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Abstract

Snow avalanches are complex natural phenomena whose occurrence is mainly due
to the structure and properties of the snowpack. To better understand the evolution of
these properties over time, it is important to characterize the microstructure of snow,
especially in terms of grains and ice necks that connect them. In this context, the
objective of this thesis is the decomposition of snow samples into individual grains
from 3-D images of snow obtained by X-ray microtomography. We present two de-
composition methods using algorithms of discrete geometry. Based on the results of
these segmentations, some parameters such as the specific surface area and the spe-
cific contact area between grains are then estimated from samples of several snow
types. These segmentation methods offer new outlooks for the characterization of the
microstructure of snow, its properties, and its time evolution.

Keywords: Snow, Metamorphism, Microstructure, Shape decomposition, Digital
geometry
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Résumé

Les avalanches de neige sont des phénomènes naturels complexes dont l’occurrence
s’explique principalement par la structure et les propriétés du manteau neigeux. Afin
de mieux comprendre les évolutions de ces propriétés au cours du temps, il est im-
portant de pouvoir caractériser la microstructure de la neige, notamment en termes
de grains et de ponts de glace les reliant. Dans ce contexte, l’objectif de cette thèse
est la décomposition d’échantillons de neige en grains individuels à partir d’images
3-D de neige obtenues par microtomographie X. Nous présentons ici deux méthodes
de décomposition utilisant des algorithmes de géométrie discrète. Sur la base des ré-
sultats de ces segmentations, certains paramètres, comme la surface spécifique et la
surface spécifique de contact entre grains sont ensuite estimés sur des échantillons de
neiges variées. Ces méthodes de segmentation ouvrent de nouvelles perspectives pour
la caractérisation de la microstructure de la neige, de ses propriétés, ainsi que de leur
évolution au cours du temps.

Mots-clefs:
Neige, Métamorphose, Microstructure, Décomposition de formes, Géométrie dis-

crète
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2

Contexte général

La neige, qui est constituée d’air et d’eau sous ses différentes phases (glace, vapeur

et parfois eau liquide), est un matériau poreux complexe. Depuis sa chute au sol

jusqu’à sa fonte complète, elle ne cesse de se transformer sous l’effet des contraintes

thermodynamiques (températures, humidité) et mécaniques imposées par son envi-

ronnement (Fig. 1.1). Ce processus de transformation, appelé métamorphose affecte

directement les propriétés de la neige à l’échelle macroscopique et c’est d’ailleurs

pour cette raison que les métamorphoses du manteau neigeux sont une des princi-

pales causes d’avalanches (Fig. 1.2). En fait, les propriétés physiques et mécaniques

d’un certain type de neige sont entièrement déterminées par sa microstructure. Il est

donc nécessaire d’étudier l’évolution de la microstructure de la neige au cours des mé-

tamorphoses afin de mieux comprendre et modéliser le comportement macroscopique

du manteau neigeux.

Pour analyser la microstructure de la neige de manière quantitative, le CEN a re-

cours depuis une quinzaine d’année à la tomographie par rayons X, technique adaptée

à l’étude des matériaux et permettant d’obtenir des images tridimensionnelles (3-D) à

haute résolution (1 pixel = 5 à 10 microns) de petits volumes de neige (environ 1 cm3).

Une fois les images obtenues, il est ensuite nécessaire, à l’aide d’algorithmes adap-

tés, d’en extraire les paramètres géométriques et physiques pertinents. L’obtention

d’images 3-D de la microstructure de la neige permet ainsi de proposer, puis de valider

des modèles physiques capables de simuler le comportement de la neige et ses mé-

tamorphoses à micro-échelle, en fonction des conditions appliquées (température et

humidité, notamment) [KP09, BGN12].

Dans ce contexte, la recherche sur la microstructure de la neige au CEN se décom-

pose en deux parties principales :

— Une partie expérimentale, qui vise l’acquisition d’images 3-D de la microstruc-

ture de la neige par tomographie par rayons X pour l’initialisation et la valida-

tion de modèles.

— Une partie théorique et numérique, qui consiste à étudier les mécanismes physiques

impliqués dans les métamorphoses. L’objectif est de préciser les équations

nécessaires pour bien décrire les processus impliqués et qui seront mis en œu-



3

vre dans des modèles numériques 3-D.

La croissance et la décroissance de cristaux de glace dans l’air est un phénomène

important qu’il est nécessaire de simuler finement dans les modèles. Néanmoins, en

raison de sa complexité, il est encore mal compris, et certaines de ces variables (vitesse

de croissance en fonction de la température et de l’orientation cristalline, notamment)

restent difficiles à modéliser. En outre, il y a, au cours des métamorphoses, un fort

couplage entre effets purement thermodynamiques et effets mécaniques (par exemple,

réarrangement des grains de glace sous l’effet de la gravité, ou du poids des couches

supérieures du manteau neigeux -voir Fig. 1.3). Pour résoudre ces problèmes, des

outils d’analyse d’image sont indispensables. Un besoin particulièrement important

consiste en la décomposition de la structure de la glace en grains individuels (voir Fig.

1.4) compatibles avec les besoins de la modélisation physique et/ou mécanique de la

neige.

Dans ce travail de thèse, nous avons donc cherché à développer des algorithmes

capables de segmenter des microstructures de neige en différents grains et d’étiqueter

chaque grain à l’aide d’une couleur unique (voir Fig. 1.5). Pour cela, nous avons

fait appel à des outils de géométrie discrète, domaine qui peut se définir comme un

ensemble de théorèmes et outils algorithmiques traitant des propriétés géométriques

et topologiques d’images numériques et qui vise à modéliser et analyser des objets

continus, ou les phénomènes associés, à l’aide d’un nombre fini de données discrètes.

Organisation du manuscrit

Après la présentation des objectifs de notre thèse, nous introduisons, dans le

chapitre 2, les principales notions nécessaires à la compréhension du travail réalisé.

Nous commençons par les propriétés physiques et mécaniques de la neige, puis nous

nous focalisons sur sa microstructure. Nous présentons notamment les différentes déf-

initions possibles du grain de neige ainsi que les techniques expérimentales permet-

tant d’obtenir des images de la microstructure de la neige. Nous introduisons ensuite

des définitions de base de géométrie algorithmique ainsi que d’analyse géométrique

adaptées à l’étude des images 3-D de neige.

Dans le chapitre 3, nous présentons une méthode de segmentation (CDGS) pilotée
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par la courbure de l’interface air-glace. Nous évaluons ensuite la qualité des segmen-

tations obtenues en les comparant, par exemple, à des mesures physiques (Diffraction

Contrast Tomography, DCT), puis discutons de ses limites.

Dans le chapitre 4, nous proposons un autre algorithme de décomposition en

grains (MADF), qui répond à certains des désavantages de CDGS, puis le comparons

aux méthodes physiques et algorithmes existants (DCT, méthode de watershed clas-

sique et CDGS).

Le chapitre 5 traite des applications de ces méthodes de segmentation à de nom-

breuses microstructures de neige, et s’intéresse à l’estimation de paramètres quantitat-

ifs décrivant la structure des ponts entre les grains (estimation de la surface spécifique

de contact entre les grains, SGCA). Cette partie applicative permet en outre une vali-

dation des méthodes sur une grande diversité d’échantillons.

Enfin, nous concluons et présentons les perspectives de ce travail de thèse dans le

chapitre 6.
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6 Chapter 1. Introduction

1.1 General context

Snow, which is made of air and water (ice, vapor and sometimes liquid water),

is a complex porous material. From its fall on the ground to its complete melting,

snow transforms continuously under the effect of temperature, moisture, thermal and

mechanical stresses. This process, called metamorphism (Fig. 1.1) affects directly the

snow properties at macroscale. For this reason, the main causes of avalanches (see Fig.

1.2) are often related to metamorphic changes in the snowpack. Actually, the physical,

mechanical and thermal behavior of a certain type of snow is entirely determined

by its internal microstructure. It is therefore necessary to study the evolution of the

microstructure during metamorphism to better understand and model the behavior of

the snowpack.

In order to analyze the snow microstructure quantitatively, the CEN has used X-ray

tomography. This technique, which is well-suited to the study of materials, provides

high resolution three-dimensional (3-D) images (1 pixel = 5 to 10 microns) of small

snow volumes (about 1 cm3). Once the images have been obtained, it is then necessary

to extract the relevant geometrical and physical parameters using specific algorithms.

Among several advantages, 3-D images of snow microstructure make it possible to

propose and then validate physical models to simulate the behavior of snow and its

metamorphism at micro-scale, depending on the applied conditions (temperature, hu-

midity, etc.) [KP09, BGN12].

In this context, research on the microstructure of snow at CEN is divided in two

main parts:

— An experimental part, which aims at acquiring 3-D images of snow microstruc-

ture by X-ray tomography for initialization and validation of the models.

— A numerical and theoretical part, which consists in studying the physical mech-

anisms involved in snow metamorphism. The goal is to specify the physical

equations necessary to well describe the involved processes and to implement

them in 3D numerical models.

The growth and decay of ice crystals in air is an important phenomenon which

needs to be finely simulated in the models. Nevertheless, because of its complexity,

it is still poorly understood, and some of its variables (growth rate as a function of
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Precipitation Particles

Decomposed Forms

Faceted Crystals

Rounded Grains

Melt Forms

Depth Hoar

The gradient is greater than about 5 Km−1

In low temperature gradient

In the presence of liquid water

Figure 1.1 – Various types of snow metamorphism.
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Figure 1.2 – A powder snow avalanche.

(a)

(b)

Figure 1.3 – Metamorphism on real data: time evolution of the microstructure obtained
by applying a 3-D model that does not take mechanical effects into account (a); and
from the experimental samples at the same resolution (b). [FBL+

03]
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Figure 1.4 – Snow sample at the microscale. The red circles show the interface between
two grains of snow.

temperature, crystalline orientation, etc.) remain difficult to model. Moreover, meta-

morphism is generally made of a strong coupling between purely thermodynamic

effects and mechanical effects (e.g. rearrangement of grains of ice under the effect of

gravity or the weight of the upper layers of the snowpack - see Fig. 1.3). To solve these

problems, image analysis tools are mandatory. A really important need is the decom-

position of the ice structure into individual grains whose definition is compatible with

the physical and/or mechanical modeling requirements of snow (see Fig. 1.4).

In this thesis work, we developped algorithms to segment snow microstructures

into different grains and to label each grain using a single color (see Fig. 1.5 ). For that

purpose, we used concepts of digital geometry. This discipline, which can be simply

characterised as a set of definitions, theorems and algorithmic tools dealing with the

geometric and topological properties of subsets of digital pictures, aims at modeling

and analysing continuous objects or phenomena with the help of a finite number of

discrete data.
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(a) (b)

Figure 1.5 – Snow grain decomposition: (a) an original snow image, (b) grain decom-
position using the MADF algorithm (see Chapter 4).

1.2 Organization of the manuscript

After the presentation of the objectives of the thesis, we introduce, in Chapter 2,

the basic concepts that were used to address the work. We begin with the physical and

mechanical properties of snow and focus then on its microstructure. In particular, we

present the different possible definitions of a snow grain, as well as the experimental

techniques used to obtain images of snow microstructure. We then introduce some

basic definitions of algorithmic geometry and of geometric analysis adapted to the

study of 3-D snow images.

In Chapter 3, we present a segmentation method (CDGS) based on the curvature of

the ice-pore interface. We then evaluate the quality of the resulting segmentations by

comparison to physical measurements (Diffraction Contrast Tomography, DCT), and

discuss its limitations.

In Chapter 4, we propose another algorithm for grain decomposition (MADF),

which addresses some of the disadvantages of CDGS. We then compare it to existing

physical methods and numerical algorithms (DCT, standard watershed method and

CDGS).

Chapter 5 deals with the application of these segmentation methods to many snow
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microstructures. It focuses on the estimation of quantitative parameters describing the

structure of necks between grains (estimation of specific grain contact area, SGCA). It

also deals with the evaluation of the methods on a large set of various snow samples.

Finally, we conclude and present the perspectives of this thesis in Chapter 6.
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2.1 Snow and snow microstructure

Snow is a porous material which is constituted of air, water vapor, ice and some-

times liquid water. The microstructure of snow is complex since the size, the shape,

and the number of stuctural elements vary widely in natural snowpacks. This complex

microstructure of material evolves continuously with time, which is called snow meta-

morphism (Fig. 1.1). Although the general effects of various types of metamorphism

are roughly well-known, the physical mechanisms that lead to these transformations

are not perfectly well understood. Since the snow microstructure directly influences

several properties of snow at the macroscale, modelling the behaviour of snow mi-

crostructure is necessary for avalanche-risk forecasting, mainly as a means to provide

parameterizations of grain-scale physics into existing or future models at the field

scale.

Currently, no standard method or parameter exists to characterize snow microstruc-

ture. Many of the quantities discussed are volumetric averages and therefore cannot

represent the complex geometric configuration of the air and ice matrix. Recently,

more and more material scientists start to analyse and characterize microstructures in

3D materials using mathematical geometry [OM00].

2.1.1 Physical and mechanical properties of snow

2.1.1.1 Some physical properties of snow

Temperature (Ts) : Because snow contains air (almost 90% of its weight in the case

of fresh snow), it is a good insulator, i.e. a poor conductor of heat. Even at the

external temperature of −15◦C or −20◦C, the temperature near the soil layer

remains around 0◦C, whereas on the snow surface (the boundary layer with the

atmosphere), the temperature can vary widely (generally, from −10◦C to 0◦C).

Density (ρs) : This quantity, expressed in mass per unit volume (kg/m3) is usually

determined by weighing snow of a known volume. Since snow is a mixture of

ice crystals and air, it can have a range of different densities, depending on how

compacted the snow is. Table. 2.1 gives a few characteristic densities, along

with that of water and solid ice for comparison.
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Table 2.1 – Characteristic densities of various snow types
Snow types Density [kg/m3]

Precipitation Particles 10 - 150

Decomposed Forms 80 - 200

Faceted Crystals 200 - 350

Rounded Grains 200 - 500

Melt Forms 200 - 600

Depth Hoar 200 - 450

Ice 800 - 900

Water 1000

Porosity (φ) : is a fundamental parameter of any porous medium. It is defined as

the volume of the pore space divided by the total volume. The porosity φ of a

snowpack is easily calculated from the snow density:

φ =
ρice − ρsnow

ρice
(2.1)

where ρice is the density of ice induding snow and pore space. ρsnow is the

density of snow.

Liquid water content (θw) : is a parameter to estimate the amount of water in

liquid phase within the snow. Liquid water in snow originates from either melt,

rain, or a combination of both. Measurements of this parameter are expressed

as either a volume (θw,V) or mass (θw,m) fraction. Both can be presented as a

percentage (%). Table. 2.2 gives an overview of the characteristic values of

moisture contents depending on the snow types.

Table 2.2 – Snow liquid water contents and their associated characteristics
Type Average water content % Characteristics
dry 0

moist <3 tend to hold together, cohesive
wet 3 - 8 10× expansion - water in pores visible

very wet 8 - 15 water content increases, air content decreases
slush >15 snow is flushed with water, very small air content
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2.1.1.2 Snow mechanics

Snow mechanics strictly deals with the kinematics, dynamics and energetics of

snow in all of its various forms. Kinematics is a branch of classical mechanics that

describes the motion of objects (or materials in this case) without considering the

circumstances leading to that motion, whereas dynamics makes up the other branch

which studies the relationship between the motion of objects and the causes thereof.

Energetics deals with energy flows and storages under transformation.

In terms of rheology (i.e. the study of the flow/deformation behaviour of a sub-

stance), standardized rheological models are generally used to describe the mechanical

behaviour of snow. These models consist of various combinations, either in series, in

parallel, or both of spring and dashpot systems. They are more useful as a qualitative

description of the deformation of snow, but they have limited qualitative value since

the elasticity and viscosity of snow are strongly nonlinear with respect to temperature

and density.

The single most troublesome property of snow is probably its high compressibility,

which causes it to behave very differently from most solids and granular materials

[MRU74]. For example, for bulk stresses below a certain critical value, snow can be

treated as a low compressibility solid, but once this critical value is exceeded, the

snow density increases irreversibly, causing it to have greatly different mechanical

properties [AG75]. Snow Young Modulus, which is a mathematical description of its

tendency to deform elastically (i.e. non-permanently) when a force is applied to it,

varies by at least three orders of magnitude within the range of densities that snow

commonly has [SRUotCoE97]. Another complicating factor is that it is not enough to

characterize the mechanical behaviour of snow only in terms of its original physical

state (density, temperature, etc.) and that of the stress applied to it; it is also necessary

to account for the stress or strain history. In theory, such contingency applies to nearly

all materials, and formal procedures have been developed in rational mechanics to

account for stress or strain histories. These are in practice very difficult, but in the

case of snow are made even worse by the time-dependent structural changes (snow

metamorphism) that occurs independently of stress, like sintering or grain growth.

Finally, another great challenge in snow mechanics is illustrated by the fact that
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all of the great complexities of the rheology of snow, a very limited few aspects of

which have been briefly mentioned above, and which have more comprehensively

been summarized by [MRU74], have come largely out of the investigation in laboratory

testing or in situ observation of dry, coherent snow; whereas no data exist for fluidized

snow (snow whose intergranular bond structure is destroyed, thereby losing its ability

to resist shear). Mechanics is the branch of physics concerned with the behaviour of

physical bodies when subjected to forces or displacements, and the subsequent effect

of the bodies on their environment.

Stress : is a measure of the average amount of force exerted per unit area. Where:

σ =
F
A

(2.2)

σ is the average stress, also called engineering or nominal stress, and F is the

force acting over the area A.

Strain : is the geometrical measure of deformation representing the relative dis-

placement between particles in the material body, i.e. a measure of how much

a given displacement differs locally from a rigid-body displacement.

Young modulus (E) : describes tensile elasticity, or the tendency of an object to

deform along an axis when opposing forces are applied along that axis; it is

defined as the ratio of tensile stress to tensile strain.

Viscosity : is a measure of the resistance of a fluid which is being deformed by

either shear stress or extention stress. In general terms it is the resistance of a

liquid to flow, or its "thickness". Viscosity describes a fluid’s internal resistance

to flow and may be thought of as a measure of fluid friction.

Snow Young modulus varies greatly over the range of densities commonly found

for snow. In general, it increases with increasing density. However, due to the com-

plexities of snow as a substance, the relationship is not uniform, but rather linear for

the lower range of densities, with the linearity breaking down at the higher density

ranges. Also, the linearity of such functions depend on a host of snow conditions, and

also on different testing methods.

In simple terms, this wide ranging Young’s modulus means that for stresses below
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Figure 2.1 – Segmentation with different definitions of snow grain (constructed by Pas-
cal Hagenmuller in technical report "Grain segmentation of snow microtomographic
data", 17 May, 2013).

a certain critical value, a snow pack can be modeled as behaving like certain low-

compressable solids, but as soon as this critical stress value is exceeded, snow deforms

non-elastically and an entirely different modelling approach is necessary.

2.1.2 Snow grains at microscale

The studies of snow microstructure are necessary since the physical and mechani-

cal properties of snow are strongly depending on its microstructure. Further modeling

and computing of snow mechanical simulations requires a precise 3-D description of

snow microstructures in terms of individual grains and bond’s characteristics.

Currently, no standard definition of snow grain exists. In most cases, the con-

cept of snow grain is related to the properties of interest and can be defined as the

smallest elementary particle which is consistent with snow physics and mechanics at

micro-scale. Therefore, several definitions of snow grain can be found in the literature,

associated to the crystalline, optical and mechanical properties, respectively. These

different concepts of snow grains are illustrated in Fig. 2.1.
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Figure 2.2 – Crystallographic structure of hexagonal ice and viscoplastic anisotropy of
the ice crystal [RKP+

11].

2.1.2.1 Crystalline grains

Small rounded grains (RG) are typically monocrystalline [RBRS+12]: it means that

the snow particles are equivalent to single ice crystals (see Fig. 2.2), i.e., connected ice

zones of almost constant c-axis orientation. Generally, if no aggregation phenomena

occurs, a snowflake is also made of a single crystal [Nel01]. The crystalline orientation

is especially important for plastic deformation of snow or kinetic growth processes.

The c-axis orientation can be measured in 2-D with the Automatic Ice Texture Analyzer

[WRHS03] or in 3-D with diffraction contrast tomography (DCT) [LRK+
09]. Crystal

boundaries can also be identified with serial sectioning of cast snow samples because

grain boundaries tend to sublimate faster than the rest of the ice matrix [AGBD98].

2.1.2.2 Optical grains

In order to model the electromagnetic properties of snow (e.g. albedo), "equivalent

spheres" with same volume-to-surface ratio are commonly used in snow microstruc-
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ture. In [War82], a grain is a sphere of radius ropt = 3V/S where V is the volume

of ice and S is the surface area of ice. The optical grains can be determined indi-

rectly through optical measurements [GDZP09, APC+
11] or directly by calculating the

specific surface area from X-ray micro-tomography pictures [FBL+
04].

2.1.2.3 Mechanical grains

The most popular definition of a snow grain is that of an an individual particle that

can be easily detached from the snow sample. It corresponds to a mechanical defini-

tion of a snow grain because the ice structure is disaggregated via a mechanical load.

Mechanical grains are sometimes called “classical” grains [FAD+
09]. The geometrical

characteristics of the individual grains can be estimated manually with a plate that has

a millimeter grid or via automatic analysis of macro-photo images [LPM98]. However,

these analysis intrinsically miss the information around grain bonds that are intercon-

nected. The bond characteristics of grains are considered as important for studying the

microstructure of snow. [Kry75] first tried to detect manually bonds between grains

from the ice surface in snow. Then, the method of 2D sections was improved to detect

bonds automatically [EB95]. The microstructural variables derived from such a grain

segmentation have been used to develop and fit snow metamorphism models, which

are still in use today to forecast avalanches [BFSS01].

2.2 Experimental techniques for snow microstructure imaging

Physical and mechanical properties of snow are essentially determined by its mi-

crostructure, which continuously evolves with time. Several means can be used to

observe snow at microscale. Main techniques to obtain 3-D numerical images of snow

microstructure are introduced below.

2.2.1 Principle of X-ray absorption microtomography

The direct observation of snow at the microscale is difficult. Tomography is an

imaging technique which refers to the description of a section of material within a

3-D solid material and allows viewing, nondestructively, the structure of this mate-



22 Chapter 2. Imaging of snow microstructure and introduction to digital geometry

rial. For this, different types of physical excitation can be used (ultrasonic, electric

or magnetic field (NMR), X-ray and γ-ray...), with different acquisition modes (trans-

mission through a material). The method of transmission electron microscopy, which

has been used so successfully to examine dislocations in other crystalline materials,

has led to little success with ice. It is difficult to prepare the suitable thin samples for

examination. Moreover, once prepared, they sublime quickly within the vacuum of

the microscope. Another method, etch pitting, which has usually been used for other

materials has been also applied on ice. However, the problem of this method is that

it suffers from a questionable relationship between surface pits and bulk dislocations

[JG73, Bak03]. The technique is also sensitive to surface preparation [Sin78, LBD95].

In this study, we use X-ray absorption tomography: when a sample is exposed to

a beam of photons, one part of incident photons is absorbed by the sample, and the

other part is transmitted to the detector, which is opposite to the X-ray source. The

ratio of the incoming intensity on the transmitted intensity depends on the integral,

along the X-ray beam, of absorption coefficients of the crossed phases (in our case,

air, ice or 1-chloronaphtalene). Thus, from measurements of transmitted intensity, the

reconstruction of the spatial distribution of the phases of the object can be performed.

For a more comprehensive approach, one may consult [PGM96]. Note that obtaining

tomographic images is characterized by handling large numbers of data and requires

powerful computer resources in terms of memory and computing time. This largely

explains the relatively recent (late 1990’s) development of this technique for snow.

In practice, the source emitting X-rays, the sample, and the detector measuring the

transmitted X-rays, are aligned. A measurement of the transmitted intensity, visual-

ized in greyscale, is called a radiography (see Fig. 2.8 - (a)). During one tomographic

acquisition, the sample rotates for obtaining a set of radiographies. Reconstruction

algorithms then help, by combining all radiographies, to determine the surface dis-

tribution of the absorption coefficient and provide horizontal cross-section of the an-

alyzed sample that represent this distribution in grayscale (see Fig. 2.8 - (b)). The

various phases composing the object are identifiable, if their absorption coefficients

are sufficiently distinct. A 3D image can then be built from a stack of 2D images.
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2.2.1.1 Interaction of X-rays and material

The X-radiation is a high-energy electromagnetic wave which extends fractions of

a few keV to MeV that can traverse most of materials.

When passing through a given material, the X-ray beam undergoes both an at-

tenuation and phase shift with respect to its propagation in vacuum. The dependent

attenuations and phase shifts undergone by the complex refractive index of n material:

n = 1− δ + iβ (2.3)

where the β determines the attenuation of the wave and the δ, the phase shift suffered

by the wave. Consider a plane monochromatic wave of λ emitted wavelength in the

x direction, and passing through a heterogeneous material whose refractive index is

n(x, y). Transmission function T gives, at point (x1, y1), the form of the transmitted

wave:

T(x1, y1) = A(x1, y1) exp[iφ(x1, y1)] (2.4)

where A(x1, y1) is the amplitude of the transmission function, the ratio between the

amplitude of the transmitted wave and that of the incident wave,

A(x1, y1) = exp[−2π

λ

∫ x1

x0

β(x1, y1) dx] (2.5)

and φ(x1, y1) is phase modulation:

φ(x1, y1) = φ0 −
2π

λ

∫ x1

x0

δ(x1, y1) dx (2.6)

φ0, represents the phase modulation being caused to the wavelength in the absence of

the object.

If the wave attenuation is measured, we refer to absorption tomography. If, we

are interested in its phase, it is called phase tomography. Later, we will focus on the

absorption tomography, by far the most classic and the most used. For a first approach

of phase tomography, we can see for example the thesis of Coindreau.
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2.2.1.2 Absorption Tomography

Tomography absorption consists in measuring the attenuation of X-rays passing

through a given sample. It is based on the use of the Beer-Lambert or attenuation law.

Beer-Lambert Law When a sample is subjected to a photon beam, part of the in-

cident photons is absorbed by the sample, and the other comes to the detector.

The transmittance Tr, equal to the ratio between the number of photons N

transmitted and the number N0 of incident photons is equal to the square of

the amplitudes, which gives, with the notation of equation 2.7:

Tr =
N
N0

=

(
A(x1, y1)

A(x0, y1)

)2

= exp
[
− 4π

λ

∫ x1

x0

β(x, y1) dx
]

(2.7)

The absorbance, denoted Ar, is given by the following formula:

Ar = − ln Tr =
4π

λ

∫ x1

x0

β(x, y1) dx (2.8)

This law, which connects the absorbance path length and properties of the ma-

terial covered is called the Beer-Lambert and can be written as:

Ar =
∫ x1

x0

µ(x, y1) dx (2.9)

where µ, the linear attenuation coefficient is a material property. It is expressed

in (m−1) and is:

µ =
4π

λ
β (2.10)

Linear attenuation coefficient : Four main physical phenomena are at the origin

of the X-ray attenuation in the material [AR68, Bla97]:

— The photoelectric effect: an incident photon is absorbed by an atom. This

atom excited then emits an electron.

— Thomson or elastic scattering reaction: an incident photon is deflected after

a collision with elastic electron.

— Inelastic scattering or Compton effect: an incident photon is deflected after

inelastic collision with an electron. Then changes the photon energy.
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Figure 2.3 – Relative importance of the major interactions between 10 keV and 100

MeV. The lines show the values of Z and hv for which the two neighboring effects are
just equal [Eva55].

— Creating pairs: when the incident photon has an energy greater than about

1 MeV, it may, under the effect of the electrostatic field of an atomic nucleus,

convert into a electron-positron pair. Other productions of pairs are possible

at higher energies.

The intensity of these effects depends on the atomic number Z of the material

and the energy E of the radiation (see Fig. 2.3).

For the energy less than a few tens of keV (in the case of energy used for

imaging of snow), the photoelectric effect is predominant and µ depends on

both the density ρ of the material, Z and E [AR68]:

µ = Kρ
Z4

E3 (2.11)

where K is a constant. Note that at a given energy, µ is proportional to the both ρ

and Z4. This feature of the photoelectric effect makes problematic quantitative

measurements of the chemical composition of materials: a change in Z can
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Figure 2.4 – The principle of tomographic acquisition and the theory of cut projection
(by Fédéric Flin in [Fli04]).

mask a change in ρ, and vice versa. This ambiguity on Z and µ can be lifted by

making images with two different energies.

Principle of data acquisition : The principle of tomographic acquisition comprises

rotating the sample itself and to measure each angle of incidence θ of the beam,

the absorbance Ar(i, θ) (Fig. 2.4).

Once the acquisition is completed, it therefore has a series of integrals of the

form:

Ar(i, θ) =
∫ j1

j0
µ(i, j) dx (2.12)

where (i, j) are the coordinates in the rotating frame (~i,~j) , j0 and j1 respective

abscissas of the points of input and output of the beam in the sample.

Principle of reconstruction : Tomographic reconstruction is a process which, from

the integrals Ar(i, θ) reconstructs the spatial distribution of the absorption coef-

ficient µ in the whole sample. There are two main types of methods [BBM+
00,

KS01]:
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— The analytical methods, for which we seek an expression of µ by reversing

the equation 2.12 by Fourier transforms. This expression is then discretized

to fit the data sampling (Discrete Fourier Transform). They are based on the

theorem backprojection [KS01]:

Definition 2.1 (Fourier Transform). 1-D Fourier transform of a parallel projec-

tion Ar(i, θ) following ~j on the direction ~i, denoted by Âr(I, θ), is equal to the

cutting, in the same direction ~i of the 2-D Fourier transform µ̂(X, Y) of original

function µ(x, y):

µ̂(I cos θ, I sin θ) = Âr(I, θ) (2.13)

By calculating the 1-D Fourier transforms of projections Ar(i, θ) for different

values θ, it is possible to obtain the profiles of µ̂ in different lines of the Plan

(~X, ~Y) (see Fig. 2.4). µ(x, y) is then accessed by inverse Fourier transform. In

practice, we generally utilise a filtered backprojection method, which firstly

consists of filtering the projections Ar(i, θ) in the frequency domain and de-

termine µ(x, y) at any point in the plane by averaging the filtered projections

obtained on all orientations.

Methods based on this principle are widely used because of their rapidity,

but require a complete set of evenly spaced data: acquisition of projections

at an angle of 180◦, check the Nyquist criterion for data sampling.

— Algebric methods, which consist in discretizing the section dealing with N

pixels and then reconstruct the image by resolution of the following linear

system:

~u = M ·~v (2.14)

where ~u is the vector containing Ar(i, θ), a vector ~v represents the N pixels

of the section, and M is the projection matrix.

These methods are numerically longer than the analytical methods but have

the advantage of being more flexible in consideration of the acquisition ge-

ometry (it is possible to include the information which is known a priori, or

obtain results for incomplete data sets).
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2.2.1.3 Microtomography and synchrotron radiation

There are two kinds of X-ray sources:

— source laboratory: electrons are accelerated between a cathode and a metal

anode. The bombardment of the anode by the incident electrons then causes

the emission of photons X.

— source synchrotron: X-rays are produced by accelerated charged particles in a

ring to relativistic velocities [Duk00]

The advantage of sources laboratory is that it is more convenient to use for build-

ing 3-D images of snow. A laboratorial tomography can easily be placed in a cold

room (For example the Swiss Federal Institute for Snow and -avalanche Research SLF,

Davos) and allows to make acquisitions "in vivo" metamorphism of snow. In our

study, snychrotron has been chosen because of the high resolution. Considering the

image quality, synchrotron provide a resolution in a few microns for material tomog-

raphy. It is currently the best possible source of X-ray and is particularly suitable for

microtomography.

2.2.2 Sampling and sample preparation

The preparation of snow sample for X-ray tomography is processed in cold room.

Ice and air provide a good contrast, but the snow is a fragile material, which needs

to be consolidated before handling. The snow sample needs to be soaked with a

substance whose melting point is slightly negative.

2.2.2.1 Sampling

The solvent 1-chloronaphthalene (C10H7Cl, density 1.194, melting point −20◦C

when pure) is selected for impregnation. The impregnation (Fig. 2.5-(a)) leads to

fill the open porosity of the snow. The sample is frozen (Fig. 2.5-(b)) in an iso-octane

bath cooled by dry ice (−80◦C) for solidifying the 1-chloronaphtalene, and then stored

at −22◦C until machining. These operations allows to: (1) consolidate the snow sam-

ple; (2) preserve snow from interactions with air (e.g. sublimation), thereby stoping

the metamorphism; (3) insure a correct contrast between air, ice and solvent for the

X-ray tomographic acquisition.
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(a) Impregnation (b) Freezing

Figure 2.5 – Different steps in the consolidation of the snow sample.

2.2.2.2 Machining

The sample, after impregnating and consolidating, is strong enough to be ma-

chined. This machining process (Fig. 2.6), takes place in the cold room of CEN at

a temperature around −30◦C. Different drills provide the snow cores with different

diameters according to the requirements.

The sample is then welded to the top of a copper sample holder using a drop of

chloronaphthalene. It is then covered with a Plexiglas cap, avoiding ice sublimation.

Each sample was stored at −22◦C until X-ray tomography.

2.2.3 Tomographic acquisition

2.2.3.1 Experimental device

Tomography were launched with X-Act, a software from RX solution [RXs] which

is used at 3S-R laboratory in Grenoble. The X-Act beam line, designed for high-

resolution images allows to obtain 3-D images of an isotropic spatial resolution of a

few microns. During an acquisition (taking on average 2 hours), 1200 radiographies
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(a) (b)

Figure 2.6 – Machining process and the obtained snow sample.

were obtained (in Fig. 2.8). Radiographies have a constant size of 1200 by 1200 pixels

and an adjustable resolution ranging from about 5 to 9 µm, depending on the experi-

mental set-up and the snow type.

A cryogenic cell was developped in CEN to preserve the sample during the ac-

quisitions and also to control the temperature of the snow evolution. The base and

top of the snow sample remained at well defined temperature, with the production of

cold-regulated by two Peltier cells located at the outside ( Fig. 2.9-(2a + 2b)). Peltier

cells are cooled by cold water circulation ( Fig. 2.9-(3)). The cold conduction between

the Peltier cell and the sample is provided by a heat exchanger ( Fig. 2.9-(4)) and a

copper cylinder. A temperature measurement in the two heat exchangers by a probe

is continuously recorded. In the center, the sample consists of a snow cylinder of 1 cm

in diameter and height ( Fig. 2.9-(1)). It is confined in a cylindrical sample holder in

aluminum ( Fig. 2.9-(6)), to ensure good conduction of the temperature at the sides of

the sample. Aluminum conducts a little worse than copper (200 against 380 Wm 1.K

1) but absorbs much less X-rays, thus providing sufficient transmission necessary for
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obtaining tomographic images. During the tomographic acquisition, the cryogenic cell

is fixed on a rotating plateau ( Fig. 2.9-(2)) and operates at temperature surrounding.

To limit the influence of the outside air temperature on snow, and so avoid temper-

atures distortion imposed by the Peltier cell, the sample is isolated by a thickness of

air at very low pressure ( Fig. 2.9-(7)) between the sample holder and a plexiglass

cylinder ( Fig. 2.9-(8)). For this, the volume of air is pumped continuously through

a diaphragm pump and a turbo-molecular pump connected in series ( Fig. 2.9-(9)).

This device allows us to achieve a vacuum of 0.1 Pa in the enclosure. At constant

temperature, the thermal conductivity of the air decreases with pressure as shown in

Fig. 2.10. Thus, this vacuum of 0.1 Pa achieves a conductivity of 0.001 Wm−1 K−1 at

ambient pressure (conduction divided by 28). The pressure value is measured by a

Pirani gauge (Fig. 2.9-(10)) and recorded every minute during the period of use of the

cell. At this stage of cell development, we hypothesized that other phenomena of heat

transfer (like radiation) that could affect our snow sample are negligible compared to

conduction.

2.2.3.2 Reconstruction and analysis

2-D image in grey scale reconstructions are performed from radiographies in Labo-

ratory 3S-R with a software DigiCT [Dig]. The characteristics of synchrotron radiation

produce the reconstructed images in very good quality, although some persist artifacts

(including "ring artifacts" caused by problems of sensitivity of the detectors). Despite

the process of impregnation, it still remains some air bubbles in the medium. These

images obtained after reconstruction have three phases (ice, chloronaphthalene and

air) and some artifacts. The range of gray levels of the different phases are divided as

follows:

— Air: from 0 to 110 average 60

— Ice: from 60 to 160 average 100

— Chloronaphthalene: from 80 to 250 average 180

A simple thresholding is not effective for ranges of gray levels with a large common

area, especially for ice and air. They represent huge amount of data.

For the images shown in the following chapters, we are therefore limited to vol-
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Figure 2.7 – Illustration of one of the cryogenic cell used during tomographic acquisi-
tions ([CFG+

14]).

(a) (b)

Figure 2.8 – Snow image obtained by absorption microtomography: (a) is one of the
1200 radiographies, (b) is one of the horizontal reconstructed slice.
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(2) heat exchanger

(2b) peltier cell

(4) heat exchanger

(5) copper column

(5a)

(5b)

(7) air at low pressure

(8) plexiglass cylinder

(6) aluminium sample holder

(1) snow sample

air pumping
- (9)

(2a)

water circulation
(3)

(10)
pressure gauge

block

Figure 2.9 – The new cryogenic cell scheme.
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Figure 2.10 – Thermal conductivity of air depending on the pressure, when T = 25◦C.

umes of 2563 voxels included in the cylinder of snow. Moreover, the data format,

initially in real (16 bits), has been converted into unsigned integers (8 bit). Values are

between 0 and 255. It is 1.7 GB for each sample.

A method proposed in [LBC+
03] is used for transforming a set of 2-D image in

gray scale into a binary 3-D image consisting of gray level where the voxels of ice to 1,

the others to 0.

The first step consists of a noise reduction by a mean filter 3× 3 (Fig. 2.11). The

details of main steps are presented in the following sections.

Air bubbles detection : At the begining, the areas of air bubbles are detected on

each plane and the average gray level of the pores (chloronaphthalene) should

be assigned. The consequences of the phase shift of x-rays through the sample

are used to mark these air zones. Normally, there is an obvious contrast be-

tween air and chloronaphthalene, an area of high gradient (see Fig. 2.12). The

thresholds "black", "white", "strong gradient", as well as the average value in

chloronaphthalene are determined by examining the histograms on a smoothed

image and the gradient magnitudes obtained with Prewitt filter.



2.2. Experimental techniques for snow microstructure imaging 35

(a) (b) (c)

Figure 2.11 – Smooth the image with a mean filter: (a) histogram of image initial
(parabola - (b)) and image smoothed (parabola - (a)), (b) initial image, (c) smoothed
image.

An automatic procedure creates the three binary images from three thresholds

described above. The logical union of these three images mark the bubbles.

Then a morphological operator closure is utilised for filling allowed holes, in

most cases, the surface of the air zones.

Thresholding : The binary mask obtained above, affected the average gray level

value of chloronaphthalene, is then inserted into the original image. The "speck-

led" noise are eliminated by applying a median morphological filter. This filter,

based on a combination of openings and closures, operates as follows on each

plane:

g = max[min( f , COC( f )), OCO( f )] (2.15)

where f and g indicate respectively the initial image and smoothed image, C

and O are morphological operators of opening and closure.

A 3-D mean filtering (5× 5× 5) is then applied. The image is now ready for

automatic thresholding by method of factorization. This algorithm finds the

threshold value by minimizing the sum of variances of gray levels in the two

regions defined by the threshold. An mean 3-D filter (3× 3× 3) is then applied

on the binary images. The process is shown in Fig.2.13 .

Verification and corrections manually : The similarity of the binary image over-
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(a) (b)

Figure 2.12 – High gradient of gray level around air bubble: (a) air bubble is in black,
ice is in dark region and the chloronaphthalene is in light area, (b) the gradient of gray
level between the segment AB.

(a) (b) (c)

Figure 2.13 – Remove the air bubbles using the binary mask: (a) insert a binary mask
in initial image, (b) remove "specks", (c) smoothed image.
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(a) (b) (c)

Figure 2.14 – Problems after automatic image analysis: (a) initinal image, (b) result
after image processing, (c) manual correction.

laid with the original image to grayscale is inspected visually for each plane.

This examination showed that the image results were corrected about 80− 85%

of the planes. Two types of problems still present on the 20% of the remaining

planes:

— Artifacts: a part of the information is lost when they through an area of ice.

— Air zones contiguous with ice: a part of the air area is merged with the ice

because of the absence of very high gradient between the two phases.

In both cases, A manual corrections is adopted. Fig. 2.14 shows a plane which is

present both types of problems (a), the result of automatic processing (b) and corrected

with corrections marked by arrows (c) picture.

2.2.4 Diffraction Contrast Tomography

In addition to classical absorption tomography, X-ray Diffraction Contrast Tomog-

raphy (DCT) [LRK+
09, RKP+

11] was used for understanding how snow deforms at

the grain scale in a non-destructive way. By combining X-ray diffraction analyses and

absorption tomography, it provides simultaneously: the 3-D geometry of the ice-air

interface; the 3-D mapping of individual grains; and their crystalline orientation.

DCT is a methodology that allows the simultaneous reconstruction of 3-D grain

shapes and orientations. Its experimental apparatus and set-up process are similiar

to those which are used for synchrotron X-ray microtomography. In both cases, a
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Figure 2.15 – The 3-D snow sample obtained by DCT with size 2703 (MF sample).

series of radiographs are formed after placing the sample on a rotate platform and

irradiating by a parallel and monochromatic synchrotron X-ray beam. Each grain will

pass through Bragg diffraction which is first proposed by William Lawrence Bragg

and William Henry Bragg in 1913 [Bra13] alignments multiple times during rotating

to produce diffracted beams. Beams diffracted at small angles will be captured on

the detector that covers an area substantially bigger than sample. Therefore, the size

of X-ray beam cross-section is adjusted to the sample size (using horizontal and ver-

tical slits) to allow the remainning detector area being used for collecting diffraction

spots. In the absence of orientation and stain gradients inside the grains, the diffracted

beam form 2-D spots that can be treated as paralle projections of the diffracting grain

[Klu11]. Then analysis of Friedel pairs [Fri13] of these diffracion spots allows one to

determine the crystallographic orientation and 3-D shape of grains in the sample.

For some particular snow structures (e.g. MF) presented in Fig. 2.15, each geo-

metric grain exhibits a particular crystalline orientation so that the DCT can actually

provide a physically-based shape decomposition of the granular structure.

However, the DCT method may fail in some cases so that interfaces between grains

are sometimes inaccurately located. To improve the image quality, the raw experimen-

tal images have been slightly modified by using the following process:



2.3. Introduction to digital geometry 39

— For each grain, which is identified by a specific label, the connectivity is first

checked. If the grain is constituted of separated volumes, the label of the largest

volume of the grain is conserved, while the remaining parts are set to the label

of the grain that shares the most of the contact surface with this volume.

— The shape of each grain is then tested in order to insure its relative convexity:

all voxels located far from the grains center of mass and whose neighborhood

contains too few voxels of the same label are labeled as belonging to undefined

regions.

— Such undefined regions are then labeled by a region growing algorithm propa-

gating from the grains that have been previously identified.

2.3 Introduction to digital geometry

Digital geometry deals with the geometric properties of subsets of digital pictures

and with the approximation of geometric properties of objects by making use of the

properties of the digital picture subsets that present the objects [KR04, CMC07]. In

this section, we will present some basic concepts and algorithms of digital geometry

which will be used to define the decomposition algorithms later.

2.3.1 Voxels and neighborhood

In digital geometry, an object in 3-D is presented by a set of cubes called voxels.

These voxels centered on the grid Z3, are equivalent to pixels in 2-D. On the discrete

space, the notion "neighborhood" is used to detect whether two voxels are adjacent

or not. In 3-D, 6-, 18-, or 26-neighborhood are introduced considering adjacencies by

faces, edges and vertices (see table 2.3 and Fig. 2.16).

Table 2.3 – Characterization of 3-D adjacences of A(xA, yA, zA) and B(xB, yB, zB)
adjacences characterization

6 |xA − xB|+ |yA − yB|+ |zA − zB| = 1
18 A and B are 26-neighbors and |xA − xB|+ |yA − yB|+ |zA − zB| ≤ 2
23 max(|xA − xB|, |yA − yB|, |zA − zB|) = 1
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(a) 6-neighborhood (b) 18-neighborhood (c) 26-neighborhood

Figure 2.16 – different neighborhoods of the central cube in 3-D.

2.3.2 Euclidean distance transform

In binary images, the Distance Transform (DT) is a classic tool for shape analysis.

It is a derived representation of a digital image. The distance transformation consists

in labeling each point of object X with the distance to the nearest voxel in complement

of X (denoted X).

Usually the transform is qualified with the chosen metric: chamfer masks [RP68,

FM05], the vector displacement-based Euclidean distance [Dan80, CM99] and so on.

The chamfer distance transformation is easy to compute, but it is not a good approxi-

mations of Euclidean distance. From a computational point of view, several methods

lead to time optimal algorithms to compute the error-free Euclidean distance trans-

form for d-dimentional binary images [BGKW95, GM98, MQR03]. In dimension 2,

such approaches lead to efficient two-pass squared Euclidean distance transformation

(SDT for short). The process in 2-D is illustrated in Fig.2.17.

In 2-D case, a binary image P in size n× n. Its complementary is denoted by P, i.e.,

the set of background pixels. For each point (i, j) of P, the squared Euclidean distance

transformation is given by:

h(i, j) = min(i− x)2 + (j− y)2; 0 ≤ x, y < n, (x, y) ∈ P (2.16)

In first step, a one-dimensional eucliean distance map G is obtained according to
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(a)
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12345 1

1 2 3 2 1
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(b)
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1 4 5 2 1 2
14421 1

1 1 1 2 1
1 1 1 2 1

(c)

Figure 2.17 – Process of SDT algorithm: (a) the binary image P, (b) the map G obtained
in first step, (c) the finial SDT map H after the last process along the y-axis.

x-axis:

G = {g(i, j)} = {min
x
{| i− x |; 0 ≤ x < n, (x, j) ∈ P}} (2.17)

In second step, finial distance transform is constructed with a y-axis:

H = {h(i, j)} = {min
y
{g(i, y)2 + (j− y)2; 0 ≤ y < n}} (2.18)

SDT gives a better approximation of real valued Euclidean distance between voxel

centers. The representation of digital image with Euclidean distance transformation

using SDT is illustrated in Fig. 2.18.

2.3.3 Voronoi diagram and Delaunay triangulation

In mathematics, diagrams are defined in metric spaces for countable sets S of "sim-

ple" geometric objects such as points, line segments, polygons, polyhedra, and so on.

One type of diagram divides the metric space into cells such that each element of S is

contained in exactly one cell [BCKO08].

Let S = {p1, ..., pn} be a set of points in the plane R2. The Voronoi cell of pi ∈
S(i = 1, ..., n) is the closure of its zone influence, which is the set of all points in R2

that are closer to pi than to any other point of S (see Fig. 2.19-(a)). The definition of

Vornoi cell is:

Ve(pi) = {q : q ∈ R2 ∧ de(q, pi) ≤ de(q, pj), j = 1, ..., n} (2.19)

Euclidean distance was used in this definition, but Voronoi cells can be defined in any
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(a) (b)

Figure 2.18 – Sphere and a slice of its distance transformation.

other metric space. The sets V(pi) are convex polyhedra with null measure since the

set of points that have the same distance from two points in S forms a hyperplane.

Voronoi cells are (d− k + 1) - dimensional Voronoi facets if closed facets shared by k,

2 ≤ k ≤ d and Voronoi vertices if the points shared by d + 1 or more. Voronoi objects

denotes either a Voronoi cell, facet or vertex. The Voronoi diagram is the collection of

all Voronoi objects.

Definition 2.2 (Voronoi diagram). The Voronoi diagram of S is the union of the frontiers of

the Voronoi cells Ve(pi) (i = 1, ..., n).

If we consider the dual graph of Voronoi diagram, that is the graph such that the

nodes are sites and the edges of the adjacences between cells of the diagram, then we

obtain a triangulation of sites which is called Delaunay triangulation (see Fig. 2.19-

(b)).

In the digital geometry, we have similar definition of Voronoi diagram and Delau-

nay triangulation.
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(a) (b)

Figure 2.19 – Voronoi diagram in R2 (a), and its Delaunay triangulation (b).

Definition 2.3 (Digital Voronoi diagram). P = {pi} is a set of sites in the digital space, the

digital Voronoi diagram is a decomposition of the space into subsets {ci}, such that each point

ci is closer to pi than each pj (j 6= i).

Definition 2.4 (Digital Delaunay triangulation). the digital Delaunay triangulation, is the

dual structure of the digital Voronoi diagram of points {pi}.

An optimized Reversed Euclidean Distance Transformation (REDT) is proposed in

[CM07]. Based on such algorithm, we can compute a digital Voronoi diagram which

is time optimal.

2.3.4 Power diagram

With the wide applications of Voronoi diagram, researchers are aware that many

practical situations are better described by some modification than by the original

diagram [Aur87]. A concept of weighting the given points is provided. For a finite set

M ( Rd, each point p ∈ M has assigned an individual real number w(p), the wight

of p, and the distance of a point x ∈ Rd is measured as a function of d(x, p) and w(p).

Power diagram is concerned with the distance function d(x, p)2 − w(p).

Definition 2.5 (Power diagram). Let S denote a finite set of spheres in Rd. For s ∈ S, the

set cell(s) = {x ∈ Rd|pow(x, s) < pow(x, t), ∀t ∈ S − {s}} is the power cell of s. The
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Figure 2.20 – Power diagram on a set of spheres in 2-D.

collection of all cell is the power diagram of S.

The power of a point x with respect to a sphere s ( Rd with center z and radius

r is defined as pow(x, s) = d(x, z)2 − r2. Thus pow(x, s) < 0 if x lies in the ball s,

pow(x, s) = 0 if x on the boundary of s, and pow(x, s) > 0 otherwise. Fig. 2.20

illustrate the power diagram on a set of spheres in 2-D.

2.3.5 Surface curvature estimation

In mathematics, curvature refers to any of a number of loosely related concepts in

different areas of geometry. Intuitively, curvature is the amount by which a geomet-

ric object deviates from being flat, or straight. Two kinds of curvature exist on 2-D

surfaces embedded in R3: Gaussian curvature and mean curvature. Normally, mean

curvature can be defined by principal curvatures (see Fig. 2.21).

C =
k1 + k2

2
(2.20)

The Gaussian curvature G is often defined as:

G = K1K2 (2.21)
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Figure 2.21 – Principle curvature.

k1 = 1/r1, k2 = 1/r2, where r1 and r2 are the principal radii of curvature of the surface

∑ at point p.

However, these definitions are less suited to express C and G when describing in

numerical surface. There are many methods for computing the mean [BGCF95, Len99]

and Gaussian [BFO07, BGCF95, Boi95] curvature in digital domain. In our work, we

are interested in different curvatures on discrete 3-D surfaces. On a theoretical level,

these measures are important elements of a discrete surface. From a practical point of

view, these measures also have applications in snow physics.

Mean curvature

In our method, mean curvature is computed from the largest relevant neighbor-

hood [WGFC12]. It is defined as the divergence of the normal vector map:

C(p) =
div−→n (p)

2
(2.22)

where point p is on the surface, normal vector field −→n (p) is estimated using

method [FBL+
01].
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(a) (b)

Figure 2.22 – Examples of mean curvature map (by Coeurjolly [Coe02]).

Gaussian curvature

The Gaussian curvature G used in segmentation method is defined as:

G(p) =

φ2
x(φyyφzz − φ2

yz) + φ2
y(φxxφzz − φ2

xz)

+φ2
z(φyyφxx − φ2

xy)

+2φxφy(φxzφyz − φxyφzz)

+2φyφz(φxyφxz − φyzφxx)

+2φxφz(φxyφyz − φxzφyy)

(φ2
x + φ2

y + φ2
z)

2 (2.23)

with φ being the signed distance map DT∗ at point p and the subscripts x, y, z

denoting the partial derivatives along the x, y, z coordinates, respectively. Note that

since we are using an exact Euclidean metric for DT∗, φ and its derivatives are stable

to rotations.
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2.4 Geometric grain analysis in 3-D

The model that simulates the evolution of snow metamorphism is essential for

avalanche risk forecasting. Existing models are usually obtained using grain silhou-

ettes of isolated grains [LPM98] or 2-D thin section analysis [EB91, Goo87, BES94]. In

this section, the numerical tools to characterize the microstructure of snow in order to

help for metamorphism modeling. Theoretically, porous materials such as snow can

be described by their porosity, specific surface area, and curvature.

Porosity (P) : is a ratio of the pore volume to the total volume of snow sample.

The evolution of this ratio link to the packing of snow during metamorphism. It

can be caculated by the equation 2.24 or from the density of snow (see equation

2.1).

P =
∑p∈D f (p)

ND
(2.24)

where p indicates the number of voxels belonging to the pore in object D; ND

is the total voxels of object; and f (p) = 1 for p in the pore, 0 otherwise.

Specific surface area : is a property of solids which is the total surface area of

a material per unit of mass, solid or bulk volume, or cross-sectional area. In

snow, it is defined by the total surface area of the air/ice interface per mass

unity of the considered sample. SSA is an important physical property of snow

that contributes to snow metamorphism. It can be caculated by the equation

2.25

SSA =
SD

ρNDl0
(2.25)

where SD is surface area of snow sample. SD is obtained by summing all the

contributions g(p) in D. Parameter g(p) is a weight for each surface of voxel p

that is computed by equation 2.26. ρ is the ice density and l0 is the size of one

voxel.

g(p) =
1

max(| nx(p) |, | ny(p) |, | nz(p) |) (2.26)
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sur f acein f

sur f acegrain

Figure 2.23 – A model to study the properties of snow microstructure.

where nx(p), ny(p), nz(p) are the projections of~n(p) along the three coordinates

of the voxel grid. Vector ~n(p) is caculated on each surface of voxel p by the

method in [FBL+
01, CFTT03].

Specific grain contact area : is an importantal parameter for characterizing in snow

research. It is defined as the total interface area between each two grains per

unit mass of snow sample.

SGCA =
sur f acein f

masstot
(2.27)

From Fig.2.23, we can notice that the relationship among SSA, SSAtot and

SGCA. Generally, SSA =
sur f acegrain

masstot
and SSAtot =

sur f acetot
masstot

. sur f acetot = sur f acegrain +

sur f acein f . So SGCA can be calculated from:

SGCA = (SSAtot − SSA)/2 (2.28)

Mean and Gaussian curvature : are defined in section 2.3.5. Both are useful in

describing the microstructure of snow. The mean curvature plays a significant

role in interfacial thermodynamics, while Gaussian curvature can be used to

characterize the mechanical properties.



2.5. 3-D Shape Segmentation on snow application 49

2.5 3-D Shape Segmentation on snow application

Currently, there are serveral approaches for shape segmentation problem. Consider

the various types of snow sample, we can categorize them into 3: grains rouned and

spherical; grains convexes and grains with sharp interfaces or complex structures (see

Fig.2.24). For the grains which are rouned or spherical, we can use the morphology

tools such as watershed transform. Watershed method describes a grey-level image

as a topographic relief, where the grey level of a pixel is interpreted as its altitude

in the relief. A drop of water falling on a topographic relief flows along a path to

finally reach a local minimum. Intuitively, the watershed of a relief correspond to the

limits of the adjacent catchment basins of the drops of water (Fig.2.25, [BF93]). For

the convexes grains, the informations of curvatures on the surface are usually used.

However, when applying to snow application, the results are not accurate enough to

meet our requirements because of the structure or size of snow grain. And for the

third category: grains with sharp interfaces or complex structures, there are not a

satisfactory solution. It is necessary to develop a new method which is less sensible to

the structure or size of snow grains.

2.6 Conclusion

Snow transforms with time, depending on the parameters of environment, called

metamorphism. The study of this process is very important in the snow reserch. To

improve the current knowledge of snow metamorphism, realistic simulations of snow

morphological changes with time and comparisons to quantitative measurements of

snow microstructure are mandatory. Furthermore, physical and mechanical properties

of snow are strongly depending on its microstructure. A parameterization of physics

and mechanics of snow in micro-scale is introduced in section 2.1.1.

X-ray tomography as one of imaging technique is chosen for obtaining numerical

3-D snow microstructure images. It is powerful, non-destructive and can allow to build

a high resolution image for our study. Some principle of X-ray microtomography is

introduced in section 2.2.1. Besides the X-ray tomography, DCT is another method we

used for analysis the microstructure of snow. It provides the crystalline orientation
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(a) (b) (c)

(d) (e) (f)

Figure 2.24 – Examples of 3 categories of snow sample in 2-D and 3-D. (a)(d) are
grains rouned and spherical; (b)(e) are convex grains; (c)( f ) are grains with sharp
interface or complex structure.
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Figure 2.25 – Watershed transform.

of each grain. So a physically-based decomposition of snow grain is obtained by

DCT. However, DCT can not work as well as all types of snow structures. In the next

chapter, a novel method is developped for extract the grains in snow microstructure.

Some basic geometric algorithms help to solve the grain segmentation problem. We

describe the definitions in section 2.3. Section 2.4 presents the numerical algorithms

we used to obtaine the geometrical information describing the snow 3-D numerical

images.
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3.1 Context

In this section, we detail the context and practical reasons that led to develop a first

algorithm for grain segmentation of snow microstructure.

As we discussed in chapter 2, the study of microstructure of snow is the fundation

of simulation of snow metamorphism. The snow grains, as the smallest elements that

are consistent with snow physics and mechanics, play a very important role in the

microstructure of snow. Diffraction contrast tomography (in section 2.2.4), which can

exhibit a particular crystalline orientation of each grain allows to segment the snow

sample into individual grains. However, it is only available for some particular types

of snow structures. There are 9 main classes of snow shapes: Precipitation Particles

(PP), Machine Made snow (MM), Decomposing and Fragmented precipitation par-

ticles (DF), Rounded Grains (RG), Faceted Crystals (FC), Depth Hoar (DH), Surface

Hoar (SH), Melt Forms (MF) and Ice Formations (IF) [FAD+
09]. Fig. 3.1 presents 6

types of snow samples we used in our study. They are described with the information

of mean curvatures of surfaces. Each has different physical characteristics and geome-

tries. In Fig. 3.2-(a), we can notice that the mean curvatures on the surface are not

enough to indicate the grains and necks. Development of an efficient numerical tool

to segment the grains from various types of snow shapes is a challenge. In Fig.3.2-(b),

the snow sample is described with the information of Gaussian curvature. We can

notice that the surface of the snow sample can be easily identified into: convex (red)

and concave (green) shapes, which correspond to grain and neck regions, respectively.

In the following, a segmentation method based on this concept is proposed.

This chapter corresponds to an article published in IEEE Computer Society, Inter-

national Conference on Pattern Recognition, 2012.
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(a) PP (b) DF

(c) RG (d) FC

(e) DH (f) MF

Figure 3.1 – 3D visualization of the microtomographic images in different classes of
grain shapes where colors represent the mean curvature of surfaces, such as surface
convex, flat or concave are shown in red, yellow and green, respectively ([CFM+

11],
auxiliary materials).
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3.2 Article: Curvature based grain segmentation method
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Abstract

Many three-dimensional (3-D) image-based studies
concerning granular and sintered materials require a
description of the observed microstructures in terms of
individual grains. We propose a robust segmentation
algorithm which identify groove regions on the object’s
surface in order to locate possible grain boundaries in
the object’s volume. The algorithm relies on the vol-
umetric propagation via Voronoi labeling of curvature
information from the surface into the object1.

1. Introduction

The study of well-sintered granular materials like ce-
ramics, metallic alloys [6] or even deposited snow on
the ground [2] requires a precise description of their 3-D
microstructure in terms of individual grains and bond’s
characteristics. Such a description is a key-point to di-
verse studies like mechanical simulations or analysis of
sintering mechanisms [1]. Commonly used 3-D imag-
ing methods such as Computed Tomography (CT) or
Magnetic Resonance Imaging (MRI) provide precise in-
formation about the geometry of the interface between
the considered phases (e.g. the matrix of a pure mate-
rial and its associated pore space). However, they do not
provide any direct information about the internal struc-
ture of phases, which may consist of several grains. The
purpose of this paper is to propose a grain segmentation
algorithm that can deal with images of highly sintered

1The authors thank the ESRF ID19 beamline where the experi-
mental data have been acquired. This work has been mainly funded by
the SNOW-WHITE ANR-06-BLAN-0396 and DIGITALSNOW ANR-
11-BS02-009 research grants.

grains and to demonstrate its validity by using appro-
priate experimental techniques. In our context, we aim
at decomposing a binary volumetric object into snow
grains defined by specific crystalline orientations. How-
ever, as discussed above, such information cannot be re-
trieved from the CT image and we geometrically char-
acterize grains as smooth structures connected to oth-
ers by grooves and necks. In computer vision or shape
modeling, two main classes of approaches exist to de-
compose a shape into smaller parts: On the one hand,
we can consider shape decomposition algorithms based
on the determination of the medial axis. From the large
bibliography on that subject, we can mention solutions
either from computational geometry [4], or digital ge-
ometry [13]. On the other hand, we can use mathe-
matical morphology operators to segment the input 3-D
volume into grains (see [12] for a survey). In the con-
sidered problem where well-sintered grains are charac-
terized by slight surface variations, surface differential
descriptors such as curvatures are particularly suited to
guide the volumetric segmentation. However, none of
the two frameworks mentioned above provides precise
surface measurements to guide the volumetric segmen-
tation. Another option could be to consider Zhang et
al.’s technique [14], which involves the Gaussian curva-
ture G as a means of separating “parts” from a triangu-
lated object for CAD purposes. However, this method
presents two major drawbacks for its direct application
to snow images. First, the method seems difficult to
adapt to large voxel data sets known presently to “re-
sist” triangulation for reasons of CPU time, memory
and topology. Second, the Zhang et al.’s method sep-
arates typical shapes from a surface, but does not re-
ally provide a volumetric segmentation into individual
grains.

In the present paper, we propose a robust curvature-



based grain segmentation algorithm that solves the pre-
vious drawbacks and can deal with usual 3-D images
obtained by X-ray absorption tomography to provide an
appropriate mapping of the grains. After recalling some
basic definitions, we will present the Curvature-Driven
Grain Segmentation (CDGS) algorithm in details.

2. Preliminaries

In the following, we consider a binary object O as
grid points with value 1 of a mapping from Z3 to {0, 1}.
According to our application, grid points with value 1
are associated with ice material and we aim at decom-
posing O into grains. Let us first define the distance
transformation of O and its Voronoi labeling that will
be used for the volumetric propagation.

Definition 1 For each point p ∈ O, the distance trans-
form value DTO(p) at a point p ∈ O is defined as fol-
lows:

∀q /∈ O, DTO(p) = min[d(p, q)] (1)

where d(x, y) denote the Euclidean distance between p
and q. The Voronoi labeling V (p) at p corresponds to
the point q minimising the distance transformation. I.e.:

∀q /∈ O, VO(p) = argminq[d(p, q)] (2)

In computer imagery, both the distance transform and
the Voronoi labeling have been widely investigated
since decades [7, 3]. From a computational point of
view, if O ⊂ [0, n]3 both transforms can be obtained
in O(n3) for the Euclidean metric without error. With-
out changing the overall complexity, a signed distance
DT ∗(p) can be obtained as followsDT ∗(p) = DTO(p)
if p ∈ O and DT ∗(p) = −DTŌ(p) otherwise.

3. The CDGS Algorithm

The practical aim of this work is to segment a 3-D
numerical image into physically relevant “grains” by
using the sign of the lowest principal curvature kmin

as a criterion. The method can be divided in three main
steps: Separating the voxels of S into two categories,
the groove, neck and crater regions, denoted Sn, where
kmin ≤ 0 and the granular regions, denoted Sp, where
kmin ≥ 0. The second step propagates the created re-
gions on S deep inside the object by using the Voronoi
labeling discussed above to obtain two regions On and
Op (resp. from seeds Sn and Sp), with O = On ∪ Op.
The last step consists in labeling the connected spaces
belonging to Op.

Many techniques have been proposed to estimate
curvatures on either triangular or digital surfaces [9, 14,

(a) (b) (c)

Figure 1. Initial SLPCM map (a), 0-
thresholded SLPCM before (b) and after
(c) noise reduction.

8]. Digital data usually implies specific accuracy issues
since estimators are particularly sensitive to noise and
digitization effects. This is mainly due to the fact that
curvatures are second order estimates obtained on a dis-
crete grid. In our approach, both the mean (C) and
Gaussian (G) curvatures are first computed from the
largest relevant neighborhood, limiting thus their dig-
itization noise. In our process we distinguish the tools
used for the mean and the Gaussian curvature. Indeed,
as discussed below, we need a precise mean curvature
estimation while only the sign of the Gaussian curva-
ture will be used. In the following, we use a variational
approach to define C and G [11]. For short, C can be
defined as the divergence of the normal vector map:

C(p) =
div−→n (p)

2
, (3)

and the Gaussian curvature as the following PDE:

G(p) =

φ2
x(φyyφzz − φ2

yz) + φ2
y(φxxφzz − φ2

xz)

+φ2
z(φyyφxx − φ2

xy)

+2φxφy(φxzφyz − φxyφzz)
+2φyφz(φxyφxz − φyzφxx)
+2φxφz(φxyφyz − φxzφyy)
(φ2

x + φ2
y + φ2

z)
2

(4)
with φ being the signed distance map DT ∗ at p and the
subscripts x, y, z denoting the partial derivatives along
the x, y, z coordinates, respectively. Note that since we
are using an exact Euclidean metric for DT ∗, φ and its
derivatives are stable to rotations. Normal vector field−→n (p) could also have been expressed as partial deriva-
tive expression on φ. However, we use a specific normal
vector estimation as proposed in [5]. Such approach is
based on an adaptive computation of the normal vector
field using volumetric information obtained from DT ∗.
This gives us a precise estimation ofC while decreasing
the sensitivity of this formula to digitization effects. For
G, we simply use Eq. (4) where derivatives are com-
puted on local neighborhood whose size is obtained by



the adaptive analysis computed for C. In our segmen-
tation process, we only consider the absolute value of
the mean curvature with the sign of the lowest principal
curvature, named Sign of Lowest Principal Curvature
Map (SLPCM) (Fig. 1(a)).

To perform our segmentation, we first threshold the
curvature information to identify Sn and Sp sets: all
curvature values above 0 are considered positive while
all values under 0 or equal to 0 are considered nega-
tive. A simple interval thresholding is possible to re-
duce noise in the SLPCM computation (Fig. 1(b)-2(b)).
Once the surface segmentation is performed, we need
to extrapolate this information to the object’s volume.
The positive and negative (Sp and Sn) regions are used
as two seeds for the Voronoi labeling algorithm. At
the end of this step, O is segmented in two distinct re-
gions Op and On (Fig. 2(c)). After separating the ob-
ject’s volume in two regions, we can remove the vox-
els of On as in Fig. 2(d). However, this may cause
an over-segmentation of the object. To solve this prob-
lem, we add balls of positive values at local distance
maxima in DTO. The idea of these balls is to insure
the connectivity between regions that are related to the
same local maxima. The ball’s radius R should be large
enough to insure reconnection inside a same grain and
small enough to prevent reconnection from neighbor-
ing grains. In practice, setting R as proportional to the
value m (in voxel units) of the local distance maxima
M such thatR = m× 40% gives pertinent results. Ba-
sically, the segmentation results are slightly dependent
on this parameter: other values between 30 and 60% are
also suitable. Once the image is properly segmented,
each connected component can be labeled (Fig. 2(f)).
These labels are used as seeds for a new Voronoi la-
beling. They are thus extrapolated to the whole image
and the boundaries of the grains are finally determined
(Fig. 2(g)).

4. Validation

In order to validate the CDGS algorithm, the method
was applied to two kinds of 3-D images: randomly
generated spheres and snow tomographic images (see
Fig 3). For the first class of volumes, we have gen-
erated five sets of N random discrete spheres, whose
radii are uniformly distributed between R1 and R2 with
centers in [0, 300]3 using a rejection sampling algo-
rithm (acceptance-rejection method): The centers of
two spheres can’t be separated by an Euclidean dis-
tance inferior to the radius of the biggest sphere, and
each sphere must be included in the given cubic vol-
ume. In Table 1, the exact centers of the randomly-
generated spheres are compared to the barycenter of the

Table 1. Quantitative results for random
spheres (a) and snow grains (b).

spheres # # # wrong average
N R1 R2 spheres grains grains distance

in voxels
100 20 30 500 500 0 1.59
80 25 35 400 400 0 2.23
60 30 40 200 196 8 4.21
40 35 45 100 98 5 4.12
50 20 80 250 248 4 3.42

(a)
# DCT
grains

# grains # wrong
grains

average dis-
tance in voxels

93 97 4 2.71
(b)

segmented grains found by the CDGS algorithm. If a
sphere is present in the original image but not in the
CDGS segmentation, the sphere is considered as an in-
correctly segmented grain. If a sphere is segmented in
two or more grains, all the concerned grains are con-
sidered as incorrectly segmented. For the correctly seg-
mented grains, the average Euclidean distance between
the original center of the sphere and the barycenter of
the segmented grain is computed. The CDGS algo-
rithm was tested on granular-shaped snow images by
using classical tomography, and also DCT. Thanks to
a specific acquisition setup, this latter method allows
to retrieve the crystalline orientations from diffraction
properties of the material (see [10] for a precise descrip-
tion of this experimental method). Such acquisition is
technically complex but corresponds to a ground-truth
for the proposed segmentation algorithm, which is only
based on the material geometry (see Fig 3(d) and 3(e)
and Table 1). Both experimental evaluations validate
the choices made to set up the segmentation pipeline.

5. Conclusion

We proposed an algorithm that relies on curvature
information to detect the grain and boundary regions
on the object’s surface. This information is propagated
to the object’s volume by computing discrete Voronoi
diagrams, leading, after relabeling, to a realistically-
segmented object. This method, which was checked
on both simulated and real 3-D data, gives pertinent re-
sults and provides new opportunities for the analysis of
3-D structures of well-sintered granular materials. In
our context, the Euclidean distance field was used both



(a) (b) (c) (d) (e) (f) (g)

Figure 2. Summary of the segmentation process in 2-D: Initial object (a), thresholded SLPCM
(b) with Sn and Sp (light and dark blue, respectively), volume extrapolation (On and Op) after
applying the Voronoi algorithm (c), suppression of On (d), adding balls to Op at local maxima
(e), labeling of each connected component (f), final segmentation (g).

(a) (b) (c) (d) (e)

Figure 3. The CDGS method on sets of random spheres (SLPCM (a) and final result (b)), and on
a typical snow image (c). Comparison with ground-truth: DCT (d) and CDGS (e) segmentations.

to efficiently compute surface features (neck detection
based on negative curvature) and to propagate these in-
formation inside the volume. Such pipeline would make
sense in many other applicative area where a volumetric
segmentation is required.
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(a) (b)

Figure 3.2 – 3D visualization of a microtomographic image where colors represent the
mean curvature in (a) and the Gaussian curvature in (b). Convex, flat or concave
surfaces are shown in red, yellow and green, respectively. Images have a size of 2.5×
2.5× 2.5 mm3.

3.3 Conclusion of chapter

In this chapter, we presented a segmentation method using the curvature map of

the surface to decompose the sample into grains. This method consists in the main

following steps (see Fig. 2 of the paper):

— A signed lowest principal curvature map (SLPCM) is calculated on the object’s

surface;

— A threshold is used to determine the positive (no concavities) and negative

regions (presence of concavities along a particular direction) according to the

different types of snow shapes;

— The Voronoi algorithm helps to extrapolate this information into the whole

volume. The object is thus classified into “convex” and “concave” volumic

regions. Then, only “convex” regions are considered for further processing;

— Balls are added at the local maxima to avoid artificial over-segmentations;

— Each connected component is labeled and propagated to the entire object to
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obtain the final segmentation.

Pertinent results are provided by this method. It can be used for most types of

snow samples and is particularly appropriate to recognize boundaries between crys-

talline grains (fine detection of the contact angle). However, this method is highly

sensitive to the surface shape of the object: the noise or the irregular parts on the

surface may influence the segmentation result. The ball addition at local maxima may

also produce some artefacts on the segmentation (under or over-segmentation at the

rough interface between grains). In the following, we present a method which is based

on a volumetric approach and is less sensitive to surface and propagation artefacts.
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(a) (b)

Figure 4.1 – Shape decomposition in presence of surface noise with method CDGS (a)
and MADF (b).

4.1 Context

A more stable and robust approach for separating the snow grains is required.

It could be challenging for the method which uses curvature estimators because the

computation of curvature values closely depends on the information of object surface.

The noise on the surface or irregular interface on the object’s surface usually result in

an over-segmentation (see Fig. 4.1-(a) and Fig. 4.2-(a)).

In order to reduce the influence of initial noise on segmentation, a mathematical

tool, which is based on medial axis of object from a continuous flow, is proposed.

It works considering the whole object and not only the surface. This global concept

is less sensitive to the noise and irregular cases on the surface (see Fig. 4.1-(b) and

Fig. 4.2-(b) ). We apply this tool from continuous to digital domain to decompose the

shape into meaningful components, i.e. "grain" for snow application.

This chapter corresponds to an article submitted to Pattern Recognition Letters.
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4.2 Article: shape decomposition for snow grains
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We propose a fast shape decomposition method for granular microstructures
using a 3-D approach based on medial axis. We define a two-step algorithm:
the first step relies on a notion of digital flow to obtain a preliminary over-de-
composition from medial balls. During a second step, we use geometric criteria
to obtain a relevant and precise volumetric decomposition. We apply our al-
gorithm to 3-D objects of materials and, more precisely, to microtomographic
images of snow microstructures.

c© 2014 Elsevier Ltd. All rights reserved.

1. Introduction1

Shape decomposition is one of the fundamental techniques2

in computer graphics and is widely used in shape processing.3

The goal of decomposition, sometimes called segmentation, is4

to simplify and/or change the representation of an object in or-5

der to make it more meaningful and easy to analyze (Shapiro6

and Stockman, 2001). The principal contribution of this pa-7

per focuses on a fast and efficient shape decomposition method8

which is based on the digital flow. The concept of flow was9

introduced in Dey et al. (2003). With the proposition of a fast10

computation of critical points in digital domain, we obtain a11

framework of method which is optimal in time. Moreover, we12

provide two distinct geometrical criteria to control the quality13

of the decomposition.14

In this paper, we first propose a digital version of the flow15

notion from computational geometry to yield a fast initial de-16

composition of 3-D granular materials into regions (Sect. 4).17

This approach provides a structure on the initial regions which18
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e-mail: xi.wang@meteo.fr (Xi Wang),

david.coeurjolly@liris.cnrs.fr (David Coeurjolly),
frederic.flin@meteo.fr (Frédéric Flin)
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allows us to define a simple filtering algorithm to correct over-19

decomposition effects (Sect. 5). We validate the quality of the20

decomposition on both synthetic data and images of granular21

snow samples (Sect. 6).22

2. Related works23

The main context of this paper is the analysis of granular24

materials from 3-D computed tomographic images. More pre-25

cisely, we focus on a specific granular material, i.e. deposited26

snow on the ground (see Fig. 9), which is observed at the scale27

of its microstructure (1 voxel ∼ 5-20 µm). In this context,28

micro-scale modelling requires a precise 3-D description of29

snow microstructures in terms of individual grains and bond’s30

characteristics (Brzoska et al., 2007). Practically, there are var-31

ious shape types of snow present in the snowpack, like Precip-32

itation Particles (PP), Rounded Grains (RG), Melt Forms (MF)33

and so on (Fierz, 2009). Each class implies different geome-34

try of grains from nearly spherical objects to facetted ones. So35

the challenge is to decompose the 3-D images of these differ-36

ent snow types into grains, which are usually sintered together37

and form complex shapes. Another specific aspect of our con-38

text is that physical analysis of snow micro-structures leads to39

further requirements on the grain-to-grain interfaces: the inter-40

face between two grains should be flat or with minimal curva-41

ture values. We do not use such an information directly in our42
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segmentation approach but we rely on it in our experimental43

evaluation.44

From image processing, several approaches for shape45

decomposition problems consider mathematical morphology46

tools such as watershed transform (Digabel and Lantuejoul,47

1978) or region growing operators (Serra, 1983). In our con-48

text where the input object is a binary volume, the main idea49

of these approaches is to start from a set of markers defined50

by local maxima in the distance transform of the input shape51

(see the works of Soille (1999), and Najman and Talbot (2010)52

for a survey). Then, a propagation process is used to enlarge53

catchment basins of each local minimum to define the overall54

decomposition into non-overlapping regions. Despite several55

improvements (Faessel and Jeulin, 2010), the main drawback56

is that such approaches have difficulties to capture the complex57

shape geometry of snow grains and bonds.58

Surface based techniques can also be considered. The main59

idea is to perform a first decomposition on the 3-D object60

boundary and to propagate such decomposition to the object’s61

interior to finally obtain the volumetric decomposition. If we62

suppose that grains are smooth with rounded shapes, differ-63

ential estimators (mean and Gaussian curvatures) can be used64

to decompose the surface into components with almost con-65

stant curvature values (Zhang et al., 2002). In a previous work66

(Wang et al., 2012), we have developed such decomposition67

tools based on surface curvature information. This method68

identifies groove regions on the surface of object to locate the69

possible separating boundaries in volume. However, all these70

techniques are highly sensitive to the initial surface decomposi-71

tion into groove regions from curvature map. Furthermore, they72

require stable and robust to noise differential curvature estima-73

tors, which could be challenging.74

Another approach consists in decomposing the initial shape75

using volumetric information based on the distance map76

(Svensson and di Baja, 2002) or the medial axis representation77

of a shape (Dey et al., 2003). For the first mentioned approach,78

the idea is close to the watershed approach: we start from lo-79

cal maxima of the distance map and we perform a propaga-80

tion process to construct the regions. A last step is required81

to overcome the over-decomposition induced by the first step82

and uses a heuristic based merging process between adjacent83

regions. Similarly to watershed, the method is highly sensitive84

to the initial local maxima computation and the region inter-85

face quality is poor. From computational geometry, Dey et al.86

(2003) proposed an interesting mathematical tool which con-87

structs a continuous flow from the medial axis representation88

of a shape. In this approach, the object is represented by point89

sets on its boundary and the medial axis is defined as a subset90

of the Voronoi diagram of the input point set (de Berg et al.,91

2008). Another method which is based on curve skeletons was92

proposed by Reniers and Telea (2008a,b). The curve-skeleton93

junctions which signal the interpenetration of parts are detected94

based on the junction rule using a function based geodesic met-95

ric to quantify the relevance of a given curve-skeleton branch.96

These approaches provide very good results on 3-D models and97

CAD shapes. However, when applying them to large micro-98

tomographic images of snow microstructures (high resolution99

objects, high topology genus, noisy curve-skeleton with small100

shortest loops associated to surface), these approaches become101

time consuming and may lead to inconsistent decomposition.102

We propose here a purely volumetric approach which does103

not require to back-project volumetric information (curve-104

skeleton or medial structures) to the object surface to compute105

geometrical information. Our proposal is thus based on simple106

digital volumetric data structures (digital power map and digital107

flow) which can be obtained by very fast algorithms.108

3. Preliminaries109

In this section, we outline the notion of Flow induced by a110

shape (Dey et al., 2003). The original Flow definition is de-111

scribed here in a more general setting by considering general112

shapes which are embedded in d-dimensional Euclidean space113

Rd.114

3.1. Flow in continuous space115

In the following, X denotes a compact subset of d-116

dimensional Euclidean space Rd, ∂X denotes its boundary. The117

definitions can be found in (Dey et al., 2003). Given X ⊂ Rd,118

the distance transform h : Rd → R is defined at each point119

x ∈ Rd such that120

h(x) = in fy∈∂X ‖ y − x ‖2 (1)121

Definition 1 (Anchor set). For all x ∈ Rd, the anchor set A(x)122

of x is given by123

A(x) = argminy∈∂X ‖ y − x ‖2 (2)124

In other words, A(x) is the set of the closest points to x in ∂X.125

Let conv(A(x)) be the convex hull of A(x). In Fig. 1, we illus-126

trate, in dimension 2, several configurations where conv(A(x))127

is a triangle or an edge.128

Definition 2 (Critical and Regular points). A point x ∈ Rd is129

a critical point if x ∈ conv(A(x)). Otherwise, x is regular.130

The flow is defined by using the direction of steepest as-131

cent. First, we set d(x) as driver of x, where d(x) =132

argminy∈conv(A(x)) ‖ y − x ‖2 ∀x ∈ Rd. We then define a vec-133

tor v : Rd → Rd, v(x) =
x−d(x)
‖x−d(x)‖ if x , d(x) and 0 otherwise.134

Definition 3 (Induced Flow). The flow is a function φ :135

[0,∞) × Rd → Rd, the right derivative of which satisfies, at136

each point x ∈ Rd
137

lim
t↓t0

φ(t, x) − φ(t0, x)
t − t0

= v(φ(t0, x)) (3)138

Definition 4 (Stable manifold). The stable manifold S (x) of a139

critical point x is the set of all the points which flow into x.140

S (x) = {y ∈ Rd : lim
t→∞ φ(t, y) = x} (4)141

The stable manifolds of all critical points induce a decom-142

position of the object into disjoint regions (the word stable143

thus refers to locii where the flow gradient is null). It means,144

Rd =
⋃

x S (x) for all critical points x. Furthermore, the decom-145

position is valid since for any two critical points x and y (x , y),146

we have S (x) ∩ S (y) = ∅.147
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x

conv(A(x))

(a)

y

conv(A(y))

(b)

z
conv(A(z))

(c)

Fig. 1. Several configurations to illustrate critical points definition: In (a),
x is such that x ∈ conv(A(x)) (triangle in red) and is thus a critical point.
In (b), y lies in the segment conv(A(y)), y is a critical point too. In (c),
z * conv(A(z)), so z is a regular point.

3.2. Medial Axis and Digital Medial Axis148

The Medial Axis of a shape is a classic method for shape149

analysis. It was first proposed by Blum (1967) in the contin-150

uous plane and can be defined as the set of balls contained in151

X touching at least twice ∂X. Following previous definitions, a152

ball with center x ∈ X and radius r belongs to the medial axis if153

and only if |A(x)| ≥ 2 and ‖y − x‖ = r for any point y ∈ A(x).154

When dealing with digital objects (X ⊂ Zd), an alternative155

definition has been proposed in the digital framework (Pfaltz156

and Rosenfeld, 1967) using a notion of maximal ball:157

Definition 5 (Digital Medial Axis). The Digital Medial Axis158

(MA for short) is defined as the set of maximal balls of X: a159

ball B ⊂ X is maximal in X if there is no ball B
′ ⊂ X such that160

B ⊂ B
′
.161

B(c, r) denotes an Euclidean open ball with center c ∈ X and162

radius r.163

From these definitions, many algorithms have been proposed164

to extract such medial axis structure (Rosenfeld and Pfaltz,165

1966; Borgefors, 1986; Remy and Thiel, 2002; Ragnemalm,166

1993; Saito and Toriwaki, 1994; Remy and Thiel, 2005; Hes-167

selink et al., 2005; Coeurjolly and Montanvert, 2007). In the168

following, we focus on the method of Coeurjolly and Montan-169

vert (2007) which extracts the discrete medial axis of a shape170

X ⊂ [1 . . . n]3 in O(n3) optimal time.171

4. Digital Flow and Flow based decomposition172

Dey et al. (2003) use the stable manifolds to decompose a173

shape represented by a point cloud sampling its surface. First,174

the authors construct the Delaunay triangulation of input points175

(de Berg et al., 2008). Delaunay triangulation is the dual struc-176

ture of the Voronoi diagram. Both structures are cellular struc-177

tures in the sense that they are defined as union of open i−facets178

with dimensions 0 to d. For instance, Delaunay triangulation in179

dimension 2 is made of triangles (2−facets), edges (1−facets)180

and vertices (0−facets). Voronoi diagram and its dual are mean-181

ingful in the flow context since the authors proved that:182

(a) (b)

Fig. 2. Voronoi diagram (dashed lines) and Delaunay triangulation (solid
lines) of the points in R2 (a). The critical points (maxima ⊕, saddle point
�, minima 	) of the distance function induced by these seven points (b).
(presented in Dey et al. (2003)).

Lemma 1 (Dey et al. (2003)). Given a set of points P in Rd
183

sampling the boundary of a shape X. Then, critical points for184

the flow induced by P are the Voronoi i−facets inside X inter-185

secting their dual Delaunay (d − i)-facet.186

In other words, to decide if a Voronoi vertex x is a critical187

point, we have to check if x is inside the Delaunay triangle188

which is the dual of x (see Fig. 2). Using such result, Dey et189

al approximate stable manifolds as connected sets of Delaunay190

i−facets. Furthermore, they proposed an algorithm to decom-191

pose an object defined by points on its boundary into regions,192

each region being a stable manifold or a union of stable man-193

ifolds. Indeed, they define a simple process to decide if two194

adjacent stable manifolds can be merged: along the interface195

between the two stable manifolds, the maximal distance func-196

tion value hmax is computed. Then, the two regions are merged197

if the ratio between hmax and the distance function of each man-198

ifold critical point is below a given threshold. We will discuss199

about this heuristic in Sect. 5.2.200

When considering a digital object X in dimension 3 and if we201

suppose that p is defined on a [1 . . . n]3 domain, we could di-202

rectly use Lemma 1 and thus continuous Voronoi diagram and203

Delaunay triangulation to extract critical points and thus sta-204

ble manifolds. However, the overall computational time would205

be high since the Delaunay triangulation in 3D has a quadratic206

number, O(N2), of tetrahedrons if N is the number of the input207

points. In our case, N can be in O(n3) since the specific surface208

area (ratio between the shape surface area and the volume) can209

be high. For instance, the shape in Fig. 9-(b) defined in volume210

with size 2563 has 1144238 surface elements. Computing the211

complete Delaunay triangulation would be intractable for larger212

images.213

We propose here a fast computation of critical points using214

tools working on the digital domain. More precisely, we de-215

scribe an optimal in time O(n3) algorithm to extract digital crit-216

ical points and digital stable manifolds. First of all, let us define217

an additional structure from computational geometry, the Power218

Diagram. Let us consider a set of N balls S defined by centers219

{ci}i=1...N and radii {ri}i=1...N . The power distance πi(x) of a point220

x ∈ Rd to the ball (ci, ri) is defined by221

πi(x) = ‖x − ci‖2 − r2
i . (5)222
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Hence, πi(x) < 0 (resp. πi(x) > 0) if x belongs (resp. is outside)223

to the ball (ci, ri). The power diagram is a decomposition of the224

space into cells Pow({ci}, {ri}) = {σi}i=1...N such that σi = {x ∈225

Rd : πi(x) ≤ π j(x),∀ j , i}. In other words, the Power Diagram226

is a Voronoi Diagram in which the Euclidean metric has been227

changed to a weighted additive one.228

In digital geometry, algorithms exist to compute Voronoi229

(Couprie et al., 2007; Hesselink, 2007) and Power mappings230

(Coeurjolly and Montanvert, 2007). Such mappings differ from231

their respective diagram in the sense that the output is not a232

combinatorial structure but the intersection between the dia-233

gram and the grid. For instance, in addition to the discrete234

medial axis extraction, an algorithm proposed by Coeurjolly235

and Montanvert (2007) also computes the digital Power map236

ΠX : X → {1, . . . ,N} such that ΠX = Pow({ci}, {ri}) ∩ Z3 ∩ X237

from medial balls ({ci}, {ri}) in O(n3) optimal time. Hence, to238

each point p ∈ X, ΠX(p) is the label of the power cell σi such239

that p ∈ σi (if p belongs to power cell boundary, i.e. p is equi-240

distant, for the power metric, to two balls, we only return one241

of the adjacent power cells).242

The algorithm described by Coeurjolly and Montanvert243

(2007) is perfectly suited for processing large digital objects244

since it is based on simple 1D raster scans in the volume (each245

voxel is visited a constant number of times), which can be per-246

formed independently. Hence, such a technique allows us to247

design efficient multi-thread implementations to handle very248

large objects (an implementation is available in the DGtal li-249

brary (Coeurjolly et al., 2009)).250

To define digital critical points we use the following lemma251

which connects Power Diagram and Delaunay triangulation in252

computational geometry.253

Lemma 2 (Amenta et al. (2001)). Let P be a set of points in254

general position in R3. Let B be the set of balls defined on255

Voronoi vertices of P. The power diagram of B is the Delaunay256

triangulation of P.257

Hence, instead of checking if a given Voronoi vertex v be-258

longs to its dual Delaunay triangle in Lemma 1, it is equivalent259

to check if v belongs to its power diagram cell. We can now260

give our definition of digital critical points.261

Definition 6 (Digital Critical Point). Let X ⊂ [1 . . . n]3 be a262

digital object and let MA(X) be its digital medial axis and ΠX263

the digital power map of balls in MA(X). Let ci be a medial ball264

center, ci is a digital critical point if ΠX(ci) = i.265

In other words, ci is critical if ci ∈ σi in the digital domain (see266

Fig. 3).267

In this digital setting, stable manifolds become union of268

power diagram cells. Let us first define the assignment of reg-269

ular points to critical ones in a recursive way: let c j be regular270

and let ci be the medial ball center such that ΠX(c j) = i, if ci271

is critical, we set l(ci) = i, we attach σ j to σi using a label272

function l(c j) = i. If ci is not critical, we set l(c j) = l(ci).273

Even if sequences of regular points may appear when attaching274

a regular point to a critical one, such recursive definition makes275

sense only if there is no cycle of regular points in the label as-276

signment. We never observe such cycles in our objects but if277

σ1

c1

σ2

c2

(a)

σ1

c1 σ2

c2

(b)

Fig. 3. The definition of digital critical points: c1, c2 are the center points
of balls and σ1, σ2 are their respective power cells. In (a), c1 ∈ σ1 and
c2 ∈ σ2, c1 and c2 are both critical points. In (b), c2 ∈ σ2, c2 is a critical
point; however c1 ∈ σ2 too, so c1 is a regular point.

c1
c2

c3
c4

(a)

c1
c2

c3
c4

(b)

σ1
σ2

σ3

σ4

(c)

F(c1) F(c2)

F(c4)

(d)

Fig. 4. Digital stable manifold construction: (a) input set of medial balls
with centers c1, c2, c3 and c4, (b) and (c) depict the corresponding power
diagram and their associated cells σ1, σ2, σ3 and σ4. c3 < σ3, being regu-
lar, we have l(c1) = 1, l(c2) = 2, l(c3) = 4, and l(c4) = 4. (d) illustrates the
associated stable manifolds.

detected, a simple heuristic can be used to break it: we com-278

pute the minimum power distance between each regular point279

in the cycle and all critical balls. Then, if the minimum distance280

is given by the regular point c j and critical point ci, we force the281

assignment l(c j) = ΠX(ci), breaking the cycle.282

Definition 7 (Digital Stable Manifolds). Let ci be a critical283

point, the digital stable manifold of ci, denoted F(ci) is given284

by285

F(ci) = {p ∈ X |ΠX(p) = j and l(c j) = i} (6)286

The construction of the digital stable manifold is depicted in287

Fig. 4.288
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5. Main Algorithm289

The overall algorithm can be described as follows: starting290

from a binary object X, we first compute its medial axis MA(X)291

and power map ΠX using the method of Coeurjolly and Mon-292

tanvert (2007) (see Fig. 5). Then we use Def. 6 to detect critical293

points in MA(X). At this step, digital stable manifolds (Def. 7)294

give us a first decomposition of X which is consistent with the295

distance flow induced by X (see for example Fig. 7-(a)). At this296

point, the overall decomposition is consistent in the sense that297

it is volumetric, the union of all regions covers the input shape298

and all regions are disjoint.299

However, an over-decomposition, i.e. a decomposition300

which segments a shape unnecessarily into very small features301

is generally obtained at this stage. It is thus important to merge302

all mergeable stable manifolds together. This step is ensured303

by filtering the medial axis (condition on the balls’ size - Sect.304

5.1) and by using a simple geometrical criterion based on ball305

intersection geometry (Sect. 5.2).306

5.1. Pre-processing307

When dealing with noisy data, the small perturbations308

change the medial axis of a shape and then lead to many small309

balls on the boundary or near sharp features (see Fig. 5-(b))310

which are not desirable. In many cases, MA based algorithms311

have to filter the output to only keep relevant MA balls. A large312

literature with many approaches exist on this subject (Borge-313

fors, 1986; Attali and Montanvert, 1997; Amenta et al., 2001;314

Chazal and Lieutier, 2005; Reniers and Telea, 2008a; Giesen315

et al., 2009).316

In the following, we consider a filtering we proposed in317

Coeurjolly and Montanvert (2007). The main reason is that318

this filtering process is defined on the Power Map of the dig-319

ital medial axis and is well suited to our process. More pre-320

cisely, the filtering first computes the area of each power map321

cell. Such information is used to evaluate the relevance of a322

ball since power cell with small area means that either the ball323

is small, or the ball is locally surrounded by larger ones. In324

the following we can just filter the input medial axis using a325

threshold γ on the power cell area.326

Beside its simplicity with respect to some other metrics on327

local scale relevance of medial balls, such approach leads to a328

very efficient pre-processing. In fact, this pre-processing is just329

used to remove some spurious balls in the medial axis induced330

by small noise on the object surface. The overall segmentation331

is driven by both critical balls and the merging process as de-332

scribed below, the impact of the ball filtering technique on the333

results being actually very limited.334

5.2. Merging using geometric angle335

When considering complex geometrical shapes, stable man-336

ifolds usually lead to an over-decomposition of the object (see337

Fig. 7-(a)). We describe here a simple geometric parame-338

ter to decide whether two adjacent stable manifolds should be339

merged.340

(a) (b)

(c) (d)

Fig. 5. Digital Medial Axis and Power Map in dimension 2: (a) and (b)
discrete medial axes given by the ball centers, (c) and (d) the corresponding
power maps.

α ci

c j

ri

r j

(a)

α

ci

c j

ri

r j

(b)

Fig. 6. α angles for two given configurations of spheres.

Let us consider two critical points ci, c j (with radii ri and341

r j) with adjacent power cells in ΠX (we use 6 neighborhood in342

applying to 3-D images). We consider the angle α such that343

cos(α) =
‖ci − c j‖2 − r2

i − r2
j

2 · ri · r j
(7)344

Fig. 6 illustrates angles α for two given circles in dimension345

2. Similarly, in dimension 3, α corresponds to the angle be-346

tween tangent vectors of each ball at the intersection between347

two balls. In the following, we use this quantity to design a sim-348

ple local criterion: given a threshold θ ∈ [−1, 1], if cos(α) < θ349

for any two adjacent critical balls, we reassign one of the crit-350

ical point label. For instance, we set l(ci) = j (choice between351

ci or c j in the reassignment has no influence on the result). Us-352

ing different values of θ, we can obtain different decomposition353

results as shown in Fig. 7. In practice, the choice of such a354

value depends on the requirements of applications. In our con-355

text, θ was normally chosen from -0.6 to -0.8, considering the356

structure of grains in different snow types.357
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(a) Initial stable manifolds (b) θ = −0.9

(c) θ = −0.8 (d) θ = −0.7

Fig. 7. Decomposition results after the merging step for different θ values:
(a) initial digital stable manifolds, (b) - (d): several increasing θ values.

6. Application to 3-D snow images358

The proposed algorithm has been implemented using tools359

available in DGtal library (Coeurjolly et al., 2009) such as360

linear in time volumetric algorithms (medial axis extraction,361

power map,. . . , Coeurjolly and Montanvert, 2007). As men-362

tioned above, if the input 3-D object is defined in a [1 . . . n]3
363

image, both digital medial axis extraction and power map con-364

structions can be performed in O(n3) (Coeurjolly and Montan-365

vert, 2007). The pre-processing (if needed) can be done using366

a linear scan of the power map. The merging step criterion is367

evaluated on each pair of critical points with adjacent power368

map cells. A rough upper bound for the computational cost of369

this step is given by the size of the power map. This upper370

bound is not tight since the number of critical points is usually371

much smaller than the size of the input object. For instance, for372

the MF sample (Fig. 9-(a)) with size 2703, we have 155281 dig-373

ital medial balls and 3601 critical points. Finally, the operations374

on the label function l can be implemented using a Disjoint-Set375

(or Union-Find) data-structure which allows us to have all these376

operations in amortized quasi-constant time. Hence, the overall377

computational cost of the segmentation algorithm is linear in378

the size of the input volume.379

The proposed algorithm (MADF for short) has been exper-380

imented on 3-D images and compared to other decomposi-381

tion approaches such as watershed with distance function and382

CDGS (Curvature-Driven Grain Segmentation, Wang et al.,383

2012) and, when available, to ground truth from physical exper-384

��
��

(a) Watershed with distance function

��
��

(b) CDGS

��
��

(c) MADF

Fig. 8. Comparison on random sphere sets by watershed with distance
function, CDGS and MADF respectively: (a) an over-decomposition is
produced by watershed, (b) and (c) illustrate that both CDGS and MADF
(with γ = 0, θ = −1) work well on sphere sets.

iments (DCT, Rolland du Roscoat et al., 2011, see Sect. 6.2). In385

all cases, the provided outputs are volumetric decomposed ob-386

jects whose components are labelled by different colors. The387

methods have been applied on both synthetic data and snow388

microtomographic images.389

6.1. Experimentation on synthetic data390

We first consider series of synthetic 3-D images using ran-391

domly generated spheres sets in [0, 300]3. The comparison re-392

sults are presented in Table. 1. For spheres, radii are distributed393

between R1 and R2, N indicates the number of spheres. In or-394

der to quantify the difficulty of the decomposition problem, we395

define the ratio ρ as follows:396

ρ =

∑n
i=1 |Bi| − |X|
|X| (8)397

where |Bi| is the volume of an element in the random spheres398

set. Hence, high ρ indicates that many geometrical elements399

overlap and thus the recovering of each of them is more chal-400

lenging.401

For a better validation, we have created five sphere sets. For402

each test, we count the number of decomposed grains and quan-403

tify the percentage of misclassified voxels when a ground-truth404

decomposition is known (label “i” in the ground-truth image is405

associated to the label “j” in the test image if most voxels with406

label “i” are mapped to label “j” in test image). In these sphere407

tests, the ground-truth decomposition is given by the power408

map of input spheres. We use thresholds γ = 0 and θ = −1409
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Table 1. Quantitative results for random spheres (a) and MF sample (b) compared among three decomposition approaches: watershed with distance
function, CDGS and MADF

N R1 R2 ρ
watershed CDGS MADF

# grains % misclass. # grains % misclass. # grains % misclass.
100 20 30 0.08408 216 0.728596% 100 0.707515% 100 0.302259%
80 25 35 0.14911 252 1.2033% 80 0.765337% 80 0.565739%
60 30 40 0.19667 251 1.88912% 59 1.51798% 59 0.8645%
40 35 45 0.19068 251 1.8194% 39 1.51363% 40 0.775526%
50 20 80 0.24879 252 4.64338% 49 6.11259% 50 3.36936%

(a)

real #grains watershed CDGS MADF
DCT # grains % misclass. # grains % misclass. # grains % misclass
93 31 17.7403% 80 3.84519% 99 1.83415%

(b)

Table 2. Comparison of the interface geometry for RG and MF sample among three decomposition approaches: watershed with distance function, CDGS
and MADF

watershed CDGS MADF
average standard

dev.
average standard

dev.
average standard

dev.
Absolute mean curvature 0.055 0.097 0.869 0.221 0.105 0.291

MF Absolute Gaussian curvature 0.042 0.313 0.057 0.757 0.027 0.171
flatness 2.861 6.023 2.094 4.452 0.608 1.815

Absolute mean curvature 0.102 0.152 0.185 1.420 0.186 0.494
RG Absolute Gaussian curvature 0.025 0.075 0.974 29.834 0.0845 0.584

flatness 0.368 0.79 0.541 1.134 0.356 0.616

(a) (b)

Fig. 9. 3-D images of snow as obtained by Diffraction Contrast Tomogra-
phy (a) with size 2703 (MF sample - all labels of physically detected grains
have been set to the same value. See Fig. 10-(a) for the original DCT
image) and X-ray microtomography (b) with size 2563 (RG sample).

for MADF, because these synthetic images are smooth and the410

critical point of a sphere is exactly its center. No parameter has411

been used for watershed and among the large set of parameters412

for CDGS (13 but 4 main parameters), we have performed a413

manual analysis to select the best ones for the objects. Accord-414

ing to the results in Fig. 8 and Table. 1-(a), watershed method415

with distance function usually produces an over-decomposition416

around the interface between two adjacent spheres. It results in417

a large number of regions in Table. 1-(a). Such over-segmented418

regions are small or thin since the percentage of misclassified419

voxels is still low. CDGS and MADF both present good de-420

composition results on spheres sets in Fig. 8. Considering the421

number of decomposed grains and percentage of misclassified422

voxels, MADF has a more precise decomposition than CDGS.423

6.2. Decomposition of snow images424

We used 3-D images of real snow samples (see Fig. 9) to425

evaluate the quality of the shape decomposition provided by426

the proposed algorithm.427

Snow images, such as the RG sample of Fig. 9-(b), are ob-428

tained by X-ray absorption microtomography using the follow-429

ing technique: the snow samples were first filled with liquid430

1-chloronaphthalene around -2◦C and frozen at -25◦C before431

further machining. Small cores 9 mm in diameter were then ex-432

tracted with a precision hole-saw, sealed inside sample holders,433

which were then placed into a specifically designed cryogenic434

cell for microtomographic acquisition. The obtained gray-level435

images were contoured using a semi-automatic procedure, lead-436

ing to binary (air and ice) decomposed 3-D images. Comple-437

mentary information can be found in previous works of Flin438

et al. (2003, 2004).439
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(a) DCT (b) Watershed (c) CDGS (d) MADF

(e) Watershed (f) CDGS (g) MADF

(h) Watershed (i) CDGS (j) MADF

Fig. 10. Comparisons between methods: decomposition of 3-D snow samples MF (a) - (d); decomposition on sample RG (e) - (g); grain-to-grain interfaces
of MF comparisons (h) - ( j).

In addition to classical absorption tomography, an image was440

obtained by Diffraction Contrast Tomography (DCT, Ludwig441

et al., 2009; Rolland du Roscoat et al., 2011), a recent experi-442

mental technique that combines X-ray diffraction analyses and443

absorption tomography to provide simultaneously, (1) the 3-D444

geometry of the ice-air interface, (2) the 3-D mapping of in-445

dividual grains in polycrystals, and (3) their crystalline orienta-446

tion. For some particular snow structures such as that of the MF447

sample presented in Fig. 10-(a), each geometric grain exhibits448

a particular crystalline orientation so that the DCT can actually449

provide a physically-based shape decomposition of the granular450

structure.451

For the MF sample (Fig. 9-(a)), we chose the values γ = 160452

and θ = −0.8 of MADF to decompose the object. For the RG453

sample (Fig. 9-(b)), the values γ = 20 and θ = −0.5 were454

adopted. For the watershed method, no parameter has been in-455
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Table 3. Timings for the proposed methods in seconds (Intel(R) Xeon(R)
CPU 2.67GHz/4 Processors/RAM 7.8G).

Shapes watershed CDGS MADF
MF 416.74 915.44 44 (pre-process time)

10.69 (merging time)
RG 330.732 635.41 40.16 (pre-process time)

7.4 (merging time)

troduced. For CDGS, among the 13 existing parameters, 4 are456

crucial to control the quality of decomposition. Interfaces are457

important to perform numerical simulations on snow grains and458

MADF produces better and smoother grain-to-grain interfaces459

plans, than CDGS as can be seen from Fig. 10-(h)(i)( j). From460

the decomposition results in Fig. 10 and Table. 1-(b), we can461

conclude that a more precise decomposition can be achieved462

with MADF than with the other two numerical methods.463

In Table 2, we have performed a geometrical analysis of464

the grain-to-grain interfaces. The main idea was to evaluate465

the quality of the interface in terms of flatness. To do so,466

we processed all interfaces and we computed several quanti-467

ties: mean and Gaussian curvatures given by a fitting with high468

degree polynomial surface of the interface point set (Cazals469

and Pouget, 2005), and flatness information by computing the470

covariance matrix of the point set and returning the smallest471

eigenvalues which correspond to the minimal axis length of the472

ellipsoid approximating the point set. Beside the watershed ap-473

proach, which produces flat interfaces but with bad segmenta-474

tion results, we can observe that the MADF approach provides475

better quality interfaces than CDGS (lower average values and476

lower standard deviations).477

Finally, Table 3 indicates some timings of the proposed ap-478

proach.479

7. Conclusion480

In this paper, we proposed a novel framework for shape de-481

composition based on digital critical points and the digital flow482

induced by the medial axis of shape. The core of the approach483

relies on an adaptation of classical flow and critical points def-484

initions from computational geometry to digital settings. Such485

an adaptation allows us to construct a fast decomposition al-486

gorithm which is computationally efficient and provides high487

quality object decomposition on both synthetic data and real488

3-D images.489
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76
Chapter 4. Article: Digital Flow for Shape Decomposition: Application to 3-D Microtomographic

Images of Snow

(a) (b)

Figure 4.2 – Shape decomposition on an irregular surface with method CDGS (a) and
MADF (b).

4.3 Conclusion of chapter

Considering the high sensitivity to the initial shape surface with CDGS, we de-

velopped another segmentation method which uses the entire information of object’s

structure instead of the surface only. It is based on the digital flow from medial axis

of the object. It is efficient, robust and easy to control the decomposition quality with

2 thresholds. The scheme of the main algorithm is summarized in Alg. 4.1.
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Compute the medial axis MA(X) on object and the power diagram ΠX based
on MA(X);

Calculate the area of each power cell;
forall power cell do

if Area < threshold then
Remove the associated ball from MA(X) and power cell from ΠX;

end
end
forall medial ball do

if the center of ball is regular then
Re-assign the power cell of regular points into associated critical point
and construct stable manifolds;

end
end
forall two adjacent stable manifolds do

if geometric angle between two > threshold then
Merger them together;

end
end

Algorithme 4.1 : MADF algorithm description.
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5.1 Grain segmentation on snow samples

To validate the segmentation methods which are introduced in Chapter 3 and

Chapter 4, we use a series of 3-D snow samples (see Table 5.1). These samples have

different types of grain shapes depending on the conditions of their enviroment. I01,

I08 and I23 were produced under controlled isothermal conditions in the cold room

of CEN [FBL+
04]. Two neighboring volumes were obtained under a controlled Tem-

perature Gradient (TG) of 16 K/m: E01 and E02 correspond to the same macroscopic

sample as described in [FB08]. Samples P03, P04 and P10 were taken at increasing

depths in the natural snowpack of the Girose glacier (Ecrins, French Alps) during a

field campaign on the 17th April 2009. Finally, wet grains samples H03 and H05 were

obtained by coarsening of water-saturated snow using a similar method that described

in [RT79]. After 48 h and 142 h of growth respectively, the samples were drained

out from their liquid water, filled with liquid 1-chloronaphtalhene around −1◦C and

frozen at −25◦C before further machining. The 3-D tomographic images (series I and

E) were obtained at ID19 beamline of the European Synchrotron Radiation Facility

(ESRF) and the others were acquired with a cone beam tomograph (laboratory 3SR).

The decomposition results of these samples by CDGS and MADF are illustrated in

Fig. 5.5. In CDGS, we have 4 main parameters to control the quality of decomposition

(see Table. 5.2). For the tested snow samples, we set MIL_PROP=30, TYPE_SEUIL=3,

SEUIL_FIXE=0, and GRAIN_MIN=400. In MADF, two thresholds (γ and θ) need to be

defined. For all the snow samples in Table 5.1, we chose the threshold θ = −0.8, which

is decided after a series of experiments under differents types of snow. Considering

the sizes of grains in different snow types have large difference, we use equivalent

sphere radius of snow [LA02] (also called the optical radius, optical-equivalent grain

size or OGS [FAD+
09]) to adjust the filter size γ of the algorithm. The equivalent

sphere radius is a characteristic length of the ice grains at the microscopic scale, which

corresponds to the radius of a monodisperse collection of spheres having the same spe-

cific surface area (SSA) value. It is here defined as res =
3

SSA , with SSA in vox−1. The

threshold was chosen as γ = 0.3× r2
es, where 0.3 was obtained by practice. In Fig. 5.5,

we can notice that the methods CDGS and MADF have a good segmentation for the

grains whose shapes are not so far from spherical or rounded (RG/FC/DH/MF). For
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these particular snow types, MADF generaly provides a more reasonnable result (the

comparison is illustraded by the article in Chapter 4). For the other snow types, like

PP and DF, the segmentation is not so good because of their very complex structures.

We will make our method more robust in the future.

Table 5.1 – List of the various snow samples tested. Snow type is given according to
the international classification [FAD+

09].

Sample Voxel size Snow Remarks Porosity Density
(µm) type (kg/m3)

I01 4.91 PP/DF Sampled 15 h after the snowfall 0.88 106

I08 4.91 DF Sampled 470 h after the snowfall 0.83 150

I23 4.91 RG Sampled 2026 h after the snowfall 0.71 259

E01 4.91 FC/DH 3 weeks with TG = 16 K/m 0.75 225

downer volume
E02 4.91 FC/DH 3 weeks with TG = 16 K/m 0.71 265

upper volume
P03 8.48 PP/DF Field, Girose glacier, 0.2 m depth 0.84 141

P04 8.59 PP/DF Field, Girose glacier, 0.4 m depth 0.82 161

P10 6.10 RG Field, Girose glacier, 1.6 m depth 0.56 399

H03 8.61 MF Grain coarsening of water-saturated 0.45 499

snow and drainage after 48 h
H05 8.59 MF Grain coarsening of water-saturated 0.45 497

snow and drainage after 142 h

5.2 Snow geometric analysis

Specific grain contact area (SGCA) is a parameter to describe snow microstruc-

ture, e.g. to forecast the SSA that can be released by mechanical processing [VBG+
75,

FLD+
11]. Both SGCA and SSA are important. They are defined in Chapter 2. After

grain decomposing, we estimate SSA and SGCA of each snow sample (described in

Sec.5.1). In order to calculate them, we have to estimate the surface area for SSA and

area of interface for SGCA. For a 3-D digital image, just counting the total number of

surface voxels is not accurate. See Fig. 5.6 for an example in 2-D: (a), the perimeter of

the square is 20 pixels. After a rotation of 45◦ in (b), the perimeter is only 12 pixels.

To solve this problem, we can use the information contained in the normal field of
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(a) E01 - CDGS (b) E01 - MADF

(c) E02 - CDGS (d) E02 - MADF

Figure 5.1 – Several types of snow samples (here, FC/DH) and the segmentation re-
sults using CDGS in left column, and MADF in right column.
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(a) I01 - CDGS (b) I01 - MADF

(c) I08 - CDGS (d) I08 - MADF

Figure 5.2 – Several types of snow samples (here, PP/DF & DF) and the segmentation
results using CDGS in left column, and MADF in right column.
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(a) I23 - CDGS (b) I23 - MADF

(c) H03 - CDGS (d) H03 - MADF

Figure 5.3 – Several types of snow samples (here, RG & MF) and the segmentation
results using CDGS in left column, and MADF in right column.
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(a) P03 - CDGS (b) P03 - MADF

(c) H05 - CDGS (d) H05 - MADF

Figure 5.4 – Several types of snow (here, PP/DF & MF) and the segmentation results
using CDGS in left column, and MADF in right column.
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(a) P04 - CDGS (b) P04 - MADF

(c) P10 - CDGS (d) P10 - MADF

Figure 5.5 – Several types of snow samples (here, PP/DF & RG) and the segmentation
results using CDGS in left column, and MADF in right column.
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Table 5.2 – List of main parameters in CDGS.
Parameters Value range Description
MIL_PROP int, from 30 to 60 It’s a percentage.

It determines the radius of the spheres
according to the local maximum found.

TYPE_SEUIL 0, 1, 2 or 3 Curvature map segmentation.
0 - the nth percentile of negative curvature.
1 - the nth percentile of positive curvature.
2 - the average of curvatures.
3 - based on a threshold determined
by SEUIL_FIXE.

SEUIL_FIXE int, Positive or Negative Determines the segmentation
between -30 and 30 of the curvature map

when TYPE_SEUL=3.
An appropriate value is close to zero.

GRAIN_MIN int, from 20 to 800 Determines the minimum size of grains
depends on the size of the image in number of voxels.

the surface of 3-D object as proposed in [FBC+
05]. This voxel projection method was

applied to each surface estimation (SSA, SGCA) in the following results. The time

evolution of snow determine the relationship between SSA and SGCA. In Fig. 5.7,

we can notice that (a) is a snow sample whose type is DF. Because of its elongated

structure, the interface area between the grains is much less than the area of the snow

surface. But after evolving, the structure of snow can become as sample MF in (b).

With the increasing size of snow grain, the difference between SSA and SGCA is less

pronounced. This is illustrated by Fig. 5.8 and 5.9.

Fig. 5.8 presents the relationship between SGCA and SSA using both CDGS and

MADF. We can see that the behavior of the algorithm is slightly different for high SSA

value. Both behaviors using CDGS and MADF present such dependence of SGCA with

SSA on different types of snow samples. Considering the real situation, in practice,

the behavior using MADF is more raisonable.

In Fig.5.9, we estimate SGCA by CDGS, MADF and another method presented

in [HCL+
13] (referred as Hagenmuller et al, 2013). The method of Hagenmuller et

al use a geometrical algorithm based on curvature and constriction. The algorithm

is parameterized with a local contiguity indicator (referred as c), which defines the
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(a) (b)

Figure 5.6 – Rotation of a square in a digital space: (a) is a square of size l = 6 pixels,
(b) is the same square after a rotation of 45◦. The size obtained by voxel amounts to 4
pixels.

(a) (b)

Figure 5.7 – The relationship between SSA and SGCA in different types of snow sam-
ples (red lines represent the interfaces between grain pairs): (a) is a sample DF. (b) is
a sample MF.
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Figure 5.8 – Dependence of SGCA with SSA on several types of snow samples using
MADF � and CDGS �. Black polynomial fits are plotted for a better visualization.
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Figure 5.9 – Estimation of grain contact area on several types of snow samples using
different thresholds. Black lines correspond to logarithmic fits of the SGCA results.

segmentation scale.

The representation of the microstructure with grains enables the investigation of

the bonding system, which is determinant for mechanical properties. The Fig.5.9 il-

lustrates the consistency of the different methods, i.e. it shows a similar behavior

with snow type. In these algorithms, the different setting of parameters can affect the

values of SGCA. This is due to the fact that the "grain concept" is difficult to define.

But fixing the same parameters for all snow samples provides an objective means to

quantitatively compare the sample’s bonding system. It seems that SGCA could be

a potential parameter to help in determining the snow type. In addition this graph

shows that mechanically processing “old” snow samples could significantly increase

SSA.

5.3 Conclusion

Shape segmentation methods were used to decompose the original shape into

meaningful components. In our work, it consisted in decomposing the 3-D snow sam-

ple into grains. Because of the complexity of snow microstructure, some snow samples
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are hard to segment. Our methods provide reasonable results for different types of

snow without changing the algorithm parameters. This helps in defining objective

criteria to recongnize grains. The estimations of SGCA and SSA based on the result

of grain segmentation can help to model the physical and mechanical parameters of

snow microstructure.
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In this manuscript, we focused on the snow grains which are necessary to better

understand the metamorphism and the physical or mechanical properties of snow.

According to the presentation in chapter 2, various types of snow grains exist in nature

(from nearly spherical to facetted ones). Although many methods can solve shape

segmentation problem, they do not meet all the requirments for this application to

snow. Improving the quality of segmentation was the objective of our thesis.

We present two methods for this problem:

— A curvature based method which detects the difference between convex and

concave surfaces to propagate a volumetric segmentation into the whole object;

— Another approach, which uses the internal information from digital flow to

decompose the objects and improves some drawbacks of the first method.

These segmentation results on the snow sample help to analyse the geometric proper-

ties of snow microstructure and give interesting outlooks to simulate snow methamophism,

and the associated evolution of properties.

The methods of segmentation could be improved in a future work: we are consid-

ering the combination of the two approaches into one, which would be more precise

and efficient. More physical or mechanical analysis of snow could be advanced based

on grain segmentation. Beside the snow application, the algorithms could benefit to

numerous other materials like ceramics, metallic alloys and so on.

6.1 Contributions

Our contributions of this work can be summarized as follows:

1. The first contribution is the proposal of a method CDGS of segmentation for

presenting the snow image into grains. The segmentation comes from the cur-

vature map on the surface. The map constructure process is efficent, because

we only consider the absolute value of the mean curvature with the sign of the

lowest principle curvature. A thresholded sign of lowest principle curvature

map (SLPCM for short) well divided the surface into convexes and concaves.

This method provide a volumetric segmentation which is an improvement of

the method described in [ZPKA02].
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2. The second contribution is the proposal of an algorithm which handles the

noise sensitivity problem of shape segmentation. The idea comes from a global

view. A geometric concept "digital flow" is applied in this suject. In [DGG03],

they introduce the "flow" to solve the segmentation problem. We propose a

fast computation of critical points using tools on digital domain. A simple

geometric parameter is used to merge some unnecessary decomposition cases.

This method is easy to implement with a digital library. In the process, only

two thresholds control the quality of segmentation. It is more adaptive than

CDGS.

3. The third contribution is the application to snow microstructure. The segmenta-

tion helps to describe snow microstructure. Specific grain contact area (SGCA),

is a parameter that is strongly correlated with snow mechanical properties

[FLD+
11, VBG+

75]. From a more conceptual point of view, SGCA provides

scalar information on the bonding area between grains that are not available

from the sole classical specific surface area (SSA). With our methods, we can

compute SGCA from 3-D images to help in characterizing snow quantitatively.

6.2 Future work

For further work, we could improve some steps in methods and have more appli-

cations:

1. From the comparison results in article and chapter 5, MADF has a better seg-

mentation than CDGS. However, the running time of CDGS is less, because

only surface information is taken into account in CDGS. In the next step, we

are considering an algorithm that combines the advantages of the two meth-

ods. A novel framework would be: use curvature information on surface for a

preliminary segmentation, in order to separate the points on medial axis into

"interesting" and "less interesting". In other words, in addition to remove the

regular points from the point set on medial axis, we need a second selection

considering the curvature information. If the corresponding curvatures are less

interesting, the medial balls will be removed too. In such a point of view, we
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would keep less critical points which would be more efficient than before.

2. Observing from the experiment results with MADF, the threshold γ in pre-

processing is closely relative to the grain size. In next step, we want to find

out an equation to describe this relationship in general cases. Some statistics

theories can be used to analyze the range of the grain size. In this way, the

threshold γ could be very finely estimated. This update can improve the self-

adaptation of the method.

3. The third perspective is to apply our grain segmentation results into an analysis

of the thermal conductivity of snow, in order to model the mechanical proper-

ties in temperature gradient metamorphism. The interface between two grains

with its orientation could help to evaluate the heat transfer inside grains. With

a littler extension of our method, the orientations of interfaces could be ob-

tained. It will provide a new opportunity to model the different types of snow

metamorphism.
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Contributions

Dans ce manuscrit, nous nous sommes intéressés aux propriétés géométriques des

grains de neige qui jouent un rôle fondamental pour une meilleure compréhension des

propriétés mécaniques ou physiques ainsi que des métamorphoses de la neige. Dans

ce contexte, nous avons proposé plusieurs techniques permettant d’isoler ces grains

dans des images micro-tomographiques 3-D d’échantillons de neige.

Comme nous l’avons vu dans le chapitre 2, la difficulté réside dans le fait que ces

grains peuvent avoir des géométries variées (quasi-sphérique, très facettisées. . . ) et

être fortement connectés entre eux. Sur ce type de données, les approches usuelles de

la littérature ne produisent pas de décompositions satisfaisantes dans le sens où soit

la décomposition est sur/sous-segmentée, soit les interfaces entre grains ne sont pas

physiquement plausibles.

Nous avons donc cherché à améliorer ces techniques en proposant deux approches

différentes. La première (CDGS) utilise des informations différentielles sur la surface

(courbure) afin de localiser les convexités/concavités locales et les ponts entre grains.

Dans un second temps, ces informations surfaciques sont répercutées dans le volume

pour construire un partitionnement 3-D cohérent. Cette approche, publiée dans ICPR

2012, donne des résultats intéressants mais est assez sensible aux imperfections sur

la surface. De nombreux paramètres ont dû être introduits pour filtrer, lisser et seg-

menter les informations différentielles de surface.

La seconde approche exploite uniquement des informations volumiques (axe mé-

dian, diagramme de puissance, notion de flot. . . ) pour effectuer la décomposition

(MADF). Bien que les imperfections de surface puissent induire des perturbations sig-

nificatives sur l’axe médian notamment, exploiter la structure volumique dans son

ensemble permet d’avoir des résultats de segmentation beaucoup plus stables. D’un

point de vue théorique, nous avons proposé un mécanisme de segmentation basé sur la

notion de flot dans le modèle discret. Notre formulation discrète de cet objet, proposé

initialement dans le continu, nous a permis de construire des algorithmes de segmen-

tation très efficaces et parfaitement adaptés aux structures discrètes. Cette approche

fait l’objet d’une publication en cours de révision.

Au delà de ces outils de décomposition volumique, une contribution importante
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porte sur l’exploitation de ces résultats de décomposition dans le cadre de l’analyse de

microstructures de neige. En effet, nos algorithmes nous ont permis d’évaluer quan-

titativement une mesure physique très importante lorsqu’il s’agit d’analyser ce type

de matériaux : la surface spécifique des contacts entre grains (specific grain contact

area, SGCA), qui à l’avantage de décrire par une grandeur scalaire la taille moyenne

des ponts reliant les grains. Nous avons pu notamment conclure que nos résultats de

segmentation sont cohérents avec ce que l’on peut observer dans l’état de l’art.

Perspectives

Ce travail peut donner lieu à de nombreuses perspectives, que ce soit spécifique-

ment sur les algorithmes de segmentation, ou encore sur son application à l’analyse

des microstructures de neige.

Sur le premier point, nous souhaitons développer une approche hybride pour la

segmentation permettant de combiner les avantages respectifs des deux approches

développées. Plus précisément, il nous semblerait intéressant d’intégrer les informa-

tions différentielles de surface extraites par CDGS dans le modèle volumique par flot

de MADF. En effet, l’approche MADF nécessite deux paramètres fondamentaux. Le

premier est utilisé dans le cadre d’un filtrage des boules de l’axe médian pour aug-

menter la robustesse au bruit, et le second dans le processus de segmentation par flot.

Il pourrait donc être intéressant d’utiliser les informations différentielles de surface

pour guider le filtrage de l’axe médian notamment.

Dans le cadre spécifique des microstructures de neige, une analyse statistique plus

fine des dimensions caractéristiques des structures de glace constituant la neige devrait

permettre de mieux ajuster les paramètres de segmentation en fonction du type de

données et ainsi de rendre la méthode encore plus adaptative.

Enfin, des perspectives particulièrement intéressantes consisteraient à appliquer

nos résultats de segmentation en grains individuels à des simulations physiques (par

exemple, avec la prise en compte des effets de joints de grains et d’orientation cristallines

dans les métamorphoses), des calculs thermiques (modèles de type Batchelor) ou mé-

caniques (modélisation par éléments discrets - DEM). L’interface entre deux grains

ainsi que l’orientation de ces contacts pouvant être facilement extraites de nos résul-
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tats, les algorithmes développés ouvrent ainsi de nouvelles perspectives pour l’étude

de la microstructure de la neige, de ses métamorphoses ainsi que de ses propriétés.

Ces algorithmes pourraient également s’appliquer à de nombreux autres matériaux

poreux ou granulaires tels les céramiques ou les poudres métalliques.
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Résumé

Les avalanches de neige sont des phénomènes naturels complexes dont l’occurrence

s’explique principalement par la structure et les propriétés du manteau neigeux. Afin

de mieux comprendre les évolutions de ces propriétés au cours du temps, il est im-

portant de pouvoir caractériser la microstructure de la neige, notamment en termes

de grains et de ponts de glace les reliant. Dans ce contexte, l’objectif de cette thèse

est la décomposition d’échantillons de neige en grains individuels à partir d’images

3-D de neige obtenues par microtomographie X. Nous présentons ici deux méthodes

de décomposition utilisant des algorithmes de géométrie discrète. Sur la base des ré-

sultats de ces segmentations, certains paramètres, comme la surface spécifique et la

surface spécifique de contact entre grains sont ensuite estimés sur des échantillons de

neiges variées. Ces méthodes de segmentation ouvrent de nouvelles perspectives pour

la caractérisation de la microstructure de la neige, de ses propriétés, ainsi que de leur

évolution au cours du temps.

Mots-clefs: Neige, Métamorphose, Microstructure, Décomposition de formes,

Géométrie discrète

Abstract

Snow avalanches are complex natural phenomena whose occurrence is mainly due

to the structure and properties of the snowpack. To better understand the evolution of

these properties over time, it is important to characterize the microstructure of snow,

especially in terms of grains and ice necks that connect them. In this context, the

objective of this thesis is the decomposition of snow samples into individual grains

from 3-D images of snow obtained by X-ray microtomography. We present two de-

composition methods using algorithms of discrete geometry. Based on the results of

these segmentations, some parameters such as the specific surface area and the spe-

cific contact area between grains are then estimated from samples of several snow

types. These segmentation methods offer new outlooks for the characterization of the

microstructure of snow, its properties, and its time evolution.

Keywords: Snow, Metamorphism, Microstructure, Shape decomposition, Digital

geometry
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