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Abstract
Sorghum (Sorghum bicolor [L.] Moench) is the fifth most important cereal crop
worldwide and second aftermaize (ZeamaysL.) in Kenya. It is an important food
security crop in arid and semi-arid lands, where its production potential is ham-
pered by drought. Drought tolerance can bemeasured by a plant’s ability to resist
premature senescence, often described as stay-green. This study was carried out
with the objective of identifying novel stay-green trait among wild and landrace
genotypes of sorghum. Forty-four sorghumgenotypes that included 16 improved,
nine landraces, and 17 wild relatives of sorghum alongside known stay-green
sources, B35 and E36-1, were evaluated under well-watered and water-stressed
conditions in an alpha-lattice design of three replications. Data was collected on
plant height (PHT), flag leaf area (FLA), panicle weight (PWT), 100-seed weight
(HSW), relative chlorophyll content (RCC), number of green leaves at maturity
(GLAM), days to 50% flowering (DFL), and grain yield (YLD). Genetic diversity
was determined using diversity arrays technology (DArT) sequencing and qual-
ity control (QC) markers were generated using a java script. Lodoka, a landrace,
was the most drought-tolerant genotype, recorded the highest numbers of RCC
and GLAM, and outperformed B35 and E36-1 in yield under water-stress and
well-watered conditions. The RCC was highly correlated with GLAM (r = .71)
and with yield-related traits, HSW (r = .85), PWT (r = .82), and YLD (r = .78).
All traits revealed high heritability (broad-sense) ranging from 60.14 to 98.4% for
RCC and DFL, respectively. These results confirm earlier reports that wild rela-
tives and landraces are a good source of drought tolerance alleles.

Abbreviations: DArT, diversity arrays technology; DFL, days to
flowering; FLA, flag leaf area; GBS, Genotyping-by-sequencing; GLAM,
number of green leaves at maturity; HSW, 100-seed weight; PHT, plant
height; PWT, panicle weight; QC, quality control; QTL, quantitative trait
loci; RCC, relative chlorophyll content; SNP, single nucleotide
polymorphism
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1 INTRODUCTION

Sorghum (2n = 2x = 20) is considered a major staple food
for a large portion of the world’s population. Sorghum is
the fifth most important cereal crop globally and is ranked
second among staple food grains in semiarid tropics. The
crop remains a critical component of food security formore
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than 300 million inhabitants of Africa (Zhao, Che, Glass-
man, & Albertsen, 2019). Water stress is one of the major
abiotic stresses affecting sorghum production in semi-
arid areas, often experiencing long periods of drought and
erratic rainfall (Rockströmet al., 2010). Ordinarily, drought
can occur at any stage of crop development, and the impact
of moisture stress on yield is dependent on the stage of
plant development. In sorghum, anthesis and grain-filling
stages are the most vulnerable (Assefa, Staggenborg, &
Prasad, 2010; de Camargo & Hubbard, 1999).
Several traits conferring drought tolerance have been

reported in sorghum (Conley et al., 2001; Farré & Faci,
2006; Assefa et al., 2010; Schittenheim & Schroetter,
2014), including stay-green trait (Thomas & Ougham,
2014). Stay-green is a postflowering drought adaptation
trait expressed by delayed leaf senescence as a result of
improved water balance in the plant (Borrell et al., 2014;
Subudhi, Rosenow, & Nguyen, 2000). The stay-green
phenotype is considered functional when it is associated
with greater biomass accumulation and enhanced crop
productivity (Jordan, Hunt, Cruickshank, Borrell, & Hen-
zell, 2012), or cosmetic/non-functional when chlorophyll
is retained but the plant loses its ability to photosynthesize
(Myers, Aljadi, & Brewer, 2018). Stay-green trait has been
reported in several cereal crops including wheat (Triticum
aestivumL.) (Christopher, Christopher, Borrell, Fletcher, &
Chenu, 2016), maize (Belícuas, Aguiar, Bento, Camara, &
Junior, 2014), and rice (Oryza sativa L.) (Hoang & Kobata,
2009). Only functional stay-green trait is considered
important for crop improvement (Christopher et al., 2016).
Stay-green studies in sorghum have led to the identifica-

tion of four major consistent quantitative trait loci (QTL)
(Stg1, Stg2, Stg3, Stg4) (Crasta, Xu, Rosenow, Mullet, &
Nguyen, 1999; Harris et al., 2007; Reddy, Ragimasalawada,
Sabbavarapu, Nadoor, & Patil, 2014; Subudhi et al., 2000;
Xu, Rosenow, & Nguyen, 2000). Some of these QTL are
reportedly linked to enhanced grain yields (Borrell et al.,
2014; Kassahun, Bidinger, Hash, & Kuruvinashetti, 2010;
Reddy et al., 2014) and superior fodder quality (Blümmel,
Deshpande, Kholova, & Vadez, 2017). However, most of
these studies have been done using one major source of
stay-green, B35/BTx642 (Rosenow, Quisenberry, Wendt, &
Clark, 1983), with just a few studies using SC56 (Kebede,
Subudhi, Rosenow, & Nguyen, 2001) and E36-1 (Hauss-
mann et al., 2002). Stay-green sources B35 and E36-1 are
from Ethiopia, while SC56 is from Sudan. Both Sudan
and Ethiopia lie in the region where sorghum was first
domesticated (Doggett, 1988), and the diverse germplasm
that exists in this region would be a potential source of
more novel stay-green alleles. A recent study of diverse
sweet sorghum from Ethiopia reported an unexploited
germplasm that can be included in breeding programs
(Disasa et al., 2016).

Core Ideas

∙ New sources of stay-green from wild sorghum
and landraces

∙ Three sorghum improved varieties show
resilience under drought

∙ QC markers for hybridity testing developed

There is need to avoid the dependence on only a few
sources of stay-green genes and alleles as is currently the
case in global sorghum breeding programs. Crop wild rel-
atives and landraces have been reported as reservoirs of
useful genes for crop improvement (Brar & Khush, 2018;
Nyamongo et al., 2015; Kyratzis, Nikoloudakis, & Katsiotis,
2019). The first step toward exploitation of this germplasm
would involve screening and characterizing the novel alle-
les for their significance in crop improvement (Hokanson
et al., 2010). In Kenya, most sorghum landraces grown by
small-scale farmers freely exchange genes with their wild
relatives growing in close proximity (Magomere, Ngugi,
Obukosia, Mutitu, & Shibairo, 2015), although the poten-
tial of this genetic variation has not been fully exploited
in breeding drought-tolerant sorghum genotypes.With the
increasing effect of global warming, there is need to collect,
screen, and identify novel sorghum germplasm harboring
the stay-green trait that can be harnessed for adaptation to
drought-prone agroecologies of eastern Africa.
The present study screened both wild and landrace

sorghum alongside improved sorghum varieties and
known stay-green sources, B35 and E36-1, under well-
watered and water-stressed conditions in order to identify
novel sources of stay-green. A unique set of molecular
markers was also assessed for their potential in QC and
marker-assisted backcrossing.

2 MATERIALS ANDMETHODS

2.1 Plant material and experimental
layout

Sorghum genotypes comprising of 17 wild accessions, nine
landraces, 16 improved varieties, and the two known stay-
green sources, B35 and E36-1, were used in the study
(Table 1). Fifty-two segregating F2 populations were also
part of the experimental design (data not presented). The
entire wild and some landrace accessions were obtained
from the Genetic Resources Research Institute of the
Kenya Agricultural and Livestock Research Organiza-
tion (KALRO). All the landraces and wild accessions
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TABLE 1 Sorghum genotypes used in the study including the source of the germplasm and classification

Genotype Sourcea Classification Species
1. GBK 044058 GeRRI Wild Sorghum sp.
2. GBK 044336 GeRRI Wild Sorghum sp.
3. GBK 048922 GeRRI Wild Sorghum sp.
4. GBK 047293 GeRRI Wild Sorghum arundinaceum (Desv.) Stapf
5. GBK 048916 GeRRI Wild Sorghum sp.
6. GBK 016085 GeRRI Wild Sorghum arundinaceum (Desv.) Stapf
7. GBK 048917 GeRRI Wild Sorghum sp.
8. GBK 016114 GeRRI Wild Sorghum sudanense (Piper) Stapf
9. GBK 044063 GeRRI Wild Sorghum sp.
10. GBK 048156 GeRRI Wild Sorghum arundinaceum (Desv.) Stapf
11. GBK 016109 GeRRI Wild Sorghum arundinaceum (Desv.) Stapf
12. GBK 044120 GeRRI Wild Sorghum sp.
13. GBK 040577 GeRRI Wild Sorghum arundinaceum (Desv.) Stapf
14. GBK 048921 GeRRI Wild Sorghum sp.
15. GBK 044448 GeRRI Wild Sorghum sp.
16. GBK 045827 GeRRI Wild Sorghum purpureosericeum (Hochst. ex

A. Rich.) Asch. & Schweinf.
17. GBK 048152 GeRRI Wild Sorghum arundinaceum (Desv.) Stapf
18. GBK 044065 GeRRI Landrace Sorghum sp.
19. GBK 043565 GeRRI Landrace Sorghum arundinaceum (Desv.) Stapf
20. GBK 044054 GeRRI Landrace Sorghum almum Parodi
21. OKABIR ICRISAT Landrace Sorghum bicolor
22. IS 9830 ICRISAT Landrace Sorghum bicolor
23. IBUSAR ICRISAT Landrace Sorghum bicolor
24. AKUOR-ACHOT ICRISAT Landrace Sorghum bicolor
25. LODOKA ICRISAT Landrace Sorghum bicolor
26. E36-1 ICRISAT Stay-green source Sorghum bicolor
27. B35 ICRISAT Stay-green source Sorghum bicolor
28. N13 ICRISAT Landrace Sorghum bicolor
29. SRN39 ICRISAT Improved variety Sorghum bicolor
30. KARIMTAMA-1 ICRISAT Improved variety Sorghum bicolor
31. GADAM ICRISAT Improved variety Sorghum bicolor
32. F6YQ212 ICRISAT Improved variety Sorghum bicolor
33. MACIA ICRISAT Improved variety Sorghum bicolor
34. FRAMIDA ICRISAT Improved variety Sorghum bicolor
35. KAT/ELM/2016 PL82 KM32-2 ICRISAT Improved variety Sorghum bicolor
36. KAT/ELM/2016 PL1 SD15 ICRISAT Improved variety Sorghum bicolor
37. IESV23006 DL ICRISAT Improved variety Sorghum bicolor
38. ICSV III IN ICRISAT Improved variety Sorghum bicolor
39. HAKIKA ICRISAT Improved variety Sorghum bicolor
40. CR35 ’ 5 ICRISAT Improved variety Sorghum bicolor
41. IESV92043 DL ICRISAT Improved variety Sorghum bicolor
42. WAHI ICRISAT Improved variety Sorghum bicolor
43. IESV21400 DL ICRISAT Improved variety Sorghum bicolor
44. IESV23010 DL ICRISAT Improved variety Sorghum bicolor

aGeRRI, Genetic Resources Research Institute; ICRISAT, International Crops Research Institute for the Semi-Arid Tropics.
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maintained in the gene bank have not been improved
through any form of selection. The rest of the material was
obtained from the International Crops Research Institute
for the Semi-Arid Tropics (ICRISAT), Nairobi. The experi-
ments were planted at KALROKiboko field station, Kenya
(2.15◦ S, 37.75◦ E) in July 2017 in two blocks; the first block
was irrigated throughout the plant growth cycle from sow-
ing to physiological maturity stage, while the second block
was water stressed to facilitate evaluation of genotypes for
their response to drought as described elsewhere in the
paper. Both experiments were laid out in a 12-by-8 alpha-
lattice design replicated three times. The trial consisted of
two-row plots of 2 m length) with an interrow spacing of
0.75mand intrarow spacing of 0.25m.Diammoniumphos-
phate fertilizer was applied during planting at a rate of 100
kg ha−1 and the crop was top-dressed with urea 21 d after
emergence at a rate of 40 kg ha−1 and then earthed up at
30 d after emergence. The crop was raised following the
standard agronomic practices recommended in the area.

2.2 Drought screening

The well-watered trial was irrigated three times per week,
each time receiving 3 h of irrigation supplied at 25 mm
per plot from sowing to soft-dough stage. Water was
withdrawn in the water-stressed trial at 14 d post sowing;
however, at 40 and 60 d after sowing, 25 mm of water per
plot was applied twice per week with an interval of 2 d
for each application period. Water-stress conditions were
maintained until physiological maturity, which was 95 d
after sowing.

2.3 Data collection

Data on agronomic traits was collected on six randomly
selected plants in the two rows from each of the three repli-
cations following the methodology described by IBPGR
and ICRISAT (1993). Data was collected on the following
traits: PHT (cm), FLA (m2), DFL (counts), GLAM (count),
RCC (soil plant analysis development readings) at matu-
rity, PWT (kg), HSW (g), and YLD (t ha−1). Grain yield data
was determined on a plot basis as recommended by IBPGR
and ICRISAT (1993).

2.4 Genotyping, diversity estimation
and quality control panel

Leaf tissues were sampled from the most representative
plants per genotype at seedling stage and genomic DNA
extracted using ISOLATE II Genomic DNA extraction kit

(Bioline Pty Ltd) according tomanufacturer’s instructions.
Purity and quantity of the extracted DNA was determined
using gel electrophoresis and a Qubit 2.0 Fluorometer
(Life Technologies), respectively, with final dilution to
50 ng μl−1. The DNA was sent to the Integrated Geno-
typing Service and Support at the Bioscience eastern
and central Africa Lab at the International Livestock
Research Institute hub for library construction and DArT
sequencing (https://www.diversityarrays.com/products-
and-services/applications/), as previously described
(Wójcik-Jagła, Fiust, Kościelniak, & Rapacz, 2018). The
resulting raw reads were processed using the GBS pipeline
of the Trait Analysis by Association, Evolution and Link-
age (TASSEL) 5.2.58 program (Bradbury et al., 2007). For
drawing the neighbor-joining dendrogram, raw single
nucleotide polymorphisms (SNPs) were filtered using a
minor allele frequency of ≥0.05 and SNP minimum call
rate of 100%. The dendrogramwas drawn in Darwin 6.0.20
with 1,000 bootstraps (Perrier & Jacquemoud-Collet,
2006). For developing the QC panel, a set of 20 most
informative SNPs was extracted from the SNP set used to
draw the dendrogram using a java script (Ignacio, 2019).

2.5 Statistical analysis

Analysis of variance, means, and variances for each quan-
titative trait was done in alpha-lattice design using Gen-
Stat v14.1 (VSN International, 2011). Treatmentmeanswere
compared using Fisher’s protected least significant differ-
ences at p≤ .05. The estimates of phenotypic and genotypic
variance, genotypic and phenotypic coefficients of varia-
tion were done based on the formulas proposed by Syukur,
Yunianti, and Kusumah (2011):

Genotypic variance ∶ σ2𝑔 =
𝑀𝑆𝑔 −𝑀𝑆𝑒

𝑟

Phenoypic variance ∶ σ2𝑝 = σ2𝑔 + σ2𝑒

where σ2𝑔 is genotypic variance; σ2𝑝 is phenotypic variance;
σ2𝑒 is environmental variance (error mean square from the
ANOVA);MS𝑔 is the mean square of genotypes;MS𝑒 is the
error mean square; and r is the number of replications.

Genotypic coef f icient of variation ∶

GCV =

⎛⎜⎜⎜⎝
√
σ2g

�̄�

⎞⎟⎟⎟⎠ × 100

https://www.diversityarrays.com/products-and-services/applications/
https://www.diversityarrays.com/products-and-services/applications/
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F IGURE 1 A dendrogram showing two major clusters of the 38 genotypes analyzed. Cluster (a) contained wild and landrace accessions,
while cluster (b) contained all of the improved varieties plus some of the landraces and wild accessions

Phenotypic coef f icient of variation∶

𝑃𝐶𝑉 =

⎛⎜⎜⎜⎝
√
σ2𝑝

�̄�

⎞⎟⎟⎟⎠ × 100
where σ2𝑔 is genotypic variance; σ2𝑝 is phenotypic variance;
and �̄� is grand mean of a character.
Estimations of broad-sense heritability (H2) of all traits

were calculated according to the formula described by
Allard (1960):

𝐻2 =

(
σ2𝑔

σ2𝑝

)
× 100

where σ2𝑔 is genotypic variance; σ2𝑝 is phenotypic variance.
Estimation of H2 assuming selection intensity of 5% for
individual and combined ANOVA were computed using
the formula adopted from (Johnson, Robinson, & Com-
stock, 1955). The H2 scores were classified according to
(Robinson, Comstock, & Harvey, 1949) as follows: 0–30%
= low; 30–60% =moderate; and >60% = high.
Simple linear correlation coefficients (Pearson, 1986)

were calculated to understand the relationship among the
studied agronomic traits as below:

𝑃𝑋,𝑌 =
cov (𝑥, 𝑦)

σ𝑥σ𝑌

where cov is the covariance, σ𝑥 is the standard deviation of
x, and σ𝑦 is the standard deviation of y.
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3 RESULTS

3.1 Genetic variation among sorghum
accessions

A total of 26,291 raw SNPs were generated from 38 diverse
genotypes (samples from six genotypes failed QC). The 38
genotypes included 11 improved varieties, eight landraces,
17 wild accessions, and two known stay-green sources,
B35 and E36-1. After filtering for quality and ensuring
no missing data, 803 SNPs were retained and used to
assess genetic diversity between the 38 genotypes. Two
major clusters were observed: one dominated by landraces
and wild accessions, and another by improved varieties
(Figure 1). Within the cultivated accessions cluster, there
were three subclusters of improved varieties suggesting
high similarities among the improved genotypes. Evidence
of continuous gene flow between the wild and cultivated
germplasm was revealed in the clustering of several wild
accessions with cultivated ones. Genotype B35, the most
widely used source of stay-green alleles, clustered with the
wild and landrace accessions further confirming its mixed
parentage. Genotype E36-1 clustered together with culti-
vated accessions.Apart froma fewgenotypes showinghigh
similarities, the selected set of germplasmused in the study
was diverse and likely to enhance the value of the improved
varieties if integrated in breeding programs.

3.2 Molecular markers for quality
control and marker-assisted backcrossing

From the 803 SNPmarkers used for assessing genetic diver-
sity (Figure 1), the 20 most informative markers for the 38
accessions (Table 2) were selected, which were well dis-
tributed across the genome. We confirmed the informa-
tiveness of the 20 markers by using them to draw a den-
drogram for the 38 genotypes (Figure 2). The 20 markers
differentiated the 38 genotypes (Figure 2) just as well as
the 803 SNP markers did (Figure 1).

3.3 Phenotypic variation of traits and
heritability among diverse sorghum
accessions

The mean performances of each genotype under well-
watered and water-stress conditions are summarized in
Supplemental Table S1. Seven genotypes (one landrace,
two improved, and four wild accessions) were completely
senescent under water-stress conditions. The rest of the
analysis under drought conditionswas therefore donewith
37 accessions, which included 13 wild germplasm, eight

TABLE 2 The selected set of 20 most informative single
nucleotide polymorphism markers selected from the 38 sorghum
accessions that had been genotyped using DArT-sequencing

Chromosome Position Variant
1 21279335 C/G
1 45984426 C/T
2 7803138 C/T
2 77523709 G/A
3 13455829 A/G
3 57242431 A/G
4 1389787 T/A
4 2600536 C/T
4 3295616 C/G
4 56353491 C/G
4 59715414 T/C
4 65176114 C/G
5 53835336 T/C
5 56501094 G/A
5 61381207 A/G
6 49278472 G/T
6 50201989 C/G
6 57826860 G/A
8 54998738 A/C
9 786078 T/C

landraces, 14 improved varieties, and the two stay-green
checks (B35 and E36-1). Analysis of variance performed
using the 37 accessions that did not senesce revealed signif-
icant (p ≤ .05; p ≤ .01) differences across the genotypes for
all the studied traits under both water-stress (Table 3) and
well-watered conditions (Table 4). These differences were
also revealed when the interaction between the two water
regimes was compared except in the case of FLA (Table 5).
The highest genotypic and phenotypic variation was

observed in PHT andDFL (Table 6). All traits revealed high
heritability (broad-sense) that ranged from 60.14% for RCC
to 98.40% for DFL (Table 6). Stay-green related traits, RCC
and GLAM, both recorded high heritability at 60.14 and
63.71%, respectively.
When the effect of drought was determined using

all the 44 genotypes and treating senescent genotypes
under drought stress as missing data, we observed clear
reductions in PHT, GLAM, RCC, DFL, FLA, and YLD
(Figure 3). There was no observable difference in the
means of HSW under stress and well-watered conditions,
while an increase in PWTwas observed under water stress.
We observed high correlations between RCC and

yield components, with the highest correlations recorded
between RCC and PWT (r = .82) and RCC and HSW (r =
.85) (Table 7). Flag leaf area was negatively correlated with
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F IGURE 2 A dendrogram drawn using the 20 selected informative markers. Two clusters previously identified with 803 single nucleotide
polymorphism markers (Figure 1) were still revealed

all traits except GLAM. Plant height was also highly nega-
tively correlated (r = 0.81) with PWT.

3.4 New sources of stay-green trait

Nine genotypes (LODOKA, IESV21400DL, IESV23006DL,
IESV92043DL, IESV23010DL, OKABIR, GBK 016109, GBK
048156, and AKUOR-ACHOT) outperformed both E36-1
and B35 with respect to their RCC at maturity (Figure 4a),
while seven genotypes (LODOKA, OKABIR, IBUSAR,
F6YQ212, AKUOR-ACHOT,GBK047293, andGBK048917)
had more GLAM than E36-1 and B35 (Figure 4b) under
drought conditions. Ten (IESV23010DL, IESV23006DL,
IESV92043DL, AKUOR-ACHOT, GBK 047293, LODOKA,
WAHI, GBK 016114, GBK 045827, and OKABIR) of the
18 genotypes that had outperformed B35 when ranked
using RCC measurement (Figure 4a) also yielded better

than both E36-1 and B35 (Figure 5). The landrace geno-
type LODOKA stood out as having the highest GLAM and
RCC and was also among the top yielders, with a yield of
2.2 t ha−1 out of the highest recorded yield of 2.45 t ha−1.
All genotypes that yielded better than E36-1 (Figure 5)
were considered as potential new sources of functional
stay-green.

3.5 Effect of drought on yield-related
traits

Water stress revealed an overall negative effect on yield
related traits (Supplemental Table S1; Figure 6). There
was 5.30, 9.28, and 15.80% overall decrease in PWT, HSW,
and YLD, respectively. Twenty-two, 18, and 15 out of the
37 accessions that did not senesce recorded higher PWT,
HSW, and YLD, respectively, under water stress (Figure 6).
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TABLE 3 ANOVA table showing the mean squares across 37 sorghum genotypes for each trait measured under water-stress conditions

SOVa DF PHT RCC GLAM DFL FLA HSW PWT YLD
Rep 2 1929 46.77 1.413 34.48 0.002481 0.1641 0.001125 0.0005
Genotype 36 3555.8*** 66.37*** 6.133** 179.82*** 0.0137*** 0.675*** 0.005708*** 0.997***

Residual 71 730.1 26.66 2.796 2.888 0.003 0.1516 0.001071 0.1299
a SOV, source of variation; DF, degrees of freedom; PHT, plant height; RCC, relative chlorophyll content; GLAM, no. of green leaves at maturity; DFL, days to 50%
flowering; FLA, flag leaf area; HSW, 100-seed weight; PWT, panicle weight; YLD, grain yield.
**Significant at P < .01.
***Significant at P < .001.

TABLE 4 ANOVA table showing mean squares across 37 sorghum genotypes for each trait measured under well-watered conditions

SOVa DF PHT RCC GLAM DFL FLA HSW PWT YLD
Rep 2 3648.5 210.11 123.36 4.199 0.000484 0.0477 0.027492 0.027492
Genotype 36 7892.2*** 50.86** 6.504** 94.66*** 0.00066** 0.8205*** 0.0026** 0.6139***

Residual 71 421.2 25 3.024 3.897 0.000307 0.2497 0.2497 0.001852
a SOV, source of variation; DF, degrees of freedom; PHT, plant height; RCC, relative chlorophyll content; GLAM, no. of green leaves at maturity; DFL, days to 50%
flowering; FLA, flag leaf area; HSW, 100-seed weight; PWT, panicle weight; YLD, grain yield.
**Significant at P < .01.
***Significant at P < .001.

Only nine out of the 24 accessions that showed improve-
ment in any one of the yield-related traits under drought
were improved varieties,while the restwere eitherwild (11)
or landraces (4). Neither B35 nor E36-1 showed an increase
in their yield related traits under drought conditions.

4 DISCUSSSION

This study highlighted the importance of including wild
and landrace accessions for improving important traits
in breeding programs. Molecular characterization of the
germplasm revealed genetic relationship between wild,

landrace, and improved genotypes that will be useful in
future parental selection aiming to enhance the diversity
within the breeding programs. Recent genetic analyses in
sorghum have revealed similarities between commonly
used breeding lines (Disasa et al., 2016) and unexploited
landrace collections (Disasa et al., 2016; Mofokeng,
Shimelis, Tongoona, & Laing, 2014; Upadhyaya, Dwivedi,
Wang, & Vetriventhan, 2019). The clustering of wild and
cultivated germplasm has been reported in other studies
(Mutegi et al., 2010, 2011; Sagnard et al., 2011) and is
indicative of gene flow between the two groups that could
present both ecological and agronomic issues (Ohadi,Hod-
nett, Rooney, & Bagavathiannan, 2018). Some of the wild

TABLE 5 Combined ANOVA table showing the mean squares interaction of the two water regimes on the performance of the 37
sorghum genotypes

SOVa DF PHT RCC GLAM DFL FLA HSW PWT YLD
Rep 2 2478.8 226.53 75.504 31.053 0.192 0.0544 0.19642 0.0184
Water
regimes
(W)

1 101724.5*** 55.63*** 199.485*** 376.332*** 0.2477*** 0.1117ns† 0.3105ns 0.1802ns

Genotypes
(G)

36 8394.5*** 5.62** 9.817*** 215.43*** 0.1073*** 0.9264*** 0.5731*** 1.2204***

W×G 36 3053.5*** 162.81* 3.82* 59.049*** 0.215ns 0.569*** 0.2578* 0.3905***

Residual 143 611.2 2.24 3.563 3.452 0.0213 0.2 0.1567 0.1504
aSOV, source of variation; DF, degrees of freedom; PHT, plant height; RCC, relative chlorophyll content; GLAM, no. of green leaves at maturity; DFL, days to 50%
flowering; FLA, flag leaf area; HSW, 100-seed weight; PWT, panicle weight; YLD, grain yield.
*Significant at P < .05.
**Significant at P < .01.
***Significant at P < .001. †ns, not significant.
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TABLE 6 Heritability estimates of all traits measured across 37 sorghum genotypes using mean sum of squares from the combined
water-stress and well-watered ANOVA

Traita Range 𝛔𝟐𝒈 𝛔𝟐𝒑 GCVb PCVc

Broad-
sense
Hš

%
Plant height (cm) 65–235.7 2594.43 2798.17 33.63 34.92 92.72
Grain yield (t ha-1) 0.26–2.45 0.36 0.41 2.46 2.63 87.68
RCC (SPAD) 25.63–55.84 1.13 1.87 63.89 82.38 60.14
Hundred seed weight (g) 0.31–3.50 0.24 0.31 4.54 5.13 78.41
Panicle weight (kg) 6.08–11.50 0.14 0.19 3.38 1.98 72.66
Flag leaf area (m2) 0.01–0.07 0.03 0.04 12.78 14.27 80.15
GLAM (counts) 6.08–11.50 2.08 3.27 3.45 4.33 63.71
Days to flowering (counts) 30–103 70.66 71.81 66.52 67.06 98.40

aRCC, relative chlorophyll content; SPAD, soil plant analysis development readings; GLAM, green leaves at maturity .
bGCV, genotypic coefficient of variation.
cPCV, phenotypic coefficient of variation.

F IGURE 3 Box plots of the studied traits showing the mean performance of all the 44 sorghum genotypes under water-stressed (in Blue)
and well-watered (Orange) conditions

sorghum relatives have been reported to be weedy (Okeno,
Mutegi, de Villiers, Wolt, & Misra, 2012) and gene flow
with improved germplasm could result in super weeds.
Wild sorghum is highly diverse (Billot et al., 2013; Mace

et al., 2013; Sagnard et al., 2011) and has been used as a
source of resistance to biotic (Wang et al., 2014; Mbuvi
et al., 2017) and abiotic traits (Cowan et al., 2020) includ-
ing stay-green. The oldest stay-green source, B35, is a
BC1 derivative of IS12555, durra sorghum from Ethiopia

(Subudhi et al., 2000), while E36-1 was derived from
the Ethiopian zera-zera germplasm collection (Thomas
& Ougham, 2014). Cultivated sorghum is divided into
five races (durra, caudatum, bicolor, guinea, and kafir)
based on their morphology (Harlan & de Wet, 1972).
Durra sorghum is very distinct with compact heads and
is mainly grown along the edge of the Sahara and in
India. Our results indicate the potential of discovering
many more stay-green sources from wild accessions with
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TABLE 7 Phenotypic correlations of traits measured under water stress

Traitsa PHT FLA GLAM PWT HSW YLD RCC
PHT – – – – – – –
FLA 0.28* – – – – – –
GLAM 0.48* 0.44* – – – – –
PWT −0.81*** −0.38* 0.61*** – – – –
HSW 0.63*** −0.19ns† 0.66*** 0.74*** – – –
YLD 0.64*** −0.34* 0.55*** 0.66*** 0.73*** – –
RCC 0.75*** −0.64** 0.71*** 0.82*** 0.85*** 0.78***

DFL 0.55** −0.54** 0.68*** 0.36* 0.42* 0.35* 0.66***
a PHT, plant height; FLA, flag leaf area; GLAM, no. of green leaves at maturity; PWT, panicle weight; HSW, 100-seed weight; YLD, grain yield; RCC, relative
chlorophyll content; DFL, days to 50% flowering.
*Significant at P < .05.
**Significant at P < .01.
***Significant at P < .001. †ns,not significant.

the five (GBK045827, GBK016114, GBK048922, GBK016109,
and GBK047293) promising wild accessions clustering dif-
ferently from B35 and E36-1. The genetic control of stay-
green in these new sourceswill need to be studied and fully
understood. These results further underscore the poten-
tial value of gene bank collections in contributing novel
sources required for crop improvement and productivity
enhancement. The nature of stay-green present in these
new sources will need to be understood better through the
development of relevant populations. Studies in B35 and
E36-1 have reported that three of the major QTL identified
in crosses involving B35 have also been reported in E36-1
(Haussmann et al., 2002; Subudhi et al., 2000; Thomas &
Ougham, 2014). It will be necessary to establish the nature
of QTL that will be mapped from the new sources and how
they compare with B35 and E36-1 alleles.
Despite showing superior performance under drought

for GLAM and RCC, the landrace LODOKA did not have
the highest yields. The highest yielding genotypes were
improved varieties: IESV203010 DL, IESV23006 DL, and
IESV92043 DL. This underscores the need for enhancing
the overall genetics of the identified drought-tolerant lan-
draces in order to improve their yield. This will need to
be done through introgression of the unique traits into
farmer-preferred varieties or by selecting the respective
landraces under intense cultivation and improving their
agronomic traits. Most importantly, these three superior
performing improved genotypes present extremely good
material that should be promoted immediately under the
arid and semiarid ecologies.
The high positive significant correlation coefficients

observed between RCC and yield-related traits are consis-
tent with previous reports in both sorghum (Borrell et al.,
2014; Borrell, Hammer, & Henzell, 2000; Jordan et al.,
2012; Kamal, Alnor Gorafi, Abdelrahman, Abdellatef, &
Tsujimoto, 2019; Kassahun et al., 2010) and other cere-

als (Bekavac et al., 2007; Kamal et al., 2019), and con-
firms that the new stay-green genotypes identified in the
current study are functional. It was surprising to see the
positive effect of drought on yield-related traits in some
genotypes. Drought has been reported to enhance het-
erosis in yield-related traits in pearl millet [Pennisetum
glaucum (L.) R. Br.] (Yadav, Weltzien-Rattunde, Bidinger,
& Mahalakshmi, 2000) and maize (Makumbi, Betrán,
Bänziger, & Ribaut, 2011). In rice, QTL responsible for
enhanced yield under drought have been mapped and
used to improve the rice mega variety IR64 (Swamy et al.,
2013). The fact that most of the genotypes that showed
enhanced yield under drought were wild or landraces may
suggest the presence of other traits in these uncharacter-
ized germplasms that may have enhanced their perfor-
mance. Such traits will need to be studied further and
more supporting evidence generated before conclusions
are made. Any additional factors contributing to yield
losses under well-watered conditions will also need to be
captured.
High heritability of stay-green related traits, RCC

(60.14%) and GLAM (63.71%), is a positive outcome, as it
indicates a high genetic control for the traits. Reports on
heritability of stay-green have been variable in different
crops including sorghum. Walulu, Rosenow, Wester, and
Nguyen (1994) andMkhabela (1995) reported high and low
heritability values, respectively, while studying progenies
generated using B35. These differences may result from
the parameters measured and the inconsistencies in the
environments used. Several studies reported four major
QTL in B35 (Harris et al., 2007; Subudhi et al., 2000;
Xu et al., 2000), three of which are shared with E36-1
(Haussmann et al., 2002). The high heritability recorded
in the present study will need to be validated in the future
using larger biparental populations created from the new
sources identified.
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(a)

(b)

F IGURE 4 Performance of 37 out of the 44 sorghum genotypes that did not senesce under water-stress conditions in comparison with
known stay-green sources, E36-1 and B35 as measured using (a) relative chlorophyll content and (b) green leaves at maturity

All the traits measured in the present study proved
useful for the classification of the genotypes and showed
significant variation across genotypes and environments.
The lack of variation observed in FLA across environments
could be due to the units used for measurement and the
stage at which moisture stress was induced. Although
there is a lack of information in cereals on the role of flag
leaf during drought, it is known that flag leaf functionality
is required for grain filling to occur (Biswal & Kohli,
2013). The reduced FLA among the drought-tolerant
genotypes helps to reduce water loss, as these genotypes
maximize water use efficiency at flowering (Farooq,
Wahid, Kobayashi, Fujita, & Basra, 2009). A decrease
in leaf expansion rate is an adaptive mechanism that
usually precedes the reduction in stomatal conductance or

F IGURE 5 Yield of 19 top drought-tolerant sorghum genotypes
in comparison with known stay-green sources, B35 and E36-1, under
water stress
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(a)

(b)

(c)

F IGURE 6 A comparison of (a) panicle weight, (b) 100-seed weight, and (c) yield traits observed for the 37 sorghum germplasm that
survived under both well-watered and water-stressed conditions

photosynthesis (Farooq, Kobayashi, Ito, Wahid, & Serraj,
2010). Past studies in sorghum have reported high cor-
relation between FLA and YLD (Munamava & Riddoch,
2001). Our results will still need to be validated to resolve
the true relationship between FLA and yield-related
traits.
A major concern for the introduction of wild acces-

sions is the linkage drag (Zamir, 2001). The SNP marker
set developed here for QC will enhance germplasm char-
acterization, parentage verification, and confirmation of
purity of genotypes. However, these markers will need
to be developed into quick assays as has been done in
other crops (Chen et al., 2016; Ertiro et al., 2015; Gemenet
et al., 2020; Ndjiondjop et al., 2018) for more efficient
application.

5 CONCLUSION

Our results reveal the potential of discovering many more
drought-tolerant sorghum genotypes in eastern Africa as
the region currently holds a huge collection that is yet to
be adequately characterized. Wild accessions will remain
a viable source of novel alleles in the region, not only for
stay-green, but other important traits as well. The devel-
oped SNP markers for QC will act as the first molecular
toolkit for most of the breeders in the region who currently
use mainly conventional breeding. The identified new
sources of stay-green will need to be urgently character-
ized in order to ensure immediate deployment of these
alleles into breeding programs. The observed positive
effect of drought on yield of some accessions suggests that
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the water regime used in the present study may need to be
modified to ensure optimum conditions are used in future
drought experiments.
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