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Kurzfassung

In dieser Arbeit betrachten wir die symplektische Geometrie. Dieser eher junge For-
schungsbereich stößt seit dem späten 20. Jahrhundert auf zunehmend Interesse aufgrund
einiger namhafter Resultate wie dem berühmten Non-squeezing Theorem von Gromov.
Eine Besonderheit dieses Theorems ist die Tatsache, dass seine Aussage genau dann wahr
ist, wenn es globale symplektische Invarianten gibt, die bestimmte Eigenschaften erfüllen.
Diese globalen Invarianten werden symplektische Kapazitäten genannt und ihre Existenz
ist eine nicht triviale Tatsache. Mittlerweile sind mehrere Konstruktionen bekannt, jedoch
wurde die Berechnung symplektischer Kapazitäten bislang kaum betrachtet. In dieser
Arbeit beschäftigen wir uns mit diesem Gesichtspunkt für eine bestimmte symplektische
Kapazität, nämlich der Ekeland-Hofer-Zehnder Kapazität, welche jedem konvexen Körper
in R2n eine nichtnegative Zahl oder 8 zuordnet.

Um die Ekeland-Hofer-Zehnder Kapazität von Mengen der Form K � T zu berechnen,
wobei K und T konvexe Mengen sind, verwenden wir einen Ansatz, der auf Minkowski
Billards basiert. Genauer bauen wir auf einem Algorithmus von Alkoumi und Schlenk auf,
der zweidimensionale konvexe Mengen K betrachtet und annimmt, dass T die euklidische
Einheitskugel ist. Einerseits bearbeiten wir diesen Algorithmus so, dass auch konvexe
Mengen K mit beliebiger Dimension betrachtet werden können. Andererseits verallgemei-
nern wir den Ansatz von Alkoumi und Schlenk vom euklidischen Fall (wo T die euklidische
Einheitskugel ist) zum Minkowski Fall (wo T eine beliebige konvexe Menge ist). Insbe-
sondere betrachten wir die Situation, in der K und T Polytope sind.

Abgesehen von diesem Ansatz betrachten wir ein Resultat von Abbondandolo und
Majer, welches die Ekeland-Hofer-Zehnder Kapazität als ein Maximierungsproblem for-
muliert. Dieses Maximierungsproblem ist ein Hybrid aus einem quadratischen Zuord-
nungsproblem und einem quadratischen Programm mit nichtkonvexer Zielfunktion. Wir
verwenden verschiedene Optimierungstechniken, um obere und untere Schranken an die
Ekeland-Hofer-Zehnder Kapazität von Polytopen zu finden. Unter Anderem erhalten wir
eine sehr gute obere Schranke, die für viele kleinere Probleminstanzen dem Optimalwert
entspricht, jedoch eine schnell wachsende Laufzeit aufweist.
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Abstract

In this thesis we are concerned with symplectic geometry. This rather new field of research
gained much interest due to some famous results in the late 20th century, such as the
celebrated non-squeezing theorem by Gromov. An intriguing feature of this theorem is, that
it is true if and only if there are global symplectic invariants that satisfy certain properties.
These global invariants are called symplectic capacities and their existence is a nontrivial
fact. By now, several constructions are known but the computation of symplectic capacities
has not received much attention. In this thesis, we address this aspect for a certain sym-
plectic capacity, namely the Ekeland-Hofer-Zehnder capacity, which maps a nonnegative
number or infinity to every convex body in R2n.

To compute the Ekeland-Hofer-Zehnder capacity of sets of the form K � T , where
both K and T are convex sets, we use an approach based on Minkowski Billiards. More
precisely, we build on an algorithm by Alkoumi and Schlenk, that is formulated for the case
where K is a two-dimensional convex set and T is the Euclidean unit ball. On the one hand,
we adapt this algorithm to allow convex sets K with arbitrary dimension. On the other hand,
we generalize the approach by Alkoumi and Schlenk from the Euclidean setting (where T
is the Euclidean unit ball) to the Minkowski setting (where T is an arbitrary convex set). In
particular, we consider the case where both K and T are polytopes.

Aside from this approach we consider a formulation of the Ekeland-Hofer-Zehnder
capacity as a maximization problem, which is due to Abbondandolo and Majer. This
maximization problem is a hybrid of a quadratic assignment problem and a quadratic
program with non-convex objective function. We employ different optimization techniques
and obtain upper and lower bounds on the Ekeland-Hofer-Zehnder capacity of polytopes.
Amongst others, we obtain a very good upper bound that is equal to the exact value for
many small problem instances at the cost of a rapidly increasing running time.
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Chapter One

Introduction

What is symplectic geometry and why are people interested in it? To answer this question
we take a look into the past. Even though symplectic geometry is a rather new subject,
its roots are old and date back to the early 19th century. In 1808 Joseph-Louis Lagrange
used classical mechanics to study the behaviour of planets. While doing so, he came up
with a simple way to formulate classical mechanics . Later William Rowan Hamilton built
up on Lagrange’s formulation and established that if qptq P R3 denotes the position and
pptq P R3 the momentum of a planet at the time t, then the motion of this planet is given by
the differential equations

dp
dt

� BH
Bq

,
dq
dt

� �BH
Bp

,

where Hpqptq, pptq, tq is the energy of the planet at the time t [100]. We can think of
symplectic geometry as a mathematical formalization of Hamilton’s formulation. More
precisely, symplectic geometry is about manifolds that are equipped with a skew-symmetric,
nondegenerate bilinear form, which we call a symplectic form and denote by ω. The prime
example of a symplectic form is the standard symplectic form

ω0pu, vq � uT
�

0 �I
I 0



v for u, v P R2n.

While symplectic geometry did not receive much attention for a long time, it is now an
active and thriving subject with connections to many other areas, for instance classical and
quantum mechanics, optics, algebraic geometry and low-dimensional topology [12], [30],
[40], [44], [74], [95]. Multiple celebrated discoveries in the last few decades are the reason
for this renewed interest. One of these results is Gromov’s non-squeezing theorem [42].

Theorem 1.0.1 (Non-squeezing Theorem). Let Brp0q � R2n be the ball of radius r and

ZRp0q � tpx, yq P Rn � Rn : x2
1 � y2

1 ¤ R2u,
with r,R ¥ 0. There is an injective symplectic map ϕ : Brp0q Ñ ZRp0q if and only if r ¤ R.

The term “symplectic map” refers to a differentiable map which preserves the structure
given by the corresponding symplectic form.

1



2 Introduction Chapter 1

One important aspect of Gromov’s theorem is its relation to certain symplectic invariants
which are called symplectic capacities. More precisely, a symplectic capacity c maps each
subset of R2n to a nonnegative number or to infinity such that the following properties hold
for every subset A � R2n:

• cpAq ¤ cpBq for every set B with A � B � R2n,

• cpϕpAqq � cpAq for every symplectic diffeomorphism ϕ,

• cpαAq � α2cpAq for every α P R, α ¡ 0,

• cpBrp0qq � cpZrp0qq � πr2,

where Brp0q and Zrp0q are defined as in Theorem 1.0.1.
The existence of a symplectic capacity is sufficient to prove Gromov’s non-squeezing

theorem, but whether there is a symplectic capacity is not obvious. Nevertheless, several
constructions have been found [42], [49], [50]. On the other hand, the question of how
to compute cpAq for a given symplectic capacity c and A � R2n did not receive much
attention. So, exact values are only known for a few special cases [81].

Furthermore, the study of invariances in symplectic geometry is of particular meaning.
In 1882, Darboux showed that any two symplectic manifolds with the same dimension are
locally isomorphic [29]. This rules out any local symplectic invariants. Thus, the question
arises of what global invariants look like.

In Chapter 2 we revisit the content of this introductory section to give a more rigorous,
albeit basic, introduction to symplectic geometry. Most notably, this includes the definition
of the Ekeland-Hofer-Zehnder capacity. This particular symplectic capacity is the central
object of this thesis. Furthermore, we take a look at Hamiltonian mechanics and a famous
conjecture by Mahler and see how these topics relate to the symplectic setting.

Even though the investigation of the Ekeland-Hofer-Zehnder capacity is a problem that
stems from symplectic geometry, we mostly make use of optimization techniques in this
thesis. We dedicate Chapter 3 to the corresponding preliminaries. Aside of an introduction
to conic optimization and some prominent special cases, we take a look at a particular
optimization problem, namely the quadratic assignment problem.

In Chapter 4 we consider convex sets of the form K � T , where K,T � Rn are convex
as well. The Ekeland-Hofer-Zehnder capacity of K � T is closely related to the concept
of closed billiards. More precisely, K plays the role of the billiard table and the set T
determines the bouncing rule. First, we study some theoretical aspects of this approach.
Then, we consider the Euclidean setting, i.e. where K is a polytope and T is the unit ball.
We provide a polynomial-time algorithm to compute an upper bound on the Ekeland-Hofer-
Zehnder capacity in this setting. The input of this algorithm consists of the vertices and the
facets of K. Afterwards, we examine the Minkowski setting, i.e. where both K and T are
polytopes. In this case we give a polynomial-time algorithm to compute the Ekeland-Hofer-
Zehnder capacity if both K and T are two-dimensional. The input consists of the vertices
and the facets of K and T . This chapter is based on [65] and [66], which is currently
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in preparation. Both of these publications are joint work with Daniel Rudolf from Ruhr-
University Bochum.

In Chapter 5 we step away from convex sets of the form K�T and consider arbitrary 2n-
dimensional polytopes instead. We use a result by Abbondandolo and Majer that formulates
the Ekeland-Hofer-Zehnder capacity as an optimization problem [1]. Furthermore, we
discuss the challenges that arise with this formulation and apply different strategies to
compute upper and lower bounds. In particular, a strategy that relies on semidefinite
relaxation yields remarkable upper bounds. Therefore, we elaborate on the quality of our
results by employing a rank minimization technique. In some cases this approach yields a
proof that our upper bound is tight.
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Chapter Two

Basics of symplectic geometry

In this chapter we give the basic notions and concepts of symplectic geometry. We do so
by mainly following [51]. Usually literature on symplectic geometry discusses symplectic
manifolds. In this thesis we concentrate on symplectic vector spaces instead, since the
manifold we are considering is R2n.

The goal of this chapter is to define the central object of this thesis, namely the Ekeland-
Hofer-Zehnder capacity, and to provide some motivation. The techniques used in later
chapters are not of symplectic nature and therefore do not appear in Chapter 2.

2.1 Symplectic vector spaces

We start our introduction to symplectic geometry by defining our setup. Let V be an n-
dimensional real vector space and ω : V � V Ñ R a bilinear form that is

• skew-symmetric: ωpu, vq � �ωpv, uq for all u, v P V and

• nondegenerate: for every u P Vzt0u there is v P V such that ωpu, vq � 0.

We call ω a symplectic form and the pair pV, ωq a symplectic vector space. The simplest
example of a symplectic vector space is pR2n, ω2n

0 q, where for every u, v P R2n we define

ω2n
0 pu, vq � uT J2nv with J2n �

�
0 �In

In 0



.

Here, In denotes the pn � nq-identity matrix. We write ω0 and J instead of ω2n
0 and J2n

if the dimension is clear from the context. On the one hand, we observe that J is regular
because det J � 1. Thus, ω0 is nondegenerate. On the other hand, JT � �J which implies
skew-symmetry:

ω0pu, vq � uT Jv � puT JvqT � vT JT u � �ω0pv, uq @u, v P V.

The pair pR2n, ω0q is called the standard symplectic vector space and in fact it is more than
just a simple example. Every symplectic vector space looks like pR2n, ω0q provided we use
the correct basis.

5



6 Basics of symplectic geometry Chapter 2

Proposition 2.1.1. [51] Let pV, ωq be a finite-dimensional symplectic vector space. Then
it has even dimension 2n and there is a basis e1, . . . , en, f1, . . . , fn of V such that for every
i, j P t1, . . . , nu:
• ωpei, e jq � 0,

• ωp fi, f jq � 0,

• ωp fi, e jq � δi j.

Proof. If V � t0u there is nothing to prove. So, we assume there is e1 P Vzt0u. Since ω is
nondegenerate, we can find w P V such that ωpe1, wq � 0. Letting f1 � w{ωpe1, wq, we get
ωpe1, f1q � 1. Note that f1 is not a multiple of e1 because skew-symmetry and bilinearity
of ω imply for every v P V and α P R

ωpv, αvq � �ωpαv, vq � �ωpv, αvq
and hence ωpv, αvq � 0. In other words, e1 and f1 are linearly independent. If dim V � 2,
the proof is finished. Otherwise, we consider the subspaces

E � spante1, f1u,
EK � tu P V : ωpu, vq � 0 @ v P Eu.

Next we would like to argue that

dim E � dim EK � dim V. (2.1)

To this end, we let tb1, . . . , bru be a basis of EK, r � dim EK. We can extend this to a basis
tb1, . . . , bsu of V , s � dim V . Furthermore, we define a matrix M P R2�s by

M1, j � ωpe1, b jq
M2, j � ωp f1, b jq

+
for all j P t1, . . . , su.

On the one hand, a simple calculation yields that a vector y P Rs is in the kernel of M if
and only if

°
j y jb j is contained in EK. Because tb1, . . . , bru is a basis of EK, we conclude

that yr�1 � . . . � ys � 0 and that dim ker M � r.
On the other hand, we observe that the rows of M are linearly independent. To see this,

we take λ1, λ2 P R such that

0 � λ1

���ωpe1, b1q
...

ωpe1, bsq

��
� λ2

���ωp f1, b1q
...

ωp f1, bsq

��
�

���ω pλ1e1 � λ2 f1, b1q
...

ω pλ1e1 � λ2 f1, bsq

��
.
Since tb1, . . . , bsu is a basis of V , we find that

ωpλ1e1 � λ2 f1, vq � 0

holds for every v P V . Now nondegeneracy implies that λ1e1 � λ2 f1 � 0 and we get
λ1 � λ2 � 0 because te1, f1u is a basis of E. Thus, rk M � 2. Identity (2.1) follows by the
rank-nullity theorem if we plug in r � dim EK, s � dim V and 2 � dim E.
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Because of ωpe1, f1q � 1, we have E X EK � t0u. Together with (2.1) this means that
the subspaces E, EK decompose V , i.e. V � E ` EK. We can apply the same reasoning as
at the start of the proof to EK inductively and conclude the proof. �

Now we have an acurate idea of what symplectic spaces look like. Thus, we usually
focus on the standard symplectic space pR2n, ω0q throughout this thesis.

2.2 Symplectic maps and the action functional

Next, we turn our attention to maps on symplectic vector spaces. Since a symplectic form
provides a symplectic vector space with some structure, it is instructive to consider maps
that leave this structure invariant. This motivates the following definition.

Definition 2.2.1. For i P t1, 2u let Ui � R2n be an open set and let ωi : R2n � R2n Ñ R
be a symplectic form. Furthermore, let ϕ : U1 Ñ U2 be a differentiable map that for every
x P U1 has the property

ω1pu, vq � ω2pDϕpxqu,Dϕpxqvq @u, v P R2n, (2.2)

where Dϕpxq is the Jacobian of ϕ at x. Then we say that ϕ is symplectic.

It is an immediate consequence of Proposition 2.1.1 that between every two symplectic
vector spaces with same dimension there is a linear symplectic map (more precisely a
symplectic isomorphism). This symplectic map is a change of basis according to Proposi-
tion 2.1.1.

A distinctive property of a symplectic diffeomorphism ϕ : R2n Ñ R2n is that it preserves
the volume. More precisely, we consider the standard symplectic vector space pR2n, ω0q.
Identity (2.2) then reads for every x P R2n:

uT Jv � uT DϕpxqT JDϕpxqv @u, v P R2n. (2.3)

This is equivalent to

DϕpxqT JDϕpxq � J

and immediately implies det Dϕpxq P t�1,�1u. In fact, det Dϕpxq � 1 holds (see for
instance [33]). Thus, volϕpUq � vol U for every U � R2n.

In addition to the symplectic form ω0 and the volume there is another functional that is
left invariant under symplectic diffeomorphisms. It is called the action functional. To state
it properly, we use the language of differential forms. The concepts and notions that we
utilize are common and can be found, for instance, in [24], [39] and [56].

We let xi, yi : R2n Ñ R for i P t1, . . . , nu be coordinate functions defined by

xipuq � ui, yipuq � un�i

for u P R2n. We can express the standard symplectic form as

ω0 �
ņ

i�1

dyi ^ dxi.
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We can verify this expression using the definition of the wedge product. For u, v P R2n we
have�

ņ

i�1

dyi ^ dxi

�
pu, vq �

ņ

i�1

pdyi ^ dxiq pu, vq �
ņ

i�1

dyipuqdxipvq � dyipvqdxipuq

�
ņ

i�1

un�ivi � uivn�i � uT Jv.

There is another common way to express the standard symplectic form, namely ω0 � dλ,
where

λ �
ņ

i�1

yidxi

is the Liouville 1-form. This is due to the following calculation:

dλ � d

�
ņ

i�1

yidxi

�
�

ņ

i�1

dpyidxiq �
ņ

i�1

�
ņ

j�1

Byi

Bz j
dx j ^ dxi �

ņ

j�1

Byi

Bzn� j
dy j ^ dxi

�

�
ņ

i�1

dyi ^ dxi � ω0.

We are now ready to state the definition of the action functional.

Definition 2.2.2. Let γ � R2n be a closed curve. Then

Apγq �
»
γ

λ

is called the action of γ.

As mentioned before, applying symplectic diffeomorphisms leaves the action functional
invariant. This is easy to show if we utilize differential forms. Therefore, we state the proof
for the sake of completeness.

Proposition 2.2.3. [51] Let γ � R2n be a closed curve and ϕ : R2n Ñ R2n be a symplectic
diffeomorphism. Then

Apγq � Apϕpγqq.
Proof. First, we reformulate (2.3) using the pullback ϕ� to get

ω0 � ϕ�ω0.

Indeed, this equation is equivalent to (2.3):

ϕ�ω0 �
ņ

i�1

�
2ņ

j�1

Bϕn�i

Bz j
dz j

�
^
�

2ņ

j�1

Bϕi

Bz j
dz j

�
�

ņ

i�1

¸
1¤ j,`¤2n

Bϕn�i

Bz j

Bϕi

Bz`
dz j ^ dz`.
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Plugging in some points u, v, x P R2n we get

pϕ�ω0qx pu, vq �
ņ

i�1

¸
1¤ j,`¤2n

Dϕpxqn�i, jDϕpxqi,`pu jv` � u`v jq � uT DϕpxqT JDϕpxqv

� ω0pDϕpxqu,Dϕpxqvq.
The second equality in this equation is a simple but lengthy calculation. Therefore, we omit
the details.

Next we consider the 1-form λ�ϕ�λ. Because the exterior derivative d and the pullback
ϕ� commute, we have

dpλ� ϕ�λq � dλ� ϕ�dλ � ω0 � ϕ�ω0 � ω0 � ω0 � 0.

Thus, the 1-form λ � ϕ�λ is exact and according to the Poincaré lemma [69] there is a
function F : R2n Ñ R such that

λ� ϕ�λ � dF.

Now Stokes’ theorem [69] implies»
γ

λ� ϕ�λ �
»
γ

dF �
»
Bγ

F � 0,

where the last equality holds because γ is a closed curve. This completes the proof as

Apγq �
»
γ

λ �
»
γ

ϕ�λ �
»
ϕpγq

λ � Apϕpγqq.

�

In the upcoming chapters we consider problems in which the action functional takes a
significant role. Therefore, it is beneficial to examine it closer. Above, we state the action
functional using differential forms. Next, we want to reformulate this definition such that
we receive an expression forApγq that does not rely on the notion of differential forms. The
trick is to parametrize the closed curve γ by a function f : r0, as Ñ R2n with f p0q � f paq
for some a P R¥0. This idea is mentioned in [51]. Here, we carry out the calculation in
more detail.

Proposition 2.2.4. Let f : r0, as Ñ R2n be a differentiable function with f p0q � f paq for
some a P R¥0. Then

Ap f q :� Ap f pr0, asqq � �1
2

a»
0

ḟ ptqT J f ptqdt.

Proof. Let fi � xi � f and fn�i � yi � f for i P t1, . . . , 2nu. In other words fiptq is the
ith coordinate of f ptq for i P t1, . . . , 2nu and t P r0, as. We perform a change of variables
which means

Ap f q �
»

f pr0,asq

λ �
a»

0

f �λ �
a»

0

ņ

i�1

fn�iptq f 1i ptqdt. (2.4)
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Next, we switch summation with integration and integrate by parts.

Ap f q �
ņ

i�1

a»
0

fn�iptq f 1i ptqdt �
ņ

i�1

�� fn�ipaq fipaq � fn�ip0q fip0q �
a»

0

f 1n�iptq fiptqdt

��
(2.5)

� �
ņ

i�1

a»
0

f 1n�iptq fiptqdt.

The last equation holds since f p0q � f paq. Adding (2.4) and (2.5), we find

2Ap f q �
a»

0

ņ

i�1

fn�iptq f 1i ptq � f 1n�iptq fiptqdt � �
a»

0

ḟ ptqT J f ptqdt. �

In the statement of Proposition 2.2.4 we obviously require that the parametrization f
is differentiable since the differential of f appears in the statement as well. However, we
can consider piecewise differentiable curves instead. Say we have points 0 � t0 ¤ t1 ¤
. . . ¤ tm � a and a continuous function f that is differentiable on pt j�1, t jq for every
j P t1, . . . ,mu. Again, we require f p0q � f paq. Then we can extend Proposition 2.2.4 to
get

Ap f q � �
m̧

j�1

1
2

t j»
t j�1

ḟ ptqT J f ptqdt.

The proof is similar with the exception that we need to split up the integral. Then (2.4)
becomes

Ap f q �
m̧

j�1

»
f prt j�1,t jsq

λ �
m̧

j�1

t j»
t j�1

ņ

i�1

fn�iptq f 1i ptqdt

and instead of (2.5) we have

Ap f q �
m̧

j�1

ņ

i�1

��� fn�ipt jq fipt jq � fn�ipt j�1q fipt j�1q �
t j»

t j�1

f 1n�iptq fiptqdt

��� ,

where the term

m̧

j�1

ņ

i�1

fn�ipt jq fipt jq � fn�ipt j�1q fipt j�1q

is a telescopic sum and vanishes like in the proof of Proposition 2.2.4 due to f p0q � f paq.



Section 2.3 Symplectic capacities 11

2.3 Symplectic capacities

We now introduce the object that we primarily study in this thesis, namely symplectic
capacities. Usually, a symplectic capacity is defined as a map c that associates to each
symplectic manifold (i.e. a manifold equipped with a symplectic form) a nonnegative
number or infinity such that certain conditions hold (see Definition 2.3.1). As mentioned
earlier, we are interested in a more specific setting. Therefore, we state this definition for
the case where all appearing manifolds are open subsets of R2n.

Definition 2.3.1. LetM2n be the set of all open subsets of R2n and let Ω2n be the set of all
symplectic forms on R2n. A map

c : M2n �Ω2n ÝÑ R¥0 Y t8u
is called a symplectic capacity if it has the following properties:

(i) If A P M2n is equipped with ω P Ω2n and B P M2n is equipped with τ P Ω2n such
that there is an injective symplectic map ϕ : A Ñ B, then:

cpA, ωq ¤ cpB, τq.

(ii) If A PM2n, ω P Ω2n and α P Rzt0u, then:

cpA, αωq � |α|cpA, ωq.

(iii) Let B1p0q be the Euclidean unit ball and let

Z1p0q � tpx, yq P Rn � Rn : x2
1 � y2

1 ¤ 1u
be an infinitely long cylinder. Then:

cpint B1p0q, ω0q � π � cpint Z1p0q, ω0q.

An immediate implication of this definition is that cpA, ωq � cpB, τq if there is a
symplectic diffeomorphism ϕ : A Ñ B. One simply applies the monotonicity property
piq to the symplectic maps ϕ and ϕ�1. Furthermore, we observe that cpA, ωq ¤ cpB, ωq for
everyω P Ω2n whenever A � B. To see this, we apply the monotonicity property to the map
ϕ � id. This map is injective, differentiable and its Jacobian is the identity matrix. Thus, ϕ
is symplectic. A third property that we deduce from Definition 2.3.1 is the 2-homogeneity.

Lemma 2.3.2. [51] Let A � R2n be open and let ω be a symplectic form on R2n. Then for
every α P Rzt0u and every symplectic capacity c we have

cpαA, ωq � α2cpA, ωq.
Proof. We define the map ϕ : αA Ñ A by

ϕpxq � 1
α

x for all x P αA.
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We see that ϕ is a diffeomorphism and its Jacobian is given by

Dϕpxq � 1
α

I.

In particular, we have for every x P αA:

ωpu, vq � α2ωpDϕpxqu,Dϕpxqvq @ u, v P R2n.

So, ϕ is a symplectic diffeomorphism mapping αA to A, where we consider pαA, ωq and
pA, α2ωq. This means that we can apply the monotonicity property with equality to get

cpαA, ωq � cpA, α2ωq.
The statement now follows if we apply the conformality property piiq. �

With Lemma 2.3.2 we can extend the nontriviality property piiiq. We have

cpint Brp0q, ω0q � πr2 � cpint Zrp0q, ω0q, (2.6)

for every r ¡ 0, where Brp0q is the Euclidean ball of radius r and center 0 and

Zrp0q � tpx, yq P Rn � Rn : x2
1 � y2

1 ¤ r2u.
We note that in dimension two the sets Zrp0q and Brp0q are equal for every radius r ¡ 0.
Therefore, the requirement (2.6) lets us suspect a relation between symplectic capacities
and the two-dimensional volume. In fact, Siburg [92] proved that cpD, ω0q � vol D holds
for every compact and connected domain D � R2 with smooth boundary. This however,
is a special feature in dimension two. In every even dimension greater than two the set
Zrp0q is unbounded for every r ¡ 0. This means that the volume of Zrp0q is infinite which
disqualifies the volume as a symplectic capacity.

The next property of symplectic capacities that we discuss is the continuity with respect
to the Hausdorff metric. For each two sets A, B � R2n we define the Hausdorff metric by

dHpA, Bq � max
"

sup
aPA

inf
bPB

||a� b||, sup
bPB

inf
aPA

||a� b||
*
.

This continuity property is stated as an exercise in [74] and a proof can be found in [7].
Here, we give a slightly different proof.

Lemma 2.3.3. Let A � R2n be open, bounded and convex and let c be a symplectic
capacity. For every ε ¡ 0 there is δ ¡ 0 such that dHpA, Bq   δ with B � R2n open
and convex implies

|cpA, ω0q � cpB, ω0q|   ε.

Proof. Let δ ¡ 0 and let B � R2n be open and convex such that dHpA, Bq   δ. This means
that every point in A has Euclidean distance at most δ to B and vice versa:

inf
bPB

||a� b|| ¤ δ @a P A,

inf
aPA

||a� b|| ¤ δ @b P B.
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Now consider the intersection of A and B. A X B is open, convex and contained in both A
and B. If we choose δ sufficiently small, we know that AX B is nonempty because A and B
are open. Furthermore, we have

inf
bPB

||z� b|| ¤ δ @z P AX B,

inf
aPA

||z� a|| ¤ δ @z P AX B.

In other words, both dHpA, AX Bq and dHpB, AX Bq are at most δ.
Next, let u P R2n. We note that the translation ϕ : R2n Ñ R2n given by ϕpxq � x � u

is a symplectic diffeomorphism. This is easy to see since ϕ and ϕ�1 are both differentiable
and their Jacobian is the identity matrix. Therefore, we can assume that 0 is contained in
the open set A X B without changing cpA, ω0q or cpB, ω0q. We can now scale A X B such
that it contains A and B. More precisely, we let

λ� � inftλ ¡ 0: AY B � λ � pAX Bqu.
We observe that λ� ¥ 1. Moreover, for every ε1 ¡ 0 we can pick δ small enough such that
λ� ¤ 1 � ε1. Let us fix some ε ¡ 0. If cpA, ω0q � 0, then we choose some δ such that
AX B is nonempty. Otherwise, we choose δ such that

λ� ¤
c

1� ε

cpA, ω0q .

Note that cpA, ω0q is finite since A is contained in some ball with radius R and so cpA, ω0q ¤
πR2. We have

cpAX B, ω0q ¤ cpA, ω0q ¤ cpλ� � pAX Bq, ω0q � pλ�q2cpAX B, ω0q,
cpAX B, ω0q ¤ cpB, ω0q ¤ cpλ� � pAX Bq, ω0q � pλ�q2cpAX B, ω0q.

This concludes the proof since

|cpA, ω0q � cpB, ω0q| ¤ pλ�q2cpAX B, ω0q � cpAX B, ω0q
¤ �pλ�q2 � 1

�
cpA, ω0q

¤ ε. �

In this thesis we mainly consider convex sets, most notably polytopes, instead of open
sets. Therefore, it is convenient to generalize the definition of a symplectic capacity to
arbitrary subsets of R2n. We do so by letting

cpA, ωq :� inftcpB, ωq : B open and A � Bu,
where A � R2n is not open, c is a symplectic capacity and ω is a symplectic form. We
note that all properties of symplectic capacities that we established so far also hold for non-
open, bounded, convex sets, provided we consider the standard symplectic form ω0. This
is a consequence of Lemma 2.3.3 because we can approximate every bounded, convex set
with open, bounded, convex sets from the outside and from the inside.
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Perhaps the most important property of symplectic capacities is the fact that their
existence is sufficient to prove Gromov’s non-squeezing theorem [42]. In fact, this mo-
tivated symplectic capacities in the first place. The theorem states a restriction on what
symplectic maps can achieve. In this regard, not much was known prior to Gromov’s
theorem, except for the fact that symplectic maps preserve the volume.

Theorem 2.3.4. [42] There is an injective symplectic map ϕ : Brp0q Ñ ZRp0q if and only
if R ¥ r.

Proof. It is easy to find a suitable map ϕ if R ¥ r, such as the identity map given by
ϕ : x ÞÑ x. Conversely, if we assume that there is a symplectic capacity c, we get

πr2 � cpBrp0q, ω0q ¤ cpZRp0q, ω0q � πR2. �

2.3.1 The Ekeland-Hofer-Zehnder capacity

So far, we elaborated on symplectic capacities but we have yet to demonstrate that sym-
plectic capacities exist at all. Many constructions have been found since Gromov stated
his non-squeezing theorem. Two examples are the Ekeland-Hofer capacity [49] and the
Hofer-Zehnder capacity [50]. It is known that these two symplectic capacities coincide on
convex bodies, i.e. nonempty, compact, convex sets with 0 in the interior [50], [98]. Thus,
the name Ekeland-Hofer-Zehnder capacity makes sense if we restrict our focus to convex
bodies.

To state the definition of the Ekeland-Hofer-Zehnder capacity, we require the notion of
an outer normal cone. The outer normal cone of a set A � Rn at a boundary point y P BA
is the cone

NApyq � tm P Rn : mT pz� yq ¤ 0 for all z P Au.
Throughout this thesis we abbreviate the term “outer normal cone” with “normal cone”.
This carries some ambiguity since the term “inner normal cone” also exists. However, all
normal cones appearing in this thesis are outer normal cones.

Ay1NApy1q
y2

NApy2q

y3

NApy3q

Figure 2.1: Three normal cones of a two-dimensional convex set. The normal cones at
the points y2 and y3 are one-dimensional, indicated by arrows. The normal cone at y1 is
two-dimensional, indicated by the blue area.
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Definition 2.3.5. The Ekeland-Hofer-Zehnder capacity (short: EHZ capacity) is defined
by

cEHZpCq � mintApxq : x is a generalized closed characteristic on BCu
for every convex body C. Here, a generalized closed characteristic on BC is a curve
x : r0, 1s Ñ BC that is closed, i.e. fulfils xp0q � xp1q, and satisfies

Jẋptq P NCpxptqq
for almost every t P r0, 1s.

We abide by the convention that the minimum over an empty set equals infinity. The
reason for the adjective “generalized” is that closed characteristics were originally defined
for convex sets with smooth boundary. The usage of the normal cone to include convex sets
with non-smooth boundary began later. Therefore, if we use the term “closed characteristic”
we mean a generalized closed characteristic on BC, where C has smooth boundary.

To see that the minimum in the definition is attained we refer to [49] and [51]. In
general, finding a closed characteristic that minimizes the action functional is a difficult
task. An exception to this is the case where we study a convex body of the form C �
K � T with convex bodies K,T � Rn. Such a body C is sometimes called the Lagrangian
product of K and T . We elaborate more on this case in Chapter 4. While there is not much
known about the EHZ capacity in general, the situation is different for a specific class of
Lagrangian products. More precisely,

cEHZpK � K�q � 4

for every centrally symmetric convex body K � Rn [81]. Here, K� � Rn denotes the polar
set of K:

K� � ty : yT z ¤ 1 @ z P Ku.
Another formulation for the EHZ capacity is due to Abbondandolo and Majer [1]. In

the proof one examines two functions HC and HC� that are in a certain sense a dual pair.
This process is reminiscent of Clarke’s duality [35], a variational principle for periodic
solutions of Hamiltonian systems (see Chapter 2.4.1). We state the proof for the sake of
completeness.

Theorem 2.3.6. [1] Let C � R2n be a convex set with smooth boundary and 0 P int C.
Then:

1
4cEHZpCq � max

 
Apξq | ξ : r0, 1s Ñ R2n absolutely continuous,

ξp0q � ξp1q, ξ̇ P C� a.e.
(
.

Proof. For a set A � Rm, m P N, we let µA be the Minkowski functional, i.e.:

µA : Rm Ñ R, µApzq � inftt P R¥0 : z P tAu @ z P Rm.
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It is easy to see that

µAprzq � rµApzq (2.7)

holds for every r P R and z P Rm: We have z P tA if and only if rz P rtA for every r, t P R
with r � 0. Additionally, it is clear that (2.7) holds for r � 0, provided that 0 P A. We let

a2pCq � max
 
Apξq | ξ : r0, 1s Ñ R2n absolutely continuous,

ξp0q � ξp1q, || µC�pξ̇q||2 ¤ 1 a.e.
(
,

a8pCq � max
 
Apξq | ξ : r0, 1s Ñ R2n absolutely continuous,

ξp0q � ξp1q, || µC�pξ̇q||8 ¤ 1 a.e.
(
,

where || � ||2 is the L2-norm and || � ||8 is the L8-norm. Note that

|| µC�pξ̇q||8 ¤ 1 ðñ µC�pξ̇q ¤ 1 almost everywhere
ðñ ξ̇ptq P C� almost everywhere.

Both a2pCq and a8pCq are equal to the optimal value of the maximization problem in the
statement of the theorem (see [1]). We now pursue the following strategy:

piq First, we prove that

Apxq ¥ 1
4a8pCq

holds for every closed characteristic x on BC.

piiq Second, we let ξ : r0, 1s Ñ R2n with ξp0q � ξp1q and || µC�pξ̇q||2 ¤ 1 such that
the maximum in the formulation of a2pCq is attained. We construct from ξ a closed
characteristic x on BC such that

Apxq � 1
4a2pCq .

Let us prove piq. We define a function

HC : R2n Ñ R, HCpzq � µCpzq2

2
for all z P R2n

and we let x : r0, 1s Ñ BC be a closed characteristic. By definition of HC , we have

∇HCpzq P NCpzq
for every z P BC. Therefore, we get a closed curve y : r0, bs Ñ R2n with period b ¡ 0 by
reparametrizing x such that

Jẏptq � ∇HCpyptqq
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for almost every t P r0, bs. Furthermore, we have yptq P BC and therefore

HCpyptqq � µCpyptqq2

2
� 1

2

for every t P r0, bs. Next, we recall Euler’s theorem for homogeneous functions [94]. If a
function f : Rm Ñ R is k-homogeneous, i.e.

f pαzq � αk f pzq for every z P Rm and α P R,
then we have

k f pzq � p∇ f pzqqT z for every z P Rm.

We can use this identity to calculate the action of y. Note that HC is 2-homogeneous
because µC is 1-homogeneous:

Apyq � �1
2

b»
0

ẏptqT Jyptq dt � 1
2

b»
0

pJẏptqqTyptq dt � 1
2

b»
0

p∇HCpyptqqqT yptq dt

�
b»

0

HCpyptqq dt �
b»

0

1
2

dt � b
2
.

We know not only the action of y but also the action of x. If g : r0, bs Ñ r0, 1s is the
parametrization that we applied to get the curve y, then:

Apyq � �1
2

b»
0

˙px � gqptqJpx � gqptq dt � �1
2

b»
0

g1ptqẋpgptqqJxpgptqq dt

� �1
2

1»
0

ẋptqJxptq dt � Apxq.

Next, we define the function HC� analogously to HC:

HC� : R2n Ñ R, HC�pzq � µC�pzq2

2
for all z P R2n.

We note that the following relation holds for every v P R2n because C is convex and contains
0:

sup
zPR2n

pvT z� HCpzqq � sup
r¥0

sup
µCpzq�1

�
rvT z� µCprzq2

2



� sup

r¥0

�
r sup
µCpzq�1

vT z� r2

2

�

� sup
r¥0

�
rµC�pvq � r2

2



� µC�pvq2

2
� HC�pvq.

(2.8)
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Since HC� satisfies (2.8) we say that it is the Fenchel conjugate of HC . Using the Legendre
reciprocity formula (see [35]), we get

∇HC� p∇HCpzqq � z and ∇HC p∇HC�pzqq � z (2.9)

for every z P R2n. With Euler’s theorem it follows that

2HC�p∇HCpzqq � p∇HCpzqqT
∇HC�p∇HCpzqq � p∇HCpzqqT z � 2HCpzq (2.10)

for every z P R2n. We now consider the closed curve

γ : r0, 1s Ñ R2n, γptq � 1
b

Jypbtq.

With (2.10) we see that γ fulfils the following for almost every t P r0, 1s:

HC� pγ̇ptqq � HC� pJẏpbtqq � HC� p∇HCpypbtqqq � HCpypbtqq � 1
2
.

In particular, it follows that µC� pγ̇ptqq � 1 and hence γ̇ptq is contained in C� for almost
every t P r0, 1s. Therefore, γ is a feasible solution in the maximization problem that defines
a8pCq. Furthermore, we can relate the action of γ to the action of x:

Apγq � �1
2

1»
0

pγ̇ptqqT Jγptq dt � � 1
2b

1»
0

pẏpbtqqT JT JJypbtq dt

� � 1
2b2

b»
0

pẏptqqT Jyptq dt � 1
b2Apyq �

1
b2Apxq.

Together with the fact that the action of x is b{2 we get:

1
4a8pCq ¤

1
4Apγq �

b2

4Apxq � Apxq.

Now we proceed with part piiq. We let ξ : r0, 1s Ñ R2n be an absolutely continuous
curve such that

ξ � argmax
 
Apϕq | ϕ : r0, 1s Ñ R2n absolutely continuous,

ϕp0q � ϕp1q, || µC�pϕ̇q||2 ¤ 1 a.e.u . (2.11)

In particular, we have a2pCq � Apξq. We observe that || µC�pξ̇q||2 � 1 because otherwise
we can scale ξ by some factor θ ¥ 1 to get a curve θξ with || µC�pθξ̇q||2 ¤ 1. Furthermore,
its action is

Apθξq � θ2Apξq ¡ Apξq,
which violates the definition of ξ. Note that Apξq is positive since we already found a curve
γ in part piq with

1 � || µC�pγ̇q||8 ¥ || µC�pγ̇q||2
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and with action Apγq � 1{2b ¡ 0. Additionally, we notice that ξ is still a maximizer of
(2.11) if we add the constraint ΦCpξq � 1{4, where

ΦCpξq :� 1
2

1»
0

HC�pξ̇ptqq dt � 1
4

1»
0

µC�pξ̇ptqq2 dt � 1
4
|| µC�pξ̇q||22.

According to the Lagrange multiplier theorem [38] there is some λ P R such that

∇Apξq � λ∇ΦCpξq. (2.12)

We note that both A and ΦC are 2-homogeneous. Therefore, we can use Euler’s theorem to
get

2a2pCq � 2Apξq � ∇Apξqrξs � λ∇ΦCpξqrξs � 2λΦCpξq � λ

2
. (2.13)

Thus, it is λ � 4a2pCq. We note that the differentials of A and ΦCpξq are given by

∇ΦCpξqrηs :� d
dh

ΦCpξ � hηq
����
h�0

� 1
2

1»
0

η̇ptqT∇HC0pξ̇ptq � hη̇ptqq dt

������
h�0

� 1
2

1»
0

η̇ptqT∇HC0pξ̇ptqq dt,

∇Apξqrηs :� d
dh
Apξ � hηq

����
h�0

� �1
2

1»
0

ξ̇ptqT Jηptq � η̇ptqT Jξptq � 2hη̇ptqT Jηptq dt

������
h�0

� �1
2

1»
0

ξ̇ptqT Jηptq � η̇ptqT Jξptq dt

� �
1»

0

η̇ptqT Jξptq dt

for every closed curve η P H1pr0, 1s,R2nq, where

H1pr0, 1s,R2nq �  
η P L2pr0, 1s,R2nq : η̇ P L2pr0, 1s,R2nq(

is the Sobolev space of order 1 on r0, 1s. In the last equation we use integration by
parts and the fact that ξp0q � ξp1q and ηp0q � ηp1q holds. Combining (2.12) with
(2.13) and plugging in the formulas for the derivatives, we get for every closed curve
η P H1pr0, 1s,R2nq:

0 � λ∇ΦCpξqrηs � ∇Apξqrηs �
1»

0

η̇ptqT �2a2pCq∇HC0pξ̇ptqq � Jξptq� dt.
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The Du Bois-Reymond Lemma [38] now states that the function

2a2pCq∇HC0pξ̇ptqq � Jξptq

is a constant almost everywhere. So, there is u P R2n such that for almost every t P r0, 1s
we have

�Jξptq � u � 2a2pCq∇HC�pξ̇ptqq.

We apply the 1-homogeneous function ∇HC to both sides and use (2.9) to get

∇HCp�Jξptq � uq � 2a2pCq∇HCp∇HC�pξ̇ptqqq � 2a2pCqξ̇ptq.

In particular, if we let y : r0, 1s Ñ R2n be the closed curve defined by yptq � �Jξptq � u,
then:

Jẏptq � 1
2a2pCq∇HCpyptqq (2.14)

for almost every t P r0, 1s. Thus, the curve y lives on a level set of HCpyptqq (see Figure
2.2). More precisely, there is E ¡ 0 such that HCpyptqq � E for all t P r0, 1s. Now the
closed curve x : r0, 1s Ñ R2n that we define by xptq � yptq{?2E fulfils:

HCpxptqq � 1
2E

HCpyptqq � 1
2

for every t P r0, 1s. By definition of HC , it follows that xptq P BC and together with (2.14)
we get that x is a closed characteristic on BC. To complete part piiq and hence the proof
of Theorem 2.3.6, we calculate the action of x. To this end, we combine our previous
considerations about the curves x and y and we use Euler’s theorem:

Apxq � 1
2E
Apyq � 1

4E

1»
0

pJẏptqqTyptq dt � 1
8Ea2pCq

1»
0

∇HCpyptqqTyptq dt

� 1
4Ea2pCq

1»
0

HCpyptqq dt � E
4Ea2pCq �

1
4a2pCq . �

We note that the requirement 0 P int C has a rather technical reason. It ensures that
the polar set fulfils some necessary properties. However, we can also apply Theorem
2.3.6 to every nonempty convex set that does not contain 0 in its interior by shifting it.
The corresponding map that performs the shift is a symplectic diffeomorphism and thus
preserves the EHZ capacity.

Due to a result from Haim-Kislev, a similar version of Theorem 2.3.6 also holds for
polytopes [47]. We pursue this approach in greater detail in Chapter 5.
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yptq ∇HCpyptqq

ẏptq � �J∇HCpyptqq{2a2pCq

Figure 2.2: A level curve of HC that contains yptq, which is a solution of (2.14). We observe
that y moves along the level curve.

2.4 Applications and related problems

2.4.1 Hamiltonian mechanics
Symplectic geometry has a tight connection to Hamiltonian mechanics, a specific formu-
lation of classical mechanics. It is one of the first applications that comes to mind because
symplectic geometry was developed as a mathematical formalization of Hamiltonian me-
chanics. To make this connection clear, we consider a physical system in which we inves-
tigate the time evolution of some particle. As an example, we want to know how a celestial
object like a planet moves. To determine this, we need to know the current position pp0q
of the planet and its momentum qp0q. Thus, we work in the space R6 � R3 � R3 or
more generally in the space R2n. Note that we write variables in the form pp, qq for an
easier distinction between the position p and the momentum q. According to Hamiltonian
mechanics, we can determine the motion of the planet by solving the following differential
equation:

dp
dt

� BH
Bq

,
dq
dt

� �BH
Bp

, (2.15)

where H � Hpp, qq is a differentiable, real-valued function that describes the physical
system. H is called the Hamiltonian. A more compact way to write (2.15) is

ẋptq � �J∇Hpxptqq, (2.16)

where we let xptq � ppptq, qptqq for every t ¥ 0. We define the Hamiltonian vector field
XH : R2n Ñ R2n, that is associated to (2.16), by

XHpxq � �J∇Hpxq.
Given an initial value x0, the differential equation (2.16) becomes

d
dt
ϕtpx0q � XHpϕtpx0qq @ t ¡ 0, (2.17)

ϕ0px0q � x0,

if we let xptq � ϕtpx0q. The function ϕt is called a flow of the vector field XH . It maps
the initial position and the initial momentum of the planet to its position and momentum
at time t. It is well known that every flow of XH is symplectic. Hence, investigating the



22 Basics of symplectic geometry Chapter 2

motion of some object amounts to the study of symplectic maps. There are several ways to
prove this. We present the strategy used in [74] since it requires less specific background
knowledge.

Theorem 2.4.1. [74] Let H : R2n Ñ R be twice differentiable and let ϕt be a flow of the
vector field XH . Then ϕt is symplectic.

Proof. By definition of a flow, we have

d
dt
ϕtpx0q � XHpϕtpx0qq � �J∇Hpϕtpx0qq

for every initial value x0 P R2n. We calculate the Jacobian at x0 for each side of this
equation, using the chain rule, to find

D d
dt ϕ

tpx0q � d
dt

Dϕtpx0q � �J∇2Hpϕtpx0qqDϕtpx0q.
Here, the differential d{dt Dϕtpx0q is to be understood componentwise. To make this equa-
tion clearer, we let Φptq be the Jacobian of ϕt at x0 and S ptq be the Hessian of H at ϕtpx0q.
Note that S ptq is a symmetric matrix. Now the equation takes the form

d
dt

JΦptq � S ptqΦptq,

where we use the fact that J2 � �I. This implies:

d
dt

ΦptqT JΦptq � ΦptqT J
�

d
dt

Φptq


�
�

d
dt

ΦptqT



JΦptq

� ΦptqT S Φptq �
�

ΦptqT JT
�

d
dt

Φptq


T

� ΦptqT S Φptq � �
ΦptqT S Φptq�T

� ΦptqT pS � S T qΦptq � 0.

Furthermore, we have that ϕ0 is the identity map according to (2.17). Thus, it is Φp0q � I
and

Φp0qT JΦp0q � J.

Together, this implies that ΦptqT JΦptq � J holds for every t ¥ 0. In particular, we have

ω0pu, vq � uT Jv � uT ΦptqT JΦptqv � ω0pDϕtpx0qu,Dϕtpx0qvq
for every u, v, x0 P R2n. �

We can deduce an interpretation of Gromov’s non-squeezing theorem from Theorem
2.4.1. Let us assume the exact position and momentum of the object that we are studying
is not known. Instead, we have an estimate of position and momentum in the form of a
region of possible positions and momenta. This region may be a Euclidean ball of radius r
in R2n. We can apply Gromov’s non-squeezing theorem to find that the region of possible
positions and momenta of the object fits at no time into an infinitely long cylinder ZRp0q
wit radius R   r.
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2.4.2 The symmetric Mahler conjecture and Viterbo’s conjecture
Symplectic geometry and in particular the EHZ capacity have a striking connection to the
following old problem in convex geometry. For a convex body K � Rn and z P Rn we let

Kz �  
y P Rn : py� zqT px � zq ¤ 1 @ x P K

(
.

The task is to determine the volume product, which is defined by

PpKq :� min
zPint K

vol K � vol Kz.

In [88] it is shown that the minimum is attained at a unique point, which is called the Santaló
point of K. Furthermore, if K is centrally symmetric, i.e. K � �K, then the Santaló point
is the origin. Note that Kz is the polar set K� of K for z � 0. Mahler studied the volume
product PpKq for centrally symmetric, convex sets K in [72] and formulated the following
conjecture, which is known as the symmetric Mahler conjecture.

Conjecture 2.4.2. [72] Let K � Rn be a centrally symmetric, convex set. Then:

PpKq � vol K � vol K� ¥ 4n

n!
.

It is easy to see that Mahler’s conjecture holds for n � 1. In this case K is an interval
r�s, ss for some s ¡ 0. Its one-dimensional volume is 2s. The polar set of K is r�1{s, 1{ss
and has volume 2{s. Thus, we have PpKq � 4. Moreover, it is known that the symmetric
Mahler conjecture is true for n � 2 [71] and n � 3 [55]. The problem is open for every
n ¥ 4.

The EHZ capacity relates the symmetric Mahler conjecture to a conjecture that was
posed more recently by Viterbo [99]. Unlike Mahler’s conjecture, Viterbo’s conjecture is
of symplectic nature.

Conjecture 2.4.3. [99] Let c be a symplectic capacity and let C � R2n be a convex set.
Then:

cpC, ω0q
cpB1p0q, ω0q ¤

�
vol C

vol B1p0q

1{n

.

Let us consider a special case of Viterbo’s conjecture. First, we assume that C has
the form C � K � K� for some centrally symmetric, convex body K � Rn. Second, we
consider the EHZ capacity. Third, we note that we know the EHZ capacity of C due to the
following result.

Theorem 2.4.4. [10],[81] Let K � Rn be a centrally symmetric, convex set. Then:

cEHZpK � K�, ω0q � 4.

The proof of this theorem uses a relation between the EHZ capacity and the notion of
closed Minkowski billiards. We study this relation thouroughly in Chapter 4 but we omit
the proof of Theorem 2.4.4.
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If we assume that Viterbo’s conjecture holds, then we get:

4n

πn �
�

cEHZpK � K�, ω0q
cEHZpB1p0q, ω0q


n

¤ vol K � K�

vol B1p0q � vol K � vol K�

πn{n!
.

Thus, Viterbo’s conjecture implies the symmetric Mahler conjecture. Conversely, the
symmetric Mahler conjecture implies Viterbo’s conjecture for the special case c � cEHZ
and C � K � K� with centrally symmetric, convex K:�

cEHZpK � K�, ω0q
cEHZpB1p0q, ω0q


n

� 4n

πn ¤
vol K � vol K�

πn{n!
� vol K � K�

vol B1p0q .

For a more extensive literature about the volume product and beyond its connection to
symplectic geometry, we refer to [21], [22], [62] and [67].



Chapter Three

Preliminaries and optimization
techniques

The formulations for the EHZ capacity in Definition 2.3.5 and Theorem 2.3.6 are minimi-
zation and maximization problems. Thus, being familiar with optimization techniques is
beneficial for the computation of the EHZ capacity. This chapter introduces some important
optimization concepts in two steps. First, we take a look at a specific, well-established
optimization problem, the quadratic assignment problem. As we discuss later in Chapter
5, the calculation of the EHZ capacity has a relation to this combinatorial optimization
problem. Afterwards, we introduce conic optimization, which is a meaningful and wide
class of optimization problems. Furthermore, we examine some important instances in
greater detail.

3.1 The quadratic assignment problem

For an extensive exposition on the quadratic assignment problem see [26].
Imagine our task is to build n facilities denoted with the numbers 1, . . . , n. For this we

are given n locations which we also denote with the numbers 1, . . . , n. To each of these
locations we need to assign exactly one facility. For each pair of indices 1 ¤ i, j ¤ n
we know the distance between the locations i and j and denote it with di, j. Moreover,
the n facilities ship goods among each other. We denote with fi, j the amount of goods
that are shiped from facility i to facility j. We can view the quantity fi, jdk,l as the cost
of exchanging goods between the facilities i and j if we build facility i at location k and
facility j at location l. Additionally, building a facility i at a location k causes building costs
bi,k. This raises the question: What assignment has minimal cost? In other words we want
to solve the following minimization problem:

min
σPSymn

ņ

i�1

ņ

j�1

fi, jdσpiq,σp jq �
ņ

i�1

bi,σpiq,

where Symn denotes the symmetric group of degree n. This problem is called the quadratic
assignment problem (QAP) and was first formulated in 1957 [63]. We can write the QAP in

25
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a neater way using matrix notation. The input is given by the three matrices F,D, B P Rn�n

with

Fi, j � fi, j, Di, j � di, j, Bi, j � bi, j

for all i, j P t1, . . . , nu. Furthermore, we define the permutation matrix Xσ P Rn�n for a
permutation σ P Symn by

pXσqi, j �
#

1, if i � σp jq,
0, otherwise.

Let Πn � tXσ : σ P Symnu be the set of pn�nq-permutation matrices. We can now express
the QAP as

min
XPΠn

�@
F, XT DX

D� xB, Xy� . (3.1)

Throughout this thesis x�, �y denotes the trace inner product, i.e. for two matrices X,Y P
Rn�n we have

xX,Yy � trpXT Yq �
ņ

i�1

ņ

j�1

Xi, jYi, j.

It is easy to see that the traveling salesman problem, which we can write in the form

min
σPSymn

ņ

i�1

dσpiq,σpi�1q,

is a special case of QAP. One just sets bi, j � 0 and fi, j � δ j,i�1. Therefore, QAP is at least
as difficult as the traveling salesman problem, which is NP-complete [82]. Furthermore,
the traveling salesman problem cannot be approximated within some constant factor unless
P � NP (see [64] or [87]). Thus, the same is true for QAP.

Even though QAP was formally stated more than 50 years ago, it is still studied actively.
Thus, there is a variety of techniques to approach this problem. We can subdivide these
techniques into two classes: Those which derive an exact solution and those which find an
approximation. In general, solving QAP exactly for n ¡ 20 is very difficult [14].

Here, we present an approximative approach by Finke, Burkard and Rendl [37] that
relies on the formulation (3.1) for the case B � 0. It utilizes the fact that there is a
convenient representation of the quadratic term

@
F, XT DX

D
via the eigenvalues of F and D

if both F and D are symmetric.

Theorem 3.1.1. [37] Let Y1,Y2 P Rn�n be symmetric matrices. Let λ P Rn be the vector
of eigenvalues of Y1 and let x1, . . . , xn be the corresponding orthonormal eigenvectors.
Similarly, let µ P Rn be the vector of eigenvalues of Y2 and let y1, . . . , yn be the correspond-
ing orthonormal eigenvectors. Then:

piq xY1,Y2y � λT Sµ,

where S � �pxT
i y jq2�

i, jPt1,...,nu is a doubly stochastic matrix.

piiq min
XPΠn

λTXµ ¤ xY1,Y2y ¤ max
XPΠn

λTXµ.
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Here, a doubly stochastic matrix is a matrix with nonnegative entries whose row and
column sums are all equal to 1. If we assume that F and D are symmetric, we can plug
in F for Y1 and XT DX for Y2 to receive an upper and a lower bound on

@
F, XT DX

D
that

only depends on the eigenvalues of F and XT DX. Since all matrices of the form XT DX
with X P Πn have the same eigenvalues as D, it is sufficient to compute the eigenvalues
λ1 ¤ . . . ¤ λn of F and µ1 ¤ . . . ¤ µn of D and to calculate

max
XPΠn

λTXµ � max
σPSymn

ņ

i�1

λiµσpiq �
ņ

i�1

λiµi and

min
XPΠn

λTXµ � min
σPSymn

ņ

i�1

λiµσpiq �
ņ

i�1

λiµn�i�1.

The situation that we are facing in Chapter 5 is slightly different in the sense that the input
matrices F and D are both nonsymmetric. However, we can make them skew-symmetric
while maintaining the form of a QAP. For this reason, we omit the proof of Theorem 3.1.1
here. Instead, we carry the proof of Finke, Burkard and Rendl over to the skew-symmetric
case in Chapter 5.

3.2 Conic optimization

We now turn our attention to a wide class of optimization problems, namely conic optimiza-
tion. A more prominent term for the same class is convex optimization, where one seeks to
optimize a convex function over a convex set. The defining idea of conic optimization is to
formulate convex optimization problems using convex cones to gain convenient expressions
[80]. We introduce the concept of conic optimization by following [16]. Let us start with
some basic notions.

Definition 3.2.1. Let V be a vector space over R.

(i) A (convex) cone K � V is a set that satisfies αx � βy P K for every x, y P K and
every α, β ¥ 0.

(ii) A cone K is called pointed if it contains no straight line that passes through the
origin. This means that x,�x P K implies x � 0.

(iii) We say that a cone is proper if it is closed, pointed and has nonempty interior.

With every cone K � V we can associate a preorder ¤K on V by letting x ¤K y if and
only if y� x P K. We observe that this preorder is a partial order if and only if K is pointed.

A particularly powerful tool of conic optimization is its duality theory. Loosely speak-
ing, this means that conic optimization problems come in closely related pairs that provide
a systematic way to prove optimality or to give bounds on their optima. To define this
concept formally, we call a nondegenerate bilinear form p�, �q : V � W Ñ R with vector
spaces V and W over R a duality. Dualities allow us to formulate corresponding pairs of
cones and linear maps.
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Definition 3.2.2.

(i) Let V1,V2,W1,W2 be vector spaces over R and let p�, �qi : Vi � Wi Ñ R be a duality
for i P t1, 2u. Let A : V1 Ñ V2 and A� : W2 Ñ W1 be linear maps. We say that A� is
the adjoint of A if

pApeq, f q2 � pe, A�p f qq1 (3.2)

for every e P V1, f P W2.

(ii) Let V,W be vector spaces over R and let p�, �q : V �W Ñ R be a duality. Let K � V
be a cone. The cone

K� � tw P W : pv, wq ¥ 0 for all v P Ku
is called the dual cone of K. Moreover, if K� � K we say that K is self-dual.

It is straightforward to show that A� is unique if it exists, due to nondegeneracy of the
duality p�, �q1 in (3.2). We are now ready to state the aforementioned pair of conic programs.
Like in Definition 3.2.2, we let V1,V2,W1,W2 be vector spaces over R and p�, �q1, p�, �q2 be
corresponding dualities. Furthermore, let K1 � W1 and K2 � W2 be cones. Additionally,
we let A : W2 Ñ W1 be a linear map, b P W1 and c P V2. The following optimization
problem is called a primal conic program:

p� � sup pc, xq2

Apxq ¤K1 b

x ¥K2 0.

The corresponding dual conic program is given by:

d� � inf py, bq1

A�pyq ¥K�2
c

y ¥K�1
0.

In this thesis we only consider conic programs where K1 � t0u and K2 is a proper cone.
This is the most common type of conic programs in the literature. The resulting primal and
dual programs are said to be in standard form and since K�

1 � V1 the problems read:

p� � sup pc, xq2 d� � inf py, bq1

Apxq � b and A�pyq ¥K�2
c (3.3)

x ¥K2 0 y P V1.

We say that x P W2 is feasible for the primal problem if it satisfies the constraints above, i.e.
if x P K2 and Apxq � b. If additionally x P int K2 holds, we say that x is strictly feasible.
A feasible vector x with p� � pc, xq2 is called optimal. Similarly, y P V1 is feasible for the
dual problem if A�pyq � c P K�

2 , strictly feasible if A�pyq � c P int K�
2 and optimal if it is

feasible and d� � py, bq1.
The reason why duality is such a powerful tool is the fact that feasible and optimal

solutions of the primal program provide us with information about the dual program and
vice versa.
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Theorem 3.2.3. [16] Consider the pair of conic programs (3.3).

(i) Weak duality: If x is a feasible solution for the primal program and y is a feasible
solution for the dual program, then:

pc, xq2 ¤ py, bq1 .

In particular, we have p� ¤ d�.

(ii) Optimality criterion: If x is a feasible solution for the primal program and y is a
feasible solution for the dual program such that

pA�pyq � c, xq2 � 0 and py, Apxq � bq1 � 0,

then both x and y are optimal and we have p� � d�.

(iii) Complementary slackness: If x is an optimal solution for the primal program, y an
optimal solution for the dual program and if p� � d�, then:

pA�pyq � c, xq2 � 0 and py, Apxq � bq1 � 0.

(iv) Strong duality: If p�   8 and if there is a strictly feasible solution of the primal
program, then the infimum in (3.3) is attained and p� � d�.

Conversely, if d� ¡ �8 and if there is a strictly feasible solution of the dual
program, then the supremum in (3.3) is attained and p� � d�.

The condition in Theorem 3.2.3 pivq, i.e. the existence of a strictly feasible solution for
the primal or dual program, is called Slater’s condition. For a more detailed introduction
to conic programming and its duality theory see [17] and [68].

We proceed to discuss four important instances of conic optimization that appear later
in this thesis.

3.2.1 Linear programming

One of the most obvious and in terms of notation simplest proper cones is the nonnegative
orthant Rn

¥0. Thus, it is not surprising that this cone leads to a classical type of conic
programs that is well understood by now, namely linear programs [89]. First, let us specify
the vector spaces, the cone and the dualities in (3.3):

V1 � W1 � Rm,

V2 � W2 � Rn,

K2 � Rn
¥0,

pu, vq1 � uT v for all u, v P Rm,

pu, vq2 � uT v for all u, v P Rn.
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Furthermore, we can write the linear map A : Rn Ñ Rm as an pm� nq-matrix. Its adjoint is
A� � AT . It is clear from the definition that the cone Rn

¥0 is self-dual. Plugging this into
the standard primal and dual conic programs (3.3) we get

p� � sup cT x d� � inf yT b

Ax � b and ATy ¥ c (3.4)
x P Rn

¥0 y P Rm.

This special case of conic programming is called linear programming. We use the ab-
breviation LP for both linear programming and linear program depending on the context.
The same principle applies for abbreviations for the other upcoming special cases of conic
programming.

LP stands out for two reasons. First, strong duality holds for LP regardless of whether
there are strictly feasible solutions.

Theorem 3.2.4. [16] Consider a pair of LPs as (3.4). If there is a feasible solution for the
primal LP, then p� � d� holds. Additionally, if p�   8, there is an optimal solution for
the primal and an optimal solution for the dual LP.

In particular, we can exchange supremum and infimum in (3.4) by maximum and
minimum if we add the convention that minima and maxima can be �8.

Second, it is well known that solving LPs up to arbitrary precision is possible in
polynomial time. As a matter of fact, there are several established algorithms that compute
solutions of LPs. Schrijver gives a broad overview of such algorithms [89].

3.2.2 Second order cone programming

Another established choice for the cone K2
is the Lorentz or second-order cone. It is
exactly what people have in mind when they
use the term cone in the common use of
language, for example if they buy ice cream.
Thus, the Lorentz cone is sometimes called
ice cream cone. We define it by

Ln�1 �  px, tq P Rn�1 : ||x|| ¤ t
(
,

where || � || is the Euclidean norm. As before,
we specify the setting:

0

Figure 3.1: The Lorentz cone L3.

V1 � W1 � Rm,

V2 � W2 � Rn�1,

K2 � Ln�1,

pu, vq1 � uT v for all u, v P Rm,

ppu, sq, pv, tqq2 � uT v� st for all pu, sq, pv, tq P Ln�1.
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As in the previous case, we can write the linear map A : Rn�1 Ñ Rm as an m by pn � 1q
matrix. We denote the ith row of A by paT

i , riq and its adjoint by AT . Using the Cauchy-
Schwarz inequality it is easy to prove that the Lorentz cone is self-dual. Thus, (3.3)
becomes:

p� � sup cT x � st d� � inf yT b

aT
i x � rit � bi @ 1 ¤ i ¤ m

��
m̧

i�1

yiai

�
� c,

�
m̧

i�1

yiri

�
� s

�
P Ln�1

px, tq P Ln�1, y P Rm.

This type of conic programming is called second-order cone programming (SOCP). We
observe that LP is a special case of SOCP by picking r1 � . . . � rm � s � 0. In fact, this
caused SOCP to gain attention in 1984 when Karmakar gave a polynomial-time interior-
point algorithm for LP [60]. This algorithm carries over to the case where the objective
function and/or the constraints are quadratic and convex instead of linear. In the following
years this was studied intensively (see for example [57],[75],[76],[79]), leading to efficient
algorithms to solve SOCPs.

We note that in the primal SOCP we only consider one variable px, tq P Ln�1. In
practice however, it is often neccessary to employ multiple such variables. For this reason,
the term SOCP can also refer to a conic program where we optimize over a direct product
of Lorentz cones:

K2 � Ln1�1 � . . .�Lnk�1,

where n1, . . . , nk P N. We remark that K2 is again a cone. It is easy to generalize the above
primal-dual pair of SOCP in standard form from the case k � 1 to arbitrary k P N:

p� � sup
ķ

j�1

cT
j x j � s jt j

ķ

j�1

pa jqT
i x j � pr jqit j � bi @ 1 ¤ i ¤ m

px j, t jq P Ln j�1 @ 1 ¤ j ¤ k,

d� � inf yT b��
m̧

i�1

yipa jqi

�
� c j,

�
m̧

i�1

yipr jqi

�
� s j

�
P Ln j�1 @ 1 ¤ j ¤ k

y P Rm.

3.2.3 Semidefinite programming
The next cone that we consider is the cone of positive semidefinite matrices. For this, we
denote the space of symmetric n�n-matrices by Sn. We say that a matrix X P Sn is positive



32 Preliminaries and optimization techniques Chapter 3

semidefinite, if we have

yT Xy ¥ 0

for every y P Rn. If this inequality is strict for every y � 0, then we say that X is positive
definite. We use the notation X � 0 (respectively X � 0) to express that a matrix X is
positive semidefinite (respectively positive definite). We observe that if X,Y P Sn are
positive semidefinite, then so is αX � βY for all real numbers α, β ¥ 0. Thus, the set

Sn
�0 :� tX P Sn : X � 0u

is a cone. Before we state the corresponding version of (3.3), we recall some properties of
Sn
�0.

Theorem 3.2.5. [54] Let X P Rn�n be a symmetric matrix. The following properties are
equivalent:

(i) X is positive semidefinite.

(ii) There are u1, . . . , un P Rn and λ1, . . . , λn ¥ 0 such that X �
n°

i�1
λiuiuT

i .

(iii) X has a Cholesky decomposition, i.e. X � LLT for some L P Rn�n.

(iv) The eigenvalues of X are nonnegative.

(v) X is a Gram matrix, i.e. there are x1, . . . , xn P Rn such that Xi, j � xT
i x j for all

i, j P t1, . . . , nu.
(vi) All principal minors of X are nonnegative. This means that for every index set I �

t1, . . . , nu:
det pXi, jqi, jPI ¥ 0.

Aside from positive semidefinite matrices we are also interested in positive definite
matrices here. The reason for this is that the set of positive definite matrices is the interior
of the cone of semidefinite matrices. In other words, the boundary of Sn

�0 consists of
positive semidefinite matrices with rank smaller than n. Moreover, every extreme ray of
Sn
�0 is spanned by a positive semidefinite matrix with rank 1. Conversely, every positive

semidefinite matrix with rank 1 spans an extreme ray of Sn
�0. We state a counterpart of

Theorem 3.2.5 for positive definite matrices.

Theorem 3.2.6. [54] Let X P Rn�n be a symmetric matrix. The following properties are
equivalent:

(i) X is positive definite.

(ii) There are u1, . . . , un P Rn and λ1, . . . , λn ¡ 0 such that X �
n°

i�1
λiuiuT

i .

(iii) X � LLT for some regular matrix L P Rn�n.
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(iv) The eigenvalues of X are positive.

(v) There are linearly independent vectors x1, . . . , xn P Rn such that Xi, j � xT
i x j for all

i, j P t1, . . . , nu.
(vi) All leading principal minors of X are positive. This means that for every index set

I � t1, . . . , ku with 1 ¤ k ¤ n:

det pXi, jqi, jPI ¡ 0.

For more properties and details of positive definite and positive semidefinite matrices,
see [54]. Let us specify the corresponding setting to formulate a primal-dual pair of conic
programs:

V1 � W1 � Rm,

V2 � W2 � Sn

K2 � Sn
�0,

pu, vq1 � uT v for all u, v P Rm,

pX,Yq2 � xX,Yy :� trpXT Yq for all X,Y P Sn.

Unlike in the two previous cases, it is rather confusing to write a linear map A : Sn Ñ Rm

as a single matrix. Instead we use the following notation:

ApXq � pxAi, XyqiPt1,...,mu ,

where A1, . . . , Am are pn� nq-matrices. Its adjoint is given by

A�pyq �
m̧

i�1

yiAi.

Similar to the previous cases, Sn
�0 is self-dual (see for instance [23]). So, (3.3) becomes

p� � sup xC, Xy d� � inf yT b

xAi, Xy � bi @ 1 ¤ i ¤ m and
m̧

i�1

yiAi �C � 0 (3.5)

X � 0 y P Rm.

Conic programs of this form are called semidefinite programs (SDP). By letting the input
matrices C, A1, . . . , Am be diagonal matrices, we observe that we can write every LP as an
SDP. Moreover, one can show that SOCP is a special case of SDP as well. To this end we
consider a block matrix of the form

X �
�

A B
BT C



,

where the matrix A is regular. The matrix C � BT A�1B is called the Schur complement of
X.
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Theorem 3.2.7. [28] Let X be a symmetric matrix having the block form

X �
�

A B
BT C



,

where A is a regular matrix. Then X is positive semidefinite if and only if A is positive
definite and the Schur complement C � BT A�1B is positive semidefinite.

Thus, it follows that every SOCP can be expressed as an SDP since for px, tq P Rn�1

with t � 0 we have

||x|| ¤ t ô xT x ¤ t2 ô
�

tI x
xT t



� 0.

The same equivalences hold for t � 0, as in each of the three inequalities this implies
x � 0.

Thus, we can solve SOCPs using SDP solvers. However, this is a suboptimal approach
as there are faster algorithms that are tailored to solve SOCPs [70].

In contrast to LP and SOCP, it is not clear whether we can always find a solution of an
SDP in polynomial time. In fact, Ramana [84] gave an example for which every feasible
solution has double exponential bit-size, i.e. requires coefficients of size roughly 22n

where
the matrix variable has size n�n, even though the problem looks simple and has only Opnq
constraints. It turns out that this example is a rather special case since it is indeed possible
to compute a solution of an SDP up to arbitrary accuracy in polynomial time under mild
assumptions. This has been shown by Grötschel, Lovász and Schrijver in 1981 [43] using
the ellipsoid method. In 2016 de Klerk and Vallentin [31] gave an alternative proof based
on an interior point method and the corresponding analysis that is due to Nesterov and
Nemirovski [80].

Theorem 3.2.8. [43],[31] Consider the primal problem in (3.5). Assume that C, A1, . . . , Am

P Qn�n and that b1, . . . , bm P Q. Let

L � tX P Sn : xAi, Xy � bi @ i P t1, . . . , nuu and
F � tX P L : X � 0u .

Furthermore, assume that there is a matrix X P F X Qn�n and r,R P Q such that

BX0prq X L � F � BX0pRq X L,

where BX0prq � Sn is the ball of radius r and center X0 with respect to the metric that is
induced by x�, �y. Then for every ε P Q¡0 it is possible to find an X� with

xC, X�y � p� ¤ ε,

in polynomial time. The polynomial is in n,m, log2pR{rq, log2p1{εq and the bit size of
C, A1, . . . , Am, b1, . . . , bm and X0.
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3.2.4 Completely positive programming
The last special case that we pay particular attention to employs the completely positive
cone:

CPn :� cone
 

xxT : x P Rn
¥0

(
.

We say that a matrix is completely positive if it lies in this cone. On the first glance, CPn

looks similar to Sn
�0. It is the conic hull of positive semidefinite matrices with rank 1. The

difference is that these rank-one matrices are additionally required to be componentwise
nonnegative in the definition of CPn. It is remarkable that, while checking positive semide-
finiteness is easy, it is NP-hard to determine whether a given matrix is completely positive
[32]. In the following we use the notation X ¥ 0 (respectively X ¡ 0) to express that the
matrix X is componentwise nonnegative (respectively positive). With this consideration we
observe that

CPn � Sn
�0 X Rn�n

¥0 . (3.6)

It is known that (3.6) holds with equality if and only if n ¤ 4 [73],[41]. Thus, the interior
of CPn for n ¤ 4 is given by:

intCPn � intSn
�0 X intRn�n

¥0 � tX P Sn : X � 0, X ¡ 0u .
This is noted by Dür and Still [34] who additionally give a description of the interior of
CPn for the general case.

Theorem 3.2.9. [34] For every n P N we have:

intCPn �
 

XXT : X � rX1|X2s , where X1 is regular and X1 ¡ 0, X2 ¥ 0
(
.

Next, we specify the setting to state the corresponding primal-dual pair of conic pro-
grams:

V1 � W1 � Rm,

V2 � W2 � Sn,

K2 � CPn,

pu, vq1 � uT v for all u, v P Rm,

pX,Yq2 � xX,Yy for all X,Y P Sn.

We employ the same notation for a linear map A : Sn Ñ Rm as in Chapter 3.2.3. Unlike in
the previous cases, CPn is not self-dual. Instead, we have

CP�n � COPn :�  
X P Sn : yT Xy ¥ 0 @ y P Rn

¥0

(
.

The proof for this is straightforward. The cone COPn is called the copositive cone. Similar-
ly, we call the matrices contained in COPn copositive. From the definition it is immediate
that

Sn
�0 � Rn�n

¥0 � COPn.

Since COPn and CPn form a dual pair, Dür and Still [34] state some properties of COPn as
well, including a description of its interior.
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Theorem 3.2.10. [34] For every n P N we have:

intCOPn �
 

X P Sn : xT Xx ¡ 0 @ x P Rn
¥0zt0u

(
.

As before we plug this setting into (3.3). We get:

p� � sup xC, Xy d� � inf yT b

xAi, Xy � bi @ 1 ¤ i ¤ m and
m̧

i�1

yiAi �C P COPn (3.7)

X P CPn y P Rm.

We call this type of conic programming completely positive programming (CP). In the
literature the term “copositive programming” is also common and refers to the same primal-
dual pair of conic programs. We use these terms interchangeably.

The difficulty of CP differs greatly from the difficulty of LP, SOCP and SDP. While
LP, SOCP and SDP (under mild assumptions) can be solved in polynomial time, this is
not the case for CP. Solving CP is an NP-hard problem because it is NP-hard to determine
whether a given matrix is contained in CP, as mentioned earlier. At the same time, CP
is a meaningful type of optimization problems. Burer [25] showed that every quadratic
optimization problem with binary and/or continuous variables can be expressed as a CP.

One way to address this difficulty is to search for good upper and lower bounds instead
of solving CP exactly. Since the primal problem in (3.7) is a maximization problem, any
feasible solution yields a lower bound on the optimum. Finding upper bounds is a little less
straightforward. One possibility is to make use of (3.6) and the fact that SDP is usually
easier to solve than CP:

sup xC, Xy ¤ sup xC, Xy
xAi, Xy � bi @ 1 ¤ i ¤ m xAi, Xy � bi @ 1 ¤ i ¤ m (3.8)
X P CPn X � 0, X ¥ 0.

Note that we can bring the right-hand side of (3.8) into the same form as in (3.5) by
introducing slack variables.



Chapter Four

An algorithm to compute the EHZ
capacity of Lagrangian products

The goal of this chapter is to provide an algorithm that computes cEHZpCq (see Definition
2.3.5) or a corresponding upper bound, where C � R2n is a Lagrangian product. This
means, there are convex sets K,T � Rn such that C � K � T . To do so, we examine
the concept of Minkowski billiards. The connection between Minkowski billiards and the
EHZ capacity was first studied by Artstein-Avidan and Ostrover in 2012 [11]. Additionally,
we state some properties of Minkowski billiards that allow us to formulate an algorithm to
compute a closed Minkowski billiard trajectory with minimal length. Consequently, this
yields an algorithm to compute the EHZ capacity of K � T . We develop our algorithm
first in the Euclidean setting, where K is a polytope and T is the Euclidean unit ball B1p0q.
Afterwards, we discuss the algorithm in the Minkowski setting where both K and T are
polytopes.

This chapter is based on the papers [65] and [66]. The latter paper is currently in
preparation. The theoretical aspects of this chapter, which are presented in Chapters 4.1
and 4.2, are mainly attributed to Daniel Rudolf. Therefore, we omit the proofs here and
refer to [65] and [66].

4.1 From the EHZ capacity to closed Minkowski billiard
trajectories

To understand the term billiard as it is used in mathematics we can think of an actual game
of billiards. If we play a ball on the billiard table (without doing trick shots), then the ball
moves straight and only changes directions when bouncing of a wall. In other words, the
route of the ball is a polygonal line. Here, a polygonal line is a curve γ : r0,8q Ñ Rn such
that there is ti P R for every i P N with:

piq t0 � 0 and ti�1 ¡ ti for every i P N.

piiq γ|rti,ti�1s
is linear for every i P N.

37
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piiiq For every i P N the points γptiq, γpti�1q and γpti�2q are not contained in a common
straight line.

We call the points γpt0q, γpt1q, . . . the vertices of γ. If γ is periodic, say with period a P R¡0,
then we say that γ is closed. In this case, if we let

tti1 , . . . , timu � tti : i P Nu X ra, 2as,
then we refer to γpti1q, . . . , γptimq as the vertices of γ, because these vertices repeat them-
selves. As an exception, if γ is a closed curve that moves linearly from some point u P Rn

to some point v P Rn, then back from v to u, then from u to v again and so forth, we say that
γ is a closed polygonal line with the vertices u and v, even though property piiiq is violated.
If we refer to a closed polygonal line γ as a subset of Rn, then we mean the image of γ.

γp0q

v1

v2

v3

v4

v5

v1 � γpt1q � γpt6q � . . .

v2 � γpt2q � γpt7q � . . .

v3 � γpt3q � γpt8q � . . .

v4 � γpt4q � γpt9q � . . .

v5 � γpt5q � γpt10q � . . .

Figure 4.1: A closed polygonal line. Its period a lies between t5 and t6. On the interval
ra, 2as we can find the points t6, t7, t8, t9 and t10. Thus, γ has 5 vertices.

If we think of a game of billiards again, the vertices of the route of the billiard ball
are the points at which the ball hits a wall. At these points the route of the ball follows the
Euclidean billiard reflection rule: The angle of reflection equals the angle of incidence. The
upcoming definition generalizes this concept in a sense that the reflection rule is governed
by a convex set T . We make a few remarks before we state the definition formally.

We recall from Chapter 2.3.1 that for a set T � Rn the Minkowski functional µT : Rn Ñ
R is defined by:

µT pyq � inftt ¥ 0: y P tTu for all y P Rn,

where we can replace the infimum by a minimum if T is compact. For two points b, d P Rn

we let rb, ds denote the line segment with end points b and d. Furthermore, whenever we
consider the vertices v1, . . . , vm of a closed polygonal line γ in this chapter, these vertices
are ordered such that rvi, vi�1s is contained in the image of γ. Note that this ordering is not
unique because if the ordering v1, . . . , vm satisfies this property, then so do

vp1�kqmod m, vp2�kqmod m, . . . , vpm�kqmod m and
vpm�kqmod m, . . . , vp2�kqmod m, vp1�kqmod m

for every k P t1, . . . ,mu.
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Definition 4.1.1. Let K,T � Rn be convex bodies and let m ¥ 2.

(i) A closed polygonal line with vertices q1, . . . , qm P BK is called a closed pK,T q-
Minkowski billiard trajectory (MBT) if for every j P t1, . . . ,mu there is a supporting
hyperplane H j of K with q j P H j such that:

q j � argmin tµT�psq j � q j�1q � µT�pq j�1 � sq jq : sq j P H ju ,
where q0 :� qm and qm�1 :� q1.

(ii) The vertices of a closed pK,T q-MBT are called bouncing points.

(iii) A closed pK,T q-MBT is called regular if all its bouncing points q1, . . . , qm are smooth
boundary points, i.e. NKpq jq is one-dimensional for every j P t1, . . . ,mu.

Recall that the normal cone is given by

NKpyq � tu P Rn : uT pz� yq ¤ 0 for all z P Ku,
as defined in Chapter 2.3.1. We proceed with some remarks regarding the notation. We
write “closed MBT” instead of “closed pK,T q-MBT” if K and T are clear from context.
Furthermore, we encode a closed polygonal line with vertices q1, . . . , qm by pq1, . . . , qmq
throughout this chapter. We let q j :� q j mod m for every j P Z. If we have T � B1p0q,
it is customary to call a closed Minkowski billiard trajectory a closed Euclidean billiard
trajectory (EBT) instead. In this case the Minkowski functional is the Euclidean norm and
one verifies that for the minimum of

||sq j � q j�1|| � ||q j�1 � sq j||,
the angle of reflection equals the angle of incidence. Therefore, we recover the Euclidean
billiard reflection rule.

q j�1

q j�1

q j

H j

Figure 4.2: Three consecutive bouncing points of a closed EBT. The two indicated angles
(i.e. angle of reflection and angle of incidence at q j) are equal. The boundary of the billiard
table K is an ellipse.

Billiards have broad application and they are studied actively. For an overview on
billiards we refer to [45], [61] and [93]. In particular, Euclidean billiards have been studied
intensively in dimension two. On the other hand, not much is known about Euclidean
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billiards in higher dimension. Even less results are known for the more general Minkowski
case where T is an arbitrary convex set. To our knowledge, the only publications that treat
Minkowski billiards intensively are [2], [3], [4], [5], [6], [9], [11], [20], [46] and [83].

A particularly important, known fact about Minkowski billiards is that we can charac-
terize them much easier than Definition 4.1.1 suggests.

Theorem 4.1.2. [66] Let K � Rn be a convex body and let T � Rn be a strictly convex
body. Then a closed polygonal line pq1, . . . , qmq with q j P BK for every j P t1, . . . ,mu is a
closed MBT if and only if there are points p1, . . . , pm on BT such that#

q j�1 � q j P NT pp jq,
p j�1 � p j P �NKpq j�1q

+
for all j P t1, . . . ,mu, (4.1)

where qm�1 :� q1 and pm�1 :� p1.

q1

q2 q3

p1

p2

p3

Figure 4.3: A closed MBT with vertices q1, q2, q3 and corresponding points p1, p2, p3. The
convex body K is depicted in blue and the strictly convex body T is depicted in green. Also
shown are the normal cones at q1, q2, q3 and p1, p2, p3. One can see that (4.1) is satisfied.

Theorem 4.1.2 shows that with each closed MBT q � pq1, . . . , qmq we can associate a
(not necessarily unique) tupel p � pp1, . . . , pmq of boundary points of T . We call p a dual
closed MBT of q. Note that we do not require that consecutive points in p1, . . . , pm are
distinct. In fact, Figure 4.4 depicts an example in which there are two consecutive points in
p that are equal. Thus, strictly speaking, p does not encode a closed polygonal line unless
we allow that line segments between two vertices can have length 0. This ambiguity has not
much influence on the remainder of this thesis. We simply keep in mind that consecutive
vertices of closed MBTs are distinct while consecutive vertices of dual closed MBTs may
not be distinct.

For a closed polygonal line pq1, . . . , qmq we call

`T ppq1, . . . , qmqq �
m̧

j�1

µT�pq j�1 � q jq

with qm�1 :� q1 the `T -length of q. Another discovery about Minkowski billiards, which
is highly relevant for this thesis, is the fact that the minimal `T -length of a closed MBT is
exactly the minimal action of a generalized closed characteristic (see Definition 2.3.5).
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q1

q2

q3 p3

p1 � p2

Figure 4.4: A closed MBT q � pq1, q2, q3q and a dual closed MBT pp1, p2, p3q of q. Not all
consecutive vertices of the dual closed MBT are distinct. More precisely, p1 � p2. As in
Figure 4.3 K is depicted in blue and T is depicted in green. The red area depicts the normal
cone at p1 or p2.

Theorem 4.1.3. [66] Let K � Rn be a convex body and let T � Rn be a strictly convex
body.

(i) Let x be a generalized closed characteristic on BpK � T q with minimal action, i.e.
cEHZpK � T q � Apxq. Then there is a generalized closed characteristic rx � prxq, rxpq
on BpK � T q such that:


 rxq is a closed pK,T q-MBT with minimal `T -length,


 rxp is a dual closed pK,T q-MBT of rxq ,


 Apxq � Aprxq � `T prxqq.
(ii) Let q be a closed MBT with minimal `T -length. Then there is a generalized closed

characteristic x on BpK � T q with minimal action and

`T pqq � Apxq.

Theorem 4.1.3 makes apparent that it is beneficial to compute the `T -length of some
closed MBTs if we want to study the EHZ capacity. Moreover, if we are given the vertices
of a closed MBT q as well as the vertices of a dual closed MBT, then the computation of
the `T -length of q is particularly simple.

Lemma 4.1.4. [66] Let T � Rn be a convex body. Then for every z P Rn and every y P BT
we have:

µT�pzq � zTy ðñ z P NT pyq.
If q � pq1, . . . , qmq is a closed MBT and if p is a dual closed MBT of q, then we have

q j�1 � q j P NT pp jq. Consequently, if we denote qm�1 :� q1, the `T -length of q is

`T pqq �
m̧

j�1

µT�pq j�1 � q jq �
m̧

j�1

pq j�1 � q jqT p j. (4.2)
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Now, we can outline the strategy that we pursue in this chapter to calculate cEHZpK �
T q. From Theorem 4.1.3 we know that finding a generalized closed characteristic with
minimal action (and consequently finding cEHZpK � T q) is equivalent to finding a closed
MBT with minimal `T -length. Additionally, Theorem 4.1.2 provides us with a way to find
such a closed MBT. We search for points q1, . . . , qm P BK and p1, . . . , pm P BT that satisfy
(4.1). Alkoumi and Schlenk [6] also followed this approach in the Euclidean case for two-
dimensional sets and suggested the application of this idea to the more general Minkowski
setting as an open problem.

4.2 Properties of closed Minkowski billiard trajectories

The goal is now to use the strategy that we sketch at the end of Chapter 4.1 to formulate an
algorithm that computes cEHZpK�T q. In the process we encounter some problems that we
need to solve first. The most obvious problem is that we successively search for m points
on the boundary of K and m points on the boundary of T for every m ¥ 2. This is difficult
without a threshold for m at which we can stop. In [6] this problem is resolved using a
result from [18] that states that a closed EBT with minimal `T -length has only two or three
bouncing points. The following theorem is a generalization of this result to the Minkowski
setting.

Theorem 4.2.1. [66] Let K � Rn be a convex body and let T � Rn be a strictly convex
body with smooth boundary. Furthermore, let pq1, . . . , qmq be a closed MBT with minimal
`T -length. Following Theorem 4.1.2 we take p j P BT, u j P NKpq jq with ||u j|| � 1 and
µ j P R¥0 such that

p j�1 � p j � �µ j�1u j�1,

for every j P t1, . . . ,mu, where pm�1 :� p1, um�1 :� u1 and µm�1 :� µ1. Then the cone

U :� cone tu1, . . . , umu
is a linear space with dimension m� 1. Moreover, we have

dimpNKpq jq XUq � 1,

for every j P t1, . . . ,mu.
Theorem 4.2.1 is useful for the implementation of our algorithm for three reasons. First,

we have

m� 1 � dimU ¤ n,

which means that in our algorithm we only need to consider m P t2, . . . n � 1u rather than
every m ¥ 2.

Second, if we consider m � n � 1, then Theorem 4.2.1 states that the normal cone
NKpq jq is one-dimensional for every j P t1, . . . ,mu. Hence, if we search for a closed MBT
with minimal `T -length that has n � 1 bouncing points, then it is sufficient to look for a
regular closed MBT.
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Third, Theorem 4.2.1 gives us a way to rule out certain choices of q1, . . . , qm in advance.
Let us assume we are given q1, . . . , qm that are smooth boundary points of K. This means
the normal cone NKpq jq is one-dimensional for each j P t1, . . . ,mu. Therefore, u1, . . . , um

are uniquely determined and we can check whether the cone spanned by them is a linear
space with dimension m � 1. If not, we know that pq1, . . . , qmq is not a closed MBT and
there is no need to look for p1, . . . , pm.

We have another theorem that allows for a similar observation. It makes a statement on
the dimension of the convex hull of the bouncing points q1, . . . , qm. Via Theorem 4.1.2 this
turns out to be useful in the search of a dual closed MBT pp1, . . . , pmq.
Theorem 4.2.2. [66] Let K,T � Rn be strictly convex bodies with smooth boundaries and
let q � pq1, . . . , qmq be a closed MBT with minimal `T -length. Then we have

dimpconvtq1, . . . , qmuq � m� 1.

Later in Chapter 4.3.1 we see how Theorem 4.2.1 and Theorem 4.2.2 can be exploited
in the implementation of our algorithm.

Next, we discuss an alternative formulation for closed MBTs with minimal `T -length.
For this we let

FpKq :� tM � Rn : E t P Rn, M � t � int Ku,
Fn�1pKq :� tM � Rn : |M| ¤ n� 1, M P FpKqu.

In other words, Fn�1pKq consists of sets with at most n � 1 points that we cannot shift
into the interior of K. We have the following theorem that establishes a one-to-one corre-
spondence between closed MBTs with minimal `T -length and members of Fn�1pKq with
minimal `T -length.

Theorem 4.2.3. [66] Let K � Rn be a convex body and let T � Rn be a strictly convex
body. Furthermore, let q � pq1, . . . , qmq be a closed polygonal line. Then q is a closed
MBT with minimal `T -length if and only if it is a member of

tq1 � pq11, . . . , q1kq : k ¥ 2, tq11, . . . , q1ku P Fn�1pKqu
with minimal `T -length.

We use Theorem 4.2.3 in Chapter 4.3.2 to justify the application of our algorithm to
instances where T is a polytope and thus neither strictly convex nor with smooth boundary.
More precisely, we use Theorem 4.2.3 together with a continuity result to show that it is
sufficient to find a member of Fn�1pKq with minimal `T -length if we want to compute
cEHZpK�T q, even if T is not strictly convex. We give the continuity result in the following
theorem. Every convergence that comes up in this statement is with respect to the Hausdorff
metric dH as defined in Chapter 2.3.

Theorem 4.2.4. [66]

(i) Let T � Rn be a strictly convex body and let pKiqiPN be a sequence of convex bodies
in Rn that converges to some convex body K � Rn. Then there is a strictly increasing
sequence pi jq jPN of indices such that the sequence pqi jq jPN of closed pKi j ,T q-MBTs
with minimal `T -length converges to a closed pK,T q-MBT with minimal `T -length.
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(ii) Let K � Rn be a convex body and let pTiqiPN be a sequence of strictly convex bodies
in Rn that converges to some convex body T � Rn. Then there is a strictly increasing
sequence pi jq jPN of indices such that the sequence pqi jq jPN of closed pK,Ti jq-MBTs
with minimal `Ti j

-length converges to a closed polygonal line q � pq1, . . . , qmq with
tq1, . . . , qmu P FpKq and

`T pqq � min t`T pq1q : q1 � pq11, . . . q1kq, tq11, . . . , q1ku P FpKqu .
Furthermore, q is a closed pK,T q-MBT.

4.3 Formulation and implementation of the algorithm

Next, we turn our attention to the implementation of the strategy that we sketch at the
end of Chapter 4.1. We start with the Euclidean case and develop an algorithm to find a
regular closed EBT that has minimal `T -length among all regular closed EBTs. According
to Theorem 4.1.3 this gives us an upper bound on the EHZ capacity of K � B1p0q.

Afterwards, we focus on the Minkowski case and formulate an algorithm to find a
closed MBT with minimal `T -length if both K and T are two-dimensional polytopes, i.e.
polygons. Thus, this gives us an algorithm that computes the EHZ capacity of K � T for
polygons K and T .

4.3.1 The Euclidean setting
In the following, we let K � Rn be a full-dimensional polytope. Since we consider the
case T � B1p0q, the `T -length is the usual Euclidean distance. Thus, we simply say length
instead of `T -length while we examine the Euclidean setting. First, we recall the strategy
that we sketch at the end of Chapter 4.1 and provide a few more details.

Algorithm 1 Shortest closed EBT

1: for m P t2, . . . , n� 1u do
2: for every choice of m pairwise different facets F1, . . . , Fm of K do
3: For every j P t1, . . . ,mu let u j be a unit vector in NKpq j�1q for some point

q j�1 in the relative interior of F j�1, where qm�1 :� q1 and Fm�1 :� F1.
Construct a closed polygonal line γ by successively moving in the directions
�u1, . . . ,�um. Translate and scale γ with a positive factor such that its vertices
lie on the unit sphere S n�1. Let n1, . . . , nm P S n�1 be these vertices, i.e.:

n j�1 � n j � �µ ju j

with appropriate µ j P R¡0 for every j P t1, . . . ,mu, where nm�1 :� n1.
4: Construct a closed polygonal line ξ by successively moving in the directions

n1, . . . , nm. Translate and scale ξ with a positive factor to get a closed polygonal
line q � pq1, . . . , qmq such that q j P F j and

q j�1 � q j � λ jn j

with appropriate λ j P R¡0 for every j P t1, . . . ,mu, where qm�1 :� q1.
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5: Calculate the length of the closed polygonal line q and store it, if it is the
smallest among all such closed polygonal lines found so far.

6: end for
7: end for

Note that the unit vector u j that appears in Algorithm 1 is unique for every j P t1, . . . ,mu
since NKpq j�1q is one-dimensional and that u j does not depend on the choice of q j�1.
Furthermore, we point out that it is not always possible to construct the closed polygonal
lines γ and ξ or to translate and scale them in the required way. In this case we reject the
current iteration and proceed with the next choice of facets F1, . . . , Fm.

Theorem 4.1.2 ensures that every closed polygonal line found by Algorithm 1 is indeed
a closed EBT. More precisely, if pq1, . . . , qmq is such a closed polygonal line, then it fulfils
(4.1) by construction. We will now examine this algorithm in more detail.

First, we note that we require µ j, λ j ¡ 0 here, while Theorem 4.1.2 only suggests
µ j, λ j ¥ 0. The reason for this is that, on the one hand, the bouncing points q1, . . . , qm

should be pairwise distinct. Thus, we can consider positive instead of nonnegative λ j. On
the other hand, if µi � 0 for some i P t1, . . . ,mu, then we have ni�1 � ni. Thus, qi�2�qi�1
is a multiple of qi�1 � qi, where qm�1 :� q1 and qm�2 :� q2. In other words, we find that
qi, qi�1 and qi�2 lie on a straight line. Therefore, we can remove qi�1 and ni�1 without
changing the length of pq1, . . . , qmq. One can check that after removing qi�1 and ni�1 the
remaining points still fulfil (4.1). So, the algorithm already found a closed EBT with less
than m bouncing points that is at least as short as pq1, . . . , qmq.

We proceed to discuss the third step in Algorithm 1. For this, we let F1, . . . , Fm and
u1, . . . , um be as described above in the algorithm. Let U be the pn� mq-matrix containing
u1, . . . , um as columns. If for every j P t1, . . . ,mu there is a smooth boundary point q j of T
with q j P F j and n j P S n�1 such that (4.1) is fulfilled, then there are µ1, . . . , µm ¡ 0 such
that n j�1 � n j � �µ ju j with nm�1 :� n1. Thus, because of

0 �
m̧

j�1

pn j�1 � n jq � �
m̧

j�1

µ ju j ,

we have that u1, . . . , um are linearly dependent. Hence, rkpUq ¤ m � 1. On the other
hand, if we assume that the regular closed EBT pq1, . . . , qmq has minimal length, then by
Theorem 4.2.1 the convex cone spanned by u1, . . . , um is an pm � 1q-dimensional linear
space. In particular, there are pm � 1q linearly independent vectors in tu1, . . . , umu, so
rkpUq ¥ m � 1. Together, we have that rkpUq � m � 1 is necessary if we search for
a regular closed EBT with minimal length. In this way, some choices of F1, . . . , Fm can
be discarded immediately. More precisely, after we choose facets F1, . . . , Fm we compute
rkpUq. If this rank is not equal to m� 1, then we can directly proceed with the next choice
of facets. We note that rkpUq � m� 1 also implies that

�
m̧

j�1

µ ju j � 0

has up to scaling a unique solution µ1, . . . , µm. Consequently, there is up to homothetic
transformations (i.e. up to scaling and translating) only one closed polygonal line that we
can get by successively moving in the directions �u1 . . . ,�um.
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To find suitable n1, . . . , nm P S n�1 we let γ � pγ1, . . . , γmq be this closed polygonal
line. The task is now to translate and scale γ with a positive factor such that the vertices
of γ lie on S n�1. We take n1, . . . , nm as these vertices. Note that in the fourth step of the
algorithm it is required to form another closed polygonal line by successively moving in
the directions n1, . . . , nm, i.e.:

Dλ1, . . . , λm ¡ 0:
m̧

j�1

λ jn j � 0. (4.3)

If this property is satisfied, one says that n1, . . . , nm form a totally cyclic vector configura-
tion. Following [105] we can find an equivalent characterization by using Farkas’ lemma.
More precisely, (4.3) holds if and only if for every vector v P Rn one of the following two
conditions is satisfied:

(a) nT
j v   0 for some j P t1, . . . ,mu,

(b) nT
j v � 0 for all j P t1, . . . ,mu.

Hence, if n1, . . . , nm are a totally cyclic vector configuration, it follows that

@ v P Rn D j P t1, . . . ,mu : vT n j ¤ 0. (4.4)

This property is less restrictive than (4.3), which is illustrated in Figure 4.5, but it is still
sufficient for the upcoming arguments. In particular, we would like to scale and translate
γ such that its vertices n1, . . . , nm P S n�1 satisfy (4.4). If this is not possible, then we
are not able to construct the closed polygonal line ξ in the fourth step of Algorithm 1 and
consequently we can reject the current iteration.

v1

v2

v3

w1 w2

w3

w4

w5

Figure 4.5: On the left, the points v1, v2, v3 form a totally cyclic vector configuration. On
the right, the points w1, w2, w3, w4, w5 do not form a totally cyclic vector configuration but
they still satisfy (4.4).

While there might be multiple possibilities to scale and translate γ such that its vertices
lie on S n�1, there is at most one possibility such that the vertices fulfil (4.4).
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Lemma 4.3.1. Let γ � pγ1, . . . , γmq P Rn � . . .� Rn,

S γ � tpµ, tq : µ P R¡0, t P Rn, ||µγ j � t|| � 1 for all j P t1, . . . ,muu
and pµ�, t�q P S γ. If n1, . . . , nm P S n�1 satisfy (4.4), where n j � µ�γ j � t� for every j,
then:

µ� � max t µ : pµ, tq P S γ for some t P Rnu .
Proof. First, we observe that the maximum in the statement is indeed a maximum. To see
this, we let ppµk, tkqqkPN be a convergent sequence in R � Rn with pµk, tkq P S γ for every
k P N such that

pµ :� lim
kÑ8

µk � sup t µ : pµ, tq P S γ for some t P Rnu . (4.5)

Since || µγ j � t|| is continuous in µ and t for every j P t1, . . . ,mu, the limit ppµ,pt q of this
sequence is either contained in S γ as well or satisfies pµ � 0. But due to the existence of
pµ�, t�q P S γ we know that S γ is not empty and in particular pµ ¡ 0. Hence, the supremum
in (4.5) is infact a maximum.

Next, we show that the existence of prµ,rt q P S γ with rµ ¡ µ� yields a contradiction. For
j P t1, . . . ,mu we have

rµγ j � rt � rµn j � t�

µ�
� rt � µ1n j � t1,

where µ1 � rµ{µ� ¡ 1 and t1 � rt � prµ{µ�qt�. Because of pµ�, t�q, prµ,rt q P S γ we get

1 � ||rµγ j � rt ||2 � || µ1n j � t1||2 � µ1
2||n j||2 � 2µ1nT

j t1 � ||t1||2
� µ1

2 � 2µ1nT
j t1 � ||t1||2.

Since n1, . . . , nm satisfy (4.4), there is some i P t1, . . . ,mu such that nT
i p�t1q ¤ 0. Hence,

0 � µ1
2 � 2µ1nT

i t1 � ||t1||2 � 1 ¥ µ1
2 � ||t1||2 � 1 ¡ ||t1||2 ¥ 0,

which is a contradiction. �

Lemma 4.3.1 implies that if the vertices of µ1γ� t1 and µ2γ� t2 with pµ1, t1q, pµ2, t2q P
S γ form totally cyclic vector configurations (and hence satisfy (4.4)), then they are scaled
by the same factor, i.e. µ1 � µ2. However, we also need t1 � t2 to make sure that there is
only one suitable way to scale and translate γ. The next Lemma shows that this is indeed
the case.

Lemma 4.3.2. Let γ � pγ1, . . . , γmq P Rn � . . . � Rn, let S γ as in Lemma 4.3.1 and let
pµ1, t1q, pµ2, t2q P S γ. Furthermore, let n1, . . . , nm, n11, . . . , n

1
m P S n�1 be defined by

n j � µ1γ j � t1 and n1j � µ2γ j � t2

for every j P t1, . . . ,mu. If n1, . . . , nm satisfy (4.4), then pµ1, t1q � pµ2, t2q.
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Proof. From Lemma 4.3.1 we have µ1 � µ2 and therefore for every j P t1, . . . ,mu:

n1j � µ1γ j � t2 � µ1
n j � t1
µ1

� t2 � n j � t1 � t2.

Similar to the calculation in the proof of Lemma 4.3.1 we get

1 � ||n1j|| � ||n j � t1 � t2|| � 1� 2nT
j pt2 � t1q � ||t2 � t1||2.

Hence, the term nT
j pt2 � t1q does not depend on j. Because of (4.4) one can find i P

t1, . . . ,mu such that
nT

i pt2 � t1q ¤ 0

and similarly there is k P t1, . . . ,mu with

nT
k pt1 � t2q ¤ 0 ðñ nT

k pt2 � t1q ¥ 0.

Since these terms do not depend on the indices i and k, we get nT
j pt2 � t1q � 0 for every

j P t1, . . . ,mu. Furthermore, we get

1 � 1� ||t2 � t1||2,
and so t2 � t1. �

Assume we find some n1, . . . , nm P S n�1 by scaling and translating the closed polygonal
line γ as described above. Remember that by construction of γ we have n j�1�n j � �µ ju j

with some µ j ¡ 0 for every j P t1, . . . ,mu, where nm�1 :� n1. This implies:

1 � ||n j�1||2 � ||n j � µ ju j||2 � ||n j|| � 2µ jnT
j u j � µ2

j ||u j||2
� 1� 2µ jnT

j u j � µ2
j

ùñ 0 � µ jpµ j � 2nT
j u jq.

Because µ j is positive, we have µ j � 2nT
j u j and

n j�1 � n j � µ ju j � n j � 2pnT
j u jqu j

for every j P t1, . . . ,mu. Therefore, if one of the vectors n1, . . . , nm is known, then the
remaining ones can be calculated recursively. In the following, we choose to search for
n1. This search can be carried out by an SOCP (see Chapter 3.2.2). Before we derive this
SOCP we need the following identity:

n j � n j�1 � 2pnT
j�1u j�1qu j�1 � pI � 2u j�1uT

j�1qn j�1

� pI � 2u j�1uT
j�1qpI � 2u j�2uT

j�2qn j�2 � . . . �
�

j�1¹
i�1

I � 2uiuT
i

�
n1.

This identity holds for every j P t1, . . . ,mu. Two types of constraints are necessary for the
SOCP. First, we rewrite the condition n1 � nm�1 with nm�1 :� nm � 2pnT

mumqum:

n1 � nm � 2pnT
mumqum � pI � 2umuT

mqnm �
�

m¹
i�1

I � 2uiuT
i

�
n1.
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Second, we require µ j ¡ 0 for every j P t1, . . . ,mu, where

µ j � 2nT
j u j � 2uT

j

�
j�1¹
i�1

I � 2uiuT
i

�
n1.

Here we can replace the strict inequality by ¥. The reason for this is the observation
made earlier (see page 45), that the closed polygonal line γ is unique up to homothetic
transformations. So, if a solution of the SOCP yields µi � 0 for some i, then every solution
yields µi � 0 and no regular closed EBT pq1, . . . , qmqwith q j P F j for j P t1, . . . ,mu exists.

For the objective of the SOCP we note that

m̧

j�1

µ j �
m̧

j�1

2nT
j u j �

m̧

j�1

2uT
j

�
j�1¹
i�1

I � 2uiuT
i

�
n1. (4.6)

The vectors n1, . . . , nm are required to be vertices of µγ � t for some pµ, tq P S γ. Lemma
4.3.1 states that the only possible way for n1, . . . , nm to form a totally cyclic vector config-
uration is if µ is maximal. Hence, we would like to choose n1 such that (4.6) is as large as
possible. Thus, we obtain the following SOCP:

max
m̧

j�1

2uT
j

�
j�1¹
i�1

I � 2uiuT
i

�
x

s. t. 2uT
j

�
j�1¹
i�1

I � 2uiuT
i

�
x ¥ 0 @ j P t1, . . . ,mu

��
m¹

i�1

I � 2uiuT
i

�
� I

�
x � 0

x P Rn, ||x|| ¤ 1.

We note that this SOCP is not in primal standard form as introduced in Chapter 3.2.2 but
we can bring it into primal standard form by introducing slack variables.

If there is an optimal solution x�, we pick n1 � x�. Then it is easy to see that n1 lies on
S n�1. First, we note that the optimal value is nonnegative because of the first constraint. In
fact, if there is a regular closed EBT for the given choice of facets, then the optimal value
is positive. Otherwise, an optimal value of 0 would imply µ j � 0 for every j P t1, . . . ,mu.
Thus, if we assume ||x�|| � ||n1||   1 then x�{||x�|| would be a feasible solution as well
but would have a greater objective value. This would contradict the optimality of x�.

We now have a way to find n1 and hence also n2, . . . , nm. These vectors are unique by
Lemma 4.3.2. This concludes our discussion on the third step of Algorithm 1 and we move
on to the fourth step.

We proceed in a similar fashion as before to find the bouncing points q1, . . . , qm of a
regular closed EBT. Equation (4.1) states that q j�1 � q j � λ jn j needs to hold for every
j P t1, . . . ,mu, where λ j ¡ 0 and qm�1 :� q1. Thus, just like u1, . . . , um, we have that
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n1, . . . , nm are linearly dependent:

0 �
m̧

j�1

pq j�1 � q jq �
m̧

j�1

λ jn j.

We would like the pn � mq-matrix pn1, . . . , nmq to have rank m � 1. Then the closed
polygonal line that we get by successively moving in the directions n1, . . . , nm is unique up
to homothetic transformations. Indeed it can be shown that this is the case if we make two
assumptions. If for a given choice of facets F1, . . . , Fm one or both of these assumptions
are violated, then we proceed with the next choice of facets.

First, we assume that the bouncing points q1, . . . , qm, which we are going to find in the
remainder, belong to a regular closed EBT with minimal length. In particular, this includes
the assumption that among all closed EBTs with minimal length there is one that is regular.

Second, we assume that the convex hull of q1, . . . , qm has dimension m � 1. Note that
if the first assumption is satisfied and if K is a strictly convex body with smooth boundary,
then Theorem 4.2.2 implies that the second assumption is satisfied as well. However, in
our case K is a polytope, i.e. neither strictly convex nor with smooth boundary.

Using these two assumptions we now show that the matrix that contains n1, . . . , nm as
columns has rank m� 1. We clearly have

rkpn1, . . . , nmq ¤ m� 1

because n1, . . . , nm are linearly dependent. Due to the assumption that the convex hull of
q1, . . . , qm has dimension m� 1, we find that

q1 � qm, q2 � qm, . . . , qm�1 � qm

are linearly independent. Recall that rkpABq � rkpAq for A P Rn�m and B P GlmpRq. Thus,
we get:

m� 1 � rk
�
q1 � qm q2 � qm . . . qm�1 � qm

�

� rk

�������
q1 � qm q2 � qm . . . qm�1 � qm

� �
������

1 �1 0
. . .

. . .

. . . �1
0 1

�����

�����


� rk
�
q1 � qm q2 � q1 q3 � q2 . . . qm�1 � qm�2

�
� rk

�
λmnm λ1n1 λ2n2 . . . λm�2nm�2

�
� rk

�
nm n1 n2 . . . nm�2

�
¤ rk

�
n1 n2 . . . nm

�
.

The second to last line of the equation holds since λm, λ1, . . . , λm�2 ¡ 0. Thus, it follows
that the closed polygonal line which we get by successively moving in the directions
n1, . . . , nm is unique up to homothetic transformations. In the following we let ξ be such a
closed polygonal line, i.e. ξ � pξ1, . . . , ξmq and

ξ j�1 � ξ j � λ1jn j
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with λ1j ¡ 0 for j P t1, . . . ,mu, where ξm�1 :� ξ1. The task is now to find λ ¡ 0 and s P Rn

such that λξ j � s P F j for every j. We can complete this task using an LP (see Chapter
3.2.1). For j P t1, . . . ,mu let

H j � tx P Rn : uT
j x � b ju

be the unique supporting hyperplane of K that contains F j. Then we require

λξ j � s P F j ðñ λξ j � s P K X H j

ðñ pλξ j � sqT u j � b j, pλξ j � sqT ui ¤ bi @ i � j

ðñ �
ξT

j u j uT
j

��λ
s



� b j,

�
ξT

j ui uT
i

��λ
s



¤ bi @ i � j.

Additionally, we would like to make sure that (if possible) the resulting closed EBT
pq1, . . . , qmq with q j � λξ j � s is regular. Thus, we maximize the smallest slack of the
form bi � pλξT

j ui � uT
i sq with 1 ¤ i, j ¤ m and i � j. This leads us to the following LP

with n� 2 variables:

max ρ

s. t. ρ, λ P R¥0, s P Rn�
ξT

j u j uT
j

��λ
s



� b j @ j P t1, . . . ,mu

ρ ¤ bi �
�
ξT

j ui uT
i

��λ
s



@ i, j P t1, . . . ,mu, i � j.

Again we can bring this problem into dual standard form by introducing slack variables.
Note that every solution of the LP satisfies λ ¡ 0. If otherwise λ � 0, then the equality
constraints state that s P H j for every j P t1, . . . ,mu. This means all supporting hyperplanes
that contain a facet of K intersect at the common point s, which is not possible if K is a
polytope.

If the LP has an optimal solution pρ�, λ�, s�q, then we let q j � λ�ξ j � s� for j P
t1, . . . ,mu. Moreover, if ρ� ¡ 0, then pq1, . . . , qmq is a regular closed EBT that potentially
has minimal length, meaning it fulfils the conditions in Theorem 4.2.1 and Theorem 4.2.2,
i.e.:

dimpconvtq1, . . . , qmuq � m� 1,
dimpconetu1, . . . , umuq � m� 1.

To ensure that we do not miss regular closed EBTs that potentially have minimal length,
we prove that it suffices to find one such closed EBT per choice of F1, . . . , Fm.

Theorem 4.3.3. Let F1, . . . , Fm be facets of some full-dimensional polytope K � Rn and
let q j, q1j P F j for every j P t1, . . . ,mu. Assume q � pq1, . . . , qmq and q1 � pq11, . . . , q1mq
are regular closed EBTs. Furthermore, assume that the conic hull of the one-dimensional
normal cones NKpq1q, . . . ,NKpqmq is a linear space with dimension m� 1. Then:

`B1p0qpqq � `B1p0qpq1q.
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Proof. According to Theorem 4.1.2 there are n1, . . . , nm, n11, . . . , n
1
m P S n�1 such that for

every j P t1, . . . ,mu:#
q j�1 � q j � λ jn j, λ j ¥ 0,
n j�1 � n j P �NKpq j�1q and

#
q1j�1 � q1j � λ1jn

1
j, λ

1
j ¥ 0,

n1j�1 � n1j P �NKpq1j�1q
where qm�1 :� q1, nm�1 :� n1 and n1m�1 :� n11. As we discuss earlier in this chapter,
n1, . . . , nm are unique and only depend on NKpq1q, . . . ,NKpqmq, due to the assumption that
the conic hull of NKpq1q, . . . ,NKpqmq is a linear space with dimension m � 1. Therefore,
we have n1j � n j for j P t1, . . . ,mu. Identity (4.2) now states that

`B1p0qpqq �
m̧

j�1

pq j�1 � q jqT n j,

`B1p0qpq1q �
m̧

j�1

pq1j�1 � q1jqT n j.

Thus, we get:

`B1p0qpqq � `B1p0qpq1q �
m̧

j�1

�
pq j�1 � q jqT n j � pq1j�1 � q1jqT n j

�
�

m̧

j�1

�
pq j�1 � q1j�1qT n j � pq1j � q jqT n j

�
�

m̧

j�1

pq j�1 � q1j�1qT n j �
m̧

j�1

pq1j�1 � q j�1qT n j�1

�
m̧

j�1

pq1j�1 � q j�1qT pn j�1 � n jq.

For every j P t1, . . . ,mu we let u j be the unique unit vector in NKpq j�1q and we let

H j�1 � ty P Rn : uT
j x � b j�1u

be the supporting hyperplane of K that contains F j�1, where Fm�1 :� F1. On the one
hand, we have

uT
j pq1j�1 � q j�1q � uT

j q1j�1 � uT
j q j�1 � b j�1 � b j�1 � 0.

On the other hand, n j�1 � n j P �NKpq j�1q. Thus, n j�1 � n j is a multiple of u j. This yields
`B1p0qpqq � `B1p0qpq1q � 0. �

We conclude that if there is a closed EBT pq1, . . . , qmq with minimal length that is
regular and such that

dimpconvtq1, . . . , qmuq � m� 1,
dimpconetu1, . . . , umuq � m� 1,
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then Algorithm 1 returns its length. If there is no closed EBT with these properties, the
algorithm returns an upper bound on the minimal length. Together with Theorem 4.1.3 we
have an algorithm that computes an upper bound on cEHZpK � B1p0qq.

Figure 4.6: An exemplary output of Algorithm 1. The input is a randomly generated
polygon K. K and the two-dimensional Euclidean unit ball are depicted in blue. The
calculated closed polygonal lines (pq1, q2, q3q on the left and pn1, n2, n3q on the right) are
depicted in orange.

For each choice of F1, . . . , Fm Algorithm 1 needs to solve the following tasks: Calculate
the rank of an pn�mq-matrix, solve an SOCP with n�m�1 constraints and n�1 variables,
solve an pn � 1q � m system of linear equations and solve an LP with m f constraints and
n � 2 variables, where f is the number of facets of K. All these tasks are solvable in
polynomial time with respect to the dimension n and the number of facets of K. However,
there are

°n�1
j�2

� f
j

�
j! possibilities to choose at least 2 but at most n � 1 facets, respecting

their order. We can slightly reduce this number since a circular shift of the chosen facets
F1, . . . , Fm will yield a similar but shifted result. This leaves us with

°n�1
j�2

� f
j

�p j � 1q!
possibilities. The calculations for each of these possibilities are independent of each other.
Therefore, we utilize parallel computing to accelerate the execution of the algorithm.

Table 6.1 in the appendix collects the running time of Algorithm 1 for some instances
where the billiard table is a polytope K of dimension 2, 3 or 4 which we generate in the
following way. First, we choose some normally distributed random vectors. We scale each
of these vectors by some scalar between 1 and 3 and we decrease the length of this range if
the amount of random vectors becomes too large. Afterwards, we receive K as the convex
hull of these vectors. Instead of a total running time the table shows the time needed to
compute a suitable regular closed EBT with 2, 3, 4 and 5 bouncing points respectively. The
table suggests that the calculations for m bouncing points with m   n�1 terminate quickly.
The reason for this is that many iterations are rejected early when the rank of pu1, . . . , umq is
checked. All calculations have been done on a Dell Latitude E6530 laptop with Intel Core
i7-3520M processor, 2.9 GHz (capable of running four threads). We use the programming
language Python [96] and mainly utilize the NumPy library [48]. Furthermore, we solve
the LPs and SOCPs using the respective default solvers of the software Mosek [8], which
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employ interior-point methods. Throughout this thesis we use the same hard- and software
unless specified otherwise.

4.3.2 Governing the bouncing rule with polytopes
In the remainder of Chapter 4 we pay attention to the Minkowski setting. Thus, we let
T be a convex set that is not necessarily the unit ball. Most of the results in Chapter 4.1
and 4.2 require T to be strictly convex and some of them also require that the boundary
of T is smooth. Our next goal is to recover the strategy from the end of Chapter 4.1 for
the case where both K,T � Rn are full-dimensional polytopes. The reason for this is that
polytopes allow for an easy implementation via their vertices or their facets. Besides, we
can approximate every convex body with polytopes.

Throughout Chapter 4.3.2 we are concerned with sequences in Rn as well as with
sequences of subsets of Rn. If we say that a sequence in Rn converges, then we mean
convergence with respect to the standard Euclidean metric. On the other hand, if we say
that a sequence of subsets of Rn converges, then we mean convergence with respect to the
Hausdorff metric dH unless specified otherwise. We recall the definition of the Hausdorff
metric as given in Chapter 2.3:

dHpA, Bq � max
"

sup
aPA

inf
bPB

||a� b||, sup
bPB

inf
aPA

||a� b||
*
, A, B � Rn.

Theorem 4.2.4 states that if we take a sequence pTiqiPN of strictly convex bodies in
Rn that converges to T , then we can find a subsequence pTi jq jPN such that the sequence
of closed pK,Ti jq-MBTs with minimal `Ti j

-length converges to a closed polygonal line q�

such that the set of vertices of q� lies in

FpKq � tM � Rn : E t P Rn, M � t � int Ku
and such that the `T -length of q� is minimal among all closed polygonal lines with this
property. By Theorem 4.2.3 the set of vertices of every closed pK,Ti jq-MBT is contained
in

Fn�1pKq � tM � Rn : |M| ¤ n� 1, M P FpKqu.
Moreover, since the vertices of a closed MBT lie on the boundary of K, they are contained
in some ball with sufficiently large radius. Using a standard compactness argument we
conclude that the set of vertices of q� lies in Fn�1pKq as well. Together with Theorem
4.1.3 and Lemma 2.3.3, we have

cEHZpK � T q � mint`T pqq : q � pq1, . . . , qkq with tq1, . . . , qku P Fn�1pKq, k ¥ 2u.
The algorithm that we discuss in Chapter 4.3.3 expects two full-dimensional polygons

K,T � R2 as input. It finds closed polygonal lines pq1, . . . , qmq and pp1, . . . , pmq with
q j P BK and p j P BT for j P t1, . . . ,mu and m P t2, 3u such that (4.1) holds and q has
minimal `T -length among all these lines. The following theorem proves that this suffices to
compute the EHZ-capacity of K � T .
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Theorem 4.3.4. Let K,T � Rn be convex bodies. Furthermore, let q be a closed polygonal
line such that the set of vertices of q lies in Fn�1pKq and such that q has minimal `T -length
among all closed polygonal lines with this property. Then there exists a closed polygonal
line q� � pq1, . . . , qmq with

q� P argmint`T prqq : rq is a closed polygonal line and there is a closed

polygonal line p so that the pair prq, pq fulfils (4.1)u
such that m P t2, . . . , n� 1u and `T pq�q � `T pqq.
Proof. We start by letting pTiqiPN be a sequence of strictly convex bodies in Rn that con-
verges to T . Furthermore, we let this sequence be an inner approximation, i.e.:

Ti � T for all i P N.
Applying the same reasoning as before (i.e. apply Theorem 4.2.4 and Theorem 4.2.3, take
a subsequence and make a standard compactness argument) we find a converging sequence
pqiqiPN of closed pK,Tiq-MBTs with minimal `Ti -length. Furthermore, this sequence con-
verges to some closed polygonal line q� P Fn�1pKq with minimal `T -length. In particular,
we have `T pq�q � `T pqq. It remains to show that there is a closed polygonal line p� such
that pq�, p�q fulfils (4.1).

Since qi is a closed pK,Tiq-MBT, by Theorem 4.1.2 we can find a dual closed MBT pi

in Ti such that #
qi

j�1 � qi
j P NTippi

jq,
pi

j�1 � pi
j P �NKpqi

j�1q

holds for all j P t1, . . . ,mu and for all i P N. Here, qi
m�1 :� qi

1 and pi
m�1 :� pi

1. We now
consider the sequence ppi

jqiPN for some j P t1, . . . ,mu. Every element of this sequence lies
in the convex body T . We recall that a convex body is a compact set. Thus, the Bolzano-
Weierstraß theorem [15] implies that there is a converging subsequence of ppi

jqiPN. By
successively repeating this process for every j P t1, . . . ,mu we find that the sequence
pppi

1, . . . , pi
mqqiPN has a converging subsequence. We now switch to this subsequence while

keeping the notation pppi
1, . . . , pi

mqqiPN for the sake of simplicity. We write

p�j :� lim
iÑ8

pi
j,

for every j P t1, . . . ,mu. We have p�j P BT because on the one hand pi
j is contained in

BTi and on the other hand pTiqiPRn converges to T . Next, we show that (by switching to a
subsequence if necessary)

lim
iÑ8

NTippi
jq � NT pp�j q,

for every j P t1, . . . ,mu. We need to specify what these limits mean since the Hausdorff
metric is inconvenient if we talk about cones. More precisely, if we have two different
cones, then the Hausdorff distance between them is always infinite. Instead we say that
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a sequence of cones pCiqiPN converges to some cone C, if the sequence pCi X B1p0qqiPN

converges to C X B1p0q with respect to the Hausdorff metric.
We fix j P t1, . . . ,mu and let

u j P lim
iÑ8

NTippi
jq.

Then there is a sequence pui
jqiPN with ui

j P NTippi
jq that converges to u j. By the definition

of the normal cone we have

pui
jqT pz� pi

jq ¤ 0,

for all z P Ti and every i P N. In particular, for every z� P T we can take a sequence pziqiPN

with zi P Ti that converges to z� and get

pui
jqT pzi � pi

jq ¤ 0.

Therefore, by continuity we have

pu jqT pz� � p�j q � lim
iÑ8

pui
jqT pzi � pi

jq ¤ 0.

It follows that u j P NT pp�j q and thus

lim
iÑ8

NTippi
jq � NT pp�j q.

A similar argument proves that lim
iÑ8

NKpqi
j�1q � NKpq�j�1q. In total, we get:

q�j�1 � q�j � lim
iÑ8

�
qi

j�1 � qi
j

	
P lim

iÑ8
NT ppi

jq � NT pp�j q,
p�j�1 � p�j � lim

iÑ8

�
pi

j�1 � pi
j

	
P lim

iÑ8
�NKpqi

j�1q � �NKpq�j�1q

for all j P t1, . . . ,mu, where q�m�1 :� q�1 and p�m�1 :� p�1 . So, the pair of closed polygonal
lines pq�, p�q with p� � pp�1 , . . . , p�mq fulfils (4.1). �

Now, we know that to compute cEHZpK � T q, where K,T � Rn are convex bodies, it
is sufficient to find closed polygonal lines q, p with m vertices, m P t2, . . . , n � 1u, such
that the pair pq, pq satisfies (4.1) and such that q has minimal `T -length. If T is strictly
convex with smooth boundary and if we consider m � n � 1, then by Theorem 4.2.1 we
can demand that the vertices of q are smooth boundary points of K. We can extend the
proof of Theorem 4.3.4 to obtain a similar result if T is an arbitrary convex body and if K
is a polytope.

Theorem 4.3.5. Let K � Rn be a full-dimensional polytope and let T � Rn be a convex
body. Furthermore, let

Q � trq : rq is a closed polygonal line and there is a closed

polygonal line p so that the pair prq, pq fulfils (4.1)u.
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Assume that every closed polygonal line q P Q with minimal `T -length has exactly n � 1
vertices. Then there is a closed polygonal line q� :� pq�1 , . . . , q�n�1q P Q with minimal
`T -length and a closed polygonal line p� :� pp�1 , . . . , p�n�1q such that pq�, p�q fulfils (4.1)
and for every j P t1, . . . , n� 1u we have

p�j � p�j�1 P �NKpz jq,
where p�0 :� p�n�1 and z j is a smooth boundary point of K so that z j and q�j lie in a common
facet of K.

Proof. We let pTiqiPN be a sequence of strictly convex bodies in Rn with smooth boundaries
such that this sequence converges to T . Like in the proof of Theorem 4.3.4 we find a
sequence of closed pK,Tiq-MBTs ppqi

1, . . . , q
i
n�1qqiPN and a sequence of dual closed MBTs

pppi
1, . . . , pi

n�1qqiPN such that the pair of closed polygonal lines pq�, p�q fulfils (4.1), where

q�j � lim
iÑ8

qi
j,

p�j � lim
iÑ8

pi
j

for every j P t1, . . . , n � 1u. Moreover, q� has minimal `T -length among all closed
polygonal lines in Q. Theorem 4.2.1 implies that the bouncing points of qi � pqi

1, . . . , q
i
n�1q

are smooth boundary points of K for every i P N. In other words, NKpqi
jq is one-dimensional

for every i P N and every j P t1, . . . , n�1u. If the points q�1 , . . . , q
�
n�1 are smooth boundary

points of K as well, then the statement follows immediately since

p�j � p�j�1 P �NKpq�j q
holds for every j P t1, . . . , n� 1u. Therefore, we assume that q�j is not a smooth boundary
point of K for some j. In particular, NKpq�j q is not one-dimensional. We note that pqi

jqiPN

and ppi
jqiPN are Cauchy sequences. Hence for every ε ¡ 0 there is N P N such that for

every i, k ¥ N:

|p�µi, jui
jq � p�µk, juk

jq| � |ppi
j � pi

j�1q � ppk
j � pk

j�1q|
¤ |pi

j � pk
j| � |pi

j�1 � pk
j�1|

¤ ε

2
� ε

2
� ε,

where ui
j denotes the unique unit vector in NKpqi

jq and µi, j, µk, j ¥ 0 are some scalars as in
(4.1). Here, pi

0 :� pi
n�1 and pk

0 :� pk
n�1. Furthermore, we have

lim
iÑ8

�µi, jui
j � lim

iÑ8

�
pi

j � pi
j�1

	
� 0.

Otherwise, p�j � p�j�1 which would imply that

pq � pq�1 , . . . , q�j�1, q
�
j�1, . . . , q

�
n�1q,pp � pp�1 , . . . , p�j�1, p�j�1, . . . , p�n�1q
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satisfy (4.1) and that `T ppqq ¤ `T pq�q holds. This would contradict the assumption that
every closed polygonal line in Q with minimal `T -length has exactly n� 1 vertices.

Since K is a polytope, it has only finitely many facets. Therefore, there are finitely
many different outer normal cones of the form NKpzq with z P BK. Taking into account that
qi

j is a smooth boundary point of K for every i P N, this means that the set!
ui

j : i P N
)

is finite for every j P t1, . . . , n � 1u. More precisely, its cardinality is at most the number
of facets of K. So, if multiples of ui

j and uk
j become arbitrary close and do not approach 0

as i and k increase, we conclude that there is N1 P N such that ui
j � uk

j holds for i, k ¥ N1.
Therefore, we can denote u j :� ui

j for i ¥ N1. From this follows:

p�j � p�j�1 � lim
iÑ8

�
pi

j � pi
j�1

	
� lim

iÑ8
�µi, ju j.

Thus, the claim follows if we repeat this argument for every j P t1, . . . , n � 1u. More
precisely, we pick z j � q�j if q�j is a smooth boundary point of K and otherwise we pick
z j � u j. �

Theorem 4.3.4 and Theorem 4.3.5 motivate the following strategy to compute the EHZ
capacity. Given two full-dimensional polytopes K,T we search for two closed polygonal
lines q � pq1, . . . , qmq and p � pp1, . . . , pmq such that q j P BK, p j P BT for every j P
t1, . . . ,mu and such that (4.1) is fulfilled. We do so for every m P t2, . . . , n � 1u. If
m � n � 1 we demand that q and p satisfy the following system which is more restrictive
than (4.1): #

q j�1 � q j P NT pp jq,
p j�1 � p j P �NKpz j�1q,

for some smooth boundary points z1, . . . , zm P BK such that z j and q j are contained in
a common facet of K for every j P t1, . . . ,mu. Here, qm�1 :� q1, pm�1 :� p1 and
zm�1 :� z1. Together, the observations in Chapter 4.3.2 ensure that the minimal `T -length
among all found closed polygonal lines q equals cEHZpK � T q.

4.3.3 The Minkowski setting in dimension 4
Next, we elaborate on the implementation of our strategy to compute the EHZ capacity
in the Minkowski setting. Before we can describe the algorithm in more detail, we need
a statement similar to Theorem 4.3.3. More precisely, we show that if we are given two
pairs of closed polygonal lines pq, pq and pq1, p1q, where the vertices q j, q1j lie in the relative
interior of a common face of K and the vertices p j, p1j lie in the relative interior of a common
face of T for every j P t1, . . . ,mu and such that both pairs fulfil (4.1), then q and q1 have
the same `T -length.
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Theorem 4.3.6. Let K,T � Rn be nonempty, convex sets, let F1, . . . , Fm be faces of K
and let G1, . . . ,Gm be faces of T for some m ¥ 2. Furthermore, let q � pq1, . . . , qmq,
q1 � pq11, . . . , q1mq be closed polygonal lines with vertices on BK. Assume there are closed
polygonal lines p � pp1, . . . , pmq, p1 � pp11, . . . , p1mq with vertices on BT such that both
pq, pq and pq1, p1q fulfil (4.1). Moreover, assume for each j P t1, . . . ,mu that q j, q1j P
relint F j and p j, p1j P relint G j (where we apply the convention that the relative interior of
a single point is the point itself). Then `T pqq � `T pq1q.
Proof. We start the proof by stating a simple fact. If F is a face of a polytope P with
dimpFq ¥ 1 and y1, y2 P F, then

py1 � y2qT v � 0 @v P NPpzq (4.7)

holds for every z P relint F. To see this, consider the affine hull of F and shift it such that it
is a linear space, i.e. such that it contains the origin. Then the vector y1�y2 is an element of
this space and NPpzq with z P relint F is contained in the corresponding orthogonal space.
Note that (4.7) also holds if F is a vertex because then y1, y2 P F implies y1 � y2. Now
recall (4.1):

q j�1 � q j P NT pp jq , q1j�1 � q1j P NT pp1jq ,
p j�1 � p j P �NKpq j�1q , p1j�1 � p1j P �NKpq1j�1q,

where qm�1 :� q1, pm�1 :� p1, q1m�1 :� q11 and p1m�1 :� p11. The following calculation
completes the proof:

`T pq1q �
m̧

j�1

pq1j�1 � q1jqT p1j

�
m̧

j�1

�
pq1j�1 � q1jqT p1j � pq j�1 � q jqT p1j � pq j�1 � q jqT p1j

�
�

m̧

j�1

pq j�1 � q jqT p1j �
m̧

j�1

pq j � q1jqT p1j �
m̧

j�1

pq j�1 � q1j�1qT p1j

�
m̧

j�1

pq j�1 � q jqT p1j �
m̧

j�1

pq j � q1jqT p1j �
m̧

j�1

pq j � q1jqT p1j�1

�
m̧

j�1

pq j�1 � q jqT p1j �
m̧

j�1

pq j � q1jqT pp1j � p1j�1q �
m̧

j�1

pq j�1 � q jqT p1j

�
m̧

j�1

pq j�1 � q jqT p j �
m̧

j�1

pq j�1 � q jqT pp1j � p jq �
m̧

j�1

pq j�1 � q jqT p j � `T pqq,

where p10 :� p1m. In the last and second to last lines of this equation we use the following
identity, which follows from (4.7):

pq j � q1jqT pp1j�1 � p1jq � 0 � pq j�1 � q jqT pp1j � p jq. �
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Theorem 4.3.6 and the observations from Chapter 4.3.2 suggest the following two
algorithms to find closed MBTs with two or three bouncing points that have minimal `T -
length. Together, these algorithms provide a way to compute cEHZpK�T q, where K,T � R2

are polygons. The input for both algorithms are the faces, i.e. vertices and edges, of K and
T . In the following we let

F pPq :� tF � P : F is a vertex or an edge of Pu
for every polygon P.

Algorithm 2 Shortest closed MBT with two bouncing points

1: for every choice of F1, F2 P F pKq with F1 � F2 and G1,G2 P F pT q with G1 � G2
do

2: Let NK, j � NKpyq for some y P relint F j and let NT, j � NT pzq for some
z P relint G j and for j P t1, 2u. Find points q j P F j and p j P G j such that#

q j�1 � q j P NT, j,

p j�1 � p j P �NK, j�1,
(4.8)

where q3 :� q1 and p3 :� p1.
3: Calculate `T ppq1, q2qq and store this value if it is the smallest value found so far.
4: end for

Algorithm 3 Shortest closed MBT with three bouncing points

1: for every choice of three different edges F1, F2, F3 of K do
2: Let u j be the unique unit vector in NKpyq for some y P relint F j. Con-

struct a closed polygonal line γ by successively moving in the directions
�u1,�u2,�u3. Translate and scale γwith a positive factor such that its vertices
lie on the boundary of T . Let p1, p2, p3 be these vertices, i.e.:

p j�1 � p j � �µ j�1u j�1

with some suitable µ j P R¥0 for every j P t1, 2, 3u, p4 :� p1, u4 :� u1 and
µ4 :� µ1.

3: for every choice of unit vectors w j P NT pp jq for every j P t1, 2, 3u do
4: Construct a closed polygonal line ξ � pξ1, . . . , ξmq by successively moving in

the directions w1, w2, w3. Translate and scale ξ with a positive factor to get a
closed polygonal line q � pq1, q2, q3q with q j P F j for every j P t1, 2, 3u. In
particular:

q j�1 � q j � λ jw j

with some suitable λ j P R¥0 for every j P t1, 2, 3u and q4 :� q1.
5: Calculate `T pqq and store this value if it is the smallest value found so far.
6: end for
7: end for
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We proceed to discuss Algorithm 2. For each choice of F1, F2 P F pKq and for each
choice of G1,G2 P F pT q we compute closed polygonal lines q � pq1, q2q and p � pp1, p2q
that fulfil (4.1) such that q j P F j and p j P G j for j P t1, 2u. Note that Theorem 4.3.6
implies that Algorithm 2 considers for each

r P t`T psqq : sq is a closed MBT with two bouncing pointsu
at least one closed MBT with `T -length r if we ask for q j P relint F j and p j P relint G j in
each iteration. We allow q j P BF j and p j P BG j as well because we can extend the proof
of Theorem 4.3.6 to the case where q j P F j and p j P G j such that (4.8) holds.

To reduce the running time we check whether NKpq1q X �NKpq2q and NT pp1q X
�NT pp2q are nonempty before we start the calculation. The reason for this is that the
existence of a pair pq, pq of closed polygonal lines that satisfy (4.1) implies:

�NKpq2q Q p2 � p1 � �pp1 � p2q P NKpq1q,
NT pp1q Q q2 � q1 � �pq1 � q2q P �NT pp2q.

Note that the normal cones NKpq jq,NT pp jq only depend on F j,G j. So, in the following we
can assume that these intersections are indeed nonempty. The goal is now to calculate a pair
of suitable closed polygonal lines pq, pq if possible. To this end, it is helpful to distinguish
F j,G j into edges and vertices. We consider the following cases:

1) F1, F2,G1,G2 are vertices.

2) F1, F2 are vertices and among G1,G2 there is at least one edge.

3) Among F1, F2 and among G1,G2 there is at least one edge.

All remaining cases can be covered by switching the roles of K and T .
The first case is easy. If F1, F2,G1,G2 are vertices, the resulting closed polygonal lines

are unique and we can check (4.1) directly.
We start the investigation of the second case by assuming that both G1 and G2 are edges.

Then NT pp1q and NT pp2q are one-dimensional cones. Let w j be the unique unit vector in
NT pp jq for every j P t1, 2u. We can verify whether q2 � q1 P NT pp1q holds by checking
whether w1 is a positive multiple of q2 � q1. If this is the case, then q1 � q2 P NT pp2q
follows directly since we assume that NT pp1q X �NT pp2q is nonempty. Alternatively, we
can check whether w2 is a positive multiple of q1 � q2 and get q2 � q1 P NT pp1q for free. It
remains to solve the following problem:

Find p1, p2 such that:
p1 P G1 , p2 P G2,

p2 � p1 P �NKpq2q,
p1 � p2 P �NKpq1q.

We can express the constraints by linear equations and inequalities. For this recall the
definition of the outer normal cone of a convex set C at z P BC:

NCpzq � tv : vT py� zq ¤ 0 @ y P Cu.
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If C is a polytope, it is sufficient to demand that vT py � zq ¤ 0 for every vertex y of C.
Therefore, we can model the membership of NCpzq with finitely many linear inequalities.
Altogether, we can find suitable points p1, p2 using LP techniques. We use the same
approach if either G1 or G2 is a vertex. In this case the LP remains unchanged except
for the fact that we replace one of the two variable vectors by a constant vector.

In the third case we start with the assumption that F1, F2,G1,G2 are edges. Then all
relevant normal cones are one-dimensional and we let

u j P NKpq jq , w j P NT pp jq
be unit vectors for every j P t1, 2u. Now we solve the following problem:

Find q1, q2, p1, p2, α1, α2 such that:
q1 P F1 , q2 P F2 , p1 P G1 , p2 P G2,

α1, α2 ¥ 0,
q2 � q1 � α1w1,

p2 � p1 � �α2u2.

Similar to the previous case, this problem is an LP. Note that the last two constraints suffice
to imply (4.1) since NT pp1q X�NT pp2q and NKpq1q X�NKpq2q are nonempty. If there are
vertices among F1, F2,G1,G2, for instance if G1 is a vertex, then the LP has to be changed
in two places. First, like in the second case, we replace the corresponding variable vector,
here p1, with a constant vector. Second, if G1 is a vertex, then the normal cone NT pp1q is no
longer one-dimensional and the definition of w1 does not make sense any more. However,
in this case G2 is an edge and we replace the constraint q2�q1 � α1w1 with q1�q2 � α1w2.
We apply the same reasoning if F1 or F2 is a vertex.

There may be multiple ways to choose pp, qq for a given choice of F1, F2,G1,G2. If
this is the case, Algorithm 2 chooses (if possible) q such that NKpq jq is one-dimensional
for j P t1, 2u (or equivalently such that q1, q2 are not vertices of K). We achieve this in
the following manner. If F1 or F2 is a vertex, then the resulting closed polygonal line q
always contains a vertex of K. So, we assume both F1 and F2 are edges. If q1 and q2 are
smooth boundary points, i.e. lie in the relative interior of F1 or F2, then there is nothing to
do. Otherwise, we denote

NKpq1q � cone tuu � tβu : β P R¥0u ,
NKpq2q � cone t�uu � tβp�uq : β P R¥0u .

for some suitable vector u P R2. Let v � 0 be a vector orthogonal to u. We can move q j

along the edge F j in at most two directions, namely v or �v. If we can move both q1 and
q2 in the same direction, we simply translate the closed polygonal line q. If we can move
q1 and q2 only in opposite directions, it is necessary to check whether the normal cones
NT pp1q and NT pp2q allow such movement. If not, it is not possible to find suitable points
q1 P relint F1, q2 P relint F2 (see Figure 4.7). This concludes our discussion of Algorithm
2.

Next, we discuss Algorithm 3. We choose edges F1, F2, F3 of K. For each j P t1, 2, 3u
we let u j be the unique unit normal vector of K at some point in the relative interior of
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q1
q2

u �u
v

�v

q1

q2

u �u
v

�v

Figure 4.7: Two closed polygonal lines such that q1, q2 are vertices of K. On the left, we
can translate q1, q2 upwards (in direction v). On the right, we need to move q1 upwards and
q2 downwards. Whether this is possible depends on NT pp1q and NT pp2q.

F j. If possible we construct a triangle, i.e. a closed polygonal line with three vertices, γ by
successively moving in the directions �u1,�u2,�u3. We can do this easily by solving a
system of linear equations:

0 � �u1 � µ1u2 � µ2u3.

If this system does not have a unique, positive solution pµ1, µ2q, we reject the iteration and
proceed with the next choice of edges. If we find a unique, positive solution, then the task is
to translate and scale γ with a positive factor such that its vertices lie on BT . This motivates
the following definition.

Definition 4.3.7. Let γ � R2 be a triangle and let T � R2 be a convex body. A pγ,T q-
inbody is a set ∆ � R2 which fulfils:

(i) ∆ � convpµγ � bq for some µ P R¡0 and b P R2.

(ii) All three vertices of ∆ are contained in BT.

(iii) If Vp∆q � tv1, v2, v3u denotes the set of vertices of ∆, then there is no line H through
the origin, such that NT pv1q Y NT pv2q Y NT pv3q is contained in one of the two closed
halfspaces defined by H.

If we can find such a pγ,T q-inbody with vertices v1, v2, v3, then we pick p j � v j for
every j P t1, 2, 3u. The reason for the first two properties in Definition 4.3.7 are obvious:
They ensure that we have

p j�1 � p j � �µ j�1u j�1 for all j P t1, 2, 3u,

where p4 :� p1, u4 :� u1 and µ4 :� µ1. We take the convex hull in piq to simplify some
upcoming arguments. The reason for property piiiq is that we need to construct another
triangle using directions w j P NT pv jq for j P t1, 2, 3u later on in Algorithm 3. This is only
possible if piiiq holds. We can find pγ,T q-inbodies with the following Lemma.
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Lemma 4.3.8. Let T � R2 be a polygon and let γ � R2 be a triangle. If there is a
pγ,T q-inbody ∆� � convpµ�γ � b�q, then pµ�, b�q is the unique solution of the following
LP:

max µ

s. t. µ ¥ 0, b P R2, (4.9)
µγ � b � T.

Proof. Let ∆ � convtv1, v2, v3u be a pγ,T q-inbody and let ∆� � convtv�1 , v�2 , v�3 u be as in
the claim. Here, we choose the indices of the vertices such that there are µ ¡ 0 and b P R2

with v�j � µv j � b for every j P t1, 2, 3u. Note that such a labeling is possible since ∆ is a
homothetic copy of ∆�. We start by letting H1,H2,H3 be three lines defined by

v�2 , v
�
3 P H1 , v

�
1 , v

�
3 P H2 and v�1 , v

�
2 P H3.

Each of these lines is the affine hull of an edge of ∆�. Furthermore, for every j P t1, 2, 3u,
H j divides the plane R2 into two closed halfspaces H�

j and H�
j such that ∆� � H�

j . If
∆ � ∆�, then there is nothing to show. So, we assume ∆ � ∆�. Because ∆ is a smaller or
equal-sized homothetic copy of ∆�, it is contained in H�

j for some j P t1, 2, 3u. Without
loss of generality, we assume ∆ � H�

1 , as we can treat the other cases similarly. This
situation is depicted in Figure 4.8.

v1

v�1

v2 v3

v�2 v�3

H�1

H1

Figure 4.8: The pγ,T q-inbody ∆ (green) with vertices v1, v2, v3 and the triangle ∆� (blue)
with vertices v�1 , v

�
2 , v

�
3 . The dashed arrows indicate the location of the line segment rv1, v2s

after shifting it by v�2 � v2.

We now show that property piiiq is violated for ∆. This contradiction implies ∆ � ∆�

and finishes the proof. More precisely, we claim that the halfspace

I � ty P R2 : pv�2 � v2qTy ¤ 0u

contains NT pv jq for every j P t1, 2, 3u. By definition of the normal cone it immediately
follows that NT pv2q � I. Because ∆ is a smaller or equal-sized homothetic copy of ∆�, we
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have v�2 � v�3 � αpv2 � v3q for some α ¥ 1. For every y P NT pv3q this implies:

pv�2 � v2qTy � pv�2 � v2 � v�3 � v�3 � v3 � v3qTy

� �pv�2 � v�3 q � pv2 � v3q
�T
y� pv�3 � v3qTy

¤ pv�2 � v�3 qTy� pv2 � v3qTy

� pα� 1qpv2 � v3qTy

¤ 0.

Thus, NT pv3q � I. Next, we observe that if we shift ∆ by v�2 � v2, then the edge rv1, v2s
of ∆ is contained in rv�1 , v�2 s (see Figure 4.8). So, v1 � pv�2 � v2q is contained in ∆� � T .
Now, for every y P NT pv1q we get:

0 ¥ �
v1 � pv�2 � v2q � v1

�T
y � pv�2 � v2qTy.

As desired this yields NT pv1q � I. �

We point out that there is not always a pγ,T q-inbody. For example, if (4.9) has multiple
optimal solutions, then the proof shows that there is no pγ,T q-inbody. An example for this
situation is depicted in Figure 4.9.

T

H

0

Figure 4.9: A situation where there is no pγ,T q-inbody. The blue area is a scaled translate
of γ. Also shown is a line H through the origin 0.

As we can see there are multiple optimal solutions for (4.9) since we can shift the blue
area to the left and right. The only way to have all vertices of this area on BT is to shift it
to the left. Then all the corresponding normal vectors are contained in the halfspace on the
left of H.

With Lemma 4.3.8 we can reduce the search of pγ,T q-inbodies to a maximization
problem which we can formulate as an LP. It is clear that this problem has an optimal
solution pµ�, b�q as long as T is compact. We check whether ∆� � µ�γ � b� fulfils
properties piq – piiiq in Definition 4.3.7. If at least one of these properties is violated, then
there is no pγ,T q-inbody and we proceed with the next choice of F1, F2, F3. Otherwise,
we take a unit vector from NT pvq for each vertex v of ∆�. We construct another triangle as
before by successively moving in the directions of these vectors.

It is notable, that v may be a vertex of T . In this case NT pvq is not one-dimensional and
the choice of the corresponding unit vector is not unique. One way to handle this case is due
to Theorem 4.3.6: It is sufficient to find one vector in NT pvq such that the current iteration
in Algorithm 3 yields a closed MBT q � pq1, q2, q3q. If another unit vector in NT pvq yields
a different closed MBT q1 � pq11, q12, q13q, then we have q j, q1j P F j for every j P t1, 2, 3u
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and it follows from Theorem 4.3.6 that `T pqq � `T pq1q. Therefore, we continue to pick
unit vectors from NT pvq until we find one that yields a closed MBT. Alternatively, if we
do not find such a unit vector in NT pvq, we slightly perturb the vertices of K or T . Due to
Lemma 2.3.3 we know that this changes the value of cEHZpK�T q only slightly as well. The
remainder of the algorithm is straight forward and only uses strategies that we discussed
before.

Regarding efficiency, we point out that Algorithm 2 takesOp|VpKq|2�|VpT q|2q iterations
before it terminates. This is clear since the number of edges of a polygon equals the
number of its vertices. For each of the two polygons K and T the algorithm considers at
most one choice for F1, F2,G1,G2 per iteration. In each iteration we search for the points
q1, q2, p1, p2. In the worst case (i.e. if F1, F2,G1,G2 are edges) we solve an LP with 10
variables and 2p|VpKq| � |VpT q| � 3q constraints. We use the conelp solver of CVXOPT
[97], which relies on a primal-dual path-following method.

Figure 4.10: An exemplary output of Algorithm 3. The randomly generated polygons (K
on the left and T on the right) are depicted in blue. The calculated closed polygonal lines
(q on the left and p on the right) are depicted in orange. The closed polygonal line q in the
picture has smaller `T -length than the closed polygonal line with two vertices that we find
with Algorithm 2.

Algorithm 3 takes Op|VpKq|3q iterations to consider every choice of edges F1, F2, F3.
In each iteration we solve the maximization problem stated in Lemma 4.3.8. This is an LP
with three variables and 3|VpT q| � 1 constraints. We can implement the remainder of the
loop for F1, F2, F3 with running time Op|VpKq|q. Finally, we note that the calculations for
each choice of edges are independent of each other. Therefore, we use parallel computing
to speed up the calculations.

In Table 6.2 in the appendix we examine the running time of our implementation of
Algorithm 2 and 3. We let K and T be polygons and consider three different cases. First,
we regard the case where both K and T have the same number of vertices. In the second
case K has a small number of vertices and in the third case we choose T to have few
vertices. Every time we choose the polygons K and T randomly in the following sense.
First, we generate some normally distributed points in R2 and scale each of these points to
have a random length in r1, 3s. Then we get a polygon by taking the convex hull of these
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random points. As the number of random points grows, the convex hull resembles a ball
of radius 3 due to the normal distribution. So, to accelerate this process, we reduce the
interval r1, 3s for polytopes with many vertices (¥ 30).

We compare the running time for finding a closed polygonal line with minimal `T -
length and with two vertices to the running time for finding one with three vertices. As we
can see the running time for two vertices is approximately symmetric in

∣∣∣VpKq∣∣∣ and
∣∣∣VpT q∣∣∣.

In contrast to this, the running time for three vertices mainly depends on
∣∣∣VpKq∣∣∣.

4.3.4 The Minkowski setting in higher dimension
To conclude Chapter 4 we point out a slightly different approach to compute a closed MBT
with minimal `T -length that is also applicable if the polytopes K and T have dimension
higher than two. Instead of constructing, scaling and translating closed polygonal lines, we
attempt to find a solution of (4.1) immediately. Assume we search for a closed MBT with
minimal `T -length and m bouncing points, where m P t2, . . . , n�1u and n is the dimension
of K and T . Then we fix faces F1, . . . , Fm of K and faces G1, . . . ,Gm of T and solve the
following problem:

Find q1, . . . , qm, p1, . . . , pm such that:
q j P relint F j , p j P relint G j for all j P t1, . . . ,mu,
q j�1 � q j P NT pp jq for all j P t1, . . . ,mu,
p j�1 � p j P �NKpq j�1q for all j P t1, . . . ,mu.

(4.10)

Here, qm�1 :� q1 and pm�1 :� p1. If m � n�1 it is sufficient to consider facets F1, . . . , Fm

instead of faces. Note that if we fix a face G j of T , we only have to compute the one-
dimensional normal cones at facets of T that contain G j. If w1, . . . , wk are the unique unit
vectors in these normal cones, we have

NT pp jq � conetw1, . . . , wku
for every p j P relint G j. Thus, we can ask whether q j�1 � q j lies in NT pp jq by asking
whether there are nonnegative numbers λ1, . . . , λk such that

q j�1 � q j �
ķ

i�1

λiwi.

We can rephrase all constraints in (4.10) that contain a normal cone to get an LP. If we solve
this LP for every choice of faces F1, . . . , Fm and G1, . . . ,Gm and for every m P t2, . . . ,
n � 1u, we find a closed MBT with minimal `T -length. To accelerate this process we can
also divide (4.10) into two problems. First, we solve the following problem:

Find p1, . . . , pm such that:
p j P relint G j for all j P t1, . . . ,mu,
p j�1 � p j P �NKpq j�1q for all j P t1, . . . ,mu,

with some q j P relint F j for every j P t1, . . . ,mu. Here, pm�1 � p1 and qm�1 � q1.
If we do not find a solution, then we can reject the iteration and proceed with the next
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choice of faces. Otherwise, we solve a similar problem to determine q1, . . . , qm. In the
two-dimensional case this approach is much slower than running Algorithm 2 and 3. The
reason is that we now iterate over every choice of F1, F2, F3 and G1,G2,G3. In contrast
to this, Algorithm 3 only iterates over every choice of F1, F2, F3 because Lemma 4.3.8
provides us with an easy way to find pp1, p2, p3q.



Chapter Five

Bounds on the EHZ capacity of
polytopes

In this chapter we examine a formulation of the EHZ capacity that is due to Haim-Kislev
[47] (see identity (5.4) below). This formulation is similar to the one that is given by
Theorem 2.3.6, in the sense that they both express 1{4cEHZpCq, where C is a convex set,
as a maximization problem. The difference is that in Theorem 2.3.6 we require C to
have smooth boundary, while Haim-Kislev considers polytopes instead. In Chapter 5.1
we compare these two expressions in more detail. Afterwards, in Chapter 5.2 and 5.3 we
proceed to compute upper bounds on the EHZ capacity of polytopes using Haim-Kislev’s
formulation. To this end, we write (5.4) as a QAP and adapt the technique that is mentioned
in Chapter 3 to bound the optimal value. Another strategy that we pursue is to reformulate
(5.4) using multiple CPs. Then, as noted in Chapter 3, we employ semidefinite relaxation
to compute upper bounds. In Chapter 5.4 we compute lower bounds on the optimal value
as well.

5.1 The EHZ capacity as a maximization problem

We recall Theorem 2.3.6. If C � R2n is a convex set with smooth boundary and 0 P int C,
then:

1
4cEHZpCq � max

 
Apxq | x : r0, 1s Ñ R2n absolutely continuous,

xp0q � xp1q, ẋ P C� a.e.u .
(5.1)

We observe that finding an optimal solution is difficult because the set of feasible solutions
has infinite dimension. Therefore, we would like to reduce the search to a finite-dimensional
subset that contains optimal solutions. A common way to find such a subset is to discretize
the original problem. More precisely, we add the constraint that x is a closed polygonal
line. In other words, we assume there are 0 � t0 ¤ . . . ¤ tk � 1 and v1, . . . , vk P C� for
some integer k ¥ 1 such that for every i P t1, . . . , ku:

ẋptq � vi for all t P pti�1, tiq .

69
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In particular, x is linear on the interval rti�1, tis for every i P t1, . . . , ku. Thus, we have

xptq � xpti�1q � pt � ti�1qvi @ t P rti�1, tis, i P t1, . . . , ku.

It follows that if t P rti�1, tis, then we can write

xptq � pt � ti�1qvi � xpti�1q � pt � ti�1qvi � pti�1 � ti�2qvi�1 � xpti�2q � . . .

� pt � ti�1qvi �
�

i�1̧

j�1

pt j � t j�1qv j

�
� xpt0q.

In (5.1) we require that xp0q � xp1q holds. Therefore:

0 � xptkq � xpt0q �
�

ķ

i�1

pti � ti�1qvi

�
� xpt0q � xpt0q �

ķ

i�1

yivi,

where we substitute yi :� ti � ti�1. The objective function takes the following form:

Apxq � �1
2

1»
0

ẋptqT Jxptqdt

� �1
2

ķ

i�1

ti»
ti�1

vT
i J

��
i�1̧

j�1

pt j � t j�1qv j

�
� pt � ti�1qvi

�
dt

� �1
2

ķ

i�1

��� ti»
ti�1

�
i�1̧

j�1

pt j � t j�1qvT
i Jv j

�
dt �

ti»
ti�1

pt � ti�1qvT
i Jvi dt

���
� �1

2

ķ

i�1

i�1̧

j�1

pti � ti�1qpt j � t j�1qvT
i Jv j

� �1
2

ķ

i�1

i�1̧

j�1

yiy jv
T
i Jv j,

where we use the fact that vT Jv � 0 for every v P R2n because J is skew-symmetric.
Two additional constraints arise from the discretization. First, we require that ti�1 ¤ ti or
equivalently yi ¥ 0 for every i P t1, . . . , ku. Second, the numbers t0, . . . , tk discretize an
interval of length one. Thus,

tk � t0 � 1 ðñ
ķ

i�1

pti � ti�1q � 1 ðñ
ķ

i�1

yi � 1.

Altogether, we receive the following optimization problem as a discretization of (5.1). Note
that k ¥ 1 is some fixed integer and that the optimization variables are a vector y P Rk and
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points v1, . . . , vk P C�.

max � 1
2

ķ

i�1

i�1̧

j�1

yiy jv
T
i Jv j

s. t.
ķ

i�1

yivi � 0

ķ

i�1

yi � 1

v1, . . . , vk P C�, y P Rk
¥0.

(5.2)

One could assume that the optimum is only a lower bound on 1{4cEHZpCq since we added
the constraint that x is a closed polygonal line. However, Haim-Kislev [47] showed that
if C is a polytope, if we pick k � |VpC�q| and if we require that v1, . . . , vk are exactly the
vertices of C�, then this maximum is equal to 1{4cEHZpCq.
Theorem 5.1.1. [47] Let C � R2n be a polytope with 0 P int C and let k be the number of
facets of C. Let A P Rk�2n and b P Rk such that

C � tz P R2n : Ax ¤ bu
and such that the ith row aT

i of A satisfies ||ai|| � 1 for every i P t1, . . . , ku. Then:

1
4cEHZpCq � max �

ķ

i�1

i�1̧

j�1

βσpiqβσp jqaT
σpiqJaσp jq

s. t.
ķ

i�1

βiai � 0

ķ

i�1

βibi � 1

βi ¥ 0, @ i P t1, . . . , ku
σ P Symk.

To observe the connection between (5.2) and the maximization problem in Theorem
5.1.1 we first characterize the vertices of C�. This characterization is well known and we
state the proof from [105] for the sake of completeness.

Theorem 5.1.2. [105] Let C � Rn be a polytope with 0 P int C. Furthermore, assume that

C � tz P Rn : Az ¤ eu
for some matrix A P Rm�n, where e � p1, . . . , 1qT P Rm. Then

C� � conv tai : i P t1, . . . ,muu ,
where aT

i denotes the ith row of A for i P t1, . . . ,mu.
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Proof. Let λ1, . . . , λm ¥ 0 such that
°

i λi � 1. Then for every x P C we get�
m̧

i�1

λiai

�T

x �
m̧

i�1

λiaT
i x ¤

m̧

i�1

λi � 1.

Therefore, every convex combination of a1, . . . , am is contained in C�.
For the converse, let z P C�. By definition, zT c ¤ 1 holds for every c P C. A variant of

Farkas’ lemma (see [105]) now states that there is a vector λ P Rm
¥0 such that λT A � zT and

λT e ¤ 1, where e P Rm is the vector whose entries are all equal to one. Next, we note that
Au ¤ �e has no solution u P Rm. Otherwise, if Au ¤ �e holds for some u, then we have
u � 0 and αAu ¤ �e ¤ e for every α P R¥0. In particular, we find that αu P C for every
α ¥ 0, which contradicts the fact that C is bounded. Now, since Au ¤ �e has no solution,
Farkas’ lemma (see [105]) implies that there is a vector µ P Rm

¥0 such that µT A � 0 and
µT e ¡ 0. We let

ν � λ� 1� λT e
µT e

µ

and observe that ν ¥ 0 because λ, µ ¥ 0 and λT e ¤ 1. Furthermore, we have

νT e � λT e� 1� λT e
µT e

µT e � 1,

νT A � λT Aloomoon
�zT

�1� λT e
µT e

µT Aloomoon
�0

� zT .

Hence, z is a convex combination of the rows of A. �

Let C, A, b as in Theorem 5.1.1. With Theorem 5.1.2 we get

C� � conv
"

ai

bi
: i P t1, . . . ku

*
. (5.3)

If we require that v1, . . . , vk are the vertices of C� in (5.2), then we can introduce the
optimization variable σ P Symk and let vi � aσpiq{bσpiq for every i P t1, . . . , ku. The
objective function in (5.2) becomes:

�1
2

ķ

i�1

i�1̧

j�1

yiy jv
T
i Jv j � �1

2

ķ

i�1

i�1̧

j�1

yi

bσpiq

y j

bσp jq
aT
σpiqJaσp jq.

So, we get the same objective function as in Theorem 5.1.1 if we let βσpiq � yi{bσpiq for
every i P t1, . . . , ku. Furthermore, we get

ķ

i�1

yivi � 0 ðñ
ķ

i�1

βσpiqbσpiq
aσpiq
bσpiq

� 0 ðñ
ķ

i�1

βiai � 0
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as well as

ķ

i�1

yi � 1 ðñ
ķ

i�1

βσpiqbσpiq � 1 ðñ
ķ

i�1

βibi � 1.

Since we require that 0 P int C, the numbers b1, . . . , bk are positive. So, we have that
y1, . . . , yk ¥ 0 if and only if β1, . . . , βk ¥ 0.

The goal in the remainder of this chapter is to provide upper and lower bounds on
1{4cEHZpCq and consequently also on cEHZpCq by investigating the maximization problem

1
4cEHZpCq � max � 1

2

ķ

i�1

i�1̧

j�1

yiy jv
T
σpiqJvσp jq

s. t.
ķ

i�1

yivσpiq � 0

ķ

i�1

yi � 1

yi ¥ 0 @ i P t1, . . . , ku
σ P Symk,

(5.4)

where v1, . . . , vk are the vertices of C�. For this, C always denotes a polytope with 0 P int C
and k denotes the number of facets of C or equivalently the number of vertices of C�.

5.2 An upper bound via QAP techniques

To start our investigation of (5.4) we focus on the fact that we ask for an optimal permutation
σ P Symk. Thus, (5.4) is reminiscent of a QAP. More precisely, if we substitute zσp jq :� y j

for every j P t1, . . . , ku, we get

1
4cEHZpCq � max

#
�1

2

ķ

h�1

h�1̧

j�1

zσphqzσp jqv
T
σphqJvσp jq : z P M, σ P Symk

+
,

M �
#

z P Rk
¥0 :

ķ

j�1

z jv j � 0,
ķ

j�1

z j � 1

+
.

Note that the set M is the pk� 1q-dimensional standard simplex intersected with the kernel
of the matrix pv1, . . . , vkq. Furthermore, M does not depend on σ. Thus, we can write the
maximum as two maxima:

1
4cEHZpCq �

1
2

max
zPM

�
max
σPSymk

�
ķ

h�1

h�1̧

j�1

zσphqzσp jqv
T
σphqJvσp jq

�
. (5.5)
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Recall from Chapter 3 that a pk � kq-matrix X is called a permutation matrix if there is a
permutation σ P Symk such that

Xh, j �
#

1, if h � σp jq,
0, otherwise.

Furthermore, we denote the set of all pk � kq-permutation matrices with Πk. We observe
that the maximization over Symk is a QAP of the form

max
XPΠk

�@
F, XT DpzqXD� xB, Xy� , (5.6)

where we define the matrices F,Dpzq, B P Rk�k by

Bh, j � 0, Dpzqh, j � �zhz jv
T
h Jv j, Fh, j �

#
1, if h ¡ j,
0, if h ¤ j,

for all h, j P t1, . . . , ku. Here, it is notable that the matrix Dpzq depends on some vector
z P M. We point out that (5.6) has the same form as (3.1) except for the fact that we
perform a maximization instead of a minimization. This is not an issue since the approach
in Chapter 3.1 still suggests that we give an upper and a lower bound on the objective
function in (5.6) that only depends on the eigenvalues of F and Dpzq. In particular, we do
this regardless of whether the goal is to maximize or minimize this objective function. A
more pressing problem is that the reasoning in Chapter 3.1 mainly relies on Theorem 3.1.1,
which requires the matrices F and Dpzq to be symmetric. This is not the case here. Due to
the skew-symmetry of the matrix J it is obvious that Dpzq is skew-symmetric. F is neither
symmetric nor skew-symmetric. However, we can consider F1 :� pF � FT q{2 instead.
Then F1 is skew-symmetric and@

F1, XT DpzqXD � 1
2

�@
F, XT DpzqXD� @

FT , XT DpzqXD�
� 1

2

�@
F, XT DpzqXD� @

FT , XT p�DpzqqXD� (5.7)

� 1
2

�@
F, XT DpzqXD� @

FT , pXT DpzqXqTD� � @
F, XT DpzqXD .

The goal is now to prove another version of Theorem 3.1.1 for skew-symmetric matrices.
First, we recall some properties of skew-symmetric matrices and provide a proof for the
sake of completeness.

Lemma 5.2.1. [54] Let A P Rk�k be a real, skew-symmetric matrix. Then:

(i) All eigenvalues of A are purely imaginary.

(ii) If λ is an eigenvalue of A, then so is �λ.

(iii) A is unitarily diagonalizable, i.e. there is some unitary matrix U P Ck�k such that
A � UΣU�, where Σ is a diagonal matrix containing all eigenvalues of A as diagonal
elements. Furthermore, the columns of U are exactly the eigenvectors of A.
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Proof. Let λ P C be an eigenvalue for the eigenvector x � 0. Then we have

sλx�x � �λxT x � �pAxqT x � x�A�x � �x�Ax � �λx�x.

It follows that sλ � �λ which implies that Re λ � 0. Furthermore,

Ax � λx ùñ �Ax � �λx ùñ AT x � �λx.

Hence, �λ is an eigenvalue of AT . Because A and AT have the same eigenvalues, statement
piiq follows.

For piiiq we note that A is a normal matrix, i.e. AA� � A�A, because we have A� �
AT � �A. We consider a Schur decomposition of A:

A � URU�,

where R P Ck�k is an upper triangular matrix and U P Ck�k is a unitary matrix. The fact
that A is normal implies that R is normal as well:

RR� � U�AUU�A�U � U�AA�U � U�A�AU � U�A�UU�AU � R�R.

It remains to show that a normal upper triangular pk � kq-matrix is a diagonal matrix. We
prove this inductively. If k � 1 it is obvious that R is a diagonal matrix. If k ¡ 1 we write

R �
�

R1,1 ν�

0 R1



,

where ν P Ck�1 and R1 P Cpk�1q�pk�1q is an upper triangular matrix. With this, we get:�|R1,1|2 � ||ν||2 ν�pR1q�
R1ν R1pR1q�



� RR� � R�R �

�|R1,1|2 �R1,1ν
�

R1,1ν νν� � pR1q�R1



. (5.8)

In particular, |R1,1|2 � ||ν||2 � |R1,1|2 implies that ν � 0. If we plug this into (5.8) we also
get R1pR1q� � pR1q�R1. So, R has the form

R �
�

R1,1 0
0 R1



with a normal upper triangular pk� 1q by pk� 1q matrix R1. By induction it follows that R
is a diagonal matrix. Moreover, the diagonal entries of R are the eigenvalues of A because
A and R are similar matrices. It is straightforward to show that the columns of U are the
eigenvectors of A. Let u j be the jth column for j P t1, . . . , ku. If e j P Rk denotes the jth
unit vector, it follows that

Au j � UΣU�u j � UΣe j � UΣ j, je j � Σ j, ju j. �

We now pursue a similar strategy as in [26] to prove a suitable version of Theorem
3.1.1. To this end, we recall from Chapter 3 that a matrix with nonnegative entries is called
doubly stochastic if all its row and column sums are equal to one.
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Theorem 5.2.2. Let Y1,Y2 P Rk�k be skew-symmetric matrices. Let λ P Rk be the vector
of eigenvalues of Y1 and let x1, . . . , xk be the corresponding orthonormal eigenvectors.
Similarly, let µ P Rk be the vector of eigenvalues of Y2 and let y1, . . . , yk be the correspond-
ing orthonormal eigenvectors. Then:

piq xY1,Y2y � λT Sµ,

where S � �|xT
h y j|2

�
h, jPt1,...,ku is a doubly stochastic matrix.

piiq xY1,Y2y ¤ � min
σPSymk

ķ

j�1

Im λ j � Im µσp jq.

Theorem 5.2.2 provides us with an upper bound on
@

F1, XT DpzqXD that only depends
on the eigenvalues of F1 and Dpzq since Dpzq and XT DpzqX have the same eigenvalues. We
point out that a similar situation is considered by Hoffman and Wielandt [52]. They show
that there is a permutation σ P Symk such that

ķ

j�1

|λσp jq � µσp jq|2 ¤ xA� B, A� By , (5.9)

where A, B P Rk�k are normal matrices, i.e. AA� � A�A and BB� � B�B, with eigenvalues
λ1, . . . , λk and µ1, . . . , µk. The proof of Theorem 5.2.2, that we present here, is similar to
the proof of (5.9) by Hoffman and Wielandt. Additionally, it is noted in [52] that finding
the permutation σ in (5.9) is difficult in general and that it is easy to find σ in the case that
A and B are Hermitian. Later, we make a similar observation for the skew-symmetric case,
i.e. we deduce a permutation for which the minimum in Theorem 5.2.2 piiq is attained.

Given the properties of skew-symmetric matrices in Lemma 5.2.1, the proof of piq is a
simple calculation. In addition, we apply the following lemma to show that the matrix S in
Theorem 5.2.2 is indeed doubly stochastic.

Lemma 5.2.3. Let tx1, . . . , xku and ty1, . . . , yku be orthonormal bases of Ck. The matrix
S P Rk�k given by

S h, j � |xT
h y j|2

for every h, j P t1, . . . , ku is doubly stochastic.

Proof. We need to show that every entry of S is nonnegative and that every row and column
sum is equal to one. The nonnegativity of the entries is obvious from the definition of S .

We fix an index j P t1, . . . , ku. Since tx1, . . . , xku is an orthonormal basis of Ck,
t sx1, . . . , sxku is an orthonormal basis of Ck as well. So, we can express y j in terms of
these basis elements, i.e.:

y j �
¸
`

α` sx`,
for some α1, . . . , α` P C. Thus, the jth column sum is

ķ

h�1

S h, j �
ķ

h�1

|xT
h y j|2 �

ķ

h�1

∣∣∣∣∣∣∣
ķ

`�1

α`xT
h sx`
∣∣∣∣∣∣∣
2

�
ķ

h�1

∣∣∣∣∣∣∣
ķ

`�1

α` sxh
� sx`
∣∣∣∣∣∣∣
2

�
ķ

h�1

|αh|2.
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To show that this sum is equal to one, we use that ty1, . . . , yku is a basis of Ck as well:

1 � y�j y j �
�

ķ

`�1

α` sx`
��� ķ

r�1

αr sxr

�
�

ķ

`�1

ķ

r�1

sα`αr sx`� sxr

�
ķ

`�1

α` sα` � ķ

`�1

|α`|2.

If we fix a row index instead, then a similar calculation also yields that the corresponding
row sum of S is equal to one. �

The second statement in Theorem 5.2.2 follows from the first one if we apply the
famous Birkhoff-von Neumann theorem [19].

Theorem 5.2.4. [19] The set of all doubly stochastic pk� kq-matrices is a polytope and its
vertex set is Πk.

In other words, a matrix is doubly stochastic if and only if it is a convex combination
of permutation matrices. We now give the complete proof of Theorem 5.2.2.

Proof of Theorem 5.2.2. We start with the proof of statement piq. According to Lemma
5.2.1 we can write

Y1 �
ķ

j�1

λ jx jx�j and Y2 �
ķ

j�1

µ jy jy
�
j .

Thus, we have

xY1,Y2y �
ķ

h�1

ķ

j�1

λhµ j

A
xhx�h , y jy

�
j

E
�

ķ

h�1

ķ

j�1

λhµ j trp sxhxT
h y j sy j

T q

�
ķ

h�1

ķ

j�1

λhµ j trpxT
h y j sy j

T sxhq �
ķ

h�1

ķ

j�1

λhµ j|xT
h y j|2 � λT Sµ,

where the matrix S P Rk�k is defined by S h, j � |xT
h y j|2 for every h, j P t1, . . . , ku.

Moreover, S is doubly stochastic due to Lemma 5.2.3.
To show piiq we apply the Birkhoff-von Neumann theorem and find that S is a convex

combination of permutation matrices. This means that there is a number αX ¥ 0 for every
X P Πk such that

S �
¸

XPΠk

αXX and
¸

XPΠk

αX � 1.
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In total, we get:

xY1,Y2y � λT Sµ �
¸

XPΠk

αXλ
T Xµ � �

¸
XPΠk

αX pIm λqT X pIm µq

¤ �
¸

XPΠk

αX min
YPΠk

pIm λqT Y pIm µq (5.10)

� � min
σPSymk

ķ

j�1

Im λ j � Im µσp jq.

Here, we use Lemma 5.2.1 piq in the first line of equation (5.10). �

As mentioned earlier, Theorem 5.2.2 provides an upper bound on
@

F1, XT DpzqXD for
every X P Πk. Moreover, this bound depends only on the eigenvalues of F1 and Dpzq. In
particular, we have

max
XPΠk

@
F1, XT DpzqXD ¤ � min

σPSymk

ķ

j�1

Im λ j � Im µσp jq, (5.11)

where λ1, . . . , λk are the eigenvalues of F1 and µ1, . . . , µk are the eigenvalues of Dpzq. Now,
we compute this upper bound. Let us order the eigenvalues of F1 and Dpzq in the following
way:

Im λ1 ¥ Im λ2 ¥ . . . ¥ Im λk,

Im µ1 ¥ Im µ2 ¥ . . . ¥ Im µk.

We can use Lemma 5.2.1 piiq to pick up where we left off in (5.11):

� min
σPSymk

ķ

j�1

Im λ j � Im µσp jq � �
ķ

j�1

Im λ j � Im µk� j�1

� �2
b k

2 c¸
j�1

Im λ j � Im µk� j�1 (5.12)

� 2
b k

2 c¸
j�1

Im λ j � Im µ j.

For the second equality in (5.12) we point out that the eigenvalues λbk{2c�1 and µbk{2c�1 are
zero if k is odd. This is due to Lemma 5.2.1 piiq.

It remains to find the eigenvalues λ1, . . . , λk of F1 and µ1, . . . , µk of Dpzq. Finding
λ1, . . . , λk is easy since we can calculate them directly. This is not as simple for µ1, . . . , µk

because the matrix Dpzq depends on some vector z P M. More precisely, if we define the
matrix D1 by D1

h, j � �vT
h Jv j, then we have

Dpzqh, j � D1
h, j � pzzT qh, j
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for every h, j P t1, . . . , ku. Equivalently, we can write Dpzq � D1�zzT , where the Hadamard
product of two matrices A, B P Rk is defined by

A � B P Rk�k, pA � Bqh, j � Ah, jBh, j

for h, j P t1, . . . , ku. Before we continue investigating the eigenvalues of Dpzq we recall
the Rayleigh-Ritz principle. Usually, the Rayleigh-Ritz principle is stated as a variational
formulation of the largest or smallest eigenvalue of a symmetric (or more general Hermitian)
matrix (see [54]). We can adapt the corresponding proof to show a similar formulation for
the eigenvalue of a skew-symmetric matrix with largest absolute value. Even though this
idea is rather straightforward, it seems to be only rarely stated in the literature. Therefore,
we provide a detailed proof here.

Lemma 5.2.5. Let A P Rk be a skew-symmetric matrix and let µ1 be an eigenvalue of A
with maximal absolute value. Then:

| µ1| � max
x�x�1

|x�Ax| � max
xPCkzt0u

∣∣∣∣∣ x�Ax
x�x

∣∣∣∣∣
Proof. The second equality is obvious. For the first equality we recall that A is unitarily
diagonalizable due to Lemma 5.2.1 piiiq. Therefore, we can find an orthonormal basis
tu1, . . . , uku of Ck such that the basis elements u1, . . . , uk are the eigenvectors of A. Let
x P Ck be a unit vector, i.e. x�x � 1. We can express x in terms of the basis tu1, . . . , uku.
So, there are complex numbers α1, . . . , αk such that

x �
ķ

j�1

α ju j.

Together with the unit length of x this implies:

1 � x�x �
�

ķ

h�1

αhuh

��� ķ

j�1

α ju j

�
�

ķ

h�1

ķ

j�1

sαhα ju�h u j

�
ķ

j�1

sα jα j �
ķ

j�1

|α j|2.

We can use this to bound | µ1| from below. To this end, we let µ1, . . . , µk be the eigenvalues
of A such that u j is an eigenvector for the eigenvalue µ j for every j P t1, . . . , ku.

|x�Ax| �
∣∣∣∣∣∣∣∣

ķ

h, j�1

sαhα ju�h Au j

∣∣∣∣∣∣∣∣ �
∣∣∣∣∣∣∣∣

ķ

h, j�1

sαhα ju�h µ ju j

∣∣∣∣∣∣∣∣ �
∣∣∣∣∣∣∣∣

ķ

j�1

|α j|2µ j

∣∣∣∣∣∣∣∣
¤

ķ

j�1

|α j|2| µ j| ¤ | µ1|.

This holds for every unit vector x P Ck. Therefore, we have

| µ1| ¥ max
x�x�1

|x�Ax|. (5.13)
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We complete the proof with a simple calculation that implies the equality in (5.13):

| µ1| � |u�1 µ1u1| � |u�1 Au1| ¤ max
x�x�1

|x�Ax|. �

We want to study the eigenvalues of the Hadamard product D1 �zzT . In 1911 Schur [91]
investigated such Hadamard products. One of his results is an upper bound on the spectral
norm of A � B, where one of the two matrices A, B is positive semidefinite. We can use this
approach to give an upper bound on the largest absolute value of the eigenvalues of Dpzq.
More precisely, because Dpzq is skew-symmetric it immediately follows from Lemma 5.2.5
that its spectral norm is

||Dpzq||2 :� max
x�x�1

|x�Dpzqx| � maxt| µ| : µ is an eigenvalue of Dpzqu.
Schur formulates his results in the language of bilinear forms. For a translation to the
language of matrices, see [58]. While Schur’s result considers a Hadamard product A � B,
where A or B is positive semidefinite, we focus on a special case that fits our problem
setting. This simplifies the proof.

Theorem 5.2.6. Let A P Rk�k be a skew-symmetric matrix and let x P Rk. Furthermore,
we let µ11 be an eigenvalue of A and µ1 be an eigenvalue of A � xxT such that

µ11 � max t| µ| : µ is an eigenvalue of Au ,
µ1 � max

 | µ| : µ is an eigenvalue of A � xxT( .
Then:

| µ1| ¤ | µ11|max
 

x2
1, . . . , x

2
k

(
.

Proof. First, we note that A � xxT is skew-symmetric because

pA � xxT qT � AT � pxxT qT � �A � xxT .

So, by Lemma 5.2.5 we have

| µ1| � maxt|u�pA � xxT qu| : u P Ck, u�u � 1u.
For every unit vector u P Ck we have:

|u�pA � xxT qu| �
∣∣∣∣∣∣∣∣

ķ

h�1

ķ

j�1

suhAh, jxhx ju j

∣∣∣∣∣∣∣∣
� |rx�Arx|, with rx � u � x

�
∣∣∣∣∣ rx�rx�rx A

rxrx�rx
∣∣∣∣∣ � prx�rxq2

¤ max
ν�ν�1

|ν�Aν| �
�

ķ

j�1

su ju jx2
j

�

¤ | µ11| �
�

ķ

j�1

su ju j �maxtx2
1, . . . , x

2
ku
�

� | µ11| � u�uloomoon
�1

�maxtx2
1, . . . , x

2
ku.
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We note that we require rx � 0 in the third line of this equation. If this is not the case thenrx � 0 implies

|u�pA � xxT qu| � |rx�Arx| � 0 ¤ | µ11|maxtx2
1, . . . , x

2
ku. �

Theorem 5.2.6 bounds an eigenvalue of a matrix A� xxT by using the diagonal elements
of xxT . This is reminiscent of another theorem by Schur [90]: Let λ1, . . . , λk P R. Then 

diag A : A P Ck�k Hermitian with eigenvalues λ1, . . . , λk
(

is contained in the convex hull of!�
λσp1q, . . . , λσpkq

�T : σ P Symk

)
.

Conversely, Horn [53] proved that for every point x in this convex hull there is a Hermitian
matrix A with eigenvalues λ1, . . . , λk such that x � diag A. As it turns out, these results
have a generalization that can be related to symplectic geometry [13].

We now have all the pieces together, to derive an upper bound on 1{4cEHZpCq. For this,
we keep in mind that every eigenvalue of a skew-symmetric matrix is purely imaginary.
So, its absolute value equals its imaginary part if the imaginary part is nonnegative.

1
4cEHZpCq

(5.5)� 1
2

max
zPM

�
max
XPΠk

@
F, XT DpzqXD


(5.7)� 1
2

max
zPM

�
max
XPΠk

@
F1, XT DpzqXD


(5.11)¤ 1
2

max
zPM

�
� min

σPSymk

ķ

j�1

Im λ j � Im µσp jq

�
(5.14)

(5.12)� max
zPM

�� b k
2 c¸

j�1

Im λ j � Im µ j

�

¤ max

zPM

�� b k
2 c¸

j�1

Im λ j � Im µ11 �max
 

z2
1, . . . , z

2
k

(�
,
where µ11 is an eigenvalue of D1 with maximum absolute value. The last line in this equation
follows from Theorem 5.2.6 and the fact that Im µ1 ¥ Im µ j for every j P t1, . . . , ku. To
compute the upper bound given by (5.14) we note that µ11, λ1, . . . , λk do not depend on the
choice of z. Thus, it remains to solve the following problem:

max z2
h

s. t.
ķ

j�1

z jv j � 0

ķ

j�1

z j � 1

z j ¥ 0 @ j P rks
h P t1, . . . , ku.

(5.15)
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We can solve this problem with k LPs. For this, we remove the last constraint, successively
solve the resulting LP for every h P t1, . . . , ku and take the largest optimal value. We
remark that these problems are indeed LPs even though their objective functions are quad-
ratic. Since the variables z1, . . . , zk are nonnegative, we can maximize zh first and square
afterwards.

In Table 6.3 we give some numerical results for this upper bound. Like in Chapter 4 the
input is a random polytope C that we get by taking the convex hull of normally distributed
random points. The polar set C� is part of the input as well. Additionally, we provide
numerical results for larger instances in Table 6.4. We can see from these tables that the
approach in this chapter provides a (computationally) cheap upper bound but the quality of
this bound is rather poor, especially for larger instances, i.e. where the number of facets k
is big.

One could suspect that the reason for the poor quality of this upper bound lies within
the last inequality in (5.14). There, we make the estimate

Im µ j ¤ Im µ1 for all j P t1, . . . , ku,
where µ1, . . . , µk are the eigenvalues of Dpzq, ordered by their imaginary part. It turns out
that this estimate is indeed one reason, but not necessarily the only explanation for the gap
between our upper bound and the exact value of 1{4cEHZpCq. More precisely, for a given
polytope C we can pick a large number of points in

M �
#

z P Rk
¥0 :

ķ

j�1

z jv j � 0,
ķ

j�1

z j � 1

+

and compute the corresponding eigenvalues of Dpzq for each choice. With this approach
we can approximate

max
zPM

�� b k
2 c¸

j�1

Im λ j � Im µ j

�
,
so we avoid the last inequality in (5.14). As an example, we consider line 17 in Table 6.3
in the appendix. There, we examine a randomly generated polytope C for which we find
that the exact value of 1{4cEHZpCq (rounded to eight decimal places) is 0.01286290 and our
upper bound is 1.702583848. If we avoid the last inequality in (5.14) we get the improved
upper bound

max
zPM

�� b k
2 c¸

j�1

Im λ j � Im µ j

�
� 0.090131495 .

Another example, that we give here, is the square

C � conv
"�

1
1



,

��1
1



,

�
1
�1



,

��1
�1


*
.

The exact value of 1{4cEHZpCq is 0.0625 and our upper bound is 0.70710678. The improved
upper bound is 0.15088835.
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5.3 Upper bounds via semidefinite relaxation

Another approach to compute upper bounds on 1{4cEHZpCq is to formulate (5.4) as a CP
(see (3.7) in Chapter 3) and to employ the strategy that we describe in Chapter 3.2.4. More
precisely, we relax the complete positivity constraint to get an SDP that we can solve. As
in the previous chapter we have to discuss how to find an optimal permutation σ. One
way is to relax the fact that v1, . . . , vk are vertices of C�. This results in a single CP that
we investigate. Another way is to fix the permutation σ in (5.4) and solve k! maximization
problems. The latter approach is clearly only applicable for small values of k. On the upside
we only relax (5.4) once, namely when we go from completely positive to semidefinite
optimization. Thus, we can expect sharper bounds with the latter approach.

5.3.1 A completely positive formulation of the EHZ capacity
Consider the following quadratic optimization problem:

max � 1
2

ķ

i�1

i�1̧

j�1

yiy jw
T
i Jw j

s. t.
ķ

i�1

yiwi � 0

ķ

i�1

yi � 1

yi ¥ 0 @ i P t1, . . . , ku
w1, . . . , wk P C�.

(5.16)

If we let py1, . . . , yk, σq be an optimal solution of (5.4), then py1, . . . , yk, vσp1q, . . . , vσpkqq
is a feasible solution for (5.16), where v1, . . . , vk are the vertices of C�. Thus, the optimal
value of (5.16) is an upper bound on 1{4cEHZpCq.

To simplify (5.16) we recall a property of the polar polytope C�. We let W be a matrix
whose rows are exactly the vertices of C. Then, since 0 P int C, we have

C� � tx : Wx ¤ eu , (5.17)

where e � p1, . . . , 1qT . For a proof, see [105]. We use (5.17) to prove a more general
property.

Lemma 5.3.1. Let C � Rn be a polytope with 0 P int C and let W be a matrix whose rows
are exactly the vertices of C. Then for every α P R:

αC� � tx : Wx ¤ αeu .
Proof. For α � 0 the claim immediately follows from (5.17):

αC� � tαx : Wx ¤ eu �
"

x :
1
α

Wx ¤ e
*
� tx : Wx ¤ αeu .
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Now we let α � 0. It is obvious that

0 �C� � t0u � tx : Wx ¤ 0u .
Thus, it remains to prove that Wx ¤ 0 implies x � 0. Assume this is false, i.e. there is
x0 P Rn with x0 � 0 and Wx0 ¤ 0. This means that νT x0 ¤ 0 holds for every vertex ν of
C. Therefore, the halfspace

H� � tz P Rn : zT x0 ¤ 0u
contains C and hence int C � int H�. This contradicts the fact that 0 P int C but 0 R int H�.
It follows that x � 0 if and only if Wx ¤ 0 which concludes the proof. �

In the objective function and in the first contraint of (5.16) the quadratic terms of the
form yiwi appear, where yi ¥ 0 and wi P C�. We substitute zi :� yiwi and require zi P yiC�.
With Lemma 5.3.1 we get the following quadratic maximization problem:

max � 1
2

ķ

i�1

i�1̧

j�1

zT
i Jz j

s. t.
ķ

i�1

zi � 0

ķ

i�1

yi � 1

Wzi ¤ yie @i P t1, . . . , ku
yi ¥ 0 @i P t1, . . . , ku.

(5.18)

According to Burer [25] we can reformulate every quadratic optimization problem with
binary and/or continuous variables as a CP. The problem that we are concerned with,
i.e. (5.18), has a convenient form which we can exploit to find such a reformulation in a
particularly simple way. In the following we deduce the corresponding CP for this special
case of quadratic programs and give a proof that is independent of [25]. First, we need some
basic convex geometry statements. To this end, we recall the definitions of the completely
positive and the copositive cone from Chapter 3.2.4:

CPn :� cone
 

xxT : x P Rn
¥0

(
,

COPn :�  
A P Sn : xT Ax ¥ 0 @ x P Rn

¥0

(
.

Lemma 5.3.2. Let A P COPn be a copositive matrix. Then:

tX P CPn : xA, Xy � 0u � conetxxT : xT Ax � 0, x ¥ 0u.
Proof. It is obvious that the inclusion "�" holds since xT Ax � @

A, xxT
D

. To show the
converse, take X P CPn with xA, Xy � 0. By definition we can write

X �
Ņ

i�1

αixixT
i ,
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where xi P Rn
¥0, αi P R¥0 and N P N. We assume that α1, . . . , αN are positive. Otherwise,

we drop every term where αi � 0. We get:

0 �
C

A,
Ņ

i�1

αixixT
i

G
�

Ņ

i�1

αixT
i Axi.

Since A is copositive, every term of the last sum is nonnegative. Because the sum is 0, it
follows that every term has to be 0. Furthermore, α1, . . . , αN ¡ 0 implies xT

i Axi � 0 for
every i P t1, . . . ,Nu. Thus, the inclusion "�" holds as well. �

Lemma 5.3.3. [16] Let C � Rn be a convex, closed set that does not contain straight
lines. Then for every c P Rn

maxtcT x : x P Cu
is either 8 or attained at an extreme point of C.

We omit the proof of Lemma 5.3.3 since it is a well-established fact. It immediately
follows from Theorem 3.2 and Lemma 3.5 in [16].

Lemma 5.3.4. Let K � Rn be a cone and let H � Rn be a hyperplane. Then every
extreme point of K X H lies in an extreme ray of K .

Proof. We prove the statement via contradiction. Let x be an extreme point of K X H.
Assume there are v, w P K such that x � pv � wq{2 and that v, w are not multiples of x.
Define the set

Vx � tu P Rn : D ε ¡ 0 with x � εu, x � εu P Ku.
It is easy to check that Vx is a linear subspace of Rn and that x, v� x P Vx. Note that x and
v are linearly independent and thus dim Vx ¥ 2. We let H0 be the linear space that we get
by shifting the hyperplane H. In particular, it is dim H0 � n� 1. Consequently, we have

dimpVx X H0q ¥ dim Vx � 1 ¥ 1.

So, there is a nonzero vector z that lies in both Vx and H0. On the one hand, this means
there is ε ¡ 0 such that

z1 :� x � εz P K ,
z2 :� x � εz P K ,

x � 1
2
pz1 � z2q.

On the other hand, if we let H � ty : aTy � bu and H0 � ty : aTy � 0u, then

aT z1 � aT x � εaT z � b,

aT z2 � aT x � εaT z � b.

Thus, z1, z2 P K X H. The fact that x is an extreme point of K X H implies z1 � z2 and
therefore z � 0. This contradicts the choice of z � 0 and the claim follows. �
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Putting the statements in the previous three lemmas together, we derive a way to for-
mulate every quadratic optimization problem of a certain type as a CP.

Theorem 5.3.5. Let A P Rn�m, Q P Rm�m and c P Rm
¥0. Then:

max xT Qx � max xQ, Xy
s. t. Ax � 0 s. t.

@
AT A, X

D � 0

cT x � 1
@

ccT , X
D � 1

x P Rm
¥0 X P CPm,

if both maxima are finite.

Proof. First, we rewrite the quadratic problem on the left-hand side such that its con-
straints are quadratic as well. For the first constraint we note that Ax � 0 is equivalent to
pAxqT pAxq � 0. Since we require that x and c are nonnegative, the second constraint is
equivalent to

1 � pxT cq2 � pxT cqpxT cqT � xT ccT x.

We can write the nonnegativity constraint as xix j ¥ 0 for every i, j P t1, . . . ,mu. This
implies that x ¥ 0 or x ¤ 0. The problem that we get contains only quadratic terms and no
linear terms. Thus, for every solution x ¤ 0 we have that �x is a solution as well and both
x and �x have the same objective value. Therefore, we get:

max xT Qx � max xT Qx

s. t. Ax � 0 s. t. xT AT Ax � 0 (5.19)

cT x � 1 xT ccT x � 1
x P Rm

¥0 xix j ¥ 0 @ i, j P t1, . . . , ku.
We prove that the maximum on the right-hand side of (5.19) is equal to the optimal value
of the CP in the claim of the theorem. It is easy to see that the optimal value of the CP is
at least as big as the maximum in (5.19). For every feasible solution x P Rm

¥0 we can take
X � xxT and observe that X is a feasible solution for the CP with objective value xT Qx.

Now we show the converse. Application of Lemma 5.3.2 yields that the set of feasible
solutions of the CP is the intersection of a cone K with a hyperplane H. More precisely,

K �conetxxT : xT AT Ax � 0, x P Rm
¥0u,

H �tX P Sm :
@

ccT , X
D � 1u.

Note that the matrix AT A is positive semidefinite and hence copositive. K X H is convex
and closed because both K and H are convex and closed as well. Moreover, K X H does
not contain straight lines because it is contained in the proper cone

tX P Sm : Xi, j ¥ 0 @ i, j P t1, . . . ,muu.
If we identify Sm with Rmpm�1q{2, we can apply Lemma 5.3.3. Thus, if the optimal value
of the CP is finite, it is attained at an extreme point X� ofK XH. Due to Lemma 5.3.4 this
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extreme point X� lies in an extreme ray of K . So, X� has the form xxT with some x P Rm
¥0

such that xT AT Ax � 0. It is straightforward to check that x is feasible for the quadratic
problem on the right-hand side of (5.19) and that its objective value equals xQ, X�y. �

We can use Theorem 5.3.5 to formulate (5.18) as a CP. To this end, we bring (5.18) into
a form that fits the requirements of Theorem 5.3.5. We introduce slack variables s1, . . . , sk P
Rk
¥0 and for every i P t1, . . . , ku we write zi � z�i � z�i with z�i , z

�
i P R2n

¥0. Then we get:

(5.18) = max � 1
2

ķ

i�1

i�1̧

j�1

�
z�T

i Jz�j � z�T
i Jz�j � z�T

i Jz�j � z�T
i Jz�j

	

s. t.
ķ

i�1

�
z�i � z�i

� � 0

ķ

i�1

yi � 1

Wz�i �Wz�i � yie� si � 0 @ i P t1, . . . , ku
yi, z�i , z

�
i , si ¥ 0 @ i P t1, . . . , ku.

(5.20)

Now we can apply Theorem 5.3.5 and obtain a CP. Afterwards, we perform a semidefinite
relaxation as described in Chapter 3.2.4. More precisely, we replace the constraint X P CPm

by X P Sm
�0 X Rm�m

¥0 . This results in the following SDP whose optimal value is an upper
bound on 1{4cEHZpCq:

1
4cEHZpCq ¤ max xQ, Xy

s. t.
@

AT A, X
D � 0@

ccT , X
D � 1

Xi, j ¥ 0, @ i, j P t1, . . . , `u
X P S`�0,

(5.21)

where m is the number of vertices of C, k is the number of facets of C and ` � kp1�4n�kq.
Here, we let the matrices Q P R`�`, A P R2n�km�` and the vector c P R`¥0 be such that the
quadratic optimization problem (5.20) has the same form as in Theorem 5.3.5.

In Table 6.5 we provide numerical results for this upper bound. We observe that the
upper bound is much better than the one that we derive in Chapter 5.2 and that the required
running time is still reasonable. However, we run out of memory rather quickly because
the input for the SDP in (5.21), i.e. Q, A and c, is rather large, even for polytopes with
dimension ¤ 4 and with few vertices.

5.3.2 A more accurate bound with multiple semidefinite programs
As mentioned earlier, another way to handle the maximization in (5.4) is to remove the
constraint σ P Symk and to solve the resulting problem for every permutation σ. In com-
parison to the approach in Chapter 5.3.1, this method prevents that we run out of memory
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quickly at the cost of longer running time. Thus, for σ P Symk we focus on the following
problem:

p�σ :� max � 1
2

ķ

i�1

i�1̧

j�1

yiy jv
T
σpiqJvσp jq

s. t.
ķ

i�1

yivσpiq � 0

ķ

i�1

yi � 1

yi ¥ 0 @ i P t1, . . . , ku,

(5.22)

where v1, . . . , vk are the vertices of C�. From (5.4) we have

maxtp�σ : σ P Symku �
1

4cEHZpCq .

We notice that the maximization problem (5.22) is a quadratic optimization problem that
has the same form as the quadratic problem in Theorem 5.3.5. Moreover, p�σ is finite
because the set of feasible solutions in (5.22) is contained in the standard simplex

∆k�1 :� tx P Rk
¥0 : eT x � 1u,

which is bounded. So, we can apply Theorem 5.3.5 and get a completely positive formula-
tion of p�σ:

p�σ :� max xQ, Xy
s. t.

@
AT A, X

D � 0@
eeT , X

D � 1
X P CPk,

(5.23)

where A is the p2n � kq-matrix whose ith column is vσpiq for every i P t1, . . . , ku and the
matrix Q P Rk�k is given by

Qi, j �
#
� 1

2 vσpiqJvσp jq, if i ¡ j,
0, if i ¤ j,

for every i, j P t1, . . . , ku. We remark that strong duality holds for (5.23), i.e. it is p�σ � d�σ
for every σ P Symk, where

d�σ :� min s

s. t. r, s P R
rAT A� seeT � Q P COPk

(5.24)
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is the optimal value of the dual program of (5.23). This strong duality follows from
Theorem 3.2.3 pivq if (5.24) is bounded and has a strictly feasible solution. We know
from (5.17) that the polar polytope C� contains 0. So, there is α P Rk

¥0 such that

0 �
ķ

i�1

αivσpiq and 1 �
ķ

i�1

αi.

This means that ααT is a feasible solution of (5.23). With Theorem 3.2.3 piq we find that
d�σ ¡ �8. On the other hand, we get a strictly feasible solution for (5.24) if we pick

r ¥ 0 and s ¡ maxtQi, j : i, j P t1, . . . , kuu.
The fact that AT A is positive semidefinite implies

xT prAT A� seeT � Qqx � rxT AT Ax � xT pseeT � Qqx ¥
ķ

i�1

i�1̧

j�1

xix jps� Qi, jq ¡ 0,

for every nonzero x P Rk
¥0. With Theorem 3.2.10 we see that pr, sq is indeed a strictly

feasible solution of (5.24) and strong duality follows.
We handle the CP (5.23) in the same way as in Chapter 5.3.1. More precisely, we relax

the complete positivity constraint to get

ppσ :� max xQ, Xy
s. t.

@
AT A, X

D � 0@
eeT , X

D � 1
Xi, j ¥ 0 @ i, j P t1, . . . , ku
X P Sk

�0.

(5.25)

Thus, we obtain an upper bound on 1{4cEHZpCq due to

1
4cEHZpCq � maxtp�σ : σ P Symku ¤ maxtppσ : σ P Symku. (5.26)

To compute this bound we need to solve k! SDPs. However, we can reduce this number
from k! to pk � 1q!. To this end, we note that if x : r0, 1s Ñ R2n is a feasible solution
of the optimization problem in Theorem 2.3.6, then x � ϕ is also a feasible solution and
Apxq � Apx � ϕq, where

ϕ : r0, 1s Ñ r0, 1s, ϕptq �
#

t � a, t P r0, 1� as,
t � a� 1, t P p1� a, 1s,

for some a P r0, 1s. Note that x � ϕ is a continuous curve because of xp0q � xp1q and that
this curve is closed. More precisely,

x � ϕp0q � 0� a � 1� a� 1 � x � ϕp1q.
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Showing that x � ϕ is indeed a feasible solution of the maximization problem in Theorem
2.3.6 is straightforward. Additionally, we have

Apx � ϕq � �1
2

�� 1�a»
0

∇px � ϕptqqT Jpx � ϕqptq � ϕ1ptq dt

�
1»

1�a

∇px � ϕqptqT Jpx � ϕqptq � ϕ1ptq dt

��
� �1

2

�� 1»
a

∇xptqT Jxptq dt �
a»

0

∇xptqT Jxptq dt

��
� �1

2

1»
0

∇xptqT Jxptq dt � Apxq.

The first line of this equation holds since ϕ1ptq � 1 for every t P p0, 1 � aq and every
t P p1� a, 1q. Thus, if we let σ P Symk be such that p�σ � 1{4cEHZpCq, then we also have

p�σ�τ � 1
4cEHZpCq ,

for every circular shift τ. Here, we say that a permutation τ is a circular shift if there is
a P Z such that

τpiq � pi� aq mod k

for every i P t1, . . . , ku. We want to prove that the same principle also holds for our upper
bounds, i.e. that ppσ � ppσ�τ holds for every σ, τ P Symk, where τ is a circular shift. Before
we prove this result we show the following lemma.

Lemma 5.3.6. Let A P Rn�n be a positive semidefinite matrix with

ķ

i�1

ķ

j�1

Ai, j � 0.

Then every row and column sum of A is equal to zero.

Proof. Due to the symmetry of A it suffices to show that the row sums are equal to zero.
Since A is positive semidefinite, it has a Cholesky decomposition A � LLT and we get

0 � eT Ae � eT LLT e � ||LT e||2.
This implies that LT e � 0 and therefore

Ae � LLT e � 0. �
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Theorem 5.3.7. Let C � R2n be a polytope with 0 P int C and let v1, . . . , vk be the vertices
of C�. Furthermore, let σ, τ P Symk and let τ be a circular shift. Then ppσ � ppσ�τ.
Proof. As before we let A P R2n�k be the matrix whose ith column is vσpiq and we let
Q P Rk�k be defined by

Qi, j �
#
� 1

2 vσpiqJvσp jq, if i ¡ j,
0, if i ¤ j.

To simplify the notation in this proof we let Q1 � 2pQT � Qq. We note that

Q1
i, j � vT

σpiqJvσp jq

holds for every i, j P t1, . . . , ku. Furthermore, we define w1, . . . , w2k P R2n by

wi � vσpiq , wk�i � Jvσpiq,

for every i P t1, . . . , ku and we let B P R2k�2k be the corresponding Gramian matrix:

B � �
wT

i w j
�

i, jPt1,...,ku .

B is positive semidefinite and it has the following form:

B �
�

AT A Q1

Q1T AT A



.

Next, we let X be an optimal solution for the SDP (5.25). In particular, ppσ � xQ, Xy. Since
X is positive semidefinite, it has a Cholesky decomposition X � LLT . We define another
matrix D P R2k by

D :�
�

X X
X X



�

�
LLT LLT

LLT LLT



�

�
L
L


�
L
L


T

� 0.

The Hadamard product B � D is positive semidefinite since both B and D are positive
semidefinite [103]. We get

0 ¤ eT pB � Dqe � 2
ķ

i�1

ķ

j�1

�
Xi, jAT Ai, j � Xi, jQ1

i, j

	
� 2

ķ

i�1

ķ

j�1

Xi, jQ1
i, j. (5.27)

In the last equation we use
@

X, AT A
D � 0. If we change the signs for wk�1, . . . , w2k, we can

apply the exact same reasoning. Note that instead of the matrix B we have the matrix�
AT A �Q1

�Q1T AT A



and instead of (5.27) we get:

0 ¤ �2
ķ

i�1

ķ

j�1

Xi, jQ1
i, j. (5.28)
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Together, (5.27) and (5.28) imply eT pB � Dqe � 0, so all the entries of B � D sum up to
zero. Due to Lemma 5.3.6 every row sum of B�D is equal to zero. For every i P t1, . . . , ku
this means

ķ

j�1

Xi, jpAT Aqi, j �
ķ

j�1

Xi, jQ1
i, j � 0.

Note that X � AT A is a positive semidefinite matrix whose entries sum up to zero because
of

@
AT A, X

D � 0. So, Lemma 5.3.6 also implies:

ķ

j�1

Xi, jpAT Aqi, j � 0

for every i P t1, . . . , ku. It follows that

ķ

j�1

Xi, jQ1
i, j � 0. (5.29)

Now, we construct a feasible solution for the SDP (5.25) that corresponds to σ�τ. First,
we assume that

τpiq � pi� 1q mod k

for every i P t1, . . . , ku. We let Xτ P Rk�k be given by

Xτ
i, j � Xτpiq,τp jq

for every i, j P t1, . . . , ku. The goal is now to show that Xτ fulfils the constraints of the
SDP for σ � τ. To this end, we denote the p2n � kq-matrix whose ith column is vσ�τpiq by
Aτ and we let Qτ P Rk�k by given by

Qτ
i, j �

#
� 1

2 vσ�τpiqJvσ�τp jq, if i ¡ j,
0, if i ¤ j.

It is clear that Xτ
i, j ¥ 0 and that Xτ � 0 because we have Xτ � PT XP for some permutation

matrix P. It is also easy to see that
@

eeT , Xτ
D � 1 because

1 �
ķ

i�1

ķ

j�1

Xi, j �
ķ

i�1

ķ

j�1

Xτpiq,τp jq.

Similarly, the remaining constraint
@pAτqT pAτq, Xτ

D � 0 follows from

0 �
ķ

i�1

ķ

j�1

vT
i v jXi, j �

ķ

i�1

ķ

j�1

vT
τpiqvτp jqXτpiq,τp jq.
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Showing that the objective values are equal takes a little bit more effort.

xQτ, Xτy � �1
2

ķ

i�1

i�1̧

j�1

Xτpiq,τp jqv
T
σ�τpiqJvσ�τp jq

� �1
2

�
k�1̧

i�1

i�1̧

j�1

Xτpiq,τp jqv
T
σ�τpiqJvσ�τp jq

�
� 1

2

�
k�1̧

j�1

Xτpkq,τp jqv
T
σ�τpkqJvσ�τp jq

�

� �1
2

�
ķ

i�2

i�1̧

j�2

Xi, jv
T
σpiqJvσp jq

�
� 1

2

�
ķ

j�2

X1, jv
T
σp1qJvσp jq

�

� �1
2

�
ķ

i�1

i�1̧

j�1

Xi, jv
T
σpiqJvσp jq

�
�
�

ķ

j�1

X1, jv
T
σp1qJvσp jq

�

� xQ, Xy �
ķ

j�1

X1, jQ1
1, j

In the second to last line of this equation we add the term

�1
2

�
ķ

i�1

Xi,1v
T
σpiqJvσp1q

�
� 1

2

�
ķ

j�1

X1, jv
T
σp1qJvσp jq

�
.

This term is equal to zero because J is skew-symmetric. Now we can apply (5.29) and
obtain that both objective values are equal. This implies ppσ ¤ ppσ�τ. In particular, we find
that

ppσ ¤ ppσ�τ ¤ ppσ�τ2 ¤ . . . ¤ ppσ�τk�1 ¤ ppσ�τk � ppσ.
Thus, all these inequalities hold with equality. This completes the proof because every
circular shift has the form τi for some i P t1, . . . , ku. �

Due to Theorem 5.3.7 we do not have to calculate both ppσ and ppρ for σ, ρ P Symk
if we can obtain σ by applying a circular shift to ρ. This reduces the number of SDPs
that we have to solve from k! to pk � 1q!. Furthermore, we note that we can solve these
SDPs independently of each other. Therefore, we can use parallel computing to reduce the
running time. We present some numerical results in Table 6.6. From this table we can see
that our upper bound is very accurate and that we do not run out of memory as in Chapter
5.3.1. However, the running time grows more than exponentially in k.

5.3.3 Minimum rank solutions
It turns out that the upper bound from Chapter 5.3.2 is very close to the exact value of
1{4cEHZpCq for most of the two-dimensional random instances that we consider in Table
6.6. Therefore, we would like to verify whether the upper bound is indeed equal to the
exact value. The following strategy is one way to achieve such a verification. First, we
compute the upper bound

maxtppσ : σ P Symku
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and we let σ� P Symk be a permutation for which the maximum is attained. In particular,
we have

1
4cEHZpCq � maxtp�σ : σ P Symku ¤ maxtppσ : σ P Symku � ppσ� . (5.30)

Assume that in the SDP (5.25) for σ� there is an optimal solution X with rk X � 1. Then
we have X � xxT for some x P Rk. Furthermore, due to the constraint Xi, j ¥ 0 for every
i, j P t1, . . . , ku we can assume that x is nonnegative. Thus, we find that X is completely
positive and that it is a feasible solution of the CP (5.23) for σ�. Therefore,

ppσ� ¤ p�
σ�
. (5.31)

On the other hand, the SDP is a relaxation of the CP. This means that (5.31) holds with
equality. It follows that the first maximum in (5.30) is attained for σ� and

1
4cEHZpCq � p�

σ�
� ppσ� .

Summerizing these considerations, we get that the existence of an optimal solution of (5.25)
for σ� with rank one implies that the bound

1
4cEHZpCq ¤ maxtppσ : σ P Symku

holds with equality. Motivated by this approach we give the following bound on rk X,
where X is a feasible solution of the SDP (5.25).

Theorem 5.3.8. Let C � R2n be a polytope with 0 P int C and let v1, . . . , vk be the vertices
of C�. Furthermore, let X P Sk

�0 be a feasible solution of the SDP (5.25) for some σ P
Symk. Then:

rk X ¤ k � 2n.

Proof. Recall that the matrix A in (5.25) is the p2n � kq-matrix whose ith column is vσpiq
for every i P t1, . . . , ku. Using spectral decomposition of the positive semidefinite matrix
X, we get

0 � @
AT A, X

D � ķ

i�1

λi
@

AT A, uiuT
i

D � ķ

i�1

λiuT
i AT Aui �

ķ

i�1

λi||Aui||2,

where u1, . . . , uk P Rk are the orthonormal eigenvectors and λ1, . . . , λk ¥ 0 are the ei-
genvalues of X. Since every term in the last sum is nonnegative, it follows that for every
i P t1, . . . , ku we have λi � 0 or Aui � 0. Hence, every eigenvector corresponding to a
positive eigenvalue of X is contained in ker A. Next, we observe that C is full-dimensional
because it has nonempty interior. Therefore, there are 2n linearly independent vectors
among v1, . . . , vk. This implies rank A � 2n and by the rank-nullity theorem

ker A � k � 2n.

So, X has at most k � 2n eigenvectors that correspond to positive eigenvalues. If we count
eigenvalues according to their multiplicity, this means that X has at most k � 2n nonzero
eigenvalues which implies the claim. �
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An immediate consequence of Theorem 5.3.8 is that the upper bound from Chapter
5.3.2 is exactly 1{4cEHZpCq if C is a simplex. The reason for this is that a nonempty
polytope C � R2n is a simplex if and only if it has 2n � 1 facets. As we note in (5.3) the
vertices of C� correspond to facets of C. Thus, Theorem 5.3.8 states that every feasible
solution of the SDP (5.25) for arbitrary σ P Symk has rank at most one. In particular, the
same is true for every optimal solution.

If C is not a simplex, we can use an SDP technique to estimate the minimal rank among
all optimal solutions of an SDP. There are several methods to solve such rank minimization
problems. We present the one that is given in [85]. For this, we define the spectral norm

||X|| :� σ1pXq
and the nuclear norm

||X||� :�
mintr,su¸

i�1

σipXq

for every X P Rr�s. Here,

σ1pXq ¥ . . . ¥ σmintr,supXq ¥ 0

denote the singular values of X. We recall that the ith largest singular value of X is the
square root of the ith largest eigenvalue of XT X for every i P t1, . . . ,mintr, suu. The idea
is now to formulate the nuclear norm ||X||� as an SDP. Then we can add constraints to
this SDP and obtain a way to find an optimal solution for the SDP (5.25) that has minimal
nuclear norm. In practice, this is a good heuristic for an optimal solution with minimal
rank. First, we present a statement that relates the spectral norm and the nuclear norm to
each other. The reason is that there is an easy representation of the spectral norm as an SDP.
We exploit this fact in the proof of the following theorem to deduce an SDP reformulation
of the nuclear norm as well.

Theorem 5.3.9. [85] The nuclear norm is the dual norm of the spectral norm, i.e.:

||X||� � max
 xX,Yy : Y P Rr�s, ||Y|| ¤ 1

(
for all X P Rr�s.

Proof. Let Z P Rr�s and let t P R. The matrix ZT Z is positive semidefinite and we can
write ZT Z using spectral decomposition, i.e. ZT Z � PT ΣP, where P is an orthogonal matrix
and Σ is a diagonal matrix whose diagonal consists of the eigenvalues of ZT Z. In particular,
we have

t2I � ZT Z � t2PT P� PT ΣP � PT pt2I � ΣqP.
Therefore, we have that t2I�ZT Z is positive semidefinite if and only if the largest eigenvalue
of ZT Z is at most t2. In other words:

||Z|| ¤ t ðñ t2I � ZT Z � 0 ðñ
�

tI Z
ZT tI



� 0. (5.32)
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The last equivalence follows from Theorem 3.2.7 for t � 0. It is easy to see that t � 0
implies Z � 0 in all three statements. Thus, we can rewrite the spectral norm as an SDP:

||Z|| � min
"

t P R :
�

tI Z
ZT tI



� 0

*
.

Now we let X P Rr�s be a matrix. X has a singular value decomposition [54] which means
that there are orthogonal matrices U P Oprq,V P Opsq and a matrix Σ P Rr�s such that

X � UΣVT .

Moreover, the matrix Σ is given by Σi,i � σipXq and Σi, j � 0 for all i P t1, . . . , ru and
j P t1, . . . , su with i � j. We let pY :� UVT . We can immediately see the singular value
decomposition of pY . This decomposition yields that every singular value of pY is one. In
particular we have ||pY|| � 1 and

A
X, pYE � trpXT pYq � trpVΣUT UVT q � trpVT VΣUT Uq � tr Σ �

mintr,su¸
i�1

σipXq.

Thus, we get

||X||� �
A

X, pYE ¤ max
 xX,Yy : Y P Rr�s, ||Y|| ¤ 1

(
. (5.33)

For the converse we use (5.32) to rewrite the dual norm of the spectral norm as an SDP:

max
 xX,Yy : Y P Rr�s, ||Y|| ¤ 1

( � max xX,Yy
s. t. Y P Rr�s�

I Y
YT I



� 0.

We construct the corresponding dual SDP and use weak duality (Theorem 3.2.3 piq) to get

max
 xX,Yy : Y P Rr�s, ||Y|| ¤ 1

( ¤ min
1
2
pxI,Y1y � xI,Y2yq

s. t. Y1 P Rr�r, Y2 P Rs�s�
Y1 �X
�XT Y2



� 0

(5.34)

Next, we construct a feasible solution of the dual SDP in (5.34). For this we write the
singular value decomposition of X as

X � U 1Σ1pV 1qT

with U 1 P Rr�`, V 1 P Rs�` and Σ1 P R`�`, where ` � mintr, su. We achieve this
decomposition by removing zero columns and rows from Σ and by removing columns from
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U and V accordingly. We let Y1 � U 1Σ1pU 1qT and Y2 � V 1Σ1pV 1qT . It is easy to verify that
pY1,Y2q is a feasible solution for the dual SDP in (5.34):�

Y1 �X
�XT Y2



�

�
U 1Σ1pU 1qT �U 1Σ1pV 1qT

�V 1Σ1pU 1qT V 1Σ1pV 1qT



�

�
U 1

�V 1



Σ1
�

U 1

�V 1


T

� 0.

Note that Σ1 is a square diagonal matrix with nonnegative entries. The columns of U 1 are
orthonormal because U P Oprq. Therefore, we have

xI,Y1y � tr Y1 � tr
�
U 1Σ1pU 1qT� � tr

�pU 1qT U 1Σ1
� � tr Σ1 �

mintr,su¸
i�1

σipXq.

The columns of V 1 are orthonormal as well and we can make a similar calculation for
xI,Y2y. Together, we find

1
2
pxI,Y1y � xI,Y2yq � ||X||�.

(5.34) now implies

max
 xX,Yy : Y P Rr�s, ||Y|| ¤ 1

( ¤ ||X||�
and the theorem follows with (5.33). �

An important feature of the proof of Theorem 5.3.9 is that (5.34) holds with equality.
Thus, we can express the nuclear norm as an SDP. As mentioned earlier, this is useful if we
want to examine the rank of some matrices because the nuclear norm is in a certain sense
the best convex approximation of the rank. More precisely, we have the following theorem
that is due to Fazel [36].

Theorem 5.3.10. [36] Let M � tX P Rr�s : ||X|| ¤ 1u. The nuclear norm is a convex
function on M and

||X||� ¤ rk X

for every X P M. Moreover, if f : M Ñ R is a convex function with f pXq ¤ rk X for every
X P M, then

f pXq ¤ ||X||�
for every X P M.

We point out that the first statement in Theorem 5.3.10, i.e.:

||X||� ¤ rk X (5.35)

for every matrix X P M, is easy to prove. If X P M, then the largest singular value of X is
at most one. Thus, the nuclear norm

||X||� �
mintr,su¸

i�1

σipXq
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is bounded by the number of nonzero singular values of X. The inequality (5.35) now
follows from the fact that the rank of X is equal to the number of its nonzero singular
values [54].

A more compact way to express Theorem 5.3.10 is to say that the nuclear norm
is the convex envelope of the rank function [101]. Theorem 5.3.10 suggests that if
we are interested in an optimal solution of the SDP (5.25) with minimal rank, then com-
puting an optimal solution with minimal nuclear norm is a reasonable heuristic. Let us
make this approach more precise. We assume we solved the SDP (5.25) for every σ P
Symk{tcircular shiftsu. Let σ� be a permutation for which the maximum

maxtppσ : σ P Symku
is attained. Then we solve the following SDP:

min
1
2
pxI,Y1y � xI,Y2yq

s. t. Y1,Y2 P Rk�k, X P Sk
�0�

Y1 �X
�X Y2



� 0

xQ, Xy � ppσ�@
AT A, X

D � 0@
eeT , X

D � 1
Xi, j ¥ 0, @ i, j P t1, . . . , ku,

(5.36)

where the ith column of the p2n� kq-matrix A is vσ�piq and the matrix Q is given by

Qi, j �
#
� 1

2 vσ�piqJvσ�p jq, if i ¡ j,
0, if i ¤ j,

for every i, j P t1, . . . , ku. It is obvious that if pY1,Y2, Xq is a feasible solution for (5.36),
then X is an optimal solution for (5.25). Thus, if we find that rk X � 1 it follows thatppσ� � 1{4cEHZpCq as we describe earlier in this chapter.

We note that to solve (5.36) it is crucial that we compute ppσ� accurately because there
is no feasible matrix X that satisfies

xQ, Xy � ppσ� � ε

for ε ¡ 0. Therefore, we solve the SDP (5.25) for σ� again with higher accuracy to obtainppσ� . For this, we use the SDPA-GMP solver [77], [78], [102], which is a slower solver
that is based on SDPA and that is designed to compute highly accurate solutions. We use
an accuracy of 10�10, i.e. we compute a feasible matrix X� such that

| xQ, X�y � ppσ� | ¤ 10�10.

This is sufficient to ensure that the SDP (5.36) can be solved computationally if we plug in
xQ, X�y for ppσ� .

In the last column of Table 6.6 we provide the numerical results for the same instances
that we considered in Chapter 5.3.2. We see that our upper bound from Chapter 5.3.2 is
often equal to the exact value of 1{4cEHZpCq up to solver accuracy.
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5.4 Lower bounds

Another way to estimate the quality of the upper bound that we describe in Chapter 5.3.2
is to find good lower bounds on 1{4cEHZpCq. To this end, we consider the maximization
problem (5.4). We see that every feasible solution py1, . . . , yk, σq yields a lower bound on
the optimal value and hence also on 1{4cEHZpCq. Thus, the goal is to find a feasible solution
that ideally has an objective value close to the optimal value. We get a decent candidate for
the permutation σ by computing the upper bound from Chapter 5.3.2. More precisely, we
take the permutation σ� for which the maximum

maxtppσ : σ P Symku

is attained. To find reasonable candidates for y1, . . . , yk we consider the corresponding
quadratic maximization problem (5.22) and compute a local optimum. For this, we use the
trust-constr method from SciPy [59]. This method relies on [27] and employs sequential
quadratic programming techniques combined with a trust region approach. This means that
we solve (5.22) iteratively, similar to a Newton method. In each step the objective function
and the constraints are made more manageable by approximating them by quadratic or
linear models. At the same time the search of the next iterate is restricted to a subregion
such that the quadratic or linear models are good approximations on this subregion. The
input for this method consists of the constraints of (5.22) and the objective function

f : Rk Ñ R, f pyq � �1
2

ķ

i�1

i�1̧

j�1

yiy jv
T
σ�piqJvσ�p jq

as well as the gradient and Hessian of the objective function:

p∇ f pyqqi � �1
2

�
i�1̧

j�1

y jv
T
σ�piqJvσ�p jq �

ķ

j�i�1

y jv
T
σ�p jqJvσ�piq

�
,

pH f pyqqi, j �

$'&'%
0, i � j,
� 1

2 v
T
σ�piqJvσ�p jq, i ¡ j,

� 1
2 v

T
σ�p jqJvσ�piq, i   j,

for all i, j P t1, . . . , ku. Additionally, the trust-constr method requires a feasible solution
of (5.22) as a starting point. More precisely, we need to input a vector y0 P Rk

¥0 such that
By � b, where

B �
�
vσ�p1q � � � vσ�pkq

1 � � � 1



P Rp2n�1q�k, b �

�����
0
...
0
1

����
P R2n�1.
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One way to find such a feasible starting point is to employ an LP technique. More precisely,
we let c P Rk and we pick y0 as an optimal solution of the following LP:

max cTy

y P Rk
¥0

By � b.

Note that this maximum is finite for every vector c because the set of feasible solutions is
contained in the standard simplex

∆k�1 :� ty P Rk : y1 � . . .� yk � 1, y ¥ 0u
and hence is bounded.

With this approach we get a feasible starting point that lies on the boundary of the set
of feasible solutions of (5.22). Therefore, if this boundary contains many saddle points of
the objective function, we might find a feasible starting point for which the trust-constr
method terminates immediately without having found a local optimum. Next, we discuss
an approach that is capable of producing a feasible starting point in the interior of the set
of feasible solutions.

First, we choose a uniformly distributed random vector in r0, 1sk. Then we project this
vector onto the hyperplane tx : Bx � bu and check whether its entries are still nonnegative
after this projection. If this is the case, then this point is a feasible solution of (5.22).
Otherwise, we repeat this process until we found a feasible solution.

Algorithm 4 Feasible starting point

1: while no y0 found so far do
2: Generate a random vector u0 uniformly distributed in r0, 1sk.
3: Let BT

1 be the first row of B. Set

u1 :� u0 �
b1 � BT

1 u0

||B1||2 B1.

4: for i P t2, . . . , 2n� 1u do
5: Let BT

j be the jth row of B for every j P t1, . . . , 2n�1u. Find wi P Rk such that�����
BT

1
...

BT
i�1

BT
i

����
wi �

�����
0
...
0
1

����
.
6: Set ui :� ui�1 � pbi � BT

i ui�1qwi.
7: end for
8: if u2n�1 ¥ 0 then
9: Output y0 :� u2n�1.

10: end if
11: end while
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If y0 is the output from Algorithm 4, then it is easy to see that By0 � b holds. Due to
the third line of the algorithm we have

BT
1 u1 � BT

1 u0 �
b1 � BT

1 u0

||B1||2 BT
1 B1 � b1.

Furthermore, for every i, j P t1, . . . , 2n� 1u with j   i the lines 5 and 6 imply

BT
i ui � BT

i ui�1 � pbi � BT
i ui�1qBT

i wi � bi,

BT
j ui � BT

j ui�1 � pbi � BT
i ui�1qBT

j wi � BT
j ui�1.

From this we conclude that for every i P t1, . . . , 2n� 1u the following holds:

BT
i y0 � BT

i u2n�1 � BT
i u2n � . . . � BT

i ui � bi.

It remains to show that in line 5 it is always possible to find a vector wi P Rk.

Lemma 5.4.1. Let C � R2n be a polytope with 0 P int C and let v1, . . . , vk be the vertices
of C�. Furthermore, let B P Rp2n�1q�k be defined by

B �
�
v1 � � � vk

1 � � � 1



.

Then for every i P t2, . . . , 2n� 1u there is wi P Rk such that:�����
BT

1
...

BT
i�1

BT
i

����
wi �

�����
0
...
0
1

����
.
Proof. To simplify the notation we fix i P t2, . . . , 2n� 1u and let

pB �

�����
BT

1
...

BT
i�1

BT
i

����
P Ri�k, pb �
�����

0
...
0
1

����
P Ri.

We prove the statement by contradiction, so assume it is false. Then there are no vectors
w�i , w

�
i P Rk

¥0 such that

pb � pBpw�i � w�i q � pBw�i � pBw�i � �pB �pB��w�i
w�i



.

If we apply Farkas’ Lemma [89], we find that there is a vector z P Ri such that

zT �pB �pB� ¥ 0 and zTpb   0.
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On the one hand, this implies zi   0 and in particular z � 0. On the other hand, we
get zT pB � 0. This means that the rows of pB and hence also the rows of B are linearly
dependent. More precisely,

yT B � yT
�
v1 � � � vk

1 � � � 1



� 0

has a solution y � 0. It follows that v1, . . . , vk lie in the hyperplane

H � tx P R2n : xTy � �y2n�1u.
In particular, C� � convtv1, . . . , vku is contained in H and thus has no interior in R2n. But
from (5.17) we see that 0 P int C�. So, the lemma follows by contradiction. �

In Table 6.7 we compare our lower bound with the upper bound from Chapter 5.3.2. We
carried out the computation of the lower bound on a Dell OptiPlex 9020 MT Desktop-PC
with Intel Core i7-4770 processor, 3.4 GHz (capable of running 8 threads).



Chapter Six

Outlook

In this thesis we provide several ways to compute bounds on the EHZ capacity. One may
wonder how these bounds can be improved or what other approaches appear promising. To
conclude this thesis, we suggest some ideas in this direction.

Again, we consider the maximization problem (5.4). As we can see from the results
of Chapter 5 we have a decent way to approximate an optimal solution py�1 , . . . , y�k q, if we
are given a permutation σ� for which the maximum is achieved. However, finding such
a permutation remains a difficult problem. We address this problem in Chapter 5.2 using
an eigenvalue based QAP technique. One can also consider other approaches to handle the
QAP that we face in Chapter 5.2. Two general techniques that come to mind in this context
are linear and semidefinite relaxations of QAP (see for instance [86] and [104]). Recall that
in Chapter 5.2 the goal is to solve the maximization problem

max

#
�1

2

ķ

h�1

h�1̧

j�1

zσphqzσp jqv
T
σphqJvσp jq : z P M, σ P Symk

+
,

M �
#

z P Rk
¥0 :

ķ

j�1

z jv j � 0,
ķ

j�1

z j � 1

+
,

where v1, . . . , vk are the vertices of C� for some polytope C P R2n with 0 P int C. The idea
is now to fix z P M and to consider an LP or SDP that yields an upper bound on

max

#
�1

2

ķ

h�1

h�1̧

j�1

zσphqzσp jqv
T
σphqJvσp jq : σ P Symk

+
.

Then, in a second step, one could aim to incorporate the optimization over M into this LP
or SDP.

Problem 1. Employ different QAP techniques to compute bounds on the optimal value of
the maximization problem (5.5) (and hence on 1{4cEHZpCq).

Aside from techniques with which one can compute bounds on the solution of a QAP,
there are also strategies that aim to solve a QAP exactly. Branch and bound algorithms are
an example for such exact solution algorithms. These algorithms should also be considered
to handle the QAP in Chapter 5.2.
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Problem 2. Employ exact solution algorithms to determine the optimal value of the maxi-
mization problem (5.5) (and hence 1{4cEHZpCq).

Our approach to compute bounds on 1{4cEHZpCq via completely positive optimization
yields two additional problems that are left open. First, we observe from our numerical
results that the bound discussed in Chapter 5.3.2 (see Table 6.6) is often equal to the exact
value of 1{4cEHZpCq because we are able to find optimal matrices with rank one. This
raises the following problem.

Problem 3. For a polytope C � R2n with 0 P int C consider the SDP (5.25) with optimal
value ppσ� , where σ� P Symk is a permutation such thatppσ� � maxtppσ : σ P Symku.
For which polytopes C does this SDP have an optimal solution with rank one?

Second, we note that the bound from Chapter 5.3.2 provides better bounds than the one
given in Chapter 5.3.1 (see Table 6.5). In fact, if we let v1, . . . , vk be the vertices of C�, then

max
y1,...,yk ,σ

� 1
2

ķ

i�1

i�1̧

j�1

yiy jv
T
σpiqJvσp jq ¤ max

y1,...,yk ,
w1,...,wk

� 1
2

ķ

i�1

i�1̧

j�1

yiy jw
T
i Jw j

s. t.
ķ

i�1

yivσpiq � 0 s. t.
ķ

i�1

yiwi � 0 (6.1)

ķ

i�1

yi � 1
ķ

i�1

yi � 1

yi ¥ 0 @ i P t1, . . . , ku yi ¥ 0 @ i P t1, . . . , ku
σ P Symk w1, . . . , wk P C�

because every feasible solution of the problem on the left-hand side yields a feasible
solution of the problem on the right-hand side. Note that we consider these quadratic
programs in Chapter 5.3.1 and Chapter 5.3.2. By Theorem 5.3.5 the inequality in (6.1) still
holds if we replace each of these two quadratic optimization problems with a suitable CP.
However, the question remains whether the inequality also holds if we apply semidefinite
relaxation to both CPs. Our numerical results suggest that the answer is positive but the
proof seems to be cumbersome since we consider large coefficient matrices in the CP
reformulation of the problem on the right-hand side of (6.1).

Problem 4. Prove that the bound on 1{4cEHZpCq given in Chapter 5.3.2 (see (5.26)) is at
least as good as the one given in Chapter 5.3.1 (see (5.21)) for every polytope C P R2n with
0 P int C.

For another idea for future research we recall Viterbo’s conjecture which we state in
Chapter 2.4.2.

Conjecture 6.0.1. [99] Let c be a symplectic capacity and let C � R2n be a convex set.
Then:

cpC, ω0q
cpB1p0q, ω0q ¤

�
vol C

vol B1p0q

1{n

.
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As stated earlier, we get a particularly interesting case of this conjecture if we fix c �
cEHZ and consider convex sets of the form C � K � K�, where K is a centrally symmetric,
convex set. The reason for this is that this special case is equivalent to the prominent
symmetric Mahler conjecture. In Chapter 4 we provide an algorithm that computes cEHZpK�
T q for two polytopes K and T . We can use this algorithm to test Viterbo’s conjecture. More
precisely, if there is a centrally symmetric polytope K such that Viterbo’s conjecture is false
for C � K � K�, then we can use our algorithm to verify

cEHZpK � K�q
cEHZpB1p0qq ¡

�
vol K � K�

vol B1p0q

1{n

.

It remains to find such a counterexample, if there is one.

Problem 5. Find a centrally symmetric polytope K such that

cEHZpK � K�q
cEHZpB1p0qq ¡

�
vol K � K�

vol B1p0q

1{n

.
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Appendix

In this appendix we provide numerical results for the algorithms and methods in this thesis.
In Table 6.1 and 6.2 we present results for the Algorithms 1 and 2. Table 6.3 and 6.4 treat
the upper bound on 1{4cEHZpCq that is based on a QAP approach (see Chapter 5.2). Table
6.5 provides the upper bound on 1{4cEHZpCq that we describe in Chapter 5.3.1. Afterwards,
we state the results from Chapter 5.3.2 and Chapter 5.3.3 in Table 6.6. Lastly, in Table 6.7,
we compare the upper bounds from Table 6.6 with the lower bounds that we describe in
Chapter 5.4.

As stated in Chapter 4 we generate random polytopes as input for Algorithms 1 and
2 by taking the convex hull of normally distributed random points. We do the same to
generate the input for the methods in Chapter 5. For better comparability we use the same
instances in the Tables 6.3, 6.5, 6.6 and 6.7. These instances are enumerated in the first
column of each of these tables. A more detailed description on how to replicate this input
is available on the website

www.github.com/S-Krupp/EHZ-capacity-of-polytopes

together with the implementation of our algorithms.
Aside from a polytope C, the methods in Chapter 5 require the polar set C� as an input.

This means that the time to calculate C� is not included in the running time in the following
tables.

In Chapter 2.3 we mention that for every symplectic capacity c and every compact,
connected set D � R2 with smooth boundary, we have

cpD, ω0q � vol D.

Together with Lemma 2.3.3 we have a way to determine the exact value of 1{4cEHZpCq for
every two-dimensional polytope C. Thus, we provide this exact value in the Tables 6.3,
6.4, 6.5, 6.6 and 6.7 if possible to demonstrate the quality of our bounds.
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# facets dim time 2 bp. time 3 bp. time 4 bp. time 5 bp.
10 2 0.00831 0.30746 - -
15 2 0.00973 0.77826 - -
20 2 0.01228 1.90130 - -
25 2 0.01535 3.68928 - -
30 2 0.01885 6.87248 - -
35 2 0.02242 10.98917 - -
40 2 0.02611 17.82252 - -
45 2 0.02676 26.24746 - -
50 2 0.03756 37.58889 - -
60 2 0.04348 68.84613 - -
70 2 0.07126 121.99939 - -
80 2 0.08522 181.44979 - -
90 2 0.09377 276.15113 - -

100 2 0.12422 390.50119 - -
110 2 0.14459 516.93047 - -
120 2 0.16201 706.91467 - -
130 2 0.16660 887.57707 - -
140 2 0.23777 1145.28408 - -
150 2 0.26617 1400.09367 - -
14 3 0.00983 0.02658 2.78469 -
20 3 0.01315 0.05639 12.75729 -
24 3 0.01319 0.10031 25.36455 -
30 3 0.01869 0.16165 69.23203 -
34 3 0.01990 0.30546 121.10618 -
40 3 0.02877 0.43128 281.39158 -
44 3 0.02691 0.50671 456.25295 -
50 3 0.03799 0.76186 755.02158 -
54 3 0.04065 0.96421 1091.77615 -
60 3 0.04458 1.32361 1646.65092 -
64 3 0.04991 1.61337 2158.03637 -
70 3 0.07663 2.09306 2849.52804 -
11 4 0.00991 0.01654 0.05954 2.36219
15 4 0.00870 0.02263 0.17406 19.43698
20 4 0.01176 0.04806 0.56930 54.60817
25 4 0.01730 0.10708 1.58835 245.41436
30 4 0.02492 0.24002 4.56021 961.83634
35 4 0.02928 0.36108 9.92964 2171.25146
40 4 0.03232 0.50996 19.76087 4201.35654

Table 6.1: Running times of Algorithm 1. The billiard table K is a polytope. The first
two columns contain the number of facets and the dimension of K. The last four columns
contain the running time for 2, 3, 4 and 5 bouncing points in seconds.
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∣∣∣VpKq∣∣∣ ∣∣∣VpT q∣∣∣ time Algorithm 2 time Algorithm 3
5 5 1.28237 0.22158

10 10 7.85068 2.54632
15 15 27.39097 11.71706
20 20 54.75007 25.03621
25 25 82.30637 60.11260
30 30 125.05111 110.61238
35 35 170.22497 181.65273
40 40 259.88731 302.30844
45 45 266.73415 385.03827
50 50 361.56254 609.04153
55 55 451.56054 786.54793
5 10 3.02675 0.22164
5 15 5.57299 0.22637
5 20 11.40925 0.22114
5 25 16.91015 0.23931
5 30 19.89903 0.21554
5 35 23.96365 0.39383
5 40 29.05107 0.21106
5 45 32.18348 0.54072
5 50 36.41029 0.38885
5 55 49.02657 0.57020
5 65 59.80655 0.79811
5 75 67.33951 0.72834

10 5 3.39280 1.19793
15 5 5.74532 4.32675
20 5 10.50168 11.31948
25 5 14.59203 24.99738
30 5 17.76183 45.60183
35 5 20.62535 90.62127
40 5 23.89690 137.52914
45 5 25.73543 170.43779
50 5 30.23246 266.66650
55 5 33.68478 345.84228
65 5 41.49229 558.22820
75 5 51.92742 937.36931

Table 6.2: Running times of Algorithm 2 and Algorithm 3. All numbers are given in
seconds.
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no. 2n k upper bound 1{4cEHZpCq running time in s.
1 2 3 0.118312739 0.03943758 0.03
2 2 3 0.654845637 0.21828188 0.06
3 2 4 0.579574375 0.06553471 0.05
4 2 4 0.571432932 0.06040702 0.06
5 2 5 3.252296476 0.19042428 0.06
6 2 5 0.736995517 0.03465068 0.08
7 2 6 1.126261845 0.02836316 0.08
8 2 6 0.720733241 0.02526072 0.09
9 2 7 0.985491510 0.01962865 0.08
10 2 7 0.715791752 0.01797603 0.07
11 2 8 0.763852162 0.01298729 0.07
12 2 8 0.944722052 0.01523280 0.09
13 2 9 1.487177140 0.01671262 0.10
14 2 9 1.373066146 0.01324055 0.10
15 2 10 1.490686021 0.01303215 0.09
16 2 10 1.441573266 0.01467288 0.08
17 2 11 1.702583848 0.01286290 0.09
18 2 11 1.334970645 0.01073714 0.10
19 4 5 0.297548760 — 0.07
20 4 5 0.195625368 — 0.08
21 4 6 3.338312157 — 0.08
22 4 6 2.628991873 — 0.07
23 4 7 4.777343817 — 0.08
24 4 7 5.891492750 — 0.07
25 4 8 5.746260320 — 0.07
26 4 8 7.792411833 — 0.07
27 4 9 13.016826334 — 0.08
28 4 9 16.390665185 — 0.08
29 4 10 21.937612205 — 0.09
30 4 10 16.982943326 — 0.09
31 4 11 20.654944146 — 0.11
32 4 11 12.527661511 — 0.09
33 6 7 0.491114783 — 0.10
34 6 7 0.335022836 — 0.10
35 6 8 1.443657647 — 0.08
36 6 8 2.525658478 — 0.07
37 6 9 3.699497740 — 0.08
38 6 9 4.188805924 — 0.08
39 6 10 3.383507518 — 0.09
40 6 10 8.788380407 — 0.09

Table 6.3: Upper bounds based on the QAP approach in Chapter 5.2. For two-dimensional
polytopes we provide the exact value of 1{4cEHZpCq.
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no. 2n k upper bound 1{4cEHZpCq running time in s.
41 2 40 17.602496958 0.00909707 0.35
42 2 50 29.547775366 0.00898793 0.43
43 2 60 45.232497368 0.00895741 0.53
44 2 70 60.932335802 0.00890341 0.64
45 2 80 84.601556668 0.00890331 0.74
46 2 90 101.275455498 0.00888242 0.84
47 2 100 123.467778088 0.00888238 0.95
48 4 40 735.244449053 — 0.34
49 4 50 1062.545297909 — 0.45
50 4 60 1751.250513762 — 0.53
51 4 70 2655.205710218 — 0.63
52 4 80 3348.928392732 — 0.71
53 4 90 4302.098377014 — 0.83
54 4 100 4957.872036794 — 0.92
55 6 40 347.407734072 — 0.34
56 6 50 610.667190452 — 0.43

Table 6.4: Upper bounds based on the QAP approach in Chapter 5.2 for larger instances.
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no. 2n k upper bound 1{4cEHZpCq running time in s.
1 2 3 0.039468058 0.03943758 0.13
2 2 3 0.218443732 0.218281879 0.15
3 2 4 0.069972860 0.065534708 0.57
4 2 4 0.065090727 0.060407024 0.58
5 2 5 0.266359869 0.190424277 2.19
6 2 5 0.042582561 0.034650682 1.50
7 2 6 0.039404677 0.028363161 5.58
8 2 6 0.034717004 0.025260717 5.51
9 2 7 0.030068372 0.019628645 16.24
10 2 7 0.029644262 0.017976027 15.67
11 2 8 0.025605698 0.012987287 34.90
12 2 8 0.027875957 0.015232795 57.22
13 2 9 0.033203063 0.016712622 118.96
14 2 9 0.026567933 0.013240549 134.52
15 2 10 0.026317105 0.013032145 408.47
16 2 10 0.029802683 0.014672875 393.38
17 2 11 0.028995359 0.012862896 956.24
18 2 11 0.024114858 0.010737144 1350.73
19 4 5 0.111109919 — 7.60
20 4 5 0.055562610 — 7.63
21 4 6 0.156993945 — 55.55
22 4 6 0.178815627 — 48.07
23 4 7 0.163989888 — 363.57
24 4 7 0.238847434 — 547.43
25 4 8 0.270707005 — 5962.98
26 4 8 0.189944156 — 2672.76
27 4 9 out of memory
33 6 7 0.149188406 — 348.37
34 6 7 0.104485904 — 413.39
35 6 8 out of memory

Table 6.5: Upper bounds by solving an SDP as described in Chapter 5.3.1 and the
corresponding running time. Additionally, we provide the exact value of 1{4cEHZpCq if
the polytope is two-dimensional.
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no. 2n k upper bound 1{4cEHZpCq running time in s. rank heuristic
1 2 3 0.039438726 0.03943758 0.02 1
2 2 3 0.218282856 0.218281879 0.02 1
3 2 4 0.065536004 0.065534708 0.05 1
4 2 4 0.060408224 0.060407024 0.04 1
5 2 5 0.190435748 0.190424277 0.23 1
6 2 5 0.034654127 0.034650682 0.16 1
7 2 6 0.028366133 0.028363161 0.84 1
8 2 6 0.025263986 0.025260717 0.82 1
9 2 7 0.019632944 0.019628645 5.11 1
10 2 7 0.018180046 0.017976027 5.02 3
11 2 8 0.012992788 0.012987287 34.98 1
12 2 8 0.015237283 0.015232795 34.93 1
13 2 9 0.017762342 0.016712622 474.12 3
14 2 9 0.013244750 0.013240549 328.82 1
15 2 10 0.013035867 0.013032145 5768.32 1
16 2 10 0.015951592 0.014672875 6010.77 4
17 2 11 0.015016787 0.012862896 65693.18 5
18 2 11 0.011773859 0.010737144 66326.39 3
19 4 5 0.111035126 — 0.16 1
20 4 5 0.054042156 — 0.19 1
21 4 6 0.145718315 — 0.98 1
22 4 6 0.153409896 — 0.88 1
23 4 7 0.133809639 — 6.24 1
24 4 7 0.196341291 — 7.24 1
25 4 8 0.186138179 — 46.60 1
26 4 8 0.149438204 — 37.90 1
27 4 9 0.186649345 — 498.42 1
28 4 9 0.188494803 — 583.19 1
29 4 10 0.283382067 — 8988.94 1
30 4 10 0.181076891 — 5299.46 1
31 4 11 0.251035638 — 77898.48 4
32 4 11 0.200704143 — 90035.55 1
33 6 7 0.144871774 — 5.56 1
34 6 7 0.096864958 — 6.77 1
35 6 8 0.069709911 — 46.48 1
36 6 8 0.141613154 — 42.00 1
37 6 9 0.140578777 — 544.97 1
38 6 9 0.138142153 — 454.95 1
39 6 10 0.086869180 — 8206.18 1
40 6 10 0.129523513 — 8977.53 1

Table 6.6: Upper bounds by solving pk � 1q! SDPs as described in Chapter 5.3.2 and the
corresponding running time. Additionally, we provide the exact value of 1{4cEHZpCq if
the polytope is two-dimensional as well as a heuristic for the minimal rank of an optimal
solution as described in Chapter 5.3.3. If this heuristic is equal to one, then the upper bound
is exact (up to solver accuracy).
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no. 2n k lower bound upper bound 1{4cEHZpCq
1 2 3 0.039437580 0.039438726 0.03943758
2 2 3 0.218281879 0.218282856 0.218281879
3 2 4 0.065534708 0.065536004 0.065534708
4 2 4 0.060407024 0.060408224 0.060407024
5 2 5 0.190424277 0.190435748 0.190424277
6 2 5 0.034650682 0.034654127 0.034650682
7 2 6 0.028363161 0.028366133 0.028363161
8 2 6 0.025260717 0.025263986 0.025260717
9 2 7 0.019628643 0.019632944 0.019628645

10 2 7 0.013454116 0.018180046 0.017976027
11 2 8 0.012987287 0.012992788 0.012987287
12 2 8 0.015232794 0.015237283 0.015232795
13 2 9 0.014746672 0.017762342 0.016712622
14 2 9 0.013240447 0.013244750 0.013240549
15 2 10 0.013032123 0.013035867 0.013032145
16 2 10 0.012411318 0.015951592 0.014672875
17 2 11 0.012565752 0.015016787 0.012862896
18 2 11 0.010026363 0.011773859 0.010737144
19 4 5 0.111033394 0.111035126 —
20 4 5 0.054040204 0.054042156 —
21 4 6 0.145558669 0.145718315 —
22 4 6 0.153397393 0.153409896 —
23 4 7 0.133793204 0.133809639 —
24 4 7 0.196316775 0.196341291 —
25 4 8 0.186132486 0.186138179 —
26 4 8 0.149407543 0.149438204 —
27 4 9 0.186568474 0.186649345 —
28 4 9 0.188470827 0.188494803 —
29 4 10 0.283324215 0.283382067 —
30 4 10 0.180856019 0.181076891 —
31 4 11 0.208349487 0.251035638 —
32 4 11 0.200589322 0.200704143 —
33 6 7 0.144853224 0.144871774 —
34 6 7 0.096860887 0.096864958 —
35 6 8 0.069704162 0.069709911 —
36 6 8 0.141587402 0.141613154 —
37 6 9 0.140540242 0.140578777 —
38 6 9 0.138093848 0.138142153 —
39 6 10 0.086833645 0.086869180 —
40 6 10 0.129474486 0.129523513 —

Table 6.7: Lower bound from Chapter 5.4 and upper bound from Chapter 5.3.2 on
1{4cEHZpCq. Additionally, we provide the exact value if the polytope is two-dimensional.
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