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Summary

Probabilistic games with incomplete information, called Bayesian games, offer a suit-
able framework for games where the utility degrees are additive in essence. This
approach does not apply to ordinal games where the utility degrees capture no more
than a ranking, nor to situations of decision under qualitative uncertainty.

In the first part of this thesis, we propose a representation framework for ordinal games
under possibilistic incomplete information (Π-games). These games constitute a suit-
able framework for the representation of ordinal games under incomplete knowledge.
We extend the fundamental notions of secure strategy, pure Nash equilibrium, and
mixed Nash equilibrium to this framework. Furthermore, we show that any possibilis-
tic game with incomplete information can be transformed into an equivalent normal
form game with complete information. The fundamental notions such Nash equilib-
ria (pure and mixed) and secure strategies are in bijection in both frameworks. This
representation result is a qualitative counterpart of Harsanyi results about the repre-
sentation of Bayesian games by normal form games under complete information. It is
more of a representation result than the premise of a solving tool. We show that decid-
ing whether a pure Nash equilibrium exists in a Π-game is a difficult task (NP-hard)
and propose a Mixed Integer Linear Programming (MILP) encoding of this problem.
We also propose a polynomial-time algorithm to find a secure strategy in a Π-game
and show that a possibilistic mixed equilibrium can be computed in polynomial time
(w.r.t., the size of the game), which contrasts with probabilistic mixed equilibrium
computation in cardinal game theory. To confirm the feasibility of the MILP formula-
tion and the polynomial-time algorithms, we introduce a novel generator for Π-games
based on the well-known standard normal form game generator: GAMUT.

Representing a Π-game in standard normal form requires an extensive expression of
the utility functions and the possibility distribution on the product spaces of actions
and types. This is the concern of the second part of this thesis where we propose
a less costly view of Π-games, namely min-based polymatrix Π-games, which allows
to concisely specify Π-games with local interactions, i.e., the interactions between
players are pairwise and the utility of a player depends on her neighbors and not on
all other players in the Π-game. This framework allows, for instance, the compact
representation of coordination games under uncertainty where the satisfaction of a
player is high if and only if her strategy is coherent with all of her neighbors, the
game being possibly only incompletely known to the players. We show that any 2-
player Π-game can be transformed into an equivalent min-based polymatrix game.
This result is the qualitative counterpart of Howson and Rosenthal’s theorem linking
Bayesian games to polymatrix games. Furthermore, as soon as a simple condition on
the coherence of the players’ knowledge about the world is satisfied, any polymatrix



Π-game can be transformed in polynomial time into an equivalent min-based and
complete information polymatrix game. We show that the existence of a pure Nash
equilibrium in a polymatrix Π-game is an NP-complete problem but no harder than
deciding the existence of a pure Nash equilibrium in a Π-game. Finally, we show that
the latter family of games can be solved through a MILP formulation. We introduce
a novel generator for min-based polymatrix Π-games based on the Π-game generator.
Experiments confirm the feasibility of this approach.

Keywords
Game theory, games with incomplete information, ordinal games, possibility theory,
pure Nash equilibrium, mixed Nash equilibrium, secure strategy, polymatrix games,
games under qualitative uncertainty.



Resumé

Les jeux probabilistes à information incomplète, appelés jeux Bayesiens, offrent un
cadre adapté au traitement de jeux à utilités cardinales sous incertitude. Ce type
d’approche ne peut pas être utilisé dans des jeux ordinaux, où l’utilité capture un
ordre de préférence, ni dans des situations de décision sous incertitude qualitative.

Dans la premiere partie de cette thèse, nous proposons un modèle de jeux à information
incomplète basé sur la théorie de l’utilité qualitative possibiliste: les jeux possibiliste
à information incomplete, nommés Π-games. Ces jeux constituent un cadre approprié
pour la représentation des jeux ordinaux sous connaissance incomplète. Nous éten-
dons les notions fondamentales de stratégie de sécurité et d’équilibres de Nash (pur
et mixte). De plus, nous montrons que tout jeu possibiliste à information incomplète
peut être transformé en un jeu à information complète sous la forme normale équiva-
lent au jeu initial, dont les stratégies de sécurité, les équilibres de Nash purs et mixtes
sont en bijection dans les deux jeux. Ce résultat de représentation est une contrepartie
qualitative de celui de Harsanyi sur la représentation des jeux Bayésiens par des jeux
sous forme normale à information complète. Cela est plus un résultat de représenta-
tion qu’un outil de résolution. Nous montrons que décider si un équilibre de Nash pur
existe dans un Π-game est un problème NP-complet et proposons un codage de pro-
grammation linéaire mixte en nombres entiers (PLNE) du problème. Nous proposons
également un algorithme en temps polynomial pour trouver une stratégie de sécurité
dans un Π-game et montrons qu’un équilibre mixte possibiliste peut être également
calculé en temps polynomial (en fonction de la taille du jeu). Pour confirmer la fais-
abilité de la formulation de programmation linéaire en nombres entiers mixtes et des
algorithmes en temps polynomial, nous introduisons aussi un nouveau générateur pour
les Π-games basé sur le génerateur de jeux sous la forme normale: GAMUT.

Représenter un Π-game sous forme normale standard nécessite une expression exten-
sive des fonctions d’utilité et de la distribution des possibilités, à savoir sur les espaces
produits des actions et des types. La deuxième partie de cette thèse propose une
vue moins coûteuse des Π-games, à savoir la polymatrix Π-games basée sur min, qui
permet de spécifier de manière concise les Π-games avec des interactions locales, en
d’autre termes, lorsque les interactions entre les joueurs sont par paires et l’utilité
d’un joueur dépend de son voisinage et non de tous les autres joueurs du Π-game. Ce
cadre permet, par exemple, la représentation compacte des jeux de coordination sous
incertitude où la satisfaction d’un joueur est élevée si et seulement si sa stratégie est
cohérente avec celles de l’ensemble de ses voisins. Dans cette thèse, nous montrons
que n’importe quel Π-game à 2 joueurs peut être transformé en un jeu polymatriciel
équivalent basé sur le min. Ce résultat est la contrepartie qualitative du théorème de
Howson et Rosenthal reliant les jeux Bayésiens aux jeux polymatriciels. De plus, dès



qu’une simple condition de cohérence des connaissances des joueurs sur le monde est
satisfaite, tout polymatrix Π-game peut être transformé en temps polynomial en un
jeu polymatriciel, basé sur le min, à information complète équivalent. Nous montrons
que l’existence d’un équilibre de Nash pur dans un polymatrix Π-game est un prob-
lème NP-complet mais pas plus difficile que de décider si un équilibre de Nash pur
existe dans un Π-game. Enfin, nous montrons que cette dernière famille de jeux peut
être résolue grâce à une formulation de programmation linéaire en nombres entiers
mixtes. Nous introduisons un nouveau générateur pour les polymatrix Π-games basés
sur le générateur de Π-game. Les experimentations confirments la faisabilité de cette
approche.

Mots clés
Théorie des jeux, jeux à information incomplète, jeux ordinaux, théorie des possi-
bilités, equilibre de Nash pur, equilibre de Nash mixte, stratégie de sécurité, jeux
polymatriciels, jeux sous uncertitude qualitative.
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Introduction

Game theory has been studied for a long time (Von Neumann and Morgenstern, 1944).
Game theory proposes a very simple but powerful framework to capture decision prob-
lems involving several agents: in a game with complete information, each agent called
“player”, can be an individual, a company, a country, an organization, etc. She has to
choose a decision, called “action”, from a set of possible actions. The final outcome
of the game depends on the actions chosen by all the players of the game. The term
“payoff” is often used to designate their utility. The classical model indeed suits prob-
lems where the satisfaction can be expressed on a cardinal scale, typically a monetary
scale.

Despite their capacity to model many problems in different domains, cardinal games
are not able to adequately address situations where players do not have appropriate
payoff functions for each outcome. For these problems, players nevertheless have some
preferences and are able to rate their outcomes from the worst to the best or the
contrary. Thus, players’ preferences may be ordinal rather than cardinal. To model
such situations, a specific theory based on the rank ordering of players’ preferences
was proposed, called “ordinal games” (Xu, 2000, Cruz and Simaan, 2000, Ouenniche
et al., 2016).

When making decisions, players are supposed to be rational in the sense that they aim
to maximize their utilities. Therefore, solution concepts based on ranking outcomes
were proposed such as pure Nash equilibrium (Nash, 1950), Pareto optimal solutions,
dominance. Note that they do not require any cardinality assumption. They are
basically “ordinal”.

In classic non-cooperative games under complete information1, the players cannot co-
ordinate their actions but each of them knows everything about the game: the players,
their available actions, and all their utilities. This assumption of complete knowledge

1In non-cooperative games, it is assumed that each agent acts independently, without collaboration
or communication with any of her opponents. In this thesis, we focus on non-cooperative games.

1



cannot always be satisfied. In the real world, players are not so well informed and
have only limited knowledge about the game. That is why, incomplete information
games and more particularly Bayesian games (Harsanyi, 1967a) have been proposed.
They model problems where the utility degrees are additive and the knowledge of the
players is quantified in a probabilistic way.

Harsanyi has proposed the notion of type to present the beliefs of players in order
to capture the beliefs about the game, the knowledge about the other players, the
hierarchical beliefs, etc. In incomplete information games, it is assumed that every
player eventually knows her own type but not the types of the other players. In
Bayesian games, the knowledge is represented by a probability distribution over the
joint types. This latter is common to all players but each player may receive some
private information, hence a personal view of the game: Bayes’ rule of conditioning
is used to derive the knowledge of each agent, hence the denomination “Bayesian
game” (Harsanyi, 1967a).

Bayesian games do not apply to ordinal games where the utility degrees capture no
more than a ranking, and nor to situations of decision under qualitative uncertainty.

Ordinal games (Xu, 2000, Cruz and Simaan, 2000, Ouenniche et al., 2016) have been re-
cently extended to model games with incomplete information. In possibilistic Boolean
games (De Clercq et al., 2018), the knowledge of each player is expressed in the frame-
work of possibilistic logic and the players do not receive any private information before
playing. Therefore, the authors consider the problem from the external point of view
of an observer who proceeds to a fusion of these pieces of knowledge and computes the
possibility and the necessity of a given profile of actions being a Nash equilibrium in
the usual sense.

In this thesis, we propose a framework of games with incomplete information where the
utility of the players captures an order of preference and the knowledge is qualitative.
Players’ preferences are modeled by ordinal utilities whereas qualitative knowledge
is modeled by possibility theory. Thus, our framework is called “possibilistic games
with incomplete information” (Π-games). They constitute an appropriate framework
for the representation of ordinal games under incomplete qualitative knowledge. We
study several notions of game theory such secure strategy, pure Nash equilibria and
mixed Nash equilibrium in the sens of (Ben Amor et al., 2017, Hosni and Marchioni,
2019).

In addition to that, in this thesis, we study Π-games where the interactions between
players are pairwise and the utility of a player depends on her neighbors and not on
all other players in the Π-game. We propose a new framework of min-based polymatrix
Π-games, which allows us to concisely specify Π-games with local interactions. This

2



framework allows, for instance, the compact representation of coordination games
under possibilistic uncertainty.

This thesis is decomposed into two main parts:

I. The first part focuses on the notions on which the thesis relies:

• Chapter 1 presents the basic concepts related to game theory especially on
games with complete information;

• Chapter 2 presents ordinal games and recalls the basics of possibility the-
ory. This chapter also presents possibilistic mixed Nash equilibria in these
games;

• Chapter 3 details games with incomplete information.

II. The second part of the thesis presents our main contributions. It is structured
as follows:

• Chapter 4 is the core of this thesis and proposes a representation framework
for ordinal games under possibilistic incomplete information (Π-games). It
extends several solution concepts to this framework namely Nash equilibria
(pure and mixed) and secure strategy;

• Chapter 5 focuses on solving possibilistic games with incomplete informa-
tion. It presents a polynomial-time algorithm to compute a secure strategy
in a Π-game. As to pure Nash equilibria are concerned, a MILP formulation
is proposed. Then, a polynomial-time algorithm to compute a mixed Nash
equilibrium was proposed. Experiments are reported in the final part of
this chapter;

• Chapter 6 defines the new framework of min-based polymatrix Π-games
which allows us to concisely specify Π-games with local interactions. It
shows that a min-based polymatrix Π-game can be transformed, in polyno-
mial time, into a (complete information) min-based polymatrix game with
equivalent pure Nash equilibria. This chapter also studies the complexity to
check the existence of a pure Nash equilibrium in these games and proposes
a MILP formulation for this problem. Experiments are reported in the final
part of this chapter.

The main results of this thesis are published in:

• (Ben Amor et al., 2018): Nahla Ben Amor, Hélène Fargier, Régis Sabbadin, and
Meriem Trabelsi. Possibilistic games with incomplete information. Actes de la
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Rencontres Francophones sur la Logique Floue et ses Applications, pages 216-226
(LFA 2018), Arras, France. This paper is presented in Chapter 4;

• (Ben Amor et al., 2019a): Nahla Ben Amor, Hélène Fargier, Régis Sabbadin,
and Meriem Trabelsi. Possibilistic games with incomplete information. In Pro-
ceedings of the International Joint Conference on Artificial Intelligence, pages
1544–1550, (IJCAI 2019) Macao, China. This paper is presented in Chapter 4
and Chapter 5;

• (Ben Amor et al., 2020a): Nahla Ben Amor, Hélène Fargier, Régis Sabbadin,
and Meriem Trabelsi. Ordinal Polymatrix Games with Incomplete Information.
In Proceedings of the International Conference on Principles of Knowledge Rep-
resentation and Reasoning, pages 99–108, (KR 2020) Rhodes, Greece, and Actes
de la Rencontres Francophones sur la Logique Floue et ses Applications, pages
75-82 (LFA 2020), Sète, France. This paper is presented in Chapter 6.
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Background
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Chapter 1
Games with Complete Information

1.1 Introduction

Game theory (Von Neumann and Morgenstern, 1944) has been studied for a long time.
It is essentially used to model and analyze strategic real-life situations where an agent,
called “player”, can be an individual, a company, a country, an organization, etc. She
has to choose a decision, called “action”, from a set of possible actions. The final
outcome of the game depends on the actions chosen by all the players of the game.

Game theory was firstly studied by (Von Neumann and Morgenstern, 1944) then de-
veloped by (Nash, 1950). First, in the game theory studies, the outcomes of the games
were assumed to be represented in a numeric way. In these situations, every player
has complete information about the game, i.e., the players, their actions, and all the
outcomes. Such games are called “games with complete information”.

This chapter focuses on the basics on “games with complete information”, and it is
organized as follows: Section 1.2 focuses on the form of representations of games with
complete information. Sections 1.3 and 1.4 present the different strategies in games
with complete information and the well-known solution concepts. Section 1.5 focuses
on the well known cardinal games classes. Finally, Section 1.6 presents different ways
to succinctly model games with complete information.

1.2 Games Representations

We can distinguish two kinds of games representation: “Normal form games” used to
model “simultaneous games”, also called “static games”, where all players play at the
same time and “extensive form games” used to model “sequential games”, also called
“dynamic games”, where players play sequentially: one after another. In the following,
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we will detail these forms of representation.

1.2.1 Normal Form Games

In a “static game”, players choose their actions simultaneously. No player is informed
of the action chosen by any other player, she does not receive any information before
choosing her action. The game ends when all players have played. After that, no
player has the opportunity to change her action. At this stage, the outcome of the
game is immediately visible (Von Neumann and Morgenstern, 1944, Owen, 1982).

A static game is generally represented in “standard normal form” (Von Neumann and
Morgenstern, 1944). A “standard normal form game”, also known as the “strategic”
or “matrix” form game, is the general model for all classes of games. It is the most
familiar representation of strategic interactions in game theory.

More formally, a standard normal form game (SNF) is defined as follows:

Definition 1.1 (Standard Normal Form Game). A standard normal form game (SNF)
is a tuple G = ⟨N,A,µ⟩, where:

• N = {1, . . . , n} is a finite set of n players;

• A = ×i∈NAi, where Ai is a finite set of actions available to player i ∈ N ;

• µ = {(µi)i∈N} is a set of utility functions. µi(a) captures the utility of player i
for the joint action a ∈ A.

For a joint action a ∈ A, ai is the action of player i in a, a−i = (a1, . . . , ai−1, ai+1, . . . , an) ∈
A−i = ×j/=iAj is its restriction to all the players but i and “.” denotes the concatenation,
e.g., ∀(a′i, a−i), a′i.a−i = (a1, . . . , ai−1, a′i, ai+1, . . . , an).

In SNF games, each utility function is represented explicitly, by an n-dimensional table
having an entry for each joint action. For instance, a 2-player normal form game is
represented by a table where each row corresponds to an available action for player 1.
Each column corresponds to a possible action for player 2 and each cell corresponds
to one possible outcome, i.e., the first one corresponds to player 1 and the second one
corresponds to player 2 as shown in Example 1.1.

Example 1.1 (Prisoner’s dilemma). Two members of a criminal gang are arrested and
imprisoned in isolated rooms. Both of them want to minimize their prison punishment.
They can cover (C) or denounce (D). The utilities are displayed in Table 1.1. The
utility of a player is equal to the length of a prison term that she gets.
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Player 2
C D

Player 1 C -1 , -1 -3 , 0
D 0 , -3 -2 , -2

Table 1.1: “Prisoner’s dilemma” game.

1.2.2 Extensive Form Games

In “dynamic games”, also called “sequential-move games”, players decide what to play
sequentially by following an explicit time-schedule. Every player knows the past play.
In other words, every player knows what other players did in the past, i.e., all moves
before each stage of the game.

The normal form game representation does not allow to incorporate the notion of
time or the sequence of actions of the players. For that, an alternative representation,
called “extensive form game”, allows explicitly to represent both the actions and the
information over time of all players in the game. The extensive form is modeled as
a tree where the nodes represent the choices of the players, the edges represent the
actions and the leaves are the outcomes of the game (Von Neumann and Morgenstern,
1944).

There are two cases of dynamic games: “perfect information games” and “imperfect
information games”:

• Perfect information game is a game in which every player is aware of the moves
(all actions) of all other players that have already taken place. In other words,
every player knows the actions previously played by all other players and knows
exactly where she is in the game tree (Gale, 1953);

• Imperfect information game is a game in which at least one player does not
know the previous actions, i.e., movement, taken by the other players, or even
players with limited memory of their past actions (Blair et al., 1993).

Example 1.2. Two firms share the market, already colluding, and maintaining high
prices. Each firm can decide to stop colluding and decrease the price, in order to
increase their market share, even force the other to quit the market. Firm 1 can either
keep colluding with Firm 2 or decrease the price. If Firm 1 decides to keep colluding,
Firm 2 will need to make a decision. If they both agree to collude, they will get (5$,5$).
However, if one of them decides to decrease the price, the set of utilities will be either
(4$,3$) or (3$,4$), depending on which one starts the game. In other words, if Firm
1 (resp. Firm 2) first chooses to decrease the price she will get 4$ and thus Firm 2
(resp. Firm 1) gets 3$. This game can be represented by an extensive form game as
shown in Figure 1.1.
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Firm 1

Firm 2

4$ , 3$

5$ , 5$

3$ , 4$
Co
llud

e

Co
llud

e

Decrease the price

Decrease the price

Figure 1.1: An extensive form game.

1.3 Solutions Concepts in Normal Form Games

In this section, we will start by defining the notion of “joint pure strategy”. A “pure
strategy” of player i is represented by her action ai ∈ Ai. A “joint pure strategy”
a = (a1, . . . , ai, . . . , an) ∈ A is a selection of an action for each player. The utility of a
player for a joint pure strategy is directly given by the utility table.

Every player acts independently and determines the action that gives her the best util-
ity taking into consideration the possible decisions of her opponents. Hence, the use of
solution concepts helps players to find the action to play for a given situation. Solution
concepts are defined as a subset of joint pure strategies that constitute the results of
the game. In the following, we will present the most fundamental solution concepts:
Pareto optimally, secure strategy, dominant strategy, and pure Nash equilibrium.

1.3.1 Pareto Optimal Joint Strategies

Given the actions of the other players, every player can be sure that one action is
better than another one for her. Formally, this intuition is called “Pareto dominance”.
A joint strategy is dominated by another one if some players can be made better off
without making any other player worse off. Formally:

Definition 1.2 (Pareto Domination). Let G = ⟨N,A,µ⟩ be a normal form game. A
joint pure strategy a ∈ A Pareto dominates a joint pure strategy a′ ∈ A iff:

∀i ∈ N , µi(a) ≥ µi(a′) and ∃j ∈ N , s.t., µj(a) > µj(a′).

A joint pure strategy a is called “Pareto optimal” if it does not exist a joint pure
strategy a′ such that a′ Pareto dominates a. Formally:
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Definition 1.3 (Pareto optimal). Let G = ⟨N,A,µ⟩ be a normal form game. A joint
strategy a is called Pareto optimal, iff no strategy a′ ∈ A Pareto dominates a.

Example 1.3 (Cont. Example 1.1). The prisoner’s dilemma game contains three Pareto
optimal outcomes: C.C, C.D and D.C. D.D is the only outcome that cannot be a
Pareto optimal since outcome C.C dominates it:

µ1(C.C) > µ1(D.D) and µ2(C.C) > µ2(D.D).

1.3.2 Maximin Strategy: Secure Strategy

For every player, a “secure strategy” or a “maximin strategy” is an action that guaran-
tees the best outcome under the worst conditions, i.e., whatever the actions of remain-
ing players. Therefore, the secure strategy can be seen as a reasonable alternative for
a cautious player who always prefers maximizing her worst-case utility whichever the
actions chosen by the other players. Formally:

Definition 1.4 (Level of Security, Secure Strategy). Let G = ⟨N,A,µ⟩ be a normal form
game. The level of security of player i ∈ N for an action ai ∈ Ai is:

µsecurei (ai) = min
a−i∈A−i

µi(ai.a−i). (1.1)

A joint action a = ai.a−i is a secure strategy iff ∀i ∈ N , ∀a′i ∈ Ai:

µsecurei (ai) ≥ µsecurei (a′i). (1.2)

Example 1.4 (Cont. Example 1.1). In the Prisoner’s dilemma game depicted in Ta-
ble 1.1. We have:

• µsecure1 (D) = min (µ1(D.C), µ1(D.D)) = −2;

• µsecure1 (C) = min (µ1(C.C), µ1(C.D)) = −3;

• µsecure2 (D) = min (µ2(D.C), µ2(D.D)) = −2;

• µsecure2 (C) = min (µ2(C.C), µ2(C.D)) = −3.

Thus, the secure strategy of both players is D since:

µsecure1 (D) ≥ µsecure1 (C) and µsecure2 (D) ≥ µsecure2 (C).

1.3.3 Dominated Strategies

To analyze a game, players have to check if there exist some actions to eliminate.
Indeed, a player may have an action that brings her a better utility whatever the
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actions of the other players. In other words, a player can have an action that dominates
another. The gradations of dominance can be defined as follows:

Definition 1.5 (Domination). Let G = ⟨N,A,µ⟩ be a normal form game. Let ai and
a
′
i be two actions of player i and A−i the set of the joint strategies of the remaining

players. Then:

• ai strictly dominates a′i: ∀a−i ∈ A−i, µi(ai.a−i) > µi(a
′
i.a−i);

• ai weakly dominates a′i: ∀a−i ∈ A−i, µi(ai.a−i) ≥ µi(a
′
i.a−i) and ∃a−i ∈ A−i, s.t.,

µi(ai.a−i) > µi(a
′
i.a−i).

If one action dominates all others, we say that it is (strongly or weakly) dominant:

Definition 1.6 (Dominant Strategy). Let G = ⟨N,A,µ⟩ be a normal form game. An
action ai is strictly (resp. weakly) dominant for player i iff it strictly (resp. weakly)
dominates any other actions a′i ∈ Ai, s.t., a

′
i ≠ ai.

Example 1.5 (Cont. Example 1.1). According to the above definition, the strictly
dominant strategy for both players in the prisoner’s dilemma game is D since:
µ1(D.C) > µ1(C.C), µ1(D.D) > µ1(C.D), µ2(D.C) > µ2(C.C) and µ2(D.D) > µ2(C.D).

When playing a game, players consider their dominant strategies. To solve a game,
each player eliminates the action that gives her a utility lower than all others. This
action is called “dominated strategy”, it is dominated by all other possible actions.

It is obvious that if a player finds a dominated strategy, she will ignore it from her
choices. Formally, a dominated strategy is defined as follows:

Definition 1.7 (Dominated Strategy). Let G = ⟨N,A,µ⟩ be a normal form game. An
action ai is strictly (resp. weakly) dominated for player i iff ∃a′i ∈ Ai, s.t., a′i ≠ ai
strictly (resp. weakly) dominates action ai.

To solve a game, we can find its solution by removing dominated pure strategies, since
these latter give an utility less or equal to other actions. If one dominated strategy is
removed, it can be possible to find a new dominated strategy that was not dominated
before. The following example explains the process.

Example 1.6. Let us take an example of a two-player normal form game. Each one
has three actions: actions E, F and D are available to player 1 whereas actions X,
Y , and Z are available to player 2. The utilities are represented in Table 1.2. We
can check that player 1 would never play action D since it is dominated by action E.
In this case, we remove line D. Second, player 2 would never play action Z since it
is dominated by actions X and Y (this domination appears after removing line D).
Thus, we eliminate column Z. This process is repeated. Dominated strategies are
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Player 2
X Y Z

Player 1
E 10 , 4 5 , 3 3 , 2
F 0 , 1 4 , 6 6 , 0
D 2 , 1 3 , 5 2 , 8

Table 1.2: A normal form game with dominated strategies.

Player 2
X Y Z

Player 1
E 10 , 4 5 , 3 3 , 2
F 0 , 1 4 , 6 6 , 0
D 2 , 1 3 , 5 2 , 8

Player 2
X Y Z

Player 1 E 10 , 4 5 , 3 3 , 2
F 0 , 1 4 , 6 6 , 0

Player 2
X Y

Player 1 E 10 , 4 5 , 3
F 0 , 1 4 , 6

Player 2
X Y

Player 1 E 10 , 4 5 , 3

Player 2
X

Player 1 E 10 , 4

Table 1.3: Iterative removal of dominated strategies.

removed (F then Y ) until no player has a dominated strategy. Finally, we find just
one joint strategy (E.X). Therefore, the solution of this game (E.X) is obtained using
the iterative removal.

1.3.4 Pure Nash Equilibrium

Pure Nash equilibrium is the most known and fundamental solution concept in non-
cooperative games. It corresponds to a joint pure strategy in which no player has the
incentive to change unilaterally her action.

If player i knows the chosen actions of all her opponents (i.e., if player i knows a−i),
she will choose the action that maximizes her utility. This latter is called the “best
response” of player i to joint action a−i. Formally:

Definition 1.8 (Best response). Let G = ⟨N,A,µ⟩ be a normal form game. An action
ai ∈ Ai is a best response (BR) of player i to a−i, iff ∀a′i ∈ Ai, s.t., a

′
i ≠ ai:

µi(ai.a−i) ≥ µi(a′i.a−i). (1.3)

Note that the best response of player i is not necessarily unique.
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Generally, every player chooses her best response to other players’ best responses. The
corresponding joint strategy is called a “pure Nash equilibrium” (Nash, 1950).

A joint strategy a∗ ∈ A is a pure Nash equilibrium (PNE), defined as follows:

Definition 1.9 (Pure Nash Equilibrium). Let G = ⟨N,A,µ⟩ be a normal form game.
The joint pure strategy a∗ ∈ A is a pure Nash equilibrium (PNE), iff ∀i ∈ N, ∀a′i ∈ Ai:

µi(a∗i .a∗−i) ≥ µi(a′i.a∗−i). (1.4)

It is easily checked that the above definition is equivalent to writing that, in a pure Nash
equilibrium, every player chooses her best response to other players’ best responses.

Example 1.7 (Cont. Example 1.1). It can be checked that the joint strategy a =D.D is
the unique PNE in the Prisoner’s dilemma game. Indeed, when player 1 denounces,
player 2 has no incentive to deviate from D to C since: µ2(D.D) = −2 > µ2(D.C) = −3.
Similarly, when player 2 denounces, player 1 has no interest to change from D to C
since her utility would decrease from −2 to −3.

It is not guaranteed to get a pure Nash equilibrium in a given standard normal form
game as illustrated by the following example:

Example 1.8 (Matching Pennies Game). Given a matching pennies game with two
players. Everyone has a penny. To play this game, each one chooses to display ei-
ther heads or tails. Then, both of them compare their pennies. If the results are the
same, then player 1 pockets both, otherwise, the second player gains and pocket the
two pennies. For more details, Table 1.4 presents the normal form representation of a
matching pennies game:

Player 2
Heads Tails

Player 1 Heads 1 , -1 -1 , 1
Tails -1 , 1 1 , -1

Table 1.4: “Matching Pennies” game.

It can be checked that the above game does not admit a PNE.

Determining whether a game expressed in standard normal form has a pure Nash
equilibrium is an polynomial time problem.

We note that any dominant strategy is always a Nash equilibrium. However, not all
Nash equilibria are dominant strategies. Indeed, given a dominant strategy a ∈ A
where each player plays her dominant strategy, no player has the interest to deviate
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to another action since she plays a dominant strategy. Hence, a ∈ A is a pure Nash
equilibrium.

The above notions of Pareto optimal, secure strategy, dominated strategies and pure
Nash equilibrium are based on ranking the utilities of players; they are basically purely
ordinal. Nevertheless, in game theory literature, other solution concepts exist such as
minmax regret and mixed Nash equilibrium which are cardinal: the utilities of players
are computed using arithmetic operations (addition, subtraction, multiplication, etc.).
These are detailed in the next section.

1.4 Solutions Concepts in Cardinal Games

Generally, in normal form games, the preferences of the agents among the outcomes
are captured by utility functions. In cardinal games, the term “payoff” is often used
to designate their utility. Every player is able to asses an utility function for each
possible outcome. This suits problems where the satisfaction can be expressed on a
cardinal scale, typically a monetary scale.

In the following, we present the cardinal solution concepts:

1.4.1 Minimax Regret

In Section 1.3.2, we argued that players can play maxmin strategies to maximize their
worst-case utilities. However, in the case where the other agents are not believed to
be malicious but instead entirely unpredictable, it can make sense that players care
about minimizing their worst-case losses. The idea is to calculate the regret of the
player if she chooses an action rather than the other one (Bell, 1982). The regret of
player i can be described by the amount that the player loses by playing an action ai
rather than playing her best response to a−i. Formally, the regret of a player is defined
as follows:

Definition 1.10 (Regret). Let G = ⟨N,A,µ⟩ be a cardinal normal form game, i.e.,
µ→ R. The regret of player i for the joint action a ∈ A is:

regreti(a) = (max
a
′
i∈Ai

µi(a
′
i.a−i)) − µi(ai.a−i). (1.5)

Naturally, a player would minimise her regret, hence, she will attempt to minimize her
worst-case regret, i.e., minimize her maximum regret. Formally, the minimax regret
actions for player i are defined as:

Definition 1.11 (Minimax regret). Let G = ⟨N,A,µ⟩ be a cardinal normal form game.
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The minmax regret actions for player i are defined as:

regret(i) = arg min
ai∈Ai

( max
a−i∈A−i

regreti(ai.a−i)). (1.6)

1.4.2 Mixed Nash Equilibrium

1.4.2.1 Mixed strategy

A “mixed strategy” consists of randomizing the set of available actions according to
some probability distribution. Formally, a mixed strategy in a normal form game is
defined as follows:

Definition 1.12 (Mixed strategy in normal form game). Let G = ⟨N,A,µ⟩ be a cardinal
normal form game. The set of mixed strategies for player i ∈ N is the set of all
probability distributions over the set of her actions Ai.

Given a mixed strategy si ∈ Si, si(ai) denotes the probability that an action ai will be
played by player i ∈ N under the mixed strategy si.

As a joint pure strategy, a joint mixed strategy s = (s1, ..., sn) is a selection of a
(mixed) strategy for each player. However, unlike pure strategies, the utility of a
player cannot be calculated directly from the utility table. If she chooses to randomize
over her available actions with a certain probability distribution, then it leads to the
calculation of her expected utility. The expected utility of player i ∈ N for the joint
mixed strategy s ∈ S is defined by:

Definition 1.13 (Expected utility for a mixed strategy). Let G = ⟨N,A,µ⟩ be a cardinal
normal form game and s = (s1, ..., sn) be a joint mixed strategy. The expected utility
EUi of player i for the mixed strategy s is equal to:

EUi(s) = ∑
a∈A

µi(a)
n

∏
j=1
sj(aj). (1.7)

1.4.2.2 Mixed Equilibrium

If each player i randomizes over the set of her available actions Ai according to some
probability distribution in the form of si ∶ Ai ↦ [0,1], the mixed Nash equilibrium
appears as a solution where no player can improve her expected utility by changing her
mixed strategy. Unlike pure Nash equilibrium, a mixed Nash equilibrium is assumed
to exist in any game (Nash, 1950). Formally, a mixed Nash equilibrium is defined as
follows:

Definition 1.14 (Mixed Nash Equilibrium). Let G = ⟨N,A,µ⟩ be a cardinal normal
form game. The mixed strategy s∗ ∈ S is a mixed Nash equilibrium (MNE), iff ∀i ∈
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N, ∀s′i ∈ Si:
EUi(s∗i .s∗−i) ≥ EUi(s′i.s∗−i). (1.8)

Example 1.9 (Cont. Example 1.8). Let us take a matching pennies game depicted in
Table 1.4. We have to compute a mixed equilibrium. Suppose that:

• player 2 plays heads H with probability p and tails with probability 1 − p then:
EU1(H) = EU1(T )
1p − 1(1 − p) = −1p + 1(1 − p)
p = 0.5, hence, player’s 2 mixed strategy is (0.5,0.5);

• player 1 plays heads H with probability q and tails with probability 1 − q then:
EU2(H) = EU2(T )
−1q + 1(1 − q) = 1q − 1(1 − q)
q = 0.5, hence, player’s 1 mixed strategy is (0.5,0.5).

It can be checked that the joint mixed strategy s∗ = (s∗1.s∗2), such that:
s∗1(H) = 0.5, s∗1(T ) = 0.5, s∗2(H) = 0.5 and s∗2(T ) = 0.5 is an MNE for the matching
pennies game.

The computation of a mixed Nash equilibrium is a fundamental problem for algorith-
mic game theory. (Nash, 1950) has shown that any game has an MNE. (Chen and
Deng, 2005, Daskalakis et al., 2009) have studied the complexity of finding an MNE
in a game and have proved that computing an MNE is PPAD-complete (Polynomial
Parity Arguments on Directed graphs)1. Furthermore, (Conitzer and Sandholm, 2008)
has proved that determining whether a game contains more than one MNE is an NP-
Complete problem.

1.5 Cardinal Games Classes

In the following, we present the main games classes which are cardinal in essence.

1.5.1 Zero-Sum Games

One of known games classes is “constant-sum games” where, for a joint strategy a ∈ A,
the sum of all players’ payoffs is equal to a constant c. In game theory studies, the
most used “term” of this class is “zero-sum games” also called “competitive games”.
Indeed, a zero-sum game is a constant-sum game if and only if the sum of all players’
payoffs for a joint strategy a ∈ A is equal to 0. Zero-sum games represent situations of
competition between players. Formally, a zero-sum game is defined as follows:

1The name of this class is proposed by (Papadimitriou, 1994) and it refers to a class of computa-
tional problems in which solutions are guaranteed to exist due to a specific combinatorial principle.
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Definition 1.15 (Zero-sum Game). A cardinal normal form game G = ⟨N,A,µ⟩ is a
zero-sum game iff: ∀a ∈ A

∑
i∈N

µi(a) = 0. (1.9)

The most well-known example of a zero-sum game is the matching pennies game
(Example 1.8).

1.5.2 Repeated Games

In many strategic situations, players have to react many times over time. This kind
of games is called “repeated game” where a given game (generally in normal form) is
played many times by the same set of players. At a specific time, the game being
repeated is called “stage game”. Two kinds of repeated games exist:

• Finitely repeated games: the number of iteration is finite. At each stage game,
players play a normal form game, i.e., no player knows what the other players
are playing but afterward they do. This means that, after the stage game, all
players will have information about the actions of the other players. Then move
to the next stage. Note that the utility function of every player is additive. In
other words, the outcome of the game is the sum of the results of all stage games.
A finitely repeated game can be represented as an extensive form game where
the outcomes are in the terminal nodes (Benoit et al., 1984);

• Infinitely repeated games: are games that continue forever, this is no limit
number of the stage game. The representative tree is infinite. Unlike finitely
repeated games, the final outcome cannot be attached to the terminal nodes nor
can they be defined as the sum of the payoffs on the stage games. For that, two
possible ways exist to compute the final payoff of each player: average reward
and discounted reward (Abreu et al., 1990).

1.5.3 Stochastic Games

“Stochastic games” have been introduced by (Shapley, 1953). A stochastic game is
a dynamic game with probabilistic transitions. It has possible states (each state is
given by a normal form game) and it is played in stages. The move from one stage to
another depends on transition probabilities. This latter depends on the actions chosen
by all players at the current stage.

In other words, at each stage, the game is in one state, the players choose their actions
and receive their utilities which depend on the chosen actions and the current state.
The next stage is chosen based on (i) the previous stage and (ii) the actions played by
all players. This procedure is repeated for a finite or infinite number of stages. Finally,
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the total utility of each player is equal to the sum of the stage utilities if the number
of stages is finite and equal to the limit inferior of the averages of the stage payoffs if
the game is infinite (Shapley, 1953).

1.6 Succinct Games
Representing a game is a challenge in terms of memory. Researchers have proposed
representations of a multiple players games more succinctly than the normal form.

Without placing constraints on the players’ utilities, describing a game in SNF involv-
ing n players, each facing d possible actions, requires listing n utility tables of size
dn. Therefore, as mentioned by (Gottlob et al., 2005), “for large population games
(modeling, for instance, agents interactions over the internet), the SNF is practically
unfeasible, while the more succinct graphical normal form works very well, and is ac-
tually a more natural representation”. In many cases indeed, the utility of a player
does not depend on the actions of all the other ones – the influence of what the other
players decide is often local.

To represent such games, polymatrix games (Yanovskaya, 1968), graphical
games (Kearns et al., 2001), hypergraphical games (Papadimitriou and Roughgarden,
2008), etc. have been proposed as a convenient way to represent games with multiple
players and local interactions, e.g., coordination games.

1.6.1 Polymatrix Games

Polymatrix games have been proposed in the late 60’s (Yanovskaya, 1968) as a conve-
nient way to represent games with multiple players and pairwise interactions. Poly-
matrix games are defined as:

Definition 1.16 (Polymatrix game). A polymatrix game is a tuple G = ⟨N,E,A,µ⟩
where:

• N = {1, . . . , n} is a finite set of n players;

• E is a set of pairs of distinct players of N ;

• A = ×i∈NAi, where Ai is the set of actions available to player i;

• µ = {(µi,j, µj,i),{i, j} ∈ E} is a set of pairs of utility functions on Ai × Aj:
µi,j(ai.aj) is the local utility for player i of the joint action (ai.aj) ∈ Ai ×Aj.

(N,E) is a graph where nodes N represent the players and edges E capture the inter-
actions between players. An absence of an edge between players i and j corresponds
to the pair of players i and j in which utilities are independent of the actions of
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the other. In other words, the utility of player i does not depend on the utility of
player j and vice versa. Each edge {i, j} ∈ E corresponds to a local two-player game
Gi,j = ⟨{i, j},Ai ×Aj,{ui,j, µj,i}⟩. Gi,j is a game in SNF, i.e., represented by a matrix
– hence the name “polymatrix game”.

Classical polymatrix games are sum-based: the global utility function of a player is
the sum of the utilities gathered by this player in the local games she is involved in.

Definition 1.17 (Sum-based polymatrix game). A sum-based polymatrix game is a
game G = ⟨N,E,A,µ⟩ where the utility of each player i ∈ N for the joint action a ∈ A
is:

µi(a) = ∑
j∈N,{i,j}∈E

µi,j(ai.aj). (1.10)

In other terms, if G is sum-based, its equivalent standard normal form is the game
⟨N,A,µ⟩ where utilities are computed using Equation (1.10).

Polymatrix games can be much more frugal in memory space than SNF games – a
polymatrix game indeed involves at most 2 ⋅n ⋅ (n− 1) utility tables of size d2 (d being
the maximum number of actions available to one player) – to be compared to the n
utility tables of size dn required by its equivalent standard normal form.

1.6.2 Graphical Games

“Graphical games” represents the useful interactions between players (Kearns et al.,
2001). Each player’s utility depends only on the chosen actions of the players in her
neighborhood. A graphical game is represented by a graph (N,E) such that each
node i ∈ N represents a player i and an edge ei,j ∈ E, between two nodes i and j,
exists if the utility of player i depends on the actions of player j. Every node of the
graph, i.e., every player, has a local matrix that depends on the interactions between
the neighbors. Formally, a graphical game is defined as follows:

Definition 1.18 (Graphical Game). A graphical game is a tuple G = ⟨N,E,A,M⟩ where:

• N = {1, ..., n} is a finite set of n players;

• E is a set of subsets of distinct players of N ;

• A = ×i∈NAi, where Ai is a finite set of actions available to player i;

• M = {(Mi)i∈N} is a set of local matrices, where Mi(ae), e ∈ E is a local matrix
of player i for the joint action ae.

Given a joint action a ∈ A, Mi(ae) specifies the utility of player i for the joint action
ae, which depends only on the actions taken by her neighbors in e.
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Note that, any SNF game can be represented by a graphical game where the graph
(N,E) is complete. The representation of a game by a graphical game can be more
compact than the representation in standard normal form. It requires n utility func-
tions of size dNeigh where d is the number of actions per player and Neigh is the
maximal number of neighbors of any player. In general, Neigh << n, that is, the
number of neighborhood of each player is much smaller than the overall players.

1.6.3 Hypergraphical Games

To generalize the two previous classes of games, (Papadimitriou and Roughgarden,
2008) has proposed “Hypergraphical games”. In an hypergraphical game, every player
can be involved in several multiple players subgames. Formally an hypergraphical
game is defined as follows:

Definition 1.19 (Hypergraphical game). An Hypergraphical game is a tuple G =
⟨N,E,A,µ⟩ where:

• N = {1, . . . , n} is a finite set of n players;

• E is a set of subsets of distinct players of N ;

• A = ×i∈NAi, where Ai is the set of actions available to player i;

• µ = {µei , e ∈ E} is a set of utility functions. µei(ae) is the local utility for player i
of the joint action ae in the local SNF game between the set of e players.

(N,E) is a hypergraph where nodes N represent the players and hyperedges e ∈ E
capture interactions between players. An absence of an hyperedge corresponds to a
subset of players in which utilities are independent of the actions of the other. Each
hyperedge e ∈ E corresponds to a local ∣e∣-player SNF Ge = ⟨e,A,µ⟩.

Originally, hypergraphical games are sum based: the global utility function of a player
is the sum of the utilities gathered by this player in the local games she is involved in.

Definition 1.20 (Sum-based hypergraphical game). Hypergraphical game is a game
G = ⟨N,E,A,µ⟩ where the utility of any player i ∈ N for the joint action a ∈ A is
defined as:

µi(a) = ∑
e∈E,i∈e

µei(ae). (1.11)

Hypergraphical game generalizes both polymatrix games and graphical games. Indeed,
if the graph is a clique the hypergraphical game is a polymatrix game. However, if
each edge has nonzero utility in only one hyperedge, and these nonzero hyperedges
have a certain symmetry property, the hypergraphical game can be seen as a graphical
game.
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1.6.4 Boolean Games

Boolean games are firstly defined by (Harrenstein et al., 2001) then by (Bonzon et al.,
2006). In a boolean game, every player has a set of propositional variables, and their
actions consist of a set of “prioritized goal bases”. The utility functions are binary and
described by a single propositional formula. The utility of a player is equal to 1 if the
propositional formula is True and 0 otherwise. In other words, a player is satisfied
(get a utility equal to 1) iff her goal is satisfied and she is unsatisfied otherwise.

In game theory studies, several other forms of succinct games exist such: “Action
graph games” (Jiang et al., 2011) which are represented by a directed graph where each
node corresponds to an action that is available to one or more players and “Sparse
games” (Chen et al., 2006) in which most of the players’ utilities are equal to zero.

1.7 Conclusion
This chapter presented the different representations of games with complete infor-
mation: the standard normal form and extensive form. It presented several ordinal
solution concepts: secure strategy, Pareto optimal, dominated strategies, and pure
Nash equilibrium. Then, cardinal solution concepts: minmax regret and mixed Nash
equilibrium. After that, this chapter presented some known classes of cardinal games
and finally, it presented different cardinal succinct games.

In some situations like planning a vacation, players can only order (in an ordinal scale)
their preferences over the outcomes: from the worst to the best or the contrary. The
next chapter focuses on ordinal games to model these situations.
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Chapter 2
Possibilistic and Ordinal Games

2.1 Introduction

As detailed in Chapter 1, several fundamental notions of game theory such pure Nash
equilibrium, secure strategy and dominance, do not require the cardinal-payoff assump-
tion. They are basically “ordinal” notions. Nevertheless, (probabilistic) mixed Nash
equilibrium, repeated games, sum based polymatrix games rely on the idea that players
assess the relative performance of their decisions by evaluating a payoff in a cardinal
way.

Despite their capacity to model many problems in different domains, cardinal games
are not able to adequately address problems in fields where human expertise is re-
quired such as military applications1. The main reason is the inability to formulate
appropriate payoff functions for all players.

Players may have certain preferences and can list their outcomes, easily, in a specific
order, i.e., from the worst to the best or the contrary. Hence, players’ preferences
are ordinal rather than cardinal. To model such situations, a specific theory based on
the ranking ordering of players’ preferences arises, called “ordinal games” (Ouenniche
et al., 2016, Cruz and Simaan, 2000, Xu, 2000).

Roughly speaking, ordinal games (Ouenniche et al., 2016, Cruz and Simaan, 2000,
Xu, 2000) can be identified as the qualitative counterpart of cardinal games, defined
by (Von Neumann and Morgenstern, 1944), in which players can order their preferences
instead of computing a payoff function.

This chapter focuses on ordinal games and it is organized as follows: Section 2.2

1For example, planning an air operation in the presence of an intelligent adversary is extremely
difficult.
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presents ordinal games. Section 2.3 shows the limits of probability theory to compute
a mixed Nash equilibria in ordinal games. Section 2.4 gives the brief concepts of
possibility theory to model possibilistic mixed Nash equilibrium (in Section 2.5). In
the end, Section 2.6 presents the qualitative counterpart of succinct games presented
in Chapter 1.

2.2 Ordinal Games
In some real-life situations, like planning a vacation (e.g., choosing between going to
the beach or the mountain), the main difficulty is defining an adequate utility function
for each player to evaluate her preferences (Ouenniche et al., 2016, Xu, 2000, Cruz and
Simaan, 2000). However, players can easily list their outcomes on an ordered scale, i.e.,
from the worst to the best or the contrary. For example, players cannot evaluate their
preferences using an utility function to choose between going to the beach, cinema, or
restaurant. Nevertheless, they can easily express their preferences on a ranked scale
such: a player can prefers the beach to the cinema and cinema to a restaurant.

Hence, ordinal games (Ouenniche et al., 2016, Cruz and Simaan, 2000, Xu, 2000)
arose to model situations where players are easily able to express and order the situa-
tions through the game outcomes in an ordinal manner as illustrated in the following
“coordination game”.

Example 2.1 (Coordination game). Let us consider a game where several agents have
to choose between multiple competing offers, e.g., choosing an internet provider. This
game is a kind of “coordination game” inspired from (Simon and Wojtczak, 2017).
An agent is satisfied at a high degree if and only if all her neighbors choose the same
service as she does. For instance because the satisfaction of the agent is relative to the
security of her communications with her neighbors and the security level of the network
is not guarantee when different services are used.

Consider a coordination game between n players, each choosing between two actions,
x, and y. A player is satisfied iff all her neighbors play the same action and is satisfied
to a lower level otherwise. Of course, players may have a prior preference for x or for
y (e.g., a preference for some provider).
Let Neigh(i) denotes the set of neighbors of player i.

In this game N = {1, . . . , n} and ∀i: Ai = {x, y} and µi is defined as follows:

• if players i and j, s.t., j ∈ Neigh(i) coordinate:

– µi(x.a−i) = αi,x if ∀j ∈ Neigh(i), ai = aj = x;

– µi(y.a−i) = αi,y if ∀j ∈ Neigh(i), ai = aj = y;
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• if players i and j, s.t., j ∈ Neigh(i) do not coordinate:

– µi(x.a−i) = βi,x if ai = x and ∃j ∈ Neigh(i), s.t., ai ≠ aj;

– µi(y.a−i) = βi,y if ai = y and ∃j ∈ Neigh(i), s.t., ai ≠ aj.

Typically, in a coordination game, all β are lower than the α’s. For players who prefer
to coordinate on x rather than to coordinate on y, we have αi,x > αi,y and βi,x > βi,y and
the contrary for players who prefer a coordination on y than on x we haveαi,y > αi,x
and βi,y > βi,x. Table 2.1 presents such a game for the two players case.

Player 2
x y

Player 1 x α1,x , α2,x β1,x , β2,x
y β1,x , β2,x α1,y , α2,y

Table 2.1: A coordination game with two players.

When only two players are involved in N , (x.x) and (y.y) are the two PNE of the
game (because ∀i ∈ N , βi,x and βi,y are low).

The most fundamental core of an ordinal game is the player’s preferences over the
alternatives. Each player i can list her preferences from the best to the worst or the
contrary. She can say that she strictly prefers a situation to another one, or she weakly
prefers a situation to another one or she is indifferent between two situations.

As mentioned in the previous chapter, several fundamental notions of game theory such
pure Nash equilibrium, secure strategy and dominance, do not require the cardinal-
payoff assumption. They are basically ordinal notions. In other words, whether the
game is ordinal or cardinal the latter notions have the same definition.

Several works have studied pure Nash equilibrium in ordinal games. (Cruz and Simaan,
2000) studied Nash equilibrium in ordinal game. They defined the optimal Nash as
the most highest ranked Nash equilibrium for the game. They also studied generalised
Stackelberg solution for ordinal games where one player announces her action before
the other players in the game.

Moreover, (Durieu et al., 2008) shown that potential ordinal games2 always admit
ordinal Nash equilibria. This result is a qualitative counterpart of cardinal potential
games, which always admit a pure Nash equilibrium (Monderer and Shapley, 1996).

Since an ordinal game does not always admit ordinal Nash equilibrium, (Cruz and
Simaan, 2000, Ouenniche et al., 2016) proposed an approach which consists of listing

2In game theory, a game is said to be a potential game (Monderer and Shapley, 1996) if the
incentive of all players to change their strategy can be expressed using a single global function called
the potential function.
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all combinations of pure strategies and use the list of ranks of pure strategies of each
player to analyze all possible pure equilibria in the game.

The notion of (probabilistic) mixed Nash equilibrium cannot solve ordinal games. In
the following, we will show the limits of probabilistic mixed equilibrium to solve ordinal
games.

2.3 Limits of Probabilistic Mixed Equilibria in Ordinal
Games

Every cardinal game guarantees at least one probabilistic mixed Nash equilibrium (Def-
inition 1.14) (Nash, 1950). In this section, we show the impact of probabilistic mixed
equilibrium in ordinal games in case of non existence of a pure Nash equilibrium.

Example 2.2 (Firm Competition). Let E be an established firm and N be a newcomer
firm. They have to fix the packaging of a similar product. Two different packagings
exist X and Y . The established producer prefers the newcomer’s product looks like
its own while the newcomer prefers that the products look different. If the established
chooses to play Y , the utility of the newcomer playing X is greater than her utility if
she plays Y . However, her utility playing X will be greater than her utility playing
Y if E plays X. E is indifferent between X and Y . This situation can be modeled
by an ordinal game. The following table illustrates players’ utilities ( refers to the
worst-case whereas refers to the best case). The ordinal scale is as follows: < <
< < .

N
X Y

E
X , ,
Y , ,

Table 2.2: Firm Competition.

The above game can be translated into an equivalent ordinal game where utilities are
represented in numerical ordered scale where refers to 0, refers to 1, refers to
2, refers to 3 and refers to 4. Hence the game is as follows:

N
X Y

E
X 2 , 2 1 , 4
Y 1 , 3 2 , 0

Table 2.3: Firm Competition.
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If we translate ordinal utilities to their corresponding real values, this cardinal game
admits a single mixed Nash equilibrium,: s∗E = [0.6,0.4] and s∗N = [0.5,0.5].

Let us transform this ordinal game into two different cardinal games detailed in Ta-
bles 2.4 and 2.5. Note that, these ordinal games are equivalent since the order of
preferences is the same. The game detailed in Table 2.4 admits a new mixed equi-

N
X Y

E
X 2 , 2 1, 5
Y 1 , 3 2 , 0

Table 2.4: Firm Competition.

N
X Y

E
X 2 , 2 1, 6
Y 1 , 3 2 , 0

Table 2.5: Firm Competition.

librium s∗E = [0.5,0.5] and s∗N = [0.5,0.5]. Whereas, the game detailed in Table 2.5
admits another mixed equilibrium s∗E = [0.43,0.57] and s∗N = [0.5,0.5].

In this example, there exist different equilibria for the same game: s∗E(X) < s∗E(Y ),
s∗E(X) = s∗E(Y ) or s∗E(X) > s∗E(Y ).

The previous example shows that the transformation of ordinal utilities to cardinal ones
presents a problem in the definition of mixed equilibrium. Hence, it is recommended
to use directly the original game instead of transforming it into a cardinal game to
avoid the bias linked to ordinal-cardinal utility transition.

For that, (Hosni and Marchioni, 2013, Ben Amor et al., 2017) and (Hosni and Mar-
chioni, 2019) introduce the notion of “possibilistic mixed strategy” to compute mixed
Nash equilibrium in ordinal games. This approach is based on a qualitative uncertainty
theory: Possibilility theory detailed bellow.

2.4 Basics on Possibility Theory

2.4.1 Possibility Distribution

Possibility theory offers a natural and flexible model to represent and handle uncer-
tain information, especially qualitative uncertainty, and total ignorance. It was, first,
introduced by (Zadeh, 1978) and further developed by (Dubois and Prade, 1988).

The basic building block in possibility theory (Dubois and Prade, 1988) is the notion
of possibility distribution. A possibility distribution π is a mapping from a set of states
S (also called the “states of the world” or “domain of discourse”) to an ordered scale ∆
(in the remaining, we consider ∆ = [0,1], but any ordered scale ∆ = {a < b < c < d < ...}
can be used). Formally, a possibility distribution is a function: π ∶ S ↦∆.
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For each state s ∈ S, π(s) = 1 means that s is totally possible, π(s) = 0 means that s
is impossible and π(s) > π(s′) means that s is more plausible than s′. π is assumed
to be normalized: there is at least one totally possible state. Formally, ∃s ∈ S such
π(s) = 1.

Given a possibility distribution, two external situations can be captured:

• complete knowledge: only one state is totally possible and the remaining ones
are impossible. Formally, ∃s ∈ S, s.t., π(s) = 1 and ∀s′ ∈ S, s.t., s′ ≠ s, π(s′) = 0;

• total ignorance: all states have a possibility 1. Formally: ∀s ∈ S, π(s) = 1.

A possibility distribution π can be more specific than π′ denoted by π ⪯ π′ . In other
words, π is more informative than π′ , therefore, if a state s is possible for π thus it is
at least as possible for π′ . Formally:

Definition 2.1 (Specificity relation). Given two possibility distributions π and π′, π is
more specific than π′ iff:

π ⪯ π′ ⇔ ∀s ∈ Sπ(s) ≤ π′(s). (2.1)

Example 2.3. A group of doctors is discussing the symptoms of a patient in the
domain of discourse S = {d1, d2, d3, h}. Suppose that the ordinal scale ∆ =
{0,0.2,0.4,0.6,0.8,1}. Two doctors express their analysis in the form of normalized
possibility distributions π1 and π2 defined as follows:

π1(d1) = 0.6, π1(d2) = 1, π1(d3) = 0.8, π1(h) = 0.4,
π2(d1) = 0.4, π2(d2) = 1, π2(d3) = 0.2, π2(h) = 0.

We can say that the possibility distribution π2 is more specific than π1 since:
π2(d1) ≤ π1(d1), π2(d2) ≤ π1(d2), π2(d3) ≤ π1(d3), π2(h) ≤ π1(h).

2.4.2 Possibility and Necessity Measures

In possibility theory, to measure the occurrence of any event E ⊆ S there are two
essential measures:

• possibility measure: Π(E) = max
s∈E

π(s) evaluates to what extent E is consistent
with the knowledge represented by π;

• necessity measure: N(E) = 1−Π(Ē) = 1−max
s∉E

π(s) corresponds to the extent to
which Ē is inconsistent and thus evaluates at which level E is certainly implied
by the knowledge.
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Example 2.4 (Cont. Example 2.3). Let us consider the possibility distribution π1.
Suppose that the patient suffers from d1 or d3. Then, the possibility Π1 and the necessity
N1, according to doctor 1, associated to the possible event E = {d1, d3} are equal to:
Π1(E) = max (π1(d1), π1(d3)) = max(0.6,0.8) = 0.8;
N1(E) = 1 −max (π1(d2), π1(h)) = 1 −max(1,0.4) = 0.

In possibility theory, several rules have been proposed to compute the conditional
possibility measures or distributions from unconditional ones. (Cooman, 1997, Walley
and Cooman, 1999) discussed the alternative definitions of conditional possibilities. In
the following, we will present the ordinal ones. We denote E and F two states such
E ∈ S and F ∈ S:

• Zadeh’s rule (Zadeh, 1978) is the first definition of conditioning for possibility
measures. The idea is that conditional degrees are equal to the unconditional
ones: Π(E∣F ) = Π(E,F ). This rule may leads to an unnormalised conditional
possibility distributions;

• Hisdal’s equation (Hisdal, 1978) is inspired by the Bayes’ rule. It is given by:

Π(E∣F ) =
⎧⎪⎪⎨⎪⎪⎩

Π(E ∩ F ) if Π(E ∩ F ) < Π(F )
[Π(E ∩ F ),1] if Π(E ∩ F ) = Π(F )

(2.2)

If Π(E ∩F ) = Π(F ) then Π(E ∩F ) can be any possible degree in [Π(E ∩ F ),1],
i.e., Π(E ∩ F ) ≤ Π(E∣F ) ≤ 1. This equation has one solution if and only if
Π(F ) = 1. In the other cases, it may have different solutions if Π(E ∩F ) = Π(F )
and Π(F ) ≠ 1;

• Ramer’s rule (Ramer, 1989) consists on picking one state X ∈ S such Π(X∩F ) =
Π(F ), then affects Π(X ∣F ) = 1 and Π(E∣F ) = Π(E ∩F ) for all states E in order
to have a normalized coditional possibility distribution. The disadvantage of this
rule is the arbitrary choice of X if there several X such such Π(X ∩F ) = Π(F );

• Dubois-Prade rule (Dubois et al., 1994, Dubois and Prade, 1990) generalizes
Rames’s rule and Hisdal’s equation. It sets Π(E ∩ F ) = 1 for all state E such
Π(E ∩ F ) = Π(F ). It is defined as follows:

Π(E∣F ) =
⎧⎪⎪⎨⎪⎪⎩

Π(E ∩ F ) if Π(E ∩ F ) < Π(F )
1 if Π(E ∩ F ) = Π(F )

(2.3)

The Dubois-Prade rule is a least specific solution of Hisdal’s equation. It guar-
antees that the conditional possibility Π(E∣F ) is always normalized.

In the remaining, we use the notion of conditional possibility measure proposed by
Dubois and Prade (Dubois and Prade, 1990, Dubois et al., 1994) (Equation 2.3) to
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stay in the pure ordinal context.

Roughly speaking, state E is totally possible, knowing that F occurred, if at least
one of the most plausible states making F true also makes E true. Otherwise, the
possibility of E is that of the most plausible state making both E and F true.

2.4.3 Possibilistic Qualitative Utilities

Considering qualitative (possibilistic) problems of decision under uncertainty, where
each decision is evaluated by an utility function µ ∶ S ↦ ∆, authors in (Dubois
and Prade, 1995, Dubois et al., 2001) proposed qualitative utilities as counterparts
to (Von Neumann and Morgenstern, 1944) expected utility:

• pessimistic utility: generalizes the Wald criterion and estimates to what extent it
is certain (i.e., necessary according to measure N) that a possibility distribution
π reaches a good utility. The pessimistic utility, denoted Upes, of a decision π is
expressed by:

Upes(π) = min
s∈S

max(1 − π(s), µ(s)) (2.4)

• optimistic utility: estimates to what extent it is possible that a possibility distri-
bution π reaches a good utility. The optimistic utility, denoted U opt, of a decision
π is expressed by:

U opt(π) = max
s∈S

min(π(s), µ(s)) (2.5)

U opt is rather unnatural (too adventurous), while Upes conveniently models the be-
haviour of an uncertainty adverse decision maker. This model makes a commensura-
bility assumption between the utility levels and the levels of likelihood. This assump-
tion is common to all the models which consider that the agent’s preference relation is
complete and transitive (this is the case in many models, be they qualitative or quan-
titative, e.g., expected utility (Savage, 1954, Von Neumann and Morgenstern, 1944),
multi-prior non expected utility (Itzhak and David, 1989) and Sugeno integrals (Dubois
et al., 1998)).

2.5 Possibilistic Mixed Nash Equilibrium

The notion of pure Nash equilibrium is similar in both ordinal and cardinal games.
However, the mixed Nash equilibrium differs from cardinal to ordinal games. We have
shown in Section 2.3 that the probabilistic mixed Nash equilibrium in ordinal games
cannot be computed using probability theory. In this section, we present the definition
of possibilistic mixed strategies (Hosni and Marchioni, 2013, Ben Amor et al., 2017)
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as well as the notion of least specific possibilistic mixed equilibrium, recently defined
by (Ben Amor et al., 2017).

2.5.1 Possibilistic Mixed Strategies

A possibilistic mixed strategy for player i is defined by (Hosni and Marchioni, 2013,
Ben Amor et al., 2017) and (Hosni and Marchioni, 2019) as a normalized possibility
distribution πi, i.e., a ranking, on her set of actions. This ranking has a dual inter-
pretation in terms of preference and likelihood. Indeed, for player i, distribution πi

models the ranking of alternatives in terms of preference or commitment. Under this
interpretation, πi(ai) = 1 means that ai is fully satisfactory/conceivable to player i to
play, while πi(ai) = 0 means that it is absolutely not an option for player i. However,
for all other players, πi measures the likelihood of play: πi(ai) = 1 means that action ai
is a completely plausible play of player i while πi(ai) = 0 means that the action ai is an
impossible play of player i. This dual preference/likelihood interpretation is natural
in game theory since, according to the other players, the most preferred alternatives
of player i should be the most likely to be played.

The joint mixed strategy π = (π1, . . . , πn) defines a possibility distribution over the
action profiles: a = (a1, . . . , an) is played if and only if each player i ∈ N plays action
ai ∈ Ai, the possibility that a ∈ A is played is computed in a conjunctive way, i.e., as
the minimum of the πi(ai):

π(a) = min
i∈N

πi(ai). (2.6)

By abuse of notations π designates both the above possibility distribution and the
vector (π1, . . . , πn). Since we assume that all the πi are normalized, so π will be also
normalized, i.e., there exists a joint action a∗ = (a∗1, . . . , a∗n) such π(a∗) = 1.

Following (Ben Amor et al., 2017), the global utility of a mixed strategy π is given by
its pessimistic utility:

Upes
i (π) = min

a∈A
max (1 − π(a), µi(a)). (2.7)

Recently, possibility theory was used by (Hosni and Marchioni, 2019). Authors have
proposed a qualitative approach based on Sugeno expectation with respect to a possi-
bility measure. They studied the case of two-player games.

The Sugeno expectation of player i is the Sugeno integral of the utility function µi for
the mixed strategy π is defined as:

Ei (π) = ⋁
a∈A

(µi (a) ∧ π (a)) . (2.8)
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⋁ corresponds to the max and ∧ corresponds to the min thus:

Ei (π) = max
a∈A

min (µi (a) , π(a))

= U opt
i (π).

2.5.2 Least Specific Possibilistic Mixed Equilibrium

The notion of possibilistic mixed equilibrium (ΠME) introduced in (Ben Amor et al.,
2017) in ordinal games is similar to the notion of probabilistic mixed equilibrium in
cardinal games in the sense that it is a possibilistic mixed strategy π∗ = (π∗1 , . . . , π∗n)
where no player has the incentive to deviate from her π∗i . Formally:

Definition 2.2 (Possibilistic Mixed Equilibrium). Let G = ⟨N,A,µ⟩ be an ordinal game.
π∗ = (π∗1 , . . . , π∗n) is a possibilistic mixed equilibrium (ΠME) iff, ∀i ∈ N , ∀π′i on Ai:

Upes
i (π∗i .π∗−i) ≥ Upes

i (π′i.π∗−i). (2.9)

where π∗−i = (π∗1 , . . . , π∗i−1, π
∗
i+1, . . . , π

∗
n).

Example 2.5 (Cont. Example 2.2). Let us consider the firm competition game where
the utility degrees are in ∆ = {0,0.25,0.5,0.75,1}:

N
X Y

E
X 0.5 , 0.5 0.25 , 1
Y 0.25 , 0.75 0.5 , 0

Table 2.6: Firm competition.

Let π∗ = (π∗E.π∗N) be a possibilistic mixed strategy such:

π∗E(X) = 1, π∗E(Y ) = 1, π∗N(X) = 1 and π∗N(Y ) = 0.75.

It can be checked that π∗ is a ΠME for the above game:

• ∀π′E ≠ π∗E: U
pes
E (π′E.π∗N) ≤ Upes

E (π∗E.π∗N);

• ∀π′N ≠ π∗N : U
pes
N (π′N .π∗E) ≤ U

pes
N (π∗N .π∗E).

It can be shown that an ordinal game always admits such an equilibrium. (Radul,
2019) shows that when a possibilistic strategy is used in the context of (Hosni and
Marchioni, 2019), the existence of mixed Nash equilibria is guaranteed.

As shown by (Ben Amor et al., 2017), every ordinal game admits a ΠME that can
be found using a polynomial-time algorithm. In the following, we will detail how this
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algorithm works to find a least specific ΠME.

2.5.3 A Polynomial Time Algorithm for the Construction of Possi-
bilistic Mixed Equilibria

In ordinal games, possibilistic mixed strategies should be interpreted as successive
commitments in an ongoing negotiation process - at a given point of the negotiation
process, each player indicates which options she may consider in actual play and which
actions she prefers than others. The negotiation process is iterative. At each stage,
given the joint mixed strategy, each player aims to improve her pessimistic utilities by
changing her mixed strategy. Indeed, given a possibilistic mixed strategy π, if a player
i changes πi into a more specific one π′i (i.e., a π′i such ∀ai ∈ Ai, π′i(ai) ≤ πi(ai)), she can
only become better off (Upes

i (π′i.π−i) ≥ Upes
i (πi.π−i)). When no player has any more

incentive to make her strategy more specific, the result of the negotiation leads to a
“least specific mixed equilibrium”. This was shown in (Ben Amor et al., 2017), where
they proposed to focus on the least specific ΠME. Formally, a least-specific possibilistic
mixed equilibrium is defined as follows:

Definition 2.3 (Least-specific possibilistic mixed equilibrium).
Let G = ⟨N,A,µ⟩ be an ordinal game. π∗ = (π∗1 , . . . , π∗n) is a least-specific possibilistic
mixed equilibrium for G iff:

• π∗ is a possibilistic mixed equilibrium for G;

• there exists no π′, s.t., π∗ ≺ π′ and π′ is a ΠME.

To build the least specific MNE, at each stage of the negotiation process, an im-
provement procedure is proposed to check if a player can improve her mixed strategy
unilaterally by making it more specific. Therefore, if a player i changes her mixed
strategy πi to a π′i such π

′
i is more specific than πi, she increases her pessimistic utility.

Formally, the goal is to find a mixed strategy π′i ≺ πi which strictly improves Upes
i :

Upes
i (π′i.π−i) > Upes

i (π).

Furthermore, π′i has to be a least-specific such distribution:

Upes
i (π′′i .π−i) ≤ Upes

i (π),∀π′i ≺ π
′′
i ⪯ πi

Given an ordinal game G, a player i and a joint mixed strategy π, the improvement
procedure Improve(G,π, i) has three steps:

1. Compute the pessimistic utility of player i given her mixed strategy πi and the
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mixed strategy π−i of her opponents:

Upes
i (π) = min

a∈A
max (max

j∈N
(1 − πj (aj) ), µi(a)) (2.10)

= min
ai∈Ai

max (1 − πj (aj) , Upes
i (ai, π−i) ).

where Upes
i (ai, π−i) is the utility of player i when she plays ai and the other

players play the mixed strategy π−i:

Upes
i (ai, π−i) = min

a−i∈A−i
max (max

j∈N/i
(1 − πj (aj) ), µi(a)) . (2.11)

2. Compute, for player i, the subset Di ⊆ Ai of dominated actions defined as follows:

Di = {ai ∈ Ai, s.t., Upes
i (ai, π−i) ≤ Upes

i (π)}. (2.12)

3. Compute the new mixed strategy of the improvement procedure
Improve(G,π, i) such:

• if ∀ai ∉ Di, πi (ai) < 1. Then, πi cannot be improved unilaterally because
the possibility distribution should be normalized. Therefore:

Improve(G,π, i)← π;

• if ∃ai ∉ Di such πi (ai) = 1, player i can move from πi to a more specific
mixed strategy π′i without losing the normalization. π′i is defined as follows:

– π
′
i (ai)← πi (ai) ,∀ai ∉Di;

– π′i (ai) ← n(Upes
i (π))−,∀ai ∈ Di where n(Upes

i (π))− is the degree in ∆
just below and n(Upes

i (π)) = 1 −Upes
i (π).

Therefore:
Improve(G,π, i)← (π′i.π−i).

Algorithm 2.1 details the Improve function:

We note that the complexity of Improve(G,π, i) is dominated by that of the com-
putation of {{Upes

i (ai, π−i)}i∈N,ai∈Ai }. These can be computed in polynomial time.
Therefore, Improve(G,π, i) can itself be performed in polynomial time.

(Ben Amor et al., 2017) exploits the improvement procedure to propose a polynomial-
time algorithm to find a least specific mixed Nash equilibrium in an ordinal game
outlined in Algorithm 2.2.
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Algorithm 2.1: Improve.
Data: G = ⟨N,A,µ⟩, π, i
Result: π′ = (π′1, . . . , π′n)

1 Di ← ∅;
2 forall ai ∈ Ai do
3 if Upes

i (ai, π−i) ≤ Upes
i (π) then Di ←Di ∪ {ai};

4 end
5 if ∀ai ∉Di, πi(ai) < 1 then π′ ← π ;
6 else
7 forall ai ∈ Ai do
8 if ai ∈Di then π′i(ai)← n(Upes

i (π))− ;
9 else π′i(ai)← πi(ai) ;

10 end
11 end
12 return π′

Algorithm 2.2: Finding a possibilistic mixed Nash equilibrium in an ordinal
game.
Data: G = ⟨N,A,µ⟩
Result: π∗ = (π∗1 , . . . , π∗n), a ΠME

1 π0 ← (π0
1, . . . , π

0
n) /* π0

i (ai) = 1,∀i ∈ N,∀ai ∈ Ai, */
2 t← 0
3 repeat
4 πloc ← πt

5 forall i ∈ N do
6 πloc ← Improve (G,πloc, i)
7 end
8 πt+1 ← πloc

9 t← t + 1
10 until πt = πt−1

11 π∗ ← πt

12 return π∗

Example 2.6 (Cont. Example 2.2). Consider the ordinal game depicted in Table 2.6:

N

X Y

E
X 0.5 , 0.5 0.25 , 1
Y 0.25 , 0.75 0.5 , 0

Details of Algorithm 2.2 are as follows:
Let us start with π0

E = π0
N = [1; 1], that is, π0

E(X) = π0
N(X) = π0

E(Y ) = π0
N(Y ) = 1 ∶

Uncertainty is maximal. Now,
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Upes
E (X,π0

−E) = min
aN ∈{X,Y }

max (1 − (π0
N (aN)) , µE (X,aN))

= min (µE(X,X), µE(X,Y )) = 0.25

Upes
E (Y,π0

−E) = min (µE(Y,X), µE(Y,Y )) = 0.25

Upes
N (X,π0

−N) = min (µN(X,X), µN(Y,X)) = 0.5

Upes
N (Y,π0

−N) = min (µN(X,Y ), µN(Y,Y )) = 0

Furthermore, Upes
E (π0) = 1, Upes

N (π0) = 0,DN{Y } and A∗
E = {X,Y } . Since AE/A∗

E =
∅, thus Improve (G,π0, i) = π0. Since AN/DN = {X} we get Improve (G,π0, i) =
[π0

N(X);n(Upes
N (π0))−] = [1; 0.75]. Another round of improvement does not give any-

more changes. So, π∗ = (π∗E, π∗N) , where π∗E = [1; 1] and π∗N = [1; 0.75], forms a
possibilistic mixed equilibrium of the ordinal game.

2.6 Succinct Ordinal Games

In order to model ordinal games where players utilities depend on a subset of play-
ers, (Azzabi et al., 2020) proposed a compact representation of ordinal games called:
“Min-based polymatrix games”, “ordinal graphical games” and “Min-based hypergraph-
ical games”. They have shown that the global utility of a player is captured by a min
operator.

Consider a coordination game (as described is Example 2.1) with multiple players.
This kind of game is typically based on a graph and the satisfaction of an agent is
the minimum, over all her neighbors, of the satisfaction she gets in local games with
a single neighbor. Of course, agents may have more gradual preferences, e.g., because
they prefer some providers to other ones.

In coordination games, the satisfaction of an agent may depend on the number of
neighbors choosing the same provider as this agent (Simon and Wojtczak, 2017), e.g.,
where the satisfaction of an agent depends on the number of neighbors who choose the
same provider than herself. Unfortunately, since a min operation cannot be captured
by a sum (min is idempotent, the sum is not), sum-based polymatrix games cannot
capture some problems such coordination games, as soon as more than two players are
involved. In this context, min-based polymatrix games have been recently proposed
by (Azzabi et al., 2020).

Definition 2.4 (Min-based polymatrix game). A min-based polymatrix game is a poly-
matrix game G = ⟨N,E,A,µ⟩ where the utility of player i ∈ N for the joint action a ∈ A
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is:
µi(a) = min

j∈N,{i,j}∈E
µi,j(ai.aj). (2.13)

Example 2.7 (Cont. Example 2.2). If we consider a min-based polymatrix game with
three player where a central player, say player 2, is related to the two other ones, while
player 1 and 3 are related to the central player only (see the graph of Figure 2.1). Each
local 2-player game is a coordination game as depicted in Table 2.1. The utilities of
each local SNF game are depicted in Table 2.7.

Player 1 Player 2 Player 3

Figure 2.1: A graph of neighborhood between three players.

Player 2
x y

Player 1 x α1,x , α2,x β1,x , β2,x
y β1,x , β2,x α1,y , α2,y

(a) Local SNF game between player 1 and
player 2.

Player 2
x y

Player 3 x α3,x , α2,x β3,x , β2,x
y β3,x , β2,x α3,y , α2,y

(b) Local SNF game between player 2 and
player 3.

Table 2.7: Local SNF games.

It can be checked that (x.x.x) and (y.y.y) are the only two PNE when βi,x and βi,y are
low. Suppose now that player 1 really dislikes action x, i.e., β1,x > α1,x. Then (x.x.x)
is not a PNE anymore (player 1 would prefer to move to y).

(Azzabi et al., 2020) has also defined the qualitative counterpart of graphical games and
hypergraphical games so-called “ordinal graphical games” and “ordinal hypergraphical
games” respectively.

The global utility of player i in an ordinal hypergraphical game is defined as the
minimum overall local utilities. Formally:

Definition 2.5 (Min-based hypergraphical game). Min-based hypergraphical game is a
game G = ⟨N,E,A,µ⟩ where the utility of any player i ∈ N for the joint action a ∈ A
is:

µi(a) = min
e∈E,i∈e

µei(ae). (2.14)

Computing pure and mixed Nash equilibria in ordinal graph-based games has also
been investigated in (Azzabi et al., 2020). They show that, for graph-based games,
determining whether a PNE exists is an NP-hard problem They have, also, proposed
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a polynomial-time algorithm to compute possibilistic mixed equilibria for graph-based
games.

2.7 Conclusion
Ordinal games are defined to model situations where players do not have an ade-
quate utility function to evaluate their outcomes. However, they allow players to rank
their preferences among their different outcomes. Ordinal games can be seen as the
qualitative counterpart of cardinal games.

This chapter presented the basic concepts of ordinal games. Then, it detailed the
notion of mixed Nash equilibrium which is based on the possibility theory.

All previous games assume that all players have complete information about the game
being played: the players, their actions and their utilities. However, in some situations,
players may lack some information about the game. These situations are modeled by
“games with incomplete information" which will be presented in the next chapter.
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Chapter 3
Games with Incomplete Information

3.1 Introduction

All frameworks described in the previous chapters, assume that the utilities of players
depend only on the joint actions and amount to a representation of every player’s
utilities for every possible outcome. Game-theoretic analyses typically assume that all
players have full knowledge of other ones, especially of the utilities for each outcome.

However, in real life, like security (Jain et al., 2008, Liu et al., 2006, Mohi et al., 2009)
players may lack some information about some important aspects of the game that they
are playing. As mentioned by (Harsanyi, 1967a), they may lack full information about
their own utility functions or actions available to other players or even to themselves,
or the utilities of other players.

To capture such situations, Bayesian games have been proposed by (Harsanyi, 1967a).
They relax this assumption by allowing agents to have different “types”, representing
different beliefs about the game being played, and to have uncertainty about the types
of the other players. The type of a player summarizes all the relevant information
about that player. Furthermore, in Bayesian games, it is assumed that every player
eventually knows her own type and has a probability distribution over the joint types,
i.e., her type and the types of the other players. This probability distribution is
common to all players.

In the remainder of this chapter, Section 3.2 presents the historical context of incom-
plete information games and their standard normal form representation. Section 3.3
defines Bayesian games. Sections 3.4 and 3.5 present the notions of strategies and Nash
equilibria in games with incomplete information. Then, Section 3.6 shows the transfor-
mation of Bayesian games into an equivalent SNF game with complete information and
the transformation to a 2-player Bayesian game into an equivalent polymatrix game.
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Section 3.7 illustrates the different classes of games with incomplete information.

3.2 Games with Incomplete Information
The first paper about game theory is due to (Von Neumann and Morgenstern, 1944), it
defines extensive form games (see Section 1.2.2). These latter are complex and difficult
to analyze. That is why, in the same paper, authors argued that an extensive form
game can be transformed into an equivalent normal form game. In other words, the
multistage game in extensive form can be reduced into a one-stage normal form game
(where all players play simultaneously and independently). In a normal form game,
all players have to prepare their actions before playing the game. After that, no player
gets any additional information.

In (Von Neumann and Morgenstern, 1944), the authors use the term of incomplete
information to refer to a game in which a part of the normal form is unspecified.
They note that the uncertainty of the players about the parameters of the game can be
modeled by an extensive form game with imperfect information. In order to analyze
these games, (Luce and Adams, 1956, Luce and Raiffa, 1957) propose generalized
normal form game that does not make the assumption that every player knows every
opponent’s utility function. In (Luce and Raiffa, 1957), the authors proposed n-player
normal form games which contain n2 utility functions. Each utility function presents
the belief of a player i about the utility function of another player j. However, it is
difficult to analyze this generalized normal form game: (i) it does not consider the
uncertainty about the actions of the players and (ii) it does not address the question
of what player k may believe about player j’s beliefs about player i’s beliefs, etc.

In 1962, Harsanyi discussed a more general case of uncertainty in a game. He rec-
ognized problems of modeling players’ hierarchical beliefs about the beliefs of other
players (Harsanyi, 1962). For more explanation, let us take an example of a 2-player
game. Player 1’s (resp. player 2’s) strategy will depend on what she expects to be
player 2’s (resp. player 1’s) utility function. This expectation about player 2’s (resp.
player 1’s) utility function may be called player 1’s (resp. player 2’s) “first order be-
liefs”. However, the chosen action of player 1 (resp. player 2) will also depend on
what she expects to be player 2’s (resp. player 1’s) first-order belief about her utility
function. This is called player 1’s (resp. player 2’s) “second order belief ”. The latter
can be considered as an expectation concerning the first-order belief and so on ad
infinity.

In his paper, Harsanyi shows that the players’ beliefs can be represented by conditional
probability distributions1. However, this is difficult to analyze. That is why, Harsanyi

1Player 1’s first-order belief will have the nature of a conditional probability distribution over all
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proposes the construction of some complete information games theoretically equivalent
to the original incomplete information game. The idea is to generate an incomplete
information game in terms of one unique conditional probability distribution (derived
from the sequence of a probability distribution over alternative order beliefs using the
Bayes rule). These games are called “games with incomplete information” (Harsanyi,
1967b).

In games with incomplete information, the lack of some parameters can be declined
in three cases:

1. the players may not know the physical outcome function of the game, i.e, the
outcome produced by each combination of actions;

2. the players may not know their own or some other opponents’ utility functions;

3. the players may not know their own or some other players’ possible actions, i.e.,
the set of all strategies available to various players.

All other types of games with incomplete information can be reduced to this three
basic cases2.

In an incomplete information game, each player (i) knows the set of her possible
actions, (ii) has some knowledge about her opponents, and (iii) receives some infor-
mation that could affect her beliefs about what her opponents know. To encapsulate
all this information, Harsanyi proposed the notion of “type”. Let Θi be the possible
pieces of information which can be received by player i: Θi is called the set of “types"
of player i. The question is then, for each player, to determine an action for each of
her types. Thus, in games with incomplete information the set of states of the world is
omitted and only the types are considered. Θi is the local state space for player i and
Θ = Θ1×⋅ ⋅ ⋅×Θn is the effective global state space. The idea of Harsanyi when defining
types was that a player’s local state can encapsulate all the information to which the
player has access: it contains the status of the external world that the player has ob-
served but can also contain her introspective mental states. See (Brandenburger, 1993,
J. Aumann and Brandenburger, 1995, Battigalli and Bonanno, 1999, Brandenburger,
2008, Dekel and Siniscalchi, 2015) for the links between belief states and types, and
more generally for further developments about epistemic game theory. This kind of
interpretation also complies with the semantics of epistemic logic (Fagin et al., 1996).

In Harsanyi’s approach, every player has a set of possible types that represent the
different information that this player may have. Before playing the game, everyone

alternative utility functions that player 2 may have and vice versa. On the other hand, player 1’s
second-order belief will be a conditional probability distribution over all alternative first-order belief
probability distribution that player 2 may choose, etc.

2For some examples of reduction see (Harsanyi, 1967b) Section 2.
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receives some private information to have her types but not the types of the other
players.

This information is given by a “conditional probability distribution” over the joint types
of the other players (Harsanyi, 1967a).

Formally an incomplete information game is defined as:

Definition 3.1 (Standard Normal Form of Incomplete Information Game). An incom-
plete information game is a tuple G = ⟨N,A,Θ, P ∗, µ⟩ where:

• N = {1, . . . , n} is a finite set of n players;

• A = ×i∈NAi, where Ai is a finite set of actions available to player i ∈ N ;

• Θ = ×i∈NΘi, where Θi is the set of types of player i ∈ N . Θ gathers all the
configurations of types, i.e., vectors θ = (θ1, . . . , θn). θi denotes the type of player
i in θ and θ−i = (θ1, . . . , θi−1, θi+1, . . . , θn). Hence ∀ θ, θ′ ∈ Θ, θ′i.θ−i belongs to Θ.
Likewise Θ−i = ×j/=iΘj;

• P ∗ = {(P ∗
i )i∈N} where P ∗

i = P ∗
i (θ−i∣θi) is the conditional probability distribution

over the set Θ−i;

• µ = {(µi)i∈N} is a set of utility functions. µi(a, θ) captures the utility of player
i ∈ N for the joint action a ∈ A and the joint type θ ∈ Θ.

3.3 Bayesian Games
In 1967, Harsanyi (Harsanyi, 1967b) introduced an alternative model of games with
incomplete information, named “Bayesian game”. It differs only in that the proba-
bility specifies a joint probability distribution over the set of joint types rather than n
conditional probability distributions over the set of the joint types of the other players.
From the “Bayesian game”, using the Bayes’ rule, it is possible to have an equivalent
incomplete information game with the same set of players, actions, types, and utilities.
Formally, a Bayesian game is defined as follows:

Definition 3.2 (Bayesian Game). A Bayesian game is a tuple G = ⟨N,A,Θ, P, µ⟩ where:

• N = {1, . . . , n} is a finite set of n players;

• A = ×i∈NAi, where Ai is a finite set of actions available to player i ∈ N ;

• Θ = ×i∈NΘi, where Θi is the set of types of player i ∈ N ;

• P : Θ → [0,1] is a joint probability distribution over the combinations of types
Θ;
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Lisa
M Av

Bob
C B C B

C 1 , 2 0 , 0 C 1 , 0 0 , 1
B 0 , 0 2 , 1 B 0 , 2 2 , 0
p(M) = 0.5 p(Av) = 0.5

Table 3.1: A Battle of the sexes game with 2 types combinations.

• µ = {(µi)i∈N} is a set of utility functions. µi(a, θ) captures the utility of player i
for the joint action a and the joint type θ.

Conversely, we can derive an equivalent Bayesian game from an incomplete information
game if and only if the players’ beliefs in the original game are common prior, i.e., the
conditional probability distribution is known by all players (Harsanyi, 1967a). These
two games differ only on the probabilities: in the games with incomplete information,
the probability functions specify conditional probabilities whereas in the Bayesian
game there exists a joint probability distribution over the joint types.

Note that, in a “Bayesian game”, each player’s utility depends on the joint actions
chosen by all players and on joint types. In addition to that, all players are assumed
to know the joint probability distribution over the joint types. However, the type of
player i is eventually known only by herself, i.e., each player knows only her type but
she does not know the types of her opponents and, of course, she has some information
about the opponents but does not know exactly how much information the opponent
will have about her.

A Bayesian game can be equivalently defined as a set of ∣Θ∣ normal form games with
the same set of players N and the same set of actions A. More precisely, for each
θ ∈ Θ, there is a normal form game Gθ = ⟨N,A,µθ⟩ where ∀i ∈ N :

µθi (.) = µi(., θ) and p(Gθ) = p(θ). (3.1)

Example 3.1 (Battle of the sexes game). Bob and Lisa wish to go out. Their main
concern is to go out together. However, Bob prefers to go to the beach (B) and Lisa
prefers to go to the cinema (C). This game is often referred to as the “Battle of the
Sexes”; for the standard story behind it see (Luce and Raiffa, 1989). Bob does not
know whether Lisa wishes to meet (M) or wishes to avoid (Av) him. Therefore, this is
a Bayesian game where Lisa has two types, i.e., ΘLisa = {M,Av}. Suppose that these
two types have probability 0.5, i.e., p(M) = p(Av) = 0.5. There are two combinations
of types thus two possible games (see Table 3.1) the probability degrees of which are:
p(GM) = p(M) = 0.5 and p(GAv) = p(Av) = 0.5.
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3.4 Strategies in Bayesian Games

As in classical games, players can play a pure or mixed strategy. In this section, we
will define these two strategies:

In a game with incomplete information, the action of player i depends only on the
information θi ∈ Θi that she receives. A joint pure strategy σ = (σ1, . . . , σn) is thus a
tuple of functions σi that map each possible information (each “type” θi ∈ Θi) to an
action ai ∈ Ai. Formally, a pure strategy is defined as follows:

Definition 3.3 (Pure Strategy in an Incomplete Information Game). A pure strategy
is a vector σ = (σ1, . . . , σn) of functions σi ∶ Θi → Ai.

σi(θi) specifies the action that player i will execute when receiving the private informa-
tion θi. Given a strategy σ and a configuration of the players types θ ∈ Θ = Θ1×⋅ ⋅ ⋅×Θn,
σ(θ) = (σ1(θ1), . . . , σn(θn)) denotes the joint action a (the element of A) prescribed by
strategy σ when θ occurs. Let Σi denotes the set of all functions from Θi to Ai and
Σ = Σ1 × ⋅ ⋅ ⋅ ×Σn the set of all joint strategies.

As in classical games, a mixed strategy in an incomplete information game is defined
as a probability distribution over pure strategies. It consists of randomizing over the
set of available pure strategies according to some probability distribution. As before,
let si denote a mixed strategy of player i and Si be the set of all the mixed strategies
of player i. Furthermore, we denote si(ai∣θi) the probability that player i of type θi
plays action ai under mixed strategy si.

In SNF games with complete information, the utility of a player for a pure strategy
is derived directly from the utility table. In a Bayesian game, the utility of a player
is computed using the expected utility even for pure and mixed strategies. More
precisely, Harsanyi (Harsanyi, 1967a) proposed three meaningful notions of expected
utilities, detailed and named by (Myerson, 2004), as follows:

1. Ex-Ante expected utility: the player does not know anybody’s type, i.e., no
player knows her type nor the types of her opponents. Formally, the Ex-Ante
utility of player i is evaluated as follows:

Definition 3.4 (Ex-Ante Expected Utility). Let G = ⟨N,A,Θ, P, µ⟩ be a Bayesian
game.

• the Ex-Ante expected utility of player i ∈ N for the pure strategy σ ∈ Σ is:

EUEx−Ante
i (σ) = ∑

θ∈Θ
p(θ)µi(σ(θ), θ). (3.2)
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• the Ex-Ante expected utility of player i ∈ N for the mixed strategy s ∈ S is:

EUEx−Ante
i (s) = ∑

θ∈Θ
p(θ)∑

a∈A
(∏
j∈N

sj(aj ∣θj))µi(a, θ). (3.3)

For Harsanyi, computing the Ex-Ante utility of a player i before her type is
learned does not have a decision-theoretic interest in the game. In other words,
the Ex-Ante utility is meaningless. Instead, he proposed to consider each player’s
conditional utility given her type. This conditional utility is called “Ex-Interim”
utility.

2. Ex-Interim expected utility: considers the setting in which a player knows even-
tually her own type but not the types of the other players. Formally, the Ex-
Interim utility of player i for type θi is evaluated as follows:

Definition 3.5 (Ex-Interim Expected Utility). Let G = ⟨N,A,Θ, P, µ⟩ be a
Bayesian game.

• the Ex-Interim expected utility of player i ∈ N of type θi ∈ Θi for the pure
strategy σ ∈ Σ is:

EUEx−Interim
i (σ, θi) = ∑

θ−i∈Θ−i
p(θ−i∣θi)µi(σ(θi.θ−i), θi.θ−i). (3.4)

• the Ex-Interim expected utility of player i ∈ N of type θi ∈ Θi for the mixed
strategy s ∈ S is:

EUEx−Interim
i (s, θi) = ∑

θ−i∈Θ−i
p(θ−i∣θi)∑

a∈A
(∏
j∈N

sj(aj ∣θj))µi(a, θi.θ−i). (3.5)

where p(θ−i∣θi) is computed using the Bayes rule.

3. Ex-Post expected utility: considers that each player knows all the types of her
opponents, i.e., the joint type θ is known to all players. Formally, the Ex-Post
expected utility of player i for the joint type θ is evaluated as follows:

Definition 3.6 (Ex-Post Expected Utility). Let G = ⟨N,A,Θ, P, µ⟩ be a Bayesian
game.

• the Ex-Post expected utility of player i ∈ N for the pure strategy σ ∈ Σ given
all players’ actual types θ ∈ Θ is:

EUEx−Post
i (σ, θ) = µi(σ(θ), θ). (3.6)
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• the Ex-Post expected utility of player i ∈ N for the mixed strategy s ∈ S given
all players’ actual types θ ∈ Θ is:

EUEx−Post
i (s, θ) = ∑

a∈A
(∏
j∈N

sj(aj ∣θj))µi(a, θ). (3.7)

Computing Ex-Post expected utility assumes that every player knows every other
players types. In other words, every player knows all the information of the game.
Thus, it’s not interesting to study Ex-Post expected utility in Bayesian games
since the game will be a complete information game.

Example 3.2 (Cont. of Example 3.1). Let s be a mixed strategy where:

sLisa(C ∣M) = 0.6, sLisa(B∣M) = 0.4,
sLisa(C ∣Av) = 0.4, sLisa(B∣Av) = 0.6,
sBob(B) = 0.8, sBob(C) = 0.2.

The Ex-Interim expected utility of Lisa for type M is equal to:

EUEx−Interim
Lisa (s,M) = (p(M)× ((sBob(C) × sLisa(C ∣M) × µLisa(C.C,M)) +

(sBob(C) × sLisa(B∣M) × µLisa(C.B,M)) +
(sBob(B) × sLisa(C ∣M) × µLisa(B.C,M)) +

(sBob(B) × sLisa(B∣M) × µLisa(B.B,M))))

EUEx−Interim
Lisa (s,M) = (0.5× ((0.2 × 0.6 × 2) + (0.2 × 0.4 × 0s,M) +

(0.8 × 0.6 × 0) + (0.8 × 0.4 × 1)))

EUEx−Interim
Lisa (s,M) = 0.28.

The Ex-Ante expected utility of player i depends on her Ex-interim expected utility.
Formally:

Proposition 3.1. Let G = ⟨N,A,Θ, P, µ⟩ be a Bayesian game.

• the Ex-Ante expected utility of player i ∈ N for the pure strategy σ ∈ Σ is:

EUEx−Ante
i (σ) = ∑

θi∈Θi
p(θi)EUEx−Interim

i (σ, θi). (3.8)
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• the Ex-Ante expected utility of player i ∈ N for the mixed strategy s ∈ s is:

EUEx−Ante
i (s) = ∑

θi∈Θi
p(θi)EUEx−Interim

i (s, θi). (3.9)

Note that, when we write EUEx−Ante
i (σ) as ∑θi∈Θi p(θi)EUEx−Interim

i (σ, θi) (Equation
(3.8)) we can observe that EUEx−Interim

i (σi.σ−i, θi) does not depend on strategies that
player i would play if her type were not θi. Thus, we are, in fact, performing inde-
pendent maximization of player i’s Ex-Interim expected utilities conditioned on each
type that she could have. In other words, if all actions are the best after the type is
received, it is preferable to establish a conditional plan, in advance, to know what to do
if the latter is received simply if each player maximizes her EUEx−Interim

i (σ, θi), then
EUEx−Ante

i (σ) will be greater. Thus, it is more interesting to study EUEx−Interim
i (σ, θi)

rather than EUEx−Ante
i (σ).

In the following of this thesis, we will focus on studying EUEx−Interim
i (σ, θi).

3.5 Nash Equilibrium in Bayesian Games

3.5.1 Pure Nash Equilibrium

To ensure that a given player can best respond to other players, it is necessary to
know what action each player will adopt for each of her possible types. A best response
for player i is computed knowing the provisional strategies of the other players, i.e.,
knowing σ−i. This is the action ai which maximizes EUEx−Interim

i (σ, θi) (again, when
considering a joint strategy σ, the uncertainty of player i only bears on the joint type).

Definition 3.7 (Best Response for a pure strategy in a Bayesian game). Let G =
⟨N,A,Θ, P, µ⟩ be a Bayesian game. The best response of player i ∈ N of type θi ∈ Θi

to σ−i is:
BRi(σ−i, θi) = arg max

ai∈Ai
EUEx−Interim

i (ai, σ−i, θi). (3.10)

where:
EUEx−Interim

i (ai, σ−i, θi) = ∑
θ−i∈Θ−i

p(θ−i∣θi)µi(ai.σ−i(θ−i), θi.θ−i). (3.11)

A pure Nash Equilibrium is a joint strategy σ from which no player i will deviate
unilaterally knowing σ−i. Formally:

Definition 3.8 (Pure Nash Equilibrium in a Bayesian Game).
Let G = ⟨N,A,Θ, P, µ⟩ be a Bayesian game. The joint pure strategy σ is a pure Nash
equilibrium iff ∀i ∈ N , ∀θi ∈ Θi, ∀a

′
i ∈ Ai:
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EUEx−Interim
i (σi(θi), σ−i, θi) ≥ EUEx−Interim

i (a′i, σ−i, θi)

This definition generalizes Definition 1.9, which is recovered when ∣Θ∣ = 1 (only one
possible type per player). As for a classical normal form game, a pure Nash equilibrium
may not exist for a Bayesian game.

(Conitzer and Sandholm, 2002) show that checking the existence of a pure Nash equi-
librium in a Bayesian game is an NP-complete problem. Hardness holds even for
symmetric, two-player games, while membership holds even if only one among P (.)
and the various µi(.) are given explicitly as a table.

Example 3.3. (Cont. Example 3.1) Consider the pure strategy σ∗ where Bob chooses
to go to the beach and Lisa chooses to go to the beach if she wants to meet Bob and to
go to the cinema if she wants to avoid him:

σ∗Bob = B, σ∗Lisa(M) = B and σ∗Lisa(Av) = C.

The Ex-Interim expected utility of Lisa for type M is: EUEx−Interim
Lisa (σ∗,M) = 0.5 and

for type Av is EUEx−Interim
Lisa (σ∗,Av) = 1.

Similarly, the Ex-Interim expected utility of Bob is: EUEx−Interim
Bob (σ∗) = 1.

It can be checked that σ∗ is a pure Nash equilibrium (using Definition 3.8). The Ex-
Interim expected utility of Bob playing C (resp. B) is equal to 0.5 (resp. 1). So, he
will prefer to play B rather than C. The Ex-Interim expected utility of Lisa for type
M playing C (resp. B) is equal to 0 (resp. 0.5). So, she will prefer to play B rather
than C. The Ex-Interim expected utility of Lisa for type Av playing B (resp. C) is
equal to 0 (resp. 1). So, she will prefer to play C rather than B.

3.5.2 Bayes-Nash Equilibrium

A best response for player i of type θi is computed knowing the provisional mixed
strategies of the other players, i.e., knowing s−i. More precisely, it is a mixed strategy
si that maximises the Ex-Interim expected utility EUEx−Interim

i (s, θi).

Definition 3.9 (Best Response for a mixed strategy in a Bayesian game). Let G =
⟨N,A,Θ, P, µ⟩ be a Bayesian game. The best response of player i ∈ N of type θi ∈ Θi

for the mixed strategy s−i ∈ S−i is:

BRi(s−i) = argmax
si∈Si

EUEx−Interim
i (si.s−i, θi). (3.12)

A Bayes-Nash equilibrium in a Bayesian game is a mixed strategy s∗ = (s∗1, ..., s∗n)
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where no player i ∈ N of type θi ∈ Θi can improve her Ex-Interim expected utility by
changing her mixed strategy si ∈ Si. Formally:

Definition 3.10 (Bayes-Nash equilibrium in a Bayesian game ). Let G = ⟨N,A,Θ, P, µ⟩
be a Bayesian game. The joint mixed strategy s∗ is a Bayes-Nash equilibrium iff
∀i ∈ N,∀θi ∈ Θi,∀s′i ∈ Si:

EUEx−Interim
i (s∗, θi) ≥ EUEx−Interim

i (s′i.s∗−i, θi). (3.13)

3.6 Bayesian Games Transformations

3.6.1 Transforming a Bayesian Game into a Standard Normal Form
Game

Harsanyi proposed a transformation of Bayesian game into a normal form game with
complete information (Harsanyi, 1967a). The idea is that the action of player i in
the transformed game is a distinct mapping from Θi to Ai and her utility for the pure
strategy a is then equal to the Ex-Ante expected utility of player i for the pure strategy
σa where ai = σai . Formally, the normal form transformed game is defined as follows:

Definition 3.11 (standard Normal form representation of a Bayesian game). Let
G = ⟨N,A,Θ, P, µ⟩ be a Bayesian game. G̃ = ⟨Ñ , Ã, ũ⟩ is its standard normal form
representation where:

• Ñ = N ;

• Ãi = ×θi∈ΘiAi;

• ũi(ã) = EUEx−Ante
i (σa) ∀ã ∈ Ã, i ∈ Ñ , where σa is the strategy of the original

game defined by: σai = ãi.

The pure Nash equilibria (resp. Bayes-Nash equilibria) of the Bayesian game are in
bijection with the pure Nash equilibria (resp. mixed Nash equilibria) of its transformed
SNF game. This fact allows us to find a pure or mixed equilibrium of a Bayesian game
by transforming it into its equivalent normal form game.

As to the complexity of the transformation of a Bayesian game to a normal form game,
consider that the games are extensively represented, by tables. The transformed game
contains n utility functions of size ∏i=1,n ∣Ai∣∣Θi∣. If we write for simplification purpose
that ∣Ai∣ = d and ∣Θi∣ = t ∀i ∈ N (same number of types and the same number of actions
for all players), this means that a game containing n utility functions of a size (dt)n

is transformed into a game containing n utility functions of size (dt)n.
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Example 3.4 (Cont. Example 3.1). The transformed game G̃ of the Bayesian game
detailed is Table 3.1 has two players: Ñ = {Bob,Lisa} such that ÃBob = {C,B} and
ÃLisa = {CC,CB,BC,BB} and the utilities are detailed in Table 3.2.

Lisa
CC CB BC BB

Bob C 1 , 1 0.5 , 1.5 0.5 , 0 0 , 0.5
B 0 , 1 1 , 0 1 , 1.5 2 , 0.5

Table 3.2: The SNF of Battle of the sexes Bayesian game depicted in Table 3.1.

The joint action a∗ = (B.BC) of G̃ corresponds to σ in G where σBob = B, σLisa(M) =
B and σLisa(Av) = C. It can be checked that the strategy a∗ is a pure Nash equilibrium
of G̃: The utility of Bob playing B (resp. C) is equal to 1 (resp. 0.5). Then, he prefers
to play B than C. The utility of Lisa playing BC is greater than her utility playing
CC, CB, or BB.

3.6.2 Transforming a two-player Bayesian Game into a Polymatrix
Game

In 1974, Howson and Rosenthal have shown that any Bayesian game with two players
can be transformed into an equivalent polymatrix game (see Section 1.6.1 for more
details about polymatrix games). The idea is to consider as many players as the
number of pairs (i, θi), i.e., the number of players is equal to ∣Θ1∣ + ∣Θ2∣. Each player
(i, θi) has Ai as a set of available actions. For each joint strategy a ∈ A, the utility of
player (i, θi) in the game {(i, θi), (j, θj)} ∈ E in the polymatrix game is equal to the
utility of the joint action a ∈ A, to player i of type θi where j is of type θj (Howson
et al., 1974).

Definition 3.12 (Polymatrix representation of a 2-player Bayesian Game). Let G =
⟨N = {1,2},A,Θ, P, µ⟩ be a 2-player Bayesian game. ˜̃G = ⟨ ˜̃N, ˜̃E, ˜̃A, ˜̃u⟩ is the polymatrix
game where:

• ˜̃N = {(i, θi),∀i ∈ {1,2},∀θi ∈ Θi};

• ˜̃E = {{(i, θi), (j, θj)}, i ≠ j};

• ˜̃A(i,θi) = Ai, ∀(i, θi) ∈ ˜̃N ;

• ˜̃u(i,θi),(j,θj)(˜̃a) = p(θj ∣θi) × µi(a, θi.θj), ∀˜̃a ∈ ˜̃A,∀(i, θi) ∈ ˜̃N .

(Howson et al., 1974) has proved that the equilibria in two-player Bayesian games are
equivalent to the equilibria in its equivalent polymatrix game.
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As for the complexity of the transformation of a 2-player Bayesian game into a poly-
matrix game, consider that the games are extensively represented, by tables. The
transformed polymatrix game contains ∣Θ1∣ + ∣Θ2∣ utility functions of size ∣A1∣ × ∣A2∣.
If we write for simplification purpose that ∣Ai∣ = d and ∣Θi∣ = t ∀i ∈ {1,2} (same num-
ber of types and the same number of actions for both players). This means that a
Bayesian game containing 2 utility functions of a size (d ⋅ t)2 is transformed into a
game containing t2 local games. Each containing 2 utility functions of size d2. Note
that the computation of ˜̃u(i,θi),(j,θj) takes constant time, so the overall time (and space)
complexity is O(d2 ⋅ t2).

Example 3.5 (Cont. Example 3.1). The equivalent polymatrix game ˜̃G of the two-
player battle of the sexes game depicted in Table 3.1 contains three players: ˜̃N =
{(Bob), (Lisa,M), (Lisa,Av)}, all having the same set of actions {C,B}.

˜̃G contains 2 local games (2 edges) and the utilities of each player in the equivalent
game are detailed in Figure 3.1.

Bob

Lisa, M

Lisa, Av

0.5 , 1 0 , 0

0 , 0 1 , 0.5

1 , 00 , 1

0 , 0.50.5 , 0

C
B

C
B

C B

C B

Figure 3.1: The polymatrix game of equivalent Bayesian game of Example 3.1.

The joint action aσ = (B.B.C) of ˜̃G corresponds to σ∗ in G. Using Equation (1.10),
the utilities of aσ in ˜̃G are:

• µBob(aσ) = µBob,(Lisa,M) + µBob,(Lisa,Av) = 1;

• µLisa,M(aσ) = µ(Lisa,M),Bob = 0.5;

• µLisa,Av(aσ) = µ(Lisa,Av),Bob = 1.

It can be checked that aσ is a PNE in the equivalent polymatrix game.
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3.7 Classes of Games with Incomplete Information

The well-know classes of complete information games have been extended to model
games with incomplete information such that: repeated games, Boolean games and
fuzzy games. In the following, we present the essential related work:

Repeated Games with Incomplete Information

Repeated games with incomplete information are first studied by (Aumann and
Maschler, 1967), then, by (Zamir, 1992, Kohlberg, 1975, Mertens and Zamir, 1971)
and (Zamir, 1971). They are defined as repeated games with complete information
(defined in Section 1.5.2): a Bayesian game is played many times by the same set of
players, actions and types. At each stage game, each player knows her previous played
actions as well as the past information she has received, i.e., her past types.

Boolean Games with Incomplete information

Boolean games with incomplete information have been studied in different ways. In
2011, Grant et al. incorporated uncertainty in the Boolean games (see Section 1.6.4
for more details about Boolean games) by introducing a set of environment variables
outside the control of any agent (Grant et al., 2011). Each agent has some beliefs
about the value of the environment variables.

(De Clercq et al., 2014) studied Boolean games with incomplete information where
agents can be uncertain about other agents’ goals. Every player has her own beliefs
about the goal of their opponents.

Ordinal Boolean Games with Incomplete Information

In (De Clercq et al., 2014), authors used possibilistic logic to model uncertainty, in
Boolean games, i.e., to encode graded beliefs about other players’ goals. They mod-
eled this uncertainty by associating with each player a possibility distribution over the
universe of all possible games. The same authors have extended this framework and
proposed the use of generalized possibilistic logic to define Boolean games with incom-
plete information (De Clercq et al., 2015). They used possibilistic logic to compactly
describe players’ preferences and generalized possibilistic logic to describe incomplete
knowledge about another player’s preferences.

(De Clercq et al., 2018) proposed an evaluation of Nash equilibrium in terms of their
possibility and necessity degrees to be an Nash equilibrium for the true (ill-known)
ordinal game.
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In possibilistic Boolean games (De Clercq et al., 2018), the knowledge of each player
i can be captured by a distinct possibility distribution πi (the knowledge is not com-
mon) and the players do not receive any private information before playing the game.
Authors in (De Clercq et al., 2018) propose to compute the possibility and the ne-
cessity of a given joint action being a PNE in the usual sense (Definition 1.9): every
player computes these indices according to her knowledge. Authors then consider the
problem from the external point of view of an observer who proceeds to a fusion of
these distributions and deduces a unique π = min

i∈N
πi over types of players.

3.8 Conclusion
This chapter presented games with incomplete information. These games model the
situations where at least one player lacks some information about the game, such that,
the utilities of her opponents or the states of nature. Then, it focused on Bayesian
games, their strategies, and equilibria. Finally, it presented the different classes of
games with incomplete information: repeated games with incomplete information,
Boolean games with incomplete information, and ordinal boolean games with incom-
plete information.

We have also presented the work of (De Clercq et al., 2014) on ordinal games with
incomplete information.

To the best of our knowledge, all works dedicated to the study of ordinal games with
complete information are limited to normal form games (Xu, 2000, Ouenniche et al.,
2016, Cruz and Simaan, 2000) and their succinct form representations (Azzabi et al.,
2020). Ordinal games with incomplete information are limited to Boolean games (De
Clercq et al., 2014,0). There are no work that present the semantic level of ordinal
games with incomplete information as the qualitative counterpart of Bayesian games.
In this thesis, we stay at the semantic level and work out the idea of “possibilistic
games with incomplete information” (Π-games). This will be presented in the next
chapter.
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Part II

Contributions
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Chapter 4
Possibilistic Games with Incomplete
Information: Π-games

4.1 Introduction

In game theory, the cardinal notion is needed in two cases at least: (i) when the game
is repeated (and outcomes are “collected” and assumed to be additive), and (ii) when
the outcomes depend on a probabilistic event, e.g., in the prisoner dilemma if the
verdict does not only depend on the confession of the prisoners, but also on the result
of the trial.

To capture such incomplete information situations, Bayesian games have been pro-
posed by Harsanyi (Harsanyi, 1967a). The latter assume that the utility degrees are
additive in essence and the knowledge of the players can be quantified in a probabilistic
way. This kind of approach does not apply to ordinal games, where the utility degrees
do not capture more than a ranking, nor to situations of decision under qualitative
uncertainty (Harsanyi, 1967a).

In this chapter, following the seminal work of (De Clercq et al., 2018) on possibilistic
Boolean games, we propose to use possibility theory to model qualitative uncertainty
in ordinal games. Then, we extend the notion of secure strategy, pure Nash equilibrium
and (possibilistic) mixed Nash equilibrium.

This chapter is organized as follows: Section 4.2 proposes a possibilistic model for
ordinal games with incomplete information called “possibilistic games with incomplete
information” (Π-games). Section 4.3 generalizes the notion of secure strategy, pure and
mixed Nash equilibrium to this framework. Section 4.4 shows how a possibilistic game
with incomplete information can be transformed into an equivalent ordinal normal
form game with complete information and Section 4.5 presents complexity results
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about Π-games. All proofs are omitted in the end of this chapter.

The main results of this chapter are published in (Ben Amor et al., 2018) and
(Ben Amor et al., 2019a).

4.2 Possibilistic Games with Incomplete Information: Π-
games

We propose in the following a model for (ordinal) games under possibilistic information
where the knowledge of the players is modeled by a qualitative theory: the possibility
theory. This framework is called “possibilistic game with incomplete information”
(Π-game).

The framework of (De Clercq et al., 2018) assumes that the knowledge of each player
i is captured by a possibility distribution πi. The fusion of these distributions leads
to a unique π = min

i∈N
πi over the joint types of players. In our framework, unlike (De

Clercq et al., 2018), we do not develop a complex language. We assume all players
have a unique possibility distribution π, i.e., all players have a common knowledge.

We follow Harsanyi’s games based on types (see Definition 3.2) to define a possibilistic
game with incomplete information (Π-game). A Π-game has a finite set of players N ,
each player i has a finite set of actions Ai and types Θi. The utility µi of a player
i in a Π-game depends on all chosen actions of all players and on a joint type. The
knowledge of players is modeled by a possibility distribution π over the joint types. A
possibilistic game with incomplete information is defined as follows:

Definition 4.1 (Possibilistic Game with Incomplete Information). A possibilistic game
with incomplete information (Π-game) is a tuple G = ⟨N,A,Θ, π, µ⟩ where:

• N = {1, ..., n} is a finite set of n players;

• A = ×i∈NAi where Ai is the set of actions of player i ∈ N ;

• Θ = ×i∈NΘi, where Θi is the set of types of player i ∈ N . Θ gathers all the possible
combinations of types;

• π: Θ → ∆ is a joint normalized possibility distribution over the combinations of
types;

• µ = {(µi)i∈N} where µi ∶ A × Θ → ∆ is the utility function of player i ∈ N .
Typically the ordered scale ∆ = [0,1], but any ordered scale may be used.

Possibility distribution π captures the common knowledge of the players. The infor-
mation that the players have about the real world corresponds to a θ ∈ Θ but this
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information is not common: player i does not know θ, but only θi (θi is the private
knowledge of player i).

π(.∣θi) captures the knowledge that player i has when learning θi. On the other
hand, utility µi(a, θ) (utility of the joint action a for player i when learning θ) will be
obtained once all players have played their actions and revealed their types - that is
why µi depends on the whole θ and not only on θi.

As in Bayesian games, a strategy of a player i in a Π-game is a function σi that maps
each possible information (each “type” θi ∈ Θi) to an action in ai ∈ Ai. Similarly, a
joint strategy σ = (σ1, . . . , σn) is a tuple of functions σi (see Definition 3.3).

Definition 4.2. Let G = ⟨N,A,Θ, π, µ⟩ be a Π-game. G can be equivalently defined as a
set of ∣Θ∣ normal form games with the same set of players N and the same set of actions
A. More precisely, for each θ ∈ Θ, there is a normal form game Gθ = ⟨N,A,{µθ}⟩ where
∀i ∈ N :

µθi (.) = µi(., θ) and π(Gθ) = max
θ′∈Θ, s.t., Gθ′=Gθ

π(θ′). (4.1)

Example 4.1 (Coordination Π-game). Let us consider the coordination game (described
in Example 2.1) with incentives. We suppose that the preferences of the agents may also
depend on an external event, e.g., an incentive that some of them receive - typically,
an offer from some provider. Of course, the belief of a player about what offers her
neighbors receive depends on what the player receives herself: normally, if I receive an
offer, so do my neighbors; and if I do not receive anything, they do not either. But I
may receive something while my neighbors do not.

For the sake of brevity, we assume that incentives concern only action x: each player
has two types ri (“i receives an incentive for x”) and ri (“i does not receive an incentive
for x”), so Θ = {r1, r1} × ⋅ ⋅ ⋅ × {rn, rn}.

In our example ∀i ∈ N , Ai = {x, y} and Θi = {ri, ri}. The satisfaction of player i ∈ N
is equal to βi,x (resp. βi,y) if she prefers x (resp. y) and does not coordinate with her
neighbors. If she coordinates and receives an incentive her satisfaction when playing x
is increased to δ > max{αi,x, αi,y} and remains to αi,x if she coordinates and does not
receive an incentive. Hence the following utility functions:

• if ∃j ∈ Neigh(i), s.t., ai ≠ aj then:

– µi(x.a−i, θ) = βi,x, ∀θ;

– µi(y.a−i, θ) = βi,y, ∀θ;

• if ∀j ∈ Neigh(i), ai = aj then:
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– µi(x.a−i, ri.θ−i) = αi,x, ∀θ−i;

– µi(x.a−i, ri.θ−i) = δ, ∀θ−i;

– µi(y.a−i, θ) = αi,y, ∀θ.

There are two “normal” states in Θ = {r1, r1} × ⋅ ⋅ ⋅ × {rn, rn}: everybody receives
an incentive for x (state r = (r1, r2, . . . , rn)) and nobody receives anything (state
r = (r1, r2, . . . rn)). Cases were only some players have an incentive are of course possi-
ble. This knowledge is captured by a joint possibility distribution on Θ: π(r) = π(r) = 1
and π(θ) = γ (with 0 ≤ γ ≤ 1 for other combinations of types θ ∈ Θ/{r, r}).

In the following, we will present a coordination game with incentives for two players
case. There are four combinations of types {(r1.r2), (r1.r2), (r1.r2), (r1.r2)}, and thus
four possible games the possibility degrees of which are:

π(Gr1.r2) = π(r1.r2) = 1, π(Gr1.r2) = π(r1.r2) = γ,
π(Gr1.r2) = π(r1.r2) = γ, π(Gr1.r2) = π(r1.r2) = 1.

The utility degrees are in ∆ = {0, γ, βi,x, βi,y, αi,x, αi,y, δ,1} where:

• 0 ≤ γ ≤ βi,x ≤ βi,y ≤ αi,x ≤ αi,y ≤ δ ≤ 1 if player i prefers y to x;

• 0 ≤ γ ≤ βi,y ≤ βi,x ≤ αi,y ≤ αi,x ≤ δ ≤ 1 if player i prefers x to y.

Table 4.2 details the utility functions for the two players case.

Player 2
r2 r2

P
l
a
y
e
r

1

r1

x y x y

x δ , δ β1,x , β2,y x δ , α2,x β1,x , β2,y

y β1,y , β2,x α1,y , α2,y y β1,y , β2,x α1,y , α2,y

π(r1.r2) = 1 π(r1.r2) = γ

r1

x y x y

x α1,x , δ β1,x , β2,y x α1,x , α2,x β1,x , β2,y

y β1,y , β2,x α1,y , α2,y y β1,y , β2,x α1,y , α2,y

π(r1.r2) = γ π(r1.r2) = 1

Table 4.1: A coordination Π-game between two players (with two types per player)
where ∆ = {0, γ, βi,x, βi,y, αi,x, αi,y, δ,1}.

In the following, we translate the equivalent coordination Π-game depicted in Table 4.1
into an equivalent coordination Π-game where utilities are represented in numerical or-
dered scale ∆ = {0,0.1,0.2,0.3,0.7,0.8,0.9,1}. The utility functions for the two players
are in Table 4.2.
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Player 2
r2 r2

P
l
a
y
e
r

1

r1

x y x y

x 0.9 , 0.9 0.3 , 0.3 x 0.9 , 0.7 0.3 , 0.3
y 0.2 , 0.2 0.7 , 0.8 y 0.2 , 0.2 0.7 , 0.8

π(r1.r2) = 1 π(r1.r2) = 0.1

r1

x y x y

x 0.8 , 0.9 0.3 , 0.3 x 0.8 , 0.7 0.3 , 0.3
y 0.2 , 0.2 0.7 , 0.8 y 0.2 , 0.2 0.7 , 0.8
π(r1.r2) = 0.1 π(r1.r2) = 1

Table 4.2: A coordination Π-game between two players (with two types per player)
where ∆ = {0,0.1,0.2,0.3,0.7,0.8,0.9,1}.

If player i receives an incentive, she conditions her knowledge and we get: π(r−i∣ri) = 1
and π(θ−i∣ri) = 0.1 if θ−i ≠ r−i, i.e., she rather believes that her neighbors also receive an
incentive. Symmetrically, when she does not receive an incentive, we get: π(r−i∣ri) = 1
and π(θ−i∣ri) = 0.1 if θ−i ≠ r−i.

Clearly, Π-games properly generalize classical games (with complete information). In-
deed:

Proposition 4.1. Any classical normal form game G = ⟨N,A,µ⟩ is a Π-game with
∣Θi∣ = 1, ∀i ∈ N .

Π-games can be related to the framework proposed by (De Clercq et al., 2018) as a
semantic for possibilistic Boolean games. Authors in (De Clercq et al., 2018) assume
that no player receives any private information before playing the game. This is an
ex-ante situation. Adapting these notions to Π-games, where the prior knowledge is
common, we can compute the ex-ante possibility and ex-ante necessity that the joint
action a is a PNE:

Π(a is a PNE) = max
θ,a is PNE for Gθ

π(θ). (4.2)

N(a is a PNE) = 1 − max
θ,a is not a PNE for Gθ

π(θ). (4.3)

Contrarily to the framework of (De Clercq et al., 2018), ours can handle the knowledge
that each player i has when receiving some private information θi, i.e., in our framework
every player knows, before playing the game, her own type θi but not the types θ−i
of the other players. Then, the posterior necessity (resp. possibility) that a is a PNE
can be different from one agent to another. The ex-interim possibility and ex-interim
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necessity that a joint action a be a PNE can be different from one player to another:

Πi(a is a PNE∣θi) = max
θ−i,a is a PNE for Gθi.θ−i

π(θ−i∣θi). (4.4)

Ni(a is a PNE∣θi) = 1 − max
θ−i,a is not a PNE for Gθi.θ−i

π(θ−i∣θi). (4.5)

4.3 Solution Concepts in Π-games

4.3.1 Secure Strategy in Π-games

The notion of secure strategy is relevant for a player, say player i, who has some
information (θi) about the game but does not know anything about the strategies of
the other players. This player can then evaluate the degree of security of her own
strategy: it is the minimal level of satisfaction the player may receive if executing
it. In the absence of other information, a very cautious attitude is to maximize this
degree of security. Taking the qualitative knowledge into account, we get:

Definition 4.3 (Level of security, Secure strategy). Let G = ⟨N,A,Θ, π, µ⟩ be a Π-game.
The level of security of player i ∈ N of type θi ∈ Θi for the action ai ∈ Ai is:

usecurei (ai, θi) = min
θ−i∈Θ−i

max (1 − π(θ−i∣θi), min
a−i∈A−i

µi(ai.a−i, θi.θ−i)). (4.6)

σi is a secure strategy for i iff ∀i ∈ N , ∀θi ∈ Θi, ∀a′i ∈ Ai,

usecurei (σi(θi), θi) ≥ usecurei (a′i, θi). (4.7)

Example 4.2 (Cont. Example 4.1). Using Equation (4.6), we have:

• the level of security of player 1 for action x when she receives an incentive (θ1 =
r1) is:

usecure1 (x, r1) = min
⎛
⎝

max (1 − π(r2∣r1),min(µ1(x.x, r1.r2), µ1(x.y, r1.r2))),

max (1 − π(r2∣r1),min(µ1(x.x, r1.r2), µ1(x.y, r1.r2)))
⎞
⎠

usecure1 (x, r1) = 0.3.

• the level of security of player 1 for action y when she receives an incentive (θ1 =
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r1) is:

usecure1 (y, r1) = min
⎛
⎝

max (1 − π(r2∣r1),min(µ1(y.x, r1.r2), µ1(y.y, r1.r2))),

max (1 − π(r2∣r1),min(µ1(y.x, r1.r2), µ1(y.y, r1.r2)))
⎞
⎠

usecure1 (y, r1) = 0.2.

Using Equation (4.6), we have usecure1 (x, r1) = 0.3 and usecure1 (y, r1) = 0.2.

Since, usecure1 (x, r1) ≥ usecure1 (y, r1) and usecure1 (x, r1) ≥ usecure1 (y, r1). Thus, the secure
strategy of player 1 is to play x in any case, i.e., whether she receives the incentive or
not.

Similarly, the secure strategy of player 2 is to play y in any case, i.e., whether she
receives the incentive or not.

To summarize, in our coordination Π-game, the secure strategy of player i is her
preferred action or not her she receives the incentive or not.

4.3.2 Pure Nash Equilibrium in Π-games: PNE

The concepts proposed in (De Clercq et al., 2018) are based on the definition of
strategies as profiles of actions as in the case in a classical normal form game. This
definition does not take the knowledge about the types of players into account: it
assumes that the full θ is not known by all the players, and thus each player computes
her ex-ante utility. In other words, the definition of the above ex-ante necessity and
ex-ante possibility measures (Equations (4.2) and (4.3)) only suits games that are
presently incomplete.

In our framework, we adopt an ex-interim approach. We assume that player i only
knows π(.∣θi) when receiving θi then decides what to play. As in any incomplete
information game, strategy σ specifies an action of each player i for each θi. σ is a
PNE when no player i has interest to deviate from her own action choice σi(θi) for
θi, given π(.∣θi) and σ. Using possibilistic qualitative decision theory, the utility of
σ(θi) is evaluated by its possibilistic pessimistic utility (we assume that the player is
cautious).

Definition 4.4 (Utility of an action, Utility of a pure strategy).
Let G = ⟨N,A,Θ, π, µ⟩ be a Π-game. The utility of player i ∈ N of type θi ∈ Θi for an
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action ai ∈ Ai in the context of σ−i ∈ Σ−i is:

Upes
i (ai, σ−i, θi) = min

θ−i∈Θ−i
max (1 − π(θ−i∣θi), µi(ai.σ−i(θ−i), θi.θ−i)). (4.8)

The utility of the pure strategy σ ∈ Σ to player i ∈ N of type θi ∈ Θi is:

Upes
i (σ, θi) = Upes

i (σi(θi), σ−i, θi). (4.9)

Note that Upes
i (σi(θi), σ−i, θi) is independent of the choices of player i when her type

is different from θi.

The level of security of player i for type θi can be computed as the minimum over
all her pessimistic utilities for all possible other players joint actions a−i ∈ A−i. The
following proposition holds:

Proposition 4.2. Let G = ⟨N,A,Θ, π, µ⟩ be a Π-game. The level of security of player i
of type θi ∈ Θi is:

usecurei (ai, θi) = min
a−i∈A−i

Upes
i (ai, σ−i(a−i), θi). (4.10)

A best response for player i of type θi is computed knowing the provisional strate-
gies of the other players, i.e., knowing σ−i. This is the action ai which maximizes
Upes
i (ai, σ−i, θi). Again, when considering a joint pure strategy σ, the uncertainty of

player i only bears on the types of the other players. What they plan to do depending
on their type is known, prescribed by σ.

Definition 4.5 (Best Response in a Π-game). Let G = ⟨N,A,Θ, π, µ⟩ be a Π-game. The
best response of player i ∈ N of type θi ∈ Θi to σ−i is:

BRi(σ−i, θi) = argmax
ai∈Ai

Upes
i (ai, σ−i, θi). (4.11)

A pure Nash Equilibrium in a Π-game (PNE) is a joint strategy from which no player
i will deviate unilaterally knowing σ−i, i.e., every player plays her best response to
the other players possible strategies. In the possibilistic context, we set the following
definition:

Definition 4.6 (Pure Nash Equilibrium in a Π-game).
Let G = ⟨N,A,Θ, π, µ⟩ be a Π-game. σ is a pure Nash equilibrium (PNE) iff: ∀i ∈
N,∀θi ∈ Θi,∀a′i ∈ Ai,

Upes
i (σi(θi), σ−i, θi) ≥ Upes

i (a′i, σ−i, θi). (4.12)
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This definition is consistent with the original definition (Definition 1.9), which is re-
covered when ∣Θ∣ = 1 (only one possible type per player). As a consequence, a pure
equilibrium may not exist for a Π-game (a classical normal form game does not always
admit a PNE).

Example 4.3 (Cont. Example 4.1). Consider the joint strategy where the two players
play x if they receive an incentive and play y otherwise:

σ∗1(r1) = x, σ∗1(r1) = y, σ∗2(r2) = x, σ∗2(r2) = y.

• the pessimistic utility of player 1 if she receives an incentive is:

Upes
1 (σ∗, r1) = min

⎛
⎝

max (1 − π(r2∣r1), µ1(x.x, r1.r2)),

max (1 − π(r2∣r1), µ1(x.y, r1.r2))
⎞
⎠

Upes
1 (σ∗, r1) = 0.9.

• the pessimistic utility of player 1 if she does not receive an incentive is:

Upes
1 (σ∗, r1) = min

⎛
⎝

max (1 − π(r2∣r1), µ1(y.x, r1.r2)),

max (1 − π(r2∣r1), µ1(y.y, r1.r2))
⎞
⎠

Upes
1 (σ∗, r1) = 0.7.

We have, Upes
1 (x,σ∗2 , r1) = 0.9 and Upes

1 (y, σ∗2 , r1) = 0.2.
Thus, Upes

1 (y, σ∗2 , r1) ≤ Upes
1 (x,σ∗2 , r1). Hence, the best response to σ∗2 for player 1 when

she receives an incentive is x.

Similarly, we have Upes
1 (y, σ∗2 , r1) = 0.7 and Upes

1 (x,σ∗2 , r1) = 0.3.
Thus, Upes

1 (y, σ∗2 , r1) ≥ Upes
1 (x,σ∗2 , r1). Hence, the best response to σ∗2 for player 1 when

she does not receive an incentive is y.

We have seen above that the best response, to strategy σ∗2 , of player 1 when she receives
an incentive is x and when she does not receive an incentive is y. Similarly, player 2
has not incentive to move from x to y if she receives for x an incentive since her utility
decreases from 0.9 to 0.3. If she does not receive an incentive, her utility playing y is
greater than her utility playing x (i.e., Upes

2 (y, σ∗1 , r2) ≥ Upes
2 (x,σ∗1 , r2)). Thus, σ∗ is a

PNE.
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4.3.3 Mixed Nash Equilibrium in Π-games: Π-MNE

4.3.3.1 Possibilistic Mixed Strategy

We define a possibilistic mixed joint strategy in a Π-game as a tuple υ = (υ1, ..., υn)
of υi ∶ Θi ↦ Ψi that maps each type of player i to a mixed possibilistic strategy (a
normalized possibility distribution over actions in Ai). Formally:

Definition 4.7 (Possibilistic mixed strategy in a Π-game). A mixed joint strategy is a
vector υ = (υ1, . . . , υn) of functions υi ∶ Θi → Ψi where Ψi = {π ∶ Ai → ∆} is the set of
the normalized possibility distributions over Ai.

As in ordinal normal form games, in a Π-game, the possibilistic mixed strategy υi(θi)
of player i of type θi has a dual interpretation in terms of preference and likelihood
(see (Ben Amor et al., 2017) and Section 2.5): for player i of type θi, υi(θi) ranks the
actions according to her preferences. Then, for all the other players, υi(θi) measures
the likelihood that player i of type θi plays each action ai.

Example 4.4 (Cont. Example 4.1). Let us consider a joint mixed strategy υ = (υ1.υ2)
of the coordination Π-game such that:

• υ1(r1) and υ1(r1) are two possibility distributions over A1 = {x, y}:

– υ1(r1): when she receives an incentive, player 1 prefers to play x, i.e., she plays
x with a possibility 1, and plays y with a possibility 0.3, i.e., υ1(r1)(y) = 0.3;

– υ1(r1): when she does not receive an incentive, player 1 prefers to play x,
i.e., she plays x with a possibility 1, and plays y with a possibility 0.3, i.e.,
υ1(r1)(y) = 0.3;

• υ2(r2) and υ2(r2) are two possibility distributions over A2 = {x, y}:

– υ2(r2): when she receives an incentive, player 2 prefers to play y, i.e., she plays
y with a possibility 1, and plays x with a possibility 0.8, i.e., υ2(r2)(y) = 0.8;

– υ2(r2): when she does not receive an incentive, player 2 prefers to play y,
i.e., she plays y with a possibility 1, and plays x with a possibility 0.8, i.e.,
υ2(r2)(y) = 0.8.

For the sake of readability, let υi(ai∣θi) = υi(θi)(ai) denote the possibility that player
i plays action ai when her type is θi. According to (Ben Amor et al., 2017), when
the configuration of types is θ, the joint possibility distribution over the profiles of
actions is defined as the minimum of the individual players possibility distributions
over individual actions:

υ(a∣θ) = min
i∈N

υi(ai∣θi). (4.13)
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Let πυ(a, θ−i∣θi) be the possibility distribution on A×Θ−i defined by υ, given the type
θi and prior knowledge π ∶ Θ→∆:

πυ(a, θ−i∣θi) = min(π(θ−i∣θi), υ(a∣θi.θ−i)). (4.14)

Let us now study the evaluation of strategies. In order to stay in accordance with
the previous assumptions of cautiousness and ordinality, and for the purpose of homo-
geneity, strategies will be evaluated using the pessimistic possibilistic utility.

Definition 4.8 (Utility of a mixed strategy). Let G = ⟨N,A,Θ, π, µ⟩ be a Π-game. The
pessimistic utility for player i ∈ N of type θi ∈ Θi of the mixed strategy υ is:

Upes
i (υ, θi) = min

θ−i∈Θ−i,a∈A
max (1 − πυ(a, θ−i∣θi), µi(a, θ)). (4.15)

Proposition 4.3. Let G = ⟨N,A,Θ, π, µ⟩ be a Π-game. The pessimistic utility of player
i ∈ N of type θi of the mixed strategy υ is:

Upes
i (υ, θi) = min

θ−i∈Θ−i
max (1 − π(θ−i∣θi),min

a∈A
max (1 − υ(a∣θi.θ−i), µi(a, θ))). (4.16)

The pessimistic utility of player i of type θi of the mixed strategy υ can be written as:

Proposition 4.4. Let G = ⟨N,A,Θ, π, µ⟩ be a Π-game. The pessimistic utility for player
i ∈ N of type θi ∈ Θi of the mixed strategy υ is:

Upes
i (υ, θi) = min

ai∈Ai
max (1 − υi(ai∣θi), Upes

i (ai, υ−i, θi)) (4.17)

where:

Upes
i (ai, υ−i, θi) = min

a−i∈A−i
θ−i∈Θ−i,

max (1 − π(θ−i∣θi),1 − υ−i(a−i∣θ−i), µi(ai.a−i, θi.θ−i)).(4.18)

Example 4.5 (Cont. Example 4.1). Consider the strategy υ defined in Example 4.4. It
holds that:

• the pessimistic utility of player 1 when she plays x and receives an incentive for
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the mixed strategy υ is equal to:

Upes
1 (x, υ2, r1) = min

⎛
⎝

max (1 − π(r2∣r1),1 − υ2(x∣r2), µ1(x.x, r1.r2)),

max (1 − π(r2∣r1),1 − υ2(y∣r2), µ1(x.y, r1.r2)),

max (1 − π(r2∣r1),1 − υ2(x∣r2), µ1(x.x, r1.r2)),

max (1 − π(r2∣r1),1 − υ2(y∣r2), µ1(x.y, r1.r2))
⎞
⎠

Upes
1 (x, υ2, r1) = 0.3.

• the pessimistic utility of player 1 when she plays y and receives an incentive for
the mixed strategy υ is: Upes

1 (y, υ2, r1) = 0.2.

Thus, the pessimistic utility of player 1 when she receives an incentive for the mixed
strategy υ is:

Upes
1 (υ, r1) = min

⎛
⎝

max (1 − υ1(x∣r1), Upes
1 (x, υ2, r1)),

max (1 − υ1(y∣r1), Upes
1 (y, υ2, r1))

⎞
⎠

Upes
1 (υ, r1) = 0.3.

Similarly, we get:

• Upes
1 (x, υ2, r1) = 0.3 and Upes

1 (x, υ2, r1) = 0.2. Thus, Upes
1 (υ, r1) = 0.3;

• Upes
2 (x, υ1, r2) = 0.7 and Upes

2 (y, υ1, r2) = 0.3. Thus, Upes
2 (υ, r2) = 0.3;

• Upes
2 (x, υ1, r2) = 0.7 and Upes

2 (y, υ1, r2) = 0.3. Thus, Upes
2 (υ, r2) = 0.3.

4.3.3.2 Possibilistic Mixed Nash Equilibrium

A possibilistic mixed Nash equilibrium in a Π-game is a mixed strategy υ∗ = (υ∗1 , ..., υ∗n)
where no player i of type θi can improve her pessimistic utility by changing her mixed
strategy υi. Formally:

Definition 4.9 (Possibilistic mixed Nash equilibrium in a Π-game).
Let G = ⟨N,A,Θ, π, µ⟩ be a Π-game. υ∗ is a possibilistic mixed Nash equilibrium (Π-
MNE) in a Π-game iff: ∀i ∈ N,∀θi ∈ Θi,∀υ′i,

Upes
i (υ∗, θi) ≥ Upes

i (υ′i.υ∗−i, θi). (4.19)
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Example 4.6 (Cont. Example 4.1). Consider the joint mixed strategy υ∗ = (υ∗1 .υ∗2) such
that:

υ∗1(x∣r1) = 1, υ∗1(y∣r1) = 0.7, υ∗1(x∣r1) = 1, υ∗1(y∣r1) = 0.7,
υ∗2(x∣r2) = 1, υ∗2(y∣r2) = 1, υ∗2(x∣r2) = 1, υ∗2(y∣r2) = 1.

It can be checked that υ∗ is a Π-MNE of the coordination Π-game. In fact:

• ∀υ′1(r1) ≠ υ∗1(r1), Upes
1 (υ′1(r1).υ∗2 , r1) ≤ Upes

1 (υ∗1(r1).υ∗2 , r1) = 0.3;

• ∀υ′1(r1) = υ∗1(r1), Upes
1 (υ′1(r1).υ∗2 , r1) ≤ Upes

1 (υ∗1(r1).υ∗2 , r1) = 0.3;

• ∀υ′2(r2) ≠ υ∗2(r2), Upes
2 (υ′2(r2).υ∗1 , r2) ≤ Upes

2 (υ∗2(r2).υ∗1 , r2) = 0.3;

• ∀υ′2(r2) ≠ υ∗2(r2), Upes
2 (υ′2(r2).υ∗1 , r2) ≤ Upes

2 (υ∗2(r2).υ∗1 , r2) = 0.3.

4.4 Transforming a Π-game into an Equivalent Ordinal
Normal Form Game

In this section, we show that any incomplete information game can be transformed
into an equivalent normal form game with complete information, the secure strategy,
pure and mixed Nash equilibria of which are in bijection with the secure strategy, pure
and mixed Nash equilibria of the Π-game. This representation result is a qualitative
counterpart of Harsanyi’s transformation of Bayesian games into normal form games
under complete information (Harsanyi, 1967a). We follow the idea of (Howson et al.,
1974) and we consider as many players as the number of pairs (i, θi), each player (i, θi)
having Ai as a set of available actions. A joint strategy in this (classical) normal form
game then corresponds to a strategy σ of the Π-game.

Definition 4.10 (Complete normal form representation of a Π-game).
Let G = ⟨N,A,Θ, π, µ⟩ be a Π-game. The complete normal form representation (C-
SNF-representation) of G is the complete information game G̃ = ⟨Ñ , Ã, µ̃⟩, where:

• Ñ = {(i, θi), i ∈ N,θi ∈ Θi};

• Ã(i,θi) = Ai, ∀(i, θi) ∈ Ñ ;

• µ̃(i,θi)(ã) = U
pes
i (σ, θi), ∀ã ∈ Ã,∀(i, θi) ∈ Ñ , where σi(θi) = ã(i,θi),∀(i, θi) ∈ Ñ .

Thus, a pure strategy in the Π game associates an action to each type θi of each player
i. In the C-SNF-representation of the Π-game, a pure strategy associates an action to
each player (i, θi).

Definition 4.11 (Complete normal form representation of a pure strategy).
Let G = ⟨N,A,Θ, π, µ⟩ be a Π-game and σ be a pure strategy in G. The C-SNF-
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representation of σ is the profile of actions ã such that:

∀(i, θi) ∈ Ñ , ã(i,θi) = σi(θi). (4.20)

It is easy to see that ã(i,θi) is a profile of actions of G̃ and that the strategies of G and
G̃ are in bijection. It follows that:

Proposition 4.5. Let G = ⟨N,A,Θ, π, µ⟩ be a Π-game. Action ai is a secure strategy
for player i of type θi iff ã(i,θi) = ai is a secure strategy for player (i, θi) in G̃.

Proposition 4.6. Let G = ⟨N,A,Θ, π, µ⟩ be a Π-game. The pure strategy σ is a PNE
for G iff ã is a PNE in G̃.

Finally, every mixed strategy in the Π-game has an equivalent mixed strategy in its
C-SNF-representation and the mixed equilibria of the two games are in bijection.

Definition 4.12 (Complete normal form representation of a mixed strategy).
Let G = ⟨N,A,Θ, π, µ⟩ be a Π-game and υ be a mixed strategy in G. The C-SNF-
representation of υ is the mixed strategy π̃ such that:

∀(i, θi) ∈ Ñ , π̃(i,θi)(ã(i,θi)) = υi(ai∣θi). (4.21)

It is easy to show that:
π̃(ã) = υ(a∣θ). (4.22)

As a consequence of Definition 4.12, we get:

Proposition 4.7. Let G = ⟨N,A,Θ, π, µ⟩ be a Π-game. The mixed strategy υ is a Π-
MNE for G iff π̃ is a ΠME in G̃.

Example 4.7 (Cont. Example 4.1). The C-SNF-representation of the coordination Π-
game G̃ has 4 players:
Ñ = {(1, r1), (1, r1), (2, r2), (2, r2)} such that Ã(1,r1) = Ã(1,r1) = Ã(2,r2) = Ã(2,r2) = {x, y}.

Using the definition of secure strategy in SNF game (Definition 1.4), we have:

• the secure strategy of players (1, r1) and (1, r1) is x;

• the secure strategy of players (2, r2) and (2, r2) is y.

The joint pure strategy σ∗ such that: σ∗1(r1) = x, σ∗1(r1) = y, σ∗2(r2) = x, σ∗2(r2) = y
corresponds to the joint action ã∗ = (x.y.x.y) in G̃. The utilities of ã∗ in G̃ are:

µ̃(1,r1)(ã∗) = U
pes
1 (σ∗, r1) = 0.9, µ̃(1,r1)(ã∗) = U

pes
1 (σ∗, r1) = 0.7,

µ̃(2,r2)(ã∗) = U
pes
2 (σ∗, r2) = 0.9, µ̃(2,r2)(ã∗) = U

pes
2 (σ∗, r2) = 0.7.
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Using the definition of a PNE in a SNF game (Definition 1.9), it can be check that ã∗

is a PNE in G̃:

• for player (1, r1), her utility playing x (resp. y) is equal to 0.9 (resp. 0.2): she
prefers to play x than y;

• for player (1, r1), her utility playing y (resp. x) is equal to 0.7 (resp. 0.3): she
prefers to play y than x;

• for player (2, r2), her utility playing x (resp. y) is equal to 0.9 (resp. 0.3): she
prefers to play x than y;

• for player (2, r2), her utility playing y (resp. x) is equal to 0.7 (resp. 0.3): she
prefers to play y than x.

The joint mixed strategy υ∗ corresponds to the joint mixed strategy π̃∗ such that:

π̃∗1,r1(x) = 1, π̃∗1,r1(y) = 0.7, π̃∗1,r1
(x) = 1, π̃∗1,r1

(y) = 0.7,
π̃∗2,r2(x) = 1, π̃∗2,r2(y) = 1, π̃∗2,r2

(x) = 1, π̃∗2,r2
(y) = 1.

Using the definition of ΠME in a SNF game (Definition 2.2), it can be checked that
the joint mixed strategy π̃∗ is a ΠME.

Regarding the complexity of the transformation, consider that the original game
is extensively represented by tables (the game is in standard normal form). The
transformed game contains ñ = ∑i=1,n ∣Θi∣ utility functions of size ∏(i,θi)∈Ñ ∣Ã(i,θi)∣ =
∏i=1,n∏θi∈Θi ∣Ai∣ =∏i=1,n ∣Ai∣∣Θi∣.

If we write, for simplification purpose, ∣Ai∣ = d and ∣Θi∣ = t, ∀i ∈ N (i.e, the same number
of actions and the same number of types for all players), thus a game containing n
utility functions of size (d ⋅ t)n is transformed into a game containing ñ = n ⋅ t utility
functions of size dñ = (dn)t, since the number of players ñ in the transformed game is
equal to (n ⋅ t).

Except when the number of types is very small, the transformation does not provide
a convenient way to solve the game. Proposition 4.7 is, as in the Bayesian case, more
a representation result than a solving tool.
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4.5 Complexity Results

4.5.1 Complexity Results on Secure Strategy

Recall that in a Π-game, the level of security of a pure action ai for a given player
i ∈ N of type θi ∈ Θi is defined in Equation (4.6) as:

usecurei (ai, θi) = min
θ−i∈Θ−i

max (1 − π(θ−i∣θi), min
a−i∈A−i

µi(ai.a−i, θ)).

Thus, the optimal secure strategy for player i of type θi is simply obtained by com-
puting:

∀i ∈ N,∀θi ∈ Θi, a
∗
i = arg max

ai∈Ai
usecurei (ai, θi). (4.23)

We conclude that the optimal (pure) secure strategy problem always has a solution and
we will see that can be found in polynomial time since usecurei (ai, θi) can be computed
in polynomial time in the size of the Π-game (see Algorithm 5.1 in Chapter 5).

4.5.2 Complexity Results on PNE

In Section 4.4, we have shown that a Π-game can be transformed into an equivalent
normal form game with complete information. Since, it is not guaranteed to get a
PNE in a normal form game. Thus, it is also not guaranteed that a Π-game admits a
PNE.

In the following, we study the complexity of the problem of deciding whatever Π-game
admits a PNE. Let us first define the Π-PNE problem:

Definition 4.13 (Π-PNE problem). Let G = ⟨N,A,Θ, π, µ⟩ be a Π-game. The Π-PNE
problem consists in determining a PNE in the Π-game G if it exists.

Deciding the existence of a PNE in a Π-game is a difficult problem as stated by the
following proposition:

Proposition 4.8. Π-PNE is NP-Complete, even in symmetric1 2-player games where
π corresponds to total ignorance, i.e., ∀θ1 ∈ Θ1 and ∀θ2 ∈ Θ2, π(θ1, θ2) = 1.

4.5.3 Complexity results on Π-MNE

In Section 4.4, we have shown that a Π-game can be transformed into an equivalent
normal form game with complete information. Since, in (Ben Amor et al., 2017),
authors have shown that an ordinal normal form game admits at least one mixed

1A game is symmetric if all players gave the same set of actions, and the utilities to playing a
given action depends only on the actions being played, not on who plays them.
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Nash equilibrium. Thus, a Π-game always admits at least one possibilistic mixed
Nash equilibrium.

Adapting the algorithm proposed in (Ben Amor et al., 2017) in Π-games, a Π-MNE can
be computed in polynomial time in the size of the Π-game. In the following chapter, a
polynomial time algorithm is proposed to compute a Π-MNE in a Π-game. Especially,
least-specific ones.

4.6 Conclusion
In this chapter, we have defined possibilistic games as a new representation framework
for (ordinal) games under possibilistic incomplete information. We have extended the
standard solution concepts: secure strategy and Nash equilibrium (pure and mixed).
Then, we have proposed a transformation of a possibilistic game with incomplete infor-
mation into an equivalent ordinal normal form game with complete information. We
have shown that the secure strategies, pure and mixed Nash equilibrium in the original
Π-game are in bijection of the secure strategies, pure and mixed Nash equilibrium in
the equivalent complete standard normal form game. In the end, we have studied the
complexity of solving a Π-game.

In the next chapter, we will show how to solve possibilistic games with incomplete
information. First, we will propose a polynomial time algorithm to compute a secure
strategy. The, we will propose a MILP formulation to find one pure Nash equilibrium if
it exists. Finally, a polynomial time algorithm will be proposed to compute possibilistic
mixed Nash equilibrium.

Proofs
Proof of Proposition 4.1.
Let G = ⟨N,A,Θ, π, µ⟩ be a Π-game where ∀i ∈ N , ∣Θi∣ = 1. Then it exists a unique type
combination θ ∈ Θ, i.e., ∣Θ∣ = 1 ⇒ there is one possible game Gθ such that π(Gθ) = 1
since π is normalized. Thus G is equal to classical normal form game, i.e., G = Gθ =
⟨N,A,{{µθi }i∈N}⟩.

Proof of Proposition 4.2.

usecurei (ai, θi) = min
θ−i∈Θ−i

max (1 − π(θ−i∣θi), min
a−i∈A−i

µi(ai.a−i, θi.θ−i))

= min
a−i∈A−i

min
θ−i∈Θ−i

max (1 − π(θ−i∣θi), µi(ai.a−i, θi.θ−i))

usecurei (ai, θi) = min
a−i∈A−i

Upesi (ai, σ−i(a−i), θi).
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Proof of Proposition 4.3.
Upesi (υ, θi) = min

θ−i∈Θ−i,a∈A
max (1 − πυ(a, θ−i∣θi), µi(a, θ))

Based on Equation (4.14):
Upesi (υ, θi) = min

θ−i∈Θ−i,a∈A
max (1 −min(π(θ−i∣θi), υ(a∣θi.θ−i)), µi(a, θ))

Upesi (υ, θi) = min
θ−i∈Θ−i,a∈A

max (1 − π(θ−i∣θi),1 − υ(a∣θi.θ−i), µi(a, θ))

Upesi (υ, θi) = min
θ−i∈Θ−i

max (1 − π(θ−i∣θi),min
a∈A

max (1 − υ(a∣θi.θ−i), µi(a, θ)))

Proof of Proposition 4.4.
Upesi (υ, θi) = min

θ−i∈Θ−i
max (1 − π(θ−i∣θi),min

a∈A
max (1 − υ(a∣θ), µi(a, θ)))

Upesi (υ, θi) = min
θ−i∈Θ−i

max (1 − π(θ−i∣θi),min
a∈A

max (1 −min(υi(ai∣θi), υ−i(a−i∣θ−i)), µi(a, θ)))

Upesi (υ, θi) = min
θ−i∈Θ−i

max (1 − π(θ−i∣θi),min
a∈A

max (1 − υi(ai∣θi),1 − υ−i(a−i∣θ−i), µi(a, θ)))

Upesi (υ, θi) = min
θ−i∈Θ−i,a∈A

max (1 − π(θ−i∣θi),1 − υi(ai∣θi),1 − υ−i(a−i∣θ−i), µi(a, θ))

Upesi (υ, θi) = min
ai∈Ai
(1 − υi(ai∣θi), min

a−i∈A−i
θ−i∈Θ−i,

max (1 − π(θ−i∣θi),1 − υ−i(a−i∣θ−i), µi(ai.a−i, θ)))

Upesi (υ, θi) = min
ai∈Ai

max(1 − υi(ai∣θi), Upesi (ai, υ−i, θi))

Proof of Proposition 4.5.
In order to prove that the secure strategy of player i of type θi is equal to the secure strategy
of player (i, θi), it is enough to show that:

usecurei (ai, θi) = µsecure(i,θi) (ã(i,θi)).

By Definition 4.3: usecurei (ai, θi) = min
θ−i∈Θ−i

max (1 − π(θ−i∣θi), min
a−i∈A−i

µi(ai.a−i, θ))

usecurei (ai, θi) = min
a−i∈A−i

min
θ−i∈Θ−i

max (1 − π(θ−i∣θi), µi(σi(θi).a−i, θ))

By Definition 4.4, we have: usecurei (ai, θi) = min
a−i∈A−i

Upesi (σ, θi)

Note that, by Definition 4.10 we have µ̃(i,θi)(ã) = U
pes
i (σ, θi)

Then, usecurei (ai, θi) = µsecure(i,θi) (ã(i,θi)).

Thus, proposition 4.5 holds.

Proof of Proposition 4.6.
⇒ Assume that a is a PNE in G̃. Then, ,∀i ∈ N,θi ∈ Θi, a

′
i ∈ Ai

µ̃(i,θi)(a
′
i.a−i) ≤ µ̃(i,θi)(a).

But, since µ̃(i,θi)(a) =def U
pes
i (aσ, θi), we get Upesi (a′i, aσ−i, θi) ≤ U

pes
i (aσ, θi).

Thus, aσ is a PNE of G.
⇐ Now, let σ be a PNE of G, define G̃ and joint action a: a(i,θi) = σi(θi),∀(i, θi). Then,
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again, µ̃(i,θi)(a) = Upesi (σ, θi). And since σ is a PNE in G, we get Upesi (a′i, σ−i, θi) ≤
Upesi (σ, θi),∀i, θi, a′i and, ∀i, θi, a′i

µ̃(i,θi)(a
′
(i,θi).a−(i,θi)) ≤ µ̃(i,θi)(a).

Thus, a is a PNE of G̃.

Proof of Proposition 4.7.
First, note that the transformation υ → π̃ (Definition 4.12) between the sets of mixed strate-
gies in games G and G̃ is bijective. Thus, in order to prove that mixed equilibria are the
same in both games, it is enough to show that

∀(i, θi), Upesi (υ, θi) = µ
pes
i,θi
(π̃). (4.24)

To do so, first note that:
Upesi (υ, θi) = min

θ−i∈Θ−i,a∈A
max(1 − πυ(a, θ−i∣θi), µi(a, θ)), by Definition 4.8,

πυ(a, θ−i∣θi) = min(π(θ−i∣θi), υ(a∣θ)), by Equation (4.14),
and π̃(ã) = υ(a∣θ), by Definition 4.12.

Thus, Upesi (υ, θi) = min
a∈A

max(1 − π̃(ã), min
θ−i∈Θ−i

max(1 − π(θ−i∣θi), µi(a, θ))).

Note that, by Definition 4.4, Upesi (σ, θi) = min
θ−i∈Θ−i

max(1 − π(θ−i∣θi), µi(σ(θ), θ)), where σ is

the unique pure strategy in G, defined from any pure strategy a in G̃.

Then,

Upesi (υ, θi) = min
a∈A

max(1 − π̃(ã), Upesi (σ, θi)),

Upesi (υ, θi) = min
a∈A

max(1 − π̃(ã), µ̃(i,θi)(a)), by Definition 4.10,

Upesi (υ, θi) = µpesi,θi(π̃), by Equation (2.7).

Thus, Proposition 4.7 holds.

Proof of Proposition 4.8.
Membership. We prove the membership in NP for the more general case of N unbounded.
In this case, the size of the input is exponential in the number of players n. The PNE can
be solved by guessing a strategy σ, i.e., guessing an action for each pair player/type, then
checking whether σ is a PNE or not. More precisely:

• for each player i ∈ N and for each type θi ∈ Θi: compute Upesi (σ, θi);

• for each action ai ∈ Ai: compute Upesi (ai, σ−i, θi).

Then we should check if player i has incentive to deviate from σi(θi), i.e., we should compare
Upesi (σ, θi) and Upesi (ai, σ−i, θi). Under the assumption that π is represented by a table of
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∣Θ∣ lines, the complexity of computing Upesi (σ, θi) is in O(∣Θ−i∣), from Definition 4.4. Thus
the whole complexity is polynomial O(n ⋅ ∣Θi∣ ⋅ ∣Θ−i∣ ⋅ ∣Amax∣) = O(n ⋅ ∣Θ∣ ⋅ ∣Amax∣) where
∣Amax∣ = max(∣A1∣, ..., ∣An∣). Algorithm 4.1 details this process:

Algorithm 4.1: Check_Equilibrium.
Data: G = ⟨N,A,Θ, π, µ⟩, σ
Result: IsPNE (Boolean)

1 IsPNE ← true;
2 forall i in N do
3 forall θi ∈ Θi do
4 forall ai ∈ Ai do
5 if Upes

i (ai, σ−i, θi) > Upes
i (σ, θi) then IsPNE← false;

6 end
7 end
8 end
9 return IsPNE

This easy to check that σ is a PNE using Algorithm 4.1 in O(n ⋅ ∣Θ∣ ⋅ ∣Amax∣).

Hardness: The hardness proof uses a reduction from the SET-COVER problem. It is inspired
from (Conitzer and Sandholm, 2002):

Definition 4.14. (SET-COVER (SC) problem)
Given a set S = {s1, ..., sn}, subsets {S1, S2, ..., Sm} of S with ∪1≤i≤mSi = S and an integer
K ≤m. We are asked whether there exists a subset of {S1, S2, ..., Sm} of size K whose union
equals S, i.e., Sc1 , ..., ScK such that ∪1≤i≤KSci = S.

We reduce an arbitrary SC = ⟨S,{S1, S2, ..., Sm},K⟩ instance to a PNE instance: Let Π-game
GSC = ⟨N,A,Θ, π, µ⟩ where:

• N = {1,2};

• A = A1 ×A2 where A1 = A2 = {S1, ..., Sm, s1, ..., sn};

• Θ = Θ1 ×Θ2 where Θ1 = Θ2 = {t1, ..., tK} (both players belong to one of K types);

• ∀θ1 ∈ Θ1, θ2 ∈ Θ2, π(θ1, θ2) = 1 (π reflects total ignorance);

• We assume utility functions that do not depend on a specific type θ ∈ Θ. They are as
follows:

(i) µ1(Si.Sj) = µ2(Sj .Si) = 0.25 ∀Si, Sj ;

(ii) µ1(Si.sj) = µ2(sj .Si) = 0.25 + j
4n+1 ∀Si,∀sj ∉ Si;

(iii) µ1(Si.sj) = µ2(sj .Si) = 0.5 ∀Si,∀sj ∈ Si;

(iv) µ1(si.sj) = µ2(sj .si) = 0 ∀si, sj ;

(v) µ1(sj .Si) = µ2(Si.sj) = 0.75 ∀Si,∀sj ∉ Si;
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(vi) µ1(sj .Si) = µ2(Sj .si) = 0 ∀Si,∀sj ∈ Si.

Note that a Set-Cover instance SC can be represented in space O(m⋅n⋅log(n)). The size of
the Π-gameGSC is the size required to represent π,µ1 and µ2. Assuming that π is represented
as a table (which is obviously not the most concise way to represent it), ∣π∣ = O(K2) = O(n2)
and ∣µ1∣ = ∣µ2∣ = O((m+n)2). The latter size may become O((m+n)2K2) if we store µi(σ, θ)
even though utilities are independent of θ. Thus, GSC requires space polynomial in that
of SC to be represented. And since every π(θ) and µi(σ, θ) requires constant time to be
computed, the transformation is polynomial (time).

Note that, in Π-game with 2 players and π corresponding to total ignorance, the utility of
the 2 players are computed as follows:

Upes1 (σ, θ1) = min
θ2∈Θ2

max (1 − π(θ2∣θ1), µ1(σ1(θ1).σ2(θ2))).

Since π(θ2∣θ1) = 1, thus:

Upes1 (σ, θ1) = min
θ2∈Θ2

µ1(σ1(θ1).σ2(θ2)).

In the same way, Upes2 (σ, θ2) = min
θ1∈Θ1

µ2(σ1(θ1).σ2(θ2)).

Now we show that G admits a PNE ⇔ SC admits a SET-COVER.

SC admits a SET-COVER ⇒ G admits a ΠPNE

First suppose there exist Sc1 , ..., ScK such that ∪1≤i≤KSci = S. Suppose both players i = {1,2}
play Scθi when their type is θi, i.e., ∀θ1 ∈ Θ1, σ1(θ1) = Scθ1 and ∀θ2 ∈ Θ2, σ2(θ2) = Scθ2 . We
claim that (σ1.σ2) is a PNE.

Player 1 (resp. 2) supposes that player 2 (resp. 1) employs this strategy. Then, note that
for any sj , there is at least one Sci such that sj ∈ Sci , since SC admits a SET-COVER
{Sc1 , . . . , ScK}. So, if player 1 of type θ1, for example, changes her strategy by replacing Scθ1
with some sj , this will decrease her utility from 0.25 (i) to 0 (vi), since sj is covered by some
Scθ2 played by player 2 of type θ2. Of course, the same holds for the other player, so that no
player has the interest to deviate from the SET-COVER play. It follows that playing any of
the Sj is optimal. So there is a PNE.

G admits a PNE ⇒ SC admits a SET-COVER

Suppose that G admits a PNE σ∗ = (σ∗1 .σ∗2). We are going to show by contradiction that
{σ∗1(θ1)}θ1∈Θ1 and {σ∗2(θ2)}θ2∈Θ2 form Set covers of SC.

1. Assume player 1 plays some σ1(θ1) ∈ S for some θ1 ∈ Θ1. We show that we have
σ2(θ2) ⊆ S,∀θ2 ∈ Θ2. Indeed, if any σ2(θ2) ∈ S for some θ2 ∈ Θ2, then Upes2 (σ, θ2) =
µ2(σ1(θ1), σ2(θ2)) = 0 while Upes2 (σ′, θ2) = 0.25 if σ2(θ2) ∈ S is replaced with any
σ′2(θ2) = Sc.
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2. Now, forget about Player 1 and assume that σ2(θ2) ⊆ S,∀θ2 ∈ Θ2 and that S∖∪θ2σ2(θ2)
is non-empty. Then, obviously, σ1(θ1) ∈ S ∖ ∪θ2σ2(θ2),∀θ1 ∈ Θ1, since this provides
utility 0.75 to player 1 of any type θ1. However, let sj∗ be the state with minimum
index for which there exists θ1 s.t. σ1(θ1) = sj∗ . sj∗ is not “covered” by any σ2(θ2)
(so, Upes2 (σ, θ2) = 0.25 + j∗

4n+1). However, considering (ii), Player 2 of any type θ2 will
be better off trading σ2(θ2) for some Sc such that sj∗ ∈ Sc, since this will increase the
the smallest index of uncovered states.

Thus, we have a contradiction, and ∪θ2σ2(θ2) = S.

3. The final step is the following: In step 1 we proved that, when G admits a PNE, if
for some θ1 ∈ Θ1, σ1(θ1) ∈ S, then σ2(θ2) ⊆ S,∀θ2 ∈ Θ2. Then, in step 2 we proved
that if σ2(θ2) ⊆ S,∀θ2 ∈ Θ2, then ∪θ2σ2(θ2) = S. However, it may happen that
σ1(θ1) ⊆ S,∀θ1 ∈ Θ1. But in this case, symmetrically to step 2, we can show that
∪θ1σ1(θ1) = S. In this case too, we have proved that there exists a set cover.
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Chapter 5
Solving Possibilistic Games with
Incomplete Information

5.1 Introduction

In Chapter 4, we defined possibilistic games with incomplete information (Π-games).
Then we gave the definition of a secure strategy, pure Nash equilibrium (PNE) and
mixed Nash equilibrium (Π-MNE). In this chapter, we aim to solve these games by
computing a secure strategy, a PNE and a Π-MNE.

This chapter is organized as follows: Section 5.2 proposes a polynomial-time algorithm
to compute a secure strategy in a given Π-game. Section 5.3 proposes a Mixed Integer
Linear Programming encoding to find a PNE if it exists. And Section 5.4 proposes a
polynomial-time algorithm for building Π-MNE in Π-games. Finally, an experimental
study, reported in Section 5.5, is proposed to confirm the feasibility of these approaches.
All proofs are omitted in the end of this chapter.

5.2 A Polynomial Time Algorithm for Building Secure
Strategies in Π-games

In this part, we propose an algorithm to compute a secure strategy σ∗i (θi) of
player i for type θi in a given Π-game G = ⟨N,A,Θ, π, µ⟩. σ∗i (θi) is the re-
sult of the Secure strategy function. This latter takes as input the Π-game
G = ⟨N,A,Θ, π, µ⟩, the player i and her type θi, then computes the optimal secure
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strategy a∗i = σ∗i (θi) using Equation (5.1).

∀i ∈ N,∀θi ∈ Θi, a
∗
i = arg max

ai∈Ai
usecurei (ai, θi)

= arg max
ai∈Ai

min
θ−i∈Θ−i

max (1 − π(θ−i∣θi), min
a−i∈A−i

µi(ai.a−i, θi.θ−i)) (5.1)

Algorithm 5.1 details the Secure strategy(G, i, θi) function which implements
Equation (5.1).

Algorithm 5.1: Secure strategy.
Data: G = ⟨N,A,Θ, π, µ⟩, i, θi
Result: a∗i : optimal secure strategy for player i of type θi

1 maximum← 0
2 forall ai ∈ Ai do
3 ūsecurei (ai, θi)← 1
4 forall θ−i ∈ Θ−i do
5 µ̄i(ai, θi.θ−i)← 1
6 forall a−i ∈ A−i do
7 if µi(ai.a−i, θi.θ−i) ≤ µ̄i(ai, θi.θ−i) then
8 µ̄i(ai, θi.θ−i)← µi(ai.a−i, θi.θ−i)
9 end

10 end
11 if 1 − π(θi.θ−i) ≥ µ̄i(ai, θi.θ−i) then m← 1 − π(θi.θ−i)
12 else m← µ̄i(ai, θi.θ−i)
13 if m ≤ ūsecurei (ai, θi) then ūsecurei (ai, θi)←m

14 end
15 if maximum ≤ ūsecurei (ai, θi) then
16 maximum← ūsecurei (ai, θi)
17 a∗i ← ai
18 end
19 end
20 return a∗i

Proposition 5.1 (Complexity of Algorithm 5.1). The Secure strategy(G, i, θi)
function takes a polynomial time in the size of the Π-game G = ⟨N,A,Θ, π, µ⟩, i.e., Se-
cure strategy(G, i, θi) can be performed in polynomial time in the size of the stan-
dard normal form Π-game. The whole complexity of Algorithm 5.1 is: O(∣A∣ × ∣Θ−i∣).

5.3 Finding a Pure Nash Equilibrium in Π-games: a
MILP Formulation

Taking advantage of the efficiency of modern solvers, we propose a Mixed Integer
Linear Programming (MILP) formulation for finding, if it exists, a PNE in Π-games
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(we follow in this the line opened by (Ceppi et al., 2009) for solving Bayesian games).

• the main decision variables are Boolean variables encoding the strategy searched
for: each σi,ai,θi is a Boolean variable indicating whether action ai is prescribed
for type θi of player i:

∀i ∈ N,∀ai ∈ Ai,∀θi ∈ Θi ∶ σi,ai,θi ∈ {0,1};

• the utilities are encoded by continuous variables: Ui,ai,θi is the utility (according
to σ−i) of player i if action ai is chosen for type θi (i.e., if σi(θi) = ai):

∀i ∈ N,∀ai ∈ Ai,∀θi ∈ Θi ∶ Ui,ai,θi ∈ [0,1].

We will also use the following Boolean variables to constrain the Ui,ai,θi to be equal to
the minθ−i∈Θ−i of max (1 − π(θ−i∣θi), µi(a, θ)) (and not only lower than the min):

∀i ∈ N,∀ai ∈ Ai,∀θ ∈ Θ ∶Mi,ai,θ ∈ {0,1}.

Hence, the MILP will contain the following constraints:

• ∀i ∈ N,∀θi ∈ Θi,
∑
ai∈Ai

σi,ai,θi = 1. (5.2)

• ∀i ∈ N,∀ai, a′i ∈ Ai, s.t, ai ≠ a′i,∀θi ∈ Θi,

Ui,ai,θi −Ui,a′i,θi ≥ σi,ai,θi − 1. (5.3)

• ∀i ∈ N,∀a ∈ A,∀θ ∈ Θ,

Ui,ai,θi ≤ max (1 − π(θ−i∣θi), µi(a, θ)) + ∑
j∈N, j≠i

(1 − σj,aj ,θj) (5.4)

• ∀i ∈ N,∀a ∈ A,∀θ ∈ Θ,

Ui,ai,θi +Mi,ai,θ + ∑
j∈N, j≠i

(1 − σj,aj ,θj) ≥ max(1 − π(θ−i∣θi), µi(a, θ)) (5.5)

• ∀i ∈ N,∀ai ∈ Ai,∀θi ∈ Θi,

∑
θ−i∈Θ−i

(1 −Mi,ai,θi.θ−i) = 1. (5.6)

• constraints (5.2) ensure that the strategy σ searched for specifies exactly one
action per type, for each player i.

• constraints (5.3) require that σ is a PNE: when σi,ai,θi = 1, this constraint requires
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Ui,ai,θi ≥ Ui,a′i,θi , i.e., that player i has no incentive to deviate from ai. When
actions ai is not chosen for θi, (σi,ai,θi = 0) the constraint is always satisfied
(Ui,ai,θi −Ui,a′i,θi is always greater than −1).

• constraints (5.4) implement Definition (4.4). They ensure that the utility of
player i playing σ(θi) = ai is lower than all, i.e., the minimum over the θ−i of the
max(1−π(θ−i∣θi), µi(ai.σ−i(θ−i), θ)). Indeed, for any profile of action a that does
not correspond to what is prescribed by σ, Σj≠i(1−σj,aj ,θj) ≥ 1 and the constraint
is always satisfied (Ui,ai,θi ≤ 1). If a−i is chosen for θ−i, then σj,aj ,θj = 1 ∀j ≠ i and
Σj≠i(1−σj,aj ,θj) = 0: the constraint becomes Ui,ai,θi ≤ max(1−π(θ−i∣θi), µi(a, θ)).

• constraints (5.5) and (5.6) ensure that Ui,ai,θi is equal to the min over θ−i of
max(1−π(θ−i∣θi), µi(a, θ)): If a−i does not correspond to σ−i, Σj≠i(1−σj,aj ,θj) is
at least equal to 1 and the constraints (5.5) are always satisfied. Otherwise, (a−i
correspond to σ−i) the sum is equal to 0 and does not annihilate the constraint.
The min is reached if Ui,ai,θi = max(1−π(θ−i∣θi), µi(a, θ)). Whenever Mi,ai,θ = 1,
Equation (5.5) holds, and Equation (5.6) ensures that (5.5) is an equality for
one θ−i (minimizing max(1 − π(θ−i∣θi), µi(a, θ))).

The above formulation is linear (the max operator which appears in constraints (5.4)
and (5.5) deals with constants only). Furthermore, it does not lead to a combinatorial
explosion of the required space. Recall that the size of the original problem is n ⋅ ∣Θ∣ ⋅
∣A∣ + ∣Θ∣. Let us denote d (resp. t) the number of actions (resp. types) of each player.
The MILP formulation contains:

• O(n ⋅ t ⋅ d) continuous variables Ui,ai,θi ;

• O(n ⋅ t ⋅ d) Boolean variables σi,ai,θi ;

• O(n ⋅ d ⋅ tn) Boolean variables Mi,ai,θ;

• O(n ⋅ t) constraints (5.2), each involving O(a) variables;

• O(n ⋅ t ⋅ d ⋅ (d − 1)) constraints (5.3), each involving 3 variables;

• O(n ⋅ tn ⋅ dn) constraints (5.4) each involving O(n) variables;

• O(n ⋅ tn ⋅ dn) constraints (5.5) each involving O(n + 1) variables;

• O(n ⋅ d ⋅ t) constraints (5.6) each involving O( tnd ) variables.

The size of the MILP encoding is thus in O(n2 ⋅ ∣Θ∣ ⋅ ∣A∣) (polynomial in the size of the
original size of the problem (i.e., n ⋅ ∣Θ∣ ⋅ ∣A∣ + ∣Θ∣)).

Example 5.1 (Cont. Example 4.1). Solving the MILP formulation for the coordination
Π-game detailed in Table 5.1.
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Player 2
r2 r2

P
l
a
y
e
r

1

r1

x y x y

x 0.9 , 0.9 0.3 , 0.3 x 0.9 , 0.7 0.3 , 0.3
y 0.2 , 0.2 0.7 , 0.8 y 0.2 , 0.2 0.7 , 0.8

π(r1.r2) = 1 π(r1.r2) = 0.1

r1

x y x y

x 0.8 , 0.9 0.3 , 0.3 x 0.8 , 0.7 0.3 , 0.3
y 0.2 , 0.2 0.7 , 0.8 y 0.2 , 0.2 0.7 , 0.8
π(r1.r2) = 0.1 π(r1.r2) = 1

Table 5.1: A coordination Π-game between two players (with two types per player)
where ∆ = {0,0.1,0.2,0.3,0.7,0.8,0.9,1}.

Let us give some constraints of the MILP formulation:

• σ1,x,r1 +σ1,y,r1 = 1 ensures that player 1 plays x or y when she receives the incen-
tive;

• U1,x,r1 −U1,y,r1 ≥ σ1,x,r1 −1 ensures that if player 1 chooses x then Upes
1 (x,σ2, r1) ≥

Upes
1 (y, σ2, r1).

The result is as follows:
σ1,x,r1 = 1, σ1,y,r1 = 0, σ1,x,r1 = 0, σ1,y,r1 = 1, σ2,x,r2 = 1, σ2,y,r2 = 0, σ2,x,r2 = 0, σ2,y,r2 = 1.
This means that player 1 plays x when she receives the incentive (σ1,x,r1 = 1) and plays
y when she does not receive the incentive σ1,y,r1 = 1. Similarly for player 2, she plays
x when she receives the incentive (σ2,x,r2 = 1) and plays y when she does not receive
the incentive σ2,y,r2 = 1.

5.4 A Polynomial Time Algorithm for Building Possibilis-
tic Mixed Nash Equilibria in Π-games

A possibilistic mixed Nash equilibrium (Π-MNE) can be seen as the result of a ne-
gotiation where players negotiate to improve their pessimistic utilities until no player
has the interest to negotiate anymore. Following the idea of (Ben Amor et al., 2017),
we propose a polynomial time algorithm to compute one Π-MNE. This algorithm
presents the negotiation process where, at each stage, each player i for type θi tries
to maximize her pessimistic utility Upes

i (υ, θi) by moving her mixed strategy υi(θi) to
υ′i(θi). Indeed, we will see that if a player moves to a more specific mixed strategy
υ′i(θi) ⪯ υi(θi), her pessimistic utility increases.

Let us first recall the definition of specificity relation over possibility distributions.
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Definition 5.1 (Specificity relation). Given the mixed strategies υ and υ′, we say that
υ′ is at least as specific as υ iff all the distributions υ′i(θi) are all more specific than
the distributions υi(θi), ∀i ∈ N :

∀i ∈ N,∀θi ∈ θi, υ′ ⪯ υ⇔ υ′i(θi) ⪯ υi(θi) (5.7)

where υ′i(θi) ⪯ υi(θi)⇔ υ′i(ai∣θi) ≤ υi(aiθi),∀ai ∈ Ai.

The following proposition shows that given a possibilistic joint strategy υ, a player i
of type θi never loses utility, in terms of her pessimistic utility, if the joint strategy υ′

of all players is made more specific, i.e., if other players precise their intentions.

Proposition 5.2. Let G = ⟨N,A,Θ, π, µ⟩ be a Π-game, υ be a mixed strategy and υ′ be
a more specific mixed strategy (υ′ ⪯ υ). Then:

∀i ∈ N,∀θi ∈ Θi, U
pes
i (υ, θi) ≤ Upes

i (υ′, θi). (5.8)

Given a Π-game, if player i updates her possibilistic mixed strategy υi to a more
specific υ′i her utility will not decrease if all other players stick to their strategies.
However, the more specific mixed strategy υ′i may allow other players to change their
possibilistic mixed strategies and increase their pessimistic utilities. Therefore, the
result of the negotiation process leads to a least-specific Π-MNE.

Formally, a least-specific possibilistic mixed Nash equilibrium in a Π-game is defined
as:

Definition 5.2 (Least-specific Possibilistic mixed Nash Equilibrium).
Let G = ⟨N,A,Θ, π, µ⟩ be a Π-game. υ∗ = (υ∗1 , . . . , υ∗n) is a least specific possibilistic
mixed equilibrium for G iff:

1. υ∗ is a possibilistic mixed equilibrium for G;

2. there exist no υ′, s.t., υ∗ ≺ υ′ and υ′ is a possibilistic mixed equilibrium, where
υ∗ ≺ υ′ if and only if υ∗ ⪯ υ′ and there exists (i, θi, ai) such that υ∗(ai∣θi) <
υ′(ai∣θi).

In order to find a least-specific possibilistic mixed equilibrium (which may not be
unique, since ⪯ is a partial order), we adapt the algorithm proposed by (Ben Amor
et al., 2017). The idea is that each player i improves her mixed strategy υi(θi), for
each type θi, to a more specific one υ′i(θi) in order to increase her pessimistic utility.
Algorithm 5.2 outlines the Finding a least-specific Π-MNE function:

Where the Improve function takes as input: (i) a Π-game G = ⟨N,A,Θ, π, µ⟩, (ii)
a mixed strategy υ = (υ1, . . . , υn), (iii) the player i and (iv) her type θi then returns
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Algorithm 5.2: Finding possibilistic mixed Nash equilibrium in Π-game.
Data: G = ⟨N,A,Θ, π, µ⟩
Result: υ∗ = (υ∗1 , . . . , υ∗n), a Π-MNE

1 υ0 ← (υ0
1, . . . , υ

0
n) /* υ0

i (θi, ai) = 1,∀i ∈ N,∀ai ∈ Ai,∀θi ∈ Θi */
2 t← 0
3 repeat
4 υloc ← υt

5 forall i ∈ N do
6 forall θi ∈ Θi do υloc ← Improve (G,υloc, i, θi)
7 end
8 υt+1 ← υloc

9 t← t + 1
10 until υt = υt−1

11 υ∗ ← υt

12 return υ∗

a more specific joint mixed strategy. Algorithm 5.3 details the Improve function
process.

Algorithm 5.3: Improve.
Data: G = ⟨N,A,Θ, π, µ⟩, υ, i, θi
Result: υ′ = (υ′1, . . . , υ′n)

1 A∗
i,θi
← ∅

2 forall ai ∈ Ai do
3 if Upes

i (ai, υ−i, θi) ≤ Upes
i (υ, θi) then A∗

i,θi
← A∗

i,θi
∪ {ai}

4 end
5 if ∀ai ∈ Ai ∖A∗

i,θi
, υi(ai∣θi) < 1 then υ′ ← υ

6 else
7 forall ai ∈ Ai do
8 if ai ∈ A∗

i,θi
then υ′i(ai∣θi)← n(Upes

i (υ, θi))−
9 else υ′i(ai∣θi)← υi(ai∣θi)

10 end
11 end
12 return υ′

We note that n(Upes
i (υ, θi))− is the degree in the ordinal scale ∆ just below and

n(Upes
i (υ, θi)) = 1 −Upes

i (υ, θi). As an example, suppose that ∆ = {0,0.25,0.5,0.75,1}
and Upes

i (υ, θi) = 0.25. Thus, n(Upes
i (υ, θi)) = 1−Upes

i (υ, θi) = 0.75 and the degree just
below 0.75 in ∆ is 0.5. Therefore, n(Upes

i (υ, θi))− = 0.5.

Proposition 5.3 (Complexity of Algorithm 5.3). Improve function takes time polyno-
mial in the size the the Π-game G. The whole complexity of the Improve function is:
O(∣Amax∣ × ∣A∣ × ∣Θ−i∣) where ∣Amax∣ = max(∣A1∣, ..., ∣Ai∣, ..., ∣An∣).

Algorithm 5.2 calls N × ∣Θi∣ times Algorithm 5.3. Thus, based on proposition 5.3:
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Corollary 5.1 (Complexity of Algorithm 5.2). The whole complexity is: O(∣N ∣ ×
∣Θmax∣ × ∣∆∣ × ∣Amax∣ × ∣A∣ × ∣N ∣) = O(∣N ∣2 × ∣Θmax∣ × ∣∆∣ × ∣A∣) where ∣Θmax∣ =
max(∣Θ1∣, ..., ∣Θi∣, ..., ∣Θn∣).

Algorithm 5.2 is polynomial. In the following, we prove that this algorithm converges
towards a least-specific possibilistic mixed Nash equilibrium.

Proposition 5.4 (Convergence). Algorithm 5.2 converges in a finite number of steps
and convergence occurs in the size of the Π-game G.

Based on Proposition 5.4, the following proposition holds:

Proposition 5.5 (Soundness). Let G = ⟨N,A,Θ, π, µ⟩ be a Π-game. If Algorithm 5.2
has converged towards υ∗, then υ∗ is a possibilistic mixed equilibrium of G.

Example 5.2 (Cont. Example 4.1). Consider the Π-game detailed in Table 5.2,

Player 2
r2 r2

P
l
a
y
e
r

1

r1

x y x y

x 0.9 , 0.9 0.3 , 0.3 x 0.9 , 0.7 0.3 , 0.3
y 0.2 , 0.2 0.7 , 0.8 y 0.2 , 0.2 0.7 , 0.8

π(r1.r2) = 1 π(r1.r2) = 0.1

r1

x y x y

x 0.8 , 0.9 0.3 , 0.3 x 0.8 , 0.7 0.3 , 0.3
y 0.2 , 0.2 0.7 , 0.8 y 0.2 , 0.2 0.7 , 0.8
π(r1.r2) = 0.1 π(r1.r2) = 1

Table 5.2: A coordination Π-game between two players (with two types per player)
where ∆ = {0,0.1,0.2,0.3,0.7,0.8,0.9,1}.

Let us start with:

υ0
1(x∣r1) = 1, υ0

1(y∣r1) = 1, υ0
1(x∣r1) = 1, υ0

1(y∣r1) = 1,
υ0

2(x∣r2) = 1, υ0
2(y∣r2) = 1, υ0

2(x∣r2) = 1, υ0
2(y∣r2) = 1.

We have:
Upes

1 (x, υ0
2, r1) = 0.3, Upes

1 (y, υ0
2, r1) = 0.2. Thus, Upes

1 (υ0, r1) = 0.2 and A∗
1,r1 = {y}.

Upes
1 (x, υ0

2, r1) = 0.3, Upes
1 (y, υ0

2, r1) = 0.2. Thus, Upes
1 (υ0, r1) = 0.2 and A∗

1,r1
= {y}.

Since, A1,r1/A∗
1,r1 = {x} and A1,r1/A∗

1,r1
= {x}, then player 1 can move to a more

specific possibilistic mixed strategy υ1
1 and decrease υ0

1(y∣r1) and υ0
1(y∣r1). Thus we

get: υ1
1(x∣r1) = 1, υ1

1(y∣r1) = 0.7, υ1
1(x∣r1) = 1 and υ1

1(y∣r1) = 0.7.

Similarly, we have:
Upes

2 (x, υ0
1, r2) = 0.3, Upes

2 (y, υ0
1, r2) = 0.3. Thus, Upes

2 (υ0, r2) = 0.3. and A∗
2,r2 = {x, y}.
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Upes
2 (x, υ0

1, r2) = 0.3, Upes
2 (y, υ0

1, r2) = 0.3. Thus, Upes
2 (υ0, r2) = 0.3 and A∗

2,r = {x, y}.
Since, A2,r2/A∗

2,r2 = ∅ and A2,r/A∗
2,r = ∅, then player 2 cannot change her possibilistic

mixed strategy since she will more to a non normalized mixed strategy.

Thus, at the end of the round 1 we get:

υ1
1(x∣r1) = 1, υ1

1(y∣r1) = 0.7, υ1
1(x∣r1) = 1, υ1

1(y∣r1) = 0.7,
υ1

2(x∣r2) = 1, υ1
2(y∣r2) = 1, υ1

2(x∣r2) = 1, υ1
2(y∣r2) = 1.

Another round of improvement does not give any more changes. Therefore, the possi-
bilistic mixed Nash equilibrium υ∗ such that:

υ∗1(x∣r1) = 1, υ∗1(y∣r1) = 0.7, υ∗1(x∣r1) = 1, υ∗1(y∣r1) = 0.7,
υ∗2(x∣r2) = 1, υ∗2(y∣r2) = 1, υ∗2(x∣r2) = 1, υ∗2(y∣r2) = 1.

5.5 Experimental Study
The goal of experiments is to show the efficiency and feasibility of our proposed al-
gorithms and MILP formulation to solve possibilistic games with incomplete informa-
tion. To do that, we have to test our approaches for different Π-games. We do not
develop random games. We adapt GAMUT game generators (Nudelman et al., 2004)
to generate Π-games. GAMUT basically produces exclusively normal form games with
complete information. It contains instances of games from different game classes.

The following of this section details our Π-game generator. Then details the experi-
mental protocol and finally presents the experimental results.

5.5.1 A Π-game Generator

We introduce a novel generator for possibilistic games with incomplete information
based on GAMUT (Nudelman et al., 2004). Based on Definition 4.2, where every
Π-game can be equivalently defined as a set of ∣Θ∣ normal form games with the same
set of players N and actions A.

We follow the approach of (Ceppi et al., 2009) for the generation of Bayesian games.
More precisely, given the number of players n, the number of actions d and the number
of types t per player, the idea is to generate, using GAMUT, for each combination of
types θ ∈ Θ a normal form game Gθ and derive the possibilities over the combinations
of types.

We assume that the number of actions and types for all players are equal, i.e., ∀i, j ∈
N, ∣Ai∣ = ∣Aj ∣ = d and ∀i, j ∈ N, ∣Θi∣ = ∣Θj ∣ = t.

To generate a Π-game, G = ⟨N,A,Θ, π, µ⟩, we need as inputs: (1) the class and the
name of the game, (2) the number n of players, (3) the number of degrees in ∆, (4)
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the number of types ∣Θi∣ for each player i and (5) the number of actions ∣Ai∣ for each
player i.

Then, we ask GAMUT to generate ∣Θ∣ normal form games of the class given in input,
the range of utility of which is ∆ and we generate a normalized distribution π ∶ Θ ↦
∆ (a randomly selected θ receives degree 1; the degrees of the other elements of Θ
are selected in ∆ following a normalized distribution). Finally, the utility µi(a, θ) is
simply the utility of the joint action a for player i in the normal form game Gθ =
⟨N,A,{{µθi }i∈N}⟩ (see Definition 4.2).

Inputs of the Generator

The class of the game: first, to generate a Π-game, we have to choose the class of
the game. GAMUT offers the possibility to generate different game classes. In our
generator, we select only appropriate games, i.e., possible to be presented in the normal
form, and we classify these games into six classes:

1. class 1: 2 × 2 games: normal games with 2 players and 2 actions per player:
Battle Of The Sexes, Chicken, Hawk And Dove, Matching Pennies and Prisoners
Dilemma.

2. class 2: 2×3 games: normal games with 2 players and 3 actions per player: Rock
Paper Scissors and Shapley’s Game.

3. class 3: 2×m games: normal games with 2 players and m ≥ 2 actions per player:
Grab The Dollar, Random Zero Sum.

4. class 4: n × 2 games: normal games with n ≥ 2 players and 2 actions per player:
N Player Chicken and Random Compound Game.

5. class 5: n×n games: normal games with n ≥ 2 players and n actions per player:
Collaboration Game and Coordination Game.

6. class 6: n ×m games: normal games with n ≥ 2 players and m ≥ 2 actions per
player: Co variant Game, Dispersion Game, Majority Voting, Minimum Effort
Game, Random Game, Travelers Dilemma.

Number of players: by default, in GAMUT, for games in classes 1, 2, and 3, the
number of players is equal to two. For the remaining games (classes 4, 5 and 6),
the user should specify the number of players n. In this case, we set the GAMUT
parameter -players to the specified number of players n.

Number of actions: by default, in GAMUT, for games in classes 1 and 4, the number
of actions per player is equal to two. For games in class 2, the number of actions per
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player is equal to three. However, for the other games in classes 3 and 6, the user
should specify the number of actions d per player. In this case, we set the GAMUT
parameter -actions to the specified number of actions d per player.

Let us notice that in games of class 5, the number of actions d is by default equal to
the number of players in the game, i.e., d = n.

Ordinal Scale: In a Π-game, the utilities should be in an ordinal scale ∆. We ask
the user to give the maximum value of the scale ∆. By default, the minimum value is
equal to 0. For that, we set the following GAMUT parameters:

• -min_payoff: minimum utility when normalization is used (generally is equal to
0);

• -max_payoff: maximum utility when normalization is used (equal to ∣∆∣);

• -int_payoffs: all utilities should be converted to integers rather than output as
doubles;

• -int_mult: multiplier used before rounding when converting double to integer
utilities. Defaults to 10,000. (In our generator, we set it to 1).

Number of Types: For all player i ∈ N , the user should specify the number of types
t per player.

Possibilities of joint Types Combinations: In a Π-game, each θ ∈ Θ has a possibility
π(θ). We generate π(θ) randomly and we ensure that the possibility distribution is
normalized, i.e., ∃θ ∈ Θ, s.t., π(θ) = 1.

Utilities of Players: In this step, we run GAMUT ∣Θ∣ times to generate all players’
utilities for the different combinations of types. The utility of player i for the joint
type θ and joint action a is equal to the utility of that player for the joint action a in
the normal form game Gθ.

5.5.2 Experimental Protocol

In our experiments, we vary the number of players from 2 to 10, the number of types
from 2 to 10 and the number of actions from 2 to 10. We fix ∆ = {0,0.25,0.5,0.75,1}.
For each combination of parameters, we have generated 100 instances and measured
the time necessary to get:

(i) a secure strategy;

(ii) a pure Nash equilibrium (or a negative result);
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(iii) a possibilistic mixed Nash equilibrium.

We present, in the following, results for 6 game classes: covariant game, disper-
sion game, majority voting game, minimum effort game, random game and travelers
dilemma game. In our evaluation, we bounded the execution time for a single game
to 10 minutes as in (Sandholm et al., 2005, Porter et al., 2008).

All experiments were conducted on an Intel Xeon E5540 processor and 64GB RAM
workstation. We use CPLEX (CPLEX, 2009) as a MILP solver and Java 8 as a
programming language. The implementations of the transformation of the Π-game
as a normal form game (C-SNF) and MILP solver are available online https://www
.irit.fr/%7EHelene.Fargier/PossibilisticGames.html.

5.5.3 Experimental Results

5.5.3.1 Results on Secure Strategy

The following part of our experimental study consisted of implementing Algorithm 5.1
and computing the time necessary to find a secure strategy of a Π-game. We varied
the number of actions and types per player while fixing the number of players to 2 (see
Figures 5.1 and 5.2). Then, we fixed the number of actions (resp., types) per player
while varying the number of players (resp., actions) and we computed the average
execution time to find the secure strategies for different types (resp., players). The
results are given in Figure 5.3 (resp., Figure 5.4).
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Figure 5.1: Average execution time (s) to find one secure strategy in a Π-game, fixing
n = 2, varying ∣Ai∣ from 2 to 10 for ∣Θi∣ from 2 to 10, ∣∆∣ = 5.

90

https://www.irit.fr/%7EHelene.Fargier/PossibilisticGames.html
https://www.irit.fr/%7EHelene.Fargier/PossibilisticGames.html


2 3 4 5 6 7 8 9 10
0

10

20

Ti
m

e 
(s

)

CovariantGame

2 3 4 5 6 7 8 9 10
0.00

0.01

0.02
DispersionGame

2 3 4 5 6 7 8 9 10
0.000

0.005

0.010

0.015

MajorityVoting

2 3 4 5 6 7 8 9 10
#Types

0.000

0.005

0.010

Ti
m

e 
(s

)
MinimumEffortGame

2 3 4 5 6 7 8 9 10
#Types

0.000

0.005

0.010

0.015

RandomGame

2 3 4 5 6 7 8 9 10
#Types

0.000

0.005

0.010

TravelersDilemma
#Actions

2
4
6
8
10

Figure 5.2: Average execution time (s) to find one secure strategy in a Π-game, fixing
n = 2, varying ∣Θi∣ from 2 to 10 for ∣Ai∣ from 2 to 10, ∣∆∣ = 5.
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Figure 5.3: Average execution time (s) to find one secure strategy in a Π-game, fixing
∣Ai∣ = 2, varying n from 2 to 7 for ∣Θi∣ from 2 to 4, ∣∆∣ = 5.
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Figure 5.4: Average execution time (s) to find one secure strategy in a Π-game, fixing
∣Θi∣ = 2, varying ∣Ai∣ from 2 to 10 for n from 2 to 4, ∣∆∣ = 5.

Figure 5.5 (resp, Figure 5.6) presents the average execution time needed to find a
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secure strategy fixing the number of actions (resp, types) per player to 2 and varying
the number of types (resp., player) for different players (resp, actions).
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Figure 5.5: Average execution time (s) to find one secure strategy in a Π-game, fixing
∣Ai∣ = 2, varying ∣Θi∣ from 2 to 10 for n from 2 to 4, ∣∆∣ = 5.

2 3 4 5 6 7 8 9
0

200

400

Ti
m

e 
(s

)

CovariantGame

2 3 4 5 6 7 8 9
0

2

4
DispersionGame

2 3 4 5 6 7 8 9
0

2

4

6
MajorityVoting

2 3 4 5 6 7 8 9
#Players

0

1

2

3

Ti
m

e 
(s

)

MinimumEffortGame

2 3 4 5 6 7 8 9
#Players

0

2

4

RandomGame

2 3 4 5 6 7 8 9
#Players

0

2

4
TravelersDilemma

#Actions
2
3

Figure 5.6: Average execution time (s) to find one secure strategy in a Π-game, fixing
∣Θi∣ = 2, varying n from 2 to 9 for ∣Ai∣ from 2 to 3, ∣∆∣ = 5.

The results show that we can find a secure strategy efficiently even for large games
(more players, actions, or types per player). For example, in Figure 5.6 for a 9-player
Π-game 2 types and 3 actions per player, finding a secure strategy, generally, does
not take more than 5 seconds in all game classes. As in the previous experiment,
the average execution time needed to find a secure strategy mainly depends on the
number of players in the game, e.g., if the number of types per player is equal to 5
and the number of actions per players is equal to 2, the average execution time needed
to find a secure strategy for a minimum effort game with 4 players is equal to 0.01 s.
Nevertheless, for a minimum effort game with 5 players, the average execution time
to find a secure strategy is equal to 0.1 s and equal to 0.4 s if the number of players
is equal to 7.
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5.5.3.2 Results on PNE

First, we start by implementing the transformation of the Π-game as a normal form
game (C-SNF). This method, which is exponential in time and space, cannot be con-
sidered as a solving method, and this is supported by the experimental results.

Game class Θi Ai 2 3 4 5 6 7 8 9 10
Covariant
Game

2 .00 .02 .05 .10 .30 .70 1.44 5.72 6.94 C-SNF
.30 13.34 11.72 17.08 13.3 19.54 24.74 26.22 25.62 MILP

3 .01 .24 1.76 13.70 42.40 69.96 38.76 103.72 160.66 C-SNF
.02 14.48 10.26 10.92 14.82 17.08 19.16 20.42 23.6 MILP

4 .51 6.6 128.48 558.84 753.86 889.18 1.1k 1.4k 1.7k C-SNF
1.02 8.42 11.4 12 14.64 17.22 19.71 21.7 23.84 MILP

Dispersion
Game

2 .00 .05 .10 .13 .31 .74 5.62 1.36 7.02 C-SNF
.30 .50 .60 1.00 5.38 1.44 6.78 2.34 7.72 MILP

3 .16 .32 1.76 15.76 39.12 69.94 29.64 88.46 126.38 C-SNF
.48 .64 1.2 1.68 2.4 11.28 7.12 11.84 13.04 MILP

4 .20 6.9 135.28 600.74 478.22 818.52 1.1k 1.5k 1.8k C-SNF
3.24 1.28 4.02 4.84 10.08 10.82 10.52 13.2 20.26 MILP

Travelers
Dilemma
Game

2 .01 .11 .13 .17 .20 .60 .96 1.52 6.94 C-SNF
.23 .32 .41 .90 .56 1.44 7.38 2.94 10.74 MILP

3 .05 .32 1.84 10.22 42.38 70.1 30.38 60.18 173.82 C-SNF
.32 .64 .88 8.48 11.96 11.68 21.08 22.36 33.52 MILP

4 .09 3.84 50.62 546.46 1.5k 1.5k 1.6k 2.8k 3.4k C-SNF
.03 2.36 5.34 9.92 14.82 15.14 19.42 21.32 23.00 MILP

Table 5.3: Average memory usage of MILP & C-SNF (MB), n = 2.

Game class Θi Ai 2 3 4 5 6 7 8 9 10
Covariant
Game

2 .5 .4 .8 1.9 4.3 10.3 35.7 61.3 144.1 C-SNF
12.8 850.2 633.3 1.6k 2k 2.2k 2.4k 1.9k 2.1k MILP

3 .3 .34 43 261.8 947.2 2.4k 5.9k 14.7k 22.6k C-SNF
21.8 1.1k 1.5k 2.1k 1.8k 1.3k 1.8k 1.7k 1.6k MILP

4 1.9 139.9 2.4k 3.9k 85.6k 318.5k - - - C-SNF
23.9 853.6 1.3k 885.8 1.7k 1.3k 1.6k 867.8 1.1k MILP

Dispersion
Game

2 .4 .3 .7 1.8 4.6 8.8 28.3 64.8 116.8 C-SNF
11.8 44.5 53.5 81.8 78.3 80.3 115.5 96 110.2 MILP

3 .3 .0 35.8 220.9 813 2.3k 5.7k 14.3k 27.4k C-SNF
62.5 65.1 46.6 63.1 50.1 60.1 63.5 97.6 109.2 MILP

4 1.9 116.1 1.3k 9.7k 41.5k 113.2k 295.6k 478.1k - C-SNF
87.5 58.7 34.3 35.3 54.3 65.0 88.0 98.9 145.6 MILP

Travelers
Dilemma
Game

2 .2 .2 .6 1.5 3.7 8.4 18.9 40.5 76 C-SNF
21.2 59.3 78.4 89.1 76.6 95.8 103.2 93.9 182.8 MILP

3 .3 2.7 20.3 104.2 365.4 932.9 2.3k 6.3k 13.1k C-SNF
51.0 71.8 59.5 643.4 578.8 217.8 689.2 1k 1.6k MILP

4 1.5 47.4 535.7 3.9k 18.9k 77.4k 271.8k - - C-SNF
18.8 26.6 257.4 525.9 794.4 647.3 1.3k 632.8 670.5 MILP

Table 5.4: Average execution time of MILP & C-SNF (ms), n = 2.

Table 5.3 and Table 5.4 present, respectively, the average memory (in MB) required to
decide whether the problem admits a PNE or not and the average of execution time
(in milliseconds) needed to find one PNE (best results are in bold). We vary ∣Ai∣ from
2 to 10 and ∣Θi∣ from 2 to 4 for player i while fixing n = 2. “-” mentions that the
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execution time exceeds 10 minutes. Table 5.3 confirms that C-SNF cannot scale up
contrarily to MILP which requires less memory, e.g., C-SNF requires more than 3.4k
MB when MILP needs just 23MB to solve Travelers Dilemma game with 2 players,
10 actions and 4 types per player. The non-scalability of C-SNF is also observable in
Table 5.4.

Second, we extend our study to the model of MILP by varying the Π-game parameters.
More precisely, we start by varying the number of actions (resp., types and players)
from 2 to 10 and the number of types (resp., players and actions) from 2 to 10 while
we fix the number of players (resp., actions, and types) to 2 – see Figure 5.7 (resp.,
Figure 5.8, and Figure 5.9).
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Figure 5.7: Average execution time (s) to find one PNE in a Π-game, fixing n = 2,
varying ∣Ai∣ from 2 to 10 for ∣Θi∣ from 2 to 10, ∣∆∣ = 5.
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Figure 5.9: Average execution time (s) to find one PNE in a Π-game, fixing ∣Θi∣ = 2,
varying n from 2 to 6 for ∣Ai∣ from 2 to 5, ∣∆∣ = 5.

Then, we vary the number of actions (resp., types and players) from 2 to 10 and the
number of actions from 2 to 10 while we fix the number of playerto 2 – see Figure 5.10.
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Figure 5.10: Average execution time (s) to find one PNE in a Π-game, fixing ∣Ai∣ = 2,
varying n from 2 to 6 for ∣Θi∣ from 2 to 5, ∣∆∣ = 5.

Globally MILP results confirm the feasibility of the qualitative approach of incomplete
information games advocated in this thesis. Results show that MILP has almost the
same behavior in different games. We notice that if the number of actions or the
number of types per player increases, the average execution time increases linearly, e.g.,
as shown in Figure 5.7, given a Travelers dilemma game with two players and 10 types
per players, the average execution time needed to find a PNE where ∀i ∈ N, ∣Ai∣ = 5 is
equal to 1 s, ∀i ∈ N, ∣Ai∣ = 1.3 is equal to 1.5 s, ∀i ∈ N, ∣Ai∣ = 9 is equal to 5.84 s.

However, the number of players highly impacts the execution time. Indeed, if the
number of players increases, the average execution time increases exponentially, e.g.,
as shown in Figure 5.10, the average execution time needed to find a PNE in a Random
game where every player has two actions (∣Ai∣ = 2) and two types (∣Θi∣ = 2) is equal to
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4.5 s if the number of players is equal to 5 (n = 5), 121 s if n = 6. These results are
consistent with the theoretical complexity since adding a player directly increases ∣Θ∣
and ∣A∣. Thus, the number of constraints of the MILP increases.

5.5.3.3 Results on Π-MNE

In this part, we use Algorithm 5.2 to find a Π-MNE in a Π-game. We start by fixing
the number of players (n = 2) and varying the number of actions from 2 to 10 and the
number of types from 2 to 10. The execution time needed to find the least specific
Π-MNE is represented in Figures 5.11 and 5.12, respectively. We also fix the number
of actions per player to 2 (∀i ∈ N , ∣Ai∣ = 2) and we vary the number of players from 2
to 10 and the number of types from 2 to 10. Results are represented in Figures 5.13
and 5.14, respectively. Finally, we fix the number of types per player to 2 (∀i ∈ N ,
∣Θi∣ = 2) and we vary for all players (resp., actions) the number of actions per player
from 2 to 10 (resp., the number of players from 2 to 10 ). Results are represented in
Figures 5.15 and 5.16, respectively.
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Figure 5.11: Average execution time (s) to find one Π-MNE in a Π-game, fixing n = 2,
varying ∣Θi∣ from 2 to 10 for ∣Ai∣ from 2 to 8, ∣∆∣ = 5.
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Figure 5.12: Average execution time (s) to find one Π-MNE in a Π-game, fixing n = 2,
varying ∣Ai∣ from 2 to 10 for ∣Θi∣ from 2 to 8, ∣∆∣ = 5.
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Figure 5.13: Average execution time (s) to find one Π-MNE in a Π-game, fixing ∣Ai∣ = 2,
varying n from 2 to 7 for ∣Θi∣ from 2 to 10 from 2 to 4 , ∣∆∣ = 5.
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Figure 5.14: Average execution time (s) to find one Π-MNE in a Π-game, fixing ∣Ai∣ = 2,
varying ∣Θi∣ from 2 to 10 for n from 2 to 4, ∣∆∣ = 5.

97



2 3 4 5 6 7 8 9 10
0.0

2.5

5.0

7.5

Ti
m

e 
(s

)

CovariantGame

2 3 4 5 6 7 8 9 10
0

2

4
DispersionGame

2 3 4 5 6 7 8 9 10
0

1

2

3

MajorityVoting

2 3 4 5 6 7 8 9 10
#Actions

0

5

10

Ti
m

e 
(s

)

MinimumEffortGame

2 3 4 5 6 7 8 9 10
#Actions

0

2

4
RandomGame

2 3 4 5 6 7 8 9 10
#Actions

0

1

2

3
TravelersDilemma

#Players
2
3
4

Figure 5.15: Average execution time (s) to find one Π-MNE in a Π-game, fixing ∣Θi∣ = 2,
varying ∣Ai∣ from 2 to 10 for n from 2 to 4, ∣∆∣ = 5.
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Figure 5.16: Average execution time (s) to find one Π-MNE in a Π-game, fixing ∣Θi∣ = 2,
varying n from 2 to 7 for ∣Ai∣ from 2 to 4, ∣∆∣ = 5.

Globally, the results show that for the 6 games: covariant game, dispersion game,
majority voting game, minimum effort game, random game and travelers dilemma
game, Algorithm 5.2 can return the least specific Π-MNE in a reasonable time (less
than 0.4 seconds when the number of players is equal to 2 and the number of actions
and types are equal to 10). We find that the number of players in a Π-game is the
“main” parameter that influences the average execution time needed to find a Π-MNE.
As an example, in Figure 5.16, if the number of actions per player is equal to 4 and
the number of types per player is equal to 2, the average execution time needed to
find the least specific Π-MNE in a Covariant game with 5 players is equal to 0.8 s.
However, when the number of players is equal to 6 (resp., 7) the average execution
time is equal to 2.4 s (resp., 16.8 s).

The results empirically validate the theoretical part since Algorithm 5.2 requires at
least ∣N ∣2 × ∣Θmax∣ × ∣∆∣ × ∣A∣ = 62 × 2 × 5 × 36 iterations if the number of players is

98



equal to 6 whereas it requires 72 × 2× 5× 37 iterations if the number of players is equal
to 7. Therefore, the execution time needed to find a Π-MNE in a 7-player Π-games
is almost at least equal to 72×2×5×37

62×2×5×36 ≃ 4.1 of the time needed to find a Π-MNE in a
7-player Π-games.

5.6 Conclusion

This chapter focused on solving possibilistic games with incomplete information. It
proposes polynomial times algorithms to build a secure strategy and a possibilistic
mixed Nash equilibrium. In addition it proposes a MILP formulation to solve the
problem of finding a PNE in a Π-game if it exists. The experimental study we led
shows that, if the number of actions or types per player increases, the average exe-
cution time needed to find one PNE, Π-MNE or a secure strategy increases roughly
linearly. However, if the number of players grows, the average execution time increases
exponentially. This is observable for all game classes. All the experiments empirically
confirm the theoretical results of this paper. Indeed, if the number of actions or types
per player increases, the number of total strategies grows only polynomially. How-
ever, if the number of players increases, the number of strategies grows exponentially
(n ⋅ (∣Θ∣ ⋅ ∣A∣)n).

The normal form representation of an incomplete information game with n players, t
types and d actions per player is very costly (n utility functions of size tn.dn and a
distribution over Θ, i.e., of size tn) even when the problem involves local interactions
only. In order to efficiently represent Π-games with local interactions, we propose in the
next chapter, a less costly view of Π-games, namely min-based polymatrix Π-games.
This framework allows, for instance, the compact representation of coordination games
under uncertainty where the satisfaction of an agent is high if and only if her strategy
is coherent with all of her neighbors, the game being possibly only incompletely known
to the agents.

Proofs

Proof of proposition 5.1.
Under the assumption that π is represented by a table of ∣Θ∣ lines, the complexity of com-
puting {µ̄i(σi(θi), θ)} is in O(∣A−i∣). Therefore complexity of computing {ūsecurei (σi(θi), θi)}
is in O(∣Θ−i∣ × ∣A−i∣). Thus, the whole complexity of Algorithm 5.1 is polynomial O(∣Θ−i∣ ×
∣A−i∣ × ∣Ai∣)=O(∣Θ−i∣ × ∣A∣).
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Proof of Proposition 5.2.

υ′ ⪯ υ ⇔ υ′i(θi) ⪯ υi(θi),∀i ∈ N,∀θi ∈ Θi,

⇔ υ′i(ai∣θi) ≤ υi(ai∣θi),∀i ∈ N,∀θi ∈ Θi,∀ai ∈ Ai,

⇒ min
i∈N

υ′i(ai∣θi) ≤ min
i∈N

υi(ai∣θi),∀i ∈ N,∀θi ∈ Θi,∀ai ∈ Ai,

⇔ υ′(a∣θ) ≤ υ(a∣θ),∀a ∈ A,∀θ ∈ Θ,

⇔ 1 − υ′(a∣θ) ≥ 1 − υ(a∣θ),∀a ∈ A,∀θ ∈ Θ,

⇒ min
a∈A

max (1 − υ′(a∣θ), µi(a, θ)) ≥ min
a∈A

max (1 − υ(a∣θ), µi(a, θ)),∀a ∈ A,∀θ ∈ Θ,

⇔ Upesi (υ
′, θi) ≥ Upesi (υ, θi),∀i ∈ N,∀θi ∈ Θi Using Equation (4.16).

Proof of proposition 5.3.
Under the assumption that π is represented by a table of ∣Θ∣ lines, the complexity of com-
puting {Upesi (ai, υ−i, θi)} ∀i ∈ N,∀ai ∈ Ai,∀θi ∈ Θi is in O(∣A−i∣ × ∣Θ−i∣) and the complexity
of computing Upesi (υ, θi) is in O(∣Ai∣ × ∣A−i∣ × ∣Θ−i∣) = O(∣A∣ × ∣Θ−i∣).

Thus the whole complexity of Algorithm 5.3 is polynomial in the size of the Π-game:
O(∣Amax∣ × ∣A∣ × ∣Θ−i∣) where ∣Amax∣ = max(∣A1∣, ..., ∣Ai∣, ..., ∣An∣).

Proof of Proposition 5.4.
Given the definition of the Improve function (Algorithm 5.3), one can prove the following
results:

Lemma 5.1 (Improvement function). Let G = ⟨N,A,Θ, π, µ⟩ be a Π-game. Let υ be a joint
mixed strategy and (i ∈ N, θi ∈ Θi) be the player i of type θi. Then, the following facts hold:

1. Improve(G,υ, i, θi) is a normalized joint mixed strategy.

2. Improve(G,υ, i, θi) ⪯ υ.

3. if Improve(G,υ, i, θi) ≺ υ, then Upesi (Improve(G,υ, i, θi), θi) > Upesi (υ, θi).

4. ∀υ′′ such that Improve(G,υ, i, θi) ≺ υ′′ ⪯ υ, we have:

Upesi (υ
′′, θi) = Upesi (υ, θi) < U

pes
i (Improve(G,υ, i, θi), θi)

5. if υ′ = Improve(G,υ, i, θi), then, ∀j ∈ N,∀θj ∈ Θj :

• Upesj (aj , υ′−j , θj) ≥ U
pes
j (aj , υ−j , θj), ∀aj ∈ Aj ;

• Upesj (υ′, θj) ≥ U
pes
j (υ, θj).

Proof of Lemma 5.1.
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1. Improve(G,υ, i, θi) only changes (potentially) υi(θi). And when it does, we have
taken the caution that the corresponding υ′i(θi) remains normalized.

2. the only potential change in υ′ =Improve(G,π, i, θi) occurs when:
υ′i(ai∣θi)←min (υi(ai∣θi), n(Upesi (υ, θi))−).
Then: υ′i(ai∣θi) ≤ υi(ai∣θi).
So: υ′i ≤ υ and since ∀j ≠ i, υ′j = υ′i we have ⇔ υ′ ⪯ υ.

3. let υ′ = Improve(G,υ, i, θi). Since υ′ ≺ υ, we have:

(i) UEx−Posti (υ, θi) ≤ 1;

(ii) A∗
i,θ ≠ ∅;

(iii) ∀ai ∈ A∗
i,θ, υ

′
i(ai∣θi) = n(UEx−Posti (υ, θi))− then 1 − υ′i(ai∣θi) > UEx−Posti (υ, θi).

Thus:

• ∀ai ∈ A∗
i,θ: max(1 − υ′i(ai∣θi), U

pes
i (ai, υ−i, θi)) ≥ max(1 − υi(ai∣θi), Upesi (υ, θi))

So: max(1 − υ′i(ai∣θi), U
pes
i (ai, υ−i, θi)) > U

pes
i (υ, θi)

• ∀ai ∈ Ai ∖A∗
i,θi

: Upesi (ai, υ−i, θi) ≤ U
pes
i (υ, θi)

So, max(1 − υ′i(ai∣θi), U
pes
i (ai, υ−i, θi)) ≥ U

pes
i (υ, θi)

In conclusion, ∀ai ∈ Ai: max(1 − υ′i(ai∣θi), U
pes
i (ai, υ−i, θi)) ≥ U

pes
i (υ, θi).

So, Upesi (υ
′(θi).υ−i, θi) = min

ai∈Ai
max(1 − υ′i(ai∣θi), U

pes
i (ai, υ−i, θi)) > U

pes
i (υ, θi).

The “else” part is trivial since υ′ ⪯ υ and υ′ /≺ υ then υ′ = υ.

4. let υ′ = Improve(G,υ, i, θi) then υ′ ≺ υ′′ ⪯ υ implies:

(i) ∀ai ∈ Ai ∖A∗
i,θi

: υ′′i (ai∣θi) = υ′i(ai∣θi) = υi(ai∣θi);

(ii) ∀ai ∈ A∗
i,θ: υ′i(ai∣θi) = n(U

pes
i (υ, θi))− < υ′i(ai∣θi);

(iii) ∃a∗i ∈ A∗
i,θi

s.t, υ′i(a∗i ∣θi) < υ′′i (a∗i ∣θi) ≤ υi(a∗i ∣θi).

Thus, 1 − υ′i(ai∣θi) < U
pes
i (υ, θi)+ and, 1 − υ′i(ai∣θi) ≤ U

pes
i (υ, θi).

Since, ∀ai ∈ A∗
i,θi
, Upesi (ai, υ−i, θi) ≤ U

pes
i (υ, θi)

Then, ∀ai ∈ A∗
i,θi
,max(1 − υ′′i (ai∣θi), U

pes
i (ai, υ−i, θi)) ≤ U

pes
i (υ, θi)

min
ai∈A∗i,θi

max(1 − υ′′i (ai∣θi), U
pes
i (ai, υ−i, θi)) = U

pes
i (υ, θi)

Thus, Upesi (υ′′, θi) = U
pes
i (υ, θi) and since Upesi (υ′, θi) > U

pes
i (υ, θi)

Then, Upesi (υ′′, θi) = U
pes
i (υ, θi) < U

pes
i (υ′, θi).

5. • we have:

Upesj (aj , υ
′
−j , θj) = min

θ−j∈Θ−j ,a−j∈A−j

max(1 − π(θ−j ∣θj),1 − υ′−j(a−j ∣θ−j), µi(ai.a−j , θj .θ−j))
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and since, υ′ ≺ υ then, υ′−j ≺ υ−j :

Upesj (aj , υ
′
−j , θj) ≥ min

θ−j∈Θ−j ,a−j∈A−j

max(1 − π(θ−j ∣θj),1 − υ−j(a−j ∣θ−j), µi(ai.a−j , θj .θ−j))

Upesj (aj , υ
′
−j , θj) ≥U

pes
j (aj , υ

′
−j , θj)

• we have: Upesi (υ′, θi) = min
ai∈Ai

max(1 − υ′i(ai∣θi), U
pes
i (ai, υ′−i, θi))

then: Upesi (υ′, θi) ≥ min
ai∈A∗i,θi

max(1 − υ′i(ai∣θi), U
pes
i (ai, υ′−i, θi))

since: ∀ai ∈ A∗
i,θi

, υ′i(ai∣θi) < υi(ai∣θi)

thus: Upesi (υ′, θi) ≥ min
ai∈A∗i,θi

max(1 − υi(ai∣θi), Upesi (ai, υ−i, θi))

then: Upesi (υ′, θi) ≥ min
ai∈Ai

max(1 − υi(ai∣θi), Upesi (ai, υ−i, θi))
Upesi (υ′, θi) ≥ U

pes
i (υ, θi).

Properties 1, 2 and 3 show that Improve(G,π, i, θi) is at least as specific as υ and strictly
improves the utility of player i of type θi or leaves υ unchanged. Property 4 shows that
Improve(G,π, i, θi) is the least specific improvement of υ to player i of type θi, when it
changes υ. Property 5 shows that Improve(G,π, i, θi) does not decrease the utilities of
other players than i of type θi.

Let us note that the outer loop of Algorithm 5.2 requires n × ∣Θmax∣ calls to the function
Improve per iteration. Then, note that by Lemma 5.1, property 3, υ′ =Improve(G,υ, i, θi)
is either more specific than υ, or equal to υ and that υ′ can only differ from υ in its component
υ′i(θi). Finally, note that the number of possible strict improvements of the mixed strategy
υi(θi) ∶ Ai →∆ of a player i of type θi is upper bounded by ∣∆∣× ∣Ai∣: for each improvement,
one of the ∣Ai∣ coordinates of the mixed strategy is decreased, and each coordinate belongs
to ∆.

Therefore, Algorithm 5.2 converges after at most n×∣Θmax∣×∣∆∣×∣Amax∣ calls to the Improve
procedure, which itself takes time polynomial in the size of the expression of G.

Thus, the complexity of Algorithm 5.2 is O(∣N ∣× ∣Θmax∣× ∣∆∣× ∣Amax∣× ∣Amax∣× ∣A∣× ∣N ∣) =
O(∣N ∣2 × ∣Θmax∣ × ∣∆∣ × ∣Amax∣2 × ∣A∣) where ∣Amax∣ = max(∣A1∣, ..., ∣Ai∣, ..., ∣An∣) and ∣Θmax∣ =
max(∣Θ1∣, ..., ∣Θi∣, ..., ∣Θn∣).

Proof of proposition 5.5.
Since υ∗ has been obtained after convergence of Algorithm 5.2, it verifies: υ∗ =
Improve(G,υ, i, θi),∀i ∈ N,∀θi ∈ Θi. This implies that ∀i ∈ N,∀θi ∈ Θi,∀υi(θi),

Upesi (υ∗, θi) ≥ U
pes
i (υi(θi).υ∗−i, θi), that is, υ∗ is possibilistic mixed Nash equilibrium.
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Chapter 6
Ordinal Polymatrix Games with
Incomplete Information

6.1 Introduction

In the present chapter, we study Π-games where the interactions between players
are pairwise and the utility of a player depends on her neighborhood and not on all
others players in the Π-game. We define the new framework of min-based polymatrix
Π-games, which allows us to concisely specify Π-games with local interactions. This
framework allows, for instance, the compact representation of coordination games
under possibilistic uncertainty.

In the following, Section 6.2 defines the general representation framework that we
propose: min-based polymatrix Π-games, and applies it to the coordination game
example. Section 6.3 shows that any 2-player Π-game can be transformed into an
equivalent min-based polymatrix game. This result is the qualitative counterpart of
Howson and Rosenthals’s theorem (Howson et al., 1974) linking 2-player Bayesian
games to polymatrix games. Furthermore, as soon as a simple condition on the co-
herence of the players’ knowledge about the world is satisfied, any polymatrix Π-game
can be transformed in polynomial time into an equivalent min-based and complete
information polymatrix game. Finally, Section 6.4 proposes a MILP formulation of
the problem of deciding whether a polymatrix Π-game admits a PNE. Experimental
results are reported in Section 6.5. All proofs are in the end of this chapter.

The main results of this chapter are published in (Ben Amor et al., 2020a) and
(Ben Amor et al., 2020b).
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6.2 Polymatrix Π-games

The normal form representation of an incomplete information game with n players,
t types and d actions per player is very costly (n utility functions of size tn.dn and
distribution over Θ, i.e., of size tn) even when the problem involves local interactions
only. In example 4.1, when the type vector is fixed, the satisfaction of one player is the
minimum of what this player gets in a series of two-player games like the one presented
in Table 2.1. To efficiently represent such games, we now define polymatrix Π-games
as min-based polymatrix games where each local game is a Π-game. Such a game can
be much more compact than the equivalent SNF Π-game.

Definition 6.1 (Polymatrix Π-game).
A polymatrix Π-game is a tuple G = ⟨N,E,A,Θ, µ, π⟩ where:

• N = {1, . . . , n} is the set of n players;

• E is a set of pairs of distinct players of N ;

• A = ×i∈NAi, where Ai is the set of actions of player i;

• Θ = ×i∈NΘi, where Θi is the set of types of player i;

• µ = {(µi,j, µj,i),{i, j} ∈ E}, a set of pairs of utility functions on Ai ×Aj ×Θi ×Θj

taking their values in ∆;

• π = {πi,j ∶ θi × θj ↦∆,{i, j} ∈ E} a set of pairwise possibility distributions on the
Θi ×Θj product sets.

In other terms, a polymatrix Π-game is a polymatrix game where each local game is
a Π-game ⟨{i, j},Ai ×Aj,Θi ×Θj, πi,j,{µi,j, µj,i}⟩.

The condition of “common knowledge” is less natural in the present context of a series
of local games than in SNF Π-games – here, we assume that the knowledge of each
local Π-game is common to the two players involved in, but not to the full community
of players. Each player is “myopic” and her knowledge is restricted to what she knows
about her neighborhood. The knowledge of player i about the configurations of types
of the global incomplete information game is:

πi(θ) = min
j∈N,{i,j}∈E

πi,j(θi.θj). (6.1)

We thus replace the condition of “common knowledge” by a condition of “coherent
knowledge”: there should be a π on Θ from which the πi,j’s derive:
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Assumption 6.1. ∃π ∶ Θ↦∆ such that:

∀i, j ∈ E, πi,j(θi.θj) = max
θ−{i,j}

π(θi.θj.θ−{i,j}). (6.2)

π is unknown, but one knows that πi,j(θi.θj) = maxθ−{i,j} π(θi.θj.θ−{i,j}).

Let us now study the global utility functions of the players. Each joint type θ ∈ Θ
defines a min-based polymatrix game. The global utility of player i for the joint action
a when the configuration of types is θ is thus:

Definition 6.2 (Global utility in a polymatrix Π-game). Let G = ⟨N,E,A,Θ, µ, π⟩ be
a polymatrix Π-game. The global utility of player i for the joint action a when the
configuration of types is θ is:

µi(a, θ) = min
j∈N,{i,j}∈E

µi,j(ai.aj, θi.θj). (6.3)

If one considers all the types and the associated distribution, the polymatrix Π-game
(compactly) represents the SNF Π-game ⟨N,A,Θ, π, µ⟩. Then from the definition of
the utility of a joint action/strategy for a player in a Π-game (Definition 4.4) we have:

Definition 6.3 (Utility of a strategy in a polymatrix Π-game). Let G = ⟨N,E,A,Θ, µ, π⟩
be a polymatrix Π-game. The pessimistic utility of player i of type θi for the joint
strategy σ is:

Upes
i (σ, θi) = min

θ−i∈Θ−i
max (1 − π(θ−i∣θi), µi(σ(θi.θ−i), θ)). (6.4)

Definitions 6.1, 6.2 and 6.3 constitute, to the best of our knowledge, the first attempt
to introduce a way to cope with uncertainty in polymatrix games and more generally
in ordinal hypergraphical games.

Notice that in Definition 6.2, we compute, for each player and each type configuration,
the utility of a player in the configuration and then compute the pessimistic utility
of the player. We could have proceeded in the other way: compute the pessimistic
utility in each local game and then aggregate the pessimistic utilities. The theory is
fortunately sound: the two approaches coincide. We can indeed prove that:

Proposition 6.1. The pessimistic utility of player i of type θi for the joint strategy σ
is equal to:

Upes
i (σ, θi) = min

j,{i,j}∈E
min
θj∈Θj

max (1 − πi,j(θj ∣θi), µi,j(σ(θi.θj), θi.θj)) (6.5)
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As far as spatial complexity is concerned, it is easy to show that a polymatrix Π-
game can be exponentially more compact than its standard normal form equivalent.
Consider our running example:

Example 6.1 (Cont. Example 4.1). The SNF Π-game described in Table 4.2 is captured
by the polymatrix Π-game G = ⟨N,E,A,Θ, µ, π⟩ (same players, same actions and same
types) where E is the neighborhood relation of the original game and where the utility
function µi,j of player i (w.r.t. j ∈ N , (i, j) ∈ E) is:

• µi,j(x.y, θi.θj) = βi,x;

• µi,j(y.x, θi.θj) = βi,y;

• µi,j(x.x, ri.θj) = δ;

• µi,j(x.x, ri.θj) = αi,x;

• µi,j(y.y, θi.θj) = αi,y.

This polymatrix game contains 2 ⋅ ∣E∣ possibility distributions of size 2 ⋅ 2, and 2 ⋅ ∣E∣
utility functions of size 2 ⋅ 2 ⋅ 2 ⋅ 2, while the original SNF game involves one possibility
distribution of size 2n and n utility functions of size 2n ⋅ 2n, whatever the connectivity
of the neighborhood graph.

As far as time complexity is concerned, deciding whether a polymatrix Π-game admits
a pure Nash equilibrium is an NP-hard problem because (i) any 2-player Π-game is a
(degenerated) polymatrix game and (ii) deciding whether a 2-player Π-game admits a
pure Nash equilibrium is an NP-complete problem. We show in the following section
that the question is “only” NP-complete for polymatrix Π-games. In other terms, the
possible gain in compactness does not increase complexity.

6.3 From Polymatrix Π-games to Min-based Polymatrix
Games

In the following, we show that any polymatrix Π-game can be transformed into a
min-based polymatrix game, the Nash equilibria of which are in bijection with the
ones of the original game. To this extent, we first show that any 2-player Π-game
can be transformed into an equivalent min-based polymatrix game. This result can
be viewed as a qualitative counterpart of Howson and Rosenthals’s theorem linking
2-player Bayesian games to polymatrix games (Howson et al., 1974).
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6.3.1 Transforming a 2-player Π-game into a Min-based Polymatrix
Game

In section 3.6.2, we have detailed the transformation of a 2-player Bayesian game into
an equivalent polymatrix game. In this section, we follow (Howson et al., 1974) and
propose a qualitative transformation of a 2-player Π-game into an equivalent min-
based polymatrix game (Definition 2.4). The idea is to consider as many players as
the number of pairs {(i, θi)i∈N}, i.e., the number of players is equal to ∣Θ1∣ + ∣Θ2∣. In
fact, each player (i, θi) has Ai as a set of available actions. For each joint strategy
a ∈ A, the utility of player (i, θi) in the game {(i, θi), (j, θj)} ∈ E in the polymatrix
game is equal to the utility of the joint action a ∈ A, to player i of type θi where j is
of type θj.

Definition 6.4 (Polymatrix representation of a 2-player Π-game). Given a 2-player Π-
game G = ⟨N = {1,2},A,Θ, π, µ⟩, G̃ = ⟨Ñ , Ẽ, Ã, µ̃⟩ is the min-based polymatrix game
where:

• Ñ = {(i, θi),∀i ∈ {1,2},∀θi ∈ Θi};

• Ẽ = {{(i, θi), (j, θj)}, i ≠ j};

• Ã(i,θi) = Ai, ∀(i, θi) ∈ Ñ ;

• µ̃(i,θi),(j,θj)(a) = max (1 − π(θj ∣θi), µi(a, θi.θj)),
∀a ∈ Ã,∀i, j ∈ N , s.t., i ≠ j,∀θi ∈ Θi,∀θj ∈ Θj.

Intuitively, each combination of types (θ1.θ2) in G is mapped to an edge
{(1, θ1), (2, θ2)} ∈ E.

Definition 6.5 (Transformation of a pure strategy). Let G = ⟨N,A,Θ, π, µ⟩ be a 2-
player Π-game, G̃ = ⟨Ñ , Ẽ, Ã, µ̃⟩ its min-based polymatrix representation and σ be a
pure strategy in G. We define aσ as the joint action in Ã such that:

aσ(i,θi) = σi(θi)

Based on Definition 2.4, we have:

µ̃(i,θi)(aσ) = min
θj∈Θj

µ̃(i,θi),(j,θj)(aσ(i,θi).a
σ
(j,θj)). (6.6)

We can then show that the utilities of σ in G and aσ in G̃ are equal:

Proposition 6.2. Let G = ⟨N,A,Θ, π, µ⟩ be a 2-player Π-game, G̃ = ⟨Ñ , Ẽ, Ã, µ̃⟩ its
polymatrix representation. It holds that, for any pure strategy σ of G: ∀i ∈ {1,2}, j ≠
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i, (θi.θj) ∈ Θ:

Upes
i (σ, θi) = µ̃(i,θi)(aσ) = min

θj∈Θj
µ̃(i,θi),(j,θj)(aσ(i,θi).a

σ
(j,θj)). (6.7)

Finally, we can show that the PNE are the same in both games:

Proposition 6.3. σ is a PNE in the 2-player Π-game G = ⟨N,A,Θ, π, µ⟩ iff aσ is a
PNE in its polymatrix representation G̃ = ⟨Ñ , Ẽ, Ã, µ̃⟩.

Example 6.2 (Cont. Example 4.1). Given the coordination Π-game detailed in Ta-
ble 6.1.

Player 2
r2 r2

P
l
a
y
e
r

1

r1

x y x y

x 0.9 , 0.9 0.3 , 0.3 x 0.9 , 0.7 0.3 , 0.3
y 0.2 , 0.2 0.7 , 0.8 y 0.2 , 0.2 0.7 , 0.8

π(r1.r2) = 1 π(r1.r2) = 0.1

r1

x y x y

x 0.8 , 0.9 0.3 , 0.3 x 0.8 , 0.7 0.3 , 0.3
y 0.2 , 0.2 0.7 , 0.8 y 0.2 , 0.2 0.7 , 0.8
π(r1.r2) = 0.1 π(r1.r2) = 1

Table 6.1: A coordination Π-game between two players (with two types per player)
where ∆ = {0,0.1,0.2,0.3,0.7,0.8,0.9,1}.

The equivalent polymatrix game G̃ of the two-player coordination Π-game depicted in
Table 6.1 contains four players:
Ñ = {(1, r1), (1, r1), (2, r2), (2, r2)}, all having the same set of actions {x, y}.

Figure 6.1 presents the equivalent polymatrix game G̃. G̃ contains 4 local games (4
edges). The utilities of each player in the equivalent game are detailed in Table 6.2.

1,r1 2,r2

2,r21,r1

G(1,r1),(2,r2)

G(1,r1),(2,r2) G(1,r1),(2,r2)

G(1,r1),(2,r2)

Figure 6.1: The polymatrix game equivalent of the 2-player Π-game depicted in Ta-
ble 4.2.

The joint action aσ = (x.x.x.x) of G̃ corresponds to σx in G. The global utilities of aσ

in G̃ are:
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2, r2

1, r1

x y
x 0.9, 0.9 0.3, 0.3
y 0.2, 0.2 0.8, 0.8

(a) G(1,r1),(2,r2).

2, r2

1, r1

x y
x 0.9, 0.9 0.9, 0.9
y 0.9, 0.9 0.9, 0.9

(b) G(1,r1),(2,r2).
2, r2

1, r1

x y
x 0.9, 0.9 0.9, 0.9
y 0.9, 0.9 0.9, 0.9

(c) G(1,r1),(2,r2).

2, r2

1, r1

x y
x 0.7, 0.7 0.3, 0.3
y 0.2, 0.2 0.8, 0.8

(d) G(1,r1),(2,r2).

Table 6.2: The utility degrees of the min-based polymatrix game of Figure 6.1.

µ(1,r1)(aσ) = min (0.9,max(1 − 0.1,0.9)) = 0.9,
µ(1,r1)(aσ) = min (1 − 0.1,0.7) = 0.7,
µ(2,r2)(aσ) = min (0.9,max(1 − 0.1,0.9)) = 0.9,
µ(2,r2)(aσ) = min (max(1 − 0.1,0.7),0.7) = 0.7.

It can be checked that aσ is a PNE in the equivalent min-based polymatrix game.

Notice that the nodes of the polymatrix game G̃ represent the types in Θ1 ∪Θ2, that
the edges of G̃ correspond to types combinations θ in the Π-game G and that the
graph of G̃ is bipartite. More generally, the transformation of G to G̃ is polynomial:

Proposition 6.4. The transformation of a 2-player Π-game G into an equivalent poly-
matrix representation G̃ is in O(d2 ⋅ t2) where t (resp. d) is the maximal number of
types (resp. actions) per player.

Therefore, the transformation of G into G̃ is polynomial in time and space, contrarily
to the transformation into an SNF game proposed in Chapter 4.

6.3.2 From Polymatrix Π-games to Min-based Polymatrix Games
with Complete Information

When it comes to general polymatrix Π-games, we can show that polymatrix Π-games
are not more expensive than classical (complete information) min-based polymatrix
games. Indeed, recall that for any polymatrix Π-game, we have shown in Proposi-
tion 6.1 that:

Upes
i (σ, θi) = min

j∈N,{i,j}∈E
θj∈Θj

max (1 − πi,j(θj ∣θi), µi,j(σi(θi).σj(θj), θi.θj))
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We now reuse, for every pairs of players, the transformation of the previous Section,
transforming a 2-player Π-game into an equivalent min-based polymatrix game:

Definition 6.6. Given a polymatrix Π-game G = ⟨N,E,A,Θ, µ, π⟩, the min-based poly-
matrix game is G̃ = ⟨Ñ , Ẽ, Ã, Ũ⟩ where:

• Ñ = {(i, θi),∀i ∈ N,∀θi ∈ Θi};

• Ẽ = {((i, θi), (j, θj)), i ≠ j, θi ∈ Θi, θj ∈ Θj};

• Ã(i,θi) = Ai, ∀(i, θi) ∈ Ñ ;

• Ũ(i,θi),(j,θj)(ai.aj) = max (1 − πi,j(θj ∣θi), µi(ai.aj, θi.θj)),
∀(i, j) ∈ E, ∀ai.aj ∈ Ai ×Aj, ∀θi.θj ∈ Θi ×Θj.

Using this definition and Proposition 6.1, it follows that:

Proposition 6.5. Let G be a n-player polymatrix Π-game, G̃ be the corresponding min-
based polymatrix representation, σ be a pure strategy for G and aσ its transformation
according to Definition 6.5. It holds that ∀i ∈ N,∀θi ∈ Θi,

Upes
i (σ, θi) = min

j∈N,{i,j}∈E
θj∈Θj

Ũ(i,θi),(j,θj)(aσ(i,θi).a
σ
(j,θj)). (6.8)

So, the utility of σ in G is equal to the utility of aσ in G̃.

Since the set of pure strategies in G is bijectively related to the action set Ã of G̃, the
following proposition holds:

Proposition 6.6. σ is a PNE in the n-player polymatrix Π-game G = ⟨N,E,A,Θ, µ, π⟩
iff aσ is a PNE in the min-based polymatrix game G̃ = ⟨Ñ , Ẽ, Ã, Ũ⟩.

6.3.3 Complexity

We can show that the size of the transformed min-based polymatrix game G̃ is in
O(∣E∣ ⋅d2 ⋅t2) where t (resp. d) is the maximal number of types (resp. possible actions)
per player: each local Π-game (we have ∣E∣ local Π-games) is transformed using the
transformation described in Section 6.3.1with a complexity in O(d2 ⋅ t2). Hence, the
global computation cost is O(∣E∣⋅d2⋅t2) in time and space. Now, recall that deciding the
existence of a PNE in a 2-player Π-game is an NP-hard problem. Because any Π-game
can be transformed in polytime and space into an equivalent min-based polymatrix
game, we first derive that:

Proposition 6.7. Determining whether there exists a PNE in a min-based polymatrix
game is NP-complete. The result holds even when the graph is bipartite.
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A second consequence is that deciding whether a polymatrix Π-game admits a PNE is
NP-complete (but not harder). The problem is NP-hard because deciding whether a
2-player Π-game admits a PNE is NP-complete and belongs to NP since the previous
transformation allows to solve it through a polytime reduction to a polymatrix min-
based game.

Proposition 6.8. Determining whether there exists a PNE in a polymatrix Π-game is
NP-complete.

Hence, the possible gain in compactness offered by polymatrix Π-games w.r.t. SNF
Π-games comes with no increase in theoretical complexity.

6.4 Finding a Pure Nash Equilibrium in Min-based Poly-
matrix Games: a MILP Formulation

The basic computational problem is the search for an equilibrium in min-based poly-
matrix games since every polymatrix Π-game can be transformed into an equivalent
min-based polymatrix game. Taking advantage of the efficiency of modern solvers, we
propose a Mixed Integer Linear Programming (MILP) formulation of the problem.

• the main decision variables are boolean variables encoding the strategy searched
for: each σi,ai is a boolean variable indicating whether action ai is prescribed for
player i:

∀i ∈ N,∀ai ∈ Ai, σi,ai ∈ {0,1};

• utilities are encoded by continuous variables (we assume ∆ = [0,1]).

– Ui,ai,j is a continuous variable indicating the utility of player i playing action
ai given the strategy of player j:

∀{i, j} ∈ E,∀ai ∈ Ai, Ui,ai,j ∈ [0,1];

– Ui,ai is a continuous variable indicating the utility of player i playing action
ai:

∀i ∈ N,∀ai ∈ Ai, Ui,ai ∈ [0,1].

We will also use the following boolean variables to constrain the Ui,ai to be equal to
the min

j,{i,j}∈E
Ui,ai,j (and not only lower than):

∀i, j ∈ N , s.t., {i, j} ∈ E,∀ai ∈ Ai, Vi,ai,j ∈ {0,1}.
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Hence, the MILP will contain the following constraints:

• ∀i ∈ N ,
∑
ai∈Ai

σi,ai = 1. (6.9)

• ∀i ∈ N,∀ai, a′i ∈ Ai, s.t., ai ≠ a′i,

Ui,ai −Ui,a′i ≥ σi,ai − 1. (6.10)

• ∀i, j ∈ N , s.t., {i, j} ∈ E,∀ai ∈ Ai,

Ui,ai,j = ∑
aj∈Aj

µ(i,j)(ai.aj) × σj,aj . (6.11)

• ∀i, j ∈ N , s.t., {i, j} ∈ E,∀ai ∈ Ai,

Ui,ai ≤ Ui,ai,j. (6.12)

• ∀i, j ∈ N , s.t., {i, j} ∈ E,∀ai ∈ Ai,

Ui,ai + Vi,ai,j ≥ Ui,ai,j. (6.13)

• ∀i ∈ N,∀ai ∈ Ai,
∑

j,{i,j}∈E
(1 − Vi,ai,j) = 1. (6.14)

• constraints (6.9) ensure that the strategy σ searched for specifies exactly one
action ai for each player i;

• constraints (6.10) require that the strategy built (the σi,ai which are set to 1)
is a PNE: when σi,ai = 1, it writes Ui,ai ≥ Ui,a′i , and thus requires that player i
has no incentive to deviate from ai. When action ai is not chosen for player i,
(σi,ai = 0) the constraint is always satisfied (Ui,ai − Ui,a′i is always greater than
−1);

• constraints (6.12), (6.13) and (6.14) implement Equation (2.13). Constraints
(6.12) ensure that the utility of player i playing ai is lower than the minimum of
utilities in local games played with players j ∈ N , i.e., the µ(i,j)(ai.aj);

• constraints (6.13) and (6.14) ensure that Ui,ai is equal to the above minimum.
Whenever Vi,ai,j = 1, Equation (6.13) holds, and Equation (6.14) ensures that
(6.13) is an equality for a single j (minimizing Ui,ai,j).
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Let us denote d the maximal number of actions of any player in the polymatrix game
and b the maximal number of local games in which a player can be involved. The
MILP formulation contains:

• O(n ⋅ d ⋅ b) continuous variables Ui,ai,j;

• O(n ⋅ d) continuous variables Ui,ai ;

• O(n ⋅ d) boolean variables σi,ai ;

• O(n ⋅ d ⋅ b) boolean variables Vi,ai,j;

• O(n) constraints (6.9), each involving O(d) variables;

• O(n ⋅ d2) constraints (6.10), each involving 3 variables;

• O(n ⋅ b ⋅ d) constraints (6.11), each involving O(d) variables;

• O(n ⋅ b ⋅ d) constraints (6.12), each involving 2 variables;

• O(n ⋅ b ⋅ d) constraints (6.13), each involving 3 variables;

• O(n ⋅ d) constraints (6.14), each involving O(b) variables.

The MILP can then be easily encoded in a matrix of size O(n2 ⋅ b ⋅ d2 ⋅ (b + d)).

6.5 Experimental Study
The goal of the first part of the experimental study is to compare the efficiency of
the polymatrix encoding (PE) of 2-player Π-games to the one of the direct encoding
(DE) (proposed in Chapter 5), and beyond, to prove that the resolution of polymatrix
Π-games is not out of reach.

6.5.1 A Generator of a Polymatrix Π-game

To conduct our experimental study, we use the Π-game generator proposed in Sec-
tion 5.5.1 to generate polymatrix Π-games. First, it takes as input the class of the
game, the number of degrees in ∆, the number of players n, the number of types per
player and if necessary, the number of actions per player. Then, for each player, we
affect randomly the set of her neighbors. Finally, for each pair of players i and j such
that {i, j} ∈ E, we generate a Π-game between i and j.

6.5.2 Experimental Protocol

In our experiments, we study the results of the class of coordination games avail-
able on GAMUT: Battle Of The Sexes, Collaboration Game and Minimum Effort
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Game (Vaughan, 2004).

We start by studying the equivalent transformed min-based polymatrix games from 2-
player Π-games. We varied, for each player, the number of types from 2 to 10. Then,
according to the game’s parameters, we varied just for minimum effort games the
number of actions of each player (since in the battle of the sexes games both players
have just 2 actions and collaboration games the number of actions of each player is
equal to the number of players in the game). Then, we fixed the number of degrees ∆
to 5, i.e., ∆ = {0,0.25,0.5,0.75,1}.

The second part of the experiments was dedicated to polymatrix Π-games. We gen-
erated coordination games with different numbers of players. We varied the number
of players from 5 to 80. Then, we generated random interactions between players
(ensuring that the interaction graph was connected). Then, for each edge, i.e., inter-
action, we generated a Π-game between 2 players using the Π-game generator proposed
in (Ben Amor et al., 2019b). We varied the number of types from 2 to 9 and the num-
ber of actions (for minimum effort game) from 2 to 10. Then we computed the average
execution time needed to find a PNE by transforming the original game into its equiv-
alent min-based polymatrix game (using Definition 6.6) and solving the MILP of the
latter. Notice that, the equivalent min-based polymatrix game contains n ⋅ t2 players
where t is the maximal number of types per player.

Furthermore, for each combination of the parameters, we generated 100 different in-
stances and we measured the average time necessary to get a PNE by solving the
MILP proposed in Section 6.4 (we denote this approach DE, for direct encoding) and
by transforming the Π-game into an equivalent min-based polymatrix game and solv-
ing the above MILP of the equivalent polymatrix game proposed in Definition 6.4
(we denote this approach PE, for polymatrix encoding). All experiments were con-
ducted on an Intel Xeon E5540 processor and 64GB RAM workstation. We used
CPLEX (CPLEX, 2009) as a MILP solver.

6.5.3 Experimental Results

6.5.3.1 Direct Encoding vs Polymatrix Encoding

Table 6.3 presents the average of execution times (in seconds) needed by direct encod-
ing and polymatrix encoding to find one PNE, for 3 games classes. In the experiment
reported in Table 6.3, we fixed the number of actions per player to 2, i.e., ∣Ai∣ = 2 and
we varied the number of types ∣Θi∣ from 2 to 10.

Table 6.4 presents the average of execution times (in seconds), to find one PNE in a
minimum effort game (we tested just for minimum effort game since the numbers of
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∣Θi∣ 2 3 4 5 6 7 8 9 10

battle of the sexes 0.12 0.02 0.15 0.03 0.22 0.05 0.22 0.08 0.26 DE
0.02 0.02 0.03 0.02 0.04 0.06 0.06 0.10 0.09 PE

collaboration game 0.12 0.02 0.15 0.04 0.52 0.75 1.33 1.52 2.08 DE
0.02 0.02 0.03 0.03 0.35 0.77 1.12 1.50 1.89 PE

minimum effort game0.12 0.02 0.15 0.02 0.22 0.04 0.22 0.07 0.25 DE
0.02 0.02 0.03 0.02 0.04 0.05 0.05 0.09 0.08 PE

Table 6.3: Average execution time (s) of direct encoding (DE) and polymatrix encoding
(PE), ∣Ai∣ = 2.

∣Ai∣ 2 3 4 5 6 7 8 9 10

∣Θi∣ = 4 0.07 0.08 0.23 0.19 0.19 0.19 0.24 0.26 0.36 DE
0.07 0.07 0.18 0.15 0.18 0.20 0.23 0.23 0.33 PE

∣Θi∣ = 7 0.14 0.16 0.18 0.28 0.33 0.39 0.39 0.53 0.73 DE
0.14 0.14 0.16 0.26 0.28 0.39 0.40 0.51 0.78 PE

∣Θi∣ = 10 0.14 0.28 0.31 0.48 0.51 0.67 0.72 1.11 3.28 DE
0.13 0.26 0.31 0.44 0.51 0.74 0.70 1.16 3.32 PE

Table 6.4: Average execution time (s) of direct encoding (DE) and polymatrix encoding
(PE) for minimum effort game.

players and actions per player in the battle of the sexes (resp. collaboration game)
game is equal to 2). We varied the number of types ∣Θi∣ from 2 to 10 and we varied the
number of actions per player ∣Ai∣ from 2 to 10. We present the results for 3 different
numbers of types (4,7 and 10).

The results show that whether we vary the number of actions or the number of types,
the execution time needed to find a PNE in a 2-player Π-game using direct encoding
is very close to the execution time needed to find a PNE using polymatrix encoding.

6.5.3.2 Pure Nash Equilibrium in Ordinal Polymatrix Games with Incomplete In-
formation

Figure 6.2 presents the average execution time needed to get one PNE in 3 different
game classes: battle of the sexes, collaboration game and minimum effort game. We
fixed the number of actions per player to 2.

Figure 6.3 (resp. 6.4) presents the average execution time needed to find one PNE in
a minimum effort game fixing the number of types per player to 2 (resp. the number
of players to 25).

Globally, MILP results confirm the feasibility of the qualitative approach of min-based
polymatrix games. Furthermore, the results also show that the execution time needed
to solve a polymatrix Π-game increases “reasonably” (less than 20 seconds for any
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Figure 6.2: Average execution time (s) to find one PNE in a polymatrix Π-game, fixing
∣Ai∣ = 2, varying ∣n∣ from 5 to 55 for ∣Θi∣ from 2 to 5 ∣∆∣ = 5.
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Figure 6.3: Average execution time (s) to find one PNE in a polymatrix Π-game, fixing
∣Θi∣ = 2, varying ∣n∣ from 5 to 80 and ∣Ai∣ from 2 to 10, ∣∆∣ = 5.
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Figure 6.4: Average execution time (s) to find one PNE in a polymatrix Π-game, fixing
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configuration) when increasing the number of actions or types of players.

6.6 Conclusion

The main contributions of this chapter are threefold. First, we have defined a new
framework for ordinal games, namely polymatrix Π-games, where local games are
Π-games. Such games can be exponentially more compact than the equivalent SNF
Π-game expression. Second, we have shown that any 2-player Π-game can be trans-
formed into an equivalent min-based polymatrix game, proving a qualitative counter-
part of Howson and Rosenthal’s theorem linking 2-player Bayesian games to polyma-
trix games (Howson et al., 1974). Then we have shown that any polymatrix Π-game
can itself be transformed in polytime into an equivalent min-based polymatrix game.
As a consequence, the potential gain in succinctness comes with no increase in time
complexity.

We have also studied the problem of deciding whether a min-based polymatrix Π-game
admits a pure Nash equilibrium (the problem is NP-complete).

Finally, we have suggested solving the problem through a MILP formulation, taking
advantage of the available state of the art solvers. This allowed us to prove the
feasibility of our approach.

Proofs

Proof of Proposition 6.1.
Note that

Upesi (σ, θi) = min
θ−i∈Θ−i

max (1 − π(θ−i∣θi), µi(σ(θ), θ)).

Now, from Definition 6.2, we have (slightly simplifying notations for readability):

µi(σ(θ), θ) = min
j∈N,{i,j}∈E

µij(σ, θi.θj).

So, we have, for all j ∈ N such that {i, j} ∈ E:

Upesi (σ, θi) ≤ min
θ−i∈Θ−i

max (1 − π(θ−i∣θi), µij(σ, θi.θj)),

≤ min
θj∈Θj

max ( min
θ−ij∈Θ−ij

(1 − π(θ−i∣θi)), µij(σ, θi.θj)),

≤ min
θj∈Θj

max (1 − max
θ−ij∈Θ−ij

π(θ−i∣θi), µij(σ, θi.θj)),

≤ min
θj∈Θj

max (1 − πij(θj ∣θi), µij(σ, θi.θj)).
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Thus,

Upesi (σ, θi) ≤ min
j,{i,j}∈E

min
θj∈Θj

max (1 − πij(θj ∣θi), µij(σ, θi.θj)).

Conversely, let j∗ be such that µi(σ(θ), θ) = µij∗(σ, θi.θj∗). We have,

Upesi (σ, θi) = min
θ−i∈Θ−i

max (1 − π(θ−i∣θi), µij∗(σ, θi.θj∗)),

= min
θj∗∈Θj∗

max ( min
θ−ij∗∈Θ−ij∗

(1 − π(θ−i∣θi)), µij∗(σ, θi.θj∗)),

= min
θj∗∈Θj∗

max (1 − max
θ−ij∗∈Θ−ij∗

π(θ−i∣θi), µij∗(σ, θi.θj∗)),

= min
θj∗∈Θj∗

max (1 − πij∗(θj∗ ∣θi), µij∗(σ, θi.θj∗)).

Thus,

Upesi (σ, θi) ≥ min
j∈N,{i,j}∈E

min
θj∈Θj

max (1 − πij(θj ∣θi), µij(σ, θi.θj)).

Proof of Proposition 6.2.
Let us consider player 1 (the same proof holds for player 2, by symmetry). Using Defini-
tion 4.4, we get:

Upes1 (σ, θ1) = min
θ2∈Θ2

max (1 − π(θ2∣θ1), µ1(σ(θ), θ))

Now, in G̃, we have, by definition of σ = aσ and of the utility of a joint strategy in a min-
based polymatrix game, and the fact that player (i, θi)’s utility is independent of the actions
of players (i, θ′i) for θ′i ≠ θi:

µ̃(1,θ1)(a
σ) = min

θ2∈Θ2
µ̃(1,θ1),(2,θ2)(σ1(θ1), σ2(θ2)),

and, from the definition of µ̃(1,θ1),(2,θ2) in Definition 6.4:

µ̃(1,θ1)(a
σ) = min

θ2∈Θ2
max (1 − π(θ2∣θ1), µ1(σ(θ), θ))

= Upes1 (σ, θ1).

Proof of Proposition 6.3. We have proved in Proposition 6.2 that the utility of any pure
strategy σ in G is equal to the utility of aσ in G̃. In order to prove the equivalence of PNE
in both games, it is enough to prove that the relation σ → aσ forms a bijection between
Σ = Σ1 × Σ2 and Ã. To do so, simply note that (i) the ∣Ã∣ and ∣Σ∣ are equal (to ∣Ã∣ = ∣Σ∣ =
∏i∈N ∣Ai∣∣Θi∣), and (ii) the transformation is injective, i.e., if σi(θi) differs from σ′i(θi) for any
(i, θi), then the pure strategies aσ and aσ′ will differ in their components aσ(i,θi) ≠ a

σ′
(i,θi). As

118



a result, the transformation is bijective, and since utilities of strategies are preserved, Nash
equilibria are identical.

Proof of Proposition 6.4. Let G = ⟨{i, j},Ai × Aj ,Θi × Θj , πi,j ,{µi,j , µj,i}⟩ be a 2-player Π-
game and G̃ = ⟨Ñ , Ẽ, Ã, µ̃⟩ its polymatrix representation. Note that the space and com-
putation times of the transformation are dominated by the computation of the tables
µ̃(i,θi),(j,θj)(a). There are 2 ⋅ ∣Θ1∣ ⋅ ∣Θ2∣ such tables, each of size ∣A1∣ ⋅ ∣A2∣. The computa-
tion of µ̃(i,θi),(j,θj)(a) for a given tuple (θi, θj , ai, aj) is given in Definition 6.4:

µ̃(i,θi),(j,θj)(a) = max (1 − π(θj ∣θi), µi(a, θi.θj)).

This computation takes constant time, so the overall time (and space) complexity is O(d2 ⋅
t2).

Proof of Proposition 6.5. The proof follows immediately from Proposition 6.1 and Defini-
tion 6.6:

Using Equation 6.5, we have

Upesi (σ, θi) = minj∈N,{i,j}∈E
θj∈Θj

max (1 − πi,j(θj ∣θi), µi,j(σi(θi).σj(θj), θi.θj)).

Based on Definition 6.6, Ũ(i,θi),(j,θj)(ai.aj) = max (1 − πi,j(θj ∣θi), µi(ai.aj , θi.θj)). Thus:
Upesi (σ, θi) = minj∈N,{i,j}∈E

θj∈Θj
Ũ(i,θi),(j,θj)(ai.aj).

Proof of Proposition 6.6. The proof is similar to that of Proposition 6.3 and is based on the
bijection between the actions set in G̃ and the pure strategies set in G.

Proof of Proposition 6.7.
Membership: We prove the membership in NP for the more general case of N unbounded.
The PNE can be solved by guessing a strategy a, i.e., guessing an action for each player,
then checking whether a is a PNE or not. More precisely:

• for each player i: compute µi(a) (Using equation (2.13));

• for each action ai ∈ Ai: compute µi(ai.a−i).

Then check if player i has incentive to deviate from ai, i.e., we should compare µi(a) and
µi(ai.a−i).

The complexity of computing µi(a) is in O(∣E∣), from Equation 2.13. Thus the whole
complexity is polynomial O(n × ∣Amax∣ × ∣E∣) where ∣Amax∣ = max(∣A1∣, ..., ∣An∣).

Hardness: Any Π-game can be transformed in polytime and space into an equivalent min-
based polymatrix game
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Conclusion

Possibilistic games with incomplete information (Π-games) constitute a suitable frame-
work for the representation of ordinal decision problems under incomplete knowledge
where the common knowledge of the players is ordinal and can be captured by a joint
possibility distribution over the joint types.

In this thesis, we considered that all players share the same knowledge. For instance,
in the coordination game, every player believes that if she receives an offer, so do her
neighbors; and if she does not receive anything, her neighbors do not either. However,
it may exist some players that have different beliefs: she may believe that she is
the only one that receives an offer. Therefore, the study of possibilistic games with
incomplete information under conditional qualitative knowledge becomes an active
line of research. In this kind of game, every player has her own knowledge given by a
conditional possibility distribution over the other players’ joint types, i.e., each player
i knows πi(θ−i∣θi), ∀θi ∈ Θi and ∀θ−i ∈ Θ−i. We join the idea of (De Clercq et al., 2018)
and we adopt an ex-interim approach.

Along this thesis, especially in Chapter 4, we studied three solution concepts: (i) secure
strategy, (ii) pure Nash equilibrium, and (iii) possibilistic mixed Nash equilibrium. We
plan to continue the picture by extending further solution concepts, e.g., dominance,
and Pareto optimality.

The second part of this thesis introduced “min-based polymatrix Π-games”, which al-
low us to concisely specify Π-games with local pairwise interactions. In this framework,
the utility of a player depends on her neighborhood only. Such games can be expo-
nentially more compact than the equivalent standard normal form Π-games. We have
shown that each polymatrix Π-game can be transformed, in polynomial time, into an
equivalent min-based polymatrix game. The transformation consists of transforming
each local 2-player Π-game into an equivalent min-based polymatrix game. Therefore,
the pure Nash equilibria in both games are in bijection. This transformation repre-
sents a qualitative counterpart of Howson and Rosenthals’s theorem (Howson et al.,
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1974) linking 2-player Bayesian games to polymatrix games.

Then, we have shown that the problem of deciding whether a min-based polymatrix
game admits a pure Nash equilibrium is NP-complete and we have proposed a MILP
formulation of this problem. We shall now develop direct algorithms for computing
a pure Nash equilibrium of min-based polymatrix games with incomplete information
(without transforming the polymatrix Π-game into an equivalent min-based polyma-
trix game) namely a possibilistic version of the constrained PNE algorithm (Simon
and Wojtczak, 2017) or of the Valued Nash Propagation algorithm (Chapman et al.,
2010). We plan also to study possibilistic mixed Nash equilibrium in polymatrix Π-
games and to develop an adaptation of the NashProp algorithm (Ortiz and Kearns,
2002) to the possibilistic framework.

In Chapter 6, we focused on the study of Π-games with pairwise interactions where a
player can be involved in several multiple players subgames. Thus, a straightforward
extension of our work is a generalization to n-player hypergraphical Π-games. To this
extend, we need to generalize the transformation of a 2-player Π-game into a min-based
polymatrix game to a n-player Π-game into a min-based hypergraphical game.

The study of polymatrix games with an uncertainty on the edges represents an inter-
esting line of research as advocated by (Deng et al., 2019). In the qualitative case,
we shall define games where every player does not have complete information about
the set of her neighborhood and her knowledge can be captured by a possibility dis-
tribution over the set of her possible neighbors. In other words, we get a degree of
possibility of existence for each edge. This framework can be applied in coordination
games where every player does not know with which neighbor she coordinates. The
uncertainty about the existence of the edges will affect the pessimistic utilities.
This idea can also be applied to min-based hypergraphical games with uncertainty on
the edges where every player has incomplete knowledge about the groups of players
that she belongs to.

The results of our contributions presented in this thesis encourage us to explore fur-
ther classes of possibilistic games. As long-term perspectives, we consider studying
dynamic possibilistic games. For instance, extending competitive Markov decision pro-
cesses (Filar and Vrieze, 1997), and partially observed stochastic games (Sorin, 2002).
The competitive Markov decision processes extend both Markov Decision Processes
(MDP) (Puterman, 1994) and cardinal games. Partially observed stochastic games
extend both partially observed Markov decision processes (Cassandra et al., 1994) and
cardinal games. Since possibilistic MDP have been introduced by (Sabbadin et al.,
1998, Sabbadin, 2001), it is possible to define possibilistic competitive Markov decision
processes and to develop a possibilistic extension of partially observed games.
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