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Abstract

The present study sought to identify household risk factors associated with aflatoxin con-

tamination within and across diverse Indian food systems and to evaluate their utility in risk

modeling. Samples (n = 595) of cereals, pulses, and oil seeds were collected from 160

households across four diverse districts of India and analyzed for aflatoxin B1 using

enzyme-linked immunosorbent assay (ELISA). Demographic information, food and crop-

ping systems, food management behaviors, and storage environments were profiled for

each household. An aflatoxin detection risk index was developed based on household-level

features and validated using a repeated 5-fold cross-validation approach. Across districts,

between 30–80% of households yielded at least one contaminated sample. Aflatoxin B1

detection rates and mean contamination levels were highest in groundnut and maize,

respectively, and lower in other crops. Landholding had a positive univariate effect on

household aflatoxin detection, while storage conditions, product source, and the number of

protective behaviors used by households did not show significant effects. Presence of

groundnut, post-harvest grain washing, use of sack-based storage systems, and cultivation

status (farming or non-farming) were identified as the most contributive variables in stepwise

logistic regression and were used to generate a household-level risk index. The index had

moderate classification accuracy (68% sensitivity and 62% specificity) and significantly cor-

related with village-wise aflatoxin detection rates. Spatial analysis revealed utility of the

index for identifying at-risk localities and households. This study identified several key fea-

tures associated with aflatoxin contamination in Indian food systems and demonstrated that

household characteristics are substantially predictive of aflatoxin risk.

Introduction

Mycotoxins are fungal metabolites that can contaminate a range of food products. Aflatoxins,

produced by Aspergillus flavus and A. parasiticus, are a class of potent hepatotoxic mycotoxins

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0240565 October 26, 2020 1 / 29

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Wenndt A, Sudini HK, Pingali P, Nelson R

(2020) Exploring aflatoxin contamination and

household-level exposure risk in diverse Indian

food systems. PLoS ONE 15(10): e0240565.

https://doi.org/10.1371/journal.pone.0240565

Editor: Kris Audenaert, Ghent University, BELGIUM

Received: July 16, 2020

Accepted: September 29, 2020

Published: October 26, 2020

Copyright: © 2020 Wenndt et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: This work was supported by the

Technical Assistance and Research for Indian

Nutrition and Agriculture (TARINA) program

(tarina.tci.cornell.edu) of the Tata Cornell Institute

for Agriculture and Nutrition (tci.cornell.edu).

TARINA is funded by the Bill & Melinda Gates

Foundation (Grant No. OPP1137807 to PP). The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

https://orcid.org/0000-0002-6496-3557
https://doi.org/10.1371/journal.pone.0240565
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0240565&domain=pdf&date_stamp=2020-10-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0240565&domain=pdf&date_stamp=2020-10-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0240565&domain=pdf&date_stamp=2020-10-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0240565&domain=pdf&date_stamp=2020-10-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0240565&domain=pdf&date_stamp=2020-10-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0240565&domain=pdf&date_stamp=2020-10-26
https://doi.org/10.1371/journal.pone.0240565
http://creativecommons.org/licenses/by/4.0/
http://tarina.tci.cornell.edu
http://tci.cornell.edu


that have been implicated in chronic and acute health problems [1]. Aflatoxins can accumulate

in foods at any stage along the value chain. Pre-harvest aflatoxin deposition is influenced by

crop growing conditions and by the genetics of the host-pathogen interaction [2, 3]. Post-har-

vest contamination occurs if products are exposed to sub-optimal (particularly moist) condi-

tions during harvest, drying, processing/handling, and storage [4]. Aflatoxins have been

documented in food systems spanning the tropics and sub-tropics, including the South Asian

sub-continent [5–7]. Several aflatoxicosis outbreaks have occurred in India in the past [8, 9].

Although there is widespread appreciation of aflatoxins as a public health concern and a few

intervention studies have shown promising outcomes [10–12], no mitigation strategies have

achieved widespread adoption by vulnerable populations [13].

Most intervention efforts are limited to a narrow focus on a single crop or a fixed point

along a food value chain. Given the known high susceptibility of some plant hosts, particularly

maize and groundnut [14], these have received the bulk of attention and resource allocation

for aflatoxin mitigation. However, there is evidence that less susceptible crops such as rice, sor-

ghum, and millets, which are important staple foods in many parts of the world, can contribute

substantially to the dietary aflatoxin burden [15, 16]. As mycotoxin contamination within and

across food systems is dynamic and influenced by a range of pre-harvest and post-harvest food

system features [11], inability to capture risks associated with these features may be a reason

that existing interventions have not led to scalable improvements.

India is a large, highly populated country in South Asia with rich cultural and biophysical

diversity that is mirrored in its many food systems [17, 18]. In North India’s Indo-Gangetic

Plains region, smallholder agricultural economies largely follow the rice-wheat model ushered

in by the Green Revolution in the 20th Century, which is prone to low food system diversity

[19]. Moving southward, cropping systems are more diverse: rice is ubiquitous, along with

pockets of coarse grains, sugarcane, cotton, and other food and cash crops that emerge region-

ally [20]. The spatial variation in food system composition corresponds to diverse sociocultural

practices underpinning food production, preservation, sale, preparation, and consumption.

These features potentially influence the nature of aflatoxin exposure in a locally specific man-

ner, necessitating surveillance systems that can inform local intervention actions.

Prediction modeling has emerged as a powerful tool for locally specific aflatoxin risk assess-

ment in a number of contexts. Models have been developed to estimate pre-harvest aflatoxin

risk based on environmental data related to weather (drought stress is a major driver of afla-

toxin accumulation), land forms (altitude; aspect), soil characteristics, and vegetation cover

[21, 22]. A major environmental determinant jointly influenced by agroclimatic forces is the

interaction between soil moisture and soil temperature, which have strong relationships with

AFB1 accumulation [23, 24]. Moreover, a range of post-harvest risk factors have been identi-

fied, although their utility in prediction modeling has not been investigated in depth. Aflatoxin

accumulation in grain after harvest is influenced by drying practices, sorting and processing,

and by characteristics of the storage environment [4, 25]. Each of these risk factors is poten-

tially variable within and across spatial scales, suggesting that they may be useful for predictive

modeling.

A limitation of prediction modeling in aflatoxin risk assessment is that models are not typi-

cally developed at scales that enable identification of specific, locally meaningful intervention

options. Landscape-scale spatial models constructed from remotely-sensed data do not

acknowledge site-specific agronomic management practices [22]. At the opposite extreme,

sample- or batch-scale prediction models, often based on spectral signatures [26, 27], are spe-

cific to individual crops and are not informed by food system characteristics. Modeling risk at

the household level can complement regional models by identifying specific factors that house-

holds can control and that can be targeted by intervention programming. A number of
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community-based interventions focused on such risks have led to successful reductions in afla-

toxin exposure in vulnerable communities [12, 28–30], but all methods may not be equally

effective across contexts. Risk prediction models based on household characteristics could

contribute both to surveillance and to the identification of locally meaningful aflatoxin man-

agement strategies for target communities.

To date, no procedure has been developed for assessing aflatoxin contamination risk at the

household level. Availability of such a tool to stakeholders engaged in monitoring food safety

and community health could support gains in both aflatoxin awareness and in the deployment

of behavior change interventions that are responsive to locally specific drivers of contamina-

tion. Several established household-level indices for other types of risk have exemplified this

potential. The dietary diversity index, for example, is a common score-based household risk

indicator that is associated with a range of nutritional and social outcomes in Indian popula-

tions [31, 32]. With only a brief household-level interaction, field practitioners can compute

dietary diversity scores and evaluate their components, which immediately highlight risk areas

and intervention opportunities [33]. Analogous to the relationships between dietary diversity

and health outcomes, there are food and crop preservation characteristics that could serve as

indicators of household-level vulnerability to aflatoxin exposure.

Spatial analysis of household-level risk factors could complement existing indices of afla-

toxin risk developed using landscape- and sample-scale predictors. Integrating household data

with data sets across scales, such as remotely-sensed data or census data, has previously

enabled investigations of the sociocultural drivers of biophysical phenomena [34, 35]. In the

Brazilian Amazon, de Souza Soler and Verberg [36] paired remote sensing data with house-

hold-level characteristics to identify relationships between land use history and deforestation.

While such integration across scales has proven effective in other contexts, there remains a gap

in our understanding of the nature of household-level aflatoxin exposure risk, and the predic-

tive value of household characteristics in risk modeling. An initial step toward integration of

the human element of exposure risk into spatial surveillance systems is to characterize house-

hold-level risk factors and to determine their relationships with aflatoxin contamination across

spatial scales.

In this study, we sought to achieve a comprehensive understanding of the various house-

hold-level drivers of aflatoxin contamination across a range of Indian smallholder food sys-

tems. We characterized several known risk factors pertaining to food system dynamics (e.g.

crop types, storage conditions, sources, etc.) and sociocultural characteristics (e.g. crop protec-

tion and food preservation behaviors, socioeconomic status, etc.), and evaluated relationships

between these factors and aflatoxin contamination status. We then developed and validated a

household-level aflatoxin risk index based on these risk factors, which could help in identifying

at-risk households and communities that would benefit from behavior change interventions.

Methods

Target areas

Sites for survey implementation were selected based on their distinctiveness from both agro-

ecological and sociocultural standpoints, as well as on the pre-established relationships with

local NGOs that were essential for facilitating entry to and mediating interactions with stake-

holder communities. Maharajganj District is located in the northern Indian state of Uttar Pra-

desh, in the fertile Indo-Gangetic Plain region. The region, spread across 2,952 km2, has a total

population of 2,173,000 [37, 38]. Maharajganj has mean annual rainfall of 850 mm and an

average elevation of 96 m above sea level. Rice and wheat are the major commodities in this

region both in terms of production and consumption. Munger District is situated along the
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Ganges River in central Bihar, with a mean annual rainfall of 1,143 mm and average elevation

of 45 m above sea level [39]. According to the 2011 census, the district has a total population of

1,359,054. As in Maharajganj, rice and wheat predominate in Munger District, with maize an

occasional supplement to wheat flour. Kandhamal District is located in the forested inland

region of central Odisha. The population of the district is 731,952 according to the 2011 cen-

sus. Kandhamal sits at 553 m elevation and receives a mean annual rainfall of 1,727 mm [40].

This district is relatively isolated, and members of “scheduled tribes” (ethnic minorities)

account for a significant fraction (54%) of the population [38]. Rice is the major staple grain in

the region, whereas wheat is generally neither produced nor consumed. Mahabubnagar Dis-

trict is a large district (18,432 km2) in the southern Indian state of Telangana. The district has a

total population of 4,053,028 according to the 2011 census. Mahabubnagar has an average ele-

vation of 497 m and a drier climate, receiving just 692 mm rainfall as an annual average [41].

The cropping system of Mahabubnagar is more diverse than the other three districts, with rice,

sorghum, and pulses produced as major food crops. In addition, castor, groundnut, and sugar-

cane are common cash crops in the region.

Ethics

As the survey objectives were to document only methods procedures associated with food stor-

age (and not the participants’ opinions and decisions, or how the methods affect them or their

environment), this study did not qualify as research with human participants according to the

guidance of the Cornell University Institutional Review Board and therefore no review was

necessary. All survey participants were made aware of the scope and purpose of the study

before participating and gave oral consent. Oral consent was documented within the survey

questionnaire prior to each interview. Written consent was not sought due to literacy con-

straints in the population.

Household selection and survey administration

Household surveys were conducted between June-August, 2016. Nine villages across the four

districts (two each in Maharajganj, Munger, and Kandhamal, and three in Mahabubnagar)

were identified. Within each district, we aimed to survey 30 households (~15 per village) repre-

sentative of the range of castes and socioeconomic profiles in each locality. We used a stratified

random sampling approach to select household respondents grouped into three socioeco-

nomic strata as determined by the household landholding and head of household’s occupation.

The number of households in each stratum was approximately representative of the class com-

position of each village. Both farming and non-farming households were included in the sur-

vey. We also considered the spatial distribution of survey households within the village and

selected households such that the village coverage was as comprehensive and uniform as possi-

ble. In total, 160 households were recruited for the study, with 39, 39, 31, and 51 households

from Maharajganj, Munger, Kandhamal, and Mahabubnagar, respectively.

Prior to survey data collection, each respondent was briefed on the general nature and

objective of the survey effort. Interviews and sample collection were conducted on a voluntary

and consensual basis. Upon receipt of oral consent, a questionnaire (S1 File) was administered

orally in an interview with the head of household or spouse in their native language. The corre-

sponding survey data can be found in the S1 Dataset. Following the interview, respondents

were asked to submit 50 g samples of all staple food products present in the household (usually

between 2–10 samples per household) for aflatoxin analysis (S2 Dataset). Information regard-

ing the history, consumption, and handling of each sample was collected using a brief ques-

tionnaire. Items collected, if available, included rice, wheat, pulses, sorghum/millet, maize,
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groundnut, sesame, and mustard. Given the diversity in size and type of storage vessels from

which samples were drawn, we systematically collected from the first portion to be consumed

(i.e. one deep handful from top of sack or from dispensing spout of metal bin, etc.). Samples

were placed immediately into a sterile plastic sample pouch and stored under refrigeration

until analysis. After the interview and sampling process, each respondent was given a steel

bowl as compensation for interview participation and the sampled grain.

Sample processing and aflatoxin B1 analysis

Each sample was ground to fine powder (approximately 820–850 μm, or fine enough to pass

through a 20-mesh sieve) using a sterile laboratory blender. Blenders and utensils were sani-

tized after each sample using 70% ethanol. Ground samples were immediately returned to

their original pouches for subsequent mycotoxin extraction. Aflatoxin B1 (AFB1) extraction

was conducted using a protocol described by ICRISAT. After grinding, 10 g of each sample

was transferred to an Erlenmeyer flask, and mixed with 50 ml of 70% methanol containing

0.5% KCl. Flasks were shaken for 30 minutes at 300 rpm, and the extract filtered through

Whatman No. 4 filter paper. Extract filtrates were stored at 4˚C prior to analysis.

To quantify AFB1, we used an indirect competitive enzyme-linked immunosorbent assay

(ELISA) procedure developed by ICRISAT [42]. AFB1-bovine serum albumen (BSA) was pre-

pared in carbonate buffer at concentration 100 ng/ml, and 150 μl was added to each sample

well of ELISA microtiter plates and the plates incubated for 1 hour at 37˚C. Phosphate-buff-

ered saline with Tween 201-BSA (PBST-BSA) was added to each plate and incubated at 37˚C

for 30 minutes. AFB1 standards (concentrations 25–0.097 ng/ml) were prepared in PBST-BSA

with 7% methanol and added to the test plate in 100 μl quantities. Sample extracts were diluted

1:10 in PBST-BSA, and 100 μl was added to the sample wells. The antiserum was diluted

1:6,000 in PBST-BSA, and 50 μl was added to each well. The plates were incubated again for 1

hour at 37˚C. 150 μl of the enzyme conjugate anti-rabbit-IgG-ALP (diluted 1:4,000 in

PBST-BSA) was added to each well and incubated at 37˚C for one hour. Substrate p-nitrophe-

nyl phosphate prepared in 10% diethanolamine was added to the wells, and the plates were

incubated for 20 minutes to allow the color reaction to develop.

Absorbance was read at 405 nm using a Bio-Rad iMark microplate reader (Bio-Rad Labora-

tories, CA, USA). The limit of detection (LOD) for this assay was 0.1 μg/kg and the limit of

quantification (LOQ) was 1 μg/kg [43]. Optical Densities (OD) for all samples (in duplicate)

were processed using the Microplate Manager 6 software (Bio-Rad Laboratories, CA, USA).

Sample concentrations were calculated by interpolating on second-order polynomial standard

curves generated for each plate. Samples with OD values outside the OD range of the standards

were serially diluted and re-analyzed, and the dilution factors adjusted accordingly in the

calculation.

Identification of aflatoxin risk factors

Several household-level risk factors were identified a priori as possible drivers of aflatoxin con-

tamination in local food systems based on evidence from previous studies. We prioritized indi-

cators that could be readily gathered in a brief interview. Because differential crop species

susceptibility is known to influence aflatoxin contamination outcomes, we evaluated the distri-

bution of crop species within and across households. The usage of various types of traditional

and modern storage facilities was examined, as it has been shown that container types differ in

their vulnerability to fungal colonization and aflatoxin accumulation [44–47]. Toxin-produc-

ing strains of A. flavus can proliferate in storage under sub-optimal conditions, and a positive

linear relationship between aflatoxin concentration and storage time has been observed [48,
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49]. Therefore, storage time in days (averaged over all samples in each household) was also

computed for each household.

The source details for all samples were collected during the interview process, and catego-

rized into five groups: homegrown, market, gift (from friends and family), public distribution

system (PDS), and as wages. For household-level analyses, we used the proportion of home-

grown samples as an indicator of risk associated with grain source. We used landholding (hect-

ares) as a proxy variable for household socioeconomic status, as it is a reliable indicator of

stable household wealth in India [50]. We hypothesized that households deploying more crop

protection and food preservation behaviors would be less likely to have detectable aflatoxin in

their grain stores, and therefore counts of unique crop protection and food preservation

behaviors were taken in each household as indicators of agronomy- and food safety-related

risk levels, respectively.

Statistical analysis of aflatoxin risk factors

For the crop-level risk factors (crop species, storage container, storage time quantiles, and

grain source), analysis of variance (ANOVA) was used to determine whether there were signif-

icant differences. To control for crop-wise effects in the ANOVA models (except for the crop

species ANOVA), crop species was included as a blocking/nuisance factor to minimize the var-

iability conferred to the response variable (aflatoxin concentration). For all quantitative analy-

sis, aflatoxin concentrations were transformed by log10(x+1) to normalize the distribution of

observations, as has been described previously [51]. ANOVAs were performed in the R soft-

ware environment using the car package [52]. Multi-level logistic regression models were con-

structed for storage container, storage time, and grain source to test for fixed effects on the

odds of sample AFB1 detection status (� 1 μg/kg). Crop species and sampling location were

included as random effects to account for non-independence of observations. Modeling was

completed using the glmer function in the lme4 R package [53].

A similar multi-level modeling approach was used to test for significant univariate effects of

the household-level risk factors (landholding, crop protection practices, and food safety prac-

tices) on AFB1 detection in the household. Household values were used as fixed effects, with

household AFB1 detection status (i.e. whether at least one sample was contaminated in the

household) as a binary dependent variable. District was included as a random effect to control

for possible similarities among households surveyed in the same locality. Models were fitted in

R as described above. A threshold value of p� 0.05 was used to signify statistical significance

of all tests.

Index selection and validation

Our aim was to develop and validate an index for predicting whether at least one sample col-

lected in a household was contaminated (� 1 μg/kg) with AFB1. A total of 28 variables were

considered for prediction modeling based on the a priori risk factors described. Categorical/

binary variables with<5% coverage in the household data were omitted. Binary variables for

presence/absence of crop species in the household (wheat, maize, groundnut, sorghum, and

pulses) were included as indicators of species vulnerability. Rice was omitted because only 2%

of households contained no rice. The presence/absence of crop protection behaviors (fertilizer

use, pesticide use, and good agronomic practices) and food preservation behaviors (sorting,

drying, washing, clean vessels, chemical additives, and natural additives) were included as indi-

cators of behavioral risk. Usage of certain storage containers (sacks, boxes, traditional, and

other modern) were also included as binary variables. Household cultivation status (farming/

non-farming) was included as a binary variable. Average household storage time, the
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proportion of home-grown produce in the household, the number of hectares of land, the

number of household residents, the number of months of food insufficiency, and the number

of months of food quality inadequacy were included as household-level numeric variables.

Stepwise logistic regression models of household AFB1 detection (Y/N) were constructed

using the stepAIC function in the MASS R package [54]. The final model of most contributive

variables was selected based on Akaike information criterion (AIC). Variables selected in step-

wise regression that reached a significance level of p< 0.05 were taken forward for risk index

development. Risk index values were developed for each selected indicator by taking the

square root of the odds ratio estimated in the reduced model, as previously described [55].

Household risk scores were computed by summing the index values.

A repeated 5-fold cross-validation approach was used to evaluate the performance of the

composite and disaggregated indices, adapted from a method described previously [56]. K-

fold cross-validation is a useful strategy for evaluating predictive performance in small datasets

and has better variance and bias properties than alternatives such as leave-one-out cross-vali-

dation [57]. The data were split into k = 5 groups, and each group iteratively used as a valida-

tion set for models fit on the remaining k-1 = 4 groups. This procedure was repeated 100

times, re-shuffling the observations each time, in order to obtain reliable prediction estimates

[58]. We used area under the receiver operating characteristic (AUROC) curve as a measure of

model accuracy. Sensitivity (households with truly detectable AFB1) and specificity (house-

holds with truly no detectable AFB1) were computed at the point on the ROC curve where

both were maximized for each cross-validation fold and iteration. Performance thresholds of

60%, 80%, and 90% for these indicators were taken to represent moderate, good, and excellent

classification accuracy, respectively. Model training, predictions, and classification accuracy

evaluation were performed using the caret package in R [59]. Additionally, a Pearson correla-

tion test was performed to evaluate the relationship between index scores and observed local

household AFB1 detection rates.

As our aim was to validate a risk indicator that is readily interpretable to users without sta-

tistical modelling expertise, we chose to pursue a composite risk index score constructed by

summing all index values. If validated properly, summative scores can be a convenient and

accurate way to predict risk levels [60]. However, we acknowledge that summative indices can

sometimes have reduced predictive power compared to modeling risk factors as individual

model covariates. To determine whether and to what extent prediction accuracy was reduced

in the composite score compared to the selected indices modeled independently, we compared

classification performance results of the composite index score, described above, to those of a

prediction model fitted with the selected indices as disaggregated covariates.

Spatial risk analysis

Global positioning satellite (GPS) coordinates were recorded for each household at the time of

sampling using a handheld GPS system. Risk index scores were computed for all households as

described above. Observed household detection status and index prediction accuracy were

mapped and compared to visualize regional performance of the index. District-level household

AFB1 detection rated and mean household risk index values were calculated and visualized

using the ggmap package in R [61]. Intra-village risk distribution was evaluated by mapping

the spread of index scores within each village. Spatial autocorrelation of household index

scores was evaluated within each village by computing Moran’s I with the ape package in R

[62]. All map vector and raster data used were in the public domain accessed via the rnatura-

learth package in R [63] or with permission from the Global Administrative Areas (GADM)

database (www.gadm.org). Differences in mean index scores among districts were assessed
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using ANOVA and post-hoc Tukey tests for multiple pairwise comparisons. ANOVA (essen-

tially a t-test when only two groups are being compared) was used to compare village-wise

mean index scores within districts.

Results

Aflatoxin contamination

To increase our understanding of the diversity of Indian food systems, we surveyed the foods

present in 160 households in 9 villages across 4 districts in summer 2016. Among the 595 sam-

ples obtained, the most commonly available food items were rice, pulses, and wheat, constitut-

ing 190, 174, and 128 samples, respectively. Sorghum (n = 38), groundnut (n = 31), maize

(n = 17), oil seeds (e.g. mustard or sesame); n = 13), and pearl millet (n = 4) were present in far

fewer households. In each district, more than 30% of households yielded at least one sample

with detectable (>1 μg/kg) aflatoxin B1 (AFB1) levels (Fig 1A). Mahabubnagar had the highest

incidence of household-level mycotoxin detection, with contaminated samples collected from

82% of households. This high rate reflected the relative abundance of groundnut and sorghum

(which are highly susceptible to toxin accumulation) in this region. The other three districts

had much lower but still substantial rates of household-level aflatoxin detection (< 50% of

households). The commodities typically associated with aflatoxin accumulation, such as

groundnut, maize, and sorghum, had high incidence of contamination across study sites (Fig

1B). While we observed some contamination in rice and pulses samples, wheat was contami-

nated at very low frequency and was therefore an unlikely source of dietary aflatoxin under

normal conditions. There was low prevalence (9%) of households yielding samples contami-

nated above the regulatory legal limit (15 μg/kg), and therefore we did not have enough obser-

vations to validate predictive models for legal/illegal regulatory status.

There appeared to be some regional trends in vulnerability of grain groups to aflatoxin

accumulation (Fig 2). For example, groundnut and maize samples were much more highly

contaminated in Munger than in Mahabubnagar, perhaps owing to the more humid storage

conditions in Munger or to the relatively low importance of this crop in the Munger food sys-

tem compared to Mahabubnagar. Rice and pulses had the highest detection rates and contami-

nation levels in Kandhamal, where these crops were the predominant staple foods.

The magnitude of aflatoxin contamination in all commodities was generally below the Indian

regulated legal limit of 15 μg/kg, but 18% of samples exceeded this limit. The most heavily con-

taminated samples yielded AFB1 concentrations approaching 3,000 μg/kg. As expected, ground-

nut and maize were the most severely contaminated commodities, comprising most of the

samples that were contaminated at levels exceeding the regulatory limit. Sorghum and rice were

frequently contaminated in the 5–10 μg/kg range, suggesting that these commodities may be

moderate contributors of dietary aflatoxin in local food systems. While some commodities were

more prevalent in some districts than others, we did not detect significant differences in crop-

wise AFB1 contamination levels among districts where a given crop was present (p> 0.1). This

suggests that presence/absence of susceptible crops in a food system is more important than envi-

ronmental effects on specific crops in determining a community’s risk profile.

Household dynamics and food systems

Surveyed households represented a range of socioeconomic strata and living arrangements

within and across districts. The average head of household age was 47, and there were no sta-

tistically significant differences across districts with the exception of Maharajganj (mean age

56, p< 0.05 in pairwise comparisons). Multi-generational, joint, and nuclear households were

the most common household types among survey respondents, accounting for 88–100% of all
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households in the sample across districts. Other household types were less common, including

elderly couples, single individuals, and single parents with children. Households in the sample

had 6.3 members on average, with no significant differences between districts.

Fig 1. Household- and sample-wise aflatoxin detection rates across localities. (A) Proportion of households that yielded at least

one sample with detectable AFB1 (>1 μg/kg). MG = Maharajganj, MN = Munger, KM = Kandhamal, and MB = Mahabubnagar.

(B) Detection by district of AFB1 across samples in eight major food crops.

https://doi.org/10.1371/journal.pone.0240565.g001

Fig 2. Range of AFB1 contamination across districts by crop group. District codes MG = Maharajganj, MN = Munger, KM = Kandhamal, and

MB = Mahabubnagar.

https://doi.org/10.1371/journal.pone.0240565.g002
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Across all sites, 41% of households reported having insufficient food to meet the family’s

needs at least one month per year. In Mahabubnagar, where many of the study households

predominantly relied on cash crops for supplemental income, 70% of households reported

food insufficiency. In contrast, Maharajganj had no households reporting insufficient quantity

of food in any month(s). Munger and Kandhamal fell in the middle, both with 42% of house-

holds reporting food insufficiency. On average, the households surveyed in this study reported

food shortage in one (of possible 12) month of the year. The majority of households reporting

food quantity insufficiency indicated that the highest risk is during the summer months

(March—June). There was lower regional variation in perceived food quality insufficiency,

recorded as the number of months in which perceived food quality (i.e. safety and nutritional

value) was sub-optimal. Maharajganj yielded the lowest proportion of households that per-

ceived low food quality in at least one month of the year (24%). The remaining districts Mun-

ger, Mahabubnagar, and Kandhamal had values of 34, 38, and 39%, respectively. Munger had

marginally higher mean number of “low-quality months” than the other study sites (p< 0.1

for all pairwise comparisons), with a mean of 3.3 months compared to 0.9, 1.3, and 1.5 months

in Mahabubnagar, Kandhamal, and Maharajganj, respectively. Similarly to food quantity

insufficiency, food quality issues were reportedly most prevalent during the summer months.

As the samples collected in each household generally reflected all staple food commodities

present in the household, sample yield was used as an indicator of regional household con-

sumption characteristics. Consumption of rice and pulses was relatively uniform across sam-

pling sites (Fig 3). Consumption of wheat and sorghum, the other major staple food

commodities, was more region-specific. Respondents from Kandhamal provided very little

wheat, indicative of a strong reliance on other staple commodities (especially rice) for dietary

energy. Sorghum was exclusively present in Mahabubnagar households, reflecting the drier

growing conditions and cultural preference for coarse grains over wheat in this area. Among

non-staple food commodities, maize and groundnut were the most common. Maize was not

widely cultivated or consumed in any region but was present for human and livestock con-

sumption in low quantities across all study sites. Respondents reported that maize consump-

tion was markedly seasonal, and generally consumed in the form of mixed maize/wheat or

maize/sorghum bread (roti). Groundnut was a very popular food among Mahabubnagar

respondents, as the district was a major regional producer of this crop. Groundnut was also

widely cultivated and consumed as a non-staple food item in Maharajganj.

Crop production systems

Households were considered to be self-provisioning if at least one staple grain item (rice and/

or wheat) was produced on the farm and consumed by the household. Across all districts, at

least half of households included in the sample reported some degree of self-provisioning. This

was least common among households in Mahabubnagar District (54%), where cash crop pro-

duction was a major source of income and many households were reliant on local markets and

the Public Distribution System (PDS) for staple food items. Munger and Kandhamal had

stronger majorities of self-provisioning households, accounting for 63% and 65% of house-

holds, respectively. Self-provisioning was most common in Maharajganj, where 92% of house-

holds reported producing staple grains on their own farm for household consumption.

Crop production for all districts is summarized in Table 1. Rice was the most widely culti-

vated kharif (rainy) season crop across all districts, grown by 68–95% of surveyed households.

Other common kharif crops included pulses, maize, groundnut, and vegetables. Crops grown

in the rabi (post-rainy) season were more diverse across regions, reflecting cultural preferences

and environmental constraints. Wheat was commonly cultivated in the rabi season in the
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northern regions (Maharajganj and Munger) but was far less frequent in Mahabubnagar and

Kandhamal. In Kandhamal, rice was strongly preferred over wheat-based roti as a staple food,

and respondents often reported that wheat was prohibitively expensive in the marketplace.

Respondents in Mahabubnagar preferred rice or sorghum-based roti over the wheat-based

alternative. Potato was another commonly cultivated rabi season crop in all districts except

Mahabubnagar, where it was generally avoided and often considered unhealthy. During the

summer season, few households in our sample reported cultivating any crops. Among the

Fig 3. Regional distribution of sample yield across grain groups. Percentages represent the fraction of household-derived samples collected in

respective districts.

https://doi.org/10.1371/journal.pone.0240565.g003
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households that did cultivate during the summer season, vegetables, maize, and potato were

the most popular. Notably, no cultivation during the summer season was reported among

Mahabubnagar households, owing to unfavorably hot and dry conditions during the summer

months.

Food storage practices

Because storage conditions are known to be an important risk factor associated with post-har-

vest mycotoxin accumulation, we sought to understand how common food commodities were

stored and handled across the study sites. While storage practices varied substantially across

geographical regions and crop groups, some commonalities emerged among the households

included in the present survey. Table 2 summarizes grain storage systems for all samples col-

lected in the survey. In Munger and Maharajganj, closed tin or plastic containers, or “boxes,”

were the most popular vessels for storing staple grains (rice and wheat). In Mahabubnagar,

rice and sorghum were most commonly stored in sacks, probably because of the larger quanti-

ties procured by householders in this region. Wheat in Mahabubnagar was typically acquired

in relatively small quantities via the public distribution system (PDS), which provided grain at

subsidized rates; thus, most households kept wheat stored in tin or plastic containers. In Kand-

hamal, the observed storage conditions for staple grains were less uniform: the fractions of rice

and wheat samples stored in sacks and tin/plastic containers were similar. In every district, a

substantial majority of pulse samples (65–84%) were kept in tin or plastic boxes. Commodities

kept in smaller quantities for occasional use (i.e. groundnuts, millets, oil seeds, etc.) were com-

monly kept in tin or plastic boxes.

Traditional methods for storing food commodities were practiced in all study sites. Such

methods included mud-plastered bamboo silos, mud/dung-plastered bamboo silos, clay pots,

Table 1. Crop production across cropping seasons for each study location.

District Total HH Rainy Post-Rainy Summer
Maharajganj 38 Rice (94.7%)

Groundnut (65.8%)

Pulses (52.6%)

Maize (42.1%)

Vegetables (34.2)

Sorghum (2.6%)

Wheat (94.7%)

Vegetables (78.9%)

Potato (52.6%)

Pulses (23.7%)

Mustard (18.4%)

Spices (7.9%)

Chilies (2.6%)

Vegetables (39.5%)

Maize (5.3%)

Potato (2.6%)

Munger 38 Rice (73%)

Maize (60.5%)

Vegetables (50%)

Pulses (21.1%)

Vegetables (92.1%)

Pulses (65.8%)

Potato (63.2%)

Wheat (60.5%)

Mustard (21.1%)

Vegetables (26.3%)

Kandhamal 31 Rice (67.7%)

Pulses (35.5%)

Vegetables (35.5%)

Maize (19.4%)

Groundnut (3.2%)

Potato (35.5%)

Pulses (19.4%)

Vegetables (16.1%)

Millet (3.2%)

Vegetables (3.2%)

Mahabubnagar 50 Rice (68%)

Pulses (58%)

Castor (30%)

Chilies (8%)

Sorghum (4%)

Sugarcane (2%)

Cotton (2%)

Vegetables (2%)

Rice (44%)

Groundnut (26%)

Vegetables (6%)

Castor (2%)

Numbers in parentheses indicate percentages of surveyed households (HH) in each district that reported growing the crop in the specified season.

https://doi.org/10.1371/journal.pone.0240565.t001
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and storage under cover of silage/fodder. The mud- and/or dung-plastered structures were

particularly popular for storing rice, wheat, and maize. Clay pots were used to store ground-

nuts and rice. The “under fodder” method was largely used to store wheat in the Maharajganj

location.

Using grain type as a blocking factor in ANOVA, we did not observe any difference in afla-

toxin contamination levels among storage container types (p = 0.26). There was also no signifi-

cant effect of container type on the odds of aflatoxin detection in logistic regression (p = 0.33).

Significant differences in AFB1 levels across storage time quantiles were observed in maize

and rice (p< 0.05). The highest levels of contamination occurred between quartiles 3 and 4

(250–300 days post-harvest) and subsequently decreased. This suggests that there may be

threshold value of storage time beyond which contamination levels start to decrease, presum-

ably due to usage or removal of contaminated produce. A similar trend was observed in

western Kenya, where the likelihood of aflatoxin contamination in maize was significantly

greater at two months post-harvest, but no significant difference was detected after four

months [64].

Table 2. Summary of grain storage practices across districts.

District Crop Storage System

Kandhamal Maize Hanging (1/2; 50%), Box (1/2; 50%)

Millet Traditional mud (1/1; 100%)

Pulses Box (22/28; 79%), Package (3/28; 11%), Traditional mud (3/28; 11%)

Rice Box (20/49; 41%), Sack (18/49; 37%), Traditional mud (7/49; 14%), Package (2/49;

4%), Traditional dung (2/49; 4%)

Wheat Sack (2/4; 50%), Box (2/4; 50%)

Mahabubnagar Groundnut Box (12/23; 52%), Sack (9/23; 39%), Package (1/23; 4%), Traditional pot (1/23; 4%)

Maize Pile (1/1; 100%)

Millet Box (2/3; 67%), Package (1/3; 33%)

Oil Seeds Box (4/4; 100%)

Pulses Box (52/80; 65%), Sack (20/80; 25%), Package (8/80; 10%)

Rice Sack (50/58; 86%), Box (5/58; 9%), Traditional pot (2/58; 3%), Package (1/58; 2%)

Sorghum Sack (29/36; 81%), Box (7/36; 19%)

Wheat Box (24/42; 57%), Sack (12/42; 29%), Package (6/42; 14%)

Maharajganj Groundnut Box (5/10; 50%), Sack (3/10; 30%), Package (1/10; 10%), Pile (1/10; 10%)

Maize Hanging (2/8; 25%), Package (2/8; 25%), Box (2/8; 25%), Pile (1/8; 13%), Sack (1/8;

13%),

Oil Seeds Box (4/8; 50%), Sack (3/8; 38%), Basket (1/8; 13%)

Pulses Box (30/36; 83%), Sack (6/36; 17%)

Rice Box (30/37; 81%), Sack (7/37; 19%),

Wheat Box (34/39; 87%), Sack (3/39; 8%), Pile (1/39; 3%), Under Fodder (1/39; 3%)

Munger Maize Sack (3/6; 50%), Traditional mud (3/6; 50%)

Oil Seeds Box (1/1; 100%)

Pulses Box (26/31; 84%), Package (3/31; 10%), Sack (2/31; 6%),

Rice Box (23/51; 45%), Traditional mud (15/51; 29%), Sack (12/51; 24%), Silo (1/51; 2%)

Wheat Box (16/41; 39%), Traditional mud (13/41; 32%), Sack (12/41; 29%)

In parentheses is the fraction of samples stored using each method, followed by the percent of all samples of the given

crop in that district. “Box” signifies a closed metal or plastic container smaller than 100 kg capacity. “Sack” includes

20–60 kg capacity grain storage sacks, typically jute or polypropylene. “Package” signifies a grain stored in a

temporary or disposable sealable container, usually in the form of packaged food purchased in the market.

https://doi.org/10.1371/journal.pone.0240565.t002
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Grain sources

In order to link mycotoxin risk with particular nodes of the food value chain for the commodi-

ties of interest in this study, we collected detailed information about the sources of food items

in the respective village food systems (Fig 4). In Maharajganj and Munger, where self-provi-

sioning agricultural production was widely practiced, a sizable majority of food commodities

was produced on the respondents’ own farms. In contrast, marketplace-derived samples were

nearly equal in abundance to those produced on respondents’ farms in Kandhamal. This

region, while still predominantly engaged in subsistence farming, was likely more reliant on

Fig 4. Sources of major food grains. Overview of locality- and crop-wise trends in procurement of food items.

https://doi.org/10.1371/journal.pone.0240565.g004
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marketplace-derived food items than Maharajganj and Munger as a result of lower agricultural

productivity.

Mahabubnagar households were most reliant on the marketplace for food commodities,

followed distantly by on-farm production. This is illustrative of the predominantly cash crop-

based smallholder economy in this region. Notably, respondents in Munger and Mahabubna-

gar Districts were nearly equally reliant on PDS and own-farm production as a source of rice,

and Mahabubnagar respondents sourced their wheat products almost exclusively from PDS. A

common theme across all study sites was strong reliance on the marketplace for pulses, as

opposed to own-farm production or other sources. Interestingly, in Mahabubnagar (the only

district where sorghum was consumed), all three villages surveyed in this study relied heavily

on traveling peddlers for their sorghum grain, and only a few households reported producing

sorghum on their own farms. Among landless/labor class respondents, rice was commonly

received as wages for agricultural labor.

Based on ANOVA, there were no significant differences in aflatoxin levels among source

categories (p> 0.1). Similarly, there was no detectable difference in the odds of aflatoxin detec-

tion between homegrown versus externally acquired samples, controlling for crop type as a

random effect (p = 0.94). These findings suggest that contamination levels are consistent

regardless of where a household sources its food grains.

Landholding status

Landholding (ha) was used as a proxy for socioeconomic status. Mahabubnagar had the high-

est mean household landholding (4.7 ha), corresponding to the higher development status in

this region relative to the other districts. Munger had the lowest mean landholding, with only

0.9 ha per household on average. Households in Kandhamal and Maharajganj had average

landholdings of 1.5 and 1.6 ha, respectively. The village economies at all sites except those in

Mahabubnagar were predominantly based on small-scale farming with high levels of self-pro-

visioning. Cash crop production was the major source of household income in Mahabubnagar.

The landless (households with 0 ha of cultivable land) accounted for 11, 12, 34, and 36% of sur-

vey households in Maharajganj, Mahabubnagar, Munger, and Kandhamal, respectively. In

univariate analysis, landholding had a significant positive effect on the odds of AFB1 being

detected in the household (OR 1.35, p< 0.01), suggesting that households with larger land-

holdings are at greater risk of exposure in these food systems.

Food and crop preservation practices

Diverse crop protection and food preservation practices were reported by households within

and across districts (Fig 5). There were, however, no significant effects of the number of crop

protection (OR 1.08, p = 0.67) or food preservation practices (1.01, p = 0.96) on the odds of

AFB1 detection in the household. The most frequently practiced crop protection strategies

were pesticide application (63% of households), manure application (55%), and chemical fer-

tilizers (52%). Nearly all households were using at least one of these methods. Good agronomy

was reported as a crop protection strategy by some (<30%) households in Maharajganj and

Munger. Maharajganj farmers had the most diverse crop protection practices overall, with

some households reporting the use of organic agriculture techniques, resistant varieties, and

culling of diseased plants. There were some farming households in Munger and Kandhamal

(6% of total households) that did not knowingly practice any crop protection practices despite

engaging in crop cultivation.

A similarly wide array of food preservation techniques was being used to ensure household

food safety. The most common practices included sorting by hand (70%), washing and then
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sun-drying (33%), and sun-drying without washing (29%). Farmers across all districts used

natural (22%) and/or chemical (17%) preservatives in stored grain. Common natural preserva-

tives and/or insect repellants included neem leaves, ash, and salt. Respondents cited sulphas (a

popular local term for the fumigant aluminum phosphide; [65]) as a common chemical addi-

tive. Compared to the other districts, a relatively high proportion of respondents in Kandha-

mal cited the use of clean storage containers. Safe food preparation and checking food

freshness were commonly reported in Maharajganj, but largely absent in the other districts.

Overall, 10% of households did not knowingly practice any food preservation behaviors.

Household AFB1 detection risk index

Prediction model selection and risk index determination. Forward stepwise logistic

regression was used to select risk components that were most important for determining

Fig 5. Local food and crop preservation behaviors. District-wise summary of (A) household crop protection practices and (B)

household food preservation practices as reported by survey respondents (n = 160).

https://doi.org/10.1371/journal.pone.0240565.g005
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household AFB1 detection status. The model selection procedure identified a reduced model

consisting of seven risk factors, of which five (presence of groundnut in the household, post-

harvest washing, sack-based storage, fertilizer application, and farming/non-farming status)

met the p< 0.05 criteria for inclusion in the final prediction model. Because we sought to

develop an index that could be applied to both farming and non-farming households, fertilizer

usage was discarded and the remaining four indicators were taken forward for risk index devel-

opment. Presence of maize in the household did not meet p-value inclusion level (p = 0.12),

likely due to its relative rareness in the food system and its frequent co-occurrence with ground-

nut, a highly contributive risk factor. Index values were assigned to each indicator based on the

square root of the odds ratio in the model. The scoring system is summarized in Table 3. The

final composite index was on a 0–9 scale and was computed for each household. In a univariate

logistic regression, we observed a highly significant positive association between the composite

index score and the likelihood of aflatoxin detection (OR 1.6, p< 0.0001).

Index validation and performance. A repeated 5-fold cross-validation approach was

used to evaluate the performance of the composite and disaggregated household risk indices in

predicting household-level aflatoxin detection. The data was split into k = 5 random groups

100 times, and each group used as a test set for determining the classification accuracy of a pre-

diction model trained on households in the remaining k-1 groups. Both the composite and dis-

aggregated index models classified household AFB1 detection status more accurately than

random chance (p< 0.001). Area under the receiver operating characteristic (AUROC) curve

was used as a measure of model accuracy. The composite index and disaggregated index mod-

els yielded AUROC values of 0.70 and 0.72, respectively. Predictions of household AFB1 detec-

tion status based on the composite index score had 68% sensitivity and 62% specificity,

indicating respectively that the composite score classified true positives (households with

detectable AFB1) and true negatives (households with no detectable AFB1) with moderate

accuracy. Sensitivity was similar in the disaggregated model (68%), but specificity was slightly

better (64%). There was a highly significant positive correlation (R = 0.94; p < 0.001) between

village-level mean risk index scores and observed household AFB1 detection rates, suggesting

that the index was a good indicator of local aflatoxin contamination prevalence.

Spatial analysis of AFB1 risk status

Overall, there were marked spatial trends in household AFB1 detection status across surveyed

districts (Fig 6A), influenced greatly by food system composition as described above. District-

level means in composite household aflatoxin risk index values ranged from 1.7 (Munger) to

5.2 (Mahabubnagar), with nearly the full range of possible values (0–8) represented in the

Table 3. Odds ratio-based index scoring system for selected risk factors.

Risk Factor Odds Ratio Response Index Value§

Groundnut presence in household 7.6 Yes 3

No 0

Post-harvest grain washing 2.7 Yes 0

No 2

Use of sack-based storage 2.3 Yes 2

No 0

Engagement in farming 4.7 Yes 0

No 2

§ Index values computed by taking the square root of the odds ratio and rounding to the nearest integer.

https://doi.org/10.1371/journal.pone.0240565.t003
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population of households. Predictive performance of the risk index was variable by region; the

lowest and highest proportions of correctly classified households were observed in Kandhamal

(42%) and Mahabubnagar (76%), respectively (Fig 6B). The risk index value can be used to

Fig 6. Spatial analysis of household AFB1 detection and risk index scores. (A) Household detection status across localities. Yellow

and red points represent households with no detectable AFB1 and detectable AFB1, respectively. Points were jittered to minimize

overplotting. (B) Rates of correct household AFB1 status prediction using the risk index, by district. Heat-map representation of (C)

district-wise average percent of households with detectable AFB1 and (D) district-wise mean risk index scores. Panel (A) was created

using a shapefile from the public domain Natural Earth database (naturalearthdata.com). Panels (C) and (D) use shapefiles reprinted

from the GADM database (www.gadm.org) under a CC BY license, with permission from Global Administrative Areas, original

copyright 2018.

https://doi.org/10.1371/journal.pone.0240565.g006
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visualize risk levels by district (Fig 6D) and closely approximated observed district-level house-

hold detection rates (Fig 6C). All pairwise district index score comparisons were statistically

significant (p< 0.05) in post hoc Tukey analysis except for Maharajganj and Kandhamal and

Maharajganj and Munger.

We sought to determine whether and to what extent risk profiles varied within individual

communities, and whether there were spatial trends in risk distribution among households at

the village scale. There was significant (p< 0.05) intra-village spatial autocorrelation in index

values in MG-1, KM-1, and MB-1, suggesting that some communities may have distinct spatial

risk factor distributions (Fig 7). We observed that sub-communities, in particular caste or reli-

gious groups, tended to cluster together–but this clustering did not lead to discrete spatial

domains with higher or lower risk as observed by our index. Villages in the same district

tended to have similar risk index profiles, with significant differences among villages within

districts only observed in Maharajganj (p = 0.005). This suggests that risk factors for aflatoxin

contamination were evenly distributed within village communities, and that sub-populations

were not localized in high-risk enclaves as has been observed for other public health threats,

especially in larger cities [66]. The lack of spatial differentiation within communities likely

reflected their small sizes, low populations, and generally low development status.

Discussion

This study identified household-level factors associated with AFB1 contamination risk and

indicated that risk factor profiles are specific to particular geographies. We developed and vali-

dated an index for predicting the likelihood of household AFB1 detection, which performed

moderately well and could be used for formative risk assessment across spatial scales. To our

knowledge, this is the first effort to establish a household-level AFB1 risk assessment system.

Our findings reveal substantial predictive value of household characteristics for aflatoxin risk

assessment, paving the way for future integration of household-level data into spatial surveil-

lance systems.

Of the several risk factors identified a priori as potential drivers of aflatoxin contamination

in these food systems, a household’s array of crop species was shown to be the most important

determinant of risk status. Differential susceptibility of some commodities relative to others is

driven to a great extent by crops’ host- or non-host compatibility with aflatoxigenic fungal

pathogen, Aspergillus flavus, in a field setting. Maize and groundnuts, for example, are suscep-

tible to A. flavus infection in the field, which translates into greater toxin loads both before and

after harvest [67]. Other vulnerable commodities, such as rice and sorghum, can accumulate

toxins both pre- and post-harvest [68, 69], but are not as vulnerable to Aspergillus molds in the

field. Accordingly, cropping profiles can be used to gauge not only the level of aflatoxin con-

tamination risk in a food system, but also the relative utilities of pre- versus post-harvest inter-

vention options in a household or locality.

Across the four locations included in this survey, we observed marked variability in food

system characteristics. The two northern locations, Maharajganj and Munger, were highly reli-

ant on rice and wheat as dietary staples, and practiced rice (kharif season) and wheat (rabi sea-

son) crop rotations. Aflatoxin-susceptible commodities such as maize and groundnuts were

present in both districts, but at low frequencies. Although these commodities were regularly

consumed in the northern districts and constituted a substantial fraction of aflatoxin contami-

nated samples, they played relatively minor roles in local diets.

Kandhamal, in hilly southeastern India, had the least diverse food system and was largely

dependent on a single growing season (kharif) of rice for subsistence. This reflects the Kandha-

mal villages’ lower socioeconomic status and relatively inhospitable growing environment.
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Owing to the rather sparse composition of local food systems, this was the only district whose

aflatoxin burden was predominantly localized in rice. Higher aflatoxin detection rates and

concentration levels in rice were observed in Kandhamal than in any other district. Mahabub-

nagar, situated in the semi-arid south, was wealthier (though still poor by global standards)

and its food systems were more diverse. In this district, sorghum and groundnuts were com-

mon in local diets along with rice and wheat, which led to greater incidence of household-level

aflatoxin detection in this district than the others. Maize cultivation and consumption were

rare in this region. Mahabubnagar’s semi-arid climate did not permit crop cultivation during

the summer cropping season.

The ranges of observed storage practices, grain sources, and dietary preferences varied

markedly across the four districts. In India, smallholders’ grain storage practices are tightly

bound to local knowledge and cultural traditions [70]. Moreover, it has been demonstrated

that the various forms of storage containers (both traditional and conventional) have differen-

tial susceptibility to fungal contamination, as mediated by their microclimatic properties [71].

In this study, however, we did not detect significant differences in aflatoxin contamination

among samples collected from different types of storage containers. A study of fungal contami-

nation of sorghum from a range of village storage containers in the north Indian state of Pun-

jab similarly concluded that despite the distinct properties of storage containers, fungal

contamination and toxin deposition may be more influenced by crop variety, moisture levels,

and other factors [71].

Grain sources (i.e. home-grown, market, etc.) can vary in relative mycotoxin contamination

depending on the context [64, 72, 73]. We observed consistent aflatoxin levels across the range

of grain sources (e.g. own farm, marketplace, PDS, etc.) reported by the smallholders, suggest-

ing that source is not a major determinant of aflatoxin risk. We therefore hypothesize that

growing conditions and the post-harvest management of grain are more substantial contribu-

tors to a household’s risk profile than their grain sources in the Indian context. This finding

differs from what has been observed in African smallholder food systems, where there signifi-

cant differences in aflatoxin levels between home-grown and market-derived grain have been

observed [64, 73].

We observed a positive relationship between landholding and the likelihood of household

aflatoxin detection in these food systems. This finding contradicts what has been observed in

African smallholder contexts, where lower landholding size/socioeconomic status have been

variably associated with higher aflatoxin biomarkers [74–77]. In the African communities

studied, most smallholders consume a highly susceptible crop (maize) as a staple food, and

therefore the negative relationship between socioeconomic status and aflatoxin exposure is

attributable to poorer farmers’ inability to produce and preserve high-quality grain [75]. We

hypothesized that India’s reliance on less susceptible commodities would result in an opposite

relationship, as households with lower landholdings are less likely to consume highly suscepti-

ble commodities, such as maize, which are considered peripheral or specialty items in the local

diet [78]. Consistent with this hypothesis, farmers with less land grew only rice and/or wheat,

while those with more land were able to diversify their cropping systems to include commodi-

ties more susceptible to contamination than those local staples. The positive association

between landholding and cropping diversity has been demonstrated previously in the Indian

context but generally pertains only to smallholders, as Indian farmers with large (>2 ha) land-

holdings can choose to specialize in fewer crops grown in larger quantities [79, 80].

Fig 7. Intra-village distributions of household risk scores. Maps of households sampled in each of the nine villages,

indicating the households’ aflatoxin risk index values. District codes MR = Maharajganj, MN = Munger, KM = Kandhamal,

and MB = Mahabubnagar.

https://doi.org/10.1371/journal.pone.0240565.g007
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Food system composition, preventative behaviors, and farming versus non-farming status

each had significant effects on household aflatoxin detection status in our prediction model.

Household-level storage environmental parameters such as moisture content and relative

humidity were not available in our data set, but incorporating these indicators into future iter-

ations of our prediction model might enhance model performance. The presence/absence of

groundnut in the household was an important determinant of contamination status, owing to

the widespread distribution of this susceptible commodity within and across Indian food sys-

tems. Maize, despite its high susceptibility to aflatoxin contamination, was not predictive of

detection status in this study, likely due to its overall rareness in Indian food systems. While

contamination was frequently observed in other grain products, particularly sorghum and

rice, the more sporadic distributions of contaminated samples made these crops less informa-

tive as risk predictors.

Agronomic practices and household food preservation behaviors can influence the initial

level of fungal colonization of the storage environment and the magnitude of post-harvest afla-

toxin contamination, respectively [3, 29, 30, 81]. While nine preventative behaviors were con-

sidered in initial model selection, just one (grain washing) had a significant reductive effect on

the odds of household AFB1 detection. In addition to general hygiene, washing enables buoy-

ancy-based density sorting, which has proven effective in mitigating aflatoxin levels in previ-

ous studies [82]. Among the households surveyed in this study, washing was generally

practiced in tandem with hand sorting and drying, which have been shown to effect meaning-

ful reductions in aflatoxin exposure [12, 30]. Therefore, it is likely that the observed impor-

tance of washing in the prediction model represents a combined effect of this suite of food

safety behaviors.

We used several performance criteria and a repeated 5-fold cross-validation approach to

determine the accuracy of the risk index in predicting household aflatoxin detection status.

Practically, the score is easily calculable and can be immediately used to compare households

and localities without the use of statistical models. The index classified aflatoxin contamination

status with accuracy comparable to what has been achieved based on landscape-scale agrocli-

matic data alone. In one example from Australia, an aflatoxin risk index based on ambient

temperature, radiation, rainfall, soil water and soil nitrogen predicted aflatoxin concentration

with 69% accuracy [23]. In Europe, climate, radiation, and crop models predicted aflatoxin

contamination in maize samples with 74–77% sensitivity and 23–65% specificity [83]. There

remains substantial room for improvement in aflatoxin prediction modelling, both in our

household-based model and in other agroclimatic approaches. The integration of household-

level risk factors with data across scales, such as remotely sensed agroclimatic and edaphic

characteristics, would likely achieve more accurate predictions than either set of variables

could achieve independently.

Our novel household-level modeling approach elucidated risk factors that correspond to

specific behaviors and decisions that can be targeted by intervention efforts. This feature is a

major advantage of using household characteristics as the basis for risk assessment as opposed

to local environmental conditions or sample-level biophysical properties, which cannot readily

be targeted by behavior change programming in resource-poor settings. Our findings enabled

the specific identification of vulnerable crops (i.e. groundnuts), important protective practices

(i.e. post-harvest grain washing) and vulnerable sub-populations (i.e. non-farming house-

holds), all of which have been previously targeted in intervention pathways [14, 29, 84] and

can be readily integrated into local diagnostic and problem-solving processes.

The relatively small sample size, limited geographical coverage, and unavailability of house-

hold-level pre-harvest risk factors (e.g. irrigation infrastructure, soil fertility management, etc.)

in this preliminary study were likely constraints to prediction accuracy. Due to resource
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constraints and the exploratory nature of this study, we were unable to directly inform house-

holds exhibiting high toxin levels of their contamination status. However, the risk factor asso-

ciations elucidated here have greatly informed downstream intervention work in similarly

vulnerable communities. Another limitation of this study is that surveillance occurred during

only one season; incorporating multi-seasonal data into the model would enhance the perfor-

mance and utility of this approach. Despite these limitations, our findings serve as valuable evi-

dence that household characteristics can be leveraged for aflatoxin risk assessment in

smallholder farmer communities, with possible applications across diverse smallholder con-

texts. Given the high degree of variability in food system dynamics and sociocultural profiles

across the developing world, we suspect that this modeling framework would reveal distinct

risk factors if applied to contexts in Africa, Central America, or elsewhere in Asia. From this

perspective, the odds ratio-based scoring system used in our study is ideal for cross-contextual

application, as it would yield index values appropriately weighted to the risk profile of each

environment.

The risk assessment system we present here is built on non-invasive, brief interactions

with householders, and produces risk profiles that are readily interpretable and predictive of

aflatoxin detection status. Given these features, local extension agents or other monitors

could implement local risk analysis using this system, ideally validating the assessments for a

subset of the samples. There are several existing programs in India that could benefit from

these risk assessment tools. The government-sponsored anganwadi program, which is present

in most villages and provides essential nutrition services for infants, children, and mothers,

for example, has already been successfully leveraged for community-based cancer screenings

[85]. This integration could serve as a model for localized screenings of community myco-

toxin exposure risk. Moreover, >500,000 Village Health Sanitation and Nutrition Commit-

tees have served as important monitors of local health and nutrition and play vital roles in

fostering connections with non-governmental organizations as implementation partners

[86]. We envision that this aflatoxin risk assessment tool could be plugged into these collabo-

rative efforts or other research programs to identify the breadth of aflatoxin risk factors

within and across village communities and to set the stage for meaningful behavior change

interventions.
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