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Abstract
We address the problem of offline handwritten diagram recognition. Recently, it has been shown that diagram symbols can
be directly recognized with deep learning object detectors. However, object detectors are not able to recognize the diagram
structure. We propose Arrow R-CNN, the first deep learning system for joint symbol and structure recognition in handwritten
diagrams. Arrow R-CNN extends the Faster R-CNN object detector with an arrow head and tail keypoint predictor and
a diagram-aware postprocessing method. We propose a network architecture and data augmentation methods targeted at
small diagram datasets. Our diagram-aware postprocessing method addresses the insufficiencies of standard Faster R-CNN
postprocessing. It reconstructs a diagram from a set of symbol detections and arrow keypoints. Arrow R-CNN improves
state-of-the-art substantially: on a scanned flowchart dataset, we increase the rate of recognized diagrams from 37.7 to 78.6%.

Keywords Diagram recognition · Offline recognition · Object detection · Graphics recognition · Symbol recognition ·
Flowchart

1 Introduction

Graphical modeling languages are a long-used and intuitive
device to visualize algorithms, business process models, and
software systems. There are various formalized modeling
notations, including flowchart, UML use case, and event-
driven process chain diagrams. Initial diagrams are typically
sketched on non-digital devices such as whiteboard or paper
[10]. If a user decides they want to continue working on the
sketch in a modeling software, they are required to manually
recreate the diagram in its entirety. Research in handwrit-
ten diagram recognition addresses this gap, by providing an
automated method that converts a scan or photograph of a
diagram into a structured model. It is thus concerned with
two main tasks: (1) the local recognition and localization of
symbols and (2) the recognition of the global structure.
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Handwritten diagram recognition methods can be catego-
rized into two approaches: online and offline recognition [7].
In online recognition, the diagrams are drawn with an ink
input device such as a tablet. This input device captures the
drawing as a temporal sequence of strokes. Online diagram
recognition has received a lot of attention in research, espe-
cially in the area of flowcharts [1–6,9,14,18,36,37,40]. Yet,
those approaches are of limited applicability if the original
stroke data are not available (e.g., hand-drawn diagrams on
paper). While offline recognition directly allows to tackle
this more general scenario, it has attracted much less atten-
tion in the past. Most offline approaches rely on traditional
image processing methods to reconstruct the strokes of a
diagram, anduse feature engineering to derive a set of distinc-
tive stroke features [7,24]. The revival of deep convolutional
neural networks (CNNs) has caused a paradigm shift from
“feature engineering” to “feature learning”. For detecting
object instances in an image, two-stage object detectors pop-
ularized by Faster R-CNN [26] are state-of-the-art. In [15] it
was demonstrated that Faster R-CNN can be effectively used
to recognize the symbols in a flowchart image. Even though
the utilized flowchart dataset has only 200 training images,
the evaluation shows very good results for recognizing node
shapes. The model mostly struggles with recognizing arrows
and text phrases due to their varying form and size. We agree
with their motivation and thus propose an offline handwrit-
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ten diagram recognition approach which builds upon Faster
R-CNN for symbol recognition.

This work focuses on handwritten diagrams, where each
diagram contains node symbols of varying shapes, arrows,
and optionally text phrases. Arrow recognition methods
are also used to identify regions of interests in medical
images and to interpret mechanical drawings and circuit dia-
grams [27–29].While the recognition of computer-generated
arrows inmentioned examples is important, thiswork focuses
on handwritten diagrams, where each arrow connects two
nodes, and each text phrase annotates either a node or an
arrow.Although this structure is simple, it is sufficiently pow-
erful to describe graphical modeling languages from various
domains. We follow the terminology in [6] and use the term
arrow-connected diagram to describe this class of diagrams.
Structure recognition in arrow-connected diagrams is con-
cerned with specifying the nodes each arrow joins and the
edge direction. While an object detector can classify and
localize the symbols of a diagram through bounding boxes,
the bounding box information is insufficient for structure
recognition. We show that we can leverage arrow keypoint
information for diagram structure recognition.

In this paper, we propose a system for recognizing arrow-
connected diagrams. Our contributions are the following:

– We demonstrate how a Faster R-CNN object detector can
be extended with a lightweight arrow keypoint predictor
for diagram structure recognition.

– We identify data augmentationmethods for diagrams and
show that they vastly improve object detection results.We
also propose a method to augment diagrams with words
from an external dataset, to further reduce the confusion
between arrow and text symbols.

– We propose a postprocessing pipeline to form a final dia-
gram from object and keypoint candidates.

– We evaluate our system on four datasets from the
flowchart and finite automata domain.

Figure 1 provides an overview of our method.
The remainder of the paper is organized as follows. Sec-

tion 2 surveys related work in diagram recognition and
keypoint estimation. Section 3 describes the Arrow R-CNN
network and its training procedure. Section 4 proposes
augmentation and postprocessing methods designed for dia-
grams. Section 5 contains experimental results and describes
the datasets used for evaluation. Section 6 presents conclu-
sions and potential future work.

2 Related work

Symbol recognition plays an important role in various appli-
cations and has a rich literature in graphics recognition

[30,31]. Our work focusses on diagram recognition using an
arrow keypoint detector. Thus, in the followingwe separately
discuss related work on (1) handwritten diagram recognition
and (2) generic keypoint detection with neural networks.

2.1 Handwritten diagram recognition

While our work is focused on offline handwritten diagram
recognition, there is an overlap with online recognition with
respect to the utilized methods and datasets. From a method
perspective, online recognition systems that do not strictly
require temporal stroke information can be adjusted for
offline recognition. To this end, a stroke reconstruction pre-
processing step can extract a set of strokes from a raster
image. From a dataset perspective, online datasets can also
be used to evaluate offline systems by plotting the strokes as
an image. This is common practice, due to the lack of public
datasets that are offline by nature. In the following, we dis-
cuss related offline work and also include online works that
introduce a new dataset or contain an offline extension.

In 2011, Awal et al. [1] published the FC_A online
handwritten flowchart dataset. The dataset is publicly avail-
able, and its size has been increased to 419 flowcharts
after the publication date. Following the release, several
methods for online flowchart recognition were proposed [2–
6,9,18,36,37,40]. Wu et al. [38] is the first work that uses
FC_A for offline recognition. [38] use a three-stage recogni-
tion pipeline, including a shapeness estimation algorithm to
figure out if a stroke grouping has a regular appearance. The
pipeline is evaluated using the ground truth strokes without
temporal information and achieves 83.2% symbol recogni-
tion accuracy. Since the evaluation does not attribute for
stroke reconstruction errors, the result is not comparablewith
an image-based recognition system.

Bresler, Průša, and Hlaváč published a series of works on
online diagram recognition [2–6], and also introduced two
online diagram datasets in the domains of finite automata
(FA) and flowcharts (FC_B). The latest online system in [6]
is a pipeline with text/non-text separation, symbol segmenta-
tion, symbol classification and structural analysis as its core
parts. An offline extension to this online system is proposed
in [7] and uses a stroke reconstruction preprocessing step.
For the evaluation, two offline flowchart datasets based on
the existing FC_B dataset were introduced. One of those
datasets contains scans of a printed thicker stroke visualiza-
tion containing real noise, which we refer to as FC_Bscan.
The adapted recognizer was also tested on the unordered
FC_A strokes and achieved 84.2% symbol recognition recall.

As the proposed approach, Julca-Aguilar and Hirata [15]
train a Faster R-CNN [26] object detector to recognize sym-
bols in theFC_Adataset. To this end, theydo transfer learning
from models pre-trained on MS COCO, a large dataset of
natural images depicting everyday scenes [20]. The detector
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Fig. 1 Overview of our method: the CNN backbone network computes
the image feature pyramid from an input image. The region proposal
network (RPN) uses the feature pyramid to compute a set of region pro-
posals. The region of interest (RoI) box network (Fig. 2) classifies each

proposal and predicts a refined bounding box. For detected arrows, our
RoI arrow network additionally predicts arrow head and tail keypoints.
The postprocessing component (Fig. 7 ff.) uses the detected symbols
and arrow keypoints to construct the final diagram

achieves a mAP@0.5 of 97.7%, where mAP@0.5 corre-
sponds to mean average precision (mAP) at a ground truth
bounding box overlap of at least 50%. Due to differing eval-
uation metrics, this result is not comparable to [7].

Gervais et al. published the online handwritten flowchart
dataset DIDI in 2020 [11]. It is the first large-scale dia-
gram dataset and consists of two parts: 22,287 diagrams with
textual labels (DIDItext) and 36,368 diagrams without tex-
tual labels (DIDIno_text). Each handwritten diagram has
been collected by showing a flowchart image to the user who
was then asked to draw over it. The flowchart images were
rendered using GraphViz based on randomly-generated dot
files. Unlike other online datasets, the handwritten diagrams
are not annotated on stroke level. However, the provided dot
files contain information about the rendered diagram, such
as the position and size of each node.

The present paper builds upon an earlier workshop paper
[32]. In [32], we proposed a deep learning system based
on Faster R-CNN for recognizing the symbols and structure
of flowcharts. We identified data augmentation methods for
flowchart recognition and showed that they vastly improve
object detection results on the FC_A dataset.We also demon-
strated how a Faster R-CNN object detector can be extended
with a lightweight arrow keypoint predictor for flowchart
structure recognition. For the present paper, we have con-
solidated the overall technique and provide a more broadly
applicable system for recognizing arrow-connected dia-
grams. Specifically, we improve on the data augmentation
and arrow proposal sampling methods used during network
training. Moreover, we propose a postprocessing pipeline
to form a final diagram from object and keypoint candi-
dates. We evaluate our system on four datasets, adding a
finite automata, a flowchart dataset of scanned images, and a
large-scale flowchart dataset, and provide profound insights
into accurate arrow and text phrase detection, which we con-
sider the main challenge for recognizing arrow-connected
diagrams.

2.2 Keypoint detection

Keypoint detection methods are typically used for tasks such
as pose estimation in natural images, i.e. to estimate facial or
human body keypoints. For human pose estimation (HPE),
where the task is to predict human body keypoint locations
such as elbow and wrist, there are two mainstream methods:
directly regressing the position of keypoints [34,35], and esti-
mating keypoint heatmaps [23,39].

In the heatmap approach, the keypoints are chosen as the
locations with the highest heat values. Over the last years, the
heatmap approach has been used in all state-of-the-art sys-
tems evaluated on the MS COCO dataset keypoint detection
task [20]. The HPE systems typically tackle multi-person
keypoint estimation in a top-down process. In the first stage,
individual person instances are detectedwith an object detec-
tor. In the second stage, the person instances are cropped from
the image, resized to a fixed resolution, and feed into a dedi-
cated single-person pose estimation network.Whilemethods
used in HPE can serve as inspiration for an arrow keypoint
detector, the two tasks differ substantially. In the COCO
dataset, persons instances can be occluded, under-exposed
and blurry, and keypoints are often either not visible or there
is some visual ambiguity. This forces the models to consider
spatial and contextual relationships. Popular architectures
for HPE such as stacked hourglass networks [23] encour-
age the learned person features to be reevaluated in a larger
global context. They achieve thiswithCNNarchitectures that
involve successive steps of pooling and upsampling, with
additional skip connections. In arrow keypoint estimation,
most arrow heads and tails are clearly visible. Further, arrow
head and tail keypoints are often the outermost arrow pixel
in one spatial direction and thus define one border of the
bounding box. Therefore, there is a task overlap between
arrow keypoint detection and bounding box detection. Thus,
in a multi-task learning setup, it might be beneficial to learn
those tasks together with shared features.
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In conclusion, although HPE is dominated by heatmap
methods, we opt for a keypoint regressionmethod that shares
its features with the object detector network. We find that
this approach is effective in the diagram domain, where most
datasets are small and keypoints are typically located at the
bounding box border.

3 Arrow R-CNN

Arrow R-CNN is based on the Faster R-CNN [26] object
detector. Faster R-CNN is the successor of R-CNN [12],
which has popularized a two-stage approach in object detec-
tion. The first stage generates a set of class-agnostic region
proposals or region of interests (RoI), where each RoI is
defined by a bounding box location and an objectness score.
The second stage then classifies each RoI and predicts a
refined bounding box location. From a high-level perspec-
tive, Faster R-CNN consists of three sub-networks:

1. CNN backbone network
2. Region proposal network (RPN)
3. RoI box network

The CNN backbone network is used to extract a featurized
representation of the entire image. This feature map has a
lower spatial resolution w × h, but a much higher number
of channels c than the original image. The RPN uses the
feature map to compute a large set of RoIs. The RoI box
network classifies each RoI as one of the object classes or
as background, and refines its bounding box location. It uses
RoI pooling, a pooling mechanism to extract a fixed-sized
7× 7× 512 feature map for each RoI proposal. RoI pooling
uses the proposal bounding box to extract the relevant spatial
part of the backbone feature map and then applies pooling
to reduce it to a fixed-size representation. The box network
processes each RoI feature map with intermediate fully con-
nected layers, before it classifies each RoI and predicts its
refined bounding box.

One of the limitations of Faster R-CNN is that it has
difficulties with datasets where objects have a large-scale
variance. [19] addresses this issue by incorporating fea-
ture pyramid networks (FPNs) into Faster R-CNN. In this
extension, the backbone network generates a pyramid of fea-
ture maps at different scales. The image feature pyramid
is a multi-scale feature representation in which all levels
are semantically strong, including the high-resolution levels.
During RoI pooling, an RoI is assigned to a feature pyra-
mid level based on its bounding box dimension. This has the
advantage that if the RoI’s scale becomes smaller, it can be a
mapped into a finer resolution level. Our initial experiments
showed that we get consistently better results with the FPN
extension. Thus, we use it in all our experiments.

Fig. 2 Arrow R-CNN RoI networks The box and arrow modules pro-
cess each RoI feature map through fully connected layers (FC) with
ReLu activation functions. The box network predicts a class and refined
bounding box for all proposals. The arrow network predicts a 4-d arrow
keypoint vector for each arrow proposal (training) or arrow detection
(inference)

In the next sections, we outline the Arrow R-CNN net-
work architecture (Sect. 3.1), explain how we train the entire
network (Sect. 3.2), and detail how Arrow R-CNN computes
the detected symbols and keypoints from a diagram image
during inference time (Sect. 3.3).

3.1 Network architecture

For predicting the keypoints at the arrows head and tail, we
add a parallel RoI arrow network to the existing RoI box
network. Figure 2 shows both Arrow R-CNN RoI networks.
The arrow network reuses the fully connected feature extrac-
tion layers from the box network and regresses both 2-d arrow

keypoints as a 4-d vector (khead
�
,ktail

�
)
�
from the extracted

1024-d arrow feature representation. Figure 2 illustrates this
series of computation with a green path from the RoI fea-
ture map to the arrow keypoint regressor. In theory, we could
directly use the absolute arrow keypoint pixel coordinates
as regression targets. However, this would require the RoI
feature map to capture the global image context, since the
network would have to predict not only where the keypoints
are located relative to the proposal bounding box, but also
where they are located within the overall image. The Faster
R-CNN bounding box regression thus encodes the bound-
ing box regression targets relative to the proposal box. For
arrow keypoint regression, we follow a similar strategy and
encode the arrow keypoint targets relative to the proposal
bounding box. Suppose we have a proposal bounding box
b = (cx , cy, w, h)� with center point c = (cx , cy)�, width
w and height h, where 4wh measures the area of b. For a
ground truth arrow keypoint k = (kx , ky)� assigned to a
proposal with bounding box b, we define bounding box nor-
malized keypoints as

k̄ = (
k̄x , k̄y

)� =
(
kx − cx

w
,
ky − cy

h

)�
. (1)
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Fig. 3 Arrow proposal example: the left image shows the 72 proposals
with at least 70% IoU to a ground truth arrow, the right image shows the
19 proposals that additionally have both arrow keypoints located within
their proposal box

Thus, k̄x and k̄y are within the range [−1, 1], for keypoints
k contained in bounding box b. Our arrow regression target

is then the 4-d vector t =
(
k̄head

�
, k̄tail

�)�
representing

relative 2-d coordinates of the two keypoints per arrow.

3.2 Training

In Faster R-CNN, the first RPN stage generates a set of pro-
posals and then performs non-maximumsuppression (NMS).
For any two proposals that have a bounding box overlap of
at least 70%, NMS iteratively removes the proposal with
the lower objectness score. The bounding box overlap is
commonly referred to as intersection over union (IoU). For
training the RoI box network, Faster R-CNN considers the
top 2000 proposals ranked by their objectness score [19]. For
training our arrow network, we use a subset of the 2000 pro-
posals. Concretely, we define an arrow proposal as a proposal
that fulfills two criteria:

(a) at least 70% IoU to a ground truth arrow
(b) both arrow keypoints are located within the proposal box

Figure 3 shows exemplary arrow proposals that fulfill
either criteria (a), or both (a) and (b). For each arrow bound-
ing box proposalb, our arrownetwork predicts two keypoints
k̄head and k̄tail which are encoded against the proposal bound-
ing box.

Fig. 4 FC_Bscan training losses during the first 2000 iterations (λ = 1)

Arrow loss Larw: In the following, we discuss how we com-
bine the individual arrow keypoint prediction into an overall
arrow loss Larw. Given our set of N arrow proposal pairs

with the 4-d regression targets ti =
(
k̄head

�
i , k̄tail

�
i

)� ∈ T

with the k̄i as defined in equation (1) for arrows i = 1 . . . N
and corresponding predictions t̂i ∈ T̂ . The arrow loss is
computed as the mean squared error over all predictions and
dimensions:

Larw(T , T̂ ) = 1

4N

N∑

i=1

4∑

d=1

(
ti [d] − t̂i [d]

)2
(2)

Finally, we extend the Faster R-CNN box network multi-
task loss L roi by adding the arrow regression loss term

L roi = Lcls + L loc + λLarw, (3)

where Lcls is the classification loss and L loc the localization
loss for bounding box refinement regression. The hyperpa-
rameter λ balances the arrow and the other task losses. We
found that λ = 1 sufficiently balances the loss terms and
thus did not treat λ as another hyperparameter to tune. Fig-
ure 4 shows the individual loss terms throughout the first
2000 iterations on the FC_Bscan database.

3.3 Inference

During inference, Faster R-CNN generates a set of detec-
tions per image, where each detection has a bounding box, a
predicted class, and a classification score that corresponds to
the maximum softmax score over all classes. During arrow
network training, the RoI align operation takes the arrow pro-
posal bounding box and the image feature pyramid as input
and computes an arrow feature map as output. During infer-
ence, this procedure differs: here, we use the final (refined)
arrow bounding box from the RoI box network as input. This
is due to the fact that the refined detection bounding box is
more accurate, which makes it easier for the arrow network
to identify the keypoint locations. The arrow network uses
the arrow feature maps to compute the encoded 4-d arrow
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head and tail keypoint vectors. The absolute arrow keypoint
locations are then computed by applying the inverse encod-
ing operation. Section 4.2 explains how we use the detected
objects and arrow keypoints to recognize the entire diagram.

4 Integrating diagram domain knowledge

Our Arrow R-CNN network generates a set of detected sym-
bols, where detected arrows additionally have predicted head
and tail keypoints. This section addresses two key questions
in using our deep learning method for diagram recognition:

1. How can we synthetically increase the size for the small
diagram datasets?

2. Howcanwe form thefinal diagram froma set of detections
and keypoints?

For addressing the first question, we use a pipeline of aug-
mentation methods guided by our domain knowledge about
diagrams, which we outline in Sect. 4.1. Regarding the lat-
ter question, we present our diagram-aware postprocessing
method in Sect. 4.2.

4.1 Augmentation

We use the following augmentation pipeline to improve the
generalization capabilities of our model:

1. LongestMaxSize Resize longest image size to 1333 and
preserve aspect ratio (p = 1.0)

2. IAMWordAugmentation Augment diagram with up to
three random word images of size (w, h) from the words
in the IAM-database [21], where 5 ≤ w ≤ 300 and
12 ≤ h ≤ 150 (p = 1.0)

3. ShiftScaleRotateUse uniformly sampled ranges for shift-
ing image by a factor [−0.01, 0.01], scaling image by
factor [−0.2, 0.0], and rotating image [−5◦, 5◦] (p =
0.3)

4. RandomRotate90 Randomly rotate image by 90 degrees
zero or more times (p = 0.3)

5. Flip Randomly flip image horizontally, vertically, or both
(p = 0.3)

This pipeline is applied as a sequence, and each step is applied
with probability p.We use the Albumentations library [8] for
all augmentations except IAMWordAugmentation.
IAM word augmentation Due to the limited size of most
datasets and the varying shapes and forms of arrow and
text symbols, we noticed that the model frequently con-
fuses arrows with texts and vice versa. As an example, we
noticed several cases where the detector falsely predicted an
arrow within a text phrase, e.g. a handwritten “l” within the

Fig. 5 IAM word preprocessing example

Fig. 6 Exemplary FC_Bscan flowchart augmented with three IAM
words

term “false”. To increase the robustness of arrow and text
detection, during training we augment the diagrams with
handwritten words from the IAM-database [21]. The cor-
pus consists of 1066 forms written in English and produced
by ≈400 different writers, resulting in more than 80k word
instances out of a vocabulary of ≈11k words. Out of these
word instances, we randomly sample words with a mini-
mum word image height to exclude words that consist solely
of punctuation marks and restrict the word image width to
exclude overly long words. Unlike the online handwritten
diagrams, the forms have been scanned and contain docu-
ment noise. To assure our detector does not learn to classify
those text phrases solely due to their document noise, we
preprocess the IAM words to increase the visual similarity
to the diagram text phrases. To derive a stroke-based repre-
sentation, we binarize the image using Otsu’s method and
skeletonize it to a one pixel wide representation. Afterward,
we use a procedure similar to the diagram rendering process
described in Sect. 5.1 to create words with uniform 3 pixel
wide smoothed strokes. Figure 5 shows an exemplary IAM
word and different preprocessing stages.

During training, we augment each diagram by inserting up
to three random IAM words into background regions. In the
diagram datasets, text phrases are located quite close to the
symbol or arrow that they annotate. To imitate this closeness,
we place each IAM word close to an existing symbol while
ensuring that the pixels of both objects do not overlap. Con-
cretely, we ensure that the distance to the closest flowchart
pixel is in the range [5, 50]. Figure 6 shows an exemplary
flowchart augmented with IAM words.

4.2 Diagram-aware postprocessing

The standard Faster R-CNN postprocessing method has a
major downside for recognizing symbols in diagrams: it does
not consider any domain knowledge about the global struc-
ture of diagrams. In this work, we design a postprocessing
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Fig. 7 Diagram-aware postprocessing We remove detections with a
score below threshold. Then, we perform NMS over different groups of
classes using dedicated IoU thresholds. Third, we generate candidate
edges between nodes based on arrowkeypoint to node symbol distances.
Then, we ensure that there is at most one edge per direction between
two nodes. We also merge text phrases located within a node

method that takes into account the following spatial and
structural observations about handwritten arrow-connected
diagrams:

1. Nodes in diagrams are typically drawn in a way that the
bounding boxes of any two nodes have little overlap.

2. There is at most one text phrase within a node that labels
this node.

3. Most graphical languages, including flowcharts and finite
automata, allow at most one edge per direction between
two nodes.

4. The bounding boxes of arrows can have a large overlap,
especially for opposite arrows that join the same nodes.

Based on these observations, Fig. 7 shows our diagram-
aware postprocessing method. We opt for a rule-based
sequential method that starts by filtering symbol candidates
based on a classification score threshold. We then perform

Fig. 8 Arrows with large bounding box overlap The two highlighted
arrows have a high IoU, which makes it impossible for any Faster R-
CNN detector with standard NMS to accurately detect both at once

NMS with a diagram-specific strategy. As mentioned, we
observe that arrows can have large bounding box overlap.
Figure 8 shows an exemplary diagram with two arrows that
have close to 70% IoU. Even with a perfect model, the
NMS postprocessing in standard Faster R-CNN with a 50%
IoU threshold would eliminate one of both arrows (the one
with the lower score). Therefore, we increase the arrow IoU
threshold to 80%. Increasing the threshold generates a lot
more arrow candidate detections, and often multiple candi-
dates per ground truth arrow. To filter those duplicates, we
employ a duplicate edge suppression step later in the pipeline.
For Text NMS, we reduce the IoU threshold to 30%, since
the axis-aligned bounding boxes typically enclose thewritten
text very well, and it is uncommon to have text that largely
overlaps. Our node NMS procedure is based on the first
observation that node bounding boxes typically have little
overlap. More concretely, we want to ensure that our model
does not generate two detections for different node classes
with almost identical bounding boxes. While allowing mul-
tiple detections for the same node would increase recall, it
is unrealistic to assume such a scenario in practice, and it
merely shows that the model is not sure about which class
to assign. To prevent those duplicate detections, we perform
NMS over all node classes jointly.

The arrow structure recognition step computes the dis-
tance of each arrow keypoint to its closest node and creates
a candidate edge between the two respective closest nodes.
For the FA dataset, where initial arrows have no predeces-
sor node, we use a heuristic and only connect an arrow to a
predecessor node if the spatial distance between the arrow
tail keypoint and the node bounding box is lower than 50.
The duplicate edge suppression step eliminates duplicate
candidate arrows that join the same two nodes in the same
direction. Duplicates are resolved by choosing the arrowwith
the highest classification score.
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Table 1 Handwritten diagram
dataset statistics

Dataset Split Writers (split/total) Templates (split/total) Diagrams Symbols

FC_A Train 31/35 14/28 248 5540

Test 15/35 14/28 171 3791

FC_B Train 10/24 28/28 280 6195

Validation 7/24 28/28 196 4342

Test 7/24 28/28 196 4343

FA Train 11/25 12/12 132 3631

Validation 7/25 12/12 84 2307

Test 7/25 12/12 84 2323

DIDIno_text Train ?/364* 940/940 27,278 193,939

Validation ?/364* 916/940 4545 34,464

Test ?/364* 919/940 4545 34,139

DIDItext Train ?/364* 5300/5629 16,717 173,070

Validation ?/364* 2131/5629 2785 30,468

Test ?/364* 2090/5629 2785 34,052

* The DIDI dataset is split by writer (364 total). However, the writer distribution is unknown since the writer
identifiers are not public

In case the model detects multiple text phrases within a
node bounding box, wemerge those into a unified text phrase
during postprocessing. The unified text phrase is createdwith
a union bounding box andmaximumclassification score over
all text phrases in question.

5 Experiments

In this section, we describe the datasets (Sect. 5.1) and
metrics (Sect. 5.2) used to evaluate our method, before we
discuss implementation details (Sect. 5.3) and the experimen-
tal results in Sect. 5.4. We complete the experiments with an
error analysis in Sect. 5.5, where we also outline how future
work could address common sources of error.

5.1 Datasets

We evaluate our method on four handwritten diagram
datasets, three depicting flowcharts (FC_A [1], FC_B [6],
and DIDI [11]), and one finite automata dataset (FA [2]).
Table 1 shows basic statistics for all datasets. As mentioned
in Sect. 2.1, the DIDI dataset consists of two parts: one
that contains diagrams with textual labels (DIDItext) and
one without textual labels (DIDIno_text). Throughout the
experiments, we train on the entire DIDI dataset, but report
the results for both parts separately. For all datasets, the splits
were either created based on writers (FC_B, FA, DIDI) or
based on templates (FC_A), such that the sets of writers or
templates in the respective training, validation, and test parts
are disjoint. This means that the experimental results either
show to what extent the model generalizes to unseen writers

or unseen layouts, but not both at the same time. As another
difference, FC_A has no validation set. Obviously, it would
be possible to take a subset of the train dataset as validation
set. Since the majority of related works does not conduct a
further split of the training set, we opt for the same approach.
To avoid overfitting to the test set, we conduct all hyperpa-
rameter tuning on the FC_B training and validation set and
train a model on FC_A using the same configuration.
Online-to-offline conversion All four diagram datasets are
online datasets, where each diagram has been captured as a
sequence of strokes. For the FC_B dataset, we use the offline
FC_Bscan dataset introduced in [7], which contains scans
of printed FC_B diagrams. For the FC_A and FA datasets,
we render the strokes as anti-aliased polylines with a stroke
width of 3. To ensure border-touching strokes are fully vis-
ible, we pad each image by 10 pixels on each side. For the
DIDI dataset, we create an image with the dimension of the
drawing area that was shown to the user and plot the strokes
at their corresponding positions. During data collection, the
generated flowcharts were rescaled to fill the drawing area.
The size of this drawing area varies, with a maximum of
3600×2232 pixels. To avoid overly large images, we rescale
each image to the initial scale of the generated flowchart.
Bounding boxes For the offline FC_Bscan dataset, we use
the provided bounding box annotations. In the following, we
outline howwe generate the ground truth bounding boxes for
the other online datasets. For FC_A and FA, we define the
symbol bounding box as the union bounding box of all its
strokes. As mentioned in Sect. 2.1, the DIDI dataset is not
annotated on stroke level. Instead, we use the symbol bound-
ing boxes of the corresponding GraphViz diagram. Since the
participants do not draw precisely over the diagrams, the
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Fig. 9 Exemplary DIDI diagrams with overlaid drawings the exam-
ples illustrate the inconsistencies between GraphViz and handwritten
diagrams

extracted bounding boxes do not perfectly fit the handwrit-
ten shapes. To quantify this difference, wemanually annotate
100 handwritten diagrams (50 without and 50 with textual
labels). Figure 9 shows some drawings from this sample and
illustrates two major drawing issues we identified: diagrams
where a user did not draw over the flowchart as instructed
(9a) and diagrams where a user forgot to draw some or all
of the shapes (9b). Since the evaluation metrics described in
Sect. 5.2 are based on bounding box IoU, we try to exclude
these erroneous diagrams in order to get ameaningful assess-
ment of ourmethod.As a heuristic, we exclude a drawing if at
least one bounding box contains no stroke pixels. This heuris-
tic correctly identifies 8 diagrams with drawing errors within
the 100 diagram sample, but misses one diagram where the
user forgot to draw an arrow. Table 2 shows the proportion of
excluded diagrams using mentioned heuristic, and it reveals
that drawingmistakes occur very frequently in theDIDItext
train and test set.

Further, to account for inaccurate drawings such as Fig. 9c
and d , we use an IoU threshold of 50% instead of 80% for the
evaluation metrics described in Sect. 5.2. Within the sample
of 92 diagrams without drawing mistake, 0/325 annotated
nodes, 19/271 (7%) arrows, and 40/188 (21%) text phrases
have less than 50% IoU between handwritten and GraphViz
bounding box. Two of those text phrases and two arrows
can be found in Fig. 9c and d. Overall, this means that a

Table 2 Excluded DIDI diagrams with drawing errors: a drawing is
excluded if at least one diagrambounding box contains onlywhite pixels

Split DIDIno_text DIDItext

Train 404/27278 (1.48%) 1303/16717 (7.79%)

Validation 12/4545 (0.26%) 50/2785 (1.80%)

Test 12/4545 (0.26%) 867/2785 (31.13%)

Total 428/36368 (1.18%) 2220/22287 (9.96%)

For such a bounding box, the user either drew the symbol at another
location, or not at all

bounding box that perfectly encloses a handwritten symbol
can still be evaluated as incorrect, even with the relaxed IoU
threshold. Instead, for a positive evaluation result themodel is
required to predict the location and size of the corresponding
GraphViz symbol.
Arrow keypoints For training our arrow keypoint regressor,
we need to specify ground truth arrow head and tail points.
The head and tail points are explicitly annotated in theFA and
FC_Bscan dataset. For the DIDI dataset, we extract the head
and tail keypoints from the arrow spline control points in the
GraphViz dot file of the generated flowchart. For the FC_A
dataset, we use a heuristic to extract the keypoints from the
stroke data. For each arrow, we compute the Harris corner
measure response image and then identify corner peaks with
a minimum distance of 5. We set the arrow head and tail
keypoints as the corner points closest to the next and previous
node, respectively. We quantitatively evaluate the accuracy
of our heuristic on the FC_B dataset, where the head and
tail points have been annotated. For the flowcharts in the
training split, we compute the mean absolute error (mae)
based on the Euclidean distance between each approximated
and annotated arrow keypoint.We find that the approximated
arrow tail (mae=1.38) and arrow head (mae=5.82) keypoints
are sufficiently close to the human annotations.

5.2 Evaluationmetrics

We evaluate ourmethod using recognitionmetrics on symbol
and diagram level. Regarding symbol recognition, Bresler,
Průša, and Hlaváč [7] compute the symbol recognition recall
at an IoU threshold of 80%.Additionally, arrows are required
to be connected to the correct node symbols. When using an
object detector framework, the recall negatively correlates
with the utilized detection score threshold. Without using
NMS and a detection score threshold, a Faster R-CNN sys-
temgenerates one detection per object proposal,whichwould
result in more than 1000 detections per image. Therefore,
recall on its own does not possess much informative value
for evaluating object detectors, since any detector can be
configured to achieve very high recall. This is an important
distinction between related work that uses algorithms based
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Table 3 Diagram recognition
rate: Comparison of our method
with other online and offline
methods

FC_A FC_B FA DIDIno_text DIDItext

Online methods

Wang et al. [36] 5.8 – – – –

Julca-Aguilar et al. [14] 34.0 – – – –

Bresler et al. [6] 59.1 67.9 79.8 – –

Offline methods

Bresler et al. [7] – 37.7 – – –

Arrow R-CNN 68.4 78.6 83.3 83.9 85.1

Bold indicates best result per column
For FC_B, the offline results are based on FC_Bscan

Table 4 Augmentation ablation
study: the augmentation
methods increase the diagram
recognition rate for the small
datasets substantially, but lower
the rate on the large DIDI
dataset

FC_A FC_Bscan FA DIDIno_text DIDItext

No augmentation 23.4 70.4 52.4 82.5 83.7

ShiftScaleRotate 33.9 73.0 60.7 82.6 83.5

+ RandomRotate90 & Flip 57.3 77.0 79.8 80.9 83.7

+ IAMWordAugmentation 66.7 76.0 81.0 80.8 83.5

Bold indicates best result per column
All results use standard faster R-CNN postprocessing and are based on the test set

on reconstructed strokes. Here, this trade-off is less severe,
since each reconstructed stroke is assigned to at most one
symbol. However, false-positive reconstructed strokes, such
as noise pattern that stem from the scanning process, might
still lead to false-positive symbols, which affect the preci-
sion of the system. In [7] symbol recognition precision is not
reported. To make the symbol recognition recall comparison
somewhat fair, we use a score threshold of 0.7 throughout all
our experiments, which corresponds to the default threshold
of our object detector framework. Moreover, with our node
NMS postprocessing, we also ensure that we do not have
multiple predictions for one symbol.

On a more aggregate level, The diagram recognition
metric intuitively assesses the performance of a diagram
recognition system as the ratio of correctly recognized dia-
grams in a test set. In this setting, a diagram has been
recognized if the number of detected symbols equals the
number of ground truth symbols, each symbol has been cor-
rectly classified and localizedwith at least 80% IoU, and each
of arrow predecessor and successor nodes has been correctly
identified.

5.3 Implementation

Our Arrow R-CNN implementation is based on the mas-
krcnn-benchmark [22] R-CNN framework and uses PyTorch
[25]. As CNN backbone we use ResNet-101 with FPN. For
training, we adopt the recommended framework parameters
for our CNN backbone. We use SGD with a weight decay
of 0.0001 and momentum of 0.9. Each model is trained on a
Tesla V100 GPU with 16GB memory for 90k mini-batches,

while reducing the learning rate after 60k and 80k iterations
by a factor of 10. On the Tesla V100 GPU, the training takes
between 25 and 30 hours. We use a batch size of 4 and
decrease the learning rate from the recommended value of
0.02 for a batch size of 16 to 0.005 according to the linear
scaling rule [13]. To decrease memory usage during train-
ing, we use the default framework configuration and group
images with similar aspect ratios in one batch.

To demonstrate the general applicability of our approach,
we use identical configurations to train and evaluate models
for all datasets, except for two exceptions: as discussed in
Sect. 4.2, we use an arrow distance threshold to account for
arrows without a predecessor node in the FA dataset. For the
DIDI dataset, we do not use augmentation methods since
the dataset is very large.

5.4 Results

Diagram recognition Table 3 shows that Arrow R-CNN
improves state-of-the-art in offline recognition. Even though
our method uses no stroke information, the diagram recogni-
tion rates are also higher than state-of-the-art online systems.

Further, we conduct two ablation studies to quantify the
effect of each augmentation and postprocessing method
proposed in Sect. 4. Table 4 shows that the augmentation
methods substantially improve the diagram recognition rate
for small datasets, especially for FC_A, where the model has
to generalize to unseen layouts. For the large DIDI dataset,
the augmentationmethods slightly lower the recognition rate.
To demonstrate the general applicability of our method, we
used the same number of training iterations for all datasets.
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Table 5 Postprocessing
ablation study: the
diagram-aware postprocessing
methods increase the diagram
recognition rate on all test sets

FC_A FC_Bscan FA DIDIno_text DIDItext

Standard NMS (IoU ≤ 0.5) 66.7 76.0 81.0 82.5 83.7

+ Node NMS 66.7 78.6 82.1 83.5 83.8

+ Arrow NMS & edge suppr. 67.8 78.6 83.3 83.9 85.1

+ Text NMS & merge node texts 68.4 78.6 83.3 83.9 85.1

Bold indicates best result per column

Table 6 FC_A symbol recognition at IoU 80% on test set

Class Arrow R-CNN Wu [38]
Precision Recall RecallIoU50

Arrow 94.7/97.3* 96.0/98.5* 80.3

Connection 99.2 100 73.4

Data 100 99.7 78.5

Decision 100 99.5 78.9

Process 99.8 100 88.3

Terminator 100 100 90.6

Text 99.3 99.1 86.0

Micro avg. 97.9/98.8* 98.3/99.1* 83.2

*does not consider if arrow has been correctly matched to nodes

Table 7 FC_Bscan symbol recognition at IoU 80% on test set

Class Arrow R-CNN Bresler [7]
Precision Recall Recall

Arrow 98.0/98.0* 98.0/98.0* 84.3

Connection 100 100 86.6

Data 100 94.9 94.4

Decision 100 100 96.9

Process 95.5 100 98.8

Terminator 100 100 93.6

Text 99.2 99.3 93.7

Micro avg. 98.7/98.7* 98.7/98.7* 91.3

*does not consider if arrow has been correctly matched to nodes

However, the combination of large dataset size and multiple
augmentation methods might require more training itera-
tions. We leave the investigation of the interplay between
augmentation methods and dataset size to future work.

Table 5 shows the results of the postprocessing ablation
study and reveals that node NMS improves the diagram
recognition rate on four out of five datasets. Increasing the
Arrow NMS IoU threshold and introducing edge suppres-
sion leads to further improvements on all datasets except
FC_Bscan, where the rate stays the same. Also, merging
texts within a node is a straightforward method to improve
the results on FC_A.
Symbol recognition Tables 6, 7, 8 and 9 show symbol
recognition results for the evaluated datasets. Overall, Arrow
R-CNN achieves perfect recognition results for several node

Table 8 FA symbol recognition at IoU 80% on test set

Class Precision Recall

Arrow 98.4/99.0* 98.4/99.0*

Final state 100 100

State 100 100

Text 99.6 99.7

Micro avg. 99.3/99.5* 99.3/99.5*

*does not consider if arrow has been correctly matched to nodes

shapes, which can be explained by the fact that the shape
and scale of nodes has a much lower variance than arrow and
texts.

On the FC_A dataset (Table 6), where relatedworks report
83.2% [38] and 84.2% [7] symbol recognition recall, Arrow
R-CNN has a much higher recall (98.3%). The largest source
of error for ArrowR-CNN is in the arrow class, where arrows
have either not been detected with at least 80% bounding
box overlap, or the arrow has not been joined to the cor-
rect node symbols. On the FC_A training set, we noticed
that our model fails to recognize diagrams of template 5 and
7. In these layouts, nodes are sometimes connected through
a sequence of two arrows. Yet, our current postprocessing
logic assumes that an arrow always points to a node and thus
connects the arrow to the node closest to its head keypoint.
We leave the development of appropriate methods for the
arrow-after-arrow scenario to future work.

Table 7 shows that Arrow R-CNN can accurately recog-
nize symbols in scanned flowcharts. In the FC_Bscan test
set, all arrows that have been detected correctly are also con-
nected to their ground truth nodes. This demonstrates the
effectiveness of the Arrow R-CNN arrow keypoint mecha-
nism and postprocessing. Arrow R-CNN is also applicable
to diagrams other than flowcharts. As Table 8 illustrates, the
model perfectly recognizes the state and final state shapes in
the FA finite automata test set and also achieves very good
results for arrows and text. For the DIDI dataset, the symbol
recognition results in Table 9 are all above 90%, but slightly
lower than the results on the other dataset, even though a
lower IoU threshold of 50% is used.As discussed in Sect. 5.1,
this has to do with the discrepancy between the ground truth
bounding boxes extracted from the diagram and the actual
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Table 9 DIDI symbol
recognition at IoU 50% on test
set

Class DIDIno_text DIDItext

Precision Recall Precision Recall

Arrow 95.6/97.5* 94.7/96.5* 96.6/99.2* 95.2/98.0*

Box 97.1 96.5 99.9 99.8

Diamond 99.2 97.5 99.9 99.9

Octagon 96.3 92.2 100 99.7

Oval 92.6 97.2 99.7 99.4

Parallelogram 97.9 97.0 99.9 99.8

Text – – 98.5 97.7

Micro avg. 96.1/97.0* 95.4/96.3* 98.4/99.1* 97.6/98.4*

*does not consider if arrow has been correctly matched to nodes

Table 10 FC_Bscan runtime per image: Arrow R-CNN timings are
taken using a Tesla V100 GPU, with the image already resized and
loaded to memory

Method Runtime [ms]
Min Mean Std. Max

Arrow R-CNN 59 91 15 119

Bresler et al. [7] 2623 10,970 – 37,972

Fig. 10 FC_Bscan flowchart with most missing symbols in validation
set: highlighted in red are (1) an arrowwith only 74% IoU, (2) a process
symbol confused as data, and (3) a data symbol confused as process

drawings. In Sect. 5.5, we further discuss the implications of
this discrepancy and show some error cases.

Finally, Table 10 shows our system recognizes a diagram
in less than 100ms on average and is two orders of magnitude
faster than related work.

5.5 Error analysis and future work

Figure 10 shows the predicted symbols and arrow keypoints
of a FC_Bscan flowchart. For texts and straight arrows,
where one bounding box side is often very short, a predic-
tion off by a few pixels can result in less than 80% IoU. This
raises the question whether an 80% IoU threshold all sym-
bols types is too strict. From an end-user perspective, it might

Fig. 11 FA diagramwith arrow-match errors: highlighted in red are two
arrows confused as initial arrows. The arrows have not been matched
correctly to their source shape since the distance between predicted tail
keypoint and shape bounding box exceeds the threshold

only matter that the arrow has been correctly identified as an
edge between two nodes. To this end, future research could
investigate graph similarity measures to evaluate diagram
recognition systems. The two confusions between process
and data are likely due to the fact that the writer in questions
draws very uneven lines. These uneven lines are typically
caused by uncontrolled oscillations of the hand muscles,
dampened by inertia [33]. In handwriting recognition, elastic
distortion augmentation is a way to simulate these oscil-
lations [17,33]. We found that although elastic distortion
augmentation improves classification results, it has a neg-
ative effect on localization accuracy. This is due to the fact
that the distortions cause the annotated bounding box and
keypoints to be inaccurate, e.g. by distorting a line close
to a bounding box such that it surpasses the bounding box.
Future work could investigate elastic distortion methods that
also adapt ground truth annotations accordingly.

Figure 11 shows a finite automata diagram. The diagram
has two arrows with overlapping bounding boxes, and the
model does not accurately predict the keypoints for the larger
arrow. This suggests that the model is not sure which arrow
head it should attend to. The example shows that localizing
arrows through axis-aligned bounding boxes has its limita-

123



Arrow R-CNN for handwritten diagram recognition

Fig. 12 DIDItext diagram with arrow and text errors: 12a shows the
extent to which the drawn shapes and text differ from their correspond-
ing GraphViz symbols. The errors highlighted in red in 12b are (1) a
missing arrow due to confusion between two crossing arrows, (2) an
arrow with only 0.48 ground-truth IoU, and (3)–(8) texts with insuffi-
cient IoU

tions when their bounding boxes overlap. A ground truth
arrow bounding box can containmultiple arrow heads, which
forces the model to not just recognize arrow heads in a local
context. Instead, the model is required to consider a wider
context to identify the relevant arrow. Future research could
investigate more robust methods to detect arrows and their
keypoints. In scene text detection, it is common to predict
rotated instead of axis-aligned bounding boxes [41]. These
rotated bounding boxes would capture arrows in a more
compact way and lead to less overlapping bounding boxes.
As another approach, diagram structure recognition could
be framed as visual relationship detection [16]. Instead of
detecting arrow instances, a classifier could directly predict
if two given nodes are connected through an arrow. Alter-
natively, a classifier could predict which arrow head and tail
keypoint belong together.

For the DIDI dataset, Fig. 12 illustrates that the model is
not only required to recognize the handwritten diagram, but
also to predict the GraphViz diagram it originates from. As
can be seen, the model correctly predicts node shape bound-
ing boxes which are smaller than the hand-drawn shapes,
i.e., it recognizes that the shapes have been drawn exces-
sively large. However, when the position and size of the
hand-drawn and GraphViz symbols differs too much, this
task becomes nearly impossible. This is illustrated by the
numerous text localization errors in the example, where, e.g.
the hand-drawn arrow labels “Back” have very little inter-
section with the corresponding GraphViz texts. The example
also demonstrates why the IAM word augmentation method

is not very effective on DIDI, since the augmented word
bounding box is defined by the handwritten strokes instead
of the corresponding diagram label. Future work could pro-
pose evaluation methods that better disentangle handwriting
and GraphViz diagram recognition performance for DIDI.

6 Conclusion

We propose Arrow R-CNN, the first deep learning system
for offline handwritten diagram recognition. Our system is
able to correctly recognize more than 68% of all diagrams
in four public datasets and also improves the symbol recog-
nition state-of-the-art in all symbol classes. We show that
we can train highly accurate deep R-CNN models on small
datasets when using data augmentation methods guided by
human domain knowledge. Since standard Faster R-CNN
postprocessing is not well suited for diagram symbol recog-
nition, we propose a postprocessing method that takes into
the account the global structure of diagrams. Our system
recognizes arrow-connected diagrams in less than 100ms
on average, which allows it to be used in environments that
require quick response times.

Our results bring us a step closer to the ability of assist-
ing users in the translation of hand-drafted diagrams into an
electronic version that can be managed, validated and fur-
ther processed by diagram modeling software. The missing
piece at this point is the integration with a handwritten text
recognition system for recognizing the spotted text phrases.
In future work, we plan to investigate such a combination.
Further, we outline several ways on how to further improve
the recognition rate, putting special emphasis on recognizing
arrows and the global diagram structure.
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