present examples of not reported hyperparameters in the
following. The generated images are randomly flipped between DI iterations by a specific
probability. In every optimization step, noise of certain strength is added to the images.
The BN loss of the first layer receives an additional weighting compared to the BN loss
values of the other layers. Considering these ’hidden’ hyperparameters, the resulting

80

8. Conclusion and Outlook

hyperparameter optimization space is above ten dimensions. This makes hyperparameter
optimization challenging. In the original implementation, the hyperparameters scale
directly with the image resolution, the number of BN layers in the teacher, the number
of input channels, and the batch size. This is a consequence of using the sum in all DI
optimization terms without normalizing. With changes in the mentioned sizes, the terms
change differently in value through a changing number of summands. This makes it
difficult to estimate what hyperparameter ranges of the loss coefficients are appropriate
since a modification of the setting scales these ranges to different values.

Furthermore, we decided to use early stopping and ASHA for the DI optimization. I.e.,
DI was handled like the tuning of a machine learning model. However, DI optimizes noise
and not model parameters. During the DI optimization, the feature maps of the noise are
adjusted to follow the distribution given by the teacher’s BN statistics. Furthermore, DI
optimization removes noise in the generated data with the prior-losses. As a consequence,
different optimization rules may. This raises the question whether overfitting can occur.
If overfitting is not an appearing phenomenon during DI optimization, early stopping
will not be required. The minimum of the DI optimization objective is equally good as
the iteration with the best validation loss. Since a newly initialized model is trained on
the generated data for every validation step, many computational evaluations could be
saved. It could be possible to skip these computationally costly validation evaluations.
Thus, more hyperparameter evaluations can be conducted with the same resources. DI
may require more experiments in different problem settings to answer these questions.

8.2.3. Creation of novel datasets

As stated, the teacher architectures may have been too small to allow better results.
Or, the the training data size of each teacher was not big enough. Unfortunately, the
available few-shot learning datasets do not have more data instances [82; 89; 46]. So, if
we want to evaluate teachers trained with more data instances, new datasets are required.
To construct these, the openly accessible ImageNet database [17] can be used. The
resulting datasets can be made several times (> 4) the size of CIFAR-FS. This would
allow training the teacher architectures used in the original DI publication [96].

8.2.4. End-to-end-based data generation and meta-training

In the evaluated algorithm, the data generation process is independent of the (meta-)
training stage. The validation loss is used for early stopping and hyperparameter tuning.
Other works on data-free knowledge distillation [60] showed that a student model does
not necessarily require generated images close to the original training domain. So, it
might be beneficial to focus more on creating methods that integrate the meta-learning
loss into the data generation objective as we suggested in subsection 4.2.1. Thus, the
images do not have to have a similar domain to benefit the student (meta-) training
stage.

81

8. Conclusion and Outlook

8.2.5. Usage of validation tasks

The last and probably most critical point is the usage of validation classes and tasks. In a
practical setting, no training data is available, and the target task has few data instances.
This gives rise to the question of where the data for the hyperparameter tuning comes
from.

A possible first trial to investigate this problem could be to optimize the hyperparame-
ters of the meta-learning algorithms on the generated data instead of using the validation
tasks. Furthermore, a data generation process with a small hyperparameter space and
robust default hyperparameters could be used.

As an alternative, the generated images and their similarity to the original data
domain could be visually evaluated by the user. This would lead to a costly manual
evaluation of several datasets. In this scenario, it is impossible to construct an automatic
hyperparameter tuning framework like it was done in this thesis. Furthermore, not using
the validation data may drastically reduce the performance of the baselines without
generated data.

82

Appendices

83

A. Results in table-format

In this chapter, the same results as in chapter 6 are presented, only this time in table-
format instead of bar plots. The accuracy values are the mean of three seeds, and the
95% confidence interval is approximated by two times the standard deviation through
the empirical rule under the assumption of a normal distribution.

84

A. Results in table-format

A.1. DoubleMNIST

A.1.1. 4-layer CNN teachers

2000 train images per teacher

algorithm shots accuracy (%)

Baseline-Chen 1 22.57 +/- 1.86
5 24.67 +/- 1.22
50 30.32 +/- 6.62

Baseline-Chen (with data) 1 68.45 +/- 0.71
5 94.59 +/- 1.02
50 99.51 +/- 0.16

Best teacher 1 48.14 +/- 2.11
5 81.2 +/- 0.84
50 98.07 +/- 0.34

FOMAML 1 22.09 +/- 1.1
5 23.3 +/- 0.93
50 23.95 +/- 1.68

FOMAML (with data) 1 74.29 +/- 3.54
5 93.0 +/- 1.35
50 97.76 +/- 1.31

ProtoNet 1 21.19 +/- 1.45
5 22.78 +/- 0.91
50 28.07 +/- 2.56

ProtoNet (with data) 1 74.59 +/- 1.87
5 94.2 +/- 0.96
50 98.8 +/- 0.27

Random initialization 1 23.93 +/- 1.42
5 37.38 +/- 0.92
50 90.52 +/- 0.84

Teacher concatenation 1 55.54 +/- 1.13
5 90.31 +/- 0.58
50 99.26 +/- 0.06

85

A. Results in table-format

8000 train images per teacher

algorithm shots accuracy (%)

Baseline-Chen 1 20.61 +/- 0.48
5 21.75 +/- 0.1
50 22.74 +/- 1.59

Baseline-Chen (with data) 1 68.45 +/- 0.71
5 94.59 +/- 1.02
50 99.51 +/- 0.16

Best teacher 1 63.67 +/- 0.53
5 93.87 +/- 0.45
50 99.53 +/- 0.16

FOMAML 1 23.32 +/- 0.83
5 32.64 +/- 0.96
50 41.16 +/- 1.37

FOMAML (with data) 1 74.29 +/- 3.54
5 93.0 +/- 1.35
50 97.76 +/- 1.31

ProtoNet 1 21.74 +/- 1.2
5 24.93 +/- 4.82
50 25.17 +/- 3.51

ProtoNet (with data) 1 74.59 +/- 1.87
5 94.2 +/- 0.96
50 98.8 +/- 0.27

Random initialization 1 23.87 +/- 1.12
5 36.84 +/- 0.57
50 89.27 +/- 0.68

Teacher concatenation 1 69.07 +/- 1.16
5 96.51 +/- 0.5
50 99.76 +/- 0.04

86

A. Results in table-format

A.1.2. ResNet-10 teachers

2000 train images per teacher

algorithm shots accuracy (%)

Baseline-Chen 1 21.59 +/- 0.74
5 23.79 +/- 3.13
50 29.16 +/- 2.99

Baseline-Chen (with data) 1 68.45 +/- 0.71
5 94.59 +/- 1.02
50 99.51 +/- 0.16

Best teacher 1 64.3 +/- 1.11
5 80.67 +/- 1.06
50 92.39 +/- 0.21

FOMAML 1 23.32 +/- 0.83
5 32.61 +/- 0.89
50 41.11 +/- 1.26

FOMAML (with data) 1 74.29 +/- 3.54
5 93.0 +/- 1.35
50 97.76 +/- 1.31

ProtoNet 1 21.61 +/- 1.02
5 23.4 +/- 1.49
50 26.82 +/- 4.24

ProtoNet (with data) 1 74.59 +/- 1.87
5 94.2 +/- 0.96
50 98.8 +/- 0.27

Random initialization 1 23.81 +/- 0.06
5 31.23 +/- 0.43
50 59.25 +/- 1.53

Teacher concatenation 1 88.58 +/- 1.5
5 96.39 +/- 0.5
50 98.2 +/- 0.16

87

A. Results in table-format

8000 train images per teacher

algorithm shots accuracy (%)

Baseline-Chen 1 20.67 +/- 0.81
5 21.67 +/- 1.06
50 22.62 +/- 1.84

Baseline-Chen (with data) 1 68.45 +/- 0.71
5 94.59 +/- 1.02
50 99.51 +/- 0.16

Best teacher 1 93.48 +/- 0.11
5 97.96 +/- 0.28
50 98.99 +/- 0.28

FOMAML 1 21.6 +/- 0.54
5 22.69 +/- 1.65
50 22.24 +/- 0.65

FOMAML (with data) 1 74.29 +/- 3.54
5 93.0 +/- 1.35
50 97.76 +/- 1.31

ProtoNet 1 22.16 +/- 3.25
5 22.0 +/- 0.95
50 23.29 +/- 1.09

ProtoNet (with data) 1 74.59 +/- 1.87
5 94.2 +/- 0.96
50 98.8 +/- 0.27

Random initialization 1 23.64 +/- 0.45
5 31.0 +/- 0.72
50 58.38 +/- 1.56

Teacher concatenation 1 98.36 +/- 0.51
5 99.3 +/- 0.15
50 99.56 +/- 0.17

88

A. Results in table-format

A.2. CIFAR-FS

A.2.1. 4-layer CNN teachers

2000 train images per teacher

algorithm shots accuracy (%)

Baseline-Chen 1 33.69 +/- 2.14
5 46.13 +/- 0.57
50 55.35 +/- 1.5

Baseline-Chen (with data) 1 47.04 +/- 0.9
5 65.62 +/- 1.03
50 76.86 +/- 0.31

Best teacher 1 33.49 +/- 0.39
5 50.73 +/- 1.11
50 71.69 +/- 2.28

FOMAML 1 34.72 +/- 0.8
5 48.12 +/- 0.99
50 60.11 +/- 1.54

FOMAML (with data) 1 36.33 +/- 3.22
5 52.01 +/- 2.13
50 62.66 +/- 3.79

ProtoNet 1 32.44 +/- 0.26
5 41.68 +/- 2.31
50 51.17 +/- 2.65

ProtoNet (with data) 1 37.69 +/- 0.21
5 56.3 +/- 0.33
50 70.04 +/- 0.57

Random initialization 1 35.44 +/- 0.62
5 50.66 +/- 1.36
50 70.56 +/- 2.18

Teacher concatenation 1 43.86 +/- 0.79
5 60.73 +/- 1.22
50 75.91 +/- 1.95

89

A. Results in table-format

8000 train images per teacher

algorithm shots accuracy (%)

Baseline-Chen 1 35.61 +/- 0.95
5 48.31 +/- 0.99
50 58.68 +/- 1.21

Baseline-Chen (with data) 1 47.04 +/- 0.9
5 65.62 +/- 1.03
50 76.86 +/- 0.31

Best teacher 1 40.96 +/- 1.12
5 59.95 +/- 0.5
50 77.51 +/- 1.46

FOMAML 1 34.72 +/- 0.8
5 48.14 +/- 0.9
50 60.15 +/- 1.56

FOMAML (with data) 1 36.33 +/- 3.22
5 52.01 +/- 2.13
50 62.66 +/- 3.79

ProtoNet 1 31.12 +/- 1.78
5 41.24 +/- 2.49
50 53.49 +/- 3.91

ProtoNet (with data) 1 37.69 +/- 0.21
5 56.3 +/- 0.33
50 70.04 +/- 0.57

Random initialization 1 34.38 +/- 0.88
5 50.27 +/- 1.2
50 69.77 +/- 2.08

Teacher concatenation 1 47.63 +/- 1.13
5 67.56 +/- 1.56
50 81.51 +/- 1.91

90

A. Results in table-format

A.2.2. ResNet-10 teachers

2000 train images per teacher

algorithm shots accuracy (%)

Baseline-Chen 1 33.98 +/- 1.64
5 46.51 +/- 1.2
50 55.86 +/- 0.88

Baseline-Chen (with data) 1 47.04 +/- 0.9
5 65.62 +/- 1.03
50 76.86 +/- 0.31

Best teacher 1 31.53 +/- 0.66
5 42.54 +/- 1.36
50 60.44 +/- 1.87

FOMAML 1 34.72 +/- 0.8
5 48.09 +/- 0.94
50 60.13 +/- 1.58

FOMAML (with data) 1 36.33 +/- 3.22
5 52.01 +/- 2.13
50 62.66 +/- 3.79

ProtoNet 1 31.46 +/- 2.39
5 41.82 +/- 1.2
50 49.07 +/- 6.65

ProtoNet (with data) 1 37.69 +/- 0.21
5 56.3 +/- 0.33
50 70.04 +/- 0.57

Random initialization 1 29.54 +/- 1.86
5 38.84 +/- 2.28
50 59.37 +/- 1.87

Teacher concatenation 1 36.91 +/- 0.25
5 50.83 +/- 1.37
50 62.17 +/- 2.05

91

A. Results in table-format

8000 train images per teacher

algorithm shots accuracy (%)

Baseline-Chen 1 35.61 +/- 0.95
5 48.31 +/- 0.99
50 58.68 +/- 1.21

Baseline-Chen (with data) 1 47.04 +/- 0.9
5 65.62 +/- 1.03
50 76.86 +/- 0.31

Best teacher 1 37.4 +/- 0.83
5 53.82 +/- 1.79
50 68.22 +/- 0.85

FOMAML 1 34.72 +/- 0.8
5 48.13 +/- 0.98
50 60.11 +/- 1.55

FOMAML (with data) 1 36.33 +/- 3.22
5 52.01 +/- 2.13
50 62.66 +/- 3.79

ProtoNet 1 28.45 +/- 3.44
5 33.72 +/- 2.32
50 45.68 +/- 3.03

ProtoNet (with data) 1 37.69 +/- 0.21
5 56.3 +/- 0.33
50 70.04 +/- 0.57

Random initialization 1 29.49 +/- 1.76
5 38.71 +/- 2.29
50 59.09 +/- 1.88

Teacher concatenation 1 43.22 +/- 2.32
5 59.64 +/- 2.37
50 73.34 +/- 1.88

92

A. Results in table-format

A.3. MiniImagenet

A.3.1. 4-layer CNN teachers

2000 train images per teacher

algorithm shots accuracy (%)

Baseline-Chen 1 33.04 +/- 2.99
5 42.64 +/- 1.88
50 58.09 +/- 0.56

Baseline-Chen (with data) 1 41.96 +/- 1.95
5 60.58 +/- 2.11
50 75.4 +/- 0.71

Best teacher 1 28.22 +/- 3.05
5 44.71 +/- 2.31
50 65.04 +/- 1.81

FOMAML 1 25.02 +/- 2.86
5 30.67 +/- 4.37
50 33.71 +/- 2.2

FOMAML (with data) 1 27.13 +/- 2.76
5 41.8 +/- 5.1
50 51.89 +/- 3.38

ProtoNet 1 27.51 +/- 0.49
5 37.58 +/- 2.42
50 47.56 +/- 3.79

ProtoNet (with data) 1 27.18 +/- 2.51
5 44.07 +/- 4.82
50 60.93 +/- 0.85

Random initialization 1 28.29 +/- 1.87
5 43.16 +/- 1.75
50 62.47 +/- 1.61

Teacher concatenation 1 35.02 +/- 4.81
5 51.67 +/- 2.02
50 68.56 +/- 3.02

93

A. Results in table-format

8000 train images per teacher

algorithm shots accuracy (%)

Baseline-Chen 1 30.4 +/- 2.47
5 42.71 +/- 1.92
50 57.07 +/- 2.21

Baseline-Chen (with data) 1 41.96 +/- 1.95
5 60.58 +/- 2.11
50 75.4 +/- 0.71

Best teacher 1 35.6 +/- 5.21
5 51.96 +/- 1.45
50 70.76 +/- 3.15

FOMAML 1 24.27 +/- 2.09
5 27.49 +/- 1.05
50 29.2 +/- 2.94

FOMAML (with data) 1 27.13 +/- 2.76
5 41.8 +/- 5.1
50 51.89 +/- 3.38

ProtoNet 1 27.91 +/- 0.55
5 37.36 +/- 2.3
50 46.22 +/- 5.72

ProtoNet (with data) 1 27.18 +/- 2.51
5 44.07 +/- 4.82
50 60.93 +/- 0.85

Random initialization 1 29.31 +/- 2.71
5 43.07 +/- 1.42
50 62.29 +/- 1.28

Teacher concatenation 1 35.07 +/- 4.33
5 54.51 +/- 2.12
50 72.67 +/- 1.85

94

A. Results in table-format

A.3.2. ResNet-10 teachers

2000 train images per teacher

algorithm shots accuracy (%)

Baseline-Chen 1 30.4 +/- 2.47
5 42.71 +/- 1.92
50 57.07 +/- 2.21

Baseline-Chen (with data) 1 41.96 +/- 1.95
5 60.58 +/- 2.11
50 75.4 +/- 0.71

Best teacher 1 30.36 +/- 1.66
5 42.47 +/- 2.17
50 55.82 +/- 1.96

FOMAML 1 25.02 +/- 2.86
5 30.64 +/- 4.38
50 33.71 +/- 2.2

FOMAML (with data) 1 27.13 +/- 2.76
5 41.8 +/- 5.1
50 51.89 +/- 3.38

ProtoNet 1 28.47 +/- 3.49
5 38.89 +/- 2.13
50 48.91 +/- 5.19

ProtoNet (with data) 1 27.18 +/- 2.51
5 44.07 +/- 4.82
50 60.93 +/- 0.85

Random initialization 1 27.24 +/- 2.24
5 37.82 +/- 2.83
50 52.98 +/- 1.58

Teacher concatenation 1 32.89 +/- 4.42
5 46.96 +/- 0.82
50 49.38 +/- 2.2

95

A. Results in table-format

8000 train images per teacher

algorithm shots accuracy (%)

Baseline-Chen 1 30.4 +/- 2.47
5 42.71 +/- 1.92
50 57.07 +/- 2.21

Baseline-Chen (with data) 1 41.96 +/- 1.95
5 60.58 +/- 2.11
50 75.4 +/- 0.71

Best teacher 1 30.09 +/- 3.08
5 42.91 +/- 1.4
50 60.71 +/- 2.31

FOMAML 1 25.02 +/- 2.86
5 30.62 +/- 4.43
50 33.71 +/- 2.2

FOMAML (with data) 1 27.13 +/- 2.76
5 41.8 +/- 5.1
50 51.89 +/- 3.38

ProtoNet 1 27.47 +/- 0.65
5 37.47 +/- 3.3
50 46.13 +/- 4.54

ProtoNet (with data) 1 27.18 +/- 2.51
5 44.07 +/- 4.82
50 60.93 +/- 0.85

Random initialization 1 27.02 +/- 2.24
5 38.13 +/- 3.27
50 51.4 +/- 2.32

Teacher concatenation 1 38.0 +/- 5.03
5 52.89 +/- 1.15
50 65.47 +/- 0.86

96

B. Experiments with training data available
and more computational resources

To give a hint of how the computational budget during the hyperparameter tuning
affected the meta-learning algorithm results, they have been evaluated once more for
5-shot 5-way MiniImagenet tasks with more costly tuning parameters. The adjusted
tuning parameters in the original MiniImagenet experiments are

• ”meta batches between validation evaluations” = 20

• ”meta batches for a single validation evaluation” = 10

• ”meta batches for meta testing evaluation” = 20

• ”meta batch size” = 1

• ”early stopping patience” = 3

and in the rerun with more computational budget

• ”meta batches between validation evaluations” = 100

• ”meta batches for a single validation evaluation” = 100

• ”meta batches for meta testing evaluation” = 100

• ”meta batch size” = 4

• ”early stopping patience” = 10

.
The number of batches seems only to influence the variance of the losses, which can

be balanced by higher early stopping patience. So, the only critical values remaining
are the meta batch size, which is set so low due to high memory requirements of the 50
shots tasks (exclusively setting the meta batch size higher for 1-shot and 5-shot tasks
make a meaningful comparison of the few-shot cases to the many-shot case impossible),
and the early stopping patience, which greatly increases the time until a hyperparameter
tuning run is stopped. For Baseline-Chen, the batch size is kept unchanged, and the
meta batch size has no influence. As shown in figure B.1, the influence of these settings
on the performance of FOMAML and ProtoNet is large, so better accuracy values in the
experiments can be expected by more access to GPU memory and computation time.

97

B. Experiments with training data available and more computational resources

Figure B.1.: Average accuracy values of 5-shot 5-way MiniImagenet tasks of algorithms
trained on the original MiniImagenet data but with different computational
budget.

98

List of Figures

2.1. Example scheme of a convolutional neural network with three layers. The
first two layers transform their respective input into representations of
more task relevant information. Due to this, random spatial information
is removed and replaced by well-structured features. Each plane in the
figure represents such a feature. These are then used by the output layer
to make a prediction. 12

2.2. A generic example of overfitting starting around episode 60 during the
training phase. 15

2.3. One of the outputs of the convolution operator with kernel size h = 2.
The input has two spatial dimensions and a single channel, resulting in
weights w ∈ R2×2×1. The weights are in the blue box, a window of the
input in the red box, and the intermediate element-wise products of these
are shown in the purple box. The final result is the sum of all intermediate
values. 18

2.4. Convolution operator with kernel size h = 3. Connections with the same
colors share the same weights. 19

2.5. Max-pooling operator with kernel size h = 2. Colors represent different
neighborhoods. Unlike the convolution, the max operation happens in
each channel on its own and not across all channels. 20

2.6. Residual block with two convolutional layers as it appears in ResNet-34
or smaller. Figure used from [30]. 21

2.7. Benchmark showing the improved scaling of residual layers in deep net-
works. On the left, normal convolutional layers have been used for a 18-
and 34-layer network. On the right, residual layers were used in networks
of equal size and number of weights. The thin lines represent the training
errors, the bold lines the validation errors. [30]. 22

2.8. Sampled images of the MNIST dataset [47]. In recent years, the image
values are used inverted, making the digits white and the background black. 23

2.9. Sampled images of the CIFAR-10 data set and their respective classes [46]. 24
2.10. Sampled images of the ImageNet data set and their respective classes [45]. 25
2.11. Example of a few-shot learning setup with two training tasks and one test

task. The tasks are 4-shot 2-way, i.e. two classes with four examples each.
This means the support set is of size 4× 2 = 8. The query set is usually
larger than the support set, but for demonstration purposes is only of size
one here (the image covered by a question mark) [91]. 28

99

List of Figures

2.12. Abstraction of optimization paths Algi of MAML and FOMAML [71]. θ
is the weight initialization and θ∗i the parameters adapted to task i after a
fixed amount of gradient steps. The green line denotes the backpropagation
path. FOMAML skips this calculation. 30

2.13. MAML only adapts majorly the last layer of a deep neural network on a
given task (left). Consequently, ANIL was proposed (right), not updating
the feature extractor during inner learning on each task (Tb, Tc, Td) [70]. 31

2.14. An abstraction of the embedding space of Prototypical Networks [79]. x is
an instance of the query set. ci are the prototypes of class i. 33

2.15. The figure shows the different stages of Baseline-Chen and the output
layer denoted as classifier C with parameters W [11]. The fine-tuning
stage corresponds to the adaptation to a single validation or test task.
The output layer has the parameters Wb during the training stage. After
the training stage, the output layer is replaced with a new output layer.
This new output layer is randomly initialized and according to the task’s
number of classes resized. Wn are the new task-specific parameters. . . . 34

2.16. Example images generated with each method applied to a ResNet-34 model
trained on CIFAR-10 [96]. All images depict the same four classes: cat,
dog, car, horse. 37

2.17. Example images generated with DeepInversion applied to a ResNet-50v1.5
teacher trained on ImageNet [96]. Each row contains images of a single
class. 38

4.1. Comparison of the traditional few-shot learning and the proposed data-free
few-shot learning setups. In both cases we want to adapt to an unseen
task using few data instances. 46

4.2. An abstraction of the proposed data-free meta-learning algorithm. In the
first stage (blue box), data is generated with the given teachers and an
arbitrary data-free knowledge distillation algorithm. The second stage is
conventional meta-learning (orange boxes). The generated data is used
within a meta-learning algorithm to produce a meta-trained student. Then,
the student is adapted to the support set of the target task. Last, the task
adapted student is used to evaluate the generalization error of the target
task query set. 48

100

List of Figures

4.3. An abstraction of the DI early stopping procedure during its hyperpa-
rameter tuning. After a predetermined amount of optimization iterations
on each batch, a validation episode is triggered (green boxes). In each
validation episode, all the batches are merged and used for training a
new Baseline-Chen model (BC) (dotted arrows). Baseline-Chen is trained
with early stopping resulting in ni ∈ N (i = 1 . . .m, m ∈ N) amounts of
validation evaluations (orange boxes). The best validation value of a full
Baseline-Chen run is used for the corresponding DI validation step. Of
the final

∑m
i=1 ni amount of Baseline-Chen validation values, the best is

picked as the validation loss for the used DI hyperparameter configura-
tion. This nested early stopping is repeated for each configuration during
hyperparameter tuning. 51

5.1. Images of example classes out of 100 classes of DoubleMNIST [82]. . . . 57
5.2. Images of example classes out of 100 classes of CIFAR-FS. 59
5.3. Images of example classes out of 100 classes of MiniImagenet. 60

6.1. Results on DoubleMNIST with Conv-4 teachers. Upper row: Testing
accuracy of the various methods. Lower row: Samples of the DI generated
images; each row represents a class. Left column: Teachers trained on
2000 images. Right column: Teachers trained on 8000 images. 65

6.2. Results on DoubleMNIST with ResNet-10 teachers. Upper row: Testing
accuracy of the various methods. Lower row: Samples of the DI generated
images; each row represents a class. Left column: Teachers trained on
2000 images. Right column: Teachers trained on 8000 images. 66

6.3. Results on CIFAR-FS with Conv-4 teachers. Upper row: Testing accuracy
of the various methods. Lower row: Samples of the DI generated images;
each row represents a class. Left column: Teachers trained on 2000 images.
Right column: Teachers trained on 8000 images. 68

6.4. Results on CIFAR-FS with ResNet-10 teachers. Upper row: Testing
accuracy of the various methods. Lower row: Samples of the DI generated
images; each row represents a class. Left column: Teachers trained on
2000 images. Right column: Teachers trained on 8000 images. 69

6.5. Results on MiniImagenet with Conv-4 teachers. Upper row: Testing
accuracy of the various methods. Lower row: Samples of the DI generated
images; each row represents a class. Left column: Teachers trained on
2000 images. Right column: Teachers trained on 8000 images. 71

6.6. Results on MiniImagenet with ResNet-10 teachers. Upper row: Testing
accuracy of the various method. Lower row: Samples of the by DI generated
images; each row represents a class. Left column: Teachers trained on
2000 images. Right column: Teachers trained on 8000 images. 72

7.1. Average accuracy values across all settings of a given dataset for ProtoNet
and FOMAML. 74

101

List of Figures

7.2. Average accuracy values across all settings of a given dataset for meta-
learning algorithms FOMAML and ProtoNet, and the conventional learning
algorithms Baseline-Chen. 75

7.3. Average accuracy values across all settings of a given dataset for algo-
rithms without generated data, i.e. Random-Initialization, Best-Teacher,
and Teacher-Concatenation, and algorithms with generated data, i.e.
FOMAML, ProtoNet, Baseline-Chen. 75

7.4. Average accuracy values across all settings of a given dataset for algorithms,
i.e. FOMAML, ProtoNet, and Baseline-Chen, trained with generated data
and with the original training data of the teachers. 76

7.5. Average accuracy values of all datasets and all teacher dependent methods,
i.e. FOMAML, ProtoNet, Baseline-Chen, Best-Teacher, and Teacher-
Concatenation, for two different teacher training set sizes. 77

7.6. Average accuracy values of all datasets of algorithms without gen-
erated data, i.e. Random-Initialization, Best-Teacher, and Teacher-
Concatenation, and algorithms with generated data, i.e. FOMAML,
ProtoNet, Baseline-Chen, for each evaluated amount of shots during test-
ing. 78

B.1. Average accuracy values of 5-shot 5-way MiniImagenet tasks of algorithms
trained on the original MiniImagenet data but with different computational
budget. 98

102

List of Tables

2.1. Comparing accuracy values and computation times of a single outer update
between MAML and ANIL [70]. 31

2.2. Accuracy values after training a student network with each additional loss
term [96]. 36

103

Bibliography

[1] I. 2017. Ilsvrc 2017. http://image-net.org/challenges/LSVRC/2017/results,
2017. abgerufen am 04.12.2020.

[2] F. Alet, M. F. Schneider, T. Lozano-Perez, and L. P. Kaelbling. Meta-learning
curiosity algorithms, 2020.

[3] H. Altae-Tran, B. Ramsundar, A. S. Pappu, and V. Pande. Low data drug
discovery with one-shot learning. ACS Central Science, 3(4):283–293, 2017. doi: 10.
1021/acscentsci.6b00367. URL https://doi.org/10.1021/acscentsci.6b00367.
PMID: 28470045.

[4] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for
hyper-parameter optimization. In J. Shawe-Taylor, R. Zemel, P. Bartlett,
F. Pereira, and K. Q. Weinberger, editors, Advances in Neural Infor-
mation Processing Systems, volume 24, pages 2546–2554. Curran Asso-
ciates, Inc., 2011. URL https://proceedings.neurips.cc/paper/2011/file/

86e8f7ab32cfd12577bc2619bc635690-Paper.pdf.

[5] L. Bertinetto, J. F. Henriques, P. H. S. Torr, and A. Vedaldi. Meta-learning
with differentiable closed-form solvers. CoRR, abs/1805.08136, 2018. URL http:

//arxiv.org/abs/1805.08136.

[6] L. Bertinetto, J. F. Henriques, P. Torr, and A. Vedaldi. Meta-learning with differen-
tiable closed-form solvers. In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=HyxnZh0ct7.

[7] B. Bischl, F. Scheipl, H. Seibold, L. Bothmann, D. Schalk, C. Molnar, and
T. Pielok. Introduction to machine learning (i2ml), 2020. URL https://

introduction-to-machine-learning.netlify.app.

[8] C. M. Bishop. Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006. ISBN 0387310738.

[9] J. Bjorck, C. Gomes, B. Selman, and K. Q. Weinberger. Understanding batch
normalization, 2018.

[10] H. Chen, Y. Wang, C. Xu, Z. Yang, C. Liu, B. Shi, C. Xu, C. Xu, and Q. Tian.
Data-free learning of student networks. CoRR, abs/1904.01186, 2019. URL
http://arxiv.org/abs/1904.01186.

104

http://image-net.org/challenges/LSVRC/2017/results
https://doi.org/10.1021/acscentsci.6b00367
https://proceedings.neurips.cc/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
http://arxiv.org/abs/1805.08136
http://arxiv.org/abs/1805.08136
https://openreview.net/forum?id=HyxnZh0ct7
https://introduction-to-machine-learning.netlify.app
https://introduction-to-machine-learning.netlify.app
http://arxiv.org/abs/1904.01186

Bibliography

[11] W. Chen, Y. Liu, Z. Kira, Y. F. Wang, and J. Huang. A closer look at few-shot
classification. CoRR, abs/1904.04232, 2019. URL http://arxiv.org/abs/1904.

04232.

[12] Y. Chen, X. Wang, Z. Liu, H. Xu, and T. Darrell. A new meta-baseline for few-shot
learning, 2020.

[13] Y. Choi, J. Choi, M. El-Khamy, and J. Lee. Data-free network quantization with
adversarial knowledge distillation, 2020.

[14] B. C. Csáji. Approximation with artificial neural networks. In Approximation with
Artificial Neural Networks, 2001.

[15] J. Dean. The deep learning revolution and its implications for computer architecture
and chip design. CoRR, abs/1911.05289, 2019. URL http://arxiv.org/abs/1911.

05289.

[16] T. Deleu, T. Würfl, M. Samiei, J. P. Cohen, and Y. Bengio. Torchmeta: A Meta-
Learning library for PyTorch, 2019. URL https://arxiv.org/abs/1909.06576.
Available at: https://github.com/tristandeleu/pytorch-meta.

[17] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009.

[18] J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. CoRR, abs/1810.04805,
2018. URL http://arxiv.org/abs/1810.04805.

[19] G. S. Dhillon, P. Chaudhari, A. Ravichandran, and S. Soatto. A baseline for
few-shot image classification. CoRR, abs/1909.02729, 2019. URL http://arxiv.

org/abs/1909.02729.

[20] Y. Duan, J. Schulman, X. Chen, P. L. Bartlett, I. Sutskever, and P. Abbeel. Rl$ˆ2$:
Fast reinforcement learning via slow reinforcement learning. CoRR, abs/1611.02779,
2016. URL http://arxiv.org/abs/1611.02779.

[21] C. Edwards. Growing pains for deep learning. Commun. ACM, 58(7):14–16, June
2015. ISSN 0001-0782. doi: 10.1145/2771283. URL http://doi.acm.org/10.

1145/2771283.

[22] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. CoRR, abs/1703.03400, 2017. URL http://arxiv.org/abs/

1703.03400.

[23] L. Franceschi, P. Frasconi, S. Salzo, R. Grazzi, and M. Pontil. Bilevel programming
for hyperparameter optimization and meta-learning, 2018.

105

http://arxiv.org/abs/1904.04232
http://arxiv.org/abs/1904.04232
http://arxiv.org/abs/1911.05289
http://arxiv.org/abs/1911.05289
https://arxiv.org/abs/1909.06576
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1909.02729
http://arxiv.org/abs/1909.02729
http://arxiv.org/abs/1611.02779
http://doi.acm.org/10.1145/2771283
http://doi.acm.org/10.1145/2771283
http://arxiv.org/abs/1703.03400
http://arxiv.org/abs/1703.03400

Bibliography

[24] P. I. Frazier. A tutorial on bayesian optimization, 2018.

[25] M. Goldblum, S. Reich, L. Fowl, R. Ni, V. Cherepanova, and T. Goldstein. Un-
raveling meta-learning: Understanding feature representations for few-shot tasks,
2020.

[26] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial
examples, 2015.

[27] J. Gou, B. Yu, S. J. Maybank, and D. Tao. Knowledge distillation: A survey, 2020.

[28] A. Graves, A.-r. Mohamed, and G. Hinton. Speech recognition with deep recurrent
neural networks. In Acoustics, speech and signal processing (icassp), 2013 ieee
international conference on, pages 6645–6649. IEEE, 2013.

[29] D. R. Hardoon, S. Szedmak, and J. Shawe-Taylor. Canonical correlation analysis:
An overview with application to learning methods. Neural Computation, 16(12):
2639–2664, 2004. doi: 10.1162/0899766042321814. URL https://doi.org/10.

1162/0899766042321814.

[30] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
CoRR, abs/1512.03385, 2015. URL http://arxiv.org/abs/1512.03385.

[31] J. Hestness, S. Narang, N. Ardalani, G. Diamos, H. Jun, H. Kianinejad, M. M. A.
Patwary, Y. Yang, and Y. Zhou. Deep learning scaling is predictable, empirically,
2017.

[32] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network,
2015.

[33] T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey. Meta-learning in neural
networks: A survey, 2020.

[34] R. Houthooft, R. Y. Chen, P. Isola, B. C. Stadie, F. Wolski, J. Ho, and P. Abbeel.
Evolved policy gradients. CoRR, abs/1802.04821, 2018. URL http://arxiv.org/

abs/1802.04821.

[35] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger. Densely connected
convolutional networks, 2018.

[36] A. C. Ian Goodfellow, Yoshua Bengio. Deep Learning. MIT Press, Cambridge, MA,
2016.

[37] A. Ignatov, R. Timofte, A. Kulik, S. Yang, K. Wang, F. Baum, M. Wu, L. Xu,
and L. V. Gool. AI benchmark: All about deep learning on smartphones in 2019.
CoRR, abs/1910.06663, 2019. URL http://arxiv.org/abs/1910.06663.

106

https://doi.org/10.1162/0899766042321814
https://doi.org/10.1162/0899766042321814
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1802.04821
http://arxiv.org/abs/1802.04821
http://arxiv.org/abs/1910.06663

Bibliography

[38] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. CoRR, abs/1502.03167, 2015. URL http:

//arxiv.org/abs/1502.03167.

[39] K. G. Jamieson and A. Talwalkar. Non-stochastic best arm identification and
hyperparameter optimization. CoRR, abs/1502.07943, 2015. URL http://arxiv.

org/abs/1502.07943.

[40] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji,
K. Bonawitz, Z. Charles, G. Cormode, R. Cummings, R. G. L. D’Oliveira, S. E.
Rouayheb, D. Evans, J. Gardner, Z. Garrett, A. Gascón, B. Ghazi, P. B. Gibbons,
M. Gruteser, Z. Harchaoui, C. He, L. He, Z. Huo, B. Hutchinson, J. Hsu, M. Jaggi,
T. Javidi, G. Joshi, M. Khodak, J. Konečný, A. Korolova, F. Koushanfar, S. Koyejo,
T. Lepoint, Y. Liu, P. Mittal, M. Mohri, R. Nock, A. Özgür, R. Pagh, M. Raykova,
H. Qi, D. Ramage, R. Raskar, D. Song, W. Song, S. U. Stich, Z. Sun, A. T. Suresh,
F. Tramèr, P. Vepakomma, J. Wang, L. Xiong, Z. Xu, Q. Yang, F. X. Yu, H. Yu,
and S. Zhao. Advances and open problems in federated learning, 2019.

[41] L. Kaiser, O. Nachum, A. Roy, and S. Bengio. Learning to remember rare events.
CoRR, abs/1703.03129, 2017. URL http://arxiv.org/abs/1703.03129.

[42] M. Kaya and H. Bilge. Deep metric learning: A survey. Symmetry, 11:1066, 08
2019. doi: 10.3390/sym11091066.

[43] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi. A survey of the recent
architectures of deep convolutional neural networks. Artificial Intelligence Review,
53(8):5455–5516, Apr 2020. ISSN 1573-7462. doi: 10.1007/s10462-020-09825-6.
URL http://dx.doi.org/10.1007/s10462-020-09825-6.

[44] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization, 2017.

[45] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. Communications of the ACM, 60(6):84–90, 2017.

[46] A. Krizhevsky et al. Learning multiple layers of features from tiny images. 2009.

[47] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. In Proceedings of the IEEE, pages 2278–2324, 1998.

[48] L. Li, K. G. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. Effi-
cient hyperparameter optimization and infinitely many armed bandits. CoRR,
abs/1603.06560, 2016. URL http://arxiv.org/abs/1603.06560.

[49] L. Li, K. G. Jamieson, A. Rostamizadeh, E. Gonina, M. Hardt, B. Recht, and
A. Talwalkar. Massively parallel hyperparameter tuning. CoRR, abs/1810.05934,
2018. URL http://arxiv.org/abs/1810.05934.

107

http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.07943
http://arxiv.org/abs/1502.07943
http://arxiv.org/abs/1703.03129
http://dx.doi.org/10.1007/s10462-020-09825-6
http://arxiv.org/abs/1603.06560
http://arxiv.org/abs/1810.05934

Bibliography

[50] Y. Li, S. Gu, L. V. Gool, and R. Timofte. Learning filter basis for convolutional
neural network compression, 2019.

[51] Z. Li, F. Zhou, F. Chen, and H. Li. Meta-sgd: Learning to learn quickly for few shot
learning. CoRR, abs/1707.09835, 2017. URL http://arxiv.org/abs/1707.09835.

[52] H. Liu, K. Simonyan, and Y. Yang. Darts: Differentiable architecture search, 2019.

[53] R. G. Lopes, S. Fenu, and T. Starner. Data-free knowledge distillation for deep
neural networks, 2017.

[54] S. Luo, X. Wang, G. Fang, Y. Hu, D. Tao, and M. Song. Knowledge amalgamation
from heterogeneous networks by common feature learning. CoRR, abs/1906.10546,
2019. URL http://arxiv.org/abs/1906.10546.

[55] A. Mahendran and A. Vedaldi. Understanding deep image representations by
inverting them. CoRR, abs/1412.0035, 2014. URL http://arxiv.org/abs/1412.

0035.

[56] G. Marcus. Deep learning: A critical appraisal. CoRR, abs/1801.00631, 2018. URL
http://arxiv.org/abs/1801.00631.

[57] E. K. Marek Capinski. Measure, Integral and Probability. Springer, London, UK,
2005.

[58] H. B. McMahan, E. Moore, D. Ramage, and B. A. y Arcas. Federated learning
of deep networks using model averaging. CoRR, abs/1602.05629, 2016. URL
http://arxiv.org/abs/1602.05629.

[59] L. Metz, N. Maheswaranathan, B. Cheung, and J. Sohl-Dickstein. Learning
unsupervised learning rules. CoRR, abs/1804.00222, 2018. URL http://arxiv.

org/abs/1804.00222.

[60] P. Micaelli and A. J. Storkey. Zero-shot knowledge transfer via adversarial belief
matching. CoRR, abs/1905.09768, 2019. URL http://arxiv.org/abs/1905.

09768.

[61] T. Mitchell. Machine Learning. McGraw-Hill International Editions. McGraw-
Hill, 1997. ISBN 9780071154673. URL https://books.google.de/books?id=

EoYBngEACAAJ.

[62] G. Montavon, W. Samek, and K. Müller. Methods for interpreting and un-
derstanding deep neural networks. CoRR, abs/1706.07979, 2017. URL http:

//arxiv.org/abs/1706.07979.

[63] A. Mordvintsev, C. Olah, and M. Tyka. Inceptionism: Going deeper into neural
networks. https://ai.googleblog.com/, 2015. URL https://ai.googleblog.com/

2015/06/inceptionism-going-deeper-into-neural.html.

108

http://arxiv.org/abs/1707.09835
http://arxiv.org/abs/1906.10546
http://arxiv.org/abs/1412.0035
http://arxiv.org/abs/1412.0035
http://arxiv.org/abs/1801.00631
http://arxiv.org/abs/1602.05629
http://arxiv.org/abs/1804.00222
http://arxiv.org/abs/1804.00222
http://arxiv.org/abs/1905.09768
http://arxiv.org/abs/1905.09768
https://books.google.de/books?id=EoYBngEACAAJ
https://books.google.de/books?id=EoYBngEACAAJ
http://arxiv.org/abs/1706.07979
http://arxiv.org/abs/1706.07979
https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

Bibliography

[64] G. K. Nayak, K. R. Mopuri, V. Shaj, R. V. Babu, and A. Chakraborty. Zero-
shot knowledge distillation in deep networks. CoRR, abs/1905.08114, 2019. URL
http://arxiv.org/abs/1905.08114.

[65] A. Nichol, J. Achiam, and J. Schulman. On first-order meta-learning algorithms.
CoRR, abs/1803.02999, 2018. URL http://arxiv.org/abs/1803.02999.

[66] Z. Ovaisi, R. Ahsan, Y. Zhang, K. Vasilaky, and E. Zheleva. Correcting for
selection bias in learning-to-rank systems. Proceedings of The Web Conference
2020, Apr 2020. doi: 10.1145/3366423.3380255. URL http://dx.doi.org/10.

1145/3366423.3380255.

[67] M. Patacchiola, J. Turner, E. J. Crowley, and A. J. Storkey. Deep kernel transfer
in gaussian processes for few-shot learning. CoRR, abs/1910.05199, 2019. URL
http://arxiv.org/abs/1910.05199.

[68] F. Pedregosa. Hyperparameter optimization with approximate gradient, 2016.

[69] J. Rafati and R. F. Marcia. Quasi-newton optimization methods for deep learning
applications, 2019.

[70] A. Raghu, M. Raghu, S. Bengio, and O. Vinyals. Rapid learning or feature reuse?
towards understanding the effectiveness of MAML. CoRR, abs/1909.09157, 2019.
URL http://arxiv.org/abs/1909.09157.

[71] A. Rajeswaran, C. Finn, S. M. Kakade, and S. Levine. Meta-learning with implicit
gradients. CoRR, abs/1909.04630, 2019. URL http://arxiv.org/abs/1909.

04630.

[72] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le. Regularized evolution for image
classifier architecture search, 2019.

[73] P. Rodŕıguez, I. Laradji, A. Drouin, and A. Lacoste. Embedding propagation:
Smoother manifold for few-shot classification, 2020.

[74] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. Imagenet large scale
visual recognition challenge, 2015.

[75] J. Schmidhuber. Deep learning in neural networks: An overview. Neural Networks,
61:85–117, Jan 2015. ISSN 0893-6080. doi: 10.1016/j.neunet.2014.09.003. URL
http://dx.doi.org/10.1016/j.neunet.2014.09.003.

[76] A. Shanbhag, S. Madden, and X. Yu. A study of the fundamental performance
characteristics of gpus and cpus for database analytics (extended version), 2020.

109

http://arxiv.org/abs/1905.08114
http://arxiv.org/abs/1803.02999
http://dx.doi.org/10.1145/3366423.3380255
http://dx.doi.org/10.1145/3366423.3380255
http://arxiv.org/abs/1910.05199
http://arxiv.org/abs/1909.09157
http://arxiv.org/abs/1909.04630
http://arxiv.org/abs/1909.04630
http://dx.doi.org/10.1016/j.neunet.2014.09.003

Bibliography

[77] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driess-
che, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Diele-
man, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach,
K. Kavukcuoglu, T. Graepel, and D. Hassabis. Mastering the game of go with
deep neural networks and tree search. Nature, 529:484 EP –, Jan 2016. URL
http://dx.doi.org/10.1038/nature16961. Article.

[78] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,
T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre,
G. van den Driessche, T. Graepel, and D. Hassabis. Mastering the game of
go without human knowledge. Nature, 550:354 EP –, Oct 2017. URL http:

//dx.doi.org/10.1038/nature24270. Article.

[79] J. Snell, K. Swersky, and R. S. Zemel. Prototypical networks for few-shot learning.
CoRR, abs/1703.05175, 2017. URL http://arxiv.org/abs/1703.05175.

[80] D. Soydaner. A comparison of optimization algorithms for deep learning. In-
ternational Journal of Pattern Recognition and Artificial Intelligence, 34(13):
2052013, Apr 2020. ISSN 1793-6381. doi: 10.1142/s0218001420520138. URL
http://dx.doi.org/10.1142/S0218001420520138.

[81] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal
of Machine Learning Research, 15(56):1929–1958, 2014. URL http://jmlr.org/

papers/v15/srivastava14a.html.

[82] S.-H. Sun. Multi-digit mnist for few-shot learning, 2019. URL https://github.

com/shaohua0116/MultiDigitMNIST.

[83] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. S. Torr, and T. M. Hospedales. Learning
to compare: Relation network for few-shot learning. CoRR, abs/1711.06025, 2017.
URL http://arxiv.org/abs/1711.06025.

[84] H. Thanh-Tung, T. Tran, and S. Venkatesh. On catastrophic forgetting and mode
collapse in generative adversarial networks. CoRR, abs/1807.04015, 2018. URL
http://arxiv.org/abs/1807.04015.

[85] S. Thrun and L. Pratt. Learning to Learn: Introduction and Overview, pages
3–17. Springer US, Boston, MA, 1998. ISBN 978-1-4615-5529-2. doi: 10.1007/
978-1-4615-5529-2 1. URL https://doi.org/10.1007/978-1-4615-5529-2_1.

[86] Y. Tian, D. Krishnan, and P. Isola. Contrastive representation distillation. CoRR,
abs/1910.10699, 2019. URL http://arxiv.org/abs/1910.10699.

[87] A. Triastcyn and B. Faltings. Generating artificial data for private deep learning,
2019.

110

http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1038/nature24270
http://dx.doi.org/10.1038/nature24270
http://arxiv.org/abs/1703.05175
http://dx.doi.org/10.1142/S0218001420520138
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://github.com/shaohua0116/MultiDigitMNIST
https://github.com/shaohua0116/MultiDigitMNIST
http://arxiv.org/abs/1711.06025
http://arxiv.org/abs/1807.04015
https://doi.org/10.1007/978-1-4615-5529-2_1
http://arxiv.org/abs/1910.10699

Bibliography

[88] M. Vartak, A. Thiagarajan, C. Miranda, J. Bratman, and H. Larochelle. A meta-
learning perspective on cold-start recommendations for items. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 30, pages
6904–6914. Curran Associates, Inc., 2017. URL https://proceedings.neurips.

cc/paper/2017/file/51e6d6e679953c6311757004d8cbbba9-Paper.pdf.

[89] O. Vinyals, C. Blundell, T. P. Lillicrap, K. Kavukcuoglu, and D. Wierstra. Matching
networks for one shot learning. CoRR, abs/1606.04080, 2016. URL http://arxiv.

org/abs/1606.04080.

[90] Y. Wang and Q. Yao. Few-shot learning: A survey. CoRR, abs/1904.05046, 2019.
URL http://arxiv.org/abs/1904.05046.

[91] L. Weng. Meta-learning: Learning to learn fast. lilianweng.github.io/lil-log, 2018.
URL http://lilianweng.github.io/lil-log/2018/11/29/meta-learning.

html.

[92] L. Yang and A. Shami. On hyperparameter optimization of machine learning
algorithms: Theory and practice. Neurocomputing, 415:295–316, Nov 2020. ISSN
0925-2312. doi: 10.1016/j.neucom.2020.07.061. URL http://dx.doi.org/10.

1016/j.neucom.2020.07.061.

[93] J. Ye, Y. Ji, X. Wang, K. Ou, D. Tao, and M. Song. Student becoming the master:
Knowledge amalgamation for joint scene parsing, depth estimation, and more.
CoRR, abs/1904.10167, 2019. URL http://arxiv.org/abs/1904.10167.

[94] J. Ye, Y. Ji, X. Wang, X. Gao, and M. Song. Data-free knowledge amalgamation
via group-stack dual-gan, 2020.

[95] C. Yin, J. Tang, Z. Xu, and Y. Wang. Adversarial meta-learning. CoRR,
abs/1806.03316, 2018. URL http://arxiv.org/abs/1806.03316.

[96] H. Yin, P. Molchanov, Z. Li, J. M. Alvarez, A. Mallya, D. Hoiem, N. K. Jha, and
J. Kautz. Dreaming to distill: Data-free knowledge transfer via deepinversion, 2020.

[97] G. A. Young and R. L. Smith. Essentials of Statistical Inference. Cambridge Series
in Statistical and Probabilistic Mathematics. Cambridge University Press, 2005.
doi: 10.1017/CBO9780511755392.

[98] M. Zhang, D. Wang, and S. Gai. Knowledge distillation for model-agnostic meta-
learning. In ECAI, 2020.

[99] R. Zhang, T. Che, Z. Ghahramani, Y. Bengio, and Y. Song. Metagan: An
adversarial approach to few-shot learning. In Advances in Neural Information
Processing Systems, pages 2365–2374, 2018.

111

https://proceedings.neurips.cc/paper/2017/file/51e6d6e679953c6311757004d8cbbba9-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/51e6d6e679953c6311757004d8cbbba9-Paper.pdf
http://arxiv.org/abs/1606.04080
http://arxiv.org/abs/1606.04080
http://arxiv.org/abs/1904.05046
http://lilianweng.github.io/lil-log/2018/11/29/meta-learning.html
http://lilianweng.github.io/lil-log/2018/11/29/meta-learning.html
http://dx.doi.org/10.1016/j.neucom.2020.07.061
http://dx.doi.org/10.1016/j.neucom.2020.07.061
http://arxiv.org/abs/1904.10167
http://arxiv.org/abs/1806.03316

Bibliography

[100] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He. A
comprehensive survey on transfer learning, 2020.

[101] B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning,
2017.

112

	Acknowledgments
	Abstract
	Introduction
	Motivation
	Thesis Structure

	Background
	Probability theory
	Machine learning
	Hyperparameter optimization

	Deep learning
	Optimization
	Layer types
	Benchmark data sets
	Meta-learning
	Meta-learning for few-shot learning
	Data-free knowledge distillation

	Related Works
	Meta-learning
	Optimization-based approaches
	Metric-based approaches
	Baselines for few-shot learning
	Meta-learning with artificial data

	Knowledge Distillation
	Data-free knowledge distillation
	Multi-teacher knowledge distillation

	Further privacy-preserving methods

	Methodology
	Data-free few-shot learning
	Two classes of approaches
	End-to-End data-free meta-learning
	Consecutive data-free distillation and meta-learning

	Few-shot learning without generated data
	Random initialization
	Best teacher initialization
	Teachers' features concatenation

	Experiments
	Research questions
	Optimization-based versus metric-based meta-learning
	Meta-learning versus few-shot learning baselines
	Few-shot learning with generated data versus without generated data
	Few-shot learning with generated data versus with original data
	Teacher architectures and their training data amount
	Few-shot versus many-shot learning

	Datasets
	DoubleMNIST
	CIFAR-FS
	MiniImagenet

	Teacher training
	Experiment procedure

	Results
	DoubleMNIST
	Conv-4 teachers
	ResNet-10 teachers

	CIFAR-FS
	Conv-4 teachers
	ResNet-10 teachers

	MiniImagenet
	Conv-4 teachers
	ResNet-10 teachers

	Discussion
	Research questions

	Conclusion and Outlook
	Conclusion
	Outlook
	Hyperparameter optimization
	Investigation of data generation with smaller architectures
	Creation of novel datasets
	End-to-end-based data generation and meta-training
	Usage of validation tasks

	Appendices
	Results in table-format
	DoubleMNIST
	4-layer CNN teachers
	ResNet-10 teachers

	CIFAR-FS
	4-layer CNN teachers
	ResNet-10 teachers

	MiniImagenet
	4-layer CNN teachers
	ResNet-10 teachers

	Experiments with training data available and more computational resources
	List of Figures
	List of Tables
	Bibliography

