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Abstract

The aim of this work is the presentation and implementation of a selection of principles and
criteria of decision theory in the statistical programming language R. The selection contains
the most common criteria as well as some criteria introduced by the chair for “Foundations
of Statistics and Their Applications”. Theoretical aspects and background information on the
criteria is included, as well as explanations for each of the their implementations.

Most of the algorithms used did already exist, still this thesis contains suggestions of new
approaches to compute some of the criteria. The chosen algorithms will be critically evaluated
and compared to possible alternatives in terms of running time. Moreover the functions and their
input structure have been defined in a way which should enable the decision maker to insert her
information about the acts, states and the used utility or loss function in a straight-forward and
convenient way.

Many approaches in this thesis are based on the idea of linear programming. The algorithms
for solving these kind of problems are not part of this thesis, since one can rely on already
existing linear-programming-packages like rcdd and lpSolve. For the manipulation of the data
and stylistical aspects of the code the author made use of the functionality of the tidyverse
package. The checks of input validity have been partially done with the package checkmate.
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Introduction

Decision theory is the scientific theory of rational decision making under uncertainty. Some
people see it as a part of statistics, while contrarily other opinions state that statistics is in fact
part of decision theory. Independently from the specific point of view, decision theory offers
the possibility to model an agents preferences about a specific decision making problem in a
very simple and yet also very effective way. In theory there exists a lot of concepts of different
principles and criteria which could be applied at decision making problems in order to detect
one or more optimal decisions with respect to the chosen criteria/principles. However, there is
no widely used package in the statistical programming-language R for decision making under
uncertainty. That’s why this work aims to provide a tool-kit of solutions for different kinds of
these problems.

In chapter 1 there will be a short introduction into finite decision theory and its basic un-
derlying assumptions. In chapter 2 there will be a brief explanation of the concept of imprecise
probabilities and how it can be utilized for decision theory. Chapter 3 is dedicated to present
the so-called Dominance principle and the algorithms which were chosen for its implementation
in this work. Chapter 4 introduces the other different decision criteria and the corresponding
algorithms which have been implemented as R functions. Chapter 5 closes this thesis, by sum-
marizing the outcome of the work and also giving some perspective for further improvements of
the implementation.
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1 Finite decision theory

This section aims to provide a short introduction to finite decision theory. The classical model is
to express the decision makers preferences with a cardinal utility function, like explained in 1.1.
A more flexible concept for modelling, which doesn’t require a cardinal utility, is the preference
system in 1.2.

1.1 The basic model

A problem of finite decision theory is characterized by a finite set of possible acts A ={a1 , . . . , an}
out of which one could be chosen by a decision maker and a finite set of possible states of nature
Θ = {θ1, . . . , θm} out of which one will actually be the true state of nature. It is assumed that the
utility of every pair (a, θ) ∈ A×Θ → R can be described by a known real-valued cardinal utility
function u : A×Θ → R. Instead of using an utility function one could also use a loss function,
then the notation changes from u to l. For easier readability of this thesis, loss functions are not
considered, since a loss function can also be described as a negative utility function anyway.

θ1 · · · θm

a1 u (a1, θ1) · · · u (a1, θm)
...

...
. . .

...
an u (an, θ1) · · · u (an, θm)

Tab. 1: The classic structure of an utility table

In some situations it may make sense to consider randomized acts. These acts assign a certain
probability λi to each pure act ai, whereas it must hold that

∑n
i=1 λi = 1. The decision for a

randomized act can be interpreted as leaving the final decision to random experiment with certain
probabilities for each pure act[10, p. 2]. The resulting utility of randomized act ar = (λ1, . . . , λn)
is basically a linear combination of the utilities of the pure acts for which ar has λ-values greater
than 0:

u (ar, θj) =
n∑
i=1

λri · u (ai, θj) ∀j ∈ {1, . . . ,m}

Pure acts can also be seen as a special case of randomized acts, where for one ĩ it holds that
λĩ= 1, while λi = 0 ∀i 6= ĩ.

In order to find out which act should be prefered the decison maker can make use of decision
principles like the Dominance principle (see chapter 3) and/or decision criteria like mentioned in
chapter 4.

1.2 Preference Systems

In specific situations the decision maker might not be able to express her “strength of preference”
in a cardinal utility or loss function, but could still be able to put the consequences of each
action-state-interaction into a complete total order. In other cases there might be a group of
decision makers with different cardinal utility values but on the other hand they agree on the
order of these values. For both cases preference systems offer a suitable solution.

1.2.1 Preference Systems - Defintion

For a non-empty set of acts A and a non-empty set of states Θ one can express ordinal relation-
ships between the act-state-interactions u (ai, θa) , i ∈ {1, . . . , n} , a ∈ {1, . . . ,m} through some
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relations R1 and R2 that are reflexive and transitive. Denote u (ai, θa) as ui,a ∀i ∈ {1, . . . , n} , a ∈
{1, . . . ,m}, then it holds that (ui,a, uj,b) ∈ R1 if and only if ui,a is preferable compared to uj,b.

If it holds that (ui,a, uj,b) ∈ R1 and at the same time (uj,b, ui,a) ∈ R1 then ui,a and uj,b are
said to be indifferent with respect to R1. One can split R1 into its strict part and its indifferent
part, which are denoted by PR1 for the strict part, respectively by IR1 for its indifferent part. If
neither (ui,a, uj,b) ∈ R1 nor (uj,b, ui,a) ∈ R1 then ui,a and uj,b are said to be incomparable with
respect to R1.

If one wants to provide further information about the strength of certain preferences (elements
in R1), one can make use of the relation R2. It holds that ((ui,a, uj,b) , (uk,c, ul,d)) ∈ R2 if and
only if exchanging uj,b through ui,a is preferable to exchanging ul,d through uk,c. For this relation
there can be a seperation of its strict part and indifferent part too, analogous to the definitions
for R1. The resulting triple P = [A×Θ,R1, R2] is called a preference system on A×Θ.

1.2.2 (Delta-)Consistency

Let P = [A×Θ,R1 ,R2 ] be a preference system on A×Θ and let a, b, c, d ∈ A × Θ. Note
that compared to sec. 1.2 there is a slight change in notation, since u is used for the actual
(unknown) utility function in this section. Then P is said to be consistent if there exists a
function u : A×Θ → [0, 1] such that for all a, b, c, d the following two properties hold[9, p. 7]:

• If (a, b) ∈ R1, then u (a) ≥ u (b) (with = instead of ≥ if (a, b) ∈ IR1)

• If ((a, b) , (c, d)) ∈ R2, then u (a)−u (b) ≥ u (c)−u (d) (with = instead of≥ if ((a, b) , (c, d)) ∈
IR2)

Every such function u is then said to represent the preference system P. The set of all rep-
resentations u of P is denoted by UP . To set the scale of the used utility function to [0, 1],
one additionally requires that infa∈A×Θ u (a) = 0 and supa∈A×Θ u (a) = 1. The set of all u also
satisfying this is denoted by NP .

In order to check whether a preference system P is consistent or not one can use the linear
optimization problem in [9, p. 8]. If and only if the optimal outcome is strictly greater than 0,
then P is consistent. In addition to that for each value 0 ≤ δ ≤ ε (with ε denoting the optimal
outcome) P is also called δ-consistent.
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2 Imprecise probabilities in the context of decision theory

The most common understanding of probabilities is the classical probability, where for each
event A there will be single probability P (A) assigned. However for many applications having
a distribution which assigns a precise but also reliable probability to each possible event is kind
of unrealistic. Another problem is that classical probability doesn’t allow to distinguish between
known symmetry of events and unknown asymmetry, means that whether one knows about each
state of nature to be equally likely or one just doesn’t have any evidence for one state to be more
likely than another will both lead to the usage of an uniform distribution over the set of possible
states. A motivation from decision theory itself is the Ellsberg-Paradoxon, which points out that
with restriction to precise probabilistic information it is quite easy to construct a situation where
the decision-maker is very likely to decide in an intuitive but irrational way[6, sec. 2.1].

For these reasons a more flexible theory of uncertainty has been developed - the so-called
imprecise probabilities. A mathematically very precise explanation from the basic underlying
concepts of Desirability and Lower previsions until the application in decision theory can be
found in [4]. For a more philosophical point of view one can take a look at [6]. For this
thesis it is totally sufficient to give a more intuitive but less general understanding of Imprecise
probabilities. The main focus of the application lies in the usage of interval probabilities as
proposed from Weichselberger[20].

2.1 Different types of probabilites

Interval probabilities are defined by assigning a lower probability L (.) : A →[0; 1],A → L (A)
and upper probabilitiy U (.) : A → [0; 1],A→ U (A) to each event A ∈ A, where A is a sigma
algebra over a sampling space Ω with |Ω| ≥ 2. This results in an interval of possible probabilities
[L (A) ;U (A)]⊆ [0; 1]. In that sense a classic probability is a special case for which it holds that
L (A) = U (A). On the other hand if one has no information about any of the events’ probabilities,
to all of them the probability interval [0; 1] will be assigned. Weichselberger axiomatizizes this
concept by some requirements on the setM[2, p. 19]:

M = {p (.) | L (A) ≤ p (A) ≤ U (A) ,∀A ∈ A}

This set of probabilities can have different grades of quality:

1. IfM is empty L (A) and U (A) contradict each other, which means that this may not be
interpreted and used as a generalized probability.

2. IfM is not empty, one speaks of interval probability in the narrow sense -M is then called
the structure of the interval probability. A more general term for M, which is not only
used for interval probabilities but all types of probability sets is credal set [15]. One can
distinguish between two types of relation between the boundaries of the interval and its
structure:

(a) if L (.)and U (.) are allowed to be “too wide” - meaning that for all events the actual
structure lies definitely in the resulting interval but it could be too conservative for
some of the events. This case is also called R-probability.

(b) if L (.)and U (.) are exactly the actual boundaries of the structure, this is the ideal
case of a generalized probability, which is also called F-probability.

K-probability
Let (Ω,A) be a measure space. A function p (.) over A is called K-probability if it holds that:

• p (.) : A → [0; 1] , A→ p (A)
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• p (Ω) = 1

• For all sequences (Ai)i∈N of pairwise disjointAi ∈ A it holds that: p (
⋃∞
i=1Ai) =

∑∞
i=1 p (Ai)

(σ- additivity)

...or namely the axioms of Kolmogorow. These axioms may be one of the most important
contributions to statistics and probability theory - especially because they offer a definition for
a classical probability without any attempt in giving an idiological interpretation of its meaning.

Note that K-probabilities will often be called “classical” probabilities and that Weichselberger
also refers to them as K-function.

R-probability
Let (Ω,A) be a measure space and let Z0 := {[L;U ] | 0 ≤ L ≤ U ≤ 1} be the set of all closed

intervals within [0; 1]. A function P (.) over A is called R-probability if it holds that:

• P (.) : A → Z0,A→ P (A) = [L (A) ;U (A)]

• The setM := {p (.) | ∀A ∈ A : L (A) ≤ p (A) ≤ U (A)} is not empty.

in that case R = (Ω;A;L (.) ,U (.)) is called R-probability-field and the set M the structure of
R.

Weichselberger additionally distinguishes between partially determined and totally deter-
mined R-probabilities[20, p. 13]. The difference is that for totally determined R-probabilities
the lower and upper boundary for every A ∈ A are specified, while for partially determined R-
probabilities there is a subset AL ⊆ A for which L (A) is defined for every A ∈ AL and another
subset AU ⊆ A for which U (A) is defined for every A ∈ AU .

F-probability
A totally determined R-probability P (.) over A with structureM is called totally determined

F-probability, if the following conditions are fulfilled:

• infp(.)∈M p (A) = L (A) ∀A ∈ A

• supp(.)∈M p (A) = U (A) ∀A ∈ A

The triple F = (Ω;A;L (.)) is called F-probabiliy-field. Note that it is not necessary to include
U (.) in F since it must hold that:

U (A) = 1− L (¬A)∀A ∈ A

Also for F-probabilities Weichselberger made a more detailed distinction between the par-
tially determined and totally determined type. Instead of fulfilling the just mentioned conditions
a partially determined R-probability over A is called partially determined F-probability if it
holds that[20, p. 354]:

1− L (¬A) = U (A)∀A ∈ AU

A totally determined R-probability, which is not a totally determined F-probability is also
called redundant R-probability[20, p. 147]. In that case one can generate the corresponding
F-probability-field by applying the linear programming problem of [2, p. 42]. To deal with
R-probabilities this way is seen as a rigorous point of view by Weichselberger[20, p. 329]. The
counterpart is the conservative point of view as proposed in [20, sec 2.8]. If one takes this
perspective, the R-probability-intervals will be extended instead of shortened to generate a F-
probability.
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C-probability
Let (Ω,A) be a measure space and P (.) be a F-probability: P : A → Z0 ,A→ [L (A) ;U (A)].

• If L (.) is two-monotonous, which means:
L (A ∪B) + L (A ∩B) ≥ L (A) + L (B) ∀A,B ∈ A,
then P (.) is also called C-probability.

• If L (.) is total-monotonous, which means
L (
⋃n
i=1Ai) ≥

∑
∅6=I⊆{1,...,n} (−1)|I|+1 L

(⋂
i∈I Ai

)
,

then P (.)is called total-monotonous C-probability.

The corresponding F-probability-field C = (Ω;A;L (.)) is then called C-probabiliy-field, respec-
tively total-monotonous C-probability-field.

In terms of decison theory, C-probability is always present when there are only lower and
upper boundaries for the probability of each state of nature defined (assuming the resulting set
M is not empty). As soon as one adds ordinal relationships between the states probabilities like
p (A) ≥ p (B) or requirements concerning the union of two or more states like p (A)∪ p (B) ≤ c |
c ∈ R one can easily construct situations where the necessary conditions for C-probabilities are
violated (see for example [2, p. 55,56]).

Relationships between types of probabilities
The relationships between the different types of probabilities is given by the following impli-

cation chain:

K-probability⇒ total-monotonous C-probability⇒ C-probability⇒F-probability⇒R-probability

However note that this implication does not hold for the opposite direction. The only excep-
tion is the possibility to generate a F-probability-field from a R-probability-field like previously
mentioned.

2.2 Representation of the probability structure as a set of extreme points

This section will build the bridge between the underlying probability type and computational
aspects of a decision making problem. First let Ω = {ω1,...,ωq} be a finite sampling space with
2 ≤| Ω |= q <∞. Let A be a sigma algebra over Ω. Since the structureM of any F-proability
P (.) over A represents a finite set of restrictions which can be also described as a finite set of
linear constraints,M is also a convex polyhedron in Rq . In addition to that every K-probability
π ∈ M is a point in Rq . Some of these points, namely the set of extreme points E (M) can
represent such a convex polyhedron without any loss of information. This set can be computed
by solving a specific linear programming problem according to Kofler[13] (citation adopted from
[3, ch. 3, p. 349]).

The implementation has been done by utilizing the R-package rcdd [7] by transforming the
probability boundaries and ordinal relationships of the states of nature to linear programming
constraints. However the explanation and evaluation of the specific algorithm for achieving this
is not part of this thesis. For the further part of this work one only has to know that the running
time of that algorithm is mainly dependent on the actual number of those extreme points[20, p.
470].
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3 The Dominance Principle

Probably one of the most intuitive principles in decision theory is the Dominance Principle. In
this chapter there will be a short formal defintion of the principle and some information on its
potential power as a pre-selection tool for different decision criteria. Afterwards there will be an
explanation of how the principle was implemented in this work.

3.1 Dominance Principle - Definition

One compares any act ai ∈ A to any other act aj|j 6=i ∈ A in respect to every state of the initial
utility table. If there is a aj for which holds that u (aj , θk) ≥ u (ai, θk)∀k and there is at least one
k̃ for which holds that u

(
aj , θk̃

)
> u

(
ai, θk̃

)
then ai is called strictly dominated by aj (denoted

by aj � ai). In other words this means that there is no state in the set of possible states Θ for
which ai leads to a better outcome than aj , but there is at least one state for which the opposite
holds. Of course this means that when comparing act ai to aj that it is rational to prefer aj . If
one makes a comparison between every pair of acts in A and drops every strictly dominated act,
one will receive a new set of actions Ã where no act is strictly dominated by another. This set
is also called the set of admissible acts.

For most of the criteria in this thesis the non-admissible acts cannot be optimal, and even
if they are: according to dominance principle there would still be at least one better act to
choose. However one cannot simply use Ã instead of A in any case since the exclusion of certain
acts may change the criteria values of the other acts e.g. for Joint Statistical Preference (see
Chapter 4.2.3). In situations like this one has to individually decide wheter it makes more
sense to include or exclude the non-admissible acts. In other situations excluding every strictly
dominated act will also declare in fact optimal acts as non-optimal (e.g. for the second method
to computeM- maximal acts). Therefore another version, the strong dominance is required. An
act ai is said to be strongly dominated by another act aj (denoted by aj �� ai) if it holds that
u (aj , θk) > u (ai, θk) ∀k.

3.2 Dominance Principle - Implementation

The most-straightforward approach is to simply compare every act in A to any other by suc-
cessively comparing the utility value of those two acts for every state in Θ. Whenever an act
is proven to be dominated, it can be deleted from the utility table (note that this is possible
because both relations � and �� are transitive). However this way of comparing two acts will
have the worst possible running time when either one of the acts strictly dominates the other or
when both acts are equal on all possible states. Another more global problem of this method is
the influence of the order of acts. Assume there is in fact an act which strictly dominates all (or
at least a very high number of) acts but it is the last one of the utility table. In addition to that
assume that no other act dominates any other act. Then one could save a lot of running time
if the algorithm would start comparing acts from the lowest row in the utility table instead of
starting at the beginning, since the other acts would get removed from the utility table before
they could be compared to any other act. However this choice is not trivial, since an utility table
does ussually not come in a specific order. Of course this effect will hardly ever be that strong
in practice, still there is a high potential to save running time.

Algorithm 1 deals with both of the previously mentioned problems by pre-ordering the acts
of A in an advantageous way for detecting strict dominance. One simply calculates sums for
every act (assume acts to be represented by rows) of the utility table. It is trivial that no act
can be strictly dominated by another act with a lower row sum in case of utility (respectively
by an act with a higher row sum for loss). This means that if the row sum of ai is greater than
that one of aj one only needs to check wheter the utility of aj exceeds that of ai in any state
or not. However this will lead to the exclusion of aj if aj and ai are equal in every possible
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state. If one wants to avoid that, there must also be a check if there is a state θk|k∈{1,...,m} where
u (ai, θk) > u (aj , θk). Even then the comparison of two acts will only have worst case running
time if ai strictly dominates aj or ai is equal to aj .

Algorithm 1 Strict Dominance

UT <− . . . ∗ t ab l e with u t i l i t y va lue s f o r each pa i r
o f act and s t a t e ( ac t s as rows and s t a t e s as columns )∗
ns <− . . . ∗number o f p o s s i b l e s t a t e s o f nature ∗
na <− . . . ∗number o f p o s s i b l e a c t s ∗
AS <− . . . ∗a data frame/ tab l e with the names/numbers o f the ac t s
and the sum over t h e i r u t i l i t y va lue s f o r a l l s t a t e s o f nature ∗
AS <− . . . ∗ arrange AS in dec r ea s ing order o f the acts ’ sums∗

i <− 1
whi le ( i < length (AS){

j <− i + 1
whi le ( j <= length (AS){
reminder_equal <− TRUE
∗ only r equ i r ed i f a l l dup l i c a t e s s h a l l be conata ined ∗
reminder <− FALSE

f o r ( k in 1 : ns ){
i f (UT[AS[ j ] , k]>UT[AS[ i ] , k ] ) {

reminder <− TRUE
break ∗ remainder o f for−loop i s redundant∗

}
e l s e i f (UT[AS[ j ] , k]<UT[AS[ i ] , k ] ) {
∗ only r equ i r ed i f a l l dup l i c a t e s s h a l l be conata ined ∗

reminder_equal <− FALSE
}

}
i f ( reminder == FALSE){

i f ( reminder_equal == FALSE){
∗ only r equ i r ed i f a l l dup l i c a t e s s h a l l be conata ined ∗

AS <− AS[− j ]
j <− j − 1

}
}
j <− j + 1

}
i <− i + 1

}

∗The remaining ac t s in AS w i l l be the optimal ac t s
accord ing to s t r i c t dominance∗

The second mentioned problem is solved by this approach too, if one believes in the following
hypothesis: Let’s assume the row sum of act ai is represented by rsi ∀i ∈ {1, 2, 3, . . . , n}. If it
holds that rs1 > rs2 > rs3 then a3 is more likely to be strictly dominated by a1 than by a2 .

In practical applications it could occur that an act ai performs better than almost every
other act in every state except one where it is worse than the majority. Thus there might be
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Algorithm 2 Strong Dominance

UT <− . . . ∗ t ab l e with u t i l i t y va lue s f o r each pa i r
o f act and s t a t e ( ac t s as rows and s t a t e s as columns )∗
ns <− . . . ∗number o f p o s s i b l e s t a t e s o f nature ∗
na <− . . . ∗number o f p o s s i b l e a c t s ∗
AS <− . . . ∗a data frame/ tab l e with the names/numbers o f the ac t s
and the sum over t h e i r u t i l i t y va lue s f o r a l l s t a t e s o f nature ∗
AS <− . . . ∗ arrange AS in dec r ea s ing order o f the acts ’ sums∗

i <− 1
whi le ( i < length (AS){

j <− i + 1
whi le ( j <= length (AS){

f o r ( k in 1 : ns ){
reminder <− FALSE
i f (UT[AS[ j ] , k]>=UT[AS[ i ] , k ] ) {

reminder <− TRUE
break
∗ remainder o f for−loop i s redundant∗

}
}
i f ( reminder == FALSE){

AS <− AS[− j ]
j <− j − 1

}
j <− j + 1

}
i <− i + 1

}

∗The remaining ac t s in AS w i l l be the optimal ac t s
accord ing to s t rong dominance∗

not a single act strictly dominated by ai even though it has the highest row sum of all acts. For
many acts similar to ai and many acts with low row sums who still dominate some other acts,
the pre-ordering could even extend the running time. Though it seems like one would have to
create an utility table on purpose to fit these conditions. In contrast if we consider the example
from above that there is in fact an act which strictly dominates all other acts but is placed at
the end of the table, it will automatically be on top of the utility table after pre-ordering and
the pairs of acts to be compared decreases from n·(n−1)

2 to n− 1.
If the hypothesis from above does not hold, one could consider some further pre-ordering of

the utility table. Assume there is a rather high number of acts with high row sums which for
whatever reason perform relatively bad in just one state of the utility table. If one re-orders
the columns (states) in such a manner, that this “worst-case-state” will be considered first when
comparing such an act to another act with lower row sum, then it might occur that the number
of necessary comparisons for each pair of acts will decrease from a maximum of 2 · (m − 1) + 1
to just 1 (m being the number of states/columns) respectively from m to 1 when equal acts may
be excluded. However ordering before every iteration of comparisons is also kind of expensive
concerning running time. Therefore one could consider ordering the whole utility table only once
by calculating some sort of score for each column.
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In this work an approach has been tried out where one uses normalization on every column
of the table. First one subtracts the minimum of the respective column and then divides through
the maximum. This will lead to the score value for an act to be 1 if it’s utility equals the columns
maximum. The score value will be 0 if the utility value of the act is the same as the columns
minimum. Then all acts receive a weight according to how many other acts have a smaller row
sum, so the weights will range from n− 1 for the act with the highest row sum to 0 for the act
with the lowest row sum. Then the main score will be computed by multiplying the weights with
the score vectors and summing them. The order of the columns scores will define in which order
the utility comparisons of the acts will be made (lower scores first for utility, higher scores first
for loss). Of course the improvements strongly depends on certain requirements, like many acts
with high row sums having low utility or high loss for the same states. In any other case this
pre-ordering usually doesn’t lead to an improvement for randomly generated utility tables.
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4 Different Criteria of Decision Theory

Only excluding the non-admissible acts will leave way too many optimal acts most of the time.
To decrease the size of set of optimal acts one can make use of the optimality or decision criteria.
A decision criteria is defined as a mapping Φ : A → R, a → Φ (a), for which one is looking
for acts a∗ for which it holds that Φ (a∗) ≥ Φ (a) ∀a ∈ A. The set of all a∗ which fulfill this
condition, is called the set of optimal acts with respect to Φ. Some of those criteria are based on
the idea of precise probabilistic information (K-probabilities), e.g. Bayes-criterion and Hodges-
and-Lehmann criterion. Some other enable the usage of imprecise probabilistic information, e.g.
Gamma-Maxi-Min–criterion and E-admissibility. A third group (e.g. Maxi-Min, Maxi-Max and
Hurwicz-criterion) doesn’t require probabilistic information at all.

All of the linear programming problems have been implemented using the lpSolve[5] pack-
age. All of these implementations can be found on the GitHub repository mentioned in the
Attachments. It is important to point out, that some of the following criteria are special cases
of others, which makes their seperate implementation kind of redundant.

Also note that all of the implementation is based on the idea of making it as easy as possible
for the decision maker to input her probabilistic information. Instead of specifying a F- or
C-probability on her own, the probability will be generated by combining a complete set of
lower und upper boundaries, an optional ordinal relationship between the states’ probabilies, as
well as optional further linear constraints for the states’ probabilities in accord to the rigorous
point of view. If both optional parts are not defined, the set of boundaries represents a totally
determined R-probability - totally determined because the set of lower and upper boundaries
must be complete - which results in a C-probability. However generating the corresponding F-
respectively C-probability will not be done explicitly, but implicitly by the linear programming
methods which are used to compute the criteria.

The following chapter was split into two subsections. Section 4.1 contains all of the criteria,
for which the assumption of cardinal utility in chapter 1 is fulfilled. Section 4.2 in contrast
contains those criteria which focuses on dealing with utility tables for which the cardinality is
questionable or the decision maker simply just defined an ordinal utility instead. The remaining
criteria based on preference systems will be presented in section 4.3.

4.1 Criteria based on cardinal utility

The following criteria will be based on the assumption that the underlying utility table does
represent a cardinal order of the consequences of the acts for the different states of nature.

4.1.1 The Maxi-Min(Mini-Max)-criterion

This criterion introduced by Abraham Wald[19] is especially useful for situations where no in-
formation about the probability of the states is available and the decision maker has a very
pessimistic point of view. Every act will be measured by its worst-case utility, meaning that
the act with the highest minimal utility (respectively the lowest maximal loss) will be consid-
ered as optimal. If one only considers pure acts, the Maxi-Min-optimal act(s) is/are simply the
act(s) which has/have the highest minimal utility in the utility table. For this criterion it makes
sense to consider randomized-acts, since there will be often an improvement in the criteria-value
compared to pure acts.

An algorithm to compute the randomized Maxi-Min-optimal act is mentioned in [3, ch. 4,
p. 447]. It is important to point out that the solution of this linear programm can in fact
be one of many optimal randomized acts and that any of the other optimal randomized acts
could be better in any of the other decision criteria (see Table 2). Here the optimal solution of
the algorithm will induce the randomized act a∗=(0.25, 0, 25, 0.5) to be the Maxi-Min-optimal
act with corresponding utility ua∗ (θk) = 3 ∀k ∈ {1, 2, 3}. In contrast if one chooses a∗∗ =
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(2/3, 1/3, 0) instead the resulting utility will be ua∗∗ (θk) = 3 ∀k ∈ {2, 3} and ua∗∗ (θk) = 4 if
k = 1. Of course this means that a∗∗ strictly dominates a∗, so it is reasonable to choose the first
over the latter. To avoid choosing a non-admissible Maxi-Min-optimal act one could e.g. use the
Hurwicz-criterion with a very low optimism parameter instead (see 4.1.7). Since this criterion
is a special-case of three other criteria in this thesis, there has no separate implementation been
done.

θ1 θ2 θ3

a1 5 3 2
a2 2 3 5
a3 2.5 3 2.5

Tab. 2: Table to illustrate sub-optimality of randomized Maxi-Min acts for other criteria

4.1.2 The Maxi-Max(Mini-Min)-criterion

This criterion is the counterpart to the Maxi-Min-criterion. Instead of having a look at the
worst-cases, the decision maker focuses on the best-case of each individual act. In contrast to
the Maxi-Min-criterion there will always be an optimal pure act for the Maxi-Max-criterion. A
randomized act can only be an optimal Maxi-Max act if it only gives strictly positive probabilities
to acts which have the maximal utility (respectively minimal loss) value in the same state of
nature. One would then be interested in all possible combinations of pure acts which lead to a
Maxi-Min-optimal randomized act.

An example is shown in table 2. All of the randomized acts assigning strictly positive proba-
bilities only to a1, a2 and a3 would be Maxi-Min-optimal as well as all randomized acts assigning
strictly positive probabilities only to a3 and a4. Assigning a strictly postive probability to a6
would always lead to a non-optimal randomized act. The Hurwicz-criterion is a more general
form of the Maxi-Max-criterion, therefore there is no separate implementation necessary.

θ1 θ2 θ3

a1 10 0 2
a2 10 2 0
a3 10 1 1
a4 0 10 2
a5 2 10 0
a6 5 5 5

Tab. 3: Utility table for explantion of randomized Maxi-Max acts

4.1.3 The Bayes-criterion

In contrast to the Maxi-Min and Maxi-Max-criterion the decision-maker uses information about
the probability of occurence for each state of nature. This priori-distribution of states in form of
a K-probability is used to calculate expectations of utility for each act. The act with the highest
utility-expectation (respectively lowest for loss) is considered as Bayes-optimal. There is always
at least one pure act, which is Bayes-optimal, so there is no need to consider randomized acts.
This criterion is also a special-case of two other criteria, so there is no need for its implementation.

4.1.4 The Hodges and Lehmann-criterion

This criterion proposed by Joseph Hodges and Erich Lehmann[8] combines two different aspects
of decision making into one. Even though one uses precise probabilistic information for this
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criterion, this information is assumed to be uncertain[10, p. 3], which is represented by the
trust-parameter and tells how strongly the decision maker “believes” in the priori-distribution of
the states. For a parameter-value of 0 the criterion is equal to Mini-Max and for a parameter
value of 1 it’s equal to the Bayes-criterion.

The algorithm in [10, p. 4] was used for implementation. On a computational point of view
this algorithm could very easily be extended to also work for imprecise probabilistic information,
though there must be a good reasoning to legitimate mixing both aspects, which was neither
suggested by any of the sources of this work, nor will be part of the work itself.

4.1.5 The Gamma-Maxi-Min (or Max-E-Min)-criterion

This is basically a more general version of the Maxi-Min-criterion. For this criterion one can
specify imprecise probabilistic information on the states of nature, which means that the “worst-
case-states” of each act can only be the true state of nature with a certain probability (which
could be < 1 for specific cases), which leads to the conclusion that the criteria-value for each
act will be at least as good as its value for the Maxi-Min-criterion. For the same reason as for
Maxi-Min-critierion it makes sense to consider randomized acts.

If one has no non-trivial restrictions on the probabilities, which results in a C-probability
where every state has a lower probability of 0 and an upper probability of 1, the criterion is
equal to the Maxi-Min-criterion. If the probability restrictions only allow one probability for
each state (which means there is precise and sure probabilistic information), the Gamma-Maxi-
Min-criterion is equal to the Bayes-criterion.

If the probability-inducing variables are defined in a non-trivial way, but randomized acts are
not considered, one can make a single optimization problem for each act to compute its highest
lower boundary of utility (respectively its lowest higher boundary of loss) and compare the
objective values of each pure act. For the case that there are non-trivial probability requirements
as well as randomized acts to be considered one can use the algorithm suggested by Jansen[10,
p. 8]. In that case one could run into the same problem as illustrated in Table 2 for Maxi-Min-
optimal acts.

4.1.6 The Gamma-Maxi-Max (or Max-E-Max)-criterion

Like the Gamma-Maxi-Min for the Maxi-Min-criterion, the Gamma-Maxi-Max criterion is a more
generalized version of the Maxi-Max criterion. If the probability for the union of the “best-case-
states” of an act is bounded to be strictly smaller than 1, the Gamma-Maxi-Max score of the act
will be lower than the Maxi-Max-score of that act. If, again, one has no non-trivial restrictions on
the probabilities, the criterion is equal to the Maxi-Max-criterion. If the probability restrictions
imply a single valid probability, the Gamma-Maxi-Max-criterion is equal to the Bayes-criterion.

In the case of non-trivial probabilistic information and without considering randomized acts
one can compute the optimal acts analogous as for the same case with Gamma-Maxi-Min by
maximizing expectation for utility and minimizing in case of loss. For the case that there are
non-trivial probability requirements as well as randomized acts to be considered one needs to
calculate the set of extreme points and afterwards the utility for every act at every extreme
point. On the basis of that resulting utility-expectation-table one can proceed in the same way
as for randomized Maxi-Max-acts.

4.1.7 The Hurwicz-criterion

This criterion by Leonid Hurwicz and Kenneth J. Arrow[1] is an approach to find a middle way
between a completely pessimistic ((Gamma-)Maxi-Min) and a completely optimistic ((Gamma-
)Maxi-Max) point of view. The balance between both apsects is controlled by the so-called
optimism-parameter α. This parameter reaches from 0 to 1, whereas for 0 the criterion is equal
to the Maxi-Min criterion and for 1 the criterion is equal to the Maxi-Max criterion in case of the
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absence of any probabilistic information. If there is non-trivial imprecise probabilistic information
the criterion equals the Gamma-Maxi-Min criterion in case of α = 0 and the Gamma-Maxi-Max
in case of α = 1.

If α is strictly greater than 0 and strictly smaller than 1, the score values of the pure acts
are weighted sums of their (Gamma-)Maxi-Min and (Gamma-)Maxi-Max-scores, whereas the
(Gamma-)Maxi-Min part has a weight of 1− α and the (Gamma-)Maxi-Max part has a weight
of α. If in addition to that randomized acts are considered, one has to use a way more complex
approach[18, p. 6].

4.1.8 E-admissibility

One of the most well-known criteria in decision theory with imprecise probabilities is the E-
admissibility, proposed by Levi[15]. An act ai is called E-admissible if and only if there is at
least one probability π inM for which holds that Eπ(u (ai)) ≥ Eπ(u (aj))∀j ∈ {1, . . . , n} .

The implementation has been done very similar to the algorithm in [18, p. 23], just without
the auxiliary variable. In many cases running time can be saved if the acts will be checked
for admissibility before, since the number of linear programming problems to be solved could
be reduced drastically. One can also consider checking forM-maximality before and then only
consider these acts as possible E-admissible acts. Note that this can only save running time with
the algorithm based on extreme points in 4.1.9

4.1.9 M-maximality

This criterion is basically a weaker version of E-admissibility, meaning every act which is E-
admissible is alsoM-maximal but not vice versa. Formally an act ai is calledM-maximal if for
every other act aj|j∈{1,...,n}\{i} there is a πaj ∈M for which holds that Eπaj (u(ai)) ≥ Eπaj (u(aj)).

This can either be implemented by using the algorithm from [10, p. 6] or by computing the
set of extreme points ε (M), then calculating each acts expected utility for each π ∈ ε (M). The
result will be a new utility-table-like data set where one can use Algorithm 2 to exclude the
strongly dominated acts in order to define the set ofM-maximal acts. Concerning running-time
both methods behave very differently (see Table 4).

While the first method is quite time-expensive concerning the number of possible acts, which
could in fact be improved by first checking for admissiblity and E-admissibility of acts, the
second method is highly correlated with the number of extreme points (see 2.2). However the
estimation of the latter number is very imprecise, while the estimation of the running time of the
first method is not straight-forward. Several attempts have failed to provide a suitable solution
for a precise estimation of both running times, which would enable an automatic selection of the
best method.
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4.1.10 Eε-admissibility

This is a mixture between E-admissibility and M-maximality. Formally an act ai is called
Eε-admissible (with ε ≥ 0) if the two following conditions hold:

• Eπa (u (ai)) ≥ Eπa (u (a))∀a and

• ‖πa − πb‖ ≤ ε ∀a, b ∈ A where ‖.‖ is a norm onM

If ε equals 0, this criterion is equal to the E-admissiblity. On the other hand if ε is set to 1, there
is equality toM-maximality.

This criterion is especially useful to find acts which are not very far away from being E-
admissible. If one of the Eε-admissible (consider ε > 0) acts performs way better in other
criteria than all of the E-admissible acts, one can argue that this act should be prefered even
though it is not E-admissible.

For the implementation of this criterion based on the Manhattan norm, an algorithm similar
to that one in [12, p. 8] was used. To avoid having a constraint with absolute differences of the
states probabilities here addional optimization parameters, representing upper and lower limits
of each states probabilities, have been used.

4.1.11 E-admissibility-extent

Assume the decision-maker wants to choose one of the E-admissible acts as their act of choice.
However all of those acts are incomparable without considering another criteria which gives
information about the extent of the E-admissibility[12, p. 10]. In this work two measures have
been implemented in order to operationalize this.

Maximal extent
The first measure, the maximal extent, tries to describe the set of probability measures for

which an act a maximizes the expected utility, by having a look at the two “most different”
probabilities in the set according to a certain norm ‖.‖. Formally for an E-admissible act a with
a set of proabilities Ma for which a has the maximal utility the maximal extent is defined as
followed:

extM (a) := sup
π,π′∈Ma

‖π − π′‖

To make this solveable as a linear programming problem one uses the norm ‖.‖∞. One can
then use the algorithm in [12, p. 10, Prop. 3]. This will lead to the criteria value being defined
by the widest range of any state in Ma . Note that Jansen also offers a solution for using the
Manhattan norm instead, however this is not possible with linear programming methods.

Uniform extent
Since the maximal extent only shows one side of the coin, there must be another perspective

to measure the extent of E-admissibility. For this sake one can have a look at the largest
barycentric ε-cube that can be inscribed into Ma [12, p. 11,12]. Compared to the maximal
extent this measure only reaches its maximum of 0.5, when a state a is E-admissible for every
possible π ∈ M. On the other hand if there is a state with only one possible value in Ma the
measure will have a value of 0. The linear programming problem in [12, p. 11,12] is an option
to compute the uniform extent for an E-admissible act.

4.2 Criteria based on ordinal utility

If there exists an utility table, but the cardinality of its underlying utility function is questionable,
one can instead assume an ordinal utility and use the following criteria.
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4.2.1 Joint-Stochastic-Dominance (Imprecise Version)

Any act a0 for which there is a strictly increasing function t : R → R such that E (t ◦ u (a0))≥
E (t ◦ u (a))∀a ∈ A and ∀π ∈ M. If one computes the set of extreme points ε (M), one can use
the algorithm mentioned in [12, p. 15] to determine if a certain act is optimal with respect to
Joint-Stochastic-Dominance. According to Jansen, this criterion can be viewed as global.

4.2.2 Pairwise-Stochastic-Dominance (Imprecise Version)

Jansen describes this as the local version of the Joint-Stochastic-Dominance. For an act a0 there
must be at least one ti : R→ R such that E (t ◦ u (a0))≥ E (t ◦ u (ai))∀ai ∈ A and ∀π ∈ M. Of
course this condition is weaker than Joint-Stochastic-Dominance, since there could be a different
function ti for each act ai.

The algorithm used for Joint-Stochastic-Dominance can be adapted to be used for the pairwise
version. One simply solves two linear programming problems for each pair of acts (one for
each ordered pair of distinct acts (a1, a2) 6= (a2, a1)) but only includes optimization parameters
t11,..., t2m instead of t11,..., tnm.

4.2.3 Joint-Statistical-Preference

Label an act a0 as optimal, if it holds that Dπ (a0) ≥ Dπ (a) ∀a where

Dπ (a) := π
({
θ|u (a, θ) ≥ u

(
a′, θ

)
∀a′ ∈ A

})
This means that a0 has the highest probability to be utility dominant over all other acts and

is considered as a global criterion[12, p. 14].
If M only consists of one point it can be used as priori distribution and one simply sums

over the probabilities of the states for which a0 has the maximal utility. In the case of imprecise
probabilistic information, one must find a way to replace Dπ (a) through a legit and reasonable
alternative, e.g. minπ∈MDπ (a)[12, p. 15]. This idea has been extended in this work in the
spirit of the Hurwicz-criterion by including an optimism-parameter which will lead to a weighted
criterion value between minπ∈MDπ (a) and maxπ∈MDπ (a).

4.2.4 Pairwise-Statistial-Preference

This is the local version of the Joint-Statistical-Preference. Every act a0 for which there is no
other act a1 for which holds that

π ({θ|u (a1, θ) ≥ u (a0, θ)}) > π ({θ|u (a0, θ) ≥ u (a1, θ)})

In the case of having only one π ∈M the computation of the optimal acts is straight-forward
like for the Joint version of the criterion. If there is imprecise probabilistic information one
can consider a similar approach as proposed there, by considering a mixture of the best- and
worst-case probability to dominate the other act, which can also be controlled by an optimism
parameter.

4.3 Criteria based on Preference Systems

If the information on the decision makers preferences is represented by a preference system
instead of an utility table, consider the following decision criteria.
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4.3.1 Generalized Interval Expectation and corresponding criteria

Let P = [A×Θ,R1 ,R2 ] be a preference on system A×Θ and let X : Θ → [0, 1] be a function
representing an act a ∈ A. LetM be the probabilistic information on Θ and P be δ-consistent
for every δ|0 ≤ δ ≤ ε for a certain ε > 0. Then for a corresponding δ and Dδ = N δ

P ×M:

EDδ (X ) :=
[
EDδ (X ) ,EDδ (X )

]
:=

[
inf

(u,π)∈Dδ
Eπ (u ◦X ) , sup

(u,π)∈Dδ
Eπ (u ◦X )

]
is called the generalized interval expectation of X with respect to P,M and granularity δ[9,

p. 11].
The boundaries of this interval can be computed by applying the linear programs from [9, p.

12, Prop. 3].

One can define three new decision criteria based on the generalized interval expectation. An
function X like above representing an act a ∈ A. Then a is called:

• Dδ-maximin if and only if ∀Y : Θ → [0, 1] representing any act a′ ∈ A \ {a}:

EDδ (X ) ≥ EDδ (Y )

• Dδ-maximax if and only if ∀Y : Θ → [0, 1] representing any act a′ ∈ A \ {a}:

EDδ (X ) ≥ EDδ (Y )

• Dαδ -maximix if and only if ∀Y : Θ → [0, 1] representing any act a′ ∈ A \ {a}:

(1− α) ∗ EDδ (X ) + α ∗ EDδ (X ) ≥ (1− α) ∗ EDδ (Y ) + α ∗ EDδ (Y )

where α ∈ [0, 1] is some fixed parameter.

From a computational point of view, one creates an utility table with every act a ∈ A and two
columns representing the corresponding lower and upper boundary from the corresponding gen-
eralized interval expectation. Then one can simply apply the same algorithm as for the Maximin-
criterion without randomized acts for detecting Dδ-maximin, the algorithm for non-randomized
Maximax-acts for detecting Dδ-maximax and the algorithm for the Hurwicz-criterion without
randomization for detecting the Dαδ -maximix optimal acts (with α as optimism parameter).

4.3.2 Criteria based on global comparisons of acts

Let P,M and X be defined as in 4.3.1. Then act a is called:

• P|M-admissible if and only if ∃u ∈ UP ,∃π ∈M . . .

• P-admissible if and only if ∃u ∈ UP∀π ∈M . . .

• M-admissible if and only if ∃π ∈M∀u ∈ UP . . .

• P|M-dominant if and only if ∀u ∈ UP∀π ∈M . . .

. . . ∀Y representing any act a′ ∈ A \ {a}:

Eπ (u ◦X ) ≥ Eπ (u ◦Y )

For further explanations of these criteria and their connections to each other see [9, p. 14]. For
the computation of P-admissible acts one can use the algorithm proposed on [9, p. 15-16]. This
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algorithm can easily be adapted for the detection of P|M-admissible acts. One solves instead an
optimization problem for each extreme point π ∈ E (M). If and only if the optimal outcome of at
least one of these problems is strictly greater than 0, the corresponding act is P|M-admissible.

One can find the set ofM-admissible acts by using similar optimization problems like in [9,
p. 18, Prop. 5] (consider maximization in case of utility). For each act-representation Y and
each extreme point π ∈ E (M) one checks, if she can find another act representation X for which
the optimal outcome of the problem is strictly greater than 0. If so, the act represented from Y
is notM-admissible and in any other case it is.

Checking for P|M-Dominance can be done in a similar way. If there is at least one combina-
tion of an extreme point π ∈ E (M) and an act representation X for which the optimal outcome
is strictly greater than 0, then the act represented by Y is not P|M-dominant and in any other
case it is.
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5 Conclusion

The outcome of this work is a set of functions which could the starting point for a R-package
for decision theory problems. Most of the implemented criteria are restricted to the usage on
already defined utiliy tables. For preference systems there exists more criteria than contained in
this thesis (see e.g. [9, p. 17]). According to Jansen et. al there is also some special treatment for
the case of group decisions[11] required. Chapter 8 of [4] also shows some concepts of sequential
decision making, a field which is not covered by this work at all. Of course a good R-package
should offer the possibility to model and deal with all of these situations.

Two aspects, concerning the already implemented algorithms, are the current way of pre-
filtering of acts (like e.g. for E-admissiblity and Eε-admissibility) and the choice for the algo-
rithm used to computeM-maximal acts. Both has to be done manually at the current state of
implementation, which is suboptimal because the user needs to know when each of the options is
preferable. This should definitely be automatized in further work, so the decision maker doesn’t
have to deal with methodical questions which are not directly related to the decision process
itself.
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Attachments

All of the code produced in this work can be found on:

https://github.com/MarcJohler/decisionmakeR

in the file “all_criteria.R” (commit version bbb93bff2a26d5e5b6e10a95aacaa03716b3c6a8).
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