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Zusammenfassung
Wir realisieren das Littelmann Pfad Modell und die zugehörigen Wurzelop-
eratoren auf der Schleifengruppe des Torus einer kompakten, einfachen Lie
Gruppe. Für integrale Schleifen - solche mit guter kombinatorischer Beschrei-
bung der Wurzeloperatoren - geben wir eine geometrische Interpolation der
Wurzeloperatoren mittels Bott–Samelson Mannigfaltigkeiten, deren Defini-
tion wir für diesen Zweck erweitern. Wir betten diese Mannigfaltigkeiten
in die Schleifengruppe der einfachen Gruppe ein und geben ein Kriterium an,
unter dem die symplektische Struktur der Schleifengruppe zu einer symplektis-
chen Struktur der Bott–Samelson Mannigfaltigkeit einschränkt. Für Schleifen
in dominante Richtung berechnen wir das Bild unter der Impulsabbildung.
Um eine komplexe Struktur zu etablieren, geben wir einen Diffeomorphis-
mus zwischen den Bott–Samelson Mannigfaltigkeiten und den Bott–Samelson–
Demazure–Hansen Varietäten assoziiert zu einer Gallerie im affinen Gebäude
an. Diese Abbildung ist verträglich mit Wurzeloperatoren, und wir inter-
pretieren die Ergebnisse von Gaussent und Littelmann im Rahmen des Gal-
lerienmodells neu. Durch diese Interpretation definieren wir isotope Einbet-
tungen der Mirković-Vilonen Zykel in die differentialgeometrische Schleifen-
gruppe. Wir untersuchen dazu das Verhalten der Bott–Samelson Mannig-
faltigkeit unter Homotopien der zugrundeliegenden Schleifen. Eine Folgerung
davon ist ein weiteres Kriterium, um das Bild der Impulsabbildung zu bes-
timmen.
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Abstract
We realize the Littelmann path model and the associated root operators on
the loop groups of the torus in a compact, simple Lie group. For integral loop
- those loops with a good combinatorial description of the root operators - we
define a geometric interpolation of the root operators through Bott–Samelson
manifolds, whose definition we generalize for this purpose. We embed these
manifolds in the loop group of the simple group and give a criterion under
which the symplectic structure of the loop group restricts to a symplectic
structure of the Bott–Samelson manifold. For loops in dominant direction we
compute the image under the moment map. To establish a complex struc-
ture we give a diffeomorphism between the Bott–Samelson manifolds and the
Bott–Samelson–Demazure–Hansen variety associated to a gallery in the affine
building. This map is compatible with the root operators, and we interpret the
results of Gaussent and Littelmann in the context of the gallery model anew.
By means of this interpretation we define isotopic embeddings of Mirković-
Vilonen cycles into the differential-geometric loop group. For this purpose we
investigate the behavior of the Bott–Samelson manifold under homotopies of
the underlying loop. A consequence of this is another criterion to determine
the image of the moment map.
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Introduction
The aim of the present thesis is to link the path model and Mirković–Vilonen
cycles directly by approaching the problem from the perspective of compact
Lie groups avoiding the gallery model. Our approach consists of two steps:
The first step is to show that the root operators of the path model descend
to the loop group of a compact torus. This enables us to construct crystal
graphs from any loop γ with image in the compact torus. In the second step
we construct a manifold from the path model. It has a cell decomposition by
which the Mirković–Vilonen cycles are obtained. The manifold constructed is
the Bott–Samelson manifold Γγ , which we generalize to suit our purpose. A
torus of the Lie group acts on Γγ and the fixed points can be identified with
elements of the path model. We prove symplecticness of Γγ for a well be-
haved class of loops and compute its moment map image. The connection to
MV cycles is realized through an explicit diffeomorphism of Γγ and the Bott–
Samelson–Demazure–Hansen variety respecting the path and gallery model.
We realize the affine Schubert varieties and MV cycles as subsets of the loop
group without computation of the Iwasawa decomposition. Using this result
we make use of the flexibility of the topological category and define isotopic
embeddings of MV cycles and the affine Schubert variety into the loop group.
Let us describe the above in more detail and give some context. Since the
classification results of unitary representations of compact Lie groups in the
beginning of the 20th century researchers have been focused on the construc-
tion of such representations and their bases. Through means of Lie corre-
spondence and complexification the question can be treated also from the
angle of Lie algebras and algebraic groups, perspectives which have proven
useful. In more recent years various bases of representations have been con-
structed. Important to our story will be the global crystal basis [Kas90] as
well as Mirković–Vilonen cycles [MV07]. Kashiwara encoded the combinato-
rial structure of the crystal basis in the crystal graph; a graph with edges
colored by simple roots. The path model developed by Littelmann can con-
struct for all symmetrizable Kac–Moody algebras, the crystal graph by means
of root combinatorics [Lit95]. The key object are paths in the dual of the Lie
algebra of a compact torus. Littelmann constructed so called root operators,
maps crucial to the construction of a crystal. Each of the root operators acts
by cutting the path into segments, identifying a certain subset of segments
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which are translated by the Weyl group and reassembled into a new path.
The Littelmann path model is a powerful tool in the construction of crystal
graphs, while still adhering to combinatorics explicit enough to implement it
in Sagemath.
Of course the story does not end here. Constructing the crystal graph for a
representation via the path model is useful but provides only a shadow of the
representation. A combination of Mirković–Vilonen cycles and geometrization
of the path model lifts this restriction.
The Mirković–Vilonen cycles provide a basis for the representation. More pre-
cisely: For a complex, reductive algebraic group G denote the Langlangs dual
group by G∨. Then the Mirković–Vilonen cycles are certain finite-dimensional
subvarieties of the affine Grassmannian G(C((t)))/G(C[|t|]). The closure of a
G(C[|t|])-orbit in the affine Grassmanian is called an affine Schubert variety.
The Mirković–Vilonen cycles are the irreducible components of the intersec-
tion of the affine Schubert variety with certain Białynicki-Birula cells. Their
classes form a basis for the intersection homology of these affine Schubert
varieties. Mirković and Vilonen showed that the intersection homology is a
finite-dimensional irreducible representation of the group G∨. Using Tan-
nakian reconstrution G∨ is reconstructable from its representation making
this the first approach to define G∨ without reliance on the classification of
complex algebraic groups.
Gaussent and Littelmann introduced the gallery model, a coarser version of
the path model. A gallery is a sequence of faces in the affine Coxeter complex
of G (or rather the Weyl group of G), and one can partition the set of galleries
into finite pieces separated by their type. From a gallery one can construct an
irreducible, finite-dimensional, smooth variety Σ, which comes with a natural
map to the affine Schubert variety. This map is a resolution of singularities,
and in addition one can compute Mirković–cycles with it. A torus of G acts on
Σ and the resulting Białynicki–Birula cell decomposition is centered around
the torus fixed points. These fixed points are in one-to-one correspondence
with galleries of a fixed type. The root operators of the gallery model act on
a certain subset of these galleries, called LS-galleries. Gaussent and Littel-
mann described an open, dense subset of a cell centered around an LS-gallery
which is mapped to an open dense subset of a Mirković–Vilonen cycle under
the resolution of singularities. Combining the transitions from path model to
gallery model to cycles interlocks the path model with an explicit basis of a
representation.
There are two natural questions to be asked here:

1. Can the relationship of MV cycles and the path model be stated without
the gallery model?
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2. Does the differential geometric or compact Lie group point of view yield
any merits?

The natural object to consider is the loop group Ω(K) of a compact Lie group
K. It has natural connections to the path model (via the exponential map)
and to the affine Grassmannian, which is a dense subset of the loop group.
The main motivation of this thesis is to make this change of viewpoint with
the variety Σ as its center piece. For this approach we first remold the path
model into the compact Lie group setting. This includes the descending of
the root operators from paths in the Cartan subalgebra to the loop group of a
compact torus S of K. In this context the weight function can be reinterpreted
as winding numbers around certain components of S. Key to this endeavor is
proposition 2.1.2, which roughly states:

Proposition. The root operators of the path model descend to the loop group
Ω(S) of a compact torus S ⊆ K. The resulting path models parametrize bases
of irreducible K∨-representations.

What we are looking for is a suitable geometric object to embed a path
model into. We propose a generalization of the classical Bott–Samelson man-
ifold [BS58] for this task. Given a loop γ ∈ Ω(S) the Bott–Samelson manifold
Γγ is a fibered product of subgroups of K associated to γ. It can be embedded
into the loop group Ω(K). Our main tool in computing the Bott–Samelson
manifold is Borel-de Siebenthal theory, which classifies maximal compact sub-
groups of maximal rank in K by means of the extended Dynkin diagram.
These groups arise as the stabilizers of certain elements in a torus of K, the
situation in which we will encounter them. The loop group is a symplectic
manifold and we compute a formula for the restriction of the symplectic form
to Γγ . We can give a necessary condition on γ to conclude non-degeneracy of
the restricted form. This shows that the class of loops in dominant direction
have symplectic Bott–Samelson manifolds attached. In this case we compute
the moment map image of Γγ : It turns out to be the Weyl polytope. This is
summarized in the following metatheorem joining lemma 3.5.4 and corollary
3.5.12.

Theorem. Let γ ∈ Ω(S) be in dominant direction. The manifold Γγ , seen as
a submanifold of Ω(K), is a symplectic S-submanifold, and the image of the
moment map is the Weyl polytope of highest weight wt(γ).

By results of Demazure [Dem74] and Hansen [Han73] the classical Bott–
Samelson manifolds are complex varieties, but not in a unique way. As a
remedy we propose a unique complexificitation by means of the maximally
folded loops and parahoric subgroups of G(C((t))). To a maximally folded
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loop we associate a generalized gallery δ(γ) and a generalized Bott–Samelson–
Demazure–Hansen variety Σ(δ(γ)). We summarize theorem 3.6.12 and lemma
3.6.13:

Theorem. Given a maximally folded loop γ ∈ Ω(S) the generalized Bott–
Samelson–Demazure–Hansen variety Σ(δ(γ)) and the Bott–Samelson manifold
Γγ are diffeomorphic. The map realizing this diffeomorphism can be given in
a natural way, it is S-equivariant and respects the path respectively the gallery
model.

The diffeomorphism between Γγ and Σ(δ(γ)) gives a different point of view
to the desingularization of the affine Schubert variety by Σ(δ(γ)). The rep-
resentative of [g0 : · · · : gk] ∈ Σ(δ(γ)) obtained from the diffeomorphism is
componentwise contained in the free loop group of K. In conjuction with
the results by Gaussent and Littelmann we can thus use Γγ to compute the
MV cycles and affine Schubert varieties as subsets of Ω(K) without the Iwa-
sawa decomposition. This gives an affirmative answer to the first question we
asked. To prove the results we rely on the gallery model. Nevertheless, the
construction of Γγ , the map from Γγ to the affine Schubert variety and the
identification of the good paths in Γγ does not involve the gallery model.
One advantage of working in the differential geometric category is its extra
flexibility. For us this materializes in terms of homotopies, by which we de-
duce three more results. We introduce the notion of a homotopy fitted to
the path model, those homotopies which induce maps between the associated
Bott–Samelson manifolds. Assume that Γγ is not symplectic as a subset of
Ω(K). We define a procedure to obtain η ∈ Ω(S) close to γ such that Γη is
symplectic and there exists a homotopy from γ to η fitted to the path model.
The induced map Γγ → Γη is surjective. By introducing a shrinking algorithm
we can give a larger class of loops for which the moment map image is the
Weyl polytope. The shrinking algorithm produces a homotopy fitted to the
path model from γ to a loop η such that η is contained in the 1-skeleton of the
Coxeter complex. Using the flexibility of the differential geometric category
we give a partial answer to the second question we asked: The loop group
Ω(K) allows different explicit embeddings of the affine Schubert variety and
MV cycles using homotopies.

Theorem (Theorem 4.4.4). Given a maximally folded loop γ in S such that
Γγ contains a loop η in dominant direction, the map

πγ : Γγ → Σ(δ(γ)) → Ω(K)

[g] 7→ g.ν
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is well-defined for a large class of loops ν. The image Im(πν) is diffeomorphic
to the affine Schubert variety at wt(η). Moreover the embedding of the affine
Schubert variety as Im(πν) and the identity map are isotopic. If η ∈ Γγ is an
element of the crystal generated by γ and we denote by Γγ,η the cell centered at
η, then π(Γγ,η) is homeomorphic to an MV cycle and the associated embedding
is isotopic to the identiy.

In chapter 1 we give necessary notations and facts about the objects used.
This includes the notations and conventions we use for compact Lie groups
and algebraic groups in section 1.1, Borel–de Siebenthal theory in section 1.2,
the loop group and its different structures in section 1.3. We continue with
the algebraic setting and introduce the path model in 1.4 and versions of the
gallery model in section 1.5. This includes 1-skeleton galleries and the Bott–
Samelson–Demazure–Hansen variety Σ(δ). We conclude with the definition
of the affine Schubert varieties, semi-infinite orbits, MV cycles and MV poly-
topes in section 1.6.
Chapter 2 contains the descend of the root operators to the loop group of
S and a review of the Birkhoff decomposition in light of the descended path
model.
Chapter 3 contains our first two main results. We introduce the Bott–Samelson
manifolds in section 3.1 and review the classical theory via partial flag man-
ifold and coadjoint orbits in sections 3.2 and 3.3. In section 3.4 we relate Γγ

to the path model. Section 3.5 is devoted to our result on the symplecticness
of Γγ and computation of the moment map image, while we construct the
diffeomorphism Γγ → Σ(δ) in section 3.6.
In chapter 4 we examine the relation between homotopies of γ and the associ-
ated Bott–Samelson manifolds. We define the notion of homotopy fitted to the
path model and introduce the method to obtain from a non-symplectic Γγ a
close but symplectic Γη in section 4.1. We introduce the shrinking algorithm
in section 4.2. Section 4.3 is a sidenote on MV polytopes via results of Ehrig in
relation to Γγ . We describe the embeddings of MV cycles and affine Schubert
varieties into Ω(K) in section 4.4.
We end the thesis with chapter 5, where we discuss possible future research
directions.
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1 Preliminaries

1.1 Notation
Let K be a compact simple Lie group of rank n. Its maximal compact torus
is denoted by S ∼= (S1)n. The complexification KC of K is a simple complex,
algebraic group. It has a maximal, complex torus SC ∼= (C∗)n, the complexifi-
cation of S. The Lie algebra of K will be denoted Lie(K) and for other groups
likewise. The character lattice X∗(S) := Hom(S, S1) of S can be identified
as a subset of Lie(S)∗. Similarly we can identify the cocharacters X∗(S) as
a subset of Lie(S). We denote the evalution of λ ∈ Lie(S)∗ on X ∈ Lie(S)
by 〈X,λ〉. The Lie algebra Lie(KC) decomposes into the direct sum of root
subspaces Lie(KC)α where α ∈ X∗(S) is extended to Lie(SC) linearly. The
non-zero characters α for which the root subspace is non-zero are called roots.
The set of all roots will be denoted by Φ. The set of simple roots, denoted
by ∆ = {α1, . . . , αn} ⊆ X∗(S), is a Z-basis of the root lattice R such that ev-
ery root can be expressed as a non-negative, integral linear combination or a
non-positive one. The simple coroots ∆∨ = {α∨

1 , . . . , α
∨
n} achieve the same for

the coroot lattice Q. The positive (co-)roots are those (co-)roots which can
be written as a non-negative linear combination of the simple (co-)roots and
will be denoted by Φ(∨),+. Write a root β =

∑
α∈∆ kαα then the height of β

is ht(β) =
∑

α∈∆ kα. The highest root is the unique positive root of maximal
height and analogous for the highest coroot. A partial order ≤ is defined on
X∗(S) by prescribing λ ≤ β if λ − β is a non-negative linear combination of
simple roots. We use the same notation for the analogously defined partial
order on X∗(S).
The Weyl group W = WK is defined as the normalizer of the torus modulo
the torus itself,

WK = NK(S)/S = NKC(SC)/SC.

It acts faithfully on Lie(S) and is generated by reflections in the hyperplanes
defined by the simple roots. These reflections will be denoted by sα. The
length l(w) of w ∈ WK is the length of the shortest word in the sα, α ∈ ∆
that represents w. For every positive root α there exist Hα,Jα,Kα such that

9



1 Preliminaries

the map

φα : su2 → Lie(K)(
i 0
0 −i

)
7→ Hα,

(
0 −1
1 0

)
7→ Jα,

(
0 −i
−i 0

)
7→ Kα

is a monomorphism of Lie algebras. It integrates to a group homomorphism
Φα : SU2 → K which is either injective or has kernel {±1}.

On every compact Lie group exists a bi-invariant Riemannian metric ( , )
induced by the Killing form on Lie(K). The Lie group K is uniquely identi-
fied by the quadruple of simple roots, simple coroots, character and cochar-
acter lattice (∆,∆∨, X∗(S), X∗(S)). More precisely the quotient R/X∗(S)
is isomorphic to the fundamental group of K while the quotient Q/X∗(S) is
isomorphic to the center of K. By switching roots with coroots and char-
acters with cocharacters one obtains the data (∆∨,∆, X∗(S), X

∗(S)) for the
Langlands dual group K∨. Existence of K∨ is provided by the classification
of simple compact Lie groups.

The Lie group exponential of S is a covering map and group homomorphism
exp : Lie(S) → S which has kernel X∗(S). The Weyl vector ρ is the halfsum
of all positive roots, in the same way ρ∨ is defined.
We briefly recall the connection of representations of a compact simple Lie
group and its Lie algebra. The elements dual to the simple coroots are called
fundamental weights, we will denote the element dual to α∨ by ϖα∨ . As we
also fixed an enumeration of ∆, we can enumerate the fundamental weights
by the same Indices. Elements of the Z-module spanned by the fundamental
weights are called infinitesimal weights of K. We denote the set of infinitesimal
weights by P . For K simply-connected P coincides with the character lattice.
The dominant Weyl chamber C is defined by the choice of simple roots as
C = {X ∈ Lie(S)∗ | 〈α∨

i , X〉 ≥ 0 i = 1, . . . , n}. The antidominant Weyl cham-
ber is defined by swapping the simple roots with their negatives, we denote it
by C−∞. An infinitesimal weight is called dominant if it is an element of the
dominant Weyl chamber. A weight is dominant if and only if it is an inte-
gral, positive linear combination of fundamental weights. The set of dominant
weights is denoted by P+ and similiary for subsets of P . Given an infinitesi-
mal dominant weight λ, there exists a simple, finite-dimensional Lie(K) rep-
resentation, denoted by V (λ); every finite-dimensional Lie(K) representation
decomposes as a direct sum of such representations. The representation V (λ)
is a representation of K if and only if λ is a cocharacter. All notions for roots
and weights are valid for coroots and coweights and will be denoted similarly.

Let Φ′ be a subset of the positive (co-)roots. We say that a (co-)weight λ
is regular with respect to Φ′ if α∨(λ) is positive for all α ∈ Φ′.

10



1.2 Borel–de Siebenthal theory

A parabolic subgroup of KC is a subgroup P of KC such that the quotient
KC/P is a projective manifold. The quotient is called a partial flag manifold,
it is smooth. A minimal parabolic subgroup is called a Borel subgroup. Our
choice of a torus SC of KC and of positive roots Φ+ fixes a standard Borel
subgroup which we will denote by B. It is the Lie group associated to the Lie
subalgebra

Lie(B) = Lie(SC)⊕
⊕
α∈Φ+

Lie(KC)α.

A parabolic subgroup containing B is called standard, and every parabolic sub-
group is conjugate to a standard parabolic subgroup. The standard parabolic
subgroups are in bijection with subsets I of the nodes of the Dynkin diagram
of K. Denote by Φ(I) the set of roots which are linear combinations of the
simple roots in I and the superscript + the subset of positive roots. Then the
parabolic subgroup PI associated to I is the group with Lie algebra

Lie(PI) = Lie(B)⊕
⊕

α∈Φ(I)+

Lie(KC)−α.

The parabolic subgroup PI contains a subgroup LI with Lie algebra

Lie(LI) = Lie(SC)⊕
⊕

β∈Φ(I)

Lie(KC)β

called standard Levi subgroup and is a reductive complex algebraic group itself.
Every subgroup conjugate to a standard Levi subgroup is called a Levi sub-
group. Sometimes these subgroups are called reductive Levi subgroups while
the maximal semisimple algebraic subgroup of LI is called a Levi subgroup in
this case. We will not use this variation.
We obtain an inclusion of the Weyl group WLI

in the Weyl group WK . It is
the subgroup generated by sα for α ∈ I.
The connected algebraic subgroup U of B with Lie algebra

Lie(U) =
⊕
α∈Φ+

Lie(KC)α

is called the unipotent radical of B.

1.2 Borel–de Siebenthal theory
In the definition of the Bott–Samelson variety down the road we will be in-
terested in subgroups of the compact group K which contain the maximal
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1 Preliminaries

torus S. These subgroups are called subgroups of maximal rank and can
be classified by subsets of the extended Dynkin diagram of K by Borel–de
Siebenthal theory. In this section we will review this theory and deduce some
consequences.

Definition 1.2.1. The fundmantal alcove ∆f ⊆ Lie(S) is defined as

∆f =
{
X ∈ Lie(S) | 0 ≤ β(X) ≤ 1, β ∈ Φ+

}
.

When we study the gallery model we will look at the fundamental alcove
more in depth. At this point we are only interested in the vertices of ∆f .
As the highest root is positive we can write it as

∑
miαi with non-negative

mi. The vertices of the fundamental alcove can be deduced as v0 = 0 and
vi = m−1

i ϖ∨
i , where ϖ∨

i are the cofundamental weights.

Definition 1.2.2. The extended Dynkin diagram of K is the Dynkin diagram
of K with an added node for the highest root, with edges to this node given by
the same rules as for the other nodes. To every node we attach as a label mi

and the highest root gets the label m0 = 1. We will refer to the node with the
label mi as the i-th node.

Theorem 1.2.3 ([BS49]). Any maximal connected subgroup of maximal rank
in K is conjugate to (the connected component of the neutral element of) a
subgroup which stabilizes either the edge connecting v0 with vi where mi = 1 or
it stabilizes a vertex for which mi is prime. Furthermore the resulting group is
a reductive, compact group and its type is deducible from the extended Dynkin
diagram. In the first case the resulting group is given by the diagram in which
the i-th and 0-th node are deleted, in the second case the i-th node is deleted.

In our examples the case mi not prime will never occur because of the
following fact.

Remark 1.2.4. The only groups with mi 6= 1 not prime are of type E7, E8

and F4.

We will not only be interested in the maximal connected subgroup of max-
imal rank, but all connected subgroups of maximal rank.

Remark 1.2.5. By passing from K to a maximal connected subgroup of max-
imal rank, one can inductively find all connected subgroups of maximal rank
in K.

To illustrate let us give an example.
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1.3 The loop group

Example 1.2.6. Let K = SU(3) then all maximal, compact subgroups are
conjugate to

K1 =


a b 0
c d 0
0 0 e

 , K2 =


a 0 0
0 b c
0 d e

 .

The extended Dynkin diagram of K is a 3-loop and the corresponding subgraphs
for K1 and K2 are the diagrams consisting of just the second respectively first
node. One can already observe here that the list one obtains contains duplicate
entries as also K1 and K2 are conjugate. There is a third group we could
associate via deletion of two nodes in the extended Dynkin diagram, which is
the stabilizer of the hyperplane defined by the highest root. This is conjugate
to both of the above groups by a lift of the simple reflections s1 resp. s2, but
will play an important role later on.

Let us record the last observation in general.

Lemma 1.2.7. There exists a compact, connected subgroup to every subset of
nodes of the extended Dynkin diagram of K by deleting the nodes outside of
the subset and applying Borel–de Siebenthal.

We will reobserve this behaviour in the context of parahoric subgroups of
the algebraic loop group.

1.3 The loop group
In this section we introduce the based loop group Ω(K) as well as the free
loop group L(K), subgroups, different topologies and additional structures.

Definition 1.3.1. The based loop group Ω(K) consists of Sobolev class 1 loops
in K, i.e. absolutely continuous loops of finite energy, see for example [Kli78].
Our main reference concerning loop groups will be [PS86].
Equipped with pointwise multiplication Ω(K) becomes a group. The based loop
group is an infinite dimensional manifolds modeled on the space Ω(Lie(K)) of
Sobolev class 1 loops in Lie(K) based at 0. These structures are compatible
making Ω(K) into an infinite dimensional Lie group. The Lie algebra of Ω(K)
is Ω(Lie(K)).

It can also be realized as the quotient of the space of free loops.

Definition 1.3.2. By L(K) we denote the space of free loops of Sobolev class
1 in K; it is also a group via pointwise multiplication. The constant loops
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1 Preliminaries

form a subgroup isomorphic to K and Ω(K) is a subgroup as well. The free
loop group L(K) is an infinite dimensional manifold modeled on L(Lie(K)),
the space of loops of Sobolev class 1 in Lie(K). The natural map

Ω(K) → L(K)/K

γ 7→ γK

is a diffeomorphism. As a group L(K) is the semidirect product of K and
Ω(K).

One can choose a different regularity for the loops one wants to consider
and obtain subgroups of L(K) or Ω(K). For example the polynomial loop
group.
Definition 1.3.3. The polynomial loop group Ωpol(K) is the subset of Ω(K)
consisting of loops which have a finite Fourier expansion.

It has the analogous realization as Lpol(K)/K. There is another realization,
which we will be able to define in subsection 1.5.2. This is the reason for our
interest in Ωpol(K).
We will need to introduce on Ωpol(K) a topology different from its sub-
space topology. We assume K is embedded into some special unitary group
SU(N) which is always possible. Let H = L2(S1,CN ) be the space of square-
integrable functions S1 → CN and denote by Gr(H) the Grassmannian of H.
It consists of subspaces of H with some complementary dimension conditions
which are discussed in detail in [PS86][chapter 7]. One such subspace is given
by H+ the closed span of zkv for k ≥ 0 and v ∈ CN . Define Grj to be the set
of vector spaces W in Gr(H) subject to the conditions

zjH+ ⊆W ⊆ z−jH+

dim(W/zjH+) = dim(z−jH+/W ).

The map

Grj → Gr(jN, 2jN)

W 7→W/zjH+

identifies the space Grj with the finite-dimensional Grassmanian Gr(jN, 2jN)
of jN -dimensional subspaces of C2jN ∼= z−jH+/z

jH+. It is straightforward
to compute Grj ⊆ Grj+1.
Proposition 1.3.4 ([PS86]). The map

Ω(K) → Gr(H)

γ 7→ γH+

14



1.3 The loop group

is an embedding and the image of the polynomial loop group Ωpol(K) is contained
in

⋃
j≥0 Grj.

Now we can define Ωj = Ωpol(K) ∩ Grj and obtain the polynomial loop
group as the direct limit of the Ωj . This gives rise to the direct limit topology
on Ωpol(K).
Proposition 1.3.5 ([Mar10, HHJM06]). We choose the analytic topology on
Grj. The direct limit topology on Ωpol(K) is finer than the subspace topology.
Remark 1.3.6. In [HHJM06] the authors give an example which provides that
in general the direct limit topology is strictly finer than the subspace topology.

Of course there is also the Zariski topology on Grj . The Ωj are subvarities
of Grj and thus inhibit a Zariski topology of their own [AP83]. Hence we also
obtain the direct limit Zariski topology.

We want to make an immediate observation about the coweight and weight
lattice in relation to the loop group.
Remark 1.3.7. The coweight lattice X∗ embeds into Ω(K).
Remark 1.3.8. Every λ ∈ X∗(S) defines a map Ω(S) → Ω(S1); γ 7→ λ ◦ γ.

The based loop group carries the structure of a symplectic manifold as
follows.
Definition 1.3.9. A left invariant symplectic form ω on Ω(K) is defined by
left translation of the skew-form on Lie(Ω(K)) = Ω(Lie(K)) given by

S(X,Y ) =
1

2π

2π∫
0

〈X ′(eiφ), Y (eiφ)〉dφ

The torus S acts via conjugation and S1 acts via rotation of the loop.

eiθ.γ(eiφ) := γ(ei(φ+θ))

This definition is to be understood in the realization L(K)/K; otherwise a
factor of γ(eiθ)−1 needs to be added.
The actions of S and S1 commute and thus the bigger torus S × S1 acts
on Ω(K) with resulting moment map µ : Ω(K) → Lie(S) × R [AP83]. The
components of the map are given by the formulas

µLie(S)(γ) := prLie(S)

(
1

2π

∫ 2π

0

γ(eiφ)−1γ′(eiφ) dφ

)
µR(γ) :=

1

4π

∫ 2π

0

‖γ(eiφ)−1γ′(eiφ)‖2 dφ

15



1 Preliminaries

where the latter one is the energy function and Lie(S)∗ has been identified
with Lie(S) via the Killing form.

The symplectic structure of Ω(K) is part of a Kähler structure. We will
define the complex structure J following [Pre82]. Consider the case K = S1

first. We can identify Lie(Ω(S1)) = H1(S1,R)/R. Thus we can write every
f ∈ Lie(Ω(S1)) as its Fourier expansion f =

∑
k≠0 fkz

k. Now we can define

J(f) =
∑
k<0

−ifkzk +
∑
k>0

ifkz
k.

For the general case note Lie(Ω(K)) ∼= Lie(K)⊗ Lie(Ω(S1)).

Definition 1.3.10. For a sublattice L ⊆ P∨ denote by Π(L) the set of Sobolev
1 paths in Lie(S) with endpoint in L, i.e.

Π(L) :=
{
π : [0, 1] → Lie(S) | π(0) = 0, π(1) ∈ L, π ∈ H1([0, 1],Lie(S))

}
We will refer to elements of Π(L) simply as paths. On the set Π(L) we have
the operation ∗ of concatenation of paths

π1 ∗ π2(t) =

{
π1(2t) for t ∈ [0, 12 ]

π2(2t− 1) + π1(1) for t ∈ [ 12 , 1]

Of course one could define the same operation on Ω(K), but the two oper-
ations are homotopy equivalent.

Lemma 1.3.11. The map

ψ : Π(X∗(S)) → Ω(S)

π 7→ exp ◦π

is well-defined, continuous and a bijection.

Proof. Note that π(0), π(1) ∈ X∗(S). As exp is a covering map Lie(S) →
S and X∗(S) is the kernel of exp, it is clear that the map is well-defined.
Bijectivity follows from the usual lifting property of coverings.

1.4 The Littelmann path model
In this section we will define the root operators and how to construct a Littel-
mann path model with their help. We define crystals and crystal graphs and
remind the reader about properties of the path model.
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1.4 The Littelmann path model

Definition 1.4.1. To define what a Littelmann path model is, we need the
maps

εα(π) = − inf
0≤s≤1

α(π(s)) (1.1)

φα(π) = α(π(1))− inf
0≤s≤1

α(π(s)) (1.2)

eα(π)(t) = π(t)− εα(π)α
∨ −min(−εα(π)− 1, inf

t≤s≤1
(α(π(s))))α∨, (1.3)

fα(π)(t) = π(t)− εα(π)α
∨ −min(−εα(π) + 1, inf

t≤s≤1
(α(π(s))))α∨. (1.4)

The element fα(π) is well-defined if and only if φα(π) ≥ 1, while eα(π) is
well-defined if and only if εα(π) ≥ 1 as continuity at 0 fails otherwise. We
will take the stance of fα, eα as partial functions which are just not defined
for π whenever the image is not a well-defined element of Π(X∗). The fα are
called lowering operators, while the eα are called raising operators. Both are
referred to as root operators.

The explicit form of the formulas is taken from the thesis of Chhaibi [Chh14].
For a path π such that ρ∨ ∗ π is contained in the dominant Weyl chamber we
define Aπ as the smallest set which contains π and is stable under the root
operators. By [Lit97] we know Aπ is finite. It is the set of all monomials in
the root operators applied to π.

Definition 1.4.2. The crystal graph Gπ of π ∈ Π+ is a colored, directed graph
with vertices Aπ. There is an arrow of color α ∈ ∆ from η → η′ if and only
if fα(η) = η′.

Littelmann proved the following theorems [Lit97] relating the path model
to the representation theory of Lie(KC).

Theorem 1.4.3 (Isomorphism Theorem). The graphs Gπ and Gπ′ are iso-
morphic if and only if π(1) = π′(1).

Theorem 1.4.4 (Character Formula). Define the character of a path model
Aπ as char(Aπ) :=

∑
η∈Aπ e

η(1). We have that the character char(Aπ) is
equal to the character of the irreducible Lie(K)-module Vπ(1) of highest weight
π(1).

Theorem 1.4.5 (Generalized Littlewood-Richardson rule). Let λ, µ ∈ P+ be
dominant integral weights of Lie(KC) and π1, π2 ∈ Π(P ) be such that π1(1) = λ
and π2(1) = µ. Then the tensor product V (λ)⊗ V (µ) decomposes into simple
modules as

V (λ)⊗ V (µ) ∼=
⊕

V (λ+ η(1))

17



1 Preliminaries

where the sum ranges over all η ∈ Aπ2 such that the concatenation π1 ∗ η is
contained in the dominant Weyl chamber.

Theorem 1.4.6 (Restriction formula). Let L ⊂ Lie(KC) be a Levi subalge-
bra. Denote by U(λ) the simple L-module of highest weight λ. Then V (µ)
decomposes as an L-module as

V (µ) =
⊕
ν

U(ν)

where ν runs over all paths in Aµ such that the projection of ν to the weight
space of L is contained in the dominant Weyl chamber of L.

The following theorem connecting the path model to the theory of crystal
graphs was proven by Kashiwara and Joseph.

Theorem 1.4.7 ([Jos95, Kas96]). The crystal graph Gπ is isomorphic to
Kashiwara’s crystal graph of V π(1)

q the irreducible representation of the quan-
tum group Lie(KC)

∨
q of highest weight π(1).

We will at this place remind the reader what a crystal is. This is for com-
pleteness and will not occur later.

Definition 1.4.8. Let B be a finite set with a weight map wt : B → P∨ and
for each simple root maps εα, φ : B → Z and partial maps

eα, fα : B → B.

The set B with the structural maps is called a finite dimensional crystal of the
group K∨

C if the structural maps fulfill the following axioms (i)-(iv):

(i) For each simple root α it holds φα(b) = εα(b) + 〈α,wt(b)〉.

(ii) If eα(b) 6= 0, then

εα(eα(b)) = εα(b)− 1

φα(eα(b)) = φ(b) + 1

wt(eα(b)) = wt(b) + α∨.

(iii) If fα(b) 6= 0, then

εα(fα(b)) = εα(b) + 1

φα(fα(b)) = φ(b)− 1

wt(eα(b)) = wt(b)− α∨.
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1.4 The Littelmann path model

(iv) The maps eα, fα are partial inverses, e.g. fα(b1) = b2 if and only if
b1 = eα(b2).

For later treatment of the path model we will also introduce the set of
integral paths. This definition is not the same as in [Lit97], but rather from
[BGL20].
Definition 1.4.9. A path π ∈ Π(X∗) is called integral if for every simple root
α every local minimum of the function α ◦ π̃ is in Z for all π̃ ∈ Aπ. The set
of integral paths will be denoted by Π(X∗)int.
Proposition 1.4.10 ([BGL20]).

1. A path which is contained in the dominant Weyl chamber is integral if
the function αi(π(t)) is weakly increasing for all i ∈ {1, . . . , n}.

2. If π is an integral path, there exists a unique path π̃ ∈ Aπ contained in
the dominant Weyl chamber.

On integral paths the action of the root operators can be described in sim-
pler terms.
Denote by mα the minimal value of α ◦ π and s ∈ [0, 1] the maximum such
that mα is attained. If α◦π(1)−mα ≥ 1, then there exists t ∈ [0, 1] such that
α◦π(t) = mα+1. We proceed by cutting π into three pieces π1, π2, π3, where
π1 = π|[0,s], π2 = π|[s,t] and π3 = π|[t,1]. Of course it holds π = π1 ∗ π2 ∗ π3.
Lemma 1.4.11. The lowering operator acts on π by the reflection sα on π2
and translation by α on π3

fα(π) = π1 ∗ sα(π2) ∗ τα(π3).

There is a similar formula for the raising operator.
The lift of the root operators to the loop group is immediate by the map ψ

of lemma 1.3.11 and its inverse.
Definition 1.4.12. For every α ∈ ∆ define the lowering operator

Fα : Ω(S) → Ω(S)

γ 7→ ψ ◦ fα ◦ ψ−1(γ)

where fα denotes the usual lowering operator for the Littelmann path model.
Similarly define the raising operator

Eα : Ω(S) → Ω(S)

γ 7→ ψ ◦ eα ◦ ψ−1(γ)

where eα denotes the usual raising operator for the Littelmann path model.
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1 Preliminaries

Proposition 1.4.13. The partial maps Fα, Eα are well-defined.

Proof. As ψ−1(γ)(1) ∈ X∗ by the proof of 1.3.11 and fα, eα change the end-
point by ±α we have(

fα ◦ ψ−1(γ)
)
(1),

(
eα ◦ ψ−1(γ)

)
(1) ∈ X∗(S)

whenever these are defined.

1.5 The gallery model
The gallery model can be understood as a roughed out version of the path
model. The replacement for the paths are galleries in the affine Coxeter com-
plex of K. Our treatment here follows [GL05].

Definition 1.5.1. The affine Weyl group W aff :=W ⋉R∨ acts on Lie(S) via
affine reflections. The affine reflection hyperplanes are of the form

Hβ,m := {X ∈ Lie(S) | 〈X,β〉 = m}

for β a positive root and m an integer. We will denote the reflection with
respect to such a hyperplane by sβ,m. The symbol H denotes the union of all
these hyperplanes. For every affine hyperplane we also have the corresponding
closed affine half-spaces

H+
β,m := {X ∈ Lie(S) | 〈X,β〉 ≥ m } ,

H−
β,m := {X ∈ Lie(S) | 〈X,β〉 ≤ m} .

The connected components of Lie(S) \H are called open alcoves; the closure
of an open alcove is called an alcove. A face F is a subset of Lie(S) obtained
by choosing for every pair (β,m) of a positive root β and an integer m one
of the associated affine half-spaces or the affine hyperplane and taking the
intersection over all pairs. By replacing the closed half-spaces with the open
ones the open face F o is defined. The set of all faces defines a polyhedral
complex, called the (affine) Coxeter complex.

The open faces are a partition of Lie(S).

Definition 1.5.2. The affine span 〈F o〉aff = 〈F 〉aff is the support of the
(open) face. We will refer to the support of a codimension-one face as a wall
of an alcove following the respective literature. More generally we will refer
to hyperplanes as walls, as is usual in the theory of buildings.
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1.5 The gallery model

Definition 1.5.3. A fundamental domain for the action of the affine Weyl
group is given by the fundamental alcove

∆f :=
{
X ∈ Lie(S) | 0 ≤ β(X) ≤ 1, β ∈ Φ+

}
defined already in section 1.2. Furthermore the affine Weyl group W aff is
generated by the reflections in the walls of the fundamental alcove. They are
the elements sα for α ∈ ∆ of the finite Weyl group and the element s0 = sβ,1
for β the highest root. The type of a face F of the fundamental alcove is the
set of reflection hyperplanes it is contained in,

type(F ) = {sβ,m | F ⊆ Hβ,m} .

The type of a face F in the Coxeter complex is defined as the type of the
unique face of the fundamental alcove in the affine Weyl group orbit of F .
The length l(w) of w ∈ W aff is the length of the shortest word in the letters
sα, α ∈ ∆ and s0 which represents w.

Example 1.5.4. We will consider SU(3) as our example.

s2,0s1,0

s0,−1

s1,0 s2,0

{s2,0, s0,−1, s1,1}{s2,1, s0,−1, s1,0}

α1α2

Figure 1.1: Types of faces for the fundamental alcove and one neighboring
alcove

Definition 1.5.5. Let A,B ⊆ Lie(S).

1. A W aff-translate of a Weyl chamber is called a sector. The translate of
0 by the same element of W aff is called the vertex of the sector.

2. Two sectors s, s0 are called equivalent if there is a sector s1 contained
in their intersection: s1 ⊆ s ∩ s0.

3. A hyperplane Hα,m separates A and B if A ⊂ H+
α,m and B ⊂ H−,o

α,m or
A ⊂ H−

α,m and B ⊂ H+,o
α,m, where we denote by a superscript o the open

halfspace.
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4. For an equivalence class C of sectors we say A is separated from C by
a hyperplane Hα,m if there exists a representative s ∈ C such that A is
separated from s by the hyperplane Hα,m.

Now we define the objects on which the root operators will act: The gal-
leries.

Definition 1.5.6. A combinatorial gallery δ joining 0 with λ ∈ X∗ is a
sequence of faces of Lie(S),

δ = (0 ⊂ Γ′
0 ⊃ Γ1 ⊂ · · · ⊃ Γp ⊂ Γ′

p ⊃ λ)

such that all Γ′
j have dimension dimHλ, all Γj are common faces of Γ′

j−1

and Γ′
j of relative codimension one. Here Hλ denotes the intersection of

hyperplanes Hα,0, which contain λ. We say δ has target λ.

Remark 1.5.7. As Gaussent and Littelmann remarked in [GL05] the dimen-
sion conditions are not necessary to define the gallery model. It simplifies the
definition of the root operators for the gallery model; thus we will follow their
approach. Later on we will associate a gallery to a loop. As this procedure
does not always produce a gallery in the sense we defined here, we will drop
the dimension conditions and take an ad hoc approach to the gallery model.

Definition 1.5.8. We denote by M(F,E) the set of hyperplanes which sepa-
rates the faces E and F . A combinatorial gallery δ joining 0 and λ is called
minimal if every face of δ is contained in Hλ and if the number of large faces
p+1 is minimal in the sense: For j ∈ {0, . . . , p} denote by Hj the set of affine
hyperplanes H such that the small face Γj ⊆ Hj, but the large face Γ′

j 6⊆ H.
The sets Hj are pairwise distinct and

⋃
j∈{0,...,p−1}Hj = M(0, λ).

Definition 1.5.9. The gallery of types tδ is the tuple of types of the faces of
the gallery δ.

tδ := type(δ) := (t0 ⊃ t′0 ⊂ t1 ⊃ · · · ⊂ tp ⊃ t′p ⊂ tλ)

where ti is the type of Γi, t′i the type of Γ′
i and tλ of the face λ. The set of

galleries of the same type as δ will be denoted by Γ(δ) and Γ(δ, ν) for ν ∈ X∗(S)
is the subset of galleries with target ν.

Such a gallery of types gives rise to sequence of subgroups of W aff

W0 ⊃W ′
0 ⊂W1 ⊃ · · · ⊂Wp ⊃W ′

p ⊂Wλ

where Wj is generated by the reflections along hyperplanes in ti and likewise
for W ′

j . Then it is easy to parametrize the set of combinatorial galleries of a
fixed type.
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1.5 The gallery model

Proposition 1.5.10. Let Wδ be the quotient of W0 × · · · ×Wp by the right
action of W ′

0 × · · · ×W ′
p defined by

(w0, . . . , wp)(w
′
0, . . . , w

′
p) = (w0w

′
0, w

′−1
0 w1w

′
1, . . . , w

′−1
p−1wpwp)

Then define the map

Wδ → Γ(δ)

[w0, . . . , wp] 7→ ({0} ⊆ Σ′
0 ⊇ · · · ⊆ Σ′

p ⊇ Σλ)

where Σ′
k = w0 · · ·wk(F

′
k) for F ′

k the unique face of ∆f of type tk. The small
faces are then prescribed by the large faces and the type. The above map is
a bijection. We will use [w0, . . . , wp] also for the gallery defined by means of
this map.

Let δλ be a minimal gallery joining 0 and λ. Then in the parametrization
Wδλ the gallery δλ is given by [1, τ1, . . . , τp] where τi is the unique represen-
tative of the largest class in Wj/W

′
j in the induced Bruhat order.

Definition 1.5.11. We call a combinatorial gallery δ = [w0, . . . , wp] ∈ Γ(δ)
folded around the j-th small face if wj 6= τj.

Proposition 1.5.12. Let Σj be a small face of a gallery [w0, . . . , wp]. We
denote by Ωj the j-th large face of the gallery [w0, . . . , wj , τj+1, . . . , τp]. Then
there exist positive roots β1, . . . , βq and integers m1, . . . ,mq such that Σj is
contained in the affine hyperplanes Hβi,mi

and for the large faces Σ′
j it holds

Σj = sβq,mq
· · · sβ1,m1

(Ωj)

We use the notation of this proposition in the following definition.

Definition 1.5.13. We say a gallery δ is positively folded at the small face
Σj if the large face Σj is contained in the positive halfspace H+

βi,mi
for all

i ∈ {1, . . . , q}. In case a gallery is not folded at a small face, the condition
is empty and therefore positively folded at the small face. We call a gallery
positively folded if it is positively folded at all small faces.

As we have seen integral paths are better suited for the path model and
similarly some galleries are better suited to build a model for a representation.
Gaussent and Littelmann gave two combinatorial conditions which guarantee
good constructions. These conditions are the already defined positive folding
and a dimension condition; a gallery subject to both is called an LS-gallery.
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Definition 1.5.14. Let Hj be the set of affine reflection hyperplanes H such
that Γj ⊂ H and Γ′

j 6⊂ H. We say a hyperplane H ∈ Hj is a load-bearing
wall if H seperates Γ′

j from the equivalence class of the sector C−∞.

For a positively folded gallery all folding hyperplanes are load-bearing walls.

Definition 1.5.15. The dimension of a positively folded combinatorial gallery
δ is the number of pairs (H,Γj) such that H is a load-bearing wall for δ at Γj.

Proposition 1.5.16. If δ ∈ Γ+(δλ, ν), then dim δ ≤ 〈λ+ ν, ρ〉.

This inequality leads to the definition of an LS-gallery.

Definition 1.5.17. A combinatorial gallery δ ∈ Γ+(δλ, ν) is called an LS-
gallery (of type λ) if dim = 〈λ+ ν, ρ〉. To denote LS-galleries, we will use a
subscript LS.

As for the path model a formula for the character of a representation can
be deduced.

Proposition 1.5.18 ([GL05]). The character of the irreducible K∨
C -represen-

tation V (λ) is given by ∑
ν∈X∗

|Γ+
LS(δλ, ν)| exp(ν).

The root operators in the gallery model

As for the path model Gaussent and Littelmann define partial maps fα, eα
on the set of combinatorial LS-galleries to construct a gallery model from one
LS-gallery.
Let α be a simple root and m the smallest integer such that the hyperplane
Hα,m contains one of the small faces Γ′

k. As all combinatorial galleries start
in 0, it follows m ≤ 0.

Definition 1.5.19. If m ≤ −1, let j be the maximal integer between m and 0
such that the small face Γ′

j is contained in the hyperplane Hα,m+1. Then we
define eαδ as the gallery which has faces ∆j resp. ∆′

j, where

∆j =


Γi for i ≤ j − 1,

sα,m+1(Γj) for j ≤ i ≤ k − 1,

τα∨(Γi) for i ≥ k.

The operator τα∨ is again the translation by α∨.
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We define a partial inverse fα.

Definition 1.5.20. If 〈ν, α〉 −m ≥ 1, let j be the maximal integer such that
Γ′
j ⊂ Hα,m and fix the integer k to be minimal such that Γ′

k ⊂ Hα,m+1. Then
we define fαδ as the gallery which has faces ∆j, where

∆j =


Γi for i ≤ j − 1,

sα,m(Γj) for j ≤ i ≤ k − 1,

t−α∨(Γi) for i ≥ k.

We refer to [GL05][pp.60, 61] for a pictorial explanation of the situation.

Proposition 1.5.21. The set of LS-galleries in Γ+(δλ) is the subset generated
from δλ by application of the root operators fα.

1.5.1 1-Skeleton galleries
A direct connection of the gallery model and the path model can be easily
seen for 1-skeleton galleries. They were studied by Gaussent and Littelmann
in [GL12].

Definition 1.5.22. A gallery δ is called a 1-skeleton gallery if all its large
faces are 1-dimensional faces.

Definition 1.5.23. A ray of the dominant Weyl chamber generated by a
fundamental weight ϖ crosses edges and vertices of the Coxeter complex. The
edges and vertices obtained by this up until reaching ϖ define a 1-skeleton
gallery joining 0 and ϖ. These edges are called fundamental faces, even
though they are not necessarily part of the fundmanental alcove.

Definition 1.5.24. We call a 1-skeleton gallery a dominant combinatorial
gallery joining 0 and λ if all its large faces are translations of fundamental
faces.

Given a 1-skeleton gallery, associate to it the path, which is the concatena-
tion of the large faces. This gives a direct link between the path model and
the gallery model.

Definition 1.5.25. A 1-skeleton gallery δ is called minimal if there exists an
equivalence class of sector C and representatives s0, . . . , sp ∈ C such that the
small face Vj of δ is the vertex of sj and the large face Ej is contained in sj
for all j ∈ {0, . . . , p}.
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For 1-skeleton galleries the notion of positive folding and LS-gallery do exist,
but are more complicated. We refer to [GL12] for definitions and properties.
A dominant combinatorial gallery δ joining 0 and λ is always positively folded
and an LS-gallery. To obtain all other LS-galleries of the same type, we use
the identification of δ with a path and the path model.

1.5.2 The Bott-Samelson manifold for a gallery
With our presentation of the gallery model up until now the benefit over the
path model is unclear. The potential of the gallery model is not in its com-
binatorics but in a natural generalization of galleries to the affine building of
K. For a definition of the affine building see [GL05]. While the theory of
buildings is rich and beautiful, it is also rich in its notations. As the advan-
tages of introducing the affine building are outweighed by the difficulties in
our case, we refrain from doing it. Denote by F the ring of Laurent series
with complex coefficients C((t)) and by A = C[[t]] its ring of integers, the
power series ring. We obtain the algebraic loop group KF and its subgroup
KA. The algebraic loop group KF is not to be confused with the polynomial
loop group Ωpol(K). The nomenclature for these is a bit muddled as Ωpol(K)

is also called the algebraic loop group by some authors, which is a fact one
need to be aware of.
We can identify both KF and KA as the set of matrices with entries in F re-
spectively A subject to the complex polynomial equations defining KC. There
is an action of KF on the affine building, and it allows to extend the definition
of the type of gallery to galleries in the affine building. What we are interested
in is a parametrization of the galleries of a fixed type. This parametrization
by the Bott–Samelson–Demazure–Hansen variety was used by Gaussent and
Littelmann [GL05]. To state it we give some more notations and facts for the
algebraic loop group.

The quotient G = KF /KA is called the affine Grassmanian and in our
context is best thought of as the loop group Ωpol(K) of loops with a Laurent
polynomial expansion.

Lemma 1.5.26. In this lemma we will regard Ωpol(K) topologized by either
the direct limit of the Zariski topology or the direct limit of the analytical
topology. The map

Ωpol(K) → G; u(eiφ) 7→ u(t)KA

is a homeomorphism.
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1.5 The gallery model

Proof. The map is bijective by the Iwasawa decomposition, which states

KF = Ωpol(K) ·KA

and the intersection of Ωpol(K) and KA is just 1.
Regarding continuity: The finite-dimensional model Ωj for Ωpol(K) coincides
with the one of G given in [Kum02]. It follows the map is a homeomorphism
for every piece of the filtration, which means it is a homeomorphism for the
whole space in the direct limit topology.

Via the evaluation map ev0 : KA → KC, A(t) 7→ A(0) we can define the
standard Iwahori subgroup B as the preimage of the Borel subgroup B of KC,
fixed by our choice of simple roots. We define a parahoric subgroup to be any
subgroup which is a finite union of double coset of B. The double cosets are
in one-to-one correspondence with elements of the affine Weyl group W aff via
the Bruhat decomposition which states

KF =
⊔

w∈Wa

BwB.

The parahoric subgroups which contain the standard Iwahori are called stan-
dard.

Lemma 1.5.27 ([Kum02]). The standard parahoric subgroups are in one-to-
one correspondence with subsets of nodes of the extended Dynkin diagram of
K.

The choice of nodes in the subgraph describes a subset of roots of K, and
we can thus also associate to a face of the fundamental alcove a standard
parahoric subgroup. This piece of data can be extracted from the type as the
set of reflections sα,0 and sα0,1 which are in the type of a face. We will denote
the parahoric subgroup to a face F as PF .

Remark 1.5.28. As in the finite-dimensional case PI contains a Levi sub-
group which is a finite-dimensional algebraic subgroup [Kum02]. The associ-
ated Weyl group embeds into W aff as the subgroup generated by the reflections
sα for α ∈ I.

To define the Bott-Samelson variety in this setting we will be using the
gallery of types.

Definition 1.5.29. The Bott–Samelson–Demazure–Hansen variety Σ(δ) is
the fibered product of parahoric subgroups

P0 ×Q0 · · · ×Qp−1 Pp/Qp,
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where the Pi are the parahoric subgroups associated to the type of the i-th
small face and the Qi to the i-th large face. It is a finite-dimensional, complex,
smooth, projective variety [Kum02] [GL05]. As is custom we will refer to it
as the Bott–Samelson variety.

We use the same definition for 1-skeleton galleries.

1.5.3 Comparison of the models
As stated at the beginning of section 1.5 the gallery model is a roughed out
version of the path model. In the following we will explain what we mean by
this.

Example 1.5.30. Let πs(t) be the piecewise defined path in Lie(S), where S
is the torus of diagonal matrices in SU(3), given by

πs(t) =

{
2t(sϖ∨

1 + (1− s)ϖ∨
2 ) for t ∈ [0, 12 ]

(2t− 1)((1− s)ϖ∨
1 + sϖ∨

2 ) + sϖ∨
1 + (1− s)ϖ∨

2 for t ∈ [ 12 , 1],

for s ∈ (0, 1). All considered paths πs define a path model for the crystal of
highest weight ρ∨ = ϖ∨

1 +ϖ∨
2 , the common endpoint of all πs. Define ∆(πs)

to be the sequence of faces in the affine Coxeter complex, which πs traverses.
It is independent of the choice of s. The gallery model obtained from ∆(πs)
is also a crystal of highest weight ρ∨.

For a given gallery model there are many different path models resulting in
this gallery model, which leads us to our interpretation of the gallery model
as rougher than the path model.

1.6 Mirković–Vilonen cycles and polytopes
The Mirković–Vilonen cycles, or short MV cycles, are the intersection of two
naturally defined subsets of the affine Grassmannian G. They occur as basis
for the representations of K∨

C . Their image under the moment map of G are
the MV polytopes. In this section we will give their definition and facts about
both the MV cycles and polytopes. First the affine Schubert varieties Cλ.

Definition 1.6.1. The affine Schubert cell Gλ is defined as the KA-orbit of
a dominant coweight λ on the affine Grassmannian. They partition the affine
Grassmannian and this partition is called the Bruhat decomposition

G =
⊔

λ∈X∗+

Gλ.

28



1.6 Mirković–Vilonen cycles and polytopes

Its closure Cλ = Gλ is called the affine Schubert variety. The closure is given
by

Cλ =
⊔
ν≤λ

Gν .

The affine Schubert variety is a complex variety of dimension ht(λ− w0λ).

The notation Cλ might be unusual for the algebraically fluent reader and
stems from the context of loop groups. The following observation is an imme-
diate consequence of the definition of the affine Schubert cell and the descrip-
tion of the stable manifolds of the energy flow by Pressely [Pre82].

Lemma 1.6.2. The affine Schubert cell are the stable manifolds of the energy
flow on Ω(K).

The second ingredient for the definition of MV cycles are the semi-infinite
orbits Sλ.

Definition 1.6.3. Let UF be the set of F points of the unipotent radical of B.
It acts on G via left multiplaction and its orbits, which are called semi-infinite
orbits, can be indexed by weights,

G =
⊔

λ∈X∗

UFλ.

The orbit through λ will be denoted by Sλ. Such an orbit can further be
described as a kind of Białynicki-Birula cell (see definition 1.6.8), i.e.

Sλ =
{
g ∈ G | lim

a→0
ρ∨(a)g = λ

}
.

We will denote the set of irreducible components of a topological space X
by Irr(X).

Definition 1.6.4 ([MV07]). For λ, µ ∈ X∗ we set

Z(λ)µ = Irr(Sµ ∩ Gλ).

An element of Z(λ)µ is called a Mirković-Vilonen cycle. We denote by Z(λ)
the union of all Z(λ)µ.

We will not dwell on why these objects are called cycles more than we
already did in the introduction.
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Theorem 1.6.5 ([MV07]). Let λ ∈ X∗(S) be a chocharacter, then the repre-
sentation V (λ) of K∨

C can be decomposed as

V (λ) =
⊕

X∈Z(λ)

C ·X,

and if X ∈ Z(λ)µ then it is a weight vector of weight µ. More importantly
the action of K∨

C can be constructed naturally, and thus one can construct K∨
C

without relying on the classification of simple complex Lie groups.

The affine Schubert varieties are in general singular, but as in the classical
case the Bott–Samelson varieties can be used to desingularize them.

Lemma 1.6.6. Let δ be a minimal combinatorial gallery joining 0 and λ,
where λ is a dominant coweight. The map

π : Σ(δ) → Cλ

[g0 : · · · : gk] 7→ g0 · · · gkλf

is a resolution of singularities, i.e. birational and proper. Here λf denotes the
element of TF /TA, which is the unique vertex of ∆f in the affine Weyl group
orbit of λ.

As one would hope the same holds true for 1-skeleton galleries.

Lemma 1.6.7. Let δ be a minimal combinatorial 1-skeleton gallery joining 0
and λ, where λ is a dominant coweight. The map

π : Σ(δ) → Cλ

[g0 : · · · : gk] 7→ g0 · · · gkλf

is a resolution of singularities.

To state the connection of the Bott–Samelson variety and the MV cycles
we need another tool from algebraic geometry, the Białynicki-Birula cell de-
composition.

Definition 1.6.8 ([BB73]). Let X be a projective variety over C with an
action of the complex torus C∗. We assume the set of C∗-fixed points to be
finite. If p ∈ XC∗ is a fixed point and we define the attractor set Xp as

Xp :=
{
x ∈ X | lim

t→0
t.x = p

}
,
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1.6 Mirković–Vilonen cycles and polytopes

then the decomposition

X =
⊔

p∈XC∗

Xp

is a decomposition into complex cells.

On the variety Σ(δ) there is an action of the complex torus SC defined by
left multiplying the first factor of Σ(δ). By choice of a regular coweight in the
Weyl chamber C−∞ it can be restricted to an action of C∗ such that the fixed
point sets of both actions are the same.

Lemma 1.6.9. The SC-fixed points of Σ(δ) can be identified with the set of
galleries of type type(δ).

We explain the identification. Given δ0 = [w0 : · · · : wk] ∈ Γ(δ) we know by
remark 1.5.28 that we can find lifts pj in Pj of wj . The point [p0 : · · · : pk] of
Σ(δ) is a SC fixed point and corresponds to δ.

Theorem 1.6.10 ([GL05]). The image under π of the Białynicki-Birula cell
Σ(δ)µ for µ an LS-gallery is a dense subset of an MV cycle of weight target(µ),
and every MV cycle contains the image of such a Białynicki-Birula cell.

The same holds true if we replace δ by a 1-skeleton gallery [GL12]. The
map π is proper and thus closed which implies that the MV cycle is the same
as the image of Σ(δ)µ.
Anderson and Kamnitzer [And03, Kam10, Kam07] defined and researched the
MV polytopes. Let us give the definition first.

Definition 1.6.11. The affine Grassmannian can be given a symplectic form
and together with the SC-action by left multiplication we obtain a moment map

µ : G → Lie(SC)
∗.

If we identify Lie(SC)
∗ via the Killing form with Lie(SC), we can describe the

image of an MV cycle as the convex hull of its torus fixed points

µ(X) = conv({λ | λ ∈ X ∩X∗(S)}

for X ∈ Z(λ).

By works of Kamnitzer descriptions of the MV polytopes via inequalities
are at hand.
To compute MV-polytopes Ehrig introduced the vertex gallery [Ehr09].
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Definition 1.6.12. To an LS-gallery δ and an element w ∈W we define the
vertex gallery Ξw(δ) as follows. For a simple root α let emax

α (δ) = e
ε(δ)
α (δ),

where ε(δ) is the maximal applicable number of eα for δ. For w = si1 · · · sik a
reduced decomposition into simple reflections define ew = emax

ik
· · · emax

i1
. Then

Ξw(δ) = w(ew(δ)). It is independent of the reduced decomposition.

There are different formulas for the vertex gallery in terms of folding opera-
tors. Using these formulas one can interpret the vertex gallery as an LS-gallery
for a different choice of simple roots, fixed by the choice of w. We will not con-
sider this interpretation. By the given formulation it is immediately clear that
the endpoint of Ξw(δ) can be computed in terms of the crystal graph with-
out knowledge of the gallery model. As the following theorem by Ehrig gives
a combinatorial construction of MV-polytopes with the help of the gallery
model and the vertex gallery, it is clear that MV-polytopes can be computed
from the crystal graph. The proof still relies on the gallery model and the
associated Bott–Samelson variety.

Theorem 1.6.13 ([Ehr09]). Let δ be an LS-gallery such that every large face
is an alcove. Then

conv {wt(Ξw(δ)) | w ∈W}

is the MV-polytope corresponding to the MV-cycle which contains δ.

From this one easily deduces that the MV-polytope of the pair of weights
(λ, λ) is the Weyl polytope of weight λ defined as conv(W.λ).
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2 Root operators and the weight
function

2.1 Descend to the loop group
Definition 2.1.1. For every α ∈ ∆ define the function

windα : Ω(S) → Z
γ 7→ wind(α ◦ γ),

where wind denotes the winding number for loops on S1.

The following proposition is a reinterpretation of the Littelmann path model
inside of the loop group via the exponential map. It gives the setup in which
we will work later on. We will still use the original approach by Littelmann
as necessary to avoid notational debt.

Proposition 2.1.2. Let γ ∈ Ω(S) with ρ∨ ∗ πγ contained in the interior of
the dominant Weyl chamber and denote by Aπ the smallest subset of Ω(S)
stable under the root operators, then the following holds:

1. The weight of a loop µ is given by

wt(µ) =
∑
α∈∆

windα(γ)ϖ
∨
α . (2.1)

2. The crystal graph obtained from Aγ parametrizes a basis for the irre-
ducible K∨-module with highest weight wt(γ).

3. To every γ1 ∈ Ω(S) there exist µ+, µ− ∈ Ω(S) such that

Fα(γ1) = γ1µ+

Eα(γ1) = γ1µ−

whenever the left hand side is defined.
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2 Root operators and the weight function

Corollary 2.1.3. The root operators fix the connected components of the loop
group Ω(K). Equivalently the homotopy classes of γ, Fα(γ), Eα(γ) in K are
the same.

Proof. 1. Part: We compute

windα(µ) = wind(α ◦ µ)
= πα◦µ(1)

= (dα)1(πµ)(1)

which is equal to the coefficient of ϖ∨
α in πµ(1) written in the fundamental

coweights. The third equality holds as dα(πµ) is a lifting of α ◦µ to a path in
T1 S

1 starting in 0. By uniqueness of lifts with fixed starting points equality
follows. It follows immediately that

∑
windα(γ)ϖ

∨
α is a formula for the end-

point of πµ. The weight is defined as the endpoint.
2. Part: The crystal graph Aγ parametrizes a basis for a highest represen-

tation of the simply connected form of KC following [Lit97]. As irreducible
representations [FH91, p. 438] of the maximal compact group and the com-
plex group are the same, we only need to check whether wt(γ) ∈ X∗(S

∨) or
equivalently wt(γ) ∈ X∗(S). By part 1 the weight is given by the endpoint of
a lift to Lie(S) and this must be an element of X∗(S).

3. Part: Choose

µ± = ψ

(
−εα(πγ)α∨ −min

(
−εα(πγ)± 1, inf

t≤s≤1
(α(πγ(s)))

)
α∨

)
.

Now part 3 follows from equation 1.1 and because exp is a group homomor-
phism.

Proof of Corollary. The endpoint of ψ−1(µ±) is the root ±α∨. The homotopy
class of µ± depends only on this endpoint and is trivial if it is in the root
lattice [Sep07, p. 173]. The action of such an element on the set of connected
components is trivial.

Remark 2.1.4. As proposition 2.1.2 is in essence a translation of the path
model to the language of loop groups, the Character Formula, Generalized
Littlewood-Richardson rule and the Restriction formula still hold in this setting
and for compact groups.

Example 2.1.5. First we will give the example of the adjoint represenation for
SU3. We will write (f1, f2, f3) for the diagonal matrix with entries f1, f2, f3.
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2.2 Application of the Birkhoff decomposition

(1, z, z−1) γ1 (1, z−1, z)

γ γ−1

(z, z−1, 1) γ2 (z−1, z, 1)

α1

α2

α2 α2

α1 α1

α1

α2

The loop γ1(z) is equal to −α∨
2 if the imaginary part of z is ≥ 0 and α∨

2

otherwise. The loop γ2(z) is equal to −α∨
1 if the imaginary part of z is ≥ 0

and α∨
1 otherwise. We will adopt the notation γ1(z) = − 1

2α
∨
2 ∗ 1

2α
∨
2 even

though neither part on the right-hand side is a loop.

Example 2.1.6. As a second example we will consider K = PU3 and the
loop γ = (z, 1, 1). The resulting crystal is

γ (1, z, 1) (1, 1, z).
α1 α2

Application the weight function yields

wt(γ) = ϖ∨
1 ,wt((1, z, 1)) = ϖ∨

2 −ϖ∨
1 ,wt((1, 1, z)) = −ϖ∨

2 .

Observe that this is a crystal for the first fundamental representation of SU3

which is only a projective representation of PU3.

With proposition 2.1.2 the translation of the path model to the loop group
on the compact torus is complete. We will use the notions introduced for
the path model now also in the context of the loop group. Depending on
the problem we will use the paths and loops interchangeably but will make it
clear, which one is used at which point.

2.2 Application of the Birkhoff decomposition
In special cases proven by Birkhoff [Bir09] and in general proven by Pressley
and Segal [Pre82] [PS86, p.120 - 142] there exists the Birkhoff decomposition
for the based loop group. We will first give the necessary notations and then
state the Birkhoff decomposition.

Definition 2.2.1. The free loop group L(KC) has subgroups of holomorphic
loops in the sense

L+(KC) := {γ ∈ L(KC) | γ extends to {z ∈ C | |z| ≤ 1} → KC} ,
L−(KC) := {γ ∈ L(KC) | γ extends to {z ∈ C | |z| ≥ 1} ∪ {∞} → KC} .
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2 Root operators and the weight function

These subgroups perform quite analogous to the parabolic subgroups of a
complex Lie group.

Theorem 2.2.2 ([Pre82]). For every γ ∈ Ω(S) there exist a unique λ ∈ X∗(S)
and p− ∈ L−(T ), p+ ∈ L+(T ) such that

γ = p−λp+.

The theorem as stated in [Pre82] is stated in the more general context
where S is replaced by any compact Lie group. The proof relies on the good
properties of the energy function on the loop group. This theorem is not true
if we replace loops of finite energy with continuous loops.

Corollary 2.2.3. The Birkhoff decomposition is unique up to multiplication
by a constant loop.

This statement is not true if one replaces S by K, in which case it is only
true if λ = 1. Such loops form a dense subset of Ω(K).

Proof. Suppose γ = p−λp+ = q−λq+ are decompositions as in 2.2.2. The loop
group of S is commutative so we can cancel λ and invert q− and p+. Then
p−q

−1
− = p−1

+ q+ on S1. The left-hand side is given by a Laurent series with
only nonpositive exponents while the right-hand side has only nonnegative
exponents. The corollary follows.

The loop group Ω(S) is stable under the root operators. Thus the first
question to answer should be how the Birkhoff decomposition behaves with
respect to the root operators and the weight function. At least for the X∗(S)
factor this is easily answered.

Proposition 2.2.4. Let γ ∈ Ω(S), then the Birkhoff decomposition is of the
form p− wt(γ)p+. An immediate consequence is that the Birkhoff decomposi-
tion, after application of a root operator, has the form:

fα(γ) = q−(λ− α∨)q+ eα(γ) = r−(λ+ α∨)r+,

Proof. Let γ = p−λp+. By [Pre82] the energy flow applied to γ has limit
point λ. The connected components of Ω(S) are the exactly the homotopy
classes. These facts imply: The homotopy class of γ and the one of λ must
be the same. However the homotopy class (in S) determines the weight, thus
wt(γ) = λ.
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3.1 Definition and properties
The Bott–Samelson manifold as defined by Bott and Samelson in [BS58] plays
a key role to determine the homology ring of Ω(K). The complex version of the
Bott-Samelson manifold has been used by Gaussent and Littelmann to give a
link between MV cycles and the path model [GL05]. Our approach redefines
this link inside of the loop group. In this section we define a generalization
of the Bott–Samelson manifold. Through examples we explain our choices for
the direction the generalization takes. We relate the Bott–Samelson manifold
to Borel–de Siebenthal theory using the latter to compute the dimension of
the former.

Definition 3.1.1. Parametrize S1 via φ 7→ eiφ and let γ ∈ Ω(S). For
φ ∈ [0, 2π] denote by Kφ the maximal connected subgroup of K stabilizing
γ(eiφ) under the conjugation action of K on itself. By continuity of γ we
know that there exist

t0 = 0 ≤ t1 ≤ · · · ≤ tk ≤ tk+1 = 2π

such that Ktj−ε is a proper subgroup of Ktj . We will refer to γ
∣∣∣
[tj ,tj+1]

as the
j-th segment of γ. The connected component of the neutral element of the
pointwise stabilizer of the j-th segment will be denoted by K ′

j. For brevity we
write Kj for Ktj . Define the Bott–Samelson manifold as the fibered product

Γγ = K0 ×K′
0
· · · ×K′

k−1
Kk/K

′
k,

where the right action of (q0, . . . , qk) ∈ K ′
0 × · · · ×K ′

k is given by

(p0, . . . , pk) · (q0, . . . , qk) = (p0q0, q
−1
0 p1q2, . . . , q

−1
k−1pkqk).

It embeds into the loop group

hγ : Γγ → Ω(K)

(g1, . . . , gk) 7→
(
φ 7→ (g1 · · · gj).γ(e2πiφ) for φ ∈ [tj , tj+1]

)
.
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3 Bott-Samelson Manifolds

We introduce the shorthand notation πj([g0, . . . , gk]) = g0 · · · gj which is only
well-defined up to a factor in K ′

j. If it is clear from context, we will also
write πj([g0, . . . , gk]) = πj. In summary, the map hγ sends a point of Γγ to a
piecewise-defined loop with pieces the conjugated segments of γ.

Remark 3.1.2. In general, the stabilizer of γ(eiφ) is not connected, e.g. the
stabilizer of the matrix

(
i 0
0 −i

)
in PSU2 is ±1S. In the definition of Γγ in

[BS58] all connected components are considered. While most of the following
is also true for a non-connected Γγ , we need to assume connectedness at least
for our treatment of Γγ as a complex manifold.

Remark 3.1.3. The Kj can be deduced from the lift πγ by the set of affine
hyperplanes in which πγ(tj) is contained. A priori the lift contains more
information as also the value of the root α defining the affine hyperplane can
be read off. In the loop group setting the value can be computed as the winding
number of α◦γ|[0,tj ]. Thus we can speak of a loop crossing the affine hyperplane
α = n, when α ◦ γ(tj) = 1 and windα(γ|[0,tj ]) = n.

By Borel–de Siebenthal theory we conclude the structure of the Kj .

Lemma 3.1.4. Let F be the smallest face of ∆f which contains an affine
Weyl group conjugate of γ(etj ), then Kj is conjugate to the subgroup of K
which is associated to F iteratively using Borel-de Siebenthal theory, i.e. it
is the subgroup associated to the set of simple roots (or highest root) which
vanish on F .

Definition 3.1.5. We can define to every Kj a subset of Φ+. The positive
roots of K which vanish at γ(eitj ) will be denoted Φ(Kj). We follow the same
notation for K ′

j, where the roots have to vanish along the j-th segment.

The above lemma allows us to compute the dimension of Kj .

Lemma 3.1.6. The dimension of Kj is

rank(K) + 2|Φ(Kj)|.

The dimension of K ′
j computes similarly as

rank(K) + 2|Φ(K ′
j)|.

The lemma follows from [Hel62][p.261, Lemma 5.1]. Let us give examples.

Example 3.1.7. The group is PSU3. With this example we want to clarify
our choice of definition of the Bott–Samelson manifold. As loop we choose
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3.2 The classical algebraic side

Figure 3.1: Loop with no classical Bott-Samelson manifold defined

the concatenation π = ϖ∨
1 ∗ ( 12ϖ

∨
2 ) ∗ (α∨

2 − 1
2ϖ

∨
2 ) depicted in figure 3.1. The

Bott–Samelson manifold is

Γγ = PSU3 ×PSU(3,α2) PSU3 ×S PSU(3, α2)/S,

where PSU(3, α2) is the subgroup associated to the subset of the Dynkin dia-
gram consisting only of α2.

Example 3.1.8. Choose K = SU3 and γ the piecewise defined loop

γ(eiφ) =


(3α∨

1 + 3α∨
2 )(e

iφ) for φ ∈ [0, 2π3 ]

(3α∨
1 )(e

iφ) for φ ∈ [ 2π3 ,
4π
3 ]

(3α∨
2 )(e

iφ) for φ ∈ [ 4π3 , 2π]

In table 3.1 we collect the necessary data to define the Bott–Samelson manifold.
Every submatrix of the form

(
a b
c d

)
is a unitary matrix in the table. There

does not exists a Borel subgroup B0, such that Ki ⊆ Li ⊇ B0 for some Levi
subgroup Li. The groups K3,K5 already fix the Borel subgroup to be the upper
triangular matrices inside SL3(C). The group K1 is not maximal compact in
a Levi subgroup for the Borel subgroup B of upper triangular matrices. Any
parabolic containing K1 and B, contains the highest root and thus is already
SL3(C).

Lemma 3.1.9. The Bott-Samelson manifold is an S-manifold under the ac-
tion via left multiplication of the first factor and the embedding hγ is S-
equivariant, where the S-action on Ω(K) is conjugation.

3.2 The classical algebraic side
In this section we remind the reader of the notions of Bott–Samelson vari-
eties in the finite-dimensional complex algebraic setting. By restricting to
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3 Bott-Samelson Manifolds

i ti γ(ti) Ki

0 0 diag(1, 1, 1) SU3

1 1
62π diag(−1, 1,−1)

(
a 0 b
0 (ad−bc)−1 0
c 0 d

)
2 1

32π diag(1, 1, 1) SU3

3 π diag(−1,−1, 1)

(
a b 0
c d 0
0 0 (ad−bc)−1

)
4 4

62π diag(1, 1, 1) SU3

5 5
62π diag(1,−1,−1)

(
(ad−bc)−1 0 0

0 a b
0 c d

)
Table 3.1: Data for the Bott-Samelson manifold in example 3.1.8.

a certain subclass of loops (or paths) in the definition of the Bott-Samelson
manifold Demazure [Dem74] and Hansen [Han73] showed that the occuring
Bott-Samelson manifolds carry the structure of projective, complex varieties.
We will recall this structure.

Definition 3.2.1. Let w ∈W a Weyl group element. Let π be a straight line
in Lie(S) which connects a fixed generic point of the dominant Weyl chamber C
with a fixed generic point in the Weyl chamber w.C. We assume that π crosses
no two hyperplanes at the same time. Even though π is not a loop, we can
still define the groups Kj and K ′

j and thus a Bott–Samelson manifold Γπ. If
we denote the hyperplanes which π crosses by H1, . . . , Hk, then w = sk · · · s1,
where si is the reflection in the hyperplane Hi. We define Γw = Γπ.

Lemma 3.2.2. Each Hj defines a parabolic group Pj of KC, and Kj is a
maximal compact subgroup of the Levi subgroup of Pj. The intersection of
two consecutive parabolics Pj ∩ Pj+1 is a Borel subgroup Bj, and we choose a
subgroup Bk contained in Pk. The map

Γw → P0 ×B0
· · · ×Bk−1

Pk/Bk

[g0, . . . , gn] 7→ [g0 : g1 : · · · : gk]

is a diffeomorphism, where the action of B0×· · ·×Bk is defined with the same
formulas as Γγ . The map

Γw → KC/P0 × · · · ×KC/Pk

[g0, . . . , gk] 7→ (g0P0, g0g1P1, . . . , g0 · · · gkPk)

is an injective, smooth embedding, and the image is a subvariety of the co-
domain.
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3.2 The classical algebraic side

The product of partial flag manifolds is a smooth, projective variety and thus
a symplectic manifold. Pulling the restriction of the symplectic form through
the embedding map gives a sympletic structure on Γw. Note that there are
different choices for the symplectic form. We will give an explicit description
of some symplectic structures on partial flag manifolds in section 3.3. There
is a well known generalization of the classical Bott–Samelson variety.

Lemma 3.2.3. For j = 0, . . . , k let Ij be a set of nodes in the Dynkin diagram
of K and I ′j ⊆ Ij ∩ Ij+1 for j = 0, . . . , k − 1 and I ′k ⊆ Ik. Denote by Pj the
standard parabolic subgroup of KC associated to Ij and P ′

j be the subgroup
associated to I ′j. Similary let Kj be the subgroup of K defined by Ij by Borel-
de Siebenthal and K ′

j for I ′j. We denote by Γ the Bott–Samelson manifold
formed by the Kj and K ′

j even though we have not given an associate path,
which is possible. Then the map

Γ → P0 ×P ′
0
· · · ×P ′

k−1
Pk/P

′
k

is a diffeomorphism.

There is another generalization, which is less typical but still well known.

Definition 3.2.4. Let Pi ⊆ KC be a sequence of parabolic subgroups for
i ∈ {0, . . . , n} such that in every consecutive intersection Pi ∩ Pi+1 another
parabolic subgroup P ′

i is contained. We can form the Bott–Samelson variety

P0 ×P ′
0
P1 ×P ′

1
· · · ×P ′

n−1
Pn/P

′
n.

All Borel subgroups are conjugate to the Borel subgroup we fixed by our
choice of torus and simple roots. From this it follows that the last two defini-
tions are in essence equivalent.

Remark 3.2.5. Every Bott–Samelson variety in the style of definition 3.2.4
is diffeomorphic to one in the style of lemma 3.2.3.

These diffeomorphisms will in general fail to be SC-equivariant and thus
give rise to different Białynicki-Birula cell decompositions.

Remark 3.2.6. Let γ ∈ Ω(S) be a torus loop. There exists a sequence of
parabolic subgroups Pi such that the Bott–Samelson variety defined by the Pi

is diffeomorphic to Γγ .

There is no canonical choice for this in this setting, but we will relate Γγ to
the Bott–Samelson–Demazure–Hansen variety of Gaussent and Littelmann in
a canonical way giving rise to a SC-action which behaves well with respect to
the path model.
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3 Bott-Samelson Manifolds

Example 3.2.7. The group considered is SU(2) and γ = α∨. The Bott–
Samelson manifold is SU(2)×S SU(2)/S. There are a total of four choices for
the complexification

SL(2)×B SL(2)/B

SL(2)×B SL(2)/B−

SL(2)×B− SL(2)/B

SL(2)×B− SL(2)/B−,

where B is the Borel subgroup of upper triangular matrices and B− the opposite
Borel subgroup of lower triangular matrices.

3.3 Partial flag varieties as coadjoint orbits
Continuing from the last section we want to define a symplectic structure on
the Bott-Samelson manifold via the embedding of lemma 3.2.2. There are
different approaches to this. We will identify the partial flag manifolds KC/Pi

as coadjoint orbits inside of Lie(KC).
The groups K and KC act on Lie(KC)

∗ via the contragredient representation
of the adjoint representation. In general their orbits are different, as the K-
orbits are necessarily compact, while the action of KC gives non-compact
orbits. We restrict ourselves to orbits through points in Lie(K)∗. Every orbit
of K intersects Lie(SC)

∗, and the intersection is a Weyl group orbit. In the
compact setting the coadjoint action can be replaced by the adjoint action
with help of the negative of the Killing form. As this form is positive definit
in the compact setting, it gives an isomorphism of adjoint and coadjoint orbits.
It is thus usual to restrict to the adjoint representation in the compact setting.

Definition 3.3.1. A coadjoint orbit Op is the orbit of any point p ∈ Lie(K)∗

under the coadjoint action of K. It is isomorphic to the quotient K/Kp, where
Kp is the stabilizer of p.

We are interested in the symplectic form a coadjoint orbit obtains. For this
we realize Op in Lie(K) as described in the beginning of this subsection.

Lemma 3.3.2. We identify TpOp
∼= Lie(K)/Lie(Kp) using the orbit map.

Any coadjoint orbit Op has a K-invariant symplectic form via left-translation
of the form induced by

TpOp × TpOp → R
(X,Y ) 7→ B(α, [X,Y ]),
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3.3 Partial flag varieties as coadjoint orbits

where α is any element of Lie(S)∗ ∩ Op and B denotes the negative of the
Killing form to avoid confusion of different parenthesis.

We can go one step further and see there is a Kähler form induced by the
Killing form.

Lemma 3.3.3. There exists P ⊆ KC a parabolic subgroup such that Kp ⊆ P
and the inclusion map K/Kp → KC/P is a diffeomorphism.

The partial flag variety KC/P is a smooth variety and as such is a Kähler
manifold in its analytic topology. The symplectic form obtained from the
coadjoint orbit construction is part of this Kähler structure [Kir][Ch. 5].

Lemma 3.3.4. The Bott-Samelson variety Γw is symplectic.

Proof. By lemma 3.2.2 the Bott-Samelson manifold is a (smooth) subvariety
of the product of partial flag manifolds and as such inherits the symplectic
structure by restriction.

Remark 3.3.5. The same holds true for more general definitions using the
Bott–Samelson variety of definition 3.2.4 and embedding it into an appropriate
version of the partial flag manifolds. We obtain symplectic structures on Γγ

for γ ∈ Ω(S).

This approach via coadjoint orbits gives rise to different symplectic struc-
tures on Γγ depending on which points p are chosen for the isomorphism of a
coadjoint orbit and the partial flag manifold.

Even though this fact is well known, we were unable to find a closed formula
for the resulting symplectic form. Let us do the bookkeeping and record:

Lemma 3.3.6. Let pi ∈ Lie(S) such that the stabilizer of pi is Ki. Denote
the form induced by pi on Opi

as ωi. The skew form ω[g0,...,gk] on the tangent
space T[g0,...,gk] Γγ induced by the ωi is given by

ω(g0v0, . . . , gkvk, g0w0, . . . , gkwk) =

k∑
i=0

∑
j,l≤i

(pi, [Ad(π−1
i πj)vj ,Ad(π−1

i πl)wl]),

where vj and wj are tangent vectors of Ki at 1.

Proof. The computation of the differential of the embedding ι is straightfor-
ward and analogous to the computation we will do for lemma 3.5.1. Therefore
we only state the result

D[g0,...,gk] ι(g0v0, . . . , gkvk) = (g0v0, g0v0g1 + g0g1v1, . . . ,

k∑
j=0

πjvjπ
−1
j πk),
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3 Bott-Samelson Manifolds

where the vector at position l is given by

l∑
j=0

πjvjπ
−1
j πl.

We left multiply to [1, . . . , 1] in the product of partial flag manifolds to obtain
the l-th position as

l∑
j=0

π−1
l πjvjπ

−1
j πl =

l∑
j=0

Ad(π−1
l πj)(vj).

Inserting into the formula for the symplectic form on the product of partial
flag manifolds proves the claim.

3.4 Bott-Samelson manifolds and path models
As shown by Gaussent and Littelmann using the gallery model there is a
connection of the path model and Bott-Samelson manifolds. The class of
loops for which this connection works are the integral loops. We will give
arguments for these loops and against non-integral loops in this section.

Lemma 3.4.1. For every integral loop γ it holds: The Bott–Samelson mani-
fold Γγ contains the crystal generated by γ.

Proof. We cut γ according to 1.4.11 into three paths γ = γ1 ∗ γ2 ∗ γ3. By
definition of an integral loop we know α ◦ γ(eis) = α ◦ γ(eit) = 1. Thus
sα ∈ Ks,Kt. Then fα(γ) = hγ([1 : · · · : sα : 1 : · · · : 1 : sα : 1 : · · · : 1]), where
the sα are at the positions corresponding to s and t. A similar argument
holds in the case of the raising operator. As the image of Γγ and the image
of Γfα(γ) inside of the loop group coincide, the lemma follows by induction on
the length of a monomial in the root operators.

This is already an indication of the useful connection between integral loops,
their path model and the Bott–Samelson manifolds. Let us give an example
for the obstructions one faces when considering loops which are not integral.

Example 3.4.2. The following example shows that there cannot be a simple
generalization of lemma 3.4.1 to non-integral loops.
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3.5 The moment map image

Figure 3.2: Non-integral loop with different Bott-Samelson manifolds

The considered group is K = SU(3). The loop γ is defined by its lift to Lie(S).

πγ(t) =


t(3ϖ∨

1 +ϖ∨
2 ) for t ∈ [0, 14 ]

t(ϖ2 ∨ −ϖ∨
1 ) +ϖ∨

1 for t ∈ [ 14 ,
1
2 ]

t(−ϖ∨
1 −ϖ∨

2 ) + φ∨
1 +ϖ∨

2 for t ∈ [ 12 ,
3
4 ]

t(3ϖ∨
1 + 3ϖ∨

2 )− 2ϖ∨
1 − 2ϖ∨

2 for t ∈ [ 34 , 1]

This is a loop of weight ρ∨ which is non-integral because of the local minimum
at t = 3

4 . We compute the Bott-Samelson manifold as

Γγ = SU(3)×S SU(3, α0)×S SU(3, α0)/ S .

If we compute the second root operator acting on πγ , we obtain

fα2
(πγ) =


t(4ϖ∨

1 −ϖ∨
2 ) for t ∈ [0, 14 ]

t(ϖ∨
2 −ϖ∨

1 )− 5
4ϖ

∨
1 − 1

2ϖ
∨
2 for t ∈ [ 14 ,

1
2 ]

t(−ϖ∨
1 −ϖ∨

2 ) +
5
4ϖ

∨
1 + 1

2ϖ
∨
2 for t ∈ [ 12 ,

3
4 ]

t(6ϖ∨
1 − 3ϖ∨

2 )− 4ϖ∨
1 + 2ϖ∨

2 for t ∈ [0, 14 ].

This loop has the Bott-Samelson manifold

Γf2(γ) = SU(3)×S SU(3, α0)×S SU(3, α2)×S SU(3, α0)/S .

In conclusion, the Bott-Samelson manifolds of γ and f2(γ) are not even of
the same dimension.

3.5 The moment map image
In this section we compute the moment map image for the Bott–Samelson
manifold under the condition that it is a symplectic submanifold. We give a
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3 Bott-Samelson Manifolds

condition on the loop γ for which Γγ is symplectic.
As the energy function is constant on hγ(Γγ), we will discard it and compute
the component µLie(S) of the moment map. To compute the moment map
image µ(Γγ) it is sufficient to know the image of the fixed points of the torus
action. By [Ati82] and independently by [GS82] the moment map image µ(Γγ)
is the convex hull of µ(ΓS

γ ) if the considered manifold is symplectic. The next
two lemmata fit the image of the Bott-Samelson manifold into this framework
under the aforementioned non-degeneracy condition on γ.

Lemma 3.5.1. The differential at a point p = [g0, . . . , gk] ∈ Γγ of hγ is given
by

hγ(p)
−1Dp(hγ)(g0v0, . . . , gkvk)

=

k∑
l=0

∑
j≤l

χ[tl,tl+1](Ad(hγ(p)
−1πj(p))(vj)−Ad(πj)(vj)),

where we left translated hγ(p) to the neutral element for convenience of nota-
tion, vj ∈ Lie(Kj), and χ[tl,tl+1] denotes the indicator function of the interval
[tl, tl+1].

Proof. Denote by gj(t) a left-translated 1-parameter subgroup in Kj with
gj(0) = gj and g′j(0) = gjvj . We compute

Dp(hγ)(vj) =
d

dt

∣∣∣
t=0

hγ(g0, . . . , gj(t), . . . , gk)(e
iφ)

= πjvjgj+1 · · · glγ(eiφ)π−1
l − πlγ(e

iφ)g−1
l · · · g−1

j+1vjπ
−1
j

as long as φ ∈ [tl, tl+1] and l ≥ j. If l ≤ j, the expression is independent of t
and thus 0. Left translating results in

hγ(p)
−1Dp(hγ)(vj)(e

iφ) = Ad(hγ(p)
−1(eiφ)πj(p))(vj)−Ad(πj(p))(vj).

Now the formula follows by linearity of the differential.

Proposition 3.5.2. For γ ∈ Ω(S) the restriction of the symplectic form ω of
Ω(K) to Γγ is non-degenerate if and only if

∫ tj+1

tj
γ(eiφ)−1γ′(eiφ) dφ is regular

for Φ+ \ Φ(K ′
j) for all j.

Proof. In the following we will use the shorthands v = (v0, . . . , vk), w =
(w0, . . . , wk) and hγ(p) = hγ . We will also omit dependence on eiφ and use i
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3.5 The moment map image

as an index instead of the complex unit.

2πωhγ (Dp(hγ)(v),D(hγ)(w)) = S(h−1
γ Dp(hγ)(v), h

−1
γ (Dp(hγ)(w)))

=

k∑
i=0

∑
j,l≤i

ti+1∫
ti

(
(Ad(h−1

γ πj)(vj)−Ad(πj)(vj))
′,Ad(h−1

γ πl)(wl)−Ad(πl)(wl)
)
dφ

=

k∑
i=0

∑
j,l≤i

 ti+1∫
ti

(
Ad(πiγ

−1) ◦ ad(−γ−1γ′) ◦Ad(π−1
i πj)(vj),Ad(h

−1
γ πl)(wl)

)
dφ

−
ti+1∫
ti

(
(Ad(h−1

γ πj)(vj)−Ad(πj)(vj))
′,Ad(πl)(wl)

)
dφ


=

k∑
i=0

∑
j,l≤i

 ti+1∫
ti

(
ad(−γ−1γ′) ◦Ad(π−1

i πj)(vj),Ad(π−1
i πl)(wl)

)
dφ

−
ti+1∫
ti

(
(Ad(h−1

γ πj)(vj)−Ad(πj)(vj))
′,Ad(πl)(wl)

)
dφ


We first consider the second term for fixed j and l with j ≥ l. Using partial
integration we obtain∑

i≥j

[(
Ad(h−1

γ πj)(vj)−Ad(πj)(vj),Ad(πl)(wl)
)] ∣∣∣ti+1

ti
;

which simplifies to(
Ad(h−1

γ (1)πj)(vj)−Ad(πj)(vj),Ad(πl)(wl)
)

−
(
Ad(h−1

γ (eitj ))πj)(vj)−Ad(πj)(vj),Ad(πl)(wl)
)
,

where we reintroduce the dependence on eiφ. The first term vanishes as
hγ(1) = 1. For the second term note hγ(eitj )−1πj = πjγ(e

itj )−1, and fur-
thermore γ(eitj )−1 acts trivially on Lie(Kj).
Now we consider the case j ≤ l. By the same arguments as before the resulting
term is (

Ad(hγ(e
itl)−1πj)(vj)−Ad(πj)(vj),Ad(πl)(wl)

)
=

(
Ad(πj)(vj),Ad(hγ(e

itl)πl)(wl)
)
− (Ad(πj)(vj),Ad(πl)(wl)) .
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3 Bott-Samelson Manifolds

And by the same arguments as before this term vanishes.
So we are left with

k∑
i=0

∑
j,l≤i

ti+1∫
ti

(
ad(−γ(eiφ)−1γ′(eiφ)) ◦Ad(π−1

i πj)(vj),Ad(π
−1
i πl)(wl)

)
dφ

=

k∑
i=0

∑
j,l≤i

 ti+1∫
ti

−γ(eiφ)−1γ(eiφ)′ dφ,
[
Ad(π−1

i πj)(vj),Ad(π
−1
i πl)(wl)

] ,

which is the symplectic form already found in lemma 3.3.6 up to a scalar.

Let us state the last remark seperately due to its importance.

Corollary 3.5.3. The symplectic form defined by restriction of ω to Γγ is the
form obtained from lemma 3.3.6, induced by the choice

pj =
1

2π

∫ tj+1

tj

γ(eiφ)−1γ′(eiφ) dφ .

We have already showen that integral loops are well-fitted for the Bott–
Samelson manifolds. Not quite the same is true for symplecticness of the
Bott–Samelson manifold; however another condition we encountered earlier is
sufficient. We will record this in the following lemma.

Lemma 3.5.4. For any dominant loop γ such that the function α(γ−1γ′) is
non-negative, the image of the Bott-Samelson manifold Γγ is a symplectic,
S-invariant submanifold of Ω(K).

Remark 3.5.5. The condition directly translates to condition 1 in proposition
1.4.10 as we are working with absolutely continuous loops. We will denote loops
subject to this condition as having dominant direction.

Proof. We can write

α

 ti+1∫
ti

γ−1(eiφ)γ′(eiφ)dφ

 =

ti+1∫
ti

α(γ−1(eiφ)γ′(eiφ))dφ,

and the integrand of the right-hand side is non-negative. If the integral van-
ishes so must the integrand, so α ∈ Φ(K ′

j). For all other roots the integral is
positive and the regularity follows.
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3.5 The moment map image

Figure 3.3: A non-integral loop with symplectic Bott-Samelson manifold

Example 3.5.6. The loop given by its lift seen in figure 3.3 is non-integral.
There is a local minimum of the function hα1

along the 9-th segment - marked
by extra thickness - of γ which is non-integral. Still the Bott–Samelson man-
ifold is symplectic.

Integrality is not sufficient to conclude symplecticness as another example
shows.

Example 3.5.7. Let π(t) = tϖ∨
1 +−(t2 − 2πt)ϖ∨

2 the lift of γ for the group
PSU(3). It is the straight line joining 0 and ϖ1 with an added perturbation
moving its only segment into the fundamental alcove. Then Γγ is the flag
manifold PSU(3)/S, and the form ω|Γγ

is induced by ϖ∨
1 . This form is

degenerate on the flag manifold, and the loop γ is integral.

To determine the moment map image, we still need to know the fixed points
of S on Γγ . Fortunately we can derive the general case from the gallery model
Bott-Samelson case.

Lemma 3.5.8. The Bott-Samelson manifold contains as a subset the fibered
product of Weyl groups

Wγ :=W0 ×W ′
0
· · · ×W ′

k−1
Wk/W

′
k.

where Wi is the Weyl group of Ki and W ′
i the Weyl group of K ′

i.
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3 Bott-Samelson Manifolds

Proof. By definition Wγ acts on γ by the same formula as Γγ . This gives an
injective map Wγ → hγ(Γγ) and thus Wγ → Γγ . The explicit form of the map
follows as the same formula is used for the action on γ.

Lemma 3.5.9. The set of torus fixed points is given by the fibered product of
Weyl groups.

hγ(Γγ)
S = hγ(Γγ) ∩ Ω(S) = hγ(Wγ)

Proof. A loop is invariant under the conjugation action of S if and only if its
image is contained in S. Thus the first equality holds.
Every Wi normalizes the torus, thus every segment of a loop in hγ(Wγ) is
contained in the torus, therefore hγ(Wγ) ⊆ hγ(Γγ)

S . The other direction is a
direct implication of the proof of [Kna02][Chapter 7 Prop. 2.1].

Lemma 3.5.10. Given a loop γ in dominant direction, it holds

wt(γ) ≥ wt(µ) for all µ ∈ Γγ .

Proof. We will proof this lemma later when we have established the connection
between Σ(δ) and Γγ in the next section.

Proposition 3.5.11. The image of ΓS
γ under the moment map are exactly the

lattice points in conv(W.wt(γ)), which are in the class of γ in the fundamental
group of K.

Proof. The crystal Aγ is a subset of hγ(Wγ). The weight map and the moment
map agree, and as wt(Aγ)) contains all weights of the irreducible represen-
tation V (wt(γ)) of K∨ it follows µLie(S)(Γ

S
γ ) ⊇ (W.wt(γ) ∩ (R∨ + wt(γ))).

Lemma 3.5.10 implies

µLie(S)(Γ
S
γ ) ⊆ µLie(S)(Aγ) ⊆ (W.wt(γ) ∩ (R∨ +wt(γ))).

Corollary 3.5.12. The moment map image of Γγ is the Weyl polytope of
wt(γ).

Proof. Combining proposition 3.5.11 with lemma 3.5.4 we conclude

µLie(S)(Γγ) = conv(µLie(S)(Γ
S
γ )) = conv(W.wt(γ)).
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3.6 The complex structure

3.6 The complex structure
For η ∈ hγ(Γγ)

S we have hη(Γη) = hγ(Γγ); so we can choose freely any of the
torus fixed points to study the embedded Bott-Samelson manifold.
Definition 3.6.1. We call a loop maximally folded if its lift to Lie(S) is
contained in the fundamental alcove.

Following Gaussent and Littelmann [GL05] we choose as the initial loop the
maximally folded one. This gives the advantage that the groups Ki are a priori
known to be contained in the set of standard parabolic groups associated to
the chosen complexification KC with the addition of the groups associated to
the affine root (−α,−1), where α is the highest root.
Lemma 3.6.2. Every Bott–Samelson manifold contains a maximally folded
loop.
Proof. Via induction on the segments of γ and the inclusion of Wγ in the
Bott-Samelson manifold.

In the following γ ∈ Ω(T ) denotes the maximally folded loop.
Lemma 3.6.3. For η ∈ ΓS

γ there is a natural isomorphism

hγ,η : Γγ → Γη;

[g0, . . . , gk] 7→ [g0p0, p
−1
0 g1p1p0, . . . , p

−1
0 · · · p−1

k−1gkpk · · · p0]

which is nothing else but hγ,η = h−1
η ◦ hγ .

Definition 3.6.4. Let γ ∈ Ω(S). Denote by Fj the smallest face of the
affine Coxeter complex which contains γ(tj) and by F ′

j the smallest face which
contains the j-th segment of γ. Then the loop γ gives rise to a sequence of
faces δ(γ) = (F0, F

′
0, . . . , Fk). By adding the weight of γ to the end of the

sequence we obtain an object similar to a gallery, where the usual dimension
and codimension conditions on the faces are dropped. In the case δ(γ) is a
gallery, we call γ a gallery walk of the gallery δ(γ). If it is a gallery of alcoves,
we say γ is an alcove walk and if the gallery is a 1-skeleton gallery, we say γ
is a 1-skeleton walk.
Remark 3.6.5. Even in the case δ(γ) is not a gallery, the Bott–Samelson
variety Σ(δ(γ)) is still well-defined.
Remark 3.6.6. If γ is an integral loop, we can use the root operators acting
on γ to define the action on

δ(Aγ) = {δ(γ̃) | γ̃ ∈ Aγ} .

This is what we meant by ad hoc approach in section 1.5.
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3 Bott-Samelson Manifolds

We want to show that the Bott–Samelson variety and manifold obtained
from δ(γ) and γ are naturally isomorphic. We will be using the maximally
folded loop to construct the isomorphism.

Lemma 3.6.7. For every proper subset I of the extendend Dynkin diagram
of K let KI ⊆ K be the connected subgroup of maximal rank associated to
I using Borel–de Siebenthal and PI the standard parahoric associated to I.
Then there exists an injective group homomorphism φI : KI → PI . If we take
a subset J ⊆ I, then the map φJ is the restriction of φI to KJ .

Proof. By [Kum02] the parahoric subgroup PI can be realized as the semidi-
rect product of a finite-dimensional complex reductive group GI with a pro-
unipotent progroup. The group GI can be thought of as a Levi component
of PI . The type of GI is given by the subgraph of the extended Dynkin dia-
gram of K induced by the set of nodes I. Thus it is of the same type as the
subgroup KI of K. By the choice of a torus KC we have a torus of GI and by
this a uniquely prescribed maximal compact subgroup K̃I containing SC of
the same type as GI . As we have fixed a set of simple roots for KC and by this
also for GI , we have a unique Lie algebra homomorphism Lie(KI) → Lie(K̃I).
To check whether it lifts to a homomorphism of the Lie groups, we can check
that the exponential maps of the tori of KI and K̃I have the same kernel.
However this is clear as S is the torus for both.
For a subset J ⊆ I we note that by the construction in [Kum02] we have
GJ ⊆ GI .

Remark 3.6.8. For a special vertex v of the fundamental alcove with asso-
ciated parahoric subgroup Pv the isomorphism described can be made more
explicit. The exponential of the straight line joining 0 and v is an element γv
of the loop group of the adjoint group Kad = K/Z(K). The parahoric subgroup
associated to {0} is KA and has a natural embedding K → KA. Conjugating
KA by γv gives the group Pv and by this the embedding K → Pv.
In the case of an alcove walk this further simplifies. In this case KI is the
stabilizer of a root hyperplane Hα,n, where n = 0 if α is simple and n = 1 if
α is the highest root. Then KI can be obtained using a standard Lie(SU(2))-
triple, and φI is Φα if α is simple. If α is the highest root, then φI is the
Lie(SU(2))-triple associated to the affine root (−α,−1).

It is also worthwile mentioning the nature of the image φI(KI).

Proposition 3.6.9. The image φI(KI) is a subset of the free polynomial loop
group of K.
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Proof. Every group KI is generated by the stabilizers of the facets adjacent
to the face defined by I. These groups are contained in the free polynomial
loop group by remark 3.6.8.

The groups KI are a small part of PI as they are finite-dimensional while
the latter is infinite-dimensional. Nevertheless, KI contains the essential in-
formation regarding PI ’s role in the gallery model.

Lemma 3.6.10. The Bott–Samelson variety Σ(γ) is connected in its analytic
topology.

Proof. First consider the case of an alcove walk. In this case the map

Σ(δ(γ)) → P0 ×B · · · ×B Pk−1/B
[g0 : · · · : gk] 7→ [g0 : · · · : gk−1]

is a P1-fiber bundle [Kum02][p.206]. The fiber is connected; the base space is
connected by induction. Thus also the total space Σ(γ) is connected. For the
general case we note that we can adapt the above map to

Σ(γ) → P0 ×Q0
· · · ×Qk−2

Pk−1/Qk−1

[g0 : · · · : gk] 7→ [g0 : · · · : gk−1],

and the proof of [Kum02] can be adapted in order to show that this map is
a fiber bundle with fiber the (partial) flag variety Pk/Qk. The connection of
those cases is the flag variety of the unique SL(2)-triple in Pk; the P1 from
above.

The final piece we need is the dimension of the Bott–Samelson manifold
and the variety.

Lemma 3.6.11. The dimensions of the Bott–Samelson manifold Γγ and Σ(δγ)
are the same.

Proof. The complex dimension of Σ(δγ) can be computed by the fiber bundle
introduced in the last proof. Dimension of the fibers can be computed via
root combinatorics. The dimension of the i-th fiber in the inductive fiber
bundle construction is the number of affine hyperplanes containing γ(tk−i+1)
from which the number of hyperplanes containing the segment after γ(tk−i+1)
needs to be subtracted. This is easily seen from the decomposition of PI as a
semidirect product.
As Γγ is the quotient of a finite-dimensional space by a finite-dimensional
group, it is enough to compute the dimension of these, which was done in
lemma 3.1.6. The result coincides with the above one.
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Theorem 3.6.12. The map

Γγ → P0 ×Q0
P1 ×Q1

· · · ×Qk−1
Pk/Qk

[g0 : · · · : gk] 7→ [φ0(g0) : · · · : φk(gk)]

is a diffeomorphism.

Proof. The defined map is injective as it follows from lemma 3.6.7 that the
intersection Qj ∩ Kj = K ′

j . Thus the map is an injective, closed map be-
tween compact, connected manifolds of the same dimension forcing it to be a
diffeomorphism.

For record keeping we state the following translation from loops to galleries.

Lemma 3.6.13. Let γ ∈ Ω(S) be an integral loop. Then it holds for a loop
η ∈ hγ(Γγ):

1. The weight wt(η) is the same as the target of δ(η).

2. If η is an element of a crystal which is contained in Γγ , then the root
operators commute with the diffeomorphism Γγ → Σ(δ(γ)).

Proof. The first statement is only a translation from loops to galleries. For the
second statement we refer to the description of the root operators in section
1.4 and section 1.5.

Example 3.6.14. We continue example 2.1.5. The maximally folded path is
hα∨([1 : w0]), where w0 is a representative of the longest word in the Weyl
group. There are two singular points α∨(1), α∨(−1) with attached groups SU3

and SU3(α1+α2), where the second group is the same as K1 in example 3.1.8.
Thus the map

SU3 ×S SU3(α1 + α2)/S → SL3(O)×B P0/BA :

a 0 b
0 (ad− bc)−1 0
c 0 d

 7→

A :

a 0 t−1b
0 (ad− bc)−1 0
tc 0 d


is a diffeomorphism. Via the diffeomorphism we obtain an action of the
complex torus SC which complexifies the action of S. There are a total of 12
fixed points given by the (trivially) fibered product of Weyl groups

W (SU3)×W (SU2(α1 + α2)).
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Using the diffeomorphism of theorem 3.6.12, we can define an action of SC
complexifying the action by S. We can translate the results of Gaussent and
Littelmann on the Białynicki-Birula cells of Σ(δ(γ)) to Γγ . For this we extend
the definition of the weight function wt to the whole loop group Ω(S) via the
first part of proposition 2.1.2.
Proposition 3.6.15. Let γ be in dominant direction. The dimension of a
Białynicki-Birula cell centered at a torus fixed point p is bounded from above
by 〈wt(hγ(p)), ρ〉. The bound is equal to the dimension if hγ(p) is an element
of the crystal obtained in 3.5.10 contained in hγ(Γγ).
Example 3.6.16. Continuing example 3.6.14 we find that the crystal of high-
est weight (in the sense of 3.5.10) inside of the Bott-Samelson Γα∨ consists of
the elements [1,1], [1, w] for w ∈ W (SU(3)) and the two paths of weight zero
[s1, w0], [s2, w0].

Let us recall that the purpose for which Gaussent and Littelmann used the
Bott–Samelson variety was as a desingularization of the affine Schubert variety
Cλ and the description of the MV cycles. Our approach via the compact
setting opens another point of view.
Proposition 3.6.17. The affine Schubert variety Cλ realized in Ω(K) is the
same as the image of

Γγ → Ω(K)

[g0, . . . , gn] 7→ φ0(g0) · · ·φn(gn)λ
f ,

where λf is the exponential of the straight edge joining 0 and a special vertex of
the fundamental alcove which defines the same class as λ in the fundamental
group of K.

While this description of Cλ is by no means minimal (the map has non-
trivial fibers in general), it is a direct description which does not rely on the
Iwasawa decomposition of KF .

Proof. By [Kum02] and [GL05] the image of the map is the affine Schubert
variety. What remains is that it is in the slice Ω(K) which we identify as
L(K)/K; this is clear by proposition 3.6.9.

Corollary 3.6.18. Let γ ∈ Ω(S) in dominant direction and η ∈ Aγ. Let X
be the MV cycle associated to the gallery δ(η) and Γγ,η the Białynicki-Birula
cell of Γγ centered around η. Then X realized in Ω(K) is given by

φ0(g0) · · ·φk(gk)λ
f K

for [g0 : · · · : gk] ∈ Γγ,η.
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Example 3.6.19. Consider again the loop α∨ inside the torus of SU(2). The
image of Γγ in Ω(SU(2)) under the resolution of singularities π consists of
loops of the form (

a b
−b̄ ā

)(
c dt−1

−d̄t c̄

)
SU(2).

We equip Γγ with the SC-action from the diffeomorphism Γγ → Σ(δ(γ)) and
compute the Białynicky-Birula cells. There are a total of four cells

C[1,s0] = D(a) ∩D(d)

C[1,1] = D(a) ∩ V(d)
C[s1,1] = V(a) ∩D(c)

C[s1,s0] = V(a) ∩ V(c),

where V denotes vanishing of the coordinate and D non-vanishing of the co-
ordinate. The index of C is the torus fixed point around which the cell is
centered. The elements of the crystal are [1, s0],[s1, 1] and [s1, s0]. Thus the
MV cycles in Ω(SU(2)) are given by the closures of

Xα∨,−α∨ = {−α∨}

Xα∨,0 = Xα∨,−α∨ ∪
{(

|c|2 + z|d|2 −b2c̄d̄(1− z)
−b̄2cd(z−1 − 1) |c|2 + z−1|d|2

)}
Xα∨,α∨ =

{(
a b
−b̄ ā

)(
c dz−1

−d̄z c̄

)(
c̄ −d
d̄ c

)(
ā −b
b̄ a

)}
.

As we have defined in section 1.3 the loop group Ω(K) carries a complex
structure. We have realized Γγ as a symplectic submanifold of the loop group.
Unfortunately, it is in general not a complex submanifold as the following
example shows.

Example 3.6.20. Let K = SU(2) and take γ = α∨ the single positive root.
We obtain Γγ = SU(2) ×S SU(2)/S. For an element (0, B) of the tangent
space at [1 : 1] we obtain the Fourier coefficients

ak =


0 for k ∈ 2Z \ {2,−2}
2i( 4Re(b)−2ik Im(b)

π(k−2)(2+k)k ) for k ∈ 2Z+ 1
b̄
2 for k = −2
b
2 for k = 2,

where we choose B to be represented by
(

0 b
−b̄ 0

)
. Choose b = 1 and assume

J(0, B) ∈ T[1,1] Γγ . From the first Fourier coefficient of J(0, B) = (Ã, B̃) one
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3.6 The complex structure

can deduce b̃ = −2i however, then the third coefficient of the left-hand side is
−8
π15 while the right-hand side has coefficient 24

π15 .

The example combines the cases γ is an alcove walk and a 1-skeleton walk.
These are the best studied and well behaved cases. It is reasonable to assume
that the instances where Γγ is a complex submanifold of Ω(K) are rare.
We will now turn to the proof of 3.5.10.

Proof of lemma 3.5.10. Let γ ∈ Ω(S) be in dominant direction and η ∈
hγ(Γγ) the maximally folded loop. We choose w = [w0 : · · · : wk] ∈ Γη to be
represented by elements of the Weyl group such that hη(w) = γ. The element
πk(w) can be decomposed as πk(w) = w0 · · ·wk. We claim l(w) =

∑
j l(wj).

The length of wj is the number of hyperplanes entered at γ(eitj ) and left at
some time during the j− th segment. As γ is in dominant direction, it crosses
every hyperplane at most once. If γ crosses a hyperplane, it crosses from the
negative to the positive halfspace associated to the hyperplane. Thus the set
of hyperplanes crossed is M(0,wt(γ)). As w translates the fundamental alcove
to an alcove containing wt(γ), it follows l(w) ≥ M(0,wt(γ)); and from this
it follows that π(Σ(δ(γ))) is contained in the affine Schubert variety Cwt(γ)

[Kum02][Theorem 5.1.3]. By the closure relations described in definition 1.6.1
we know that

wt(γ̃) = wt(δ(γ̃) ≤ wt(δ(γ)) = wt(γ).
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4 Implications for the path model
When we speak of a homotopy, we will always use the unit intervall [0, 1] as
the time parameter.

Definition 4.0.1. If γs is a homotopy of loops in the torus S, we will denote
the Bott–Samelson manifold Γγs

by Γs and likewise for the embeddings into
the loop group.

Definition 4.0.2. A homotopy γs is fitted to the path model if Γs is Γ0 for
all s < 1.

Let us emphasize that we want Γs to be the same and not just isomorphic.

Lemma 4.0.3. A homotopy which is fitted to the path model induces a map

Ψ : Γs → Γ1

which is compatible with embedding maps hs in the sense that

Ψ = h−1
1 ◦ lim

s→1
hs.

Proof. We need only check, whether the map Ψ is a well-defined map Γ0 → Γ1,
and we will furthermore only need to check whether the image of limhs lies
inside of Γ1. As Γs = Γ0 for s ≤ 1, we can deduce that there exist continuous
functions tj(s) such that α(γs(eitj(s))) = 0 for s ≤ 1 and α ∈ Φ+(Kj). Then
α(γs(e

itj(1))) = 0 is also true. The statement holds similarly for segments,
but it might happen that segments of γ0 collaps in the limit s→ 1.

More directly the map can be achieved by a sequence of quotient maps and
multiplication of several factors. We refer to the examples in the upcoming
sections for this statement.

4.1 Homotopies and the symplectic form
Equipped with the homotopies fitted to the path model, we want to apply
them to the Bott–Samelson manifolds. Let us first record how the form ω|Γγ

changes when Ψ is reduced to the identity map.
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Corollary 4.1.1. If γ : S1 × [0, 1] → K; (z, t) 7→ γt(z) is a homotopy of
loops such that the Bott-Samelson manifold Γγt

is the same for all t, then the
pullback h∗γt

ω is a continuous family of 2-forms on Γγ0
.

Proof. This is seen by looking at our formula for ω|Γγ
and the fact that the

element
∫ tj+1(s)

tj(s)
γ−1
s γ′s is continuously dependent on s.

Remark 4.1.2. Given a loop γ ∈ Ω(S) we can obtain the same induced form
ωγ := ω|Γγ

via a loop which is segmentwise polynomial. Among these loops
we can choose the one of minimal energy to get a natural realization for ωγ .
The resulting loop is segmentwise a geodesic, and we can even choose it to be
parametrized to have constant speed.

Degeneracy of the 2-form can be remedied via homotopy.

Proposition 4.1.3. Let γ ∈ Ω(S) be a maximally folded loop such that ω is
degenerate if restricted to Γγ . Then there exists a homotopy γs fitted to the
path model such that ω is non-degenerate if restricted to Γ1 and the induced
map Γ0 → Γ1 is surjective.

Proof. We use induction on the number of segments such that
∫ tj+1

tj
γ−1γ′ is

not-regular for Φ+ \ Φ(K ′
j). If there is no such segment, then the restriction

of ω is non-degenerate. Now suppose j is such that
∫ tj+1

tj
γ−1γ′ is not-regular

for Φ+ \ Φ(K ′
j). We can rephrase this to: There exists α ∈ Φ+ \ Φ(K ′

j) such
that

α(

∫ tj+1

tj

γ−1γ′) = 0,

which is to say that γ touches the hyperplane Hα,m both at tj and tj+1, where

m =

∫ tj

0

γ−1γ′.

As all faces of the Coxeter complex are topologically trivial, we move the j-th
segment of γ into the intersection of all such Hα,m. If α0 6∈ Φ+\Φ(Kj), we can
decompose the segment into a linear combination of cofundamental weights

γ|[tj ,tj+1] =

n∑
l=1

qlϖ
∨
l

for some functions ql. The homotopy we want to choose is achieved by replac-
ing ql by (1− s)ql. If α0 ∈ Φ+ \Φ(Kj), we choose a vertex v of ∆f stabilized

60



4.1 Homotopies and the symplectic form

Figure 4.1: The loop γ̃ of example 4.1.4

by Kj instead. By Borel-de Siebenthal this givestm a subsystem of the root
system of rank n. We choose a simple root system for this subsystem by
declaring the Weyl chamber dominant which contains ∆f . This set of simple
roots is obtained by the simple roots which vanish at v and the negative of
the highest root. With this choice of simple roots for this subsystem we can
again write the segment in terms of the cofundamental weights of Φ(Stab(v)).
Using the same procedure as in the first case we arrive at an explicit homo-
topy. Note also that Φ(Kj) ⊆ Φ(Stab(V )).
The explicit form of the homotopy implies that in the limit s → 1 the group
Kj is unchanged and only K ′

j is enlarged to contain exactly those roots which
caused the degeneracy of ωΓγ

.

Example 4.1.4. We continue the example of figure 3.2. We will remove the
local minimum via a homotopy of γ to the loop γ̃, see figure 4.1. The map
that is achieved on the level of Bott–Samelson manifolds is

SU(3)×S SU(α0)×S SU(α0)/S → SU(3)× SU(α0)/S

[g0 : g1 : g2] 7→ [g0 : g1g2],

which is surjective. This example also gives us the chance to examine a slight
misfit of notation in the proof. Following the definition of the Bott–Samelson
manifold, the loop γ has the groups K0,K1,K2 attached while γ̃ has only the
groups K0,K1 attached. In the proof we claimed that K2 would not change
under the described homotopy. If we follow the steps of the proof, the manifold
we will obtain is

SU(3)×S SU(α0)×SU(α0) SU(α0)/S,

which does not quite fit our definition of the Bott–Samelson manifold for γ̃.
The reason for this is that Φ(K ′

1) is exactly the same as the set of roots for
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which
∫ t2
t1
γ−1γ′ vanishes. This is no problem as the multipliction map

SU(3)×S SU(α0)×SU(α0) SU(α0)/S → SU(3)× SU(α0)/S

[g0 : g1 : g2] 7→ [g0 : g1g2]

is an isomorphism to the actual Bott–Samelson of γ̃ and is compatible with
the action on γ̃. All things considered, this is just an oddity of notation.

4.2 The shrinking algorithm
We will now explain the shrinking algorithm. We also describe a closely related
method to obtain from a loop γ an alcove walk connected to γ through a
homotopy fitted to the path model.

Theorem 4.2.1. Let γ ∈ Ω(S) be a loop.

1. There exists a homotopy γs fitted to the path model such that γ1 is a
1-skeleton gallery walk.

2. There exists η ∈ Ω(S) an alcove walk and a homotopy ηs fitted to the
path model such that η1 = γ.

Proof. As reference loop to construct the Bott–Samelson manifold we will
take γ to be maximally folded. We will coarsen the partition of [0, 2π] by the
ti. Let Hi be the set of affine hyperplanes that contain γ(ti). Let t′0 = 0,
and define t′i+1 as the tj such that there is a hyperplane H, in which γ(tj)
is contained, that has no common intersection with the union of the Hk for
t′i ≤ tk < tj . If t′i = tk, we will denote k − 1 by i♭. The concatenation of
segments γ[t′i,t(i+1)♭

] can be homotoped into any vertex in the intersection of
all Hk such that no Kk changes until s = 1. We choose a vertex and denote
it by vi. The i♭-th segment can be homotoped into the edge [vi−1, vi] (this is
of course only necessary for i 6= 0). By choice of vi it is fixed by all Kk for
i♭+1 ≤ k ≤ (i+1)♭, and as such the map Ψ is well-defined. Starting for i = 0
and homotoping segment by segment a gallery walk of a 1-skeleton gallery is
obtained. By definition it is fitted to the path model.
We will prove the second part of the theorem. We still assume γ to be max-
imally folded. For every j ∈ {1, . . . , k} choose a positive root βj such that
βj(γ(tj)) vanishes. The βj are necessarily either simple roots or the highest
root. They define facets Fj of the fundamental alcove ∆f . We choose points
pj in the open face F o

j . Define η to be the loop with j-th segment a path join-
ing the point pj with the point pj +1 inside of the interior of the fundamental
alcove ∆o

f for j ∈ {1, . . . , k − 1}. It might very well occur that pj = pj+1 and
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4.2 The shrinking algorithm

Figure 4.2: Application of the shrinking algorithm

need to be joined by a non-trivial path. The 0-th segment is a path joining
0 with p1, while the k − 1-st segment joins pk and the endpoint of γ. Now a
homotopy from η to γ can again be given in two steps. First move pj to γ(tj)
inside the face Fj . Then the segments can be homotoped to the segments of
γ. Again this homotopy can be realized in a way such that it is fitted to the
path model.

Let us work through the first algorithm in an example.

Example 4.2.2. Consider the loop depicted to the left in figure 4.2. We
obtain t′0 = 0 < t′1 = t1 < t′2 = 2π. In the first step we only need to consider
the hyperplane Hα0,1 which contains as vertices the cofundamental weights.
We choose ϖ∨

1 and obtain the loop in the top right of figure 4.2. The points
γ(t2), γ(t3), γ(t4), γ(t5) have common intersection in 0 and we can homotope
the multisegment γ|[t2,t5] into this vertex of ∆fund. The final result is seen at
the bottom of figure 4.2. It is the concatenation of ϖ∨

1 with its negative.

The crux of these maps is of course that there is no guarantee for surjectivity.

Lemma 4.2.3. Let γ be a maximally folded loop and γs a homotopy fitted to
the path model. Then wt(Ψ(η)) = wt(η) for every torus loop η in Γγ .

Proof. As the homotopy is fitted to the path model, if hγ(w) = η then hs(w)
defines a homotopy in S starting in η ending in Ψ(η).

We were already able to give the moment map image of Γγ for a loop γ in
dominant direction. Using lemma 4.2.3 we can do better.

Proposition 4.2.4. If γ is an integral loop such that Γγ is symplectic and
there exists a homotopy γs fitted to the path such that:

1. γ1 is a 1-skeleton walk and the type of δ(γ1) is the type of a dominant
combinatorial 1-skeleton gallery,
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4 Implications for the path model

2. the image of the map Ψ contains a minimal gallery D (and by this all
minimal galleries in Σ(δ(γ1)),

then µLie(S)(Γγ) = conv(W.wt(D)).

Proof. By condition 1) the map Γ1 → Cwt(D) is well-defined and surjective.
Let w ∈ Γγ such that δ(Ψ(w)) = D then wt(w) = wt(D) by 4.2.3. Again by
the closure relations of affine Schubert varieties we know that for w′ ∈ ΓS

γ

wt(w′) = wt(Ψ(w′)) ≤ wt (D) = wt(w).

Example 4.2.5. We remind the reader of the loop depicted in figure 3.3. The
shrinking algorithm takes three steps in this case. We will describe the result
in terms of the loop seen in the figure instead of the maximally folded one.
In the first step the first segment is moved to the line connecting 0 and ϖ∨

1 and
the 2-nd segment is shrunk into ϖ∨

1 . In the second step segments 3 to 10 are
shrunk into the line connecting ϖ∨

1 with α∨
1 + α∨

2 . In the third step segment
11 is homotoped to the segment joining α∨

1 + α∨
2 with 2ϖ∨

1 +ϖ∨
2 , forcing the

last segment to connect to 2α∨
1 + 2α∨

2 .
The result is the concatenation ϖ∨

1 ∗ϖ∨
2 ∗ϖ∨

1 ∗ϖ∨
2 a 1-skeleton walk of weight

λ = 2α∨
1 + 2α∨

2 . This is also the weight of corresponding minimal dominant
combinatorial 1-skeleton gallery and we obtain

µLie(S)(Γγ) = conv(W.λ).

Example 4.2.6. The considered group is SO(5) and we fix the concatenation
of edges γ = 1

2ϖ
∨
1 ∗ (ϖ∨

2 + 1
2ϖ

∨
1 ). This loop is contained in the dominant Weyl

chamber, it is not in dominant direction, but it is integral. It is a 1-skeleton
walk, but type(δ(γ)) is not the type of a dominant combinatorial 1-skeleton
gallery. Still it holds that

µLie(S)(Γγ) = conv(W.wt(ϖ∨
2 )).

4.3 MV-polytopes via minimal loops
Following Ehrig [Ehr09] we define Emax

α (γ) = E
εα(γ)
α (δ). For w ∈ W with

reduced decomposition w = si1 · · · sik we define Ew(γ) := Emax
ik

· · ·Emax
i1

(γ).
By [Lit97] the resulting loop Ew(γ) is independent of the chosen reduced
decomposition of w.
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Definition 4.3.1. Let γ be an integral loop and w = si1 . . . sik an element of
the Weyl group W . We define the vertex loop Ξw(γ) as

Ξw(γ) = wEmax
w (γ).

Corollary 4.3.2. Let γ be an integral loop which is also an alcove walk, then:

(i) The loop Ξw(γ) is an element of Γγ

(ii) The MV-polytope corresponding to δγ is given by

conv {wt(Ξw(γ) | w ∈W} .

By application of the shrinking algorithm we see that the same statement
holds for a 1-skeleton gallery. For this just note that every 1-skeleton gallery
walk is a shrinking of an alcove walk.

4.4 A family of affine Schubert varieties
Let us remind the reader of two facts about affine Schubert varieties Cλ. First,
they are the closure of the KA-orbit of λ, an element of TF /TA. Second, they
are the image of an appropriate Bott–Samelson variety under the desingular-
ization map [g0 : · · · : gk] 7→ g0 · · · gk.λf . The loop group setting opens up
another possibility as we can think of TF /TA as the group of polynomial loops
of the torus S. It is a discrete group in the non-discrete group Ωpol(K). The
corresponding subgroup Ω(S) of Ω(K) is much larger than TF /TA.

Definition 4.4.1. Let η ∈ Ω(S) be in dominant direction and γ ∈ Γη be
maximally folded. Let ν be any loop in S which is stabilized by the stabilizer
K ′

k of the last segment of γ and has weight wt(η)f . We define the map

πν : Σ(δ(γ)) → Ω(K)

p = [g0, . . . , gk] 7→ g0 · · · gkν,

where we choose p as being represented by elements which are in the image of
Γγ . We denote the image of πν by Cν .

Proposition 4.4.2. The set Cν can be continuously mapped to the affine
Schubert variety Cwt(η).

Proof. Let νs be a homotopy of ν with ν1 = wt(η)f inside of S, where again
wt(η)f is the unique loop inside of ∆f of the same type as wt(η)f . The
homotopy can be chosen in a such a way that νs is also stabilized by K ′

k.
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4 Implications for the path model

Such a homotopy exists as the fundamental group of S is isomorphic to X∗(S)
and the class of ν in the fundamental group of S is wt(ν). We obtain maps
πs : Σ(δ(γ)) → Ω(K) and because of our choice of γ and by [GL05] the image
of π1 is the affine Schubert variety Cwt(η).

We restate this result using the proper language.

Theorem 4.4.3. Denote the embedding of the affine Schubert variety Cλ as
Cν by ψ. Then the embedding ψ and the usual embedding Cλ → Ω(K) are
isotopic.

Using corollary 3.6.18 this theorem holds true if one replaces the affine
Schubert variety by an MV cycle. We condens this into the follwing theorem:

Theorem 4.4.4. Given a maximally folded loop γ in S such that Γγ contains
a loop η in dominant direction, the map

πν : Γγ → Σ(δ(γ)) → Ω(K)

[g] 7→ g.ν

is well-defined for any loop ν ∈ Ω(S), which is stabilized by the stabilizer K ′
k

of the last segment of γ and has weight wt(η)f . The image Im(πν) is home-
omorphic to the affine Schubert variety at wt(η). Moreover, the embedding
of the affine Schubert variety as Im(πν) and the identity map are isotopic. If
η ∈ Γγ ∩ Aγ and we denote by Γγ,η the cell centered at η, then π(Γγ,η) is
homeomorphic to an MV cycle and the associated embedding is isotopic to the
identity map. Every MV cycle is obtained from such a cell.
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5 Further Questions
In section 3.5 we were able to deduce the moment map image of Γγ and the
result was the Weyl polytope. This is the expected result in view of the diffeo-
morphism Γγ

∼= Σ(∆(γ)) as the Weyl polytope is the MV polytope associated
to the pair of weights (λ, λ). The natural question to ask is whether the clo-
sure of Białinycki-Birula cells are mapped to the other MV polytopes under
the moment map.
We have seen that the symplectic structure of Γγ can be manipulated via ho-
motopies of γ. Assume now that the restriction of ω to Γγ is degenerate. It
still gives Γγ the structure of a presymplectic manifold. Under certain condi-
tions it is possible to form the quotient of Γγ by the group of diffeomorphisms
obtained as flows of vector fields in the kernel of ω. This should be computable
by straightening the parts of γ which give a contribution to ω which is not
regular in the sense of 3.5.2. We make this precise.

Conjecture 5.0.1. Let γ be a loop such that Γγ is not-symplectic when
equipped with the restriction of ω. A vector field X in the kernel of ω|Γγ

defines a global flow ΦX of Γγ . Denote by γs a homotopy from γ to the loop
where every segment of γ is replaced by the straight line joining the endpoints
of the segment. From the existence of maximal folded loops it follows that the
homotopy can be chosen to be fitted to the path model. Then the map Γγ → Γ1

is the quotient map induced by the action of all global flows ΦX .

Another interesting object for further study is the Birkhoff decomposition
in relation to the root operators. While it was straightforward to compute
the cocharacter appearing in the Birkhoff decomposition after application of
a root operator, the other two factors p− and p+ remain unknown. As the
cocharacter only determines the weight of an element in Ω(S), the action of
the root operators is largely determined by p− and p+. To extend the root
operators to (some subset of) Ω(K), a precise knowledge of the full decompo-
sition might prove crucial.
Relating to section 4.4: There are two known bases for the homology of Ω(K).
The original approach from Bott and Samelson proves that the homology
H(Ω(K)) has a basis consisting of the fundamental classes of Γλ for λ rang-
ing over the dominant cocharacters, pushed forward to Ω(K) using the map
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5 Further Questions

hλ. Another classical theorem is that the inclusion G → Ω(K) is a homo-
topy equivalence. The homology of the affine Grassmannian is generated by
the affine Schubert varieties as G is a cell complex with the affine Schubert
varieties as closures of cells. To our knowledge there are no relations known
between these two bases. Our maps πγ and the map hγ are a first link between
the two and could prove useful.
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