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Abstract

The aim of this thesis is to benchmark different pre-trained NLP systems. The per-
formance of pre-trained NLP systems is determined by many different factors. Since
state-of-the-art systems are often trained under vastly different conditions, it is there-
fore difficult to ascribe a good performance of a system to a specific component. We
attempt to provide a more informative picture by systematically evaluating the effect
of various factors.

Since automatically searching over the full systems is too costly, we benchmark down-
scaled versions of the original systems. Specifically, we train BERT-style, GPT-2-style
and RoBERTa-style systems for different shape parameters and model sizes. Further-
more, we vary the number of training steps and the batch size. We can reproduce several
results from previous studies, in particular the importance of model size compared to
other factors, such as the number of training steps or the exact shape. Based on our
observations, we finally scale up several systems.
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Chapter 1

Introduction

The introduction of the Transformer architecture [117] together with the application of
transfer learning approaches [113] has led to major advances in NLP in recent years.
While many different lines of research exist, the most attention is generally paid to the
largest systems, presumably because these systems often reach new state of the art.
The current trend is to scale up such systems to ever new orders of magnitude: 213M
parameters in the original Transformer [117], 300M parameters in BERT [25], 1.5B
parameters in OpenAI GPT-2 [86] and recently 175B parameters in OpenAI GPT-3
[11]. The different systems are usually pre-trained on corpora of widely varying sizes,
for a different number of training steps and with different batch sizes. At the same time,
new systems often apply fundamentally different methods, such as using a different pre-
training objective or modified architectural hyperparameters. While altering multiple
components simultaneously can help achieve state of the art, which is an important
endeavor, it is difficult to disentangle the effects of the various factors. Though there
exist various ablation studies, these studies often show only a small excerpt from the
broad spectrum of experimental opportunities and are thus not suitable for providing a
comprehensive picture.

In contrast, the benchmarking study presented in Part II of this thesis has the
purpose of systematically investigating the effect of a broad variety of different fac-
tors. In particular, we study different pre-training objectives, different architectural
hyperparameters of the Transformer and the effect of model size, number of training
steps and batch size, mainly on the downstream performance on the General Language

Understanding Evaluation (GLUE) benchmark [120]. A more detailed outline of our
objectives is given in Chapter 6, after having established relevant methods, such as
transfer learning and the Transformer architecture.
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CHAPTER 1. INTRODUCTION

Outline

This thesis is divided into two parts. In this part, we start by providing a theoreti-
cal background of important methods used in modern NLP, while the second part is
dedicated to our benchmarking study.

In Chapter 2 we start by discussing several preliminary steps, such as pre-processing,
and provide information on general concepts relevant in modern NLP. We also define
several NLP tasks and evaluation metrics that are relevant to our experiments in Part II.
Chapter 3 introduces the concept of transfer learning and discusses how and why transfer
learning has been used in NLP. In particular, we categorize modern NLP systems based
on a taxonomy from different perspectives, such as pre-training objectives and methods
of transfer. In Chapter 4 we describe different architectures of neural NLP systems,
with a focus on the Transformer. In Chapter 5, we close Part I by presenting several
state-of-the-art NLP systems that are relevant to our benchmarking study in Part II.

We start Part II by discussing related work and by defining the specific objectives
of our benchmarking study. Furthermore, we introduce the pre-training corpus and
provide a description of the GLUE Benchmark, which will be used to fine-tune and
evaluate different systems. In Chapter 7 we then present our experiments. We start
with some preparatory steps, such as discussing important definitions and the specific
format of the inputs during pre-training, before presenting our results in section 7.5.
Finally, we address several limitations, propose topics for further research and conclude
our discussion in Chapter 8.
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Chapter 2

Preliminaries

In this chapter we shall establish some basic concepts that underly all modeling ap-
proaches discussed throughout this thesis. We start with pre-processing and proceed
chronologically by describing how the resulting inputs are processed by the NLP systems
that we consider. Furthermore, we introduce several NLP tasks and metrics.

2.1 Pre-Processing

Before NLP systems can be trained and evaluated on text, the text must first be con-
verted into a usable format. To achieve this, several pre-processing steps are necessary,
which are briefly described in the following.

2.1.1 Normalization

Normalization is the first step of pre-processing. The aim of normalization is to convert
text into a standard format, which is necessary because real-word text can appear
in many different forms. Well-known examples of normalization are lowercasing and
stripping exceeding whitespace.

Normalization has usually been implemented as hand-crafted rules. In contrast, in
many modern NLP applications normalization is conducted as a standardized procedure,
which allows for better reproducibility [53]. For instance, a normalization step that is
usually performed is Unicode normalization, which is the conversion of different Unicode
sequences representing the same characters into unique code point sequences. In the
common tokenization libraries used by most state-of-the-art NLP systems, normalization
is automatically performed before the actual tokenization, which will be discussed in

5



CHAPTER 2. PRELIMINARIES

the next section. For example, the SentencePiece library [53] performs Unicode NFKC
normalization by default.

2.1.2 Tokenization

Tokenization, which is a fundamental pre-processing step in almost all NLP applications,
refers to the task of splitting text into smaller units, so-called tokens. Tokenization can
be divided into two stages. First, a token vocabulary V is generated from the training
data of an NLP system. Subsequently, the training data is encoded with tokens from
the previously generated vocabulary V . The same token vocabulary must also be used
for each new input of the trained system.

Formally, each token xi 2 V is represented as a unique positive integer. Thus, the
token vocabulary can be written as V = {1, . . . , V }, where V is the vocabulary size.
All systems we consider take a probabilistic approach. That is, an observed sequence of
tokens x = [x1, . . . , xn] is assumed to consist of realizations of discrete random variables,
taking on values from V . We adopt this notion in the remainder of this thesis.

Most state-of-the-art systems construct their inputs by using different variants of
subword tokenization. To demonstrate the benefits of subword tokenization we start by
considering two alternative methods.

Word-level Tokenization

A natural approach to split text into tokens is to use spaces between words as split
points and identify the token vocabulary with the set of distinct words occurring in the
text. However, this approach has several shortcomings:

• Out-of-vocabulary words A new text to which a trained model is applied to
perform a language task might contain out-of-vocabulary words, i.e., words that
are not contained in the training data. Such words cannot be evaluated by the
language model. Typical examples of out-of-vocabulary words when using word-
level tokenization are neologisms and proper names.

• Large vocabulary size Storing each word separately results in a large vocabulary
size. While using techniques that reduce words to their root forms can alleviate
this problem, applying these techniques requires a separate pre-processing step.
Furthermore, such techniques are usually not language agnostic.

6



CHAPTER 2. PRELIMINARIES

• Languages without spaces While languages such as German or English separate
words by whitespaces, other languages, such as Chinese, have no spaces between
words. Word-level tokenization for these languages is therefore infeasible.

• Suboptimal encoding of meaning The meaning of a word can often be derived
from smaller units contained in that word. When each word is encoded separately,
it is more difficult to share the meaning of these small units across their various
occurrences in the text.

Character-level Tokenization

At the other end of the spectrum, the text could be split into individual characters
or, even further, into UTF-8 bytes. However, compared to word-level tokenization,
processing linguistic meaning when using such small units is even more difficult. Another
problem is increased computational complexity due to the large number of units per
sentence. In Chapter 4 we show that Transformer-based systems, which make use of
a so-called attention mechanism [5], are especially sensitive to such large numbers of
tokens. As Radford et al. [86] mention, byte-level language models are currently not
competitive with word-level language models.

Subword Tokenization

Subword tokenization is a middle ground between word-level and character/byte-level
tokenization. As the name suggests, this technique involves dividing words into smaller
units. While there exist many different variants of subword tokenization, the general idea
is to split the text into units based on their frequency or likelihood within a probabilistic
model. Such approaches generally produce a subword vocabulary consisting of full
words that carry meaning on the one hand, and commonly occurring small units, such
as affixes and single characters, on the other hand. This high degree of granularity
allows for efficient encoding of a text, so that subword tokenization does not require a
large vocabulary. Crucially, the subword vocabulary can be used to represent out-of-
vocabulary words.

There are a variety of algorithms for dividing text into subwords, and often different
NLP systems use different subword algorithms. Byte pair encoding (BPE) [100] and
two variants thereof, WordPiece [99] and byte-level BPE [86], begin by initializing a
small vocabulary, which is incrementally expanded. These approaches can therefore be
described as bottom-up approaches. In contrast to BPE and its variants, the unigram
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CHAPTER 2. PRELIMINARIES

approach [52], which is based on a probabilistic unigram model, starts with a large
superset of the final vocabulary, which is iteratively pruned to a desired size. The
unigram approach is part of the SentencePiece library [53]. We discuss BPE, WordPiece
and byte-level BPE in Appendix A.1, as these tokenization methods will be used in our
experiments.

2.2 Neural NLP

In the remainder of this paper, we will focus on methods based on neural networks. Over
the last decade, neural networks have emerged as the predominant modeling architecture
in NLP. The current generation of NLP systems is therefore often described as neural

NLP. Neural networks have a number of advantages over more traditional approaches
and have therefore largely replaced methods from so-called statistical and symbolic NLP.
For instance, as will be discussed in Chapter 3, the structure of neural networks is very
suitable for transfer learning. Furthermore, neural networks allow for learning complex
relationships. This is crucial in NLP, since there exist highly non-linear relationships
in text [10]. Neural networks, in particular the Transformer architecture [117], are
therefore a key driver of many breakthroughs in NLP in recent years.

2.3 Token Embeddings

When processing a sequence x = [x1, . . . , xn] with a neural network, each token of that
sequence is first embedded in a vector space of embedding dimension H. This happens
in the very first layer of the network, which is also called embedding layer.

Formally, for each token xi, let 1h(xi) denote a one-hot vector of length V with
index xi set to 1. The input embedding e(xi) 2 RH of a token xi is then obtained with
a learnable linear transformation

e : V ! RH

xi 7! W T
e 1h(xi),

where We 2 RV⇥H is the embedding matrix. Thus, e(xi) simply corresponds to the
(transposed) xi-th row of We. As will be shown in Chapter 3, in modern NLP systems
the input embedding is again used in the output layer of the network to calculate
output probabilities over the token vocabulary. Using the same embedding for inputs
and outputs has proved useful in neural NLP [83] and therefore has become the standard
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approach [25, 117, 129].

2.4 Language Representation Learning

As Collobert and Weston [19] state, the primary goal of NLP is to obtain representations
of language that are easy for computers to operate on. Learning representations to
facilitate the extraction of useful information is in general known as representation

learning [8]. Bengio et al. [8] argue that good representations should express general
priors, which can help improve performance across a wide variety of tasks. Indeed, as
will be discussed in Chapter 3, the transfer of general-purpose language representations
to specific tasks has played a key role in NLP in recent years. There exist two broad
categories of language representations, both of which consist in mapping text fragments
into a series of real-valued vectors [84]:

Non-contextual representations Many prominent methods, such as Word2Vec [71],
are based on learning so-called word vector representations. These approaches use large
amounts of text data with the primary goal of learning the input embedding e(xi) of each
token xi.1 After training, each embedding serves as a static and hence non-contextual

representation of the corresponding token. In a second stage, the learned embeddings
can be used to represent the text input of a task-specific model, which often increases
the performance of this model significantly when compared to starting with randomly
initialized embeddings.

Contextualized representations A shortcoming of word vector representations is
that a token xi is always represented as e(xi) regardless of the context it appears in.
Therefore, the meaning of a text is often not properly reflected when encoded with
the learned embeddings. In contrast, given an input sequence x = [x1, . . . , xn], the
contextualized representation zi of a token xi is dynamically computed based on multiple
tokens of the sequence x. In more recent NLP systems, a trained neural encoder z, such
as a recurrent neural network (RNN) [96, 122] or a Transformer, outputs a sequence

z(x) = [z1, . . . , zn] (2.4.1)

of contextualized representations zi 2 RH for each token xi. There are many different
possibilities to obtain such contextualized representations. For instance, in some cases
each element zi may depend on all tokens of the sequence x, while in other cases the set

1
As the name suggests, most word vector approaches simply use a word-level tokenization.
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of tokens on which each representation may depend is restricted. We give an overview
of different approaches in Chapter 3.

2.5 NLP Tasks

There exist many end applications of NLP, including for instance machine translation

(MT), information retrieval (IR) and dialogue systems. Numerous sub-tasks, ranging
from syntactic to semantic, have been identified to train and evaluate systems with
respect to such applications. In the following, we focus on the task categories that are
relevant to our experiments presented in Chapter 7. In addition, relevant pre-training
tasks will be discussed in Chapter 3.

Sentiment analysis In sentiment analysis, subjective information is extracted from
a given text by classifying its polarity. In most cases this polarity is binary (positive
or negative) or ternary (positive, negative, or neutral). There exist different variants of
sentiment analysis. In this paper, we will focus on sentence-level sentiment analysis.
More challenging variants, such as aspect-level sentiment analysis, require determining
the sentiment with respect to a particular target.

Natural language inference Natural language inference (NLI) consists in assessing a
directional relation between text segments. The task is usually structured as as a classi-
fication problem, in which a model must predict whether a premise entails, contradicts

or is neutral towards a hypothesis.

Question answering Question answering (QA) is a fine-grained variant of IR, which
consists in retrieving information from data. Given a question, the task is to find specific
answers, which typically can be inferred from an available document. The concrete
answer format of the task may vary. For instance, in some scenarios, it is required
to select the text span that contains the answer. In other cases, the answer must be
selected from a set of predefined choices. Question answering intersects with other areas
of NLP, such as reading comprehension or common sense reasoning.

Paraphrase detection & semantic textual similarity Paraphrase detection is the
binary task of judging whether two text fragments are similar in meaning. Seman-

tic textual similarity differs from paraphrase detection in that it assesses the degree

of similarity between text fragments. While paraphrase and textual similarity are not
considered natural NLP tasks, they have proved very useful to evaluate systems. Un-
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derstanding semantic textual similarity is for instance relevant to applications such as
MT and QA [13].

Note that most tasks can be structured as classification problems. There exist only
few exceptions, such as textual similarity, which is a regression task. All tasks that
we consider in Chapter 7 are furthermore sentence-level tasks, involving either single
sentences or sentence pairs. A detailed description of these tasks is given in Chapter 6.

2.6 Evaluation of Model Performance

We close this chapter by briefly describing the general evaluation process in machine
learning models and the metrics that are relevant to our experiments.

2.6.1 Training and Evaluation Process

A dataset is in general split into a training set, a validation set and a test set. A
model is trained by minimizing the loss on the training set. The validation set can
be used to evaluate the effect of different hyperparameters, as it provides an a-priori
unbiased estimate of the performance of a model. Usually a specific hyperparameter
configuration is then chosen based on the validation set performance. In this case,
however, a-posteriori the validation set performance of the selected models is biased,
because it is affected by the selection process. In order to obtain an unbiased estimate
of the performance of a final model, it is therefore important to use a separate test set.

Regarding our experiments, note that we will generally evaluate model performance
on the validation set. One reason for this is that we do not conduct any hyperparameter
tuning. Another reason arises from a practical problem: the test set of the GLUE
benchmark is not publicly available and submission of test set predictions is limited.

2.6.2 Metrics

As stated, many NLP tasks can be presented as classification tasks. In binary clas-
sification tasks, the performance of a model can be assessed on the basis of true and
false positives (TP/FP), which give the number of predicted positives that were cor-
rect/incorrect, and similarly true and false negatives (TN/FP), which correspond to the
correct/incorrect predicted negatives. The sum of these four quantities corresponds to
the total number N of predicted observations.
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Figure 2.1: Confusion matrix for binary classification.

A very common measure is accuracy (Acc), which is the fraction of correctly classified
observations:

Acc =
TP + TN

N
. (2.6.1)

Accuracy is a suitable metric if the classes are balanced and the cost of misclassification
is not disproportionately large for observations of either class. However, if one class is
considerably smaller than the other, the fraction of incorrect predicted examples from
the small class is not adequately reflected in the accuracy, which is especially problematic
if there is a high cost associated with wrong classification of these examples.

An alternative metric for binary classification is the F1-score, which is defined as the
harmonic mean between precision P and recall R:

F1 =
2

P�1 +R�1
= 2

P ·R

P +R
, where (2.6.2)

P =
TP

TP + FP
, R =

TP

TP + FN
. (2.6.3)

The F1-score thus gives equal weight to precision, which measures the fraction of cor-
rectly predicted examples out of all positive predictions, and recall, the fraction of
positive examples that were correctly classified as positive. If either the precision or the
recall is zero, the F1-score is also zero. In all other cases, the F1-score is greater than
zero, with a maximum value of one if and only if both precision and recall are one.

In contrast to accuracy, the F1-score depends on which class is defined as the positive
class. The F1-score is unsuitable if the number of negative examples is small compared
to the number of positive examples. In particular, a classifier which simply assigns all
examples to the positive class will achieve a high F1-score (and a high accuracy) in such
a scenario.
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If the labels are imbalanced, the Matthew’s correlation coefficient (MCC) [66], which
is defined as

MCC =
TP · TN � FP · FNp

(TP + FP )(FP + FN)(TN + FP )(TN + FN)
, (2.6.4)

is more suitable than both the F1-score and accuracy [82]. In particular, it is the only
metric in binary classification which generates a high score if and only if the majority
of examples from both the positive and the negative class are predicted correctly [15].
MCC ranges in [�1, 1], taking on the left and the right boundary in case of perfect mis-
classification and perfect classification, respectively. The case MCC = 0 corresponds
to a classifier which randomly assigns each observation to the positive class with prob-
ability 1

2 . If one of the four sums in the denominator is zero, MCC is undefined. It can
be shown that the limiting value is MCC = 0 in these cases [15]. Note that for a 2⇥ 2

contingency table the MCC is related to the chi-square statistic:

|MCC| =

r
�2

n
. (2.6.5)

In the binary case, the chi-square statistic can be used to test whether observed pairs of
binary data are realizations of two independent random variables. The null hypothesis
that the outcomes are independent is rejected if �2 is sufficiently large. This connection
allows for an intuitive interpretation of MCC.
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Chapter 3

Transfer Learning

This chapter gives an introduction to transfer learning [113], which is of central impor-
tance in modern NLP. It also serves as an overview of NLP systems that leverage ideas
from transfer learning. In transfer learning, knowledge obtained by learning a source

task TS is used to learn a target task TT , which is also known as a downstream task in
NLP. Learning the downstream task is sometimes referred to as adaptation [94]. The
setting in which source and downstream tasks are the same is known as transductive

transfer learning, whereas inductive transfer learning describes the situation in which
the source task is different from the downstream task [78]. Neural networks are partic-
ularly suitable for transfer learning, because in principle both the architecture and the
parameters from the source task can be used as an initialization point, better known as
a pre-trained system, for the downstream task [116]. This allows for efficient transfer
of the pre-trained system, such that pre-training a single system can often increase the
performance on a large variety of downstream tasks. Pre-training is particularly useful
to prevent overfitting, which can be crucial when training neural networks, since large
neural networks sometimes overfit on small datasets [91].

Before transfer learning became popular in NLP it had already been adopted in
other fields, such as computer vision (CV). Indeed, Mou et al. [75] presented evidence
that transfer learning might not be very effective in NLP, however, focusing on transfer
between supervised source and downstream tasks. In contrast, Howard and Ruder [44]
demonstrated that the question is not whether transfer learning is applicable to NLP,
but that instead it is essential how the knowledge is transferred and especially how this
knowledge is obtained by pre-training on a source task. In particular, Howard and Ruder
[44] proposed inductive transfer learning with a general-domain pre-training approach,
leveraging large amounts of unlabeled data.
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Unsupervised pre-training had in fact already been successfully combined with sub-
sequent supervised NLP tasks such as neural machine translation (NMT), using pre-
trained word vector representations as inputs of a task-specific target model [19]. Such
semi-supervised approaches are especially suitable for NLP, because unlabeled text data
is largely available on the web, whereas labeled data is scarce and generating labels is
often expensive. It has in many cases indeed proved true that, by learning from large
amounts of data on an unsupervised source task, performance on data-scarce down-
stream tasks can be improved drastically in NLP [25, 56, 62, 85, 129].

While word vector representations can be regarded as an early form of transfer
learning in NLP, compared to later systems these techniques only leverage a very small
amount of the information contained in the source data. Current state-of-the-art systems
exploit the scalability of large neural networks, in most cases based on the Transformer
architecture, to process huge amounts of unlabeled pre-training data. This paradigm is
accompanied by an improved generalization of many shared downstream tasks and in
particular by a shift from syntactic to more semantic tasks.

In the following, in section 3.1 we first discuss several pre-training objectives used
in current NLP systems and subsequently provide a summary of different adaptation
techniques in section 3.2. Furthermore, in sections 3.3 and 3.4 we give some information
regarding two currently popular concepts related to transfer, multi-task learning (MTL)
[12, 93] and meta-learning [11].

3.1 Unsupervised Pre-Training

We group different pre-training approaches of NLP systems into three categories: lan-

guage modeling (LM) [7], which is autoregressive; masked language modeling (MLM)
[25], which is closely related to denoising autoencoding (DAE) [118]; and contrastive

learning (CTL) [3], which, in contrast to MLM, is based on discriminating corrupted
samples from original inputs rather than reconstructing them.

3.1.1 Language Modeling

Given a sequence x = [x1, . . . , xn] of tokens xi, LM seeks to infer the probability p(x).
Forward LM originates from the autoregressive factorization

p(x) =
nY

i=1

p(xi|x<i), (3.1.1)
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where x<i := [x0, x1, x2, . . . , xi�1] and x0 is an added special token indicating the start
of the sequence.1 From this factorization, the problem can be reduced to estimating each
conditional factor using a parametric model. In forward LM, the neural encoder pro-
duces a sequence of contextualized representations zLM(x) = [zLM(x<1), . . . , zLM(x<n)],
where each element may depend only on the previous tokens x<i. In Transformer-based
NLP systems, the conditional probability of a token xi is usually obtained by calculat-
ing a softmax score over the dot-products of the contextualized representations with the
input embeddings:

p(xi|x<i;✓) =
exp

⇣
zLM(x<i)Te(xi)

⌘

P
x02V exp

�
zLM(x<i)Te(x0)

� . (3.1.2)

The loss LLM(x,✓) of a sequence x = [x1, . . . , xn] is defined as the cross entropy be-
tween the one-hot empirical distribution of training labels and the predicted conditional
distribution:2

LLM(x,✓) = �

nX

i=1

log p(xi|x<i;✓). (3.1.3)

The model parameters are estimated by minimizing the combined loss
P

x2X LLM(x,✓)

over a corpus X of sequences. Contrary to forward LM, in backward LM the probability
of a sequence is factorized into p(x) =

Qn
i=1 p(xi|x>i), where similarly to forward LM

we define x>i := [xi+1, xi+2, . . . , xn, xn+1] and xn+1 is added to mark the end of the
sequence. In this case, the model is trained to predict the conditional probability of
each token xi when given future tokens x>i.

Systems An early approach of estimating discrete distributions over word sequences
from large-scale text data was presented by Bengio et al. [7], employing a feed-forward
neural network to predict word probabilities. Mikolov et al. [70] followed this general
approach, but used a recurrent neural network, allowing for modeling longer depen-
dencies within word sequences. In the context of semi-supervised learning, Dai and
Le [23] proposed to use the weights of a recurrent pre-trained LM as an initialization
for a supervised long short-term memory (LSTM). Howard and Ruder [44] refined this
approach, introducing several new fine-tuning techniques. ELMo [81] combines multi-
ple LSTMs, trained with forward and backward LM objectives, allowing for capturing
bidirectional representations. Radford et al. [85] introduced GPT, a semi-supervised

1
As x0 is deterministic and constant, we have p(x) = p(x|x0) and thus Eq. (3.1.1) holds.

2
Note that minimizing Eq. (3.1.3) is equivalent to maximizing the log-likelihood of the sequence.
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system based on the Transformer architecture, which is pre-trained with a forward LM
objective.3 Transformer-XL [24] is another Transformer-based language model, which
extends the context-size by introducing a recurrence mechanism between consecutive
input segments. XLNet [129] employs a generalization of the classical LM objective by
factorizing the probabilities of tokenized input sequences using random permutations
while maintaining the autoregressive structure. DialoGPT [133] is a large-scale lan-
guage response generation system with an architecture equivalent to GPT-2. Recently,
GPT-3 [11], a 175B parameter system, was released.

Pros and cons First, LM is a generative approach. Hence language models can be
used for generating new text, which can be directly leveraged in applications such as lan-
guage response generation and proves useful in meta-learning, as will be demonstrated
in section 3.4. It has been demonstrated that LM is a more effective pre-training objec-
tive than other objectives, such as translation [132]. LM is considered a difficult task,
presumably requiring a system to learn about syntax and semantics [95]. Furthermore,
as Howard and Ruder [44] argue, a pre-trained language model is well suited to the
characteristics of most downstream tasks. However, this does not apply to all tasks,
as a shortcoming of traditional language models is their inability of capturing bidirec-
tional contexts. Devlin et al. [25] demonstrate that, especially in sentence-level tasks,
such as QA, the autoregressive structure has a negative impact on model performance.
Although there exist several bidirectional language models, such as ELMo [81], these
models are based on a shallow concatenation of forward and backward language models,
meaning that most parameters are in fact related to unidirectional objectives. A no-
table exception is XLNet [129], which uses a generalization of the classical LM objective
known as permutation language modeling (PLM) [129]. XLNet masks weights during
pre-training to preserve the autoregressive structure, which means that effectively only
a small fraction of input tokens is used during pre-training. This approach increases the
required amount of computation significantly.

3.1.2 Masked Language Modeling

MLM can be divided into two stages. In the first stage, a corrupted version of each
original input sequence x is produced by randomly masking a fixed proportion of input
tokens. The second stage consists of training the model to predict the masked tokens.
This approach is similar to DAE, with the difference that DAE involves reconstructing

3
GPT-2 and GPT-3, which build upon the original GPT, are also trained with a LM objective, but

were not established in the classical semi-supervised context.
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the entire input, whereas in MLM only the masked tokens are predicted. Specifically,
for each sequence x = [x1, . . . , xn] an index set M = {m1, . . . ,mk} ⇢ {1, . . . , n} is
picked uniformly at random from the set of all possible index sets of length k.4 The
corrupted version of x, denoted as xmasked, is then obtained by replacing all tokens xi,
i 2 M , with a [MASK] token. Reconstructing the masked tokens corresponds to the
task of predicting the joint conditional probability p(xm1 , . . . , xmk

|xmasked). Therefore,
in contrast to the generative approach followed in autoregressive LM, no explicit density
estimation is performed. The joint conditional probability is approximated with

p(xm1 , . . . , xmk
|xmasked) ⇡

Y

i2M
p(xi|x

masked), (3.1.4)

assuming that the masked tokens are conditionally independent. A Transformer-based
system can then be trained to predict the univariate conditional probabilities as

p(xi|x
masked;✓) =

exp
⇣
zMLM(xmasked)>i e(xi)

⌘

P
x02V exp

⇣
zMLM(xmasked)>i e(x

0)
⌘ , for all i 2 M, (3.1.5)

where zMLM is a neural encoder that maps an input sequence x to a sequence zMLM(x) =

[zMLM(x)1, . . . , zMLM(x)n] of contextualized representations. Note that each element
zMLM(x)i depends on the full input sequence x. Therefore, in contrast to LM, the
contextualized representation of each token is bidirectional. The loss used in MLM is

LMLM(x,✓) = �

X

i2M
log p(xi|x

masked), (3.1.6)

which is an approximation of the expected cross entropy E[�
P

i2M log p(xi|xmasked)],
where M denotes a random index set. Note that the independence assumption in (3.1.4)
follows implicitly from the choice of this loss function. As in neural LM, the parameters
are obtained by minimizing the combined loss

P
x2X LMLM(x,✓).

Systems MLM, which is based on the Cloze Task [111], was introduced as the general
pre-training approach of BERT [25], the first bidirectional Transformer. This novel ap-
proach led to significantly improved results on a broad spectrum of benchmark tasks.
Devlin et al. [25] implemented a slightly more elaborate masking approach than de-
scribed above and, in addition to MLM, used next sentence prediction (NSP) [25] as a
second pre-training objective. We illustrate NSP and the masking approach of BERT in

4
A common choice is k = d0.15ne.
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Chapter 5. Several changes to the original model have been proposed since the introduc-
tion of BERT. In RoBERTa, Liu et al. [62] removed the NSP objective and used different
input formats with a modified masking pattern, as well as considerably larger batch sizes.
These modifications improved the performance of BERT on GLUE [120], SQuAD 1.1
& 2.0 [89, 90] and RACE [54] significantly. Furthermore, Liu et al. [62] investigated the
impact of the amount of pre-training data and the number of pre-training iterations,
showing that increasing these factors leads to further performance gains. ALBERT [56]
employs parameter reduction techniques, allowing for scaling the model by increasing
the hidden layer size, and replaces NSP with sentence order prediction (SOP). These
techniques further improved the overall performance compared to RoBERTa. However,
as Lan et al. [56] noticed, though the parameter-reduction techniques allow for scaling
the model while maintaining a manageable number of parameters, this benefit comes at
increased computational costs. DistilBERT [98] leverages a technique called knowledge
distillation, which consists in replacing the one-hot empirical training distribution in
the MLM loss with the predicted distribution of a so-called teacher model, in this case
BERT. Using a training objective that combines distillation with MLM, DistilBERT
achieved similar results as BERT on the GLUE benchmark, but is considerably smaller
and faster than the original model. In the field of cross-lingual language modeling, XLM
[55] leverages different pre-training objectives: autoregressive LM, MLM, as well as a
combination of MLM and an extension of MLM called translation language modeling

(TLM). The results of Lample and Conneau [55] demonstrate that MLM, as well as the
combination of MLM and TLM, outperform LM in cross-lingual tasks.

Pros and cons In contrast to shallow bidirectional approaches, such as ELMo, masked
language models learn deep bidirectional contexts, because all parameters are related
to a bidirectional training objective. As Devlin et al. [25] demonstrated, the ability
to learn deep bidirectional contexts is the key driver of the large performance gains
that BERT achieved on a wide range of NLP tasks. However, while more effective
than unidirectional language models, MLM requires increased computational costs, since
only a small percentage of tokens is used per input sequence. A second problem is the
mismatch between the altered pre-training data, containing artificial [MASK] tokens,
and the data used in the subsequent supervised stage. Furthermore, in contrast to
the exact factorization used in LM, the conditional probability of the masked tokens is
approximated based on a conditional independence assumption. Moreover, in contrast
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to forward LM, left-to-right text generation is more complex in the case of MLM.5

3.1.3 Contrastive Learning

CTL, formalized by Arora et al. [3], consists in training a model by differentiating ob-
served data points from artificially generated samples. This approach is motivated by
the idea that observed data points are semantically more similar than artificial sam-
ples, which should enable the model to learn semantically meaningful representations.
Specifically, we consider a variant of CTL called noise-contractive estimation (NCE) [36],
which has proven useful in language representation learning. In NCE, a binary classifier
discriminates between the observed data and artificially generated noise. Given an in-
put sequence x = [x1, . . . , xn], the first step of NCE consists in generating a randomly
corrupted sample xcorrupt = [xcorrupt

1 , . . . , x
corrupt
n ], where for a fixed proportion of the

tokens it holds x
corrupt
i = xi. In contrast to MLM, the corrupted examples, which are

sampled from a noise distribution, are similar to the real input examples instead of being
masked out. Using xcorrupt as input, the discriminator then predicts for each position
whether the token is corrupted or not. Specifically, the probability that a token has not
been corrupted can be modeled as

p(xcorrupt
i = xi|x

corrupt;✓) =
exp

⇣
zCTL(xcorrupt)>i w

⌘

1 + exp
⇣
zCTL(xcorrupt)>i w

⌘ , (3.1.7)

where zCTL(x) = [zCTL(x)1, . . . , zCTL(x)n] is again a sequence of contextualized input
representations of a sequence x and w 2 RH are the weights of a sigmoid output layer.
Using the notation p̂i := p(xcorrupt

i = xi|xcorrupt;✓), the loss for each input sequence x

can be written as

LCTL(x,✓) =
nX

i=1

� (xcorrupt
i = xi) log p̂i � (xcorrupt

i 6= xi) log(1� p̂i),

which is an approximation of the expected cross-entropy over the corrupted inputs
with a sample xcorrupt from the noise distribution. As before, parameters are obtained
by minimizing the combined loss

P
x2X LCTL(x,✓). The recently introduced model

ELECTRA [18] leverages an extension of CTL called replaced token detection (RTD)
[18]. This approach involves a generator network, in the case of ELECTRA a small

5
Representing BERT as a Markov Random Field, Wang and Cho [119] show that text generation

can be accomplished employing Gibbs sampling.
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masked language model, that produces the corrupted inputs and is trained jointly with
the discriminator network. ELECTRA employs a training objective resembling the
objective of a generative adversarial network (GAN) [33], with the main difference that
the generator is trained with maximum likelihood rather than an adversarial objective.
The discriminator is used on downstream tasks, whereas the generator is solely active
during pretraining.

Systems In a seminal paper, Collobert and Weston [19] presented a semi-supervised
system, which learns word vector representations by discriminating generated fake text
from positive examples. Mnih and Kavukcuoglu [74] learned word vector representations
with NCE, where in addition to the generated samples the binary discriminator takes
probabilities of the noise distribution as input. To obtain Word2Vec embeddings using
the continuous bag-of-words (CBOW) architecture, Mikolov et al. [71] introduced a sim-
pler version of NCE called negative sampling (NEG). In contrast to the original NCE,
in NEG the binary discriminator does not take probabilities of the noise distribution as
input, but instead only uses samples from this distribution. ELECTRA extends this ap-
proach by replacing the noise distribution with a generator network, as described above.
Furthermore, ELECTRA uses a Transformer network, while Mnih and Kavukcuoglu [74]
employed a modified log-bilinear language model (LBL) [73] and Mikolov et al. [71] a
feedforward neural network to differentiate original data points from artificial samples,
inputting a window of surrounding context. Finally, the NSP objective from BERT and
the SOP objective from ALBERT, which were mentioned in the previous section, are
also examples of NCE.

Pros and Cons While CTL is conceptually similar to MLM, the pre-training objective
of CTL involves all data points. Thus, each input sequence has a much larger effect on
the training progress. Furthermore, especially in the case of ELECTRA, which replaces
original input tokens with reasonable alternatives, the mismatch between pre-training
data and fine-tuning data is alleviated. As Clark et al. [18] demonstrate, compared to
MLM, these improvements lead to significantly reduced runtime and improved perfor-
mance on downstream tasks.

3.2 Transfer to Downstream Tasks

Many different variants have been proposed to transfer pre-trained representations to
downstream tasks. Existing approaches can be classified into two broad categories: fea-
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ture extraction and fine-tuning approaches [25, 84].6 Most state-of-the-art NLP systems
employ a fine-tuning approach, which has largely replaced feature extraction approaches.

3.2.1 Feature Extraction

In feature extraction, specific parts of the pre-trained representations are extracted and
used as inputs of a task-specific supervised model. Transfer to downstream tasks thus
involves additional task-specific architectures. The supervised stage consists to a large
degree of training newly initialized parameters of these task-specific architectures from
scratch. Apart from the extracted features, other pre-trained parameters are not used
during the supervised training.

Systems NLP feature extraction approaches with neural networks have their origins in
word vector representations described in Chapter 2, which were introduced to replace
methods requiring hand-crafted features. Bengio et al. [7] first trained a neural language
model to obtain word vector representations, while other approaches took into account
the bidirectional context of a word [19, 20]. While Collobert et al. [20] used a multilayer
neural network with convolutions, smaller architectures, such as used in Word2Vec [71]
or GloVe [80], were shown to be sufficient for capturing useful semantic and syntactic
information with word vectors. To incorporate higher-level semantics, this approach
was extended to learning contextualized word vectors [67, 68] and representations of
sentences and paragraphs [21, 41, 57, 63, 108]. ELMo [81] obtained contextualized
representations of word sequences by extracting layers of pre-trained LSTMs, which were
then used as inputs of task-specific RNNs. Notably, feature-based versions of BERT,
likewise producing contextualized word representations, achieved similar performance
in the named entity recognition (NER) task as fine-tuned versions [25].

How to extract If trained with a neural network, word vector representations are
simply obtained as the first layer of a network. In contrast, to obtain contextualized
representations it is necessary to extract higher layers. More recent systems often extract
multiple layers. For instance, ELMo extracts a weighted average of all pre-trained layers.
The best performing feature-based version of BERT uses the top four layers of the
Transformer encoder. Feature extraction approaches have particularly been applied to
token-level tasks, such as NER [20, 25, 80, 81, 115], part-of-speech tagging (POS) [20]
or QA [81, 112], for which representations of multiple or all tokens of an input sequence
are extracted.

6
Feature extraction was in the past sometimes referred to as fine-tuning [20], because performing

additional gradient updates to pre-trained weights in an end-to-end fashion was not common.
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Pros and Cons Feature extraction can be useful if many similar tasks have to be
performed, because supervised training of a relatively small task-specific architecture
without updating the pre-trained weights is usually not very expensive. Furthermore,
using a task-specific architecture that takes specific pre-trained features as input can be
the most accurate method for certain tasks. On the other hand, compared to fine-tuning
approaches, feature extraction contradicts the goal of building a unified architecture to
improve generalization of many shared tasks.

3.2.2 Fine-Tuning

In contrast to feature-based approaches, fine-tuning consists of performing additional
gradient updates to the pre-trained parameters in an end-to-end fashion. That is, the
pre-trained parameters together with the architecture are used as an initialization point
for the supervised training. Only a minimal set of additional parameters is introduced
during fine-tuning, leveraging the existing pre-trained structure instead of introducing
new task-specific architectures.

Systems Fine-tuning approaches in NLP were first applied in sequence to sequence

(Seq2Seq) learning, especially NMT. Dai and Le [23] presented the first fine-tuning ap-
proach in NLP, proposing to pre-train a Seq2Seq system with an autoencoding objective
and initialize the network with the pre-trained weights for subsequent supervised train-
ing. Ramachandran et al. [91] pre-trained the encoder and the decoder of a Seq2Seq
system separately with an LM objective, initializing multiple layers of both parts of
the network with pre-trained weights. Howard and Ruder [44] trained a regular LSTM-
RNN with an LM objective and introduced several fine-tuning tricks. Another line
of work used fine-tuning to transfer between similar supervised tasks [72, 101]. Since
the introduction of the Transformer, most state-of-the-art systems have leveraged a
fine-tuning transfer of pre-trained contextualized representations. The first fine-tuned
Transformer-based systems were GPT and BERT, followed by many others, such as
XLNet, RoBERTa, ALBERT and ELECTRA.

How to fine-tune Usually the pre-trained representation of the top layer is simply
fed through an added dense layer to obtain the predicted labels. Subsequently the
full network is updated based on the labeled data and a supervised objective [25, 56,
62, 85, 129]. There also exist fine-tuning techniques that update only a subset of the
pre-trained weights, such as adapter layers [6, 43] or gradual unfreezing [44], which
were studied in T5 [88]. These techniques allow for more efficient fine-tuning, since
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significantly less parameters are updated for a new fine-tuning task, which can be useful
if a large number of fine-tuning tasks are performed. In some cases supervised objectives
are trained jointly with unsupervised objectives during fine-tuning to avoid overfitting
[85, 91].

Pros and Cons Fine-tuning is an efficient approach if the goal is to perform tasks
from a large and diverse range, because it allows for using a unified end-to-end system.
Furthermore, updating a large set of parameters starting from a good pre-trained ini-
tialization can improve performance significantly. In some cases, however, if the goal
is to build an expert system geared towards a specific task, approaches that involve a
task-specific architecture can be more accurate.

3.3 Multi-Task Learning

In MTL, a single system learns to perform several tasks at once. This is usually achieved
by optimizing more than one loss function [93], but there exist also instances which
simply mix different task-specific datasets together during training [88]. As Ruder [93]
argues, MTL can be regarded as a form of inductive transfer: auxiliary tasks introduce
an inductive bias, which causes the system to choose certain hypotheses over others,
ideally allowing for better generalization. In neural networks, MTL can be implemented
either via soft parameter sharing or via hard parameter sharing [93]. In hard parameter
sharing, lower layers of a network are shared across tasks, whereas top layers are task-
specific. In contrast, soft parameter sharing implies that a different network is used for
each task, but parameters between the different networks are regularized, e.g. via the
L1 norm.

MTL has also been combined with pre-train/fine-tune approaches in NLP. Liu et al.
[61] pre-trained contextualized representations using a Transformer encoder as in BERT,
followed by a second stage in which the parameters were updated by training on mul-
tiple supervised tasks at once with task-specific output layers. This approach, which is
an instance of hard parameter sharing, led to an absolute improvement of 2.2% on the
GLUE benchmark compared to the original version of BERT. In T5, Raffel et al. [88]
implemented MTL by mixing different datasets together while using the same loss func-
tion for all tasks. Consistent inputs and outputs, specified in natural language across all
tasks, allow for using a homogeneous maximum likelihood objective. Adding multiple
supervised tasks to the unsupervised objective during pre-training results in compa-
rable performance to unsupervised pre-training. However, removing the unsupervised
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objective and solely pre-training on multiple supervised tasks prior to fine-tuning on a
single task results in significantly worse performance, which underlines the importance
of unsupervised pre-training in NLP.

3.4 Meta-Learning

While avoiding task-specific architectures, fine-tuning approaches still require large task-
specific labeled data sets. This requirement limits the practicability of fine-tuning ap-
proaches, since high-quality labeled data does not always exist and constructing such
data is often infeasible. Furthermore, while pre-training reduces the risk of overfitting
there remains a strong dependence of the final model on the fine-tuning data, which is
much smaller than the pre-training data [11, 44].

In NLP, meta-learning or in-context learning [11] describes a set of methods enabling
a pre-trained system to adapt to different tasks without performing additional gradient
updates. Furthermore, no or only a minimal amount of task-specific data is provided.
Meta-learning can be implemented by specifying the task to be performed as a natural
language instruction added to the task-specific input [11, 86]. As stated above, this
approach was also used in T5 to enable MTL. The idea is that, by having processed
naturally occurring instances of such instructions together with a surrounding context in
the training data, the system automatically infers the demanded task from the instruc-
tion. In addition to the natural language instruction, the system can be conditioned
on one or more examples, known as one-shot and few-shot learning, respectively. The
zero-shot setting, in which no examples are provided, has the advantage that there is
no risk of overfitting to the provided examples. At the same time, however, the zero-
shot setting is more challenging and instructions can potentially be ambiguous without
demonstrations. In general, the suitability of the different settings is task-dependent,
particularly regarding the goal of mimicking the way instructions are communicated to
humans [11].

GPT-2 [86] was the first prominent system using Meta-Learning in NLP. While
architecture and pre-training procedure of GPT-2 follow the original GPT, fine-tuning is
replaced by giving the system a natural language instruction together with zero or more
examples. The same approach was used in GPT-3 [11], however, with an increased model
size of 175B parameters compared to 1.5B parameters. GPT-3 achieved an impressive
performance across a large range of tasks. As Radford et al. [86] state, in effect such a
system performs unsupervised MTL.

While Meta-Learning, as outlined above, has several advantages, the performance
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is worse compared to the performance of a fine-tuned system with similar capacity. A
notable weakness of GPT-3 was especially observed on NLI tasks [11]. This raises the
question whether such systems simply learn templates and syntactic patterns that are
unrelated to logic and inference.
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Chapter 4

Architectures

This chapter gives an overview of the most important architectures that have been used
in NLP in recent years. Specifically, we discuss different neural networks. The goal
of this section is to provide a concise high-level overview, presented in a chronological
order correspondent to the evolution of neural networks in NLP. We attempt to trace
this evolution by discussing the most important properties that result from the different
architectures, mainly from a computational perspective. As most state-of-the-art NLP
systems use the now ubiquitous Transformer, we conduct a detailed description of this
architecture in section 4.3.

4.1 Recurrent Neural Network

A recurrent neural network (RNN) [96, 122] is a class of neural networks developed to
model variable-length sequences. An RNN processes elements sequentially by using an
internal memory, consisting of so-called hidden states hi, where recurrent connections

between the hidden states allow for retaining information about past elements. Each
hidden state is a function f of the previous hidden state hi�1 and the current input
embedding e(xi):

hi = f(e(xi),hi�1). (4.1.1)

The so-called state transition function f is usually of the form

f(e(xi),hi�1) = �(W T
1 e(xi) +W T

2 hi�1), (4.1.2)
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where � is an activation function, such as the sigmoid function. In order to enable
the network to process variable-length sequences, at each step, the same sets of input
connections W1 and hidden-to-hidden connections W2 are used, which is commonly
referred to as parameter sharing. An RNN can also have multiple layers. In this case,
the input embedding e(xi) is replaced with the output embedding from the previous
layer. The hidden states of the final layer are a contextualized representation of the
input sequence.

4.1.1 Language Modeling

As described in Chapter 3, LM is motivated by the autoregressive factorization

p(x) =
nY

i=1

p(xi|x<i), (4.1.3)

where x<i is defined as in Chapter 3. In a simple recurrent neural network, also known
as Elman network [28], the hidden states are directly used to predict the probabilities

p(xi|x<i;✓) = g(hi�1), (4.1.4)

where g is a nonlinear function that outputs the probability of xi, which is usually
implemented with a softmax normalization. Such a network has for instance been used
in speech recognition [70].

4.1.2 Sequence to Sequence Learning

Another application of RNNs in NLP is Seq2Seq learning, where an input sequence
x = [x1, . . . , xn] is used to predict an output sequence y = [y1, . . . , ym] of different
length. Similar to LM, this supervised task can be reduced to predicting the individual
factors in the autoregressive factorization

p(y|x) =
mY

i=1

p(yi|y<i,x), (4.1.5)

which is accomplished with an encoder-decoder structure [109]. An encoder-RNN first
compresses the input sequence x = [x1, . . . , xn] into a so-called context-vector

c = q({h1, . . . ,hn}), (4.1.6)
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Figure 4.1: An encoder-RNN (blue) maps the input sequence to a context vector, in this case
the last hidden state. A decoder-RNN (red) then predicts output elements by accessing context
vector and previous outputs.

where hi are the hidden states of the encoder-RNN.1 The context vector is subsequently
accessed by a decoder-RNN, which models the individual factors as

p(yi|y<i,x;✓) = g(yi�1, si, c), (4.1.7)

where si are the hidden states of the decoder-RNN and g is again a non-linear function
that outputs probabilities. Encoder-decoder RNNs have been used especially in machine
translation [109]. As proposed by Dai and Le [23], the encoder-decoder structure can
also be leveraged to pre-train contextual representations in a semi-supervised setting.
This can be achieved, for example, by replacing the output sequence with the input
sequence so that the decoder reconstructs the input sequence from the context vector.

Attention in Encoder-Decoder RNNs

The structure of encoder-decoder RNNs involves a memorization step, in which the
encoded sequence is compressed into a single, low resolution context vector, before
decoding. Within this process, much information about the input sequence is lost,
which prevents the network from learning long-range dependencies. To remedy this
effect, Bahdanau et al. [5] proposed an attention mechanism to dynamically access the
hidden states of the encoder.

To enable the decoder to dynamically focus on different hidden states of the encoder
at each step, Bahdanau et al. [5] replaced the fixed context vector c with an individual
context vector ci, accessed by the decoder when predicting the i-th output element. A
context vector ci is obtained as the weighted sum of the encoder’s hidden states hj ,

1
A common choice is q({h1, . . . ,hn}) = hn.
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Figure 4.2: The RNN with attention (RNNsearch-50) performs much better on long sentences
than a comparable RNN without attention (RNNenc-50) [5].

j = 1, . . . , n:

ci =
nX

j=1

�ijhj . (4.1.8)

The weights of the i-th context vector indicate which parts of the input sequence are
most relevant for the i-th output element. The calculation of these weights is based
on evaluating how well the hidden states of the encoder match the hidden states of
the decoder associated with the ith output element. Bahdanau et al. [5] first calculate
so-called alignment scores

aij = f(si�1,hj), (4.1.9)

were f is a compatibility function given by a feed-forward neural network with a single
hidden layer.2 Weights are computed by normalizing these scores with the softmax
function:

�ij =
exp

�
aij

�
Pn

k=1 exp
�
aij

� . (4.1.10)

This class of attention mechanisms is known as additive attention.
Luong et al. [64] proposed several alternative functions for generating alignment

scores, one of which is based on the dot-products between hidden states of the encoder
and decoder. In this case, the weights �ij , j = 1, . . . , n, of the i-th context vector are

2
Specifically, Bahdanau et al. [5] use f(si�1,hj) = W T

3 (tanh(W T

1 si�1+W T

2 hj)) for suitable weight

matrices.

32



CHAPTER 4. ARCHITECTURES

computed as

�ij =
exp

⇣
sTi hj

⌘

Pn
k=1 exp

�
sTi hk

� , (4.1.11)

where si denotes the i-th hidden state of the decoder.3 As will be shown in section
4.3, this mechanism, known as dot-product attention, is closely related to attention as
applied in the Transformer.

4.1.3 Computational Perspective

RNNs are powerful sequence models applicable to a wide range of tasks. For instance,
when encoder-decoder RNNs were introduced to the field of machine translation, they
quickly achieved state-of-the-art performance, marking the beginning of neural machine

translation (NMT). However, the inherent serial structure of RNNs has severe limita-
tions.

Parallel computation First, the sequential order prohibits parallelization. The greater
the number of units that must be computed sequentially across all layers, the lower the
degree of parallelization. As shown in Figure 4.3, since each hidden state hi depends on
the previous hidden state hi�1, this number is proportional to the length of the input
sequence in RNNs. Thus, the number of operations that need to be computed sequen-
tially is O(n). This sequentiality results in increased runtimes, exacerbated by memory
constraints that limit the batch size, as large batch sizes mitigate the computational
costs of parameter updates [102].

Path length Second, during training, relating two elements of an input sequence in-
volves backpropagation along the full network path spanned between the two elements.
Due to the serial structure of RNNs, this path length is linear in the distance between
the input elements. This feature prevents the network from learning long-range depen-
dencies, as long paths typically result in vanishing and sometimes in exploding gradients
[42]. Most encoder-decoder RNNs employ long short-term memory (LSTM) [42] archi-
tectures [109] or gated recurrent units (GRUs) [17] to mitigate this effect. Furthermore,
attention does also reduce the path length, since the decoder can directly access in-
dividual states of the encoder. However, none of these variants resolves the inherent

3
Note that, in contrast to Bahdanau et al. [5], Luong et al. [64] hence use the i-th decoder state si

(instead of si�1) to compute the i-th contect vector ci. For details, see Luong et al. [64], section 3.1,

and Bahdanau et al. [5], section A.2.2.
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Figure 4.3: The blue units can be computed in parallel, but only given the red units. In RNNs,
the number of sequential operations is thus proportional to the input length [35].

sequentiality of RNNs. Thus, difficulties with relating signals in long sequences per-
sist. In NLP, however, long-range dependency is predominant, not least because of the
division into subwords [24].

Layer complexity Each matrix multiplication in Eq. (4.1.2) requires O(H2) opera-
tions. Since there are n hidden states per layer, the number of operations which have to
be performed per layer hence is O(n ·H

2). Note that the attention mechanism comes
at the expense of increased complexity. Since the context vector is calculated for each
position, complexity increases to O(n2

·H
2) [46].

4.2 Convolutional Neural Network

Aiming at resolving the problems associated with RNNs, another class of models that has
been used in sequence modeling is the convolutional neural network (CNN) [30, 46, 77].
When applied to sequence modeling, these models simply consist of a stack of convo-
lutional layers. The final hidden layer again yields a series of contextualized represen-
tations of the input. As recurrent layers, a convolutional layer shares the same set of
parameters across input positions, allowing for processing variable-length sequences.

Let the outputs of the l-th convolutional layer be denoted as hl = (hl
1, . . . ,h

l
n),

where hl
i 2 RH . The embedding dimension H is referred to as the number of channels

in a CNN. A convolutional layer obtains each output by applying a filter, which is
shared across all positions, to the outputs of the preceding layer. A filter with kernel
size K = 2R+1 connects K elements to compute each output. For a suitable activation
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Figure 4.4: WaveNet uses causal dilated convolutions [77].

function �, a one-dimensional convolutional layer computes the m-th channel of the i-th
output as

h
l+1
i,m = �

⇣ HX

j=1

RX

⌧=�R

w
l+1
m,j,⌧h

l
i+⌧,j

⌘
, (4.2.1)

where on the RHS we assume that h
l
i+⌧,j = 0, if i + ⌧ /2 {1, . . . , n}.4 Note that the

weights are not indexed by the position of the output element and thus are shared across
all positions, as mentioned.

4.2.1 Language Modeling

Like recurrent networks, one-dimensional CNNs have been applied to language modeling.
A prominent example is WaveNet [77], which is trained on raw audio waveforms and
can be used in text-to-speech applications. While in RNNs the serial structure naturally
prevents that the prediction p(xi|x<i;✓) depends on future elements, in ordinary CNNs
outputs can attend to future elements. To make sure that future elements cannot affect
the predicted output, Oord et al. [77] proposed so-called causal convolutions, masking
all weights that connect elements from right to left (see Figure 4.4). Furthermore,
Oord et al. [77] used dilated convolutions, which is a technique that allows for modeling
long-range dependencies. Formally, a convolution with dilation factor s can be written

4
This approach is known as same padding, which is used in sequence modeling. Same padding allows

for a constant number of elements per layer, as otherwise the filter could not be applied to all elements,

which would reduce the number of elements after each layer.
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Figure 4.5: The encoder-decoder architecture of ByteNet [46].

as

h
l+1
i,m = �

⇣ HX

j=1

RX

⌧=�R

w
l+1
m,j,⌧h

l
i+s⌧,j

⌘
. (4.2.2)

That is, only every s-th element is accessed. By inserting zeros between filter elements,
dilated convolutions increase the area covered by each output neuron (as shown in
Figure 4.4), known also as the receptive field of a network. Note that Oord et al. [77]
use increasing factors of dilation.

4.2.2 Sequence to Sequence Learning

To apply CNNs to input and output sequences of different lengths, as in RNNs, an
encoder-decoder architecture can be used [30, 46]. ByteNet [46], developed for machine
translation, is an instance of such a system and a generalization of WaveNet. Similar to
WaveNet, dilated convolutions in ByteNet allow for learning long-range dependencies.
Furthermore, as dictated by Eq. (4.1.5), the decoder of ByteNet adopts the autoregres-
sive masking pattern used in WaveNet, which prevents future elements from predicting
the current output. In contrast, the encoder applies no mask. As will be shown in sec-
tion 4.3, this approach is also used in the Transformer. In contrast to standard RNNs
without attention, the encoder of ByteNet computes n contextualized representations,
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which also referred to as resolution preserving.
The attention mechanism, initially developed for RNNs, has also been applied to

encoder-decoder CNNs. Using a CNN with attention and GRUs, ConvS2S [30] achieved
state-of-the-art performance in machine translation, surpassing Google’s machine trans-
lation system at the time, an encoder-decoder RNN with attention [127].

4.2.3 Computational Perspective

Parallel computation Since CNNs, unlike RNNs, do not have recurrent connections,
they allow a high degree of parallelization. This is reflected in a constant number of
sequential operations in the length of the input sequence, since the number of layers
is constant and parallelization is performed layer-wise. Thus, when applied to long
sequences, CNNs usually have shorter runtimes than RNNs [77].

Path length By using dilation, compared to RNNs, WaveNet and ByteNet reduce
the path traversed to relate two elements of an input sequence to O(logK(n)). This
facilitates modeling long-range dependencies with CNNs.

Layer complexity Eq. (4.2.1) shows that computation of each channel of an element
requires O(H · K) operations (assuming that successive layers have the same number
of channels). Since there are H channels per element and n elements per layer, the
number of operations which have to be performed per layer thus is O(H2

· K · n).
While CNNs thus have a higher complexity than standard encoder-decoder RNNs, the
complexity is lower compared to encoder-decoder RNNs with added attention. Thus,
CNNs provide the resolution-preserving property at a lower computational cost than
RNNs with attention.

4.3 Transformer

The Transformer [117] is a sequence modeling architecture originally proposed as an
end-to-end system for MT. The application of this novel architecture in modern NLP
systems is a key driver of the success of these systems. The central component of the
Transformer is the so-called self-attention mechanism [14, 79], which is inspired by the
attention mechanism originally proposed for recurrent networks. Compared to previous
sequence modeling approaches, this mechanism allows the Transformer to relate signals
within an input sequence in a more direct and efficient manner.
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4.3.1 More Attention

Prior to the introduction of the Transformer, attention mechanisms had already become
an integral part of many models. As outlined in the previous chapter, in encoder-decoder
RNNs the attention mechanism was introduced to automatically search for sections of
an input sequence that are relevant to predicting an output element [5, 64]. Aside from
its application in MT, attention had for instance also been used in CV [34, 128, 130]. In
particular, self-attention [14, 79], originally called intra-attention, had been introduced.

While attention had become a widely adopted mechanism, it had in all cases been
applied in combination with other mechanisms, such as recurrence. In contrast, Vaswani
et al. [117] demonstrated that "Attention Is All You Need". Relying entirely on attention
to relate different elements of a sequence, Vaswani et al. [117] achieved state-of-the-art
performance in MT.

Universal definition The Transformer applies different variants of attention. In order
to describe these variants and to formalize attention within a broader framework, we
adopt the general definition of attention used by Vaswani et al. [117]. This definition
is closely related to attention as introduced in section 4.1.2. Following Vaswani et al.
[117], attention can be defined as a mechanism that takes as input a sequence of queries

q1, . . . , qn 2 RHk , keys k1, . . . ,kn 2 RHk and values v1, . . . ,vn 2 RHv . As in RNNs,
the similarity aij between query qi and key kj is measured by a compatibility function:

aij = f(qi,kj). (4.3.1)

In Table 4.1 we provide a list of compatibility functions found in the literature. The
output consists of a sequence of vectors o1, . . . ,on 2 RHv , where each vector is computed
as the sum of the values, weighted with the similarity between queries and keys:

oi =
nX

j=1

�ijvj , where �ij =
exp

�
aij

�
Pn

k=1 exp(aik)
. (4.3.2)

As can be observed, in the case of RNNs queries correspond to the hidden states of the
decoder, while the hidden states of the encoder play the role of both keys and values.
Note that the attention mechanism addresses elements based on content. That is, the
attention weights are computed dynamically depending on the content of each input
sequence. This is in contrast to other sequence architectures, such as dilated CNNs,
where input elements are referenced statically by position.
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Compatibility Functions

Name Function Reference

additive f(qi,kj) = wT
out�(W

T
1 kj +W T

2 qi) Bahdanau et al. [5]

general bilinear f(qi,kj) = qTi W
Tkj Luong et al. [64]

dot-product/multiplicative f(qi,kj) = qTi kj Luong et al. [64]

concat f(qi,kj) = wT
out�(W

T [kj k qi]) Luong et al. [64]

location-based f(qi,kj) = f(W Tqi) Luong et al. [64]

biased general f(qi,kj) = kT
j (W

Tqi + b) Sordoni et al. [107]

activated general f(qi,kj) = �(qTi W
Tkj) Ma et al. [65]

scaled dot-product f(qi,kj) =
qT

i
kjp
Hk

Vaswani et al.
[117]

Table 4.1: Overview of compatibility functions found in the literature.

Scaled dot-product attention The Transformer uses a variant of attention known
as scaled dot-product attention [117]. In this case, the compatibility function is given by
the scaled dot-product between keys and queries:

f(qi,kj) =
1

p
Hk

qTi kj . (4.3.3)

Dot-products are scaled by the factor 1p
Hk

to avoid large inputs of the softmax func-
tion. For large inputs the gradient of the softmax becomes very small, which slows down
learning [117]. In gradient-based learning methods, such as neural networks, this prob-
lem is generally known as the vanishing gradient problem [42]. By stacking queries, keys
and values row-wise into Q 2 Rn⇥Hk , K 2 Rn⇥Hk and V 2 Rn⇥Hv , scaled dot-product
attention can be compactly written as

Attention(Q,K,V ) = softmax
⇣QKT

p
Hk

⌘
V , (4.3.4)

where the softmax function is applied row-wise.

Self attention In self-attention [14, 79], the attention mechanism is applied to a single
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input sequence. Queries, keys and values are obtained from a sequence of H-dimensional
embeddings with three learnable linear transformations WQ

2 RH⇥Hk , WK
2 RH⇥Hk

and W V
2 RH⇥Hv . The linear transformations give self-attention a set of controllable

parameters to differentiate between the three roles of queries, keys and values. At a
high-level, a self-attention layer takes a sequence as input and outputs a sequence of
equal length, representing the context in which each input element appears.

Multi-head attention In order to give attention more power to discriminate between
different regions of the input vectors, several attention functions can be applied in
parallel. This is known as multi-head attention [117]. For multi-head attention, Vaswani
et al. [117] consider queries, keys and values of equal dimension H. In a first step, queries,
keys and values are linearly transformed to dimensions Hk, Hk and Hv, respectively.
Each input is transformed A times, which is achieved with A linear transformations
WQ

j 2 RH⇥Hk , WK
j 2 RH⇥Hk and W V

j 2 RH⇥Hv , j = 1, . . . , A. In most versions
of the Transformer the dimensions of the attention components are chosen such that
Hk = Hv = H/A. Each of the A sets of transformed queries, keys and values is then
separately used as input of the attention function defined in Eq. (4.3.4). Finally, in
order to produce a single output sequence of the same embedding dimension as the input
sequence, the resulting A outputs of the attention function, known as attention heads

[117], are concatenated and transformed back to dimension H with a linear mapping
WO

2 RH⇥AHv , which is also learned during training. Following Vaswani et al. [117],
multi-head attention can thus be written as

MultiHead(Q,K,V ) = Concat(head1, . . . , headA)W
O
,

where headj = Attention(QWQ
j ,KWK

j ,V W V
j ).

(4.3.5)

Multi-head self attention Furthermore, the Transformer uses a combination of self-
attention and multi-head attention, called multi-head self-attention. In this case, Q, K
and V in Eq. (4.3.5) are replaced with a single matrix, containing the embeddings of a
single input sequence.

Masked self-attention As a machine translation model, the original Transformer
builds on the autoregressive factorization given by Eq. (4.1.5). Thus, during training
elements of the output sequence must not depend on future output elements. However,
in the above version of self-attention each output element can attend to all the elements
of the input sequence. To prevent output elements from being generated by future ele-
ments a so-called attention mask can be applied to the input of the softmax. Specifically,
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the upper triangular part of QKT is set to �1, resulting in weights �ij = 0, if i < j.
Apart from preserving the autoregressive structure, the attention mask has another pur-
pose. Note that the Transformer is a fixed-length model. That is, in contrast to RNNs,
the Transformer takes as input sequences of fixed length. Therefore, each system has
a maximum sequence length Nctx, which is also known as context size [86]. If an input
sequence is shorter than the context size, so-called padding tokens are added until the
sequence is of length Nctx. The positions of the padded tokens are then masked, such
that these tokens require no additional computation.

4.3.2 Additional Components

Feed-forward network Each (self)-attention layer in the Transformer is followed by
a fully-connected feed-forward network, which is applied position-wise and identically
across positions. That is, each of the H-dimensional output elements of an attention
layer is processed separately but with identical weights by the feed-forward network.
The feed-forward network consists of one hidden layer with ReLU activation:

FFN(x) = W T
2 max(0,W T

1 x+ b1) + b2.

Vaswani et al. [117] use dimension Hff = 4H = 2048 for the hidden layer. The outputs
of the feed-forward network are of dimension H, such that they can be processed by the
attention sub-layer of the next layer. It is important to note that, since the feed-forward
network is applied separately to each position, connections between different positions
only exist in the attention sub-layers.

Residual connections All sub-layers in the Transformer are implemented with resid-

ual connections, also known as shortcut connections [39]. Residual connections facili-
tate optimization, allowing for increased network depth, which often results in enhanced
model performance. In particular, due to the non-linear activation functions it is dif-
ficult for the layers of a neural network to learn an identity mapping. When stacking
many layers, however, there are often some layers that do not improve model perfor-
mance, which would be best expressed by such an identity mapping. Instead of directly
attempting to learn an underlying mapping H(x) with a given stack of layers, He et al.
[39] implement residual connections by adding the input x to the output of the stacked
layers. Instead of learning H(x), this mechanism lets the layers learn the residual func-
tion F (x) := H(x)� x.5 This residual mapping is easier to optimize than the original

5
If input and output dimensions differ, a linear transformation of x is used.
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mapping [39]. In particular, in case of an underlying identity mapping, learning the
relation F (x) = 0 is easier than learning the identity mapping H(x) = x.

Layer normalization Another important component in the Transformer is layer nor-

malization [4], which is computed as LayerNorm(v) = �
v�µ
� +�, where µ = 1

H

PH
k=1 vk,

�
2 = 1

H

PH
k=1(vk�µ)2, and �, � are scale and bias parameters, respectively. Layer nor-

malization is computed position-wise for the outputs of the attention and feed-forward
sub-layers, after application of the residual connections. The normalized outputs are
less dependent on outputs of previous layers, which stabilizes the optimization process
[4]. Layer normalization is inspired by batch normalization [45], which has been the
standard normalization method in neural networks. While layer normalization esti-
mates mean and standard deviation by individually summing over all hidden units for
each training example, batch normalization sums over batches of training examples, but
individually for each hidden unit. Layer normalization has empirically led to better per-
formances than batch normalization in NLP applications [104]. It has been argued that
the relatively worse performance of batch normalization is caused by a high variance of
batch-wise computed statistics of NLP data [104].

Positional encoding The attention mechanism itself is invariant to sequence ordering.
That is, if the inputs are rearranged with a permutation �, the attention mechanism
produces a permutation of the initial output. However, the order of tokens entails im-
portant information about the meaning of an input sequence. Thus, information about
the positions has to be used as input of the attention function to provide a mechanism
that captures the order of a sequence. To allow for a meaningful extrapolation to se-
quences of arbitrary length, Vaswani et al. [117] implement a technique called positional

encoding. Instead of learning an H-dimensional embedding for a position pos, a fixed
mapping

PE : N ! NH

pos 7! PE(pos)

is used to represent positions in an H-dimensional vector space. Specifically, Vaswani
et al. [117] obtain the i-th element of the encoding as

PEi(pos) =

8
><

>:

sin
⇣

pos

10000
i

H

⌘
, if i mod 2 ⌘ 0,

cos
⇣

pos

10000
i�1
H

⌘
, else.
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That is, each element of the vector is a sinusoid (as a function of the position) with
different frequency for each dimension. The vector-valued positions are added to the
embeddings of the tokens and subsequently used as input of the first attention layer.
The idea that underlies this approach is that the network learns how to interpret the
positional encodings. If a position is not encountered during training, the network
should ideally infer the encoding of that position from other large positions observed
during training.

4.3.3 Full Architecture

As mentioned, the original Transformer [117] is an encoder-decoder network. Therefore,
the objective is to predict the individual factors in Eq. (4.1.5) given, as in the other
Seq2Seq models that were considered in the previous sections. In the Transformer, the
encoder maps the input sequence x = [x1, . . . , xn] to a contextualized representation
z(x) = [z1(x), . . . , zn(x)] of this sequence. The decoder g uses this representation to
generate an output sequence y = [y1, . . . , ym] by iteratively predicting the probabilities
p(yi| y<i,x;✓) = g(y<i, z(x)).

Encoder In the original Transformer, the encoder is composed of L = 6 identical layers.
Each of these layers is split into two sub-layers. The first sub-layer applies multi-head
self-attention to the outputs from the previous layer. The second sub-layer is a fully
connected feed-forward network. As mentioned, both sub-layers are implemented with
residual connections and followed by layer normalization.

Decoder The decoder is also composed of L = 6 identical layers in the original Trans-
former. The decoder takes two types of sequences as input: the output elements6 and
the sequence of contextualized representations. The former sequence is consumed by
multi-head self-attention sub-layer with an autoregressive mask. The first sub-layer of
the decoder is followed by a multi-head attention sub-layer. The queries of this atten-
tion sub-layer are the output elements of the self-attention sub-layer, while keys and
values correspond to the output elements of the encoder (i.e., the contextualized rep-
resentation). In contrast to the other two attention layers of the Transformer, this
second sub-layer of the decoder is thus not a self-attention layer. Furthermore, no at-
tention mask is applied for this sub-layer, such that the entire input sequence is used
for prediction. Similarly to the encoder, the final sub-layer of the decoder is a fully

6
During training, these correspond to the true output elements, whereas at test time the previously

generated output elements are used.
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Figure 4.6: The original Transformer [117].

connected feed-forward network. All sub-layers employ residual connections followed by
layer normalization.

4.3.4 Computational Perspective

For comparison, we now examine the computational characteristics of self-attention in
light of the alternative approaches discussed in the previous section.

Parallel computation Transformers allow for parallel computation, since the atten-
tion mechanism relates elements in a non-sequential manner. This is reflected in a
constant number of sequential operations in the input length. Thus, as CNNs, Trans-
formers overcome computational inefficiencies of RNNs with regard to serial processing.

Path length Transformers further reduce the logarithmic maximum path length of
ByteNet to a constant maximum path length in the distance of two input elements
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[117]. The reduced path length is a consequence of the content-based addressing (rather
than positional addressing) of the attention mechanism.

Layer complexity The scaled dot-product has a cost of O(H). For each output el-
ement, n compatibility functions are computed, resulting in a cost of O(H · n) per
output element. Since there are n elements, the computational cost per layer amounts
to O(H · n

2).

In total, attention sub-layers thus allow for greater training parallelization and reduced
path length, at the cost of quadratic complexity in the input. While the reduced path
length facilitates modeling long-range dependencies, the quadratic complexity contra-
dicts this goal. However, several improvements have been proposed to reduce the
quadratic complexity, as briefly outlined in the next section.

Note that the above considerations are only with respect to the attention operation,
while projections and feed-forward layers are not taken into account. As will be shown
in Chapter 7, however, the feed-forward layers in fact require the vast majority of com-
pute in the Transformer, unless the context size Nctx is very large compared to the
embedding dimension H. On the other hand, the properties of constant maximum path
length and parallel computation apply also when taking all components into account.

4.3.5 Modifications

Most systems that are based on the Transformer make modifications to the original
version or use additional mechanisms. Some important variants are summarized in the
following.

Position embeddings Instead of applying the positional encoding mechanism that
was proposed by Vaswani et al. [117], most Transformer-based systems use position

embeddings. Each position is embedded with an H-dimensional vector from a position
embedding matrix Wp 2 RNctx⇥H . As in the case of positional encodings, the first
Transformer layer takes as input the sum of position and token embeddings.

Transformer decoder Many Transformer-based systems do not use the original encoder-
decoder architecture. For instance, most autoregressive language models remove the
entire encoder module and the second attention layer in the decoder. Such a system
is referred to as Transformer decoder [60]. Since the decoder consists of an attention
mask, future tokens are prevented from predicting the output at each position.
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Transformer encoder Bidirectional systems, such as BERT, instead remove the entire
decoder and train only with the encoder of the Transformer. Such a system is accordingly
called Transformer encoder [25]. Since the encoder uses no attention masking, each
token can attend to any other token of an input sequence.

Modified attention Several modifications of attention have been proposed. These
methods reduce the quadratic time of attention in the context size by exploiting that
the attention matrix QKT is typically sparse. This allows for extending the context
size significantly. We briefly describe the following two important examples:

• Factorized attention: Child et al. [16] introduced a factorized sparse version of
attention in which every attention head only attends to an individual subset of
all positions. The subsets are chosen such that the heads complement each other.
This reduces the amount of compute while preserving the constant maximum path
length. Factorized attention has for instance been applied in GPT-3 [11].

• Locality-sensitive hashing attention: Kitaev et al. [50] noted that it is ineffi-
cient to compute the matrix product QKT , since only the softmax of this product
needs to be known. Attempting to calculate only the largest products for each
query, Kitaev et al. [50] apply a variant of locality-sensitive hashing (LSH) [38].
This reduces the complexity in the context size from quadratic to logarithmic time
with only marginal decreases in performance.

There exist many other extensions, such as using a recurrence mechanism between
consecutive sequences [24], and numerous minor modifications, such as applying layer
normalization to the inputs instead of the outputs of each sub-layer [85, 86]. Unfortu-
nately, a more comprehensive discussion of those variations is out of the scope of this
paper.
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State-of-the-Art Systems

In the previous chapter, we described the full architecture of the Transformer, which was
originally proposed as an end-to-end system for machine translation. In this section, we
discuss several NLP systems that make use of this architecture. The systems that are
presented are part of our experiments, which will be discussed in Chapter 7. Building
on the methods introduced in the previous chapters, the idea of this chapter is to make
the reader familiar with the most important idiosyncratic features of these systems.

5.1 OpenAI GPT

The Generative Pre-trained Transformer (OpenAI GPT) [85] was the first large-scale
NLP system that combined the Transformer architecture with transfer learning.

Input Each input sequence consists of a span of contiguous text of at most Nctx = 512

tokens, obtained with a BPE tokenizer with a vocabulary size of 40, 478 (478 base
characters and 40, 000 merges). Pre-BPE tokenization is performed with the spaCy1

tokenizer. Each token embedding is summed with a position embedding, dispensing
with the positional encoding of the original Transformer. OpenAI GPT uses no special
tokens during pre-training,2 but additional tokens are initialized during fine-tuning.

Pre-training objective Pre-training is performed with the standard unidirectional
LM objective described in Chapter 3. Because the Transformer is a fixed-length model,

1https://spacy.io/
2
Therefore, the first token of a sequence is not predicted and hence the corresponding term does not

enter the loss.
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Figure 5.1: Fine-tuning GPT on different tasks [85].

only contexts of length  512 tokens are used to minimize the LM loss summed over
the training corpus.3

Architecture Since OpenAI GPT is pre-trained with the LM objective, future tokens
have to be masked, such that the output is not determined by these tokens. Therefore,
OpenAI GPT uses the Transformer decoder, where each layer consists of masked multi-
head self-attention followed by a feed-forward network. The activation function is the
Gaussian Error Linear Unit (GELU) [40]. Radford et al. [85] trained a network with
an embedding dimension of H = 768, L = 12 layers and A = 12 attention heads. As in
the original Transformer, the feed-forward dimension was set to 4H.

Pre-training procedure Radford et al. [85] trained for 100 epochs with a batch size
of 64 on the BooksCorpus [134], which contains approximately 800M words.

Fine-tuning OpenAI GPT was fine-tuned on a variety of different supervised tasks.
Some of these tasks are part of the General Language Understanding Evaluation (GLUE)
benchmark [120], which is discussed in Chapter 6.4. As stated, OpenAI GPT depends on
special tokens that are added to each input sequence during fine-tuning. In particular,

3
Note that the objective given in Eq. (1) by Radford et al. [85] is not correct, because each sequence

is factorized separately. The number of tokens used for the prediction of the next token is therefore

much smaller than the context size, except for the last token of each sequence.
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as shown in Figure 5.1, Radford et al. [85] apply a task-specific transformation to each
input to make the pre-trained model more adaptable to the idiosyncrasies of each task:

• For all tasks, a start token <s> is added to the beginning and an end token <e>

to the end of each input sequence. Due to the autoregressive input factorization,
the contextualized representation of the last token contains information about the
whole sequence. Therefore, Radford et al. [85] use the hidden state of the added
end token to represent each sequence.

• For single-sentence classification tasks, apart from start and end tokens no ad-
ditional tokens are added. The hidden state of the end token is fed through an
additional linear layer during fine-tuning and the output is normalized with the
softmax function.

• For entailment tasks, premise and hypothesis are concatenated and separated with
a delimiter token <$>. The resulting sequence is processed by the pre-trained
Transformer decoder with an additional linear layer that takes as input the embed-
ding of the added end token. The output over the entailment classes is normalized
with the softmax function.

• For similarity tasks, in addition to the separation with the delimiter token, each
sentence pair is duplicated and arranged in reverse order. The pre-trained Trans-
former decoder is then applied separately to each of the resulting two sequences.
This modification is implemented because, unlike in entailment tasks, the order of
sentences is irrelevant in similarity tasks. Finally, the embeddings of the end tokens
of both sequences are added element-wise and fed through a linear output layer. If
the similarity task is formulated as a classification task, a softmax normalization
is applied to the outputs of the linear layer.

• For multiple choice tasks, such as QA and commonsense reasoning, a new input
sequence is created for each possible answer by using the delimiter token to con-
catenate the question and the context this question appears in to the answer. The
resulting input sequences are processed independently by the pre-trained Trans-
former decoder and fed through separate linear output layers. The probabilities
for each answer are then obtained as a softmax score over the outputs.

Note that both the added tokens as well as the weights of the additional linear layer are
randomly initialized for each task. The pre-trained weights together with the additional
linear layer are then updated by minimizing the combined loss over the labeled dataset,
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where the loss function is usually the cross-entropy loss. Radford et al. [85] additionally
add an auxiliary language modeling loss (weighted with a factor �) to this objective.

5.2 BERT

The introduction of BERT [25] marked a major breakthrough in the development of
Transformer-based NLP systems. The main innovation of BERT compared to Ope-
nAI GPT was to replace the unidirectional pre-training objective with a bidirectional
objective.

Input Tokenization of the inputs is performed with the WordPiece tokenizer with a
vocabulary of 30, 522 tokens. Each input example consists of two "sentences", where
sentence refers to an arbitrary span of contiguous text. The combined maximum length
of the sentences is Nctx = 512 tokens. In 50% of the time the two sentences are con-
secutive, while in the other 50% of the time the second sentence is randomly drawn
from the corpus. The first token of every input example is a special [CLS] token. The
contextualized representation corresponding to this symbol is used to represent an input
sequence in classification tasks. In order two differentiate between the two sentences
they are furthermore separated by a [SEP] token. Additionally, as will be discussed be-
low, some input elements of each sequence are randomly replaced with [MASK] tokens.
Each input element is embedded as the sum of a token embedding, a position embedding
and a so-called segment embedding. The segment embedding indicates whether a token
is located in the first or second sentence.

Pre-training objective BERT is pre-trained with the sum of the masked language
modeling (MLM) loss and the next sentence prediction (NSP) loss.

• MLM: BERT applies a modified version of the basic MLM objective described
in Chapter 3 to reduce the mentioned pre-train/fine-tune discrepancy arising in
MLM. Specifically, BERT randomly chooses 15% of all tokens for prediction, but
only replaces these tokens with a [MASK] symbol in 80% of the time. In 10% of
the time the tokens are replaced with a random token and in 10% of the time the
initial token is kept.

• NSP: Devlin et al. [25] added the NSP objective to increase the performance
of BERT in tasks that require an understanding of the relationship between two
sentences, such as entailment or similarity tasks. Given an input, NSP consists
of predicting whether the second sentence follows the first sentence, or whether it
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was randomly drawn from the corpus. The binary output of this task (with labels
IsNext/NotNext) is predicted by feeding the contextualized representation of the
[CLS] token through a linear output layer followed by a softmax normalization.
The normalized outputs are then evaluated against the true labels using the cross-
entropy loss. Note that NSP is an instance of CTL.

Architecture Due to the bidirectional pre-training objective, BERT does not rely on
an attention mask and thus uses the Transformer encoder. The activation function is
again the GELU [40]. Devlin et al. [25] trained two different versions: BERTBASE, with
H = 768, L = 12, A = 12, and BERTLARGE, with H = 1024, L = 24, A = 16. For both
variants, the feed-forward size was set to 4H.

Pre-training procedure Devlin et al. [25] trained for 1M steps, corresponding to
approximately 40 epochs, with a batch size of 256 over a combination of the BooksCorpus
(800M words) [134] and English Wikipedia (2,500M words) [1]. The first 90% of the
steps were performed on short inputs with sequence length 128, while only the last 10%
of the steps consisted of inputs with sequence length 512. Note that Devlin et al. [25]
furthermore in all cases randomly inject short sequences4 with a probability of 10% to
additionally alleviate the pre-train/fine-tune discrepancy, since most sequences during
fine-tuning are rather short. Masking was performed once prior to training, which is
also known as static masking [62]. The corpus was duplicated 10 times, such that each
sequence is processed in different ways when training for multiple epochs. However,
since it was trained for 40 epochs, each sequence was processed with exactly the same
masking pattern four times during training.

Fine-tuning For sequence classification tasks, BERT is fine-tuned by feeding the con-
textualized representation of the [CLS] token through a sequence classifier, consisting
of a linear layer and a softmax normalization. Since BERT is pre-trained with pairs of
sentences that are separated by the [SEP] token, in contrast to GPT, sentence pairs
are directly processed by a single Transformer during fine-tuning. In addition, Devlin
et al. [25] fine-tuned on token-level tasks, in which the hidden states of other tokens of
a sequence are fed though a linear output layer. For instance, to fine-tune BERT on
SQuAD 1.1 [89], Devlin et al. [25] predicted the start and end tokens of an answer. Fur-
thermore, for the multiple choice task SWAG [131], Devlin et al. [25] applied a similar
approach as Radford et al. [85]. That is, a "question" was concatenated to each choice,

4
The length is picked uniformly at random between 1 and the maximum sequence length.
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and the resulting sequences were encoded separately with the pre-trained Transformer.
The contextualized representations for each choice were then converted to scores.

5.3 OpenAI GPT-2

Radford et al. [86] obtain OpenAI GPT-2 by scaling-up OpenAI GPT, making only
minor changes to the original model. OpenAI GPT-2 achieved state-of-the-art results
on several language modeling datasets in a zero-shot setting.

Input Radford et al. [86] introduced a byte-level BPE tokenizer with a vocabulary size
of 50, 257 to tokenize the inputs. The fixed-length context size was increased from 512 to
1024 tokens compared to OpenAI GPT. Furthermore, a single special token was added
to indicate the start and end of each input sequence during pre-training. As in OpenAI
GPT, a position embedding is a added to each token embedding.

Pre-training objective Radford et al. [86] used the standard unidirectional LM ob-
jective. Thus, OpenAI GPT-2 is pre-trained with the same objective as OpenAI GPT.

Architecture Radford et al. [86] scale-up the model size compared to OpenAI GPT
by training four different architectures. The largest of these architectures, which is
used for the final model that is referred to as GPT-2, is a Transformer decoder with an
embedding size of H = 1600, L = 48 layers, A = 25 heads and feed-forward dimension of
Hff = 4H. Minor modifications were made, such as applying layer normalization to the
inputs instead of the outputs of each sub-layer and using a different weight initialization
method.

Pre-training procedure Radford et al. [86] trained with a batch size of 512 for on
WebText [86], which has an approximate size of 40GB.5 Neither the number of training
steps nor the number of epochs is reported.

Fine-tuning OpenAI GPT-2 was not fine-tuned. Instead, several tasks were performed
in a zero-shot setting.

5.4 RoBERTa

RoBERTa [62] is based largely on BERT, but achieves a better performance than BERT
by making several important changes to the original model.

5
The word count is not public.
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Input RoBERTa uses a byte-level BPE tokenizer with a vocabulary consisting of 50, 265
tokens. Liu et al. [62] initially experiment with different input formats. For the final
version they use contiguous sentences of length Nctx = 512. However, if a document
is contains less than 512 tokens, Liu et al. [62] add sentences from the next document
and separate the documents with a special separator token. Each final input sequence
is furthermore enclosed by special start and end tokens. As in BERT, some tokens of
each sequence are randomly replaced with a [MASK] token. Each token embedding is
summed with a positional embedding.

Pre-training objective Liu et al. [62] removed the NSP objective of BERT and
trained only with the MLM objective. The masking procedure itself is equivalent to
the procedure of Devlin et al. [25], although static masking is replaced by a dynamic
approach, as will be described below.

Architecture Liu et al. [62] performed several ablation studies using the BERTBASE

architecture, but the final results were obtained with the BERTLARGE architecture,
which is a Transformer encoder with H = 1024, L = 24, A = 16 and Hff = 4H.

Pre-training procedure The final version of RoBERTa was trained on the combina-
tion of the following corpora: BooksCorpus [134], English Wikipedia [1], CC-News [62],
OpenWebText [32] and Stories [114]. The total number of words is not public, but the
combined size of the dataset is 160GB. For comparison, BERT was trained on a 13GB
dataset. The best performing model was trained for 500, 000 steps with a batch size
of 8, 000. In contrast to Devlin et al. [25], Liu et al. [62] implement dynamic masking,
where a new mask is selected for the input sequences at each step during training.

Fine-tuning Though RoBERTa is not pre-trained with pairs of sentences, fine-tuning
on sentence-pair tasks follows the same approach as in BERT. That is, sentences are
separated by a special token and processed by a single Transformer. For classification
tasks, fine-tuning is achieved by feeding the contextualized representation of the special
start token of a sequence through a linear output layer with softmax. RoBERTa was
also fine-tuned on token-level tasks. For instance, on SQuAD 1.1. Liu et al. [62] applied
the same fine-tuning procedure as Devlin et al. [25]. Moreover, for multiple choice tasks,
such as RACE [54], Liu et al. [62] also encoded concatenated question-answer sequences
separately with the pre-trained Transformer to obtain a softmax score for each answer.
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Benchmarking
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Chapter 6

Background

The summary of the different systems in the previous chapter shows that different sys-
tems are often trained under very diverse conditions. For example, GPT and BERT were
trained for much more steps but with a significantly lower batch size than RoBERTa.
At the same time these systems employ different pre-training objectives. As stated, to
disentangle such factors, in this part we conduct a systematic benchmarking study, in
which we train and evaluate systems with a variety of different configurations.

6.1 Related Work

There exist several recent attempts to conduct such a systematic investigation. One
line of research empirically derives generalization results for large neural NLP systems.
Rosenfeld et al. [92] study how the generalization error of language models depends
on model and dataset size. Regarding model size, they provide an approximation of
the test loss, assuming that a language model is scaled with respect to a predefined
scheme, such as increasing solely the embedding dimension. A related but much more
comprehensive study was conducted recently by Kaplan et al. [47], examining power laws
of the test loss when scaling large neural language models with respect to a broad variety
of different dimensions. These dimensions include architectural hyperparameters, model
size, dataset size, the number of training steps and the batch size. A central question in
the work of Kaplan et al. [47] is how these factors can be combined to attain an optimal
performance given a fixed amount of compute.

Compute efficient training is also investigated by Li et al. [59], recognizing that
an optimal allocation of computational resources is crucial for improving model per-
formance. Considering MLM pre-training, Li et al. [59] examine specifically how the
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number of training steps and the batch size should be chosen in the relation to the
model size.

In a large-scale study, Raffel et al. [88] cover an even broader variety of modeling
scenarios than Kaplan et al. [47], but train a much smaller number of systems for each
scenario. For instance, Raffel et al. [88] include several variants of the Transformer, dif-
ferent pre-training objectives and various fine-tuning strategies in their analysis. Finally,
based on their observations, Raffel et al. [88] also scale-up a system to 11B parameters.

6.2 Objectives of the Study

The overall aim of our study is to evaluate the effect of different modeling choices
in Transformer-based NLP systems on model performance.1 Because an automated
search over the full models is too costly, the idea is to use down-scaled systems, such
that a larger number of systems can be evaluated. Ideally, the insights obtained from
benchmarking such down-scaled versions can then be leveraged to train larger networks.

We categorize the different modeling choices that we consider into three broad cate-
gories, which are outlined in the following. For each category, we examine only a subset
of all possible scenarios, but we attempt to focus on the most important choices that
have to be made when pre-training a Transformer.

6.2.1 Comparison of Pre-Training Tasks

As mentioned in Chapter 3, the choice of the unsupervised pre-training objective is of
central importance. Many different pre-training objectives have been proposed in recent
years. Arguably the most prevalent ones include denoising objectives, such as MLM,
as well as the traditional LM objective. In this study, we concentrate on the following
objectives:

MLM & NSP The combination of MLM and NSP was used as the pre-training objec-
tive of BERT [25]. Devlin et al. [25] evaluated the effect of removing the NSP task, thus
pre-training solely with the MLM task, finding a significant performance decline of the
fine-tuned versions on MNLI and QNLI, both of which are sentence-pair tasks. Devlin
et al. [25] mentioned that exactly the same data was used for pre-training both variants.
However, the input format of the regular version of BERT (MLM & NSP) consists of
segment pairs, either sampled contiguously from the same document (positive examples)

1
Performance can refer to both the validation loss and the performance on downstream tasks in this

work.
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or from different documents (negative examples) with equal probability. If the randomly
generated segment pairs were also used when pre-training without the NSP task, then
the model learned from incorrect data without being able to distinguish the positive
from the negative examples and thus adapt during training. The possibility that Devlin
et al. [25] might have mistakenly used the same input format for both versions was also
mentioned by Liu et al. [62] as an explanation for the observed performance gap.

MLM In RoBERTa, Liu et al. [62] removed the NSP task and pre-trained only with
the MLM task, after showing in an ablation study that pre-training without the NSP
task does not hurt the performance on several downstream tasks. However, Liu et al.
[62] did not report results for QNLI, the downstream task on which Devlin et al. [25]
observed the largest performance gap. Liu et al. [62] did also not state whether original
segments that were replaced with samples were kept and used in other input sequences,
or whether these original segments were discarded. In the latter case, the size of the
dataset is effectively reduced by a significant portion, while the number of epochs is
effectively increased.

LM Although it has been shown that LM is inferior to other unsupervised pre-training
tasks [25], LM is still widely used, for instance in the GPT-n series [11, 85, 86]. We
include LM in our analysis because it has traditionally been one of the most important
training objectives in neural NLP, as outlined in Chapters 3 and 4.

In the remainder of this study, we will label systems pre-trained with MLM & NSP as
BERT-style, systems pre-trained with MLM as RoBERTa-style, and systems pre-trained
with LM as GPT-2-style.2

6.2.2 Comparison of Different Shapes

In some domains, such as CV, it has been observed that the performance of a neural
network depends significantly on the choice of architectural hyperparameters, such as
width or depth [110]. In contrast, Kaplan et al. [47] observed a similar language model-
ing test loss over a wide range of shape parameters, such as depth, width or the number
of attention heads. Similarly, for masked language models, Li et al. [59] found that the
validation loss does not depend strongly on the model shape. This holds true also for

2
We refer to GPT-2-style instead of GPT-style systems, because we use the class GPT2Model from

the Hugging Face transformers library [126]. The main reason for this choice is that we use a byte-level

BPE tokenizer. Furthermore, the class GPT2Model allows for a more flexible modeling than the class

GPTModel [126] does, since several components are fixed in the latter.
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the MNLI validation accuracy of fine-tuned systems.

To investigate the effect of different shapes, we consider the following three architectural
hyperparemters of Transformer-based NLP systems:

Depth In neural networks, depth is given by the number of layers L. It has been stated
that stacking many layers in a Transformer-based system can be somewhat inefficient
and does not always lead to a considerable increase in performance [56].

Width In neural NLP systems, width corresponds to the embedding dimension H.
Increasing the embedding dimension has in general produced slightly better results than
increasing the number of layers in Transformer-based systems [56, 59, 88].

Attention Heads As described in Chapter 4, attention heads are used to discrimi-
nate between different regions of the embedding space. In most applications of the
Transformer, the number of attention heads A is set in fixed relation to the embedding
dimension, such that the latter is 64 times larger than A. It has been reported that the
performance decreases for larger ratios [11, 117].

Note that there exist several other choices, such as the feed-forward dimension Hff , but
examining the entire spectrum of possible shapes is unfortunately out of the scope of
this study.

6.2.3 Effect of Model Size, Training Steps and Batch Size

As stated, several recent studies have investigated the problem of compute efficient
training of Transformer-based systems [47, 59, 88]. The consensus among these studies
is that, under a restricted compute budget, optimal performance is achieved by training
very large models and stopping training well before convergence. Furthermore, addi-
tional compute should rather be used to increase the batch size instead of training for
more steps.

To examine convergence characteristics, we monitor the pre-training validation loss
of several systems and test how this loss responds to different model sizes and shapes.
Additionally, we conduct experiments regarding the effect of the batch size and the
number of training steps. In particular, we evaluate how the training time and the
model performance depend on both factors.
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Figure 6.1: Efficient allocation of compute for Transformer-based LMs according to Kaplan
et al. [47].

6.3 WikiText-103

We pre-train all systems on WikiText-103 [69], which is a large-scale text corpus in-
troduced by Merity et al. [69] with the purpose of training and evaluating language
models on long-range contexts. WikiText-103 has mainly been used as an evaluation
dataset for different systems [24, 86, 105]. A prominent system which was pre-trained
on WikiText-103 is ULMFiT [44].

In the following we provide information regarding content and size of WikiText-103, as
well as describe the pre-processing steps that were undertaken when creating WikiText-
103. Furthermore, we compare WikiText-103 to the datasets on which the original
systems of our down-scaled versions were pre-trained.

Content WikiText-103 is composed of 23, 805 Good and 4, 790 Featured Wikipedia ar-
ticles. Articles from these two categories, classified based on reviews by human editors,
are considered of the highest quality and make up less than 1% of all Wikipedia arti-
cles. Amongst other criteria, the articles are selected with regard to neutrality, factual
accuracy and breadth of coverage.3

Size The training set of WikiText-103 has a total size of 103, 227, 021 words (and other
symbols) contained in 28, 475 articles. The average article thus has a length of 3, 625

3
For details see https://en.wikipedia.org/wiki/Wikipedia:Good_articles.
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Pre-processed Text Original Text

Nebraska Highway 88 (N-88) is a highway in

northwestern Nebraska.

Nebraska Highway 88 ( N @-@ 88 ) is a highway

in northwestern Nebraska .

These numbers may be computed by the re-

currence relation <formula> Eric W. Weisstein

conjectured , and McKay et al . ( 2004 ) proved

, that the same numbers count the ( 0 @,@ 1

) matrices for which all eigenvalues are positive

real numbers .

These numbers may be computed by the re-

currence relation
P

n

k=1(�1)k�1
�
n

k

�
2k(n�k)an�k.

Eric W. Weisstein conjectured, and McKay et

al. (2004) proved, that the same numbers count

the (0,1) matrices for which all eigenvalues are

positive real numbers.

Table 6.1: Original examples from Wikipedia [123, 124] and modified WikiText-103
training data.

words, which allows for learning long-range dependencies [87]. In addition to the training
set, when comparing different pre-trained systems by their validation loss, we make use
of the validation set of WikiText-103. The validation set consists of 60 articles and
217, 646 words. Furthermore, there exists a test set, which contains 60 articles and
245, 569 words. However, we do not make use of the test set. The vocabulary of
the combined train, test and validation sets is made up of 267, 735 unique terms. We
recognize that state-of-the-art NLP systems are usually pre-trained on datasets with
considerably longer contexts and larger sizes. However, due to limited compute power
and because we benchmark down-scaled systems, we chose to pre-train on WikiText-103.

Pre-processing details Merity et al. [69] performed several pre-processing steps, such
as removing sections that are primarily made up of lists, or replacing LATEX code with a
special <formula> symbol. In particular, the text was pre-processed with the tokenizer
from the Moses toolkit [51]. This tokenizer separates punctuation marks from text,
preserving special sequences such as dates or URLs, and performs several normalization
steps [27]. Specifically, hyphenated words are separated with two at signs (e.g., non-

hyphenated ! non @-@ hyphenated ). Merity et al. [69] additionally modified numbers
by inserting at signs before and after punctuation marks (e.g., 1,200 ! 1 @,@ 200 ).
Note that, apart from punctuation mark separation, no tokenization (i.e., in the strict
sense of splitting a text into smaller pieces) was performed. In the version used by Merity
et al. [69], as a final step, rare words were replaced with an <unk> token. However, we
have downloaded the raw version of WikiText-103, which contains all words.4

4
The data was obtained from https://www.salesforce.com/products/einstein/ai-

research/the-wikitext-dependency-language-modeling-dataset/.
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System Corpora Size Word Count

GPT BooksCorpus [134] 4GB 800M

BERT BooksCorpus [134], English Wikipedia [1] 13GB 3,300M

GPT-2 WebText [86] 40GB Not public

RoBERTa BooksCorpus [134], English Wikipedia [1], CC-
News [62], OpenWebText [32], Stories [114]

160GB Not public

Table 6.2: Pre-training corpora used by the original systems of the down-scaled versions.

Comparison with other corpora As mentioned, WikiText-103 is significantly smaller
than most of the pre-training corpora of modern NLP systems. For instance, Devlin
et al. [25] report that BERT was trained on 3, 300M words, which is approximately 32x
the size of WikiText-103. Table 6.2 lists the corpora on which the original systems of
our down-scaled versions were trained.5 Aside from the generally large amounts of data
compared to WikiText-103, it can be observed that the pre-training datasets vary con-
siderably in size across the different systems, which makes a fair comparison difficult. In
contrast, pre-training on the same corpus allows us to systematically evaluate different
components of the down-scaled systems, since we can largely exclude factors such as the
amount of pre-training data as the cause of different performances.

6.4 The GLUE Benchmark

We fine-tune and evaluate our systems on the General Language Understanding Evalu-

ation (GLUE) benchmark [120], which is a collection of natural language understand-
ing tasks introduced with the goal of evaluating NLP systems on a broad spectrum
of tasks and datasets. It is one of the most prominently featured NLP benchmarks
[25, 56, 62, 85, 129] and has in particular been used to evaluate the performance of
BERT, RoBERTa and GPT. Therefore, fine-tuning on the GLUE benchmark may pro-
vide a good indication of the performance of down-scaled version compared to the orig-
inal systems.

The GLUE benchmark consists of nine tasks from different genres accompanied by
datasets of varying size, which encourages sample-efficient multi-task learning. While

5
Sizes and word counts were obtained from the articles describing the respective original systems.
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Table 6.3: Summary of the GLUE tasks [120].

the GLUE benchmark is model-agnostic, due to the diverse spectrum and the inclusion
of data-scarce tasks it is especially useful for evaluating pre-trained systems [120]. In
the following we provide a short description of the different tasks, which were originally
summarized by Wang et al. [120]. If not explicitly mentioned, the evaluation metric is
accuracy. For each task, the corresponding data is split into a training, a test and a
validation set.

CoLA The Corpus of Linguistic Acceptability (CoLA) [121] is a dataset consisting of
example sentences from the linguistics literature, labeled as either grammatically accept-
able or unacceptable, which is known as an acceptability judgment in linguistics.6 CoLA
was introduced to assess the linguistic competence of a system by testing its ability to
identify grammatically acceptable sentences without formal training in grammar. The
input consists of single sentences evaluated by a binary classifier. Performance is usually
measured with the Matthew’s correlation coefficient (MCC) [66]. As described in Chap-
ter 2, this metric is especially suitable for evaluating unbalanced binary classification
tasks.

SST-2 The Stanford Sentiment Treebank (SST-2) [106] is a collection of sentences from
movie reviews, classified into positive and negative sentiment by human annotators.
The task is to predict the sentiment of a given sentence. Note that, as CoLA, SST-2 is
a single-sentence task.

6
In linguistics, an acceptability judgment is a subjective report of a native speaker regarding the

grammatical wellformedness, nativeness, or naturalness of a text [76].
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MRPC The Microsoft Research Paraphrase Corpus (MRPC) [26] consists of sentence
pairs from online news sources. Each pair comes with a binary judgment indicating
whether human raters labeled the two sentences as semantically equivalent. Note that,
since classes are imbalanced (68% positive), in addition to accuracy the F1 score is used
as an evaluation metric.

QQP The Quora Question Pairs (QQP)7 are question pairs obtained from Quora,
which is a question-and-answer website. As in MRPC, the task is to determine whether
a pair of questions have the same meaning. Again, both F1 and accuracy are reported,
since the classes are imbalanced (63% negative). As stated by Wang et al. [120], the
label distribution of the test set differs from the distribution of the training set.

STS-B The Semantic Textual Similarity Benchmark (STS-B) [13] consists of sentence
pairs extracted from news headlines, video and image captions and other sources. In
contrast to the other two similarity tasks, in STS-B sentence pairs are assessed according
to their degree of semantic similarity. Each pair is accompanied by a similarity score
ranging from 1 to 5, assigned by human annotators. Performance is usually measured
by either the Pearson or the Spearman correlation of predicted scores with human
annotations.

MNLI The Multi-Genre Natural Language Inference (MNLI) Corpus [125] is a large-
scale collection of crowd-sourced sentence pairs. For each sentence pair, the task is to
assess whether the second sentence (the hypothesis) is an entailment, a contradiction

or neutral with respect to the first sentence (the premise). The MNLI corpus was
motivated by the lack of a multi-genre NLI corpus. Therefore, premises are drawn from
ten highly diverse sources, such as government reports, travel guides and telephone
conversations. For each premise, human annotators created a hypothesis from each
of the three classes (entailment, contradiction, neutral), i.e., three hypotheses for each
premise, which ensures that the labels are equally distributed. Note that MNLI has two
test and validation sets, respectively: one that matches the genres of the training data
and one that contains data from different genres, allowing for cross-genre generalization
evaluation.

QNLI Question-answering NLI (QNLI) [120] is a modified version of SQuAD 1.1 [89], a
collection of crowd-sourced question-answer pairs. In the original version each question,
written by a human annotator, has an answer which is found in a specific text span of a

7data.quora.com/First-Quora-Dataset-Release-Question-Pairs
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corresponding Wikipedia paragraph. The original task is to predict the text span that
contains the answer. Wang et al. [120] reformulated this task as a binary sentence-pair
classification by construing multiple question-sentence pairs from each paragraph, where
sentences in positive examples contain the correct answer, while conversely sentences in
negative examples do not contain the correct answer.

RTE Recognizing Textual Entailment (RTE) is a collection of multiple smaller datasets
from a series of annual textual entailment challenges: RTE-1 [22], RTE-2 [37], RTE-3
[31] and RTE-5 [9]. The data consists of sentence pairs drawn from news and Wikipedia
articles. The task is to predict whether the second sentence is either entailed or not

entailed in the first. While RTE is similar to MNLI (although MNLI consists of three
classes), the amount of training and test data is much smaller compared to MNLI.

WNLI Winograd NLI (WNLI) [120] is a modified version of the Winograd Schema
Challenge [58]. In the original task, given a statement (extracted from a collection of
fiction books), a system must identify the referent of an ambiguous pronoun from a list of
choices. This task is especially difficult, because it is designed such that the structure of
the sentence does not help to disambiguate the sentence. Wang et al. [120] transformed
the original task into a binary textual entailment task by presenting a hypothesis that
implies that a specific referent from the list of choices is correct. Given the pronoun in
the corresponding premise, the task is to predict whether this implication is correct.
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Experiments

7.1 Definition of the Model Size

We follow Kaplan et al. [47] and use the approximate number of non-embedding param-
eters to define the model size, which we denote as Nmodel. The embedding parameters
consist of all token, position and (if present) segment embeddings. The number of em-
bedding parameters does not depend on the network depth, and when scaling width
and/or depth, it is a sub-leading term of the total number of parameters. Furthermore,
the number of FLOPs related to embedding (and de-embedding) is also sub-leading
term of the total number of FLOPs. Consistent with this is the observation of Kaplan
et al. [47] that discarding the number of embedding parameters when calculating model
size and amount of compute results in significantly cleaner scaling laws. Since the share
of embedding parameters decreases significantly for larger models, similarly to Kaplan
et al. [47] we expect that discarding the number of embedding parameters allows for a
better generalization of our results to large models. Another advantage of defining the
model size as the number of non-embedding parameters is that this number is closely
linked to the number of (non-embedding related) FLOPs. This enables us to design
benchmarking scenarios by training different models of comparable size, which at the
same time require roughly similar amounts of computation.

7.1.1 Number of Non-Embedding Parameters

Omitting biases and other sub-leading terms, the number of non-embedding parameters,
which is our definition of the model size, is given by

Nmodel := 12LH2
, (7.1.1)
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where we have assumed that Hk = Hv = H
A and Hff = 4H. Therefore, per layer there

are approximately 12H2 non-embedding parameters. This number can be derived from
the following three steps performed in each layer of a Transformer:

1. Input projection For each attention head, the queries, keys and values of dimen-
sion H

A are obtained with the three matrices WQ
i , WK

i , and W V
i , which are each of

size H ⇥
H
A . In total, the input projection thus consists of 3 ·A ·

H2

A = 3H2 parameters.

2. Output projection First, note that performing attention on the projected inputs
of dimension H

A involves no additional parameters. The concatenated attention results
are projected back to dimension H with the H ⇥H matrix WO. Therefore, the output
projection involves an additional set of H2 parameters.

3. Feed-forward network The last sub-layer of each layer consists of applying a feed-
forward network to the output projections. There exist H ·4H connections between the
output projections and the neurons of the inner-layer, and another 4H ·H connections
from the inner-layer to the final output neurons. This step hence involves 8H2 param-
eters.

Note that the feed-forward network accounts for the majority of non-embedding param-
eters, followed by the input and output projections, respectively.

7.1.2 Relation to FLOPs

As stated, the number of non-embedding parameters is closely linked to the number of
non-embedding related FLOPs. We start by deriving the number of FLOPs per token
and forward pass for GPT-2-style systems, where sub-leading terms such as biases and
layer normalization are again omitted. The FLOPs for the matrix-vector operations
that are performed in the following steps can be found in Appendix B.1.

1. Input projection The matrix-vector products of each per-layer input with WQ
i ,

WK
i , and W V

i involve approximately 3·2·H ·
H
A FLOPs per attention head. Considering

all attention heads, the input projection thus requires approximately 6H2 FLOPs per
token.

2. Attention The computation of the attention operation can be divided into two
sub-components:

• Computation of the weights: On average, Nctx

2 attention weights have to be
computed per input token, since on average half of the tokens are masked for each
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input token. Computation of a dot-product attention weight requires approxi-
mately 2H

A FLOPs per head. In total, the computation of the attention weights
hence involves approximately NctxH FLOPs per token.

• Computation of the weighted sum: Since only half of the tokens are summed
on average, given the attention weights, calculation of the weighted sum of the
values has an average cost of approximately NctxH FLOPs for each token.

3. Output projection The vector matrix product of the attention outputs with WO

requires approximately 2H2 FLOPs for each token.

4. Feed-forward network The feed-forward network consists of two consecutive ma-
trix multiplications, where each matrix contains 4H2 parameters. Thus, the feed-
forward network requires approximately 2 · 2 · 4H2 = 16H2 FLOPs per token.

The number of FLOPs per token and forward pass in GPT-2-style systems, which we
denote by Cforward, can hence be approximated as

Cforward ⇡ L(6H2 +NctxH +NctxH + 2H2 + 16H2)

= 24LH2 + 2LNctxH

= 2Nmodel + 2LNctxH.

(7.1.2)

BERT-style and RoBERTa-style systems require slightly more FLOPs than GPT-2-
style systems, because these systems have no autoregressive attention mask. Hence, in
both steps of the attention operation above, the computational cost is approximately
twice as much, i.e., 2NctxH in each step. Therefore, BERT-style and RoBERTa-style
systems require approximately 2Nmodel +4LNctxH FLOPs per token and forward pass.
As mentioned by Kaplan et al. [47], if H > Nctx/12, the context-dependent term in
Eq. (7.1.2) only accounts for a relatively small fraction of the compute of GPT-style
systems. In particular, when increasing H, the importance of the context-dependent
term diminishes. For BERT-style and RoBERTa-style systems the context-dependent
term becomes small if H > Nctx/6. Both constraints are satisfied by a large margin
for all our systems, especially since we mainly train on rather short sequences. The
backward pass requires approximately twice as much compute as the forward pass [47],
such that the total amount of non-embedding related compute per token and training
step can be approximated as

C := 6Nmodel. (7.1.3)
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System Tokenizer Partition Number of Tokens
Total Average

BERT-Style Wordpiece (BertTokenizer) Short 110, 888, 186 110.04
Long 43, 274, 856 375.52

RoBERTa-StyleByte-level BPE (RobertaTokenizer) Short 70, 025, 709 110.31
Long 27, 692, 351 457.04

GPT-2-Style Byte-level BPE (GPT2Tokenizer) Short 70, 564, 106 111.16
Long 27, 729, 551 457.65

Table 7.1: Total corpus length and average sequence length of the tokenized inputs.

7.2 Data Preparation and Input Format

We train on the training set of WikiText-103. Each Wikipedia section is a separate
document in our setting. In all cases, we train for the first 90% of the inputs on short
sequences with a maximum length of 128 tokens. For the remaining 10% of inputs,
we train on sequences with a maximum length of 512 tokens. This approach speeds
up training, which is essential in our scenario, and was also implemented by Devlin
et al. [25]. Training on the long sequences is mainly intended for learning the position
embeddings, because some GLUE tasks contain long-range inputs. When inspecting the
pre-training validation loss, we adjust the evaluation sequence lengths to the lengths of
the training sequences, so that the validation data follows the same distribution as the
training data. This causes the validation loss on the long sequences to start at a slightly
higher point than the final validation loss from the short sequences. Further, note that
we lower the batch size by a factor of four when training on the long sequences, because
for the long sequences this is the maximum batch size that fits on a single NVIDIA
16GB V100 GPU.1

Input format The NSP task requires modification of the input data. We therefore
distinguish between two basic input formats: DOC-SENTENCES [62], which is used for
pre-training of RoBERTa-style and GPT-2-style systems, and SEGMENT-PAIR+NSP

[62] when training BERT-style systems.

• DOC-SENTENCES: For RoBERTa-style and GPT-2-style systems, we follow Liu
et al. [62] and use the DOC-SENTENCES input format. That is, we string to-
gether contiguous sentences until we reach the end of a document (in this case,
the resulting input sequence is smaller than the maximum sequence length), or
until we reach the maximum sequence length. In the latter case, the remaining

1
In principle one could, however, perform gradient accumulation over four batches to have the same

batch size on both partitions.
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part of the document is packed into the next input sequence, beginning at the
start of the first successive natural sentence. Each input sequence may contain
sentences from only one document. For RoBERTa-style, following Liu et al. [62],
each sequence is enclosed by special start and end tokens, <s> and </s>, respec-
tively. The token vocabulary of size 30, 000 is constructed with a byte-level BPE
tokenizer, based on the WikiText-103 training set. To make the inputs compati-
ble with the class RobertaModel from the Hugging Face transformers library [126],
we use a RobertaTokenizer from the same library, which we initialize with the
byte-level BPE tokens. For GPT-2-style systems, since we implement the same
fine-tuning approach as Radford et al. [85], start and end tokens are only added
during fine-tuning. Thus, no additional tokens are added to the input sequences
during pre-training. To customize the inputs to the class GPT2Model [126], we ini-
tialize a GPT2Tokenizer [126] with a vocabulary of 30, 000 byte-level BPE tokens
generated from the WikiText-103 training data.

• SEGMENT-PAIR+NSP: For BERT-style, following Devlin et al. [25], each input
sequence consists of two segments, labeled as A and B. Segment A consists of a
randomly chosen number of contiguous natural sentences from one document. In
50%, we fill segment B with contiguous natural sentences from a second document,
which is chosen uniformly at random. In the remaining 50%, we fill the second
segment with the actual natural sentences that follow the sentences from segment
A. If the document contains more sentences, which were not used due to the maxi-
mum sequence length, the same process is reiterated. Furthermore, as Devlin et al.
[25], in 10% we use a shorter sequence length, chosen uniformly at random between
two and the maximum sequence length, in order to alleviate the mismatch of the
input format between pre-training and fine-tuning. Following Devlin et al. [25],
all segments are separated with a special [SEP] token and the first token of each
sequence is a special [CLS] token. The token vocabulary of size 30, 000 is con-
structed by applying WordPiece subword tokenization to the WikiText-103 training
data. Subsequently, a BertTokenizer [126] is initialized with the WordPiece tokens
to make the inputs compatible with the BertModel [126] class.

Masking During pre-training of BERT-style and RoBERTa-style systems, we mask
input sequences as proposed by Devlin et al. [25]. That is, 15% of all tokens are chosen
for prediction, and these tokens are replaced with a [MASK] symbol in 80% of the time.
In the remaining cases, the tokens are either replaced with a random token, or the initial
token is kept, with equal probability. In contrast to Devlin et al. [25], following Liu et al.
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[62] we dynamically mask each input sequence during training, as explained in Chaper
5.

Amount of input data The average and total lengths of the final input sequences
for each pre-training task are summarized in Table 7.1. As can be observed, a large
part of the data is duplicated when preparing the inputs for the NSP task. Note that,
during construction of the NSP inputs, if the second segment of a sequence is replaced
with a random sample, the original content of the document is retained and used in
the next sequence. For the first segment of this sequence, as before, a random number
of contiguous sentences is selected, but this time from the retained content. Then,
with a probability of 50%, the second segment is again a random sample. This process
is reiterated until the complete document is used up. A randomly sampled segment
appears at least twice, one time as a sample and another time in its original location.
This explains the large amount of duplicated data. Adding both partitions, the pre-
training data of RoBERTa-style systems has an approximate size of 64% of the pre-
training data of BERT-style systems. The datasets for GPT-2-style and RoBERTa-style
systems have approximately the same lengths. Note that, in all cases, when preparing
the inputs each document is filled with contiguous natural sentences until either the full
document is used up, or the combined length exceeds the maximum sequence length. In
the latter case, the exceeding tokens are cut off and the next sequence starts with the
first successive natural sentence from the same document. Cutting off the remaining
part of a natural sentence when reaching the maximum sequence length results in a
slight reduction of the dataset.

7.3 Pre-Training Details

Training duration To ensure a fair comparison of the different pre-training objectives,
we pre-train RoBERTa-style and GPT-2-style systems for 10 epochs, and BERT-style
systems for 6 epochs, which in all cases equates to approximately 137, 000 total training
steps combined over both partitions.2 Since the data is duplicated when training with
MLM & NSP, it is natural to simply lower the number of epochs in relation to the
amount of pre-training data. While the amount of pre-training data of RoBERTa-style
and GPT-2-style systems amounts to more than 60% of the data of BERT-style systems,
we found that, on the other hand, the average WordPiece token contains slightly more
information than the average byte-level BPE token.

2
In sections where we do not compare the different objectives the number of epochs may differ.
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Optimization Apart from the experiments in section 7.5.4, we use a batch size of 64
when training on the short sequences and a batch size of 16 for the long sequences.
We optimize all systems with Adam [49] using the following parameters: �1 = 0.9,
�2 = 0.999, ✏ = 1e-6 and L2 weight decay of 0.01. For BERT-style and RoBERTa-
style systems we use a maximum learning rate of 1e-4, and for GPT2-style systems
the maximum learning rate is 2.5e-4. In all cases we use a linear warmup for the first
1000 steps, which corresponds to approximately 1% of the total steps. Furthermore,
for all systems we employ dropout with a rate of 0.1 on all layers. The activation
function of all systems is the GELU [40]. The hyperparameters are in general chosen
as in the original systems, except for RoBERTa-style systems, because RoBERTa was
trained with significantly larger batches, which requires different hyperparameters. For
RoBERTa-style systems we therefore choose the same hyperparameters as for BERT-
style systems.

Implementation We pre-train all systems on a single NVIDIA 16GB V100 GPU,
making use of the Hugging Face transformers library [126]. The same also holds true
for fine-tuning.

7.4 Fine-Tuning Details

We follow Devlin et al. [25] and train for three epochs on all GLUE tasks. We use a batch
size of 16 and a learning rate of 2e-5 for each task. Apart from these hyperparameter
configurations, we apply the same fine-tuning procedures that were used by the original
systems, as described in Chapter 5. For GPT-2-style systems, we implemented the
fine-tuning approach of GPT (because GPT-2 was not fine-tuned).

However, we do make one small modification to the original implementations. In
contrast to BERT-style systems, the pre-training objective of RoBERTa-style and GPT-
2-style systems does not contain a classification task. When performing the NSP task,
in the original BERT the contextualized representation of the CLS token is obtained
by feeding the corresponding final hidden state through a linear layer with dropout
and tanh activation. Subsequently, the contextualized representation is fed through
another linear layer with dropout, which is the output layer mapping the contextualized
representation to the class probabilites. Consequently, when fine-tuning BERT-style
systems on a classification task, there are in fact two linear layers between the final
hidden state and the output classes. However, RoBERTa and GPT in their original
implementation use only one linear layer. In order to be as consistent as possible, in
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contrast, we use two linear output layers for all systems. The first linear layer is followed
by a tanh activation and both layers are implemented with a dropout rate of 0.1.3

7.5 Results

In the following we discuss our results. In section 7.5.1, we start by evaluating how
varying single shape dimensions affects the performance on different GLUE tasks for
the three different pre-training objectives. In this stage we want to investigate whether
the performance gain diminishes after a certain level, compare how the performance
changes when scaling different dimensions, and examine whether models with different
pre-training objectives respond differently to single-dimension scaling. Subsequently, in
section 7.5.2 we change multiple shape dimensions simultaneously to investigate whether
the different dimensions depend on each other. In sections 7.5.3 and 7.5.4 we study how
to train efficiently by varying the model size, the number of training steps and the batch
size. In section 7.5.5 we put together our observations from the previous sections and
scale networks to different sizes.

We will in general evaluate different systems mainly on MNLI, QQP and QNLI,
which are the three largest GLUE tasks, since the results on these tasks are the most
reliable, as will be shown. In particular, we therefore calculate the average score over
the validation set performances of the three tasks, which we denote by GLUE-Large.
For MNLI, we consider only the matched validation set when calculating this score.

7.5.1 Scaling Single Shape Dimensions

In this section, we separately scale the number of layers and the embedding dimension,
while holding all other dimensions constant. We start by analyzing the performance on
the three largest GLUE tasks, which are all sentence-pair tasks. As shown in Figure 7.1,
BERT-style systems perform significantly better than GPT-2-style and RoBERTa-style
systems on the large sentence-pair tasks, contrary to the results of Liu et al. [62] and in
line with the original findings of Devlin et al. [25].

Observation 1. The pre-training objective has a large impact on the performance of a

fine-tuned system. Pre-training with the combination of NSP & MLM achieves the best

results on sentence-pair tasks, while training with the unidirectional LM objective shows

in general the worst performance.

3
For more information regarding this issue see https://discuss.huggingface.co/t/what-is-

the-purpose-of-the-additional-dense-layer-in-classification-heads/526.
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Figure 7.1: Average score on the three largest GLUE tasks, when varying the embedding size
(left plot) vs. when varying the number of layers (right plot).

Furthermore, for BERT-style systems the average performance is a relatively smooth
function of the model size. Scaling up either the number of layers or the embedding
size results in an initial increase in performance, which then saturates at approximately
75% and 72%, respectively. For RoBERTa-style systems, the difference between scaling
the number of layers and increasing the embedding size is much larger. Furthermore,
although the performance seems to saturate at a certain level, the trend is less apparent
than for BERT-style systems.4 For GPT-2-style systems, the average score slightly
increases when scaling the embedding size, but interestingly, stacking more layers shows
no positive effect at all. This suggests that GPT-2-style systems require more pre-
training data compared to BERT-style and RoBERTa-style systems.

Observation 2. In most cases, the performance of a fine-tuned system increases up to

a certain level when scaling either width or depth, but the progression depends strongly

on the pre-training objective.

Next, we consider SST-2, which is a single-sentence task and the fourth largest task
from the GLUE benchmark. In general, in contrast to the results on the sentence-
pair tasks, the performance of the three different model types on SST-2 is much closer
together. This is an indication that the NSP pre-training task does especially help to
learn sentence-pair relationships. However, we observe that shape and model size also
seem to have a rather low impact on the SST-2 validation accuracy, suggesting that this
task generally shows a stable performance across a wide range of systems.

4
Note that the relatively low average score for the 18-layer RoBERTa system, shown in the right

plot of Figure 7.1, is due to a weak performance on the QNLI task (see Table 7.3).
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BERT-Style Validation Set Performance
A H L Nmodel GLUE-Large MNLI-(m/mm) QQP QNLI SST-2 CoLA
2 128 2 393,216 65.4 59.0/60.2 72.3 64.8 78.0 0.0
2 192 2 884,736 67.2 62.1/62.8 74.0 65.4 82.6 0.0
2 288 2 1,990,656 69.3 63.7/65.2 76.0 68.3 82.0 0.0
2 384 2 3,538,944 72.3 65.7/66.6 77.8 73.2 81.1 0.0
2 544 2 7,102,464 72.3 66.8/68.1 78.0 72.0 83.3 5.9

GPT-2-Style Validation Set Performance
A H L Nmodel GLUE-Large MNLI-(m/mm) QQP QNLI SST-2 CoLA
2 128 2 393,216 61.6 56.3/56.2 66.1 62.3 79.8 0.0
2 192 2 884,736 62.9 58.0/58.4 68.7 61.9 79.7 0.0
2 288 2 1,990,656 63.9 58.7/58.7 70.9 62.2 81.7 0.0
2 384 2 3,538,944 64.9 59.8/59.6 71.9 63.0 81.2 0.0
2 544 2 7,102,464 65.0 59.8/59.7 72.4 62.9 82.5 6.9

RoBERTa-Style Validation Set Performance
A H L Nmodel GLUE-Large MNLI-(m/mm) QQP QNLI SST-2 CoLA
2 128 2 393,216 60.1 53.7/55.1 64.7 61.9 79.2 0.0
2 192 2 884,736 60.5 54.4/55.4 65.0 62.0 80.8 0.0
2 288 2 1,990,656 63.0 57.5/58.0 68.1 63.4 80.3 0.0
2 384 2 3,538,944 64.3 59.4/59.8 69.0 64.6 81.9 7.1
2 544 2 7,102,464 66.5 60.2/60.7 72.7 66.5 81.8 17.0

Table 7.2: Performance on GLUE when increasing only the embedding dimension.

CoLA is also a single-sentence task and the fifth largest of the GLUE tasks. Inter-
estingly, for all systems we observe that the validation performance on CoLA is only
increasing when scaling the embedding size. This result suggests that a certain embed-
ding size is necessary to learn linguistic skills. Furthermore, RoBERTa-style systems
perform better than BERT-style and GPT-2-style systems on CoLA.

The results for the remaining four GLUE tasks are listed in Table B.2 and Table
B.1 in the Appendix. The performance on these tasks is very unstable and in many
cases decreases for larger model sizes. In most cases we find that, while the training
loss decreases, the validation loss is not decreasing during fine-tuning. This is especially
true for the three smallest tasks, which all contain less than 4k training examples. We
conclude that, most likely, the amount of pre-training data is not large enough to prevent
overfitting on these small datasets. We therefore do not further analyze the results on
the four smallest GLUE tasks in the following sections. However, the corresponding
results on these tasks can be found in the Appendix.
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BERT-Style Validation Set Performance
A H L Nmodel GLUE-Large MNLI-(m/mm) QQP QNLI SST-2 CoLA
2 128 2 393,216 65.4 59.0/60.2 72.3 64.8 78.0 0.0
2 128 5 983,040 68.9 62.1/64.2 75.0 68.6 79.8 0.0
2 128 10 1,966,080 72.0 65.3/66.9 76.7 74.1 81.8 0.0
2 128 18 3,538,944 74.2 67.2/68.6 77.8 77.7 82.2 0.0
2 128 36 7,077,888 75.9 69.7/70.4 79.7 78.3 83.3 0.0

GPT-2-Style Validation Set Performance
A H L Nmodel GLUE-Large MNLI-(m/mm) QQP QNLI SST-2 CoLA
2 128 2 393,216 61.6 56.3/56.2 66.1 62.3 79.8 0.0
2 128 5 983,040 62.4 57.6/56.1 67.4 62.0 80.5 0.0
2 128 10 1,966,080 62.0 56.9/57.0 67.7 61.5 81.4 0.0
2 128 18 3,538,944 61.8 56.1/56.4 66.8 62.4 80.6 0.0
2 128 36 7,077,888 61.4 56.6/56.7 66.6 61.1 80.7 0.0

RoBERTa-Style Validation Set Performance
A H L Nmodel GLUE-Large MNLI-(m/mm) QQP QNLI SST-2 CoLA
2 128 2 393,216 60.1 53.7/55.1 64.7 61.9 79.2 0.0
2 128 5 983,040 64.8 59.5/60.6 70.4 64.4 80.2 0.0
2 128 10 1,966,080 67.1 60.9/61.9 72.0 68.5 81.7 0.0
2 128 18 3,538,944 67.2 62.9/64.3 74.3 64.3 80.0 0.0
2 128 36 7,077,888 73.3 67.6/69.1 77.3 75.0 82.6 0.0

Table 7.3: Performance on GLUE when increasing only the number of layers.

7.5.2 Scaling Multiple Shape Dimensions

We next examine whether the performance on GLUE can be improved by scaling mul-
tiple dimensions at the same time. First, we increase both H and L and compare the
performances with the results from the previous section. Figure 7.2 shows that for
RoBERTa-style and BERT-style systems, scaling both dimensions improves the perfor-
mance on the three largest GLUE tasks significantly.

Observation 3. Scaling multiple shape dimensions can lead to a better performance

than scaling single dimensions, while keeping the model size constant.

Therefore, we conclude that the shape dimensions are not independent of each other.
For GPT-2-style systems, however, we do not observe a performance increase, as shown
in Table 7.4.

So far, we did not increase the number of attention heads when scaling the embed-
ding dimension. We observed that, without using more attention heads, wide systems
perform worse than deep systems. To evaluate whether a larger number of attention
heads can boost the performance of wide systems, we re-implement our widest systems
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Figure 7.2: Performance on GLUE when increasing single vs. multiple shape dimensions.

with A = 8 attention heads, which corresponds to an attention head dimension of 68.
The results are listed in Table 7.4. It can be observed that the scores on the large
GLUE tasks are improved substantially by using more attention heads. In particular,
when using 8 instead of 2 attention heads the wide BERT-style system (A=8, H=544,
L=2; Table 7.4) performs better than the deep BERT-style system of comparable size
(A=2, H=128, L=36; Table 7.3). Furthermore, as shown in Table in Table 7.4, the wide
BERT-style system also performs close to the more balanced network (A = 2, H = 256,
L = 9).

Observation 4. The performance of a fine-tuned system can be similar over a wide

range of shapes. For BERT-style systems we observe that wide systems perform slightly

better than deep systems, provided that the number of attention heads is adapted to the

embedding dimension.

In contrast to BERT-style systems, deep RoBERTa-style systems still perform better
than wide systems with an increased number of attentions heads. For GPT-2-style
systems, adding more attention heads hardly increases the performance.

7.5.3 Monitoring the Validation Loss

In the previous sections, different models were made comparable by their number of
non-embedding parameters. We have also shown in section that this number is related
to the computational cost when evaluated as the number of FLOPs. Reporting the
computational cost in FLOPs neglects, however, that some operations can be run in
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BERT-Style Validation Set Performance
A H L Nmodel GLUE-Large MNLI-(m/mm) QQP QNLI SST-2 CoLA
2 204 7 3,495,744 77.1 69.7/70.6 80.4 81.2 83.5 0.0
2 256 9 7,0778,88 78.6 72.0/72.7 81.2 82.5 83.4 5.2
8 544 2 7,102,464 78.4 71.7/71.9 81.9 81.6 83.3 3.7

GPT-2-Style Validation Set Performance
A H L Nmodel GLUE-Large MNLI-(m/mm) QQP QNLI SST-2 CoLA
2 204 7 3,495,744 63.6 58.5/58.9 69.9 62.3 81.1 2.2
2 256 9 7,0778,88 63.8 59.1/59.1 69.7 62.6 81.8 5.3
8 544 2 7,102,464 66.0 60.7/60.4 73.8 63.3 82.6 7.9

RoBERTa-Style Validation Set Performance
A H L Nmodel GLUE-Large MNLI-(m/mm) QQP QNLI SST-2 CoLA
2 204 7 3,495,744 72.9 66.0/68.5 76.5 76.2 72.9 10.6
2 256 9 7,0778,88 75.0 68.4/70.9 78.2 78.3 75.0 19.5
8 544 2 7,102,464 70.9 66.1/67.2 77.4 69.1 83.4 14.2

Table 7.4: Performance on GLUE when increasing multiple shape dimensions.

parallel, while others cannot. In order to assess the speed of convergence, following Li
et al. [59], we therefore directly report the wall-clock time in seconds.

Figure 7.3 shows the WikiText-103 validation loss for BERT-Style systems of dif-
ferent shape, when trained on the short sequences.5 The left plot depicts several pre-
training loss curves corresponding to the single-dimension scaling experiments from
section 7.5.1. Interestingly, when comparing the validation loss with the GLUE results
listed in Table 7.2 and Table 7.3, we find that, although increasing the embedding size
(while holding fixed the number of attention heads) results in a lower validation loss
than increasing the number of layers, the GLUE performance increases more in the
latter case. This leads us to the following observation:

Observation 5. The pre-training validation loss is not necessarily a good indicator for

the performance of a fine-tuned system.

Dependent on the downstream task some architectures presumably favor fine-tuning
more than others, which can offset a relatively worse initialization point. This finding
suggests that, although Kaplan et al. [47] observe similar test losses for different shapes,
benchmarking the corresponding fine-tuned versions may present a different picture.

In the left plot of Figure 7.3 we furthermore observe that shape has a significant
effect on the pre-training time. In particular, stacking many layers requires much longer

5
The validation loss of the subsequent training on the long sequences can be found in Appendix B.
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Figure 7.3: Validation loss of BERT-Style systems of different shape. All loss curves are asso-
ciated with the first stage of pre-training, where we train on short sequences with a maximum
length of 128 tokens. The depicted parameter counts refer to the model size Nmodel.

pre-training. It is also evident that increasing the size does not lead to a proportionate
increase in the pre-training time. This holds true especially when scaling multiple
dimensions, as depicted in the right plot of Figure 7.3. When doubling the number of
pre-training parameters, the training time only increases from approximately 11, 800

seconds to approximately 14, 400 seconds. In particular, the loss of the larger system is
smaller at any measured point in time.

Observation 6. Given a fixed time budget, training large systems for a relatively small

number of steps is more efficient than training small systems for a large number of steps.

For instance, the 9-layer system in the right plot of Figure 7.3 achieves a significantly
lower validation loss than the 7-layer system after 10, 000 seconds, which corresponds
to approximately 65, 800 and 79, 800 steps, respectively. Li et al. [59] made a similar
observation by showing that larger Transformer-based systems generally reach a lower
pre-training validation perplexity in shorter time. A point of concern might be that
larger systems overfit more easily during fine-tuning. However, Li et al. [59] showed that,
when stopping models of different size at the same pre-training validation perplexity,
large systems achieve in general comparable downstream task performances to small
systems, which contradicts the argument of overfitting.
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BERT-Style Validation Set Performance

Training Strategy Total Time GLUE-Large MNLI-(m/mm) QQP QNLI SST-2 CoLA

Baseline 21, 358s 78.6 72.0/72.7 81.2 82.5 83.4 5.2
1
2x steps, 1x batch 10, 736s 77.4 70.2/71.2 80.5 81.5 82.5 0.0
1x steps,

1
2x batch 14, 575s 78.2 71.5/71.9 80.9 82.3 83.9 2.5

RoBERTa-Style Validation Set Performance

Training Strategy Total Time GLUE-Large MNLI-(m/mm) QQP QNLI SST-2 CoLA

Baseline 19, 760s 75.0 68.4/70.9 78.2 78.3 75.0 19.5
1
2x steps, 1x batch 9, 906s 73.7 67.0/69.0 76.7 77.4 83.5 �0.03
1x steps,

1
2x batch 13, 101s 75.6 68.2/70.0 79.5 78.9 84.4 11.6

Table 7.5: GLUE results and total pre-training time when varying the batch size vs.
the number of training steps.

7.5.4 Number of Training Steps and Batch Size

The amount of training data that is processed by a model, potentially for a repeated
of number times, can be increased by either training for more steps or by training
with a larger batch size. To evaluate the effect of both variants, we compare how the
performance of a baseline system changes when training for 50% of steps vs. when
training with a reduced batch size of 50%. As the baseline we use our best performing
system thus far (A = 2, H = 256, L = 9). We conduct our experiments for RoBERTa-
style and BERT-style systems.

The results are listed in Table 7.5. In both cases we find that reducing the number
of training steps is more detrimental to the performance than reducing the batch size.
Conversely, it follows that when scaling up a system, a better model performance can be
achieved when doubling the amount of training steps than when doubling the batch size,
which is consistent with the results of Raffel et al. [88]. On the other hand, we observe
that the systems with the smaller batch size were trained for a significantly longer time
than the systems with the reduced number of training steps. Therefore, increasing the
batch size may result in a more favorable training duration than increasing the number
of training steps. This is expected, because in the latter case the number of gradient
updates is larger. In the above experiment, note that when reducing the number of
training steps by 50% the performance on the large GLUE tasks only decreases by
about 1-2%. This is consistent with our findings from the previous section and provides
additional evidence that training for a large number of steps is inefficient.

Observation 7. Doubling the number of training steps marginally increases the down-

stream task performance, whereas doubling the batch size significantly reduces the average
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BERT-Style Validation Loss (WikiText-103) Validation Performance (GLUE)

A H L Nmodel BERT-Style Loss GLUE-Large

2 128 2 393,216 5.66 66.6

2 104 3 389,376 6.34 68.2

2 90 4 388,800 6.41 67.1

2 74 6 394,272 6.47 -

2 64 8 393,216 6.50 -

2 58 10 403,680 6.54 -

2 52 12 389,376 6.58 -

2 48 14 387,072 6.62 -

2 46 16 406,272 6.62 -

Table 7.6: Grid search over nine small BERT-style systems.

training time of an input sequence.

As stated, empirically other studies have also shown that using a larger batch size is
much more efficient than training for more steps [47]. This means that the reduction
of training time by using larger batches dominates the marginal performance gains
resulting from an increased number of training steps.

7.5.5 Systematic Scaling

Based on our observations we now attempt to perform model scaling in a more system-
atic way. In particular, we apply a modified version of the compound scaling method
[110]. This method was used to scale up EfficientNet [110], which achieved a significantly
better accuracy on ImageNet [97] than previous approaches, while using less computa-
tional resources. Due to Observation 4 we do not expect that compound scaling can
provide such large improvements in the case of Transformer-based systems. However,
at the same time we observed that the different shape dimensions are not independent
of each other, which was the main motivation of Tan and Le [110] for using compound
scaling. For scaling we only consider BERT-style systems, because these systems showed
the strongest performance in the previous experiments.

We propose the following compound scaling method for Transformer-based systems:

L = ↵
�

H = �
�

A ⇡ H/64

s.t. ↵�
2
⇡ 2

↵ � 1,� � 1.

(7.5.1)
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BERT-Style Validation Set Performance
A H L Nmodel Total Time Epochs GLUE-Large Final Loss
2 256 9 7,0778,88 21,358s 6 78.56 3.24
7 469 4 10,558,128 20,873s 5 79.41 3.13

Table 7.7: Verification of the scaling method: the proposed modifications lead to a
better GLUE score and a lower validation loss, while requiring less training time.

For suitable values of ↵ and �, a system is scaled up by increasing the compound

coefficient �. Doubling the number of layers L doubles the model size Nmodel, but
doubling the embedding dimension H will increase the model size by four times. Since
the model size also dominates the amount of compute in a Transformer (see section
7.1), the constraint ↵�

2
⇡ 2 thus ensures that when scaling the network from �old to

�new, the amount of compute approximately increases by the factor 2�new��old . The
amount of compute is approximately the same for any number A of attention heads
[117]. Following existing approaches and based on Observation 4, we will therefore set
the number of attention heads to A ⇡ H/64.

Grid search To determine ↵ and �, we follow Tan and Le [110] and perform a grid
search over a set of nine small networks of comparable size. We train these networks
only on the short sequences. Subsequently, we select the three systems with the lowest
validation loss. Because of Observation 5, we then fine-tune these three systems on
GLUE and evaluate the systems based on the average score on the three largest GLUE
tasks. Table 7.6 shows that the best performing system has L = 3 number of layers
and an embedding dimension of H = 104. From the constraint in Eq. (7.5.1) it follows
that the size of this system corresponds to a compound coefficient of � = log2(LH

2) =

14.99 ⇡ 15, such that we obtain ↵ = 3
1
15 ⇡ 1.076, � = 104

1
15 ⇡ 1.363. Note that the

resulting coefficients favor scaling width over depth. In general, we believe that this
is reasonable, especially in light of the much longer training times of deep networks
compared to wide networks (see Figure 7.3). However, we also want to emphasize that
further research is needed, whether these scaling coefficients are suitable for BERT-
style systems. For GPT-2-style systems, Kaplan et al. [47] proposed to scale such that
width/depth remains fixed. Importantly, however, Kaplan et al. [47] did not study
the effect of shape parameters on the GLUE performance, but instead only monitored
the LM test loss. In MT, on the other hand, Transformer-based systems are scaled
preferably by increasing the width [59, 103]. There also exist approaches that focus
on increasing depth, while making modifications to the Transformer to allow for more
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BERT-Style Validation Set Performance
A H L Nmodel GLUE-Large MNLI-(m/mm) QQP QNLI SST-2 CoLA
9 585 5 20,553,500 80.7 75.3/75.5 83.5 83.4 85.1 16.5
13 832 5 41,553,440 81.4 75.6/75.9 84.1 84.4 85.8 21.3

Table 7.8: GLUE results of BERT-style systems, scaled up based on the observations
made in the previous sections.
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Figure 7.4: Validation loss of large scaled-up BERT-style systems when pre-training on the
short sequences (left plot) and for subsequent pre-training on the long sequences (right plot).
The depicted parameter counts refer to the model size Nmodel.

efficient training [2].

Scaling Based on Observation 6, we successively increase the compound coefficient to
scale three systems to larger sizes than all previously trained systems, but train for
less steps. In general, we believe that increasing the model size instead of training for
more steps is much more important than the exact shape resulting from the compound
scaling method. For our smallest system, we train for 5 epochs on both the long and
the short sequences. However, because we observe that the validation loss on the long
sequences is not decreasing after the third epoch, for the two larger systems we then
further reduce the number of epochs on the long sequences to 3 epochs. The GLUE
results of the corresponding systems are listed in Table 7.8. Furthermore, Table 7.7
shows a comparison of the smallest of the three systems to the best performing system
so far. As can be observed, both the performance on the large GLUE tasks and the
final validation loss are improved, while requiring less training time. For the two larger
systems, which are each obtained by approximately doubling the model size, GLUE
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performance and validation loss are further improved, as shown in Table 7.8. Note that
these systems are rather large compared to the relatively small amount of pre-training
data. This demonstrates that neural NLP systems are remarkably robust to overfitting
on the pre-training data, which is in line with the results of Kaplan et al. [47].
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Chapter 8

Discussion

8.1 Limitations

There are several limitations to our benchmarking study, all resulting from the rather
limited amount of computational power used to run our experiments.

In our view, the most severe limitation is the small pre-training dataset. Based on
the observations of Kaplan et al. [47], we would expect systems to train faster if more
training examples were used. Furthermore, the small size of the pre-training dataset
is presumably the main cause of overfitting on smaller tasks. Therefore, for further
experiments, we suggest to expand the amount of pre-training data.

Furthermore, we did not tune any pre-training hyperparameters, but instead adopted
the configurations from the original systems of our down-scaled versions. However, es-
pecially since we used different batch sizes as the original systems, it would be advisable
to adjust the hyperparameters accordingly [59].

Ideally, fine-tuning hyperparameters should also be adapted, which could potentially
alleviate overfitting. For instance, one could perform early stopping with regard to the
validation loss, or modify the learning rates separately for each task. Furthermore, more
reliable results may be achieved on small datasets by fine-tuning multiple times with
different seeds and selecting the average or the best performance of the runs.

8.2 Directions for Further Research

Kaplan et al. [47] studied the effect of the amount of pre-training data, however, not with
regard to downstream task performance. Due to the fact that current NLP systems are
trained on vastly different amounts of pre-training data, we believe that this relationship
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should be explored further.
Although recent attempts have been made to study the relationship between different

unsupervised pre-training objectives and the performance on downstream tasks [3], this
relation is yet not well understood. Empirically, contrastive pre-training objectives, such
as the replaced token detection method from ELECTRA, have shown very promising
results. It would be interesting to extend the study to such contrastive objectives.
Since we have observed that the NSP task can be beneficial for learning sentence-pair
relationships, it would be furthermore interesting to evaluate how the NOP task used
by ALBERT compares.

Finally, by fine-tuning on a larger variety of tasks we could break down in more
detail how different modeling choices affect the performances on different tasks. We
have, for instance, observed that the embedding size is related to the linguistic skills
of a system. We believe that further investigation of such relationships will open many
opportunities for future research.

8.3 Conclusion

In our experiments, BERT-style systems consistently outperform RoBERTa-style and
GPT-2-style systems. We therefore conclude that, at least in case of a relatively small
pre-training dataset, the combination of MLM & NSP is preferable to MLM or LM.

Although our experiments were conducted on a much smaller scale than other stud-
ies, we were able to reproduce many previous findings. For instance, we observed that,
provided multiple dimensions are scaled, systems with very different shapes can achieve
similar performances.

Consistent with the results of Kaplan et al. [47] and Li et al. [59], we found that
it is in general inefficient to train until convergence. While training for more steps can
improve the performance, this increase is often rather marginal. Instead, in accordance
with Kaplan et al. [47], we believe that increasing the batch size is more beneficial than
training for more steps.

More importantly, also consistent with the results of Kaplan et al. [47] and Li et al.
[59], we conclude that the model size is the key factor in Transformer-based systems.
We observed that even for rather large systems, both the final pre-training validation
loss and the GLUE performance benefit from further increasing the size. At the same
time, the total pre-training time increases at a rather low rate. In particular, given a
fixed time budget, large systems reach a lower loss than small systems. Therefore, we
believe that additional compute should be allocated mainly to increase the model size.
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Part I: Appendix

A.1 Subword Tokenization Algorithms

A.1.1 Byte Pair Encoding

Byte pair encoding (BPE) was initially introduced as a data compression algorithm [29]
and established by Sennrich et al. [100] in the context of language modeling.

The version proposed by Sennrich et al. [100] consists of an initial pre-tokenization

step, which involves segmenting the text into a set of distinct words by spaces. Each
word is represented as a tuple of single character symbols. For instance, the word hello
is represented as (h,e,l,l,o). At this stage the so-called base vocabulary is initialized
with all single character symbols contained in the text. In the first iteration, it is then
evaluated which pair of adjacent symbols occurs most often in the text; the symbols of
the most frequent pair are merged and replaced with this new sequence. For instance, if
the most frequent pair is (e, l), these two symbols are replaced with el. In the second
iteration, pairs of the adjacent updated symbols are again ordered by frequency and the
most frequent symbols are replaced by the respective merged sequence. For example, if
the most frequent pair is (el, l), the two symbols are replaced with ell. This greedy
approach is repeated until the total number of iterations reaches a limit, which is a
hyperparameter specified by the user.

Starting from the base vocabulary, at the end of each iteration the most frequent
merged symbol is added to the vocabulary. The resulting vocabulary V thus corresponds
to the union of the base vocabulary and all merged symbols. In practice, instead of ini-
tializing the base vocabulary with all symbols contained in the text, a predefined set of
available symbols is used, since the number of distinct symbols can be very large (there
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is a repertoire of around 140, 000 Unicode characters). For instance, GPT [85] employs
a base vocabulary of 478 characters and performs 40, 000 merge operations, which con-
sequently yields a vocabulary of 40,478 tokens. Since there are many Unicode symbols
which are not in the base vocabulary (and therefore also not in the final vocabulary),
these symbols and all combinations thereof cannot be encoded. For this reason there is
a special [UNK] token contained in the vocabulary; any single symbol that is unknown
is encoded with this token.

Note that when a new text is encoded with the generated subword vocabulary V ,
there often exist different possibilities to break a word into subwords. The BPE algo-
rithm therefore stores the order in which the vocabulary was generated. A new text is
then encoded by applying these steps in the exact same order.

Furthermore, note that there exist many different possibilities to segment words prior
to performing the merge operations. For instance, it seems more plausible to split (d, o,
n, ’, t) into (d, o) and (n, ’, t). Such segmentation criteria are in practice implemented
by using a rule-based pre-tokenization method. Moreover, in case of a language without
spaces between words, word segmentation at the start of the algorithm is infeasible.
However, in principle BPE can also be applied without segmenting the text into words
in the beginning. In particular, WordPiece [99], which we discuss next, is typically
regarded as a variant of BPE and was initially developed with the specific purpose of
segmenting Asian texts without spaces into subwords.

A.1.2 WordPiece

WordPiece [99] is a greedy approach that is similar to the original BPE algorithm, with
the difference that instead of merging the most frequent pairs, symbols are merged based
on the likelihood within a probabilistic model. For instance, assume that at the start
of an iteration the two symbols (e, l) have not been merged yet. The probabilistic
model then assigns a likelihood to this current state. Subsequently, the WordPiece
algorithm computes the increase in the likelihood for all possible merges and merges the
two symbols that result in the strongest increase. Thus, in contrast to the original BPE
algorithm, at each step a "lookahead" is used, taking into account what consequences
a merge has. Schuster and Nakajima [99] state that WordPiece is based on a LM
likelihood, estimated with 3 to 5-grams with Katz back-off [48].

BERT [25] uses a variant of WordPiece to encode its inputs. In this variant, all
generated subwords start with two hash signs, except for the first subword in a word.
For instance, a possible tokenization of the word embedding could be (em, ##bed,
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##ding). In contrast, (bed) could be a possible tokenization of the word bed (i.e.,
in this case without hash signs). This approach adds an additional granularity to the
subword vocabulary, as it allows for differentiating between different meanings of a
subword depdendent on its position in a word. Furthermore, BERT introduces two
special tokens, [CLS] and [SEP], which are discussed in Chapter 5.

A.1.3 Byte-level BPE

Although the original BPE data compression algorithm [29] operates on bytes (hence
the name byte pair encoding), both BPE in the context of language modeling as well
as WordPiece use a base vocabulary comprised of Unicode characters. As mentioned,
there exist around 140, 000 Unicode characters. In order to keep the size of the base
vocabulary small, BPE and WordPiece use a language specific set of the most important
characters, e.g., 400 English characters in case of GPT. However, as described, this
approach induces [UNK] tokens when performing a task on new text data.

Instead of using Unicode characters, Radford et al. [86] introduced a new version
of BPE that operates directly on bytes, called Byte-level BPE, to encode the inputs of
GPT-2. The base vocabulary of Byte-level BPE consequently consists of all 28 = 256

bytes. Apart from using bytes instead of Unicode characters, Byte-level BPE is identical
to the BPE algorithm proposed by Sennrich et al. [100]. Because any Unicode symbol
can be represented using (at most four) UTF-8-byte units, there are no more [UNK]

tokens. Furthermore, due to its universal base vocabulary, byte-level BPE is language
agnostic.
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Part II: Appendix

B.1 Floating Point Operations

A FLOP is assumed to be either a multiplication or a summation.

Scalar-vector multiplication For a vector b 2 RH , the scalar-vector multiplication
↵b requires H FLOPs.

Dot product The dot product aTb of two vectors a,b 2 RH consists of 2H � 1 ⇡ 2H

FLOPs, since it requires H multiplications and H � 1 summations.

Weighted sum The weighted sum
PN

i=1 ↵ibi of N vectors bi 2 RH consists of N

scalar-vector multiplications and (N � 1)H summations. Hence the computational cost
amounts to 2HN �H ⇡ 2HN FLOPs.

Matrix-vector product The computation of a matrix-vector product Ab, A 2 RH1⇥H2 ,
b 2 RH2 , consists of H1 inner products and therefore requires 2H1H2 � H1 ⇡ 2H1H2

FLOPs.

B.2 Results

B.2.1 Scaling Single Shape Dimensions
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BERT-Style Validation Set Performance

A H L Nmodel STS-B MRPC RTE WNLI

2 128 2 393,216 35.6 82.1 50.9 59.2

2 192 2 884,736 44.4 81.3 57.0 54.9

2 288 2 1,990,656 59.7 81.3 54.5 40.8

2 384 2 3,538,944 65.5 81.6 59.2 45.1

2 544 2 7,102,464 64.2 81.9 54.5 38.0

GPT-2-Style Validation Set Performance

A H L Nmodel STS-B MRPC RTE WNLI

2 128 2 393,216 3.4 82.1 57.0 46.5

2 192 2 884,736 10.4 80.1 49.1 43.7

2 288 2 1,990,656 17.4 78.7 49.8 39.4

2 384 2 3,538,944 19.8 79.7 49.5 45.1

2 544 2 7,102,464 24.9 77.1 53.1 26.8

RoBERTa-Style Validation Set Performance

A H L Nmodel STS-B MRPC RTE WNLI

2 128 2 393,216 -6.0 81.2 57.4 54.9

2 192 2 884,736 12.2 81.7 52.7 45.1

2 288 2 1,990,656 13.2 81.9 53.4 42.3

2 384 2 3,538,944 14.8 80.0 51.3 38.0

2 544 2 7,102,464 17.2 81.0 53.1 39.4

Table B.1: Performance on GLUE (small tasks) when increasing only the embedding
dimension.

BERT-Style Validation Set Performance

A H L Nmodel STS-B MRPC RTE WNLI

2 128 2 393,216 35.6 82.1 50.9 59.2

2 128 5 983,040 41.1 81.4 57.0 52.1

2 128 10 1,966,080 3.1 81.7 60.3 46.5

2 128 18 3,538,944 12.0 80.7 58.5 46.5

2 128 36 7,077,888 60.5 81.2 61.4 56.3

GPT-2-Style Validation Set Performance

A H L Nmodel STS-B MRPC RTE WNLI

2 128 2 393,216 3.4 82.1 57.0 46.5

2 128 5 983,040 8.3 80.1 54.2 49.3

2 128 10 1,966,080 7.8 78.8 51.6 52.1

2 128 18 3,538,944 9.1 79.0 49.8 56.3

2 128 36 7,077,888 6.8 79.4 53.1 56.3

RoBERTa-Style Validation Set Performance

A H L Nmodel STS-B MRPC RTE WNLI

2 128 2 393,216 -6.0 81.2 57.4 54.9

2 128 5 983,040 4.2 81.4 48.4 54.9

2 128 10 1,966,080 4.4 80.1 59.5 52.1

2 128 18 3,538,944 7.1 81.4 50.2 50.7

2 128 36 7,077,888 9.8 81.1 54.2 50.7

Table B.2: Performance on GLUE (small tasks) when increasing only the number of
layers.
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B.2.2 Scaling Multiple Shape Dimensions

BERT-Style Validation Set Performance

A H L STS-B MRPC RTE WNLI

2 204 7 64.5 80.7 57.4 54.9

2 256 9 77.3 81.4 58.8 42.3

8 544 2 79.0 82.2 61.7 29.6

GPT-2-Style Validation Set Performance

A H L STS-B MRPC RTE WNLI

2 204 7 14.8 78.4 49.5 40.8

2 256 9 16.6 78.4 50.2 42.3

8 544 2 23.7 77.2 53.8 33.8

RoBERTa-Style Validation Set Performance

A H L STS-B MRPC RTE WNLI

2 204 7 18.0 80.4 51.6 49.3

2 256 9 23.1 81.0 50.2 49.3

8 544 2 23.5 82.2 52.0 36.6

Table B.3: Performance on GLUE (small tasks) when increasing multiple shape dimen-
sions.

B.2.3 Monitoring the Validation Loss
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Figure B.1: Validation loss of BERT-Style systems of different shape. All loss curves are
associated with the second stage of pre-training, where we train on long sequences with
a maximum length of 512 tokens. The depicted parameter counts refer to the model size
Nmodel.

B.2.4 Number of Training Steps and Batch Size
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BERT-Style Validation Set Performance

Training Strategy Total Time STS-B MRPC RTE WNLI

Baseline 21, 358s 77.3 81.4 58.8 42.3
1
2x steps, 1x batch 10, 736s 74.1 81.7 60.3 45.1

1x steps,
1
2x batch 14, 575s 76.2 83.0 56.3 50.7

RoBERTa-Style Validation Set Performance

Training Strategy Total Time STS-B MRPC RTE WNLI

Baseline 19, 760s 23.1 81.0 50.2 49.3
1
2x steps, 1x batch 9, 906s 15.4 80.0 47.3 42.2

1x steps,
1
2x batch 13, 101s 30.5 80.6 51.6 39.4

Table B.4: GLUE results (small tasks) and total pre-training time when varying the
batch size vs. the number of training steps.

B.2.5 Systematic Scaling

BERT Validation Set Performance

A H L STS-B MRPC RTE WNLI

7 469 4 78.6 81.8 60.3 36.6

9 585 5 80.9 83.4 61.4 36.6

13 832 5 81.8 82.8 57.8 25.4

Table B.5: GLUE results (small tasks) of BERT-style systems, scaled up based on the
observations made in the previous sections.
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