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A B S T R A C T

Many facets of atmospheric water supply to the Atacama Desert are
poorly understood. However, in-depth knowledge regarding water
availability, moisture sources and the underlying mechanisms is re-
quired to investigate biological and geological processes and to identify
potential mutual relationships.

This thesis provides a comprehensive meteorological perspective on
the atmospheric water supply to the Atacama Desert within the context
of the recent climate. Spatial and temporal variability of moisture as
well as their controlling mechanisms depend on the type of water
supply, i. e. clouds, water vapor, fog or precipitation.

To investigate the influence of the persistent stratocumulus cloud
deck above the southeast Pacific on the desert region, a new cloud base
height retrieval method is introduced. It allows to estimate the vertical
position of these clouds, which can help to identify regions within
the coastal desert that are potentially influenced by these clouds.
A first application of this new method revealed a strong relation
between stratocumulus properties and the isotopic composition of
coastal Tillandsia populations.

The proximity of the Atacama Desert to main acting zones of the
El Niño-Southern Oscillation (ENSO) phenomenon and of the Pacific
Decadal Oscillation (PDO) together with results from previous studies
suggest that modes of climate variability have strong influence on the
moisture supply to this region. As oscillating extreme phases of these
climate modes have recurring periods on the order of a few years to
decades, a long data record is needed to study their impact. Therefore,
spatio-temporal variability of integrated water vapor (IWV) provided
by a century-spanning reanalysis data set is studied in relation to
ENSO and PDO. It is shown that the reanalysis represents IWV in
a suitable manner to study its long-term variability. On a decadal
time scale, the PDO revealed a stronger coupling to IWV compared to
ENSO.

According to a seasonal analysis, identified relationships between
ENSO and IWV are in line with findings reported for precipitation in
the northeastern Atacama. This suggests that IWV has the potential
to serve as a proxy for precipitation. The ENSO signal is opposite for
summer and winter season. The negative phase (La Niña) favors wetter
summers and drier winters, whereas the positive phase (El Niño) is
associated with drier summers and wetter winters. Besides, it is shown
that enhanced IWV under La Niña conditions is not constrained to the
northeastern part of the Atacama Desert but can reach even offshore
regions near the west coast. This effect can be typically observed in the
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summer season. Thus, the moisture can be supplied to the Atacama
Desert from easterly or westerly sources depending on season and
ENSO phase with regionally varying impacts.

Water vapor is a key variable which controls fog formation. While a
few studies demonstrate the impact of fog on the coastal desert based
on in-situ measurements as well as spatially and temporally limited
satellited-based observations, this thesis introduces a novel satellite-
based fog detection method which allows a region-wide assessment.
An application of the algorithm for a 3-year period shows the spa-
tial distribution of fog frequencies across the Atacama Desert. Aside
from the coastal maximum, high fog frequencies are also revealed
for isolated locations farther inland, which often coincide with salt
flats within the central valley. The mechanisms driving fog formation
within these inland regions remain unclear. The novel fog detection
method creates the opportunity to further investigate this issue in
future research.

Aside from westerly moisture sources associated with the Pacific
Ocean and episodic easterly inflow from the continental interior, a
third scenario is identified in this thesis. By investigating the role of
atmospheric rivers for the Atacama Desert, it is revealed that moisture
can be transported from the Amazon Basin across the Andes and the
southeast Pacific towards the Atacama Desert. Furthermore, fractional
precipitation rates of more than 50 % for various regions within the
Atacama Desert demonstrate the importance of atmospheric rivers for
this hyperarid environment.
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Z U S A M M E N FA S S U N G

Viele Facetten des atmosphärischen Wassereintrags in die Atacama-
Wüste sind kaum erforscht. Kenntnisse über die Wasserverfügbarkeit
sowie die Quellen der Feuchtigkeit und die zugrunde liegenden Me-
chanismen sind jedoch erforderlich, um biologische und geologische
Prozesse besser zu verstehen und mögliche wechselseitige Beziehun-
gen zu identifizieren.

Diese Arbeit bietet eine umfassende meteorologische Perspektive
auf den atmosphärischen Wassereintrag in die Atacama-Wüste im
Kontext des gegenwärtigen Klimas. Die räumliche und zeitliche Varia-
bilität des Wasserangebots und deren Kontrollmechanismen hängen
davon ab, ob das Wasserangebot in Form von Wolken, Wasserdampf,
Nebel oder Niederschlag betrachtet wird.

Um den Einfluss der persistenten Stratocumulus-Wolkendecke über
dem Südostpazifik auf die Wüstenregion zu untersuchen, wird eine
neue Methode zur Bestimmung der Wolkenbasishöhe entwickelt. So
kann die vertikale Lage der Wolken vollständig bestimmt werden. Dies
erlaubt es, Regionen entlang des Küstengebirges zu identifizieren, die
möglicherweise von diesen Wolken beeinflusst werden. Eine erste
Anwendung dieser neuen Methode ergab einen deutlichen Zusam-
menhang zwischen den Eigenschaften der Stratocumulus-Bewölkung
und der Zusammensetzung von Stickstoffisotopen der Tillandsienpo-
pulationen entlang der Küste.

Die Nähe der Atacama-Wüste zu den Hauptwirkungszonen der
“El Niño-Southern Oscillation” (ENSO) und der Pazifischen Dekaden-
Oszillation (PDO) sowie Ergebnisse früherer Studien legen den starken
Einfluss dieser großskaligen Klimamoden auf den Wassereintrag in
diese Region nahe. Da die sich abwechselnden Extremphasen dieser
Klimamoden wiederkehrende Perioden in der Größenordnung von
einigen Jahren bis Jahrzehnten aufweisen, ist ein langer Datensatz
erforderlich, um ihren Einfluss zu untersuchen. In dieser Arbeit wird
der integrierte Wasserdampf (IWV) aus einem Reanalyse-Datensatz,
der mehr als ein Jahrhundert umspannt, verwendet, um den Einfluss
von ENSO und PDO zu untersuchen. Zunächst wird gezeigt, dass
die Reanalyse den IWV ausreichend genau repräsentiert, um seine
Langzeitvariabilität zu untersuchen. Auf einer dekadischen Zeitskala
zeigte die PDO eine stärkere Kopplung an IWV als ENSO.

Festgestellte saisonale Beziehungen zwischen ENSO und IWV äh-
neln den Beziehungen, die bereits in früheren Studien für die nordöst-
liche Atacama-Wüste in Bezug auf Niederschlag gezeigt wurden. Dies
deutet darauf hin, dass IWV das Potenzial hat, als Approximation für
Niederschlag zu dienen. Das ENSO-Signal ist für die Sommer- und
Wintersaison entgegengesetzt. Die negative Phase (La Nina) begüns-
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tigt feuchtere Sommer und trockenere Winter, während die positive
Phase (El Niño) zu trockeneren Sommern und feuchteren Wintern
führt. Insbesondere für die Sommersaison wird gezeigt, dass erhöhter
integrierter Wasserdampfgehalt unter La Niña Bedingungen nicht auf
den nordöstlichen Teil der Atacama-Wüste beschränkt ist, sondern
sogar den der Westküste vorgelagerten Pazifik erreichen kann. Zusam-
menfassend ergibt sich, dass Wassereintrag in die Atacama-Wüste je
nach Jahreszeit und ENSO-Phase aus östlich oder westlich gelegenen
Quellen stammt, wobei es regionale Unterschiede geben kann.

Wasserdampf ist eine Schlüsselvariable für Nebelbildung. Während
einige Studien den Einfluss von Nebel auf den Küstenbereich der
Atacama-Wüste anhand von in-situ Messungen zum einen und räum-
lich und zeitlich begrenzten satellitengestützten Beobachtungen zum
anderen belegen, wird in dieser Arbeit eine neue satellitenbasierte
Nebeldetektionsmethode vorgestellt, die eine regionale Abschätzung
ermöglicht. Eine Anwendung des Algorithmus über einen Zeitraum
von 3 Jahren zeigt die räumliche Verteilung der Nebelauftrittshäufig-
keiten in der Atacama-Wüste. Neben dem Küstenmaximum zeigen
sich auch hohe Nebelfrequenzen für einzelne Regionen weiter im Lan-
desinneren, die vielfach mit Salzpfannen in der zentralen Depression
in Verbindung stehen. Die Mechanismen, die die Nebelbildung in
diesen Binnenregionen antreiben, sind weiterhin unbekannt. Die neu-
artige Nebeldetektionsmethode bietet die Möglichkeit, dieses Problem
in zukünftigen Forschungsarbeiten weiter zu untersuchen.

Neben den mit dem Pazifik verbundenen westlichen Quellen der
Feuchtigkeit und dem episodischen östlichen Zufluss aus der konti-
nentalen Feuchtzone Südamerikas wird in dieser Arbeit ein weiterer
Pfad identifiziert, der mit einem Wassereintrag verbunden ist. Durch
die Untersuchung der Rolle atmosphärischer Flüsse (engl. atmosphe-
ric rivers) für die Atacama-Wüste wird deutlich, dass Feuchte vom
Amazonasbecken über die Anden und den Südostpazifik in Richtung
Atacama-Wüste transportiert werden kann. Darüber hinaus zeigen
Niederschlagsanteile von überwiegend mehr als 50 % in der Atacama-
Wüste die Bedeutung atmosphärischer Flüsse für diese hyperaride
Umgebung.
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Part I

I N T R O D U C T I O N





1
M O T I VAT I O N

Figure 1.1: Photograph of the coastal Atacama Desert taken in March 2017

picturing the Pacific ocean, the maritime boundary layer, and the
free troposphere. The maritime boundary layer is visible as the
optically denser part of the air, intersecting with the emerging
coastal cliff, which hosts locally adapted plant communuties. The
free troposhere aloft is much clearer compared to the boundary
layer.

Water is a vital ingredient in the evolution of the Earth. By trigger-
ing biological and geological processes, the availability and amount
of water plays a decisive role in shaping our planet. Mostly, these
processes are considered independently of each other and analyzed
on a stand-alone basis. However, the fact that they respond to a
common trigger encourages the assumption of mutual dependencies
and possible interactions (Collaborative Research Center (CRC) 1211;
sfb1211.uni-koeln.de; Dunai et al., 2020).

Innumerable biological and geological processes occur simultane-
ously on various time scales. This makes it difficult to disentangle
potential relationships. To reduce some of this complexity, it would
be beneficial to find a location where these processes happen more
isolated and at a slower pace. An ecosystem where the abundance of
water as the common trigger is reduced would best approximate these
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4 motivation

criteria. As the oldest desert and presumably driest place on Earth,
the Atacama Desert appears to be a suitable environment. While inter-
mittent periods of enhanced water availability allow life and surfaces
to evolve, enduring dry (hyperarid) conditions conserve the resulting
traces through geological eras. The degree of aridity and the timing of
pluvial episodes are controlled by the progress of climate change and
associated atmospheric processes. This implies the immediate need
for a meteorological perspective on this matter.

For many regions, precipitation is the prevailing water source. In hy-
perarid regions, however, other factors such as clouds and water vapor
dominate the water cycle. To describe the atmospheric water supply
to the Atacama Desert, following key aspects have to be considered.The maritime

boundary layer is the
lowest tropospheric

layer that is in
contact with the

ocean surface. Near
the Atacama coast, it
typically extends to a
height of about 1 km

(e.g. Rahn and
Garreaud, 2010;

Muñoz et al., 2016).

One aspect pose clouds which form over the southeast Pacific near
the coast of the Atacama Desert. These low stratiform clouds fre-
quently cap the moist maritime boundary layer. When they are trans-
ported onshore, they intercept with the local orography. The towering
coastal cliff and mountain range with typical heights between 500 m
and 2000 m constitute a natural barrier hindering these clouds from
penetrating inland (Fig. 1.1). Wherever these mountains immerse into
the cloud, fog oases arise enabling unique ecosystems (Pinto et al.,
2006; Cereceda et al., 2008b; Lobos Roco et al., 2018). In these habitats,
specialized plant communities, such as Tillandsia, satisfy their water
and nutrition demand almost exclusively from fog water supply (Run-
del et al., 1997; Pinto et al., 2006; Westbeld et al., 2009; González et al.,
2011). The locations of these coastal fog oases are closely linked to the
cloud heights.

A second aspect is the availability of water vapor. Making up about
99.5 % of the total water in the atmosphere (Stevens and Bony, 2013),
water vapor is the most important source for precipitation and a key
variable for fog formation and dew. Besides these indirect ways of
dispensing liquid water after condensation, water vapor itself poses
a direct water source for soils in arid regions and stimulates mi-
crobial activity and diversity via adsorption (McHugh et al., 2015;
Crits-Christoph et al., 2013). Furthermore, relative humidity, which is
closely related to water vapor content, determines phase transitions
between gypsum, anhydrite and their intermediate phases (Tang et al.,
2019; Ritterbach and Becker, 2020). This indicates its potential role in
soil formation, which requires further exploration. Relative humid-
ity and the isotopic composition of atmospheric water vapor, which
depends on its source and pathway, determine isotopic fractionation
during evaporation. Therefore, they are essential variables for the de-
velopment of a paleo-humidity proxy (Craig and Gordon, 1965; Surma
et al., 2018; Gázquez et al., 2018).

A third aspect is the distribution of fog, which is closely related to
coastal cloud heights and water vapor. When coastal clouds are present
at a sufficient height, they can cross the coastal cliff and penetrate



motivation 5

through the coastal mountain range. This is frequently observed at
certain corridors such as canyons or distinct locations where the
coastal cliff is lower (Farías et al., 2005). While in most cases clouds
eventually dissipate due to mixing with dry inland air, the moisture
enhanced maritime air can reach places even farther away from the
coast (Schween et al., 2020). During nocturnal cooling via thermal
radiation, this moisture enhanced air might reach saturation. Therefore,
the initiation of condensation processes resulting in radiation fog
seems plausible. Even though favorable conditions for its formation
were found (Cereceda et al., 2002; Westbeld et al., 2009), radiation
fog has not been reported due to lacking observations. While various Lomas are isolated

and diverse
vegetation
formations in the
coastal fog zone of
the Atacama Desert
(e.g. Pinto et al.,
2006).

studies show the impact of fog on localized coastal loma vegetation
(e.g. Rundel et al., 1997; Pinto et al., 2006; Cáceres et al., 2007; Latorre
et al., 2011; González et al., 2011; Río et al., 2018; Lehnert et al., 2018b;
Lobos Roco et al., 2018), the importance of fog for biological and
geological processes has barely been explored on a region-wide scale.
Instead, Cáceres et al. (2007) and Westbeld et al. (2009) emphasize the
urgent need for further investigations on the dynamics involved in fog
formation and dissipation and the role of radiation fog, respectively.

An investigation of these aspects would not only improve our un-
derstanding of the contemporary atmospheric water supply to the
Atacama Desert, but also provide a meteorological basis for various
biological and geological analyses in this region. For example, it would
make it possible to constrain thresholds for biological and geological
processes which are observable under current climatic conditions.

The framework for this multidisciplinary approach is provided by
the CRC 1211, a research program funded by the German Research
Foundation. With the focus on interactions between biological, ge-
ological and atmospheric processes, the program allows to exploit
arising synergies and to conduct cross-validations. In its turn, it should
lead to an improvement of applied methods and enable more solid
conclusions in all three disciplines.

The synergies from this approach are exemplified here from the
meteorological point of view. The first and most immediate goal of
the meteorological analysis is to gain more detailed insights into the
underlying atmospheric processes. This involves identifying and quan-
tifying relevant relationships between large-scale phenomenons, such
as the internal climate mode El Niño Southern Oscillation (ENSO),
synoptic features and regional water availability patterns in the At-
acama Desert. Ultimately, such knowledge would contribute to the
geoscience community in the following way: larger scale phenomenons
could be linked to the regional water variability and thus be related
to local biological or geological processes. For example, the isotopic
composition of water bound in gypsum, which can serve as a medium
for paleo-humidity reconstruction (Gázquez et al., 2018; Voigt, 2020),
could be associated with a broader context. By using modern observa-
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tions, functional relationships between variables quantifiable through
climate archives on one side and varying ambient atmospheric condi-
tions on the other side can be estimated and verified in the context of
the recent climate. When analyzing desert archives, such calibrated
relationships would allow a more comprehensive interpretation and
support the reconstruction of climate history.

Summarizing the above, this thesis contributes to the overall purpose
of the CRC by providing a comprehensive meteorological perspective
on the atmospheric water supply to the Atacama Desert under recent
climate conditions.



2
B A C K G R O U N D A N D C L I M AT I C F E AT U R E S O F T H E
ATA C A M A D E S E RT

This chapter provides an overview on the state-of-the-art knowledge
about atmospheric features associated with water supply to the At-
acama Desert. After an introduction to the general climatic setting
which results from the geographic location (Chapter 2.1), more details
are provided on stratocumulus clouds and fog (Chapter 2.2) as well as
the influence of large-scale drivers (Chapter 2.3) and synoptic drivers
(Chapter 2.4).

2.1 climatic setting

Hyperarid is a term
to describe regions
for which
precipitation is less
than 5 % of the
potential
evapotranspiration
(UNEP, 2011).

The Atacama Desert is located at the western coast of South America
(Fig. 2.1). Hyperarid conditions persist between the southeast Pacific
and the foothills of the high Andes from West to East and between 15◦S
and 30◦S (UNEP, 2011; Houston and Hartley, 2003). The prevailing
aridity is typical for subtropical locations at the subsiding branch
of the Hadley cell circulation and can be found in other subtropical
regions, e. g. the Namib Desert.

Due to the enduring large-scale subsidence, strong semi-persistent
surface anticyclones emerge, forming the subtropical high pressure
belt. This includes the southeast Pacific anticyclone, which has specific
implications for the Atacama Desert. Resulting southerly winds at the
eastern side of the high pressure system enact stress on the sea surface
driving the Humboldt Current, which transports cold sea water from
higher latitudes towards the tropics along the South American west
coast (Montecino and Lange, 2009).

Furthermore, friction effects cause a counterclockwise rotation of the
flow towards the west with increasing depth within the near surface
ocean layer (Ekman spiral). This leads to near coastal upwelling of
deep ocean water, which provides further cooling of the Sea Surface
Temperature (SST) embedded in the Humboldt Current system. The
strong temperature contrast between the cold SST and the subsiding
warm air leads to a stable stratification. This hinders the development
of precipitating clouds and results in a decoupling of the Maritime
Boundary Layer (MBL) and the free troposphere aloft. Turbulent mix-
ing within the boundary layer enforces an approximately adiabatic
temperature profile and a nearly constant specific humidity profile.
Under these conditions, the typically observed stratocumulus deck
can form right below the base of the inversion (more details in Chapter
2.2).

7
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Figure 2.1: Scheme of key factors impacting the climate of the Atacama
Desert (yellow shading): Midlatitude storm track zone (blue shad-
ing), ENSO zone (red shading), which denotes the region with
typically largest SST variability, the continental moisture conver-
gence zone (green shading) with Atlantic moisture transport
(austral summer situation). Furthermore, the southeast Pacific an-
ticyclone, the Bolivian high (summer seasonal upper tropospheric
high pressure system) and the Humboldt Current (blue dashed
arrow) are denoted.

In contrast to other subtropical west coast deserts, the aridity of the
Atacama Desert is further enhanced due to the unique local topog-
raphy. At the western margin, the coastal cliff poses an immediate
barrier hindering the moist maritime layer from penetrating inland.
Furthermore, diurnal heating of the land surfaces creates a strong
thermal contrast between land and sea. These two factors result in
the formation of two separate circulation cells (Rutllant et al., 2003).
A lower cell is constrained to the maritime boundary layer with up-
drafts near the coastal cliff in the course of the diurnal heating. These
updrafts result in near-surface westerly winds superimposed on the
prevailing southerlies and an offshore return flow below the inversion
layer. During night time, the circulation reverses and weakens (Rutllant
et al., 2013). An upper cell is driven by strong daytime heating of the
Andean slopes (“Andean pumping” Rutllant et al., 2013). This results
in strong westerly winds near the surface of the desert and a return
flow at higher altitudes. This flow pattern increases the subsidence
above the coastal desert during the afternoon (Rutllant et al., 2013).

At the eastern margin, the high Andean mountain ranges are be-
lieved to create a rain shadow effect. According to in-situ measure-
ments, precipitation decreases rapidly with decreasing heights at the
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western slopes of the Andean cordillera which can be attributed to
barrier effect of the Andes preventing moisture intrusion from the
Amazon Basin (Houston and Hartley, 2003). Controversially, several
modeling studies revealed that a lowering of the Andes does not have
a significant effect on precipitation and moisture within the Atacama
Desert (Ehlers and Poulsen, 2009; Sepulchre et al., 2011; Garreaud
et al., 2010).

The interplay of the factors mentioned above result in annual pre-
cipitation rates below 2 mm in the hyperarid core (Houston, 2006).
The precipitation pattern shows a North–South gradient due to winter
storm tracks (Fig. 2.1) occasionally reaching the southern Atacama
Desert. Additionally, a West–East gradient takes contour with higher
precipitation rates at higher elevations at the western slopes of the
Andes in connection to moist easterlies during the summer (Houston,
2006). These easterlies are caused by an upper tropospheric high pres-
sure system called Bolivian high which is created by deep convection
over the Amazon Basin during the austral summer season (Lenters
and Cook, 1997). During episodic southward shifts of the Bolivian
high, easterly flows transport large amounts of moisture causing heavy
thunderstorms in the Altiplano (Garreaud et al., 2003). This mecha-
nism is also responsible for the summer time precipitation maximum
at the western slopes of the Andes in the northern Atacama. Seasonal
peak precipitation rates decline rapidly with decreasing topography to
the west (Houston and Hartley, 2003; Houston, 2006). Since precipita-
tion rates are so low, other moisture sources such as fog (Chapter 2.2)
and water vapor (Chapter 2.3) become dominant within the hyperarid
core of the Atacama.

2.2 stratocumulus and fog

The stratocumulus turning into fog at its interception with the coastal
cliff and mountain range constitutes the life vein for Tillandsia and
other plant communities (Rundel et al., 1997; Muñoz-Schick et al., 2001;
Pinto et al., 2006; Westbeld et al., 2009; González et al., 2011). Recent
discoveries also attribute activation of photosynthesis of soil organisms
to fog water supply pointing out the importance of this “living skin”
for carbon and nitrogen fixation as well as soil formation through
bio-weathering (Lehnert et al., 2018a; Jung et al., 2020). Intuitively, the
exact location of these biologically active zones depends on the top
and base height and on the frequency of the maritime stratocumulus.
Underlying concepts of stratocumulus formation and dissipation are
introduced in Chapter 2.2.1. These concepts, which have been reviewed
by Wood (2012), encompass the relation between atmospheric drivers
and cloud properties, such as height and thickness. Thereafter, current
findings regarding variability of cloud heights and cloud cover fraction
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Figure 2.2: Physical processes of the marine stratocumulus in the coastal
region. A well mixed MBL features a vertically constant specific
humidity q and a constant potential temperature θ which in-
creases slightly within the cloud layer towards the cloud top.
Figure taken from Lobos Roco et al. (2018). ©2018 Elsevier B.V.
Used with permission.

(Chapter 2.2.2) as well as fog water supply and fog detection (Chapter
2.2.3) are described.

2.2.1 Stratocumulus – conceptual description

Above the cold Humboldt Current and below large-scale subsidence of
warm and dry air, the southeast Pacific region offers ideal conditions
for stratocumulus formation. Consequently, it hosts the largest and
most persistent subtropical stratocumulus deck on Earth (Klein and
Hartmann, 1993). Conceptually, these clouds can form when turbulent
mixing moistens the boundary layer and stratifies the temperature
resulting in a neutral layer (Paluch and Lenschow, 1991). The initial
turbulence is either generated by vertically sheared horizontal winds
or by buoyancy resulting from the moisture and heat exchange at the
ocean-atmosphere interface. The latter is provided when evaporation
and temperature exchange enhance the virtual temperature of an air
parcel allowing ascent (Paluch and Lenschow, 1991, and Fig. 2.2 for a
schematic overview).

When the subsidence inversion is above the Lifting Condensation
Level (LCL), cloud formation starts at the height at which the upper
part of the mixed layer reaches saturation (Randall and Suarez, 1984).
The cloud may grow up to the inversion base height. Once the cloud
began to form, it emits infrared radiation at its top which leads to
a cooling of the cloud layer (Paluch and Lenschow, 1991). The ra-
diative cooling sharpens the inversion and generates a convective
circulation which becomes the main driver maintaining the cloud
(Lilly, 1968). This convection enhances the turbulence, which, in turn,
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homogenizes the cloud layer and couples it to the moisture source
(ocean-atmosphere interface). Several feedback mechanisms may alter
the height of the MBL, the LCL, the thickness of the cloud and as a
result its liquid water content (Albrecht et al., 1990; Bretherton and
Wyant, 1997; Wood, 2012).

While the stratocumulus forms over ocean, it is modulated near
coastal areas due to diurnally varying land-sea interactions (Sunuarara-
jan and Tjernström, 2000). At night time, a stronger cooling of the land
surface compared to the sea surface leads to predominant descent
of air parcels at the ocean side of the coastal cliff. This results in a
boundary layer local circulation cell with an onshore flow near the top
of the boundary layer, advecting the stratocumulus inland (Rutllant
et al., 2003).

Fog is formed where the cloud intercepts with the orography de-
pending on the heights of the cloud margins. During daytime, the
circulation of the maritime boundary layer reverses and intensifies
in particular in the afternoon due to stronger heating of the slopes
of the coastal cliff compared to the sea surface (Rutllant et al., 2003).
Thus, the stratocumulus is pushed offshore. The heated land surface
also lifts the LCL thinning the cloud from below (Rogers and Koraccn,
1992).

Additionally, the upper circulation cell driven by the “Andean
pumping” (Rutllant et al., 2013) strengthens the coastal subsidence,
which lowers the inversion base height (Rutllant et al., 2003). This
leads to dissipation of the cloud by thinning from the top. During the
afternoon, isolated convective cumulus clouds can form at the coastal
cliff. They are related to the updraft of the daytime marine boundary
layer circulation and form frequently at identical locations possibly
related to the shape of the coastal shoreline and orography (Cereceda
et al., 2002).

2.2.2 Coastal cloud observations

A recent study based on more than 40 years of observations at three
coastal sites (Arica, Antofagasta, Iquique) analyzes the diurnal cycle
of coastal clouds (Muñoz et al., 2016). While higher cloud cover frac-
tion together with lower cloud base heights prevail during the night,
lower cloud cover fraction together with higher cloud base heights
predominate during the day. The observed cloud cycle is consistent
with the previous conceptual considerations.

These observations also reveal a distinct seasonal cycle with the
highest cloud cover fraction and lowest cloud base heights during
winter and spring (May–November) and lower cloud fractions and
higher cloud base heights for summer and fall (December–April)
(Muñoz et al., 2016). This is consistent with the seasonality of the SST

and the subsidence strength according to the position of the southeast
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Pacific anticyclone, which shifts southward during summer leaving a
weaker subsidence (Garreaud et al., 2009).

Furthermore, negative trends in cloud base heights with different
onset times for the three locations were identified between 1995 and
2010 (Muñoz et al., 2016). For example, the annual mean cloud base
height at Antofagasta decreased about 200 m between 1985 and 2005.
For Arica, the overall trend is also negative but weaker because a
positive trend is detected for the core summer season (January and
February). Varying seasonal trends are also reported regarding cloud
cover fraction with an increasing signal for winter and spring (June–
November) and decreasing signal for summer and fall (December–
May).

The negative cloud base height trends are concomitant with a nega-
tive trend of inversion base height determined from radiosonde data
for the period between 1960–2009 (Schulz et al., 2012). However, the
decrease of the inversion base height is of lesser magnitude compared
to the decrease of the cloud base height, which implies that the cloud
thickness increased within the analyzed period (Muñoz et al., 2016).
A thickening cloud layer is consistent with an increasing inversion
strength determined from reanalysis data for the southeast Pacific
region (period 1984–2009, Seethala et al., 2015). The stronger inversion
hinders cloud dissipation by decreasing the entrainment rate (Wood,
2012).

Different cloud cover fraction trends with opposite signs for spring
and fall season compared to the report by Muñoz et al. (2016) are
revealed if cloud cover fraction averages over a total of seven available
coastal stations between 20◦S and 30◦S are considered (Eastman and
Warren, 2013). While Muñoz et al. (2016) argue the difference could be
caused by differences in the data processing or slightly varying time
periods, it may also indicate that the spatial variability of the coastal
stratocumulus is not sufficiently represented by these few observations.
This is further supported by different onset times of the negative cloud
base height trend (Muñoz et al., 2016).

However, a region-wide cloud height assessment is currently lacking
in the literature. A region-wide coastal cloud height climatology would
allow to constrain the role of clouds for biological and geological
processes.

A data set of cloud top and base heights with high spatial resolution
could be used for model and reanalysis evaluation. Ultimately, the
use of reanalysis could be beneficial to extent the limited temporal
coverage of satellite-based measurements. To achieve the desired spa-
tial coverage, satellite remote sensing would be beneficial. However,
to date, no operational satellite-based retrieval method of cloud base
height is available.
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2.2.3 Fog observations

Fog and low cloud cover over the coastal part of the Atacama Desert
are strongly correlated to maritime stratocumulus cover (Cereceda
et al., 2008b). The research carried out to study fog in this region
has been mainly based on (i) in-situ fog collection (e. g. Cereceda
et al., 2002; Larraín et al., 2002; Cáceres et al., 2007; Cereceda et al.,
2008b; Lobos Roco et al., 2018; Río et al., 2018) mostly using standard
fog collectors (Schemenauer and Cereceda, 1994a) and (ii) satellite
remote sensing of low clouds (e. g. Farías et al., 2005; Osses et al.,
2005; Cereceda et al., 2008b; Lehnert et al., 2018b; Río et al., 2018).

A major study site for in-situ fog collection is Alto Patache, a re-
search station operated by the Centro del Desierto de Atacama UC.
It is located on top of the coastal cliff at a height of 850 m above sea
level and directly faces the Pacific ocean. For this location, the sea-
sonal cycle of fog water yields has been derived from a 17-year long
monthly time series (Río et al., 2018). Whereas highest fog water yields
are observed for winter (July, August, September), lowest average
fog water amounts are collected during summer seasons (December-
April). These findings are consistent with the seasonal cycle of cloud
cover fractions observed at other coastal stations below the coastal cliff
(Muñoz et al., 2016) and with the seasonality of the general driving
factors for stratocumulus (c. f. Chapter 2.2.1).

Furthermore, a vertical gradient has been observed along an inclin-
ing transect along the coastal cliff near Alto Patache (Cereceda et al.,
2008b). Annual fog water yields decrease rapidly from more than
7 lm−2 at the top (850 m) to almost zero at 650 m. This matches with
mean annual cloud base heights of around 800 m at Iquique (north
of Alto Patache) and 650 m at Antofagasta (south of Alto Patache)
(Muñoz et al., 2016) considering that the liquid water content increases
between cloud base and cloud top height (Bretherton, 1997).

Farther inland, amounts of fog water collected at individual sites
decrease (Cereceda et al., 2002; Cáceres et al., 2007; Cereceda et al.,
2008b). For a transect between the coastal region and the Yungay area,
declining abundance of hypolithic cyanobacteria and reduced fog
water yields have been observed consistently (Warren-Rhodes et al.,
2006; Cáceres et al., 2007).

Moreover, few fog events have been observed even beyond the
coastal mountain range 45 km inland from Alto Patache within the
Pampa de Tamarugal (central depression) during a 10-month field
campaign (Cereceda et al., 2002). Occasionally, no concomitant fog was
observed at the coastal station, which might be an indication of other
processes being at play besides advection. These could be, for example,
dissipating fog leaving a humid air mass to condense locally or diur-
nal evaporation of ground water which condenses during nocturnal
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cooling (Cereceda et al., 2002). However, not enough observations are
available to investigate such hypotheses.

Satellite remote sensing of low clouds has been applied to investi-
gate spatial patterns to derive seasonal and diurnal variations (e. g.
Farías et al., 2001; Farías et al., 2005; Cereceda et al., 2008b; Lehnert
et al., 2018b). To distinguish between low and high clouds, spectral
thresholds were applied. However, it is difficult to infer from satellite
data whether such low clouds intercept with the ground. Neverthe-
less, these observations could confirm the seasonal cycle derived from
the in-situ measurements with most persistent cloud cover over the
coastal region during winter (Farías et al., 2005; Cereceda et al., 2008b;
Lehnert et al., 2018b). The diurnal cycle of continental low cloud cov-
erage has been determined using observations from the Geostationary
Operational Environmental Satellite (GOES) for two individual months
(August 2001, January 2002). A diurnal minimum appears between
10 a. m. and 3 p. m. local time.

Furthermore, satellite-based observations confirmed the occasional
occurrence of low clouds in the central valley (Farías et al., 2005; Cere-
ceda et al., 2008b). These occurrences were linked to cloud advection
through corridors which were identified from satellite images and
grouped into coastal corridors and interior corridors (Farías et al.,
2005).

Satellite-based observations are advantageous regarding spatial
coverage compared to in-situ measurements. However, satellite-based
studies have been carried out only for short periods and limited
regions within the Atacama Desert. In addition, fog and low clouds
have not been distinguished so that it is not clear whether detected
cloud features have the potential to supply water to the soil and plants
and trigger biological and geological processes.

2.3 large-scale drivers

In this thesis, the term large-scale drivers refers to phenomena acting
on time scales between multiple months and decades and spatial
scales larger than 1000 km. Large-scale drivers are distinguished from
synoptic drivers (Chapter 2.4) which refer to atmospheric phenomena
of spatial and temporal dimensions up to a few 100 km and a few days,
respectively. For example, dominant patterns of climate variability,
such as the ENSO phenomenon and the Pacific Decadal Oscillation
(PDO), act on the large scale both temporally and spatially with periods
between 2 to 7 years (ENSO; Timmermann et al., 2018) and longer (PDO;
Newman et al., 2016) and with primary acting zones spanning the
tropical (ENSO) and the northern Pacific (PDO) ocean basin. These two
climate modes have been associated with impacts on weather patterns
even in remote regions through global teleconnections. While other
climate indices exist, impacts on weather patterns across the Atacama
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Desert and South America have mostly been related to ENSO and PDO

in previous studies (Chapter 2.3.2). Oscillations of these two climate
modes result from coupled ocean-atmosphere feedback mechanisms
(Chapter 2.3.1).

2.3.1 Pacific climate modes

The ENSO phenomenon is the strongest year-to-year climate fluctu-
ation of the global climate system (Timmermann et al., 2018). It is
characterized by periodically recurring phases of warm (El Niño) and
cold (La Niña) SSTs in the central or eastern tropical Pacific (Fig. 2.3)
with recurring periods of extreme phases between three and seven
years which have global implications, for instance, on precipitation
and surface temperature (e. g. Davey et al., 2014). The state-of-the-art
understanding of the guiding processes driving ENSO is reviewed by
Timmermann et al. (2018). During the neutral phase, prevailing east-
erly trade winds steer surface water from the eastern to the western
tropical Pacific. While on the eastern ocean rim Ekman transport leads
to upwelling of cold water, convergence in the western Pacific results
in downwelling of warm surface water. This process maintains a tilt
of the thermocline along the equatorial Pacific with greater depth in
the west and shoal depth in the east resulting in a charged western
Pacific warm pool with great heat content.

Anomalous westerly wind events, which are favored by enhanced
SST (Vecchi and Harrison, 2000), result from weather noise. They can
trigger an oceanic downwelling Kelvin wave to propagate eastward.
It transports warm water to the east expanding the western Pacific
warm pool and suppresses the upwelling of cold water. This results in
a deepening of the thermocline in the central and possibly the eastern
Pacific, which gives rise to the development of an El Niño event.

Once a positive SST anomaly is provided, the interplay of positive
feedback mechanism enhances this initial warming. A weaker SST

gradient leads to weaker trade winds which, in turn, weaken the
west-east SST gradient even more (Bjerknes feedback). Furthermore,
the weaker trade winds weaken the advection of cold water from the
eastern Pacific (zonal advective feedback) and reduce the upwelling
of colder deep ocean water (Ekman feedback). Due to the deepened
thermocline such upwelling gives rise to anomalously warm water in
the eastern Pacific (thermocline feedback).

Negative feedback mechanisms dampen the intensifying positive SST

anomaly. Via enhanced radiative and turbulent heat fluxes associated
with tropical convection and cloud formation, heat is transferred
from ocean to atmosphere (thermal damping). Horizontal and vertical
transports of colder surrounding water into the region of enhanced
SST anomaly counteract the positive feedback mechanisms (dynamical
damping Lübbecke and McPhaden, 2013).
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Figure 2.3: SST anomaly patterns for the PDO (top left) and ENSO (bottom left)
derived by regressing monthly SST anomalies onto the principle
component time series (PDO at top right, ENSO at bottom right) of
the leading empirical orthogonal function for the area indicated
by the black rectangles. Analysis is based on the Hadley Centre’s
sea ice and sea surface temperature data set (HadISST1) (Rayner
et al., 2003) for the period between 1870–2014. This figure is taken
from https://climatedataguide.ucar.edu/climate-data/

pacific-decadal-oscillation-pdo-definition-and-indices

(Deser et al., 2016) and has originally been adapted from Deser
et al. (2010).

Anomalous westerlies associated with tropical deep convection
are strongest around the equator and decrease towards the poles
(Clarke, 1994). This results in a wind stress curl anomaly which induces
poleward transport of upper level ocean water ultimately discharging
the heat from the equatorial region (Clarke et al., 2007). Therefore,
after full development of the El Niño state, the dampening feedbacks
become more dominant. Reinstated easterly trade winds feature an
upwelling oceanic Kelvin wave which propagates westward. Thereby,
the ocean state transitions into the cold La Niña phase. This decrease of
the eastern and central Pacific SSTs is enhanced by the aforementioned
positive feedback mechanisms (Bjerknes, zonal advective, Ekman and
thermocline feedback) as a response to enhanced trade winds and
stronger west-east SST gradient.

A seasonal phase locking of the ENSO cycle is indicated by observed
variability of eastern and central tropical Pacific SST. The highest
variability is detected for austral late spring and early summer season,
while the lowest variability is observed for austral fall (Wengel et al.,

https://climatedataguide.ucar.edu/climate-data/pacific-decadal-oscillation-pdo-definition-and-indices
https://climatedataguide.ucar.edu/climate-data/pacific-decadal-oscillation-pdo-definition-and-indices
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2018; Timmermann et al., 2018). The reason for this phase lock is
seasonally varying stability of the coupled ocean atmosphere system.
The positive feedback mechanisms are greatest between September
and December when eastern Pacific cold tongue is normally most
pronounced, whereas the negative feedback mechanisms are greatest
between January and April (Wengel et al., 2018). Therefore, El Niño
development is typically initiated in austral fall, intensifying through
winter and spring and reaching maximum SST anomalies in the central
or eastern tropical Pacific in early summer. In the following year, the
transition to La Niña begins in austral fall and peaks in the following
summer (Timmermann et al., 2018). La Niña conditions are typically of
lesser magnitudes compared to El Niño and can persist up to several
years. The seasonal phase lock leads to an austral fall predictability
barrier of ENSO development (Levine and McPhaden, 2015).

Individual El Niño events can vary considerably regarding their
spatial and temporal evolution (Ashok et al., 2007; Kug et al., 2009;
Capotondi et al., 2015). A common distinction between eastern Pacific
El Niño events and central Pacific El Niño events, sometimes referred
to as El Niño modoki (Ashok et al., 2007), is made. Superposition
of these different flavors, which are also associated with respective
patterns from the two leading Empirical Orthogonal Functions (EOFs)
of tropical Pacific SST anomalies, results in a continuous spectrum of
ENSO diversity (Timmermann et al., 2018). Through teleconnections,
these ENSO flavors can have different implications for remote regions
(Ashok et al., 2007; Tedeschi et al., 2013). However, due to short
historical records, it is often difficult to distinguish different modes
of this diversity to identify varying implications on remote regions
(Timmermann et al., 2018).

The intensity and occurrence frequency of central Pacific El Niño
events has been increasing since the 1990s (Lee and McPhaden, 2010).
This increase has been attributed to a decadal oscillation of ENSO flavor
variability related to low frequency weather noise (Newman et al.,
2011), which is consistent with model simulations without external
forcing (Wittenberg et al., 2014). However, the question whether trop-
ical Pacific decadal variability might be attributable to fundamental
decadal scale processes has not been fully resolved yet (Newman et al.,
2016; Timmermann et al., 2018) partly due to missing long-term data
records (Timmermann et al., 2018).

Low frequency ENSO variability is believed to be one of multiple
drivers for decadal variability in the North Pacific (Newman et al.,
2016). For the northern Pacific, the time series of the SST pattern which
explains the most temporal variability of this basin is termed the PDO

(Fig. 2.3). It is defined as the variation of the principle component of
the leading EOF determined from SST anomalies (Mantua et al., 1997;
Zhang et al., 1997). Different phases of this climate mode are asso-
ciated with precipitation and temperature anomalies across various



18 background and climatic features of the atacama desert

regions on the globe (Mantua and Hare, 2002). Furthermore, the PDO

modulates the way ENSO impacts various regions (Wang et al., 2014).
While the pattern resembles the ENSO pattern, the PDO acts on

longer time scales, such that since the beginning of the satellite era
(1980s) only one phase shift occurred. A prevailing warm phase with
enhanced SSTs at the eastern margins of the Pacific ended in the late
1990s. It was followed by the onset of a cold phase which lasted
at least until 2015 and may recently be shifting back to the warm
phase (Newman et al., 2016). While the ENSO pattern reveals a marked
amplitude maximum for the tropical Pacific, the PDO is characterized
by a broader pattern extending into higher latitudes (Fig. 2.3).

The mechanisms which are currently considered to be driving forces
behind the PDO are revisited by Newman et al. (2016). In this work,
the PDO is considered as a synthesis of multiple processes comprising
stochastic atmospheric forcing, teleconnections from the tropics and
midlatitude ocean dynamics.

The stochastic forcing is introduced by variation of the Aleutian Low.
A stronger Aleutian Low enhances advection of colder and drier air on
its western side and drives stronger westerlies over the central North
Pacific and stronger southerlies along the west coast of North America.
This leads to stronger heat fluxes between ocean and atmosphere at
the central North Pacific and enhanced Ekman transport feedback of
the upper ocean layer (Alexander and Scott, 2008), which, in turn,
results in colder SSTs at the central North Pacific and warmer SSTs

at the eastern North Pacific. Therefore, an intensified Aleutian Low
potentially yields a positive phase of the PDO while the mechanism is
reversed for a weaker Aleutian Low. Lagged correlations reveal that
the variability of the Aleutian Low leads the PDO implying its driving
force (Newman et al., 2016).

Teleconnections between the tropics and the North Pacific are three-
fold (Newman et al., 2016). Via a so called atmospheric bridge (Alexan-
der et al., 2002; Liu and Alexander, 2007), a positive or negative ENSO

phase is linked to a stronger or weaker Aleutian Low and, thus, leads
to a positive or negative impact on the PDO, respectively (Alexander
et al., 2002; Alexander and Scott, 2008). Furthermore, eastward propa-
gating equatorial Kelvin waves associated with the onset of El Niño
are redirected polewards at the eastern Pacific boundary. On this pole-
ward course, they create sea level and SST anomalies and excite oceanic
Rossby waves (Johnson and O’Brien, 1990; Clarke, 1994). That way,
such Kelvin waves have a direct impact on the ocean state of the North
Pacific. Finally, decadal scale ENSO variability, i. e. low pass filtered SST

anomalies, results in a primary EOF which resembles the PDO pattern
(Zhang et al., 1997). Therefore, ENSO is considered to be linked to the
PDO and to lead it according to lagged correlations (Newman et al.,
2016). Observations reveal that decadal scale variations in the tropical
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oceans are coherent with variations in the North Pacific, indicating a
coupling between these regions (Deser et al., 2004).

Different Ocean dynamics affect the nature of the PDO in terms of
frequency and seasonal characteristics. For instance, a deeper mixed
layer in boreal winter results in downward mixing of potential SST

anomalies to depths which are decoupled from the surface during the
summer season. A shallower mixed layer during summer embodies
a lower heat inertia so that it responds faster to atmospheric pro-
cesses resulting in greater SST variability. However, when the mixed
layer depth increases during the subsequent winter, the conserved SST

anomalies reemerge to the surface. This so called reemergence mech-
anism (Alexander and Deser, 1995) leads to higher autocorrelation
of boreal winter and spring season with following winter and spring
seasons compared to summer and fall (Newman et al., 2016).

Another form of ocean dynamics which affect the PDO is triggered
by changes in the strength of the Aleutian Low. The resulting anoma-
lous wind stress curl excites westward propagating Rossby waves,
which, in turn, leads to a dynamic adjustment of the upper ocean
gyre circulation (Qiu and Chen, 2005; Taguchi et al., 2007). These
adjustments manifest in shifts of the SST anomaly pattern in the sub-
arctic frontal zone of the western North Pacific. These SST shifts cause
changes of heat and moisture exchange between ocean and atmo-
sphere in this region (Tanimoto et al., 2003; Taguchi et al., 2012). The
mediating Rossby waves take about 3–10 years to cross the Pacific
basin (Sasaki and Schneider, 2011; Sasaki et al., 2013) feeding the
interannual characteristic of the PDO (Newman et al., 2016). The way
in which the resulting SST changes feed back onto the PDO remains
poorly understood (Newman et al., 2016).

2.3.2 Regional impacts

There are several studies focussing on or including an analysis of
the interannual atmospheric variability in the Atacama Desert. Such
studies typically utilize reanalysis data, radiosoundings, in-situ pre-
cipitation measurements and gridded precipitation data sets derived
from gauge stations. Continuous data from precipitation gauges are
limited to the outer edge of the Atacama Desert, i. e. stations at the
western coast or at the slopes of the Andes and at the Altiplano at the
eastern side (Houston and Hartley, 2003; Houston, 2006; Schulz et al.,
2012; Valdés-Pineda et al., 2016). These studies mostly reveal a link
between ENSO and interannual variability of precipitation. This link is
shaped differently depending on region and season.

At the Bolivian Altiplano in the northeast of the Atacama core
desert region, the wet season, i. e. austral summer, coincides with the
typical peak season of El Niño events (Chapter 2.3.1). Thus, summer
precipitation correlates to the ENSO state: While El Niño is associated
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with drier conditions, La Niña is associated with wetter conditions
(e. g. Vuille, 1999; Garreaud and Aceituno, 2001; Garreaud et al.,
2003; Houston, 2006; Garreaud et al., 2009; Marín and Barrett, 2017;
Canedo-Rosso et al., 2019).

During austral summer, i. e. the wet season, precipitation across the
Altiplano is related to moist easterly episodes which result from a
southward shift of the Bolivian High (Vuille, 1999; Garreaud et al.,
2003). While the seasonal mean zonal wind is not related to intensity
of single precipitation events, it shows an almost linear relationship
to the number of days with precipitation and, thus, to the seasonally
accumulated precipitation (Garreaud and Aceituno, 2001).

The frequency of these moist easterlies is modulated by ENSO in the
following way. El Niño related SST anomalies in the eastern Pacific
lead to an expansion of the troposphere. These positive geopotential
height anomalies in upper levels result in enhanced westerly winds
so that less wet episodes can occur across the Altiplano (Vuille, 1999;
Garreaud and Aceituno, 2001; Garreaud et al., 2003). On the other
hand, La Niña is associated with negative SST anomalies which lead
to stronger subsidence over the southeast Pacific. This allows more
frequent wet easterly episodes (Vuille, 1999).

A similar summer seasonal relationship between zonal wind and
moisture supply in terms of Integrated Water Vapor (IWV) has been
observed farther south at the Chajnantor Plateau at a height of about
4800 m (Marín and Barrett, 2017). This region is characterized by
extremely dry conditions suitable for very demanding astronomical
observations (Giovanelli et al., 2001). They are carried out, for instance,
at the Atacama Large Millimeter Array (ALMA Brown et al., 2004)
and the Atacama Pathfinder Experiment (APEX Güsten et al., 2006).

Even though the fundamental link between ENSO phase and precipi-
tation has been identified, not every El Niño or La Niña is associated
with an anomalously dry or wet summer, respectively, resulting in
low correlations. This can be attributed to the diversity of the ENSO

phases resulting in different meridional positions of the zonal wind
anomalies (Garreaud and Aceituno, 2001). Another reason might be
the different temporal offsets of the ENSO peak and the Altiplanic wet
season (Garreaud et al., 2003).

While ENSO influence is not significant for austral winter at the
Altiplano (Vuille, 1999), the situation is opposite at the western coast
of the Atacama Desert. El Niño conditions appear to enhance precipi-
tation for both winter and summer (Houston, 2006; Vargas et al., 2006;
Schulz et al., 2012). During austral winter, the enhanced precipitation
is typically associated with a developing El Niño, featuring a blocking
situation in midlatitudes. The latter pattern shifts the storm tracks
farther north, resulting in enhanced precipitation of the coastal and
southern Atacama Desert (Vargas et al., 2006). The relationship with
La Niña is generally weaker and of opposite sign (Houston, 2006).
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The recurring period of wet winter conditions at the coastal stations
is about 12 years, whereas El Niño occur every 3.3 years on average
(Houston, 2006). This indicates that the ENSO state might favor certain
conditions but does not directly cause them. Therefore, specific synop-
tic conditions have to coincide for anomalous precipitation (Houston,
2006). Furthermore, the ENSO signal may be amplified or damped
by the PDO (Andreoli and Kayano, 2005; Kayano and Andreoli, 2007;
Valdés-Pineda et al., 2018).

Given its decadal time scale, the PDO received less attention in
previous studies on impacts on the Atacama Desert, possibly due to
the requirement of very long data records. Valdés-Pineda et al. (2018)
retrieved a suitable precipitation record from the gauge station at
Copiapó located at the southern Atacama coast (27◦S). They reveal a
strong phase agreement between decadal scale precipitation variability
and PDO. Furthermore, for another station at Antofagasta (23.6◦S),
a long time series of annual precipitation (1904–2000) reveals that
anomalously wet years cluster together during positive PDO phases
(Vargas et al., 2006, their Fig. 2).

The previous studies show the importance of large-scale climate
indices for the moisture supply to the Atacama Desert. Still, the stud-
ies are mostly limited to either the Altiplano at the northeast or to
very few coastal stations. Attempts have been made to interpolate
the composite precipitation signal using a kriging algorithm to fill
the gaps in between (Houston, 2006). However, only three respec-
tive positive and negative ENSO phases were incorporated. While the
mechanism between large-scale tropical variability and precipitation
anomalies in the Bolivian Altiplano has been recognized, it remains
unclear whether the same mechanism guides the ENSO response at
other inland locations within the Atacama Desert. For instance, it is
not known how far west moisture can be transported by recurring
easterly episodes during the summer above the Altiplano. Composite
vertical profiles of specific humidity based on radiosoundings at the
coastal city Antofagasta reveal significantly higher values at higher
tropospheric levels for wet easterly episodes over the Altiplano. Nev-
ertheless, the analogue composite for La Niña conditions does not
reveal a significant moistening (Vuille, 1999).

For the PDO, a positive interference with the ENSO signal has been
indicated by studies which investigated South America on a conti-
nental scale (Andreoli and Kayano, 2005; Kayano and Andreoli, 2007;
Garreaud et al., 2009). However, only very few results are provided
with specific focus on the Atacama Desert. Using a wavelet analysis of
precipitation measurements at the Altiplano for a 68-year period (1948–
2016), no clear relationship to the PDO could be identified (Canedo-
Rosso et al., 2019). Longer station records were considered for very few
coastal stations, revealing potential implications of this climate mode
for the Atacama (Vargas et al., 2006; Schulz et al., 2012; Valdés-Pineda
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et al., 2018). This indicates that century-long data records might be
required to obtain significant results.

2.4 synoptic driver

The climate of the Atacama Desert is characterized by stable con-
ditions with prevailing subsidence of warm dry air (Chapter 2.1).
Possible disturbances are troughs and cut-off lows which emanate
northward from higher latitudes across the Pacific and coastal region.
Furthermore, thunderstorm activity and precipitation episodes oc-
cur across the Altiplano during austral summer which may reach
over the western cordillera of the Andes into the Atacama Desert.
These synoptic-scale events are associated with a southward displace-
ment of the Bolivian High. Another disturbance could be posed by
Atmospheric Rivers (ARs). Their role has not yet been investigated for
this region.

Cut-off lows are closed cold low pressure systems which emanate
from a trough within the basic westerly flow at midlatitudes. The
cut-off process is typically associated with Rossby wave breaking and
a split jet structure (Peters and Waugh, 2003; Ndarana and Waugh,
2010; Reyers and Shao, 2019). Within a region slightly south of the
Atacama Desert between 30◦S and 40◦S, cut-off lows can occur all year
round with an average of seven events per annum with a seasonal
preference of fall, winter and spring (Pizarro and Montecinos, 1999).
These cut-off lows typically produce rainfall at the associated inland
region. Exceptions are very weak cut-off lows which are warmer and
characterized by a weaker pressure gradient (Pizarro and Montecinos,
1999).

Further north in direct connection to the Atacama Desert, extended
winter time (April–September) cut-off lows have been attributed to
enhanced inland moisture and a modulated wind regime (Reyers
and Shao, 2019). More details on these regionally occurring cut-off
lows including their formation mechanisms and differences to the last
glacial maximum are provided by Reyers and Shao (2019).The March 2015

Atacama flood
(Bozkurt et al., 2016)

was in fact
accompanied by an

atmospheric river
according to the AR

catalogue by Guan
and Waliser (2015).

The importance of cut-off lows is also displayed by an episodes of
extreme precipitation which occurred in March 2015. For this case,
heavy rain was linked to positive SST anomalies in the eastern Pacific
and the presence of a cut-off low anomalously north near the Atacama
coast (Bozkurt et al., 2016).

Cut-off lows and troughs have been associated with enhanced di-
urnal northwesterly winds and calm nocturnal conditions for a mea-
surement site within the central Atacama region (Jacques-Coper et al.,
2015). In contrast, undisturbed conditions favor easterly winds at night
(Jacques-Coper et al., 2015). Enhanced IWV at the Altiplano has also
been related to northwesterly midtropospheric flow resulting from
troughing in particular for austral winter (Marín and Barrett, 2017).
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During the austral summer, precipitation occurs episodically across
the Altiplano. These wet episodes are related to a southward shift of
the Bolivian High and have a typical duration of a few days (Garreaud
et al., 2003) and, thus, can be considered synoptic scale events. Mo-
mentum of these upper level easterlies is mixed downward on the
eastern side of the Andes so that the upslope flow of a very moist
boundary layer air of the interior continent is intensified. This mois-
ture advection fuels the Altiplano with additional latent heat, allowing
deep convection and intense precipitation (Garreaud et al., 2003) The
storm activity is mostly limited to the Altiplano and declines rapidly
at the western slopes of the Andean mountain range.

First termed “tropospheric rivers” (Newell et al., 1992), filamentary
structures of enhanced water vapor in the troposphere have been
identified and associated with major moisture and heat transport from
the tropics towards higher latitudes. The term AR was introduced later
on by Zhu and Newell (1998), who pioneered identification algorithms
for these objects. Nowadays, ARs are defined as a “long, narrow, and
transient corridor of strong horizontal water vapor transport that
is typically associated with a low-level jet stream ahead of the cold
front of an extratropical cyclone” (Ralph et al., 2018). They constitute
an emerging topic to the hydrological and meteorological science
and engineering community (Wilson et al., 2020). Upon landfall at the
eastern boundaries of the oceans, ARs can trigger extreme precipitation
events associated with floods, strong winds as well as essential water
supply (e. g. Newell et al., 1992; Zhu and Newell, 1998; Neiman et al.,
2008; Ralph and Dettinger, 2011; Ramos et al., 2016; Waliser and Guan,
2017; Paltan et al., 2017; Blamey et al., 2018; Nash et al., 2018; Viale
et al., 2018; Rauber et al., 2020).

From a global distribution of AR landfall frequency, it is evident that
these systems are mainly impacting coastal regions of the midlatitudes
with decreasing frequencies towards the equator (Guan and Waliser,
2015). Specifically for the South American continent, ARs occur mainly
between 30◦S and 60◦S with peak frequencies between 45◦S and 50◦S
(Viale et al., 2018). However, indication is given that a few landfalls
happen even as far north as the coast of the Atacama Desert (Guan
and Waliser, 2015, cf. their Fig. 8a). Even though their frequency is
comparably low in this region, they may be related to a significant
fraction of the overall very rare precipitation. Still, the role of ARs for
the Atacama Desert has not been assessed yet.





3
O V E RV I E W O F T H E S T U D I E S

The goal of this thesis is to provide a comprehensive view on the
moisture supply to the Atacama Desert. In this chapter, the overarching
hypotheses are raised together with general goals. Thereafter, the
corresponding studies carried out to achieve these goals are introduced
and the respective objectives are specified in more detail.

3.1 aims and hypotheses

From the review of previous studies regarding the climatic setting
of the Atacama Desert and related atmospheric processes, it is clear
that different sources of moisture are at play for different parts of
this region. At the northeastern edge of the Atacama, episodes with
easterly winds are associated with the prevailing summer precipitation
over the Altiplano (e. g. Garreaud and Aceituno, 2001; Garreaud et al.,
2009). The rain producing moisture originates in the interior of the
South American continent, the Amazon Basin (Garreaud et al., 2003).
On the other end of the Atacama Desert, coastal vegetation and fog
ecosystems rely on the advection of the Pacific stratocumulus (e. g.
Cereceda et al., 2002; Farías et al., 2005; Pinto et al., 2006; Cereceda
et al., 2008b; Lobos Roco et al., 2018; Lehnert et al., 2018b; Río et al.,
2018). For the central Atacama between Altiplano and coast, the main
moisture source is still unclear.

Furthermore, various studies reveal that large-scale patterns, such
as ENSO or the PDO, exert different effects depending on region and
season. While a negative relationship is reported for the Altiplano,
where decreased summer precipitation is associated with the positive
ENSO phase (El Niño) (e. g. Vuille, 1999; Garreaud and Aceituno,
2001; Garreaud et al., 2003; Canedo-Rosso et al., 2019), the opposite
is observed at the southwestern coast. There, increased precipitation
amounts are related to the positive ENSO phase (e. g. Vuille, 1999;
Houston, 2006; Vargas et al., 2006; Schulz et al., 2012). The ENSO

signal appears to be amplified by the PDO whenever both climate
indices are in the same phase (Garreaud et al., 2009; Andreoli and
Kayano, 2005; Kayano and Andreoli, 2007). Moreover, the positive
PDO phase is related to overall wetter decades at the coast (Vargas
et al., 2006; Schulz et al., 2012; Valdés-Pineda et al., 2018). To sum
up, the seasonal influences by these large-scale patterns appear to be
opposite between the southwest and northeast of the Atacama Desert.
The border between these two poles remains undetermined.

25



26 overview of the studies

Large-scale climate modes do not directly cause water supply, e. g.
through precipitation, but might favor related synoptic conditions
(Houston, 2006). An example of such synoptic features are cut-off lows
which originate from higher latitudes over the Pacific and are associ-
ated with enhanced moisture supply in the Atacama Desert (Bozkurt
et al., 2016; Pizarro and Montecinos, 1999; Reyers and Shao, 2019).
They weaken the inversion strength and may lift the inversion base
height, which allows the moist maritime boundary layer to penetrate
farther inland. However, cut-off lows are typically located in height lev-
els above the boundary layer. Therefore, they steer air masses from the
northwest through the free troposphere towards the Atacama Desert.
These circumstances suggest that the origin of the related moisture
might be the remote Pacific. However, this assumption has not been
verified yet by the scientific community.

Another synoptic phenomenon which might be relevant for the
Atacama Desert could be ARs even tough their role has not been
addressed properly for this region. According to Guan and Waliser
(2015), a few landfalls are detected at the coast of northern Chile. Yet,
AR-related precipitation fraction as well as associated mechanisms
remain unknown.

In order to close existing gaps regarding moisture sources and
the role of large-scale and synoptic-scale driven water supply in the
Atacama Desert, this thesis raises two overarching hypotheses:Overarching

hypotheses of this
work. 1. The main source of moisture supplied to the Atacama Desert is

the Pacific ocean.

2. The variability of moisture availability in this region is driven by
synoptic-scale rather than large-scale patterns.

These hypotheses provide the main guidance for the arrangement
of the analyses presented in Part II. They comprise three main studies
and one additional analysis. The way they are related to one another
and to the moisture cycle in the Atacama Desert is depicted in Figure
3.1.

One of major forms of moisture supply to fog-dependent ecosystems
in the Atacama are stratocumulus clouds, which provide moisture
from the Pacific ocean by intercepting with the coastal orography
upon inland penetration. In order to identify the locations influenced
by stratocumulus, cloud top and base heights should be determined.
One of the most suitable ways to determine these height on a region-
wide scale is to use satellite observations. Whereas satellite-based
products are readily available for cloud top height, this is not the case
for cloud base height. Therefore, this thesis aims at deriving a suitable
satellite-based cloud base height retrieval method, which is introduced
in Chapter 3.2.

Speaking of stratocumulus penetrating inland, it should be noted
that stratocumulus clouds necessarily mix with dry inland air. This
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Figure 3.1: Schematic overview of atmospheric water cycle elements for the
Atacama Desert which are addressed in this thesis. The studies
are explicitly annotated with respective Chapter numbers. Bottom
right: Photograph of a Tillandsia dune at Cerro Oyarbide taken
by Andrea Jaeschke (Jaeschke et al., 2019, Fig. 1c, used under the
Creative Commons CC-BY-NC- ND license).

leads to an evaporation of the cloud liquid water, resulting in water
vapor enriched air. Aside from the advection of evaporating stra-
tocumulus, water vapor can be transported to the core desert region
directly from the Pacific. But also other sources of water vapor, such
as ground water evaporation or the interior of the South American
continent, might be at play.

Whether easterly or westerly source regions dominate the moisture
supply is closely linked to large-scale patterns, such as ENSO and PDO.
Therefore, this thesis includes a study which investigates the influence
of these large-scale climate modes and which shows how potential
source regions for water vapor can be attributed to specific phases of
large-scale patterns. Furthermore, some indications of the seasonality
of this dependance are discussed. An introduction to this study is
given in Chapter 3.3.

Another form of water supply to the Atacama is fog. While the
inland penetration of maritime stratocumulus constitutes one source
of fog enabling moisture, results from the study introduced in Chapter
3.3 indicate that the continental interior might be another source of
water vapor contributing to fog formation depending on the ENSO

state. To determine whether moisture sources other than the Pacific
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stratocumulus and maritime water vapor are involved in fog formation,
it is necessary to identify the spatial distribution of fog over time.

To achieve these goals, a novel satellite-based fog retrieval method
is developed. Furthermore, this new algorithm enables to determine
the influence of large-scale and synoptic patterns on fog occurence
frequency. The corresponding study is introduced in Chapter 3.4.

Besides fog and water vapor, precipitation is a third form of water
supply to the Atacama Desert. Precipitation events are associated with
cut-off lows (e. g. Bozkurt et al., 2016; Reyers and Shao, 2019) and
by an episodically southward displaced Bolivian High during austral
summer (Garreaud et al., 2003). To add a so far unattended synoptic
feature to this range of phenomena, this thesis aims to determine the
role of ARs for the moisture supply to the Atacama Desert. Further-
more, the related origin of the precipitation water is assessed. A brief
overview of the corresponding study is provided in Chapter 3.5.

3.2 cloud heights

Clouds heights over the near coastal Pacific determine where fog
can be formed at the cloud-intercepting coastal cliff and mountain
range. Therefore, monitoring the cloud top and base heights allows
to estimate potential habitats for plants which adapted to water and
nutrition supply by fog (e. g. Tillandsia; Rundel et al., 1997; Pinto et al.,
2006; Westbeld et al., 2009; González et al., 2011). Very few studies exist
regarding cloud heights of the near coastal maritime stratocumulus.
These are limited to individual coastal sites based on human observers
at three sites (Muñoz et al., 2016) and indirectly by determining fog
water supply along a height transect at Alto Patache research station
(Cereceda et al., 2008b).

Quantifying the spatio-temporal cloud height distribution and vari-
ability region-wide would enable relating these stratocumulus prop-
erties to biological and geological processes, such as desert soil for-
mation (Voigt et al., 2020), plant growth within coastal fog oases
(Muñoz-Schick et al., 2001) or the Tillandsia nitrogen cycle within the
coastal Atacama Desert (Latorre et al., 2011; Díaz et al., 2016). Further-
more, the heights of the coastal clouds determine the regions where
fog water can be collected most efficiently. Fog water collection is of
great social and economic impact in this region (e. g. Schemenauer
and Cereceda, 1994b; Osses et al., 2000; Larraín et al., 2002).

To achieve region-wide coverage, satellite remote sensing of cloud
heights would be beneficial. While several satellite-based data prod-
ucts are available for the cloud top height, no operational retrieval
algorithm for the cloud base height exists to date. In Chapter 4, a
novel satellite-based cloud base height retrieval method is developed
and applied to the southeast Pacific stratocumulus deck.
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3.3 water vapor variability

The influence of low frequency climate modes, such as ENSO or the
PDO, on the water supply has almost solely been assessed for the
Altiplano (e. g. Vuille, 1999; Garreaud and Aceituno, 2001; Garreaud
et al., 2003; Canedo-Rosso et al., 2019) and very few coastal station
records (Vuille, 1999; Houston, 2006; Vargas et al., 2006; Schulz et al.,
2012; Valdés-Pineda et al., 2018). Few region-wide studies are based on
gridded precipitation data sets or interpolations derived from sparsely
distributed gauge measurements (Vuille, 1999; Andreoli and Kayano,
2005; Houston, 2006; Kayano and Andreoli, 2007; Garreaud et al.,
2009).

To determine the role of large-scale climate modes for the Atacama
Desert in more detail, a long-term data record is needed which can ad-
equately represent decadal-scale variability as expected, for example,
from the PDO. While satellite-based observations provide sufficient
spatial coverage, available records are too short, since the satellite
era only began in the 1980s. Spatially and temporally consistent data
sets suitable for the assessment of longer time scales are provided
by reanalysis data, such as the European Centre for Medium-Ranged
Weather Forecast’s (ECMWF) twentieth century reanalysis (ERA-20C; Poli
et al., 2016). After a validation of ERA-20C’s moisture representation,
the interannual variability of moisture supply is determined and link-
ages to large-scale drivers are assessed. Besides, the length of the data
record allows to distinguish between long-term trends and decadal
scale oscillations.

For the validation, a time series analysis is carried out comparing
satellite-based IWV retrievals to the reanalysis. As a validated century-
long IWV record for the Atacama Desert, ERA-20C can be considered for
other applications within this region. For instance, long-term IWV trend
analysis is crucial for the development of astronomical observations
which are routinely carried out at observatories in the study area
(Kerber et al., 2014; Otarola et al., 2019). The validation and application
of the 20th century IWV is presented in Chapter 5.

3.4 fog

Near coastal inland fog (Fig. 3.2) is the life vein for many local plant
species (e. g. Muñoz-Schick et al., 2001; Pinto et al., 2006) and is of
great social and economic importance (Schemenauer and Cereceda,
1994b; Osses et al., 2000; Larraín et al., 2002) as mentioned above. The
abundance of fog drives the state of the coastal vegetation, such as the
isotopic composition of Tillandsia (Latorre et al., 2011; Jaeschke et al.,
2019). Furthermore, the amount of organic traces (Mörchen et al., 2019)
and the activity of microbial communities (Jones et al., 2018) depend
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Figure 3.2: Photograph of retreating inland fog taken by a trail camera on 29

June 2017 at 8 CLT (about 30 minutes after sunrise) at weather
station 13 – Cerros de Calate, Chile facing the Pacific Ocean (May
and Hoffmeister, 2018).

on water sources, such as fog. However, a region-wide fog climatology
is still missing.

Regional studies of fog occurrence and water supply are typically
based on either in-situ fog water collection at few individual sites
(e. g. Cereceda et al., 2002; Osses et al., 2005; Cereceda et al., 2008b;
Lobos Roco et al., 2018; Río et al., 2018) or on satellite remote sensing
(e. g. Farías et al., 2005; Cereceda et al., 2008b; Lehnert et al., 2018b).
While studies on fog water collection typically suffer from coarse
temporal resolution, i. e. weekly to monthly measurements of water
accumulation (Río et al., 2018), to date satellite-based studies are
limited to short time periods or small regions.

Moreover, the applied satellite-based fog detection techniques do not
distinguish between low clouds and fog. Only few attempts have been
made to carry out a thorough ground validation. These approaches
involve extensive field work in remote hardly accessible locations to
create ground-based reference data and are limited in space and time
(Cereceda et al., 2002; McIntyre et al., 2005; Osses et al., 2005).

The previously introduced study (Chapter 3.3 Böhm et al., 2020a,
Chapter 5) demonstrates that ENSO modulates IWV across the Atacama
Desert and over the bordering Pacific depending on region and season.
In particular for the austral summer season, the observed IWV modu-
lation can be explained by a link between ENSO and the frequency of
easterlies which advect moist air from the interior continent across the
Altiplano. The way this mechanism might impact the variability of fog
occurrence has not been assessed yet. In the central parts of the Ata-
cama Desert, where radiation fog might dominate compared to other
fog types (Cereceda et al., 2002; Westbeld et al., 2009), enhanced IWV

may result in enhanced nocturnal condensation. However, in order
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to assess a potential relationship, a fog detection method is required
which can be applied region-wide with daily resolution.

Such a detection method would also allow to relate the variability
of fog occurrence to specific synoptic conditions. Thereby, potential
moisture sources could be identified more accurately. A robust rela-
tion between the maritime stratocumulus and fog occurrence clearly
establishes the Pacific as the moisture source for the coastal desert
(e. g. Farías et al., 2005; Cereceda et al., 2008b; Río et al., 2018). Farther
inland, where radiation fog might be more dominant compared to the
stratocumulus advection, the source of moisture is less clear.

In order to build a new fog detection method, appropriate data
are required for validation. The study presented within this thesis
(Chaper 6) utilizes in-situ observations from a network of climate
stations (Hoffmeister, 2017b; Schween et al., 2020) to derive a ground-
based reference data set. These stations have been installed recently
by the CRC 1211. Furthermore, Moderate Resolution Imaging Spectro-
radiometer (MODIS) brightness temperatures from thermal emissive
bands are applied to train a neural network to detect fog. Thereby, all
spectral information which is available from the spaceborne instru-
ment can be exploited by the detection algorithm.

3.5 atmospheric rivers

The studies introduced above focus on cloud and fog water supply,
which become dominant moisture sources due to extremely low pre-
cipitation rates. Additionally, water vapor is studied as a representative
variable which allows to investigate longer time series. Nevertheless,
precipitation events are the dominant driver for fluvial alterations of
the landscape through land slides and debris flow (e. g. Vargas et al.,
2006; Haug et al., 2010; Jordan et al., 2019; Walk et al., 2020), which
are manifested and preserved in climate archives (Ritter et al., 2019;
Diederich et al., 2020; Bartz et al., 2020). To interpret such archives, it is
necessary to identify synoptic drivers for precipitation and understand
the underlying mechanisms.

While synoptic drivers, such as cut-off lows and troughs, have been
discussed in previous studies (e. g. Montecinos and Aceituno, 2003;
Vargas et al., 2006; Jacques-Coper et al., 2015; Bozkurt et al., 2016;
Marín and Barrett, 2017; Reyers and Shao, 2019), the role of ARs for
the Atacama Desert has not been investigated so far. Intriguingly, a
study revealing AR landfall frequencies on a global scale indicates that
a few of theses systems reach the coast of northern Chile each year
(Guan and Waliser, 2015). As precipitation events are extremely rare
in this environment, a few ARs may already account for a substantial
fraction of the total rainfall. The presented study (Chapter 7) quantifies
this impact on a region-wide scale for the Atacama Desert using a
state-of-the-art AR catalog (Guan and Waliser, 2015; Guan et al., 2018)
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together with a previously validated precipitation data set from a
highly resolved long-term Weather Research and Forecasting Model
(WRF) simulation (Reyers, 2018; Reyers et al., 2020).

As the Atacama Desert is characterized by strong topographical gra-
dients, the vertical structure of regionally occurring ARs is investigated
by means of a case study and a composite analysis. This allows a better
understanding of the relevant processes, such as moisture advection
and cloud formation. Furthermore, the role of the MBL and potential
orographic effects are discussed. Ultimately, potential pathways of the
moisture can be estimated. To further identify the origin of the moist
air mass, back trajectories are calculated as part of the case study.



Part II

M E T H O D D E V E L O P M E N T A N D A N A LY S I S





4
C L O U D H E I G H T S

cloud base height retrieval from multi-angle satellite

data

Böhm, C., O. Sourdeval, J. Mülmenstädt, J. Quaas, and S. Crewell
(2019). “Cloud base height retrieval from multi-angle satellite data.”
In: Atmospheric Measurement Techniques 12.3, pp. 1841–1860. doi:
10.5194/amt-12-1841-2019.

The content of this chapter has been published under the Creative
Commons Attribution 4.0 License. Formatting changes were made to
adopt the format of this thesis.
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abstract. Clouds are a key modulator of the Earth energy bud-
get at the top of the atmosphere and at the surface. While the cloud
top height is operationally retrieved with global coverage, only few
methods have been proposed to determine cloud base heights (zbase)
from satellite measurements. This study presents a new approach to
retrieve cloud base heights using the Multi-angle Imaging SpectroRa-
diometer (MISR) on the Terra satellite. It can be applied if some cloud
gaps occur within the chosen distance of typically 10 km. The MISR
cloud base height (MIBase) algorithm then determines zbase from the
ensemble of all MISR cloud top heights retrieved at a 1.1-km horizon-
tal resolution in this area. MIBase is first calibrated using one year
of ceilometer data from more than 1500 sites within the continental
United States of America. The 15th percentile of the cloud top height
distribution within a circular area of 10 km radius provides the best
agreement with the ground-based data. The thorough evaluation of
the MIBase product zbase with further ceilometer data yields a corre-
lation coefficient of about 0.66 demonstrating the feasibility of this
approach to retrieve zbase. The impacts of the cloud scene structure
and macrophysical cloud properties are discussed. For a three year
period, the median zbase is generated globally on a 0.25◦ × 0.25◦ grid.
Even though overcast cloud scenes and high clouds are excluded from
the statistics, the median zbase retrievals yield plausible results in par-
ticular over ocean as well as for seasonal differences. The potential of
the full 16 years of MISR data is demonstrated for the southeast Pacific
revealing interannual variability in zbase in accordance with reanalysis
data. The global cloud base data for the three year period (2007–2009)
are available at https://doi.org/10.5880/CRC1211DB.19.

4.1 introduction

As Boucher et al. (2013) state in the IPCC Assessment Report 5, clouds
and aerosols continue to contribute the largest uncertainty to estimates
and interpretations of the Earth’s changing energy budget. To describe
the effect of clouds on the radiation energy budget, the geometric
thickness, the vertical location of clouds and, therefore, the cloud base
height (zbase) are crucial parameters. Furthermore, long term observa-
tions of cloud heights would be beneficial to assess the contribution
and the response of clouds to climate change. zbase is a key parameter
for the radiative energy budget at the Earth surface. zbase may also
have an impact on ecosystems which are supplied with water by the
immersion of clouds (Van Beusekom et al., 2017). Aviation is another
field which benefits from information on zbase.

Various methods to retrieve the zbase have been proposed applying
different physical concepts, such as active measurements, spectral
methods, approaches using an adiabatic cloud model (e.g., Goren
et al., 2018), and in-situ measurements.

https://doi.org/10.5880/CRC1211DB.19
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From the ground, the most accurate and well-established method
to derive zbase is the backscatter information from a lidar ceilome-
ter, also providing crucial information on visibility for aircraft safety.
Thus, ceilometers are employed at airports. Their number has in-
creased in particular in Europe and North America during the past
couple of years. A dedicated web page hosted by the Deutscher Wet-
terdienst shows the distribution of ceilometer stations around the
world (http://www.dwd.de/ceilomap, last access: 13 March 2019). Ra-
diosondes provide in-situ measurements of thermodynamic variables.
Costa-Surós et al. (2014) compare different methods to infer zbase from
radiosonde data. For the best of these methods, 67 % of the considered
profiles agree with the utilized reference data regarding number of
cloud layers and height category (distinguished are low, middle and
high). Cloud radar transmits microwave radiation to derive vertical
profiles of radar reflectivity. However, this signal strongly depends on
the particle size. Therefore, the occurrence of a few drizzle drops can
mask cloud base. Measurements with radiosondes and cloud radars
are even less common than ceilometers, global coverage cannot be
achieved from the ground today.

From space, active measurements are carried out by CALIOP (Cloud
Aerosol Lidar with Orthogonal Polarization) on the CALIPSO (Cloud
Aerosol Lidar and Infrared Pathfinder Satellite Observations) satellite
(Winker et al., 2010). A valid retrieval of the zbase can only be ensured
if the signal of CALIOP reaches the Earth’s surface, which is only
possible in case of low optical thickness. Optically thick clouds will
lead to attenuation of the signal. The spatial coverage is limited to the
narrow laser beam of CALIOP. The CALIOP cloud base determination
has been revisited by Mülmenstädt et al. (2018). They developed an
algorithm to extrapolate cloud base retrievals for thin clouds into
locations where the CALIOP signal is attenuated within a thicker
cloud before it reaches the cloud base.

Passive measurements in the near-infrared exploiting spectral in-
formation have been proposed by Ferlay et al. (2010). They suggest
an approach to infer the cloud vertical extent from multi-angular
POLDER (POLarization and Directionality of the Earth’s Reflectances)
oxygen A-band measurements. As they point out, the penetration
depth of photons into a cloud, and, hence, the height of the reflector,
depends on the cloud vertical extent and the viewing geometry. Ex-
ploiting the different viewing angles provided by POLDER, Desmons
et al. (2013) apply this approach to infer the vertical position of clouds.
Their comparison to retrievals from the cloud profiling radar on Cloud-
Sat and CALIOP shows that this method works best for liquid clouds
over ocean with a retrieval bias of 5 m and a standard deviation of the
retrieval differences of 964 m. However, this approach has not been
carried out operationally yet. Moreover, an estimate of the cloud top

http://www.dwd.de/ceilomap
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height is required to retrieve the cloud base height from the cloud
vertical extent, which introduces additional uncertainty.

Meerkötter and Zinner (2007) suggest a method to derive zbase of
convective clouds which are not affected by advective motions. An
adiabatic cloud model incorporating measurements of cloud optical
depth and effective radius is used to calculate the geometric extent of
the cloud from the retrieved cloud top height. By introducing a suba-
diabatic factor, Merk et al. (2016) investigate the adiabatic assumption
in more detail. By additionally introducing a factor into the calcula-
tions, they account for subadiabaticity due to entrainment of dry air
through the cloud edges. As a reference, the cloud vertical extent is
derived as the difference between ztop (radar) and zbase (ceilometer)
from ground based measurements. The authors conclude that for their
two year data set neither the assumption of an adiabatic cloud nor the
assumption of a temporally constant subadiabatic factor is fulfilled.

Lau et al. (2012) suggest a new approach to determine zbase utilizing
the Multi-angle Imaging SpectroRadiometer (MISR) on the Terra satel-
lite. For a preliminary case study, they chose the observations from
island Graciosa, Azores, Portugal, for which they compared cloud top
height (z) retrievals from MISR to collocated and coincidental lidar
measurements. Under the assumption that the cloud vertical extent
varies horizontally within the cloud, they retrieve zbase by identifying
the lowest cloud top height in the height profile provided by MISR.
The reference cloud base height (ẑbase) is retrieved from the lidar signal
by visual inspection of the backscatter coefficient in a time-height cross
section over a period of about five hours. They selected 12 cases which
show a promising agreement between MISR and lidar retrievals.

We build on the approach proposed by Lau et al. and develop an
automatic retrieval method to derive zbase from MISR measurements.
Parameters employed in the retrieval scheme are derived from coinci-
dent ceilometer measurements over one year in the continental United
States of America (USA). The performance of the zbase algorithm is
demonstrated by an evaluation with ceilometer over a longer time
period and the potential for application on the global scale and for
longer time series is explored.

The paper is structured as follows. In Section 4.2, the utilized data
from MISR and from ceilometers are described. Section 4.3 introduces
the new retrieval method along with a case study for illustration. In
Section 4.4, the evaluation of the algorithm against the ceilometer
measurements is shown and the effect of the cloud vertical extent on
the performance of the algorithm is discussed. Section 4.5 includes two
applications of the algorithm: the median zbase is presented globally
for a three-year period, and regionally over the southeast Pacific for a
16-year period. Finally, Section 4.6 concludes the study.
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C 

Figure 4.1: Schematic depiction of a cloud field observed from different view-
ing angles during the satellite overpass. Ceilometers, here repre-
sented as a cylindrical box, provide ground-based measurements
of cloud base heights which can be used as reference.

4.2 data

4.2.1 MISR cloud product

MISR is carried on board the Terra satellite and provides sun-synchronous
(equatorial overpass at around 10:30 local solar time) global products
of cloud properties with a 1.1 km horizontal resolution. With an across-
track swath width of 380 km, MISR takes two (poles) to nine (equator)
days for repeated observations of the same site. The MISR Level 2TC
Cloud Product (MIL2TCSP; Diner, 2012; Moroney and Mueller, 2012;
Mueller et al., 2013) is used in this study to provide retrievals of
cloud top height z and a stereo-derived cloud mask (SDCM). Three
years of global data (2007–2009) are utilized here. The MISR Ancillary
Geographic Product (Bull et al., 2011) is additionally used to assign
corresponding spatial coordinates and the average scene elevation for
each pixel. Here, we give a brief summary on how the operational
MISR z product is derived. More in-depth descriptions can be found
in Moroney et al. (2002) and in Marchand et al. (2007).

A cloud field is schematically depicted in Fig. 4.1. MISR hosts
cameras providing a total of nine viewing angles. Besides the nadir
viewing camera (0◦), there are four forward and four aftward viewing
cameras set up at 26.1◦, 45.6◦, 60.0◦ and 70.5◦ angles, respectively. Dur-
ing an overpass, each camera of MISR records the reflected radiances
at its particular viewing angle. A pattern matching routine which
compares the radiances recorded at a wavelength of 670 nm identifies
equal cloud features in the images of the different viewing angles.
Pixels with the least deviation from each other are matched. This way,
a detected cloud feature is observed from multiple satellite positions
with its respective time and viewing angle. If at least three images
can be attributed to the same cloud feature, the cloud motion vector
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along with the horizontal and vertical position of the cloud feature
can be inferred geometrically. This process is not sensitive to absolute
values of the radiances so that this retrieval method is not sensitive to
calibration.

The cloud motion vector is determined at a 17.6 km resolution. For
each of these coarser grid boxes, the cloud motion vector is then
used to determine z at 1.1 km resolution, which is carried out for two
camera pairs individually: one pair (FWD) consisting of the nadir and
26.1◦ forward viewing cameras and the other (AFT) consisting of the
nadir and 26.1◦ aftward viewing cameras. This way, two z values for
the same location are available, and the mean of the two values yields
the final z. In case only one camera pair provides a valid z, it is taken
as the final z at its specific location. To derive the stereo-derived cloud
mask, the two individual z values undergo the following comparison.
The retrieval of each camera pair is classified as surface or cloud
retrieval according to the threshold height hmin (Equation 4.1). This
is Equation 59 in the Algorithm Theoretical Basis documentation by
Mueller et al., 2013, where the threshold height for flat terrain HSDCM

is 560 m, H is the terrain height and σh is the variance of the the terrain
height listed in the Ancillary Geographic Product. Within the MISR
Level 2TC Cloud Product, the cloud top height and the stereo-derived
cloud mask are also provided without wind correction. Here, we use
the the wind corrected data sets.

hmin = HSDCM + H + 2σh (4.1)

The use of two camera pairs allows attribution of a confidence
level to the retrieved z. If the mean of the two values is above or
below the threshold, the pixel will be classified as cloud or surface,
respectively. If only one camera pair provides a valid retrieval, it is
tested against the threshold and classified accordingly. In case only
one camera pair provides a valid retrieval and in case of two valid
retrievals which disagree upon their individual classification, the z
retrieval is marked low confidence. If two retrievals are available which
agree upon their individual classification, the z retrieval is marked
high confidence. Any other case leads to a non-retrieval. Table 4.1
summarizes possible combinations of retrievals from the two camera
pairs and their corresponding attribution within the stereo-derived
cloud mask.

MISR z is given in meters above the World Geodetic System 1984

(WGS 84) surface. To calculate the height above ground level, we
subtract the average scene elevation which is provided within the
Ancillary Geographic Product for each pixel.

The MISR z product is expected to be superior to z products from
other passive instruments. It does not depend on any auxiliary data
and it is not sensitive to calibration. Therefore, it is not granted that
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Table 4.1: Classification scenarios of MISR retrievals. The cloud height ob-
tained using the nadir and the 26.1◦ forward viewing camera pair
(denoted by FWD) and the cloud height obtained using the nadir
and the 26.1◦ aftward viewing camera pair (AFT) are tested against
the threshold height hmin (Equation 4.1) individually and then com-
pared to one another to determine the Stereo-Derived Cloud Mask
(SDCM) attribute.

condition SDCM attribute

FWD and AFT above threshold high confidence cloud

FWD and AFT disagree, mean(FWD, AFT) above threshold low confidence cloud

only one camera pair, retrieval above threshold low confidence cloud

FWD and AFT below threshold high confidence surface

FWD and AFT disagree, mean (FWD, AFT) below threshold low confidence surface

only one camera pair, retrieval below threshold low confidence surface

the application of MIBase to z retrieved by techniques other than the
geometric approach would yield similar results.

4.2.2 METAR data

Aerodrome routine meteorological reports (METAR) (WMO; World
Meteorological Organization, 2013) contain weather observations at
airports worldwide, including measurements of zbase. METARs from
airports from the continental USA provide zbase determined by the
Automated Surface Observing System (ASOS; National Oceanic and
Atmospheric Administration, Department of Defense, Federal Aviation
Administration, and United States Navy, 1998). ASOS utilizes lidar
ceilometers which operate at a wavelength of 0.9 µm and have a vertical
range of 12000 ft (≈ 3700 m). Cloud base heights are routinely retrieved
by evaluating the vertical gradient of the detected backscatter profile
with a temporal resolution of 30 seconds. These individual retrievals
are stored in different bins by rounding to the nearest 100 ft (≈ 30 m)
for heights between the surface and 5000 ft (≈ 1500 m); to the nearest
200 ft (≈ 60 m) for heights between 5000 ft (≈ 1500 m) and 10000 ft (≈
3000 m); and to the nearest 500 ft (≈ 150 m) for heights above 10000 ft
(≈ 3000 m). If there are more than five bins filled with measurements
during a 30 minute period, the cloud heights are clustered into layers
until only five cluster remain. Finally, all cluster heights are rounded
according to the rules given in Tab. 4.2. The lowest three layers are
passed on to the METAR message.

We extract the ceilometer cloud base height ẑbase from METAR data
for a total of 1510 ceilometer sites around the continental USA to
benefit from the homogeneity of the automated measurements and the
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Table 4.2: The ceilometer ẑbase retrievals are rounded to different values de-
pending on their height window according to ASOS User Guide
(National Oceanic and Atmospheric Administration, Department
of Defense, Federal Aviation Administration, and United States
Navy, 1998). The values are originally given in feet and are con-
verted to meters here.

rounded to rounded to

height [ft] nearest value [ft] nearest value [m]

< 5000 100 30.5

5000 to 10000 500 152

> 10000 1000 305
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Figure 4.2: Locations of ceilometer stations utilized in this study across the
continental USA. Data from these stations for the years 2008

and 2007 are used for the calibration of the zbase retrieval algo-
rithm and a subsequent evaluation, respectively. Blue shading
indicates the number of valid coincidental retrievals from MISR
and ceilometers which have been utilized for the calibration (year
2008) and are within the constraints described in the text.

standardized reporting range. ẑbase serves as reference data to which
the zbase derived from the satellite cloud heights is compared. First,
METAR data from 2008 are used to estimate parameters used in the
zbase retrieval algorithm to create the MISR Cloud Base height algo-
rithm (MIBase). Second, to validate the “tuned” algorithm, METAR
data from 2007 are applied for a statistically independent comparison.
For a total of 1510 ceilometer stations, collocated and coincidental
satellite-based zbase retrievals could be found (see below for exact
definition). A distribution of the locations can be seen in Fig. 4.2.

4.3 cloud base height retrieval

The MISR Cloud Base height retrieval (MIBase) algorithm, which
derives zbase from the MISR z product, is developed and calibrated
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with collocated METAR data for defining the involved parameters and
preconditions. The first section of this chapter introduces the retrieval
principle on the basis of a case study. By comparison with METAR
ceilometer measurements from 2008, parameters used within MIBase
are estimated, namely the radius Rc of the MIBase retrieval cell, the
minimum number of valid cloud pixel N and the percentile P of the z
distribution.

4.3.1 Method

We assume that the information on the zbase is included in the distribu-
tion of the z retrievals from the MISR cloud product for a specific area
of limited size. This assumption is valid in a cloud scene with a homo-
geneous zbase and a heterogeneous z similar to the one schematically
depicted in Fig. 4.1. Especially at the edge of a cloud where the cloud
is thinner, z can serve as a proxy for zbase. To ensure that the thinner
edge of the cloud is within the observed MIBase retrieval cell, the
considered area needs to be large enough and the cloud field needs
to be broken. The inherent assumption of a homogeneous zbase over a
certain area presupposes a horizontally constant lifting condensation
level. This is a valid approximation in particular for a well mixed
boundary layer or a homogeneous air mass away from the proximity
of a frontal zone, where advective motion could introduce temperature
or humidity gradients across the horizontal plane.

In order to derive zbase from the z product, the following steps,
which are outlined in Fig. 4.3, are undertaken. First, a retrieval cell has
to be defined. For the comparison to the ceilometer measurements,
we consider a circular area with the radius Rc around its midpoint
at a ceilometer station. In order to estimate the magnitude of Rc, we
consider the following: METAR ẑbase retrievals are representative for
a time window of 30 minutes. Within this time window and at a
typical wind speed of approximately 10 ms−1, a cloud would shift its
position about 20 km in the wind direction. Therefore, the magnitude
of Rc should be on the order of kilometers. The impact of Rc on the
retrieved zbase and, therefore, the deviation from the ceilometer ẑbase
is discussed below. When we apply the algorithm to retrieve a global
estimate of zbase, we use a regular lat-lon grid of 0.25◦ (see Section 4.5).
This grid size corresponds to a meridional length of the grid boxes of
about 28 km and a zonal length ranging between 25 km (25◦N) and
18 km (50◦N), taking the continental U.S.A. as an example. A greater
MIBase cell increases the chance of seeing the thinner part of the cloud.
This could lead to a more realistic zbase retrieval. In turn, for a smaller
MIBase cell the assumption of a homogeneous zbase is more realistic.

For each grid cell or circular MIBase cell, the enclosed z retrievals
from the MISR cloud product are processed further. MIBase only
selects those z retrievals which are marked high confidence cloud
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MISR − AGP MIL2TCSP

 ASE Lon Lat  z SDCM

Rfv = 10 km

grid resolution

require n > N

select bottom layer

apply percentile P

zbase (a.s.l.) −  ASE

zbase (a.g.l.)

select pixel
within area

require at least one "high 
 confidence surface" pixel

select "high confidence cloud" pixel

distinguish 
 multiple layer

n pixel
per layer

hgap = 500 m

N = 10

P = 15

Figure 4.3: Flow chart of the zbase retrieval algorithm. MISR’s MIL2TCSP
cloud product provides z and the Stereo-Derived Cloud Mask
(SDCM). MISR’s Ancillary Geographic Product (MISR-AGP) pro-
vides the Average Scene Elevation (ASE) and the longitude and
latitude coordinates for each pixel. Starting from these products,
the depicted processing steps are undergone to derive zbase. The
parameters which have been optimized during the calibration are
highlighted in orange.

(hcc) according to the stereo-derived cloud mask. A consideration of
retrievals marked low confidence cloud has shown a decrease of the
correlation with the ceilometer ẑbase. An example of a cloud field with
z retrievals and the corresponding stereo-derived cloud mask for 21

August 2015 at the International Airport of Atlanta, Georgia, USA, is
presented in Fig. 4.4 (left, middle).

For some scenes, the distribution of z reveals extended height ranges
with no z retrievals between two or more local maxima. Such cases
suggest multi-layer cloud scenes if the apparent gap between adjacent
z retrievals is of sufficient size. If such a gap hgap is greater than
500 m, the algorithm distinguishes between the cloud layer above and
below the gap (see Fig. 4.4 for the aforementioned example). The
value for this threshold has been chosen to be close to the specified
accuracy of MISR (560 m). By evaluating different vertical cloud layers
individually, a zbase retrieval for each layer can be derived. Since for
most applications the lowest zbase is of interest, the lowest detected
cloud layer is processed here. For the comparison with ẑbase, we restrict
ourselves to scenes for which MISR detects only one cloud layer.

The occurrence of a broken cloud field is a basic requirement of
MIBase. Therefore, at least one z retrieval marked high confidence
surface needs to be within the MIBase cell. A complete cloud cover or
a high rate of non-retrievals can prevent this criterion from being met.
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Figure 4.4: MISR observations within a 20 km radius within the vicinity
of Atlanta, Georgia, USA (ICAO:KATL) on 21 August 2015 at
around 16:30 UTC. Left: z. Middle: Corresponding Stereo Derived
Cloud Mask (SDCM) distinguishing non-retrievals (NA), high
confidence cloud (hcc), low confidence cloud (lcc), low confidence
surface (lcs) and high confidence surface (hcs). Right: Density of
z measurements with illustration of certain parameters: height
between two layers (hgap) which is the height difference between
the highest retrieval of the bottom layer and the lowest retrieval
of the next higher layer (dashed blue lines), upper cut-off height
(dashed orange) for zbase retrievals (hmax) which is based on the
ceilometer granularity, lower cut-off height (dashed red), which
is based on the MISR threshold height to distinguish between
cloud and surface retrieval (hmin), and the ceilometer retrieval
ẑbase from 16:52 UTC (dashed pink). ztop and zbase (dashed pur-
ple) are inferred by applying the 15th and 95th percentile to the
distribution of z of the lowest cloud layer, respectively. Heights
are above sea level.

Both scenarios suggest doubtful zbase retrievals. Hence, they are not
considered.

For each grid cell or circular cell surrounding the ceilometer station,
zbase is diagnosed from the height distribution of z using a certain
percentile P. In principle, P should be as low as possible. However, as
a certain measurement noise is expected and a robust result should be
achieved, a choice substantially larger than zero is necessary. Another
parameter which describes the distribution of z for each scene is the
number of valid z retrievals marked high confidence cloud n. A higher
n implies a higher observed cloud cover within the MIBase cell. In
order to take a meaningful percentile of the z distribution, a minimum
n > N is required. A cloud which is horizontally more extended
(higher cloud cover) is more likely to pass over the ceilometer, so that
there is a higher chance that both instruments observe the same cloud.
Therefore, the deviation of zbase from ẑbase is expected to decrease for
a higher n. The impact of the threshold for N is studied later on.

For certain applications, the cloud vertical extent ∆z might be of
interest. Therefore, an estimate of the cloud top height ztop is required.
In principle, P = 100 should yield the highest point of the cloud.
However, analogously to the retrieval of zbase, a certain measurement
noise is expected, so that P is not chosen to be the extreme value.
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Without further validation, we apply the 95th percentile rather than
the median, as we do not want a height which might be representative
for the whole area, but rather an estimate of the highest top of the
cloud especially for a heterogeneous cloud top height to estimate ∆z
at its most extensive point.

4.3.2 Case study

One of the utilised ceilometer stations is located at the Hartsfield–Jackson
Atlanta International Airport. To illustrate the functionality of the pre-
sented algorithm, we investigate a particular MISR overpass over this
station on 21 August 2015 at around 16:30 UTC. Figure 4.4 shows the
z retrievals for all pixels which are within the circular MIBase cell
defined by Rc. Here, we exemplarily use Rc = 20 km with its midpoint
at the ceilometer station. z is given above the WGS 84 surface, which is
approximately equal to sea level. The spatial distribution shows a low
cloud layer with z between 800 m and 2000 m, which covers most of
the area. Another cloud layer appears between 5 km and 6 km. Some
pixels with heights above 7 km indicate the presence of a third layer
(Fig. 4.4, left). For a few pixels, MISR was not able to determine z.
This might be due to the viewing geometry. A retrieval requires valid
images from two different cameras, one camera viewing nadir and
the other viewing at a 26.1◦ angle. In the case studied here, the most
missing retrievals are closely attached to high clouds which might
lead to shading effects (Fig. 4.4, middle).

The density of the z distribution shows the aforementioned three
cloud layers. They are distinguished according to the threshold value
for hgap (Fig. 4.4, right) as illustrated for the bottom and middle layer.
For the bottom layer, which is selected for further processing, the
number of z retrievals marked high confidence cloud is determined
to be n = 621. This number is well above the threshold N which is
defined later. zbase is then calculated using P = 15 as the preliminary
percentile of the z distribution. This yields zbase ≈ 1160 m above the
WGS 84 surface. The mean average scene elevation for the given
area is subtracted from the retrieval to obtain zbase ≈ 927 m above
ground level. The closest METAR report for this day is from 16:52

UTC. Three heights were reported at 2800 ft (≈ 853 m), 7500 ft (≈
2286 m) and 23000 ft (≈ 7010 m) above ground level. By adding the
station elevation (315 m), the corresponding height above sea level is
obtained. This yields ẑbase ≈ 1168 m and is denoted in Fig 4.4 (right). In
conclusion, using the preliminary values for P the zbase retrieval from
MISR is about 927 m above ground level which is 74 m higher than
the ceilometer retrieval (ẑbase = (853 ± 15)m). The given uncertainty
solely represents the resolution of the METAR reports (Tab. 4.2). Note
that the third layer detected around 7000 m by MISR has also been
detected by the ceilometer.
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Table 4.3: Slope, intercept, correlation coefficient r, RMSE E, bias B and
number of samples ns resulting from comparing zbase and ẑbase
retrievals for different radii of the MISR circular area around the
ceilometer stations. These values are obtained for the year 2008

applying a required minimum number of cloud pixels of N = 10
and the 15th percentile to the z distribution.

Rc slope intercept r E B ns

[km] [m] [m] [m]

5 0.65 371 0.66 392 -71 3059

10 0.62 412 0.66 404 -75 5120

15 0.60 433 0.65 413 -77 6140

20 0.58 464 0.63 423 -74 6895

30 0.54 515 0.60 437 -71 7772

4.3.3 Parameter optimization

For each considered ceilometer station (Fig. 4.2), collocated and co-
incidental MISR overpasses from the year 2008 are identified. The
algorithm is then applied as described in the case study (Sec. 4.3.2 to
retrieve zbase. All pairs of MIBase zbase and ceilometer ẑbase are evalu-
ated to investigate the influence of Rc, N and P on the performance of
the zbase retrieval algorithm and to estimate the most suitable values.
For this purpose, the following statistical measures are considered: the
slope and intercept of a linear regression, which are ideally 1 and 0,
respectively; the Pearson correlation coefficient r (ideally unity); the
root mean square error (RMSE) E defined as

E =

√
1
n

n

∑
i=1

(zbase,i − ẑbase,i)
2; (4.2)

and the retrieval bias B defined as

B =
1
n

n

∑
i=1

(zbase,i − ẑbase,i) . (4.3)

MISR can only detect clouds above the threshold height according
to Equation 4.1. To prevent this obvious limitation from introducing
a bias into the statistics, we only consider cloud scenes for which
the ceilometer retrieval is above hmin. In addition, only zbase retrievals
below a maximum height hmax of 3000 m are considered to focus
on a cloud range for which the ceilometer retrievals are more finely
granulated (below 10000 ft according to Tab. 4.2).

First, we investigate the influence of the size of the MIBase cell on
the comparison of MIBase and ceilometer retrievals. For this purpose,
Rc is varied between 5 and 30 km while the other parameters are set to
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Figure 4.5: Evaluation of minimum number of valid pixels N within a cloud
layer detected by MISR for the year 2008. Left: The normalized
number of events ns

nmax
for which zbase and ẑbase could both be

retrieved. nmax is the maximum number of events, which is found
for N = 1. Middle: The linear correlation coefficient r between
zbase and ẑbase. Right: The RMSE between zbase and ẑbase. MISR
zbase is retrieved using the 15th percentile of the z distribution for
a 10 km radius around the individual ceilometer measurements.
The chosen value for N is highlighted in orange. For further
details see text.

the preliminary values P = 15 and N = 10. With a decreased Rc, the
correlation between zbase and ẑbase increases and E decreases (Tab. 4.3).
This is to be expected as the representativity should increase. However,
for a lower Rc, the retrieval algorithm encounters more situations
where at least one of the requirements (at least one high confidence
surface pixel is visible and at least 10 valid cloud pixel per layer) cannot
be fulfilled, as the decrease in the total number of retrievals indicates.
The better agreement between zbase and ẑbase for lower Rc might be
due to a relatively larger overlap of the measurement sampling areas
of the two instruments and to a better fulfilment of the assumption
of a homogeneous zbase over smaller areas. For further evaluation, a
radius of 10 km is chosen as a compromise between a good agreement
in terms of r and E and without having to discard too many retrieval
scenes.

Second, the effect of the minimum number of of valid zbase retrievals
is studied which strongly limits the number of samples for the compar-
ison (Fig. 4.5). With increasing N, initially a slight increase to N = 10
improves the correlation between zbase and ẑbase and E significantly to
a correlation coefficient of about 0.66. A further increase only yields
slight improvement of the correlation and E. This slight increase can
be explained by the elimination of more complex scenes from the
comparison. However, for a higher N the trade off is a lower total
number of zbase retrievals. For instance, for N = 50 only 80 % of pos-
sible retrievals yield a valid zbase (Fig. 4.5, left). Therefore, we select
N = 10.

Finally, we consider the percentile threshold used to diagnose zbase
from the z distribution. Figure 4.6 shows an evaluation of different
percentiles which are applied to derive zbase . Percentiles between the
10th and the 15th give the best correlation. The lowest E is achieved
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Figure 4.6: Evaluation of the percentile P which is applied to retrieve zbase
from the distribution of z for the year 2008 with N = 10 and
Rc = 10 km. Left: The linear correlation coefficient r between zbase
and ẑbase. Right: The RMSE between zbase and ẑbase. The chosen
value for P is highlighted in orange.

Table 4.4: Slope, intercept, correlation coefficient r, RMSE E, bias B and
number of retrievals ns resulting from a comparison of zbase and
ẑbase for data obtained 2008 (calibration) and 2007 (validation).
These values are obtained with N = 10 and P = 15.

data pixel/grid slope intercept r E B ns

definition [m] [m] [m]

2008 Rc = 10 km 0.62 412 0.66 404 -75 5120

2007 Rc = 10 km 0.61 419 0.66 385 -59 6801

2007 0.25◦ × 0.25◦ 0.58 455 0.64 398 -60 7970

2007 0.75◦ × 0.75◦ 0.49 579 0.55 446 -56 10474

for percentiles between the 15th and the 25th. Therefore, P = 15 is
chosen for further processing. The fact that very clear and localised
minima (maxima) for E (r) are found supports the hypothesis that the
z distribution contains information on zbase.

In summary, the comparison yields the estimated parameters Rc =

10 km, the minimum number N = 10 and the percentile P = 15.
While the latter two are kept fixed in MIBase, Rc is optimised for the
intercomparison with point data, i.e. ceilometer measurements. The
algorithm can also be applied to larger grids. However, no data for
validating extended areas are available.

4.3.4 Scene limitations

This section investigates the applicability of MIBase by quantifying
the amount of cases for which the concurrent conditions allow the
successful derivation of a zbase retrieval. First, we filter for cases which
fulfill the following two conditions: i) The number of valid z retrievals
within the MIBase cell Nval must be > 0 and ii) METAR data must
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Table 4.5: Number of cases for different conditions of the cloud field observed
by MISR and reported in METAR messages for the considered
METAR sites. The number of z retrievals labeled “high confidence
cloud” (NHCC) or “high confidence surface” (NHCS) according to
MISR’s stereo-derived cloud mask is used to characterize the cloud
field. The size of the scene is defined by Rc = 10 km.

description of the situation 2008 2008 2007 2007

MISR METAR [%] [%]

overpasses over METAR sites 80454 154.1 89782 145.9

valid z retrievals message available 52215 100.0 61531 100.0

NHCC = 0; NHCS > 0 (clear sky*) 19507 37.4 20300 33.0

clear sky* 26983 51.7 30037 48.8

clear sky* clear sky* 16982 32.5 17374 28.2

NHCC = 0; NHCS > 0 (clear sky*) ẑbase retrieval 2525 4.8 2926 4.8

NHCC = 0; NHCS > 0 (clear sky*) ẑbase > hmin 2106 4.0 2520 4.1

NHCC > 0; NHCS > 0 clear sky* 6800 13.0 8511 13.8

NHCC > 0; NHCS = 0 (overcast*) 15945 30.5 19725 32.1

NHCC > 0; NHCS = 0 (overcast*) ẑbase retrieval 12769 24.5 15600 25.4

NHCC > 0; NHCS = 0 (overcast*) clear sky* 3176 6.1 4125 6.7

NHCC = 0; NHCS = 0 51 0.1 51 0.1

NHCC > 0; NHCS > 0 ẑbase retrieval 9912 19.0 12944 21.0

NHCC ≥ N = 10; NHCS > 0 ẑbase retrieval 8603 16.5 11387 18.5

zbase retrieval ẑbase retrieval 8535 16.3 11319 18.4

zbase retrieval; single layer ẑbase retrieval 7863 15.1 10251 16.7

zbase < hmax = 3 km; single layer ẑbase retrieval 7206 13.8 9407 15.3

zbase < hmax; single layer ẑbase < hmax 7043 13.5 9227 15.0

zbase < hmax; single layer hmin < ẑbase < hmax 5120 9.8 6801 11.1
* indicates apparent conditions. See text for details.

be available for the calibration and validation. These requirements
are fulfilled for about two thirds of a all considered MISR overpasses
over the ceilometer sites (Table 4.5). Furthermore, there are two main
conditions which prevent the derivation of a zbase retrieval. These are
namely apparent clear sky conditions and apparent overcast which is
only a limitation for MIBase. Here, we use the phrases “apparent clear
sky” and “apparent overcast” rather than “clear sky” and “overcast”,
respectively, to account for the fact that this attribution is based on
instrumental indications rather than known actual sky condition.

For METAR, apparent clear sky is indicated if a METAR message is
available, but does not provide a valid retrieval. Note that in case the
lowest cloud is above the METAR reporting range (typically 3700 m),
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it is possible that no retrieval is issued. Here, such cases would also
be attributed apparent clear sky.

For MIBase, we attribute apparent clear sky to the following con-
figuration of the SDCM: MISR sees the surface with high confidence
(NHCS > 0), and has no high confidence cloud in the view (NHCC = 0).
This does not have to be an actual clear sky case since it could include
low confidence surface or low confidence cloud retrievals for which
the declaration is less certain. In case of invalid z retrievals, it is also
uncertain whether clouds are present or not.

Out of all MISR apparent clear sky cases, 87 % are also classified
as clear sky by METAR while the remaining 13 % yield a METAR
cloud height retrieval. Mismatches in attributing apparent clear sky
cases are due to METAR retrievals below the threshold height hmin

(17 %) and other reasons, such as the temporal offset between MISR
and METAR measurement. The METAR reports comprise retrievals
over a 30 minute period. During this time, cloud formation and cloud
dissipation can alter the cloud scene and cause mismatches between
MISR and METAR retrievals.

Furthermore, for MIBase, we attribute apparent overcast to the
following configuration of the SDCM: MISR observes a cloud with high
confidence (NHCC > 0) and does not observe any surface retrievals
with high confidence (NHCS = 0). Again, the scene could include
invalid retrievals, or retrievals of low confidence. In about 20 % of all
the MISR apparent overcast cases, the corresponding METAR report
yields an apparent clear sky case. These could be cases where the
cloud cover is mainly above the reporting range of the ceilometer.

Out of all cases with valid z retrievals within the MIBase cell (Nval >

0) and a corresponding METAR retrieval, 19 % are processed further.
The main reasons why cases are excluded are apparent clear sky
scenes for MISR (37.4 %), apparent overcast for MISR (30.5 %) and
apparent clear sky for METAR when valid z retrievals are within the
MIBase cell (13 %). Additional requirements, such as the minimum
number of z retrievals marked high confidence cloud (NHCC > N),
single layer situations, zbase and ẑbase retrievals below hmax and METAR
retrievals above the MISR threshold height (ẑbase > hmin), lead to a
further reduction of the number of cases which are used to derive the
statistics. Further numbers for specific cases are presented in Table 4.5.

4.4 mibase evaluation

With the parameters Rc = 10 km, N = 10 and P = 15 derived in the
previous section, MIBase is applied to MISR retrievals which are coin-
cident with ceilometer retrievals from the year 2007. These data have
not been used for calibration. The joint density of zbase retrieved from
MISR and ceilometer is shown in Fig. 4.7. For lower zbase, MISR yields
higher heights than the ceilometers. This can possibly be attributed
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Figure 4.7: Left: Joint density of zbase and ẑbase for the year 2008 (top) which is
used to estimate parameters of the algorithm and for the year 2007

(bottom) which is used to validate the stability of the algorithm
with the estimated parameters. The value of the normalized den-
sity is indicated by color (maximum values in light yellow) and
contour lines with corresponding values on them (linear scale).
For each ceilometer height bin, the mean (red) and median (blue)
of the MISR zbase is shown. Right: Probability density functions
of the residuals after a linear fit (red), the retrieval differences
(blue) and a normal distribution with a standard deviation of
250 m (black).

to the threshold height (Equation 4.1) constraining zbase retrievals at
the lower end of the height distribution. For zbase greater than 1000 m,
mean and median MISR heights are lower than the ceilometer. Over-
all, the bias B is slightly negative (about 60 m; cf. Tab. 4.4) and the
density of the retrieval differences is shifted slightly towards negative
values (Fig. 4.7d). Thus, MISR zbase retrievals are generally lower than
the ceilometer retrievals. This could be due to the different sample
volumes. On the one hand, the ceilometer only records point mea-
surements over a period of time, so that the measured sample of the
cloud depends on the velocity of the wind. On the other hand, MISR
observes the entire circular area defined by Rc around the ceilometer
location. Chances are that MISR can observe a cloud with a lower base
which does not pass over the ceilometer.

The joint density and the density of the retrieval differences appear
similar for both the 2007 and the 2008 data sets (Fig. 4.7). Slope,
intercept, r2, E, and B resulting from the zbase retrieval comparisons for
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the year 2008 (calibration) and the year 2007 (validation) appear very
similar, demonstrating the stability of the algorithm with the chosen
parameters (Tab. 4.4) to interannual variability in cloud properties.
Changing the MIBase cell to a 0.25◦ × 0.25◦ latitude–longitude grid
results in a slightly lower correlation coefficient accompanied by a
higher E. An even coarser grid size of 0.75◦ × 0.75◦, which is applied
later for a comparison with ERA-Interim cloud heights, results in an
even lower correlation and higher E. A decreasing agreement between
zbase and ẑbase for a larger MIBase cell has already been described
when studying the influence of Rc (see discussion in Section 4.3.3).

4.4.1 Scene structure influence

To estimate the influence of the the scene structure on the performance
of MIBase, we further exploit the MISR cloud top height product and
the MISR Ancillary Geographic Product to investigate characteristics
of the terrain height and the cloud field.

To derive a quantity to estimate the variability of the terrain height,
we calculate the standard deviation of the average scene elevation,
which is provided by the ancillary product at 1.1 km resolution. For
each METAR site, the standard deviation is calculated for an area
defined by different Rc (5 km, 10 km, 15 km, 20 km and 30 km). Typical
standard deviations range around a few tens of meters with overall
higher standard deviations for greater Rc (Fig. A.1a in the Supplement).
When METAR sites with a higher standard deviation of the average
scene elevation are excluded from the comparison of MIBase and
METAR cloud base height retrievals, the RMSE decreases slightly,
the bias slightly increases (towards 0), while the correlation is hardly
affected (Fig. A.1b,c,d). Thus, the variability of the terrain height has
a very small effect on the accuracy of the MIBase algorithm, with a
slightly better performance over more homogeneous terrain.

To further investigate the performance of the MIBase algorithm as a
function of parameters related to cloud types, we determine RMSE,
bias, and the correlation coefficient as a function of ztop and the cloud
vertical extent ∆z (Fig. A.2). The best correlation is obtained for cloud
vertical extents up to 1000 m. The RMSE is also smaller for lower
∆z and for lower ztop. However, the RMSE increases with decreasing
ztop below about 1000 m. We conclude that MIBase performs best
for shallow low clouds. However, further analyses are necessary to
increase the sample size of thicker clouds and to include more medium
high and high clouds for a more robust analysis of such cloud types.
Furthermore, the increased RMSE for very low ztop indicates that,
for very shallow low clouds in the proximity of the threshold height,
MIBase retrievals do not agree as well with the METAR retrievals. This
might be due to cases for which MIBase detects a shallow low cloud
with zbase and ztop close the hmin when, in fact, the actual cloud base is
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below hmin. MIBase would miss this actual cloud base height because
the retrievals below hmin would not be marked high confidence cloud.
For that matter, we require that the ceilometer retrieval is above the
threshold height (ẑbase > hmin). However, if such a near surface cloud
was not detected by the ceilometer, a mismatch would result leading
to a higher RMSE.

Additionally, we exploit the stereo-derived cloud mask as a proxy
of cloud cover fraction to investigate the sensitivity of the MIBase
performance to the number of valid z retrievals Nval, the number of z
retrievals marked high confidence surface NHCS, and the number of z
retrievals marked high confidence cloud NHCC within the MIBase cell.
We determine RMSE, bias, and the correlation coefficient as a function
of Nval, NHCS and NHCC normalized by the total number of pixels Ntot

which the MIBase cell encloses (Fig. 4.8). For example, for Rc = 10 km,
a total of Ntot = 265 pixel is processed by MIBase to obtain a unique
zbase retrieval. For the continental USA, most cases comprise a high
portion of valid z retrievals within the MIBase cell. The RMSE, bias,
and the correlation coefficient are robust under different choices of
Nval and NHCS. This suggests that MIBase generally does not depend
much on cloud cover fraction. However, for cases which suggest almost
apparent clear sky, indicated by high NHCS, RMSE increases and r
decreases. This could be due to a lower chance of observing the same
cloud in case of less extended clouds. This bias appears to strongly
depend on the portion of z retrievals marked high confidence cloud
(Fig. 4.8). The increased bias for higher NHCC could be explained
by the decreasing portion of the thin edge of the cloud compared
to the thicker part of the cloud with greater horizontal extent. For
instance, the edge of a larger cloud might only be partly within the
MIBase cell, whereas the edge of a smaller cloud might be fully
processed by MIBase. The clear increase of the bias with increasing
NHCC shows potential for a bias correction in the future after a better
understanding of the underlying reasons. The bias obtained in this
study can have different sources: the different sample volumes of
the defined MIBase cell and the ceilometer, biased MISR z retrievals,
various scene characteristics.

4.5 mibase application

4.5.1 Global cloud height distribution

MIBase has been applied for a three year period between 2007 and
2009 to determine the zbase from MISR globally. Herein, z data from
each individual orbit have been sorted into a 0.25◦× 0.25◦ longitude by
latitude grid. For each orbit and each grid box zbase has been retrieved
as described above and the median over the three year period has been
calculated. Only cloud height retrievals below 5000 m are considered
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Figure 4.8: From left to right: number of samples ns, RMSE, bias and corre-
lation coefficient r for the comparison of MIBase and ceilometer
retrievals as a function of the number of valid z retrievals Nval (top
row), the number of retrievals marked high confidence surface
NHCS (middle row) and the number of retrievals marked high con-
fidence cloud NHCC (bottom row). Each data point is calculated
for a sub sample which includes only Nval ± δNval, NHCS ± δNHCS
and NHCC ± δNHCC, respectively. The various widths of the con-
sidered Nval and NHCC windows are indicated by the blue shad-
ing. All values are normalized by the total number of pixels within
the MIBase cell Ntot. Data are for the year 2008 with Rc = 10 km,
P = 15 and N = 10.

to exclude cirrus clouds from the statistics. ztop is retrieved analogously
to zbase by applying the 95th percentile on the z distribution. Taking
the difference between ztop and zbase for each observed cloud scene
yields ∆z. The medians of these measures are shown in Fig. 4.9.

A sharp and steep gradient of the zbase can be seen at most coast
lines with a higher zbase over land. This seems plausible as boundary
layers above oceans are known to be shallower. Exceptions to this
rule are the Congo Basin and the Amazon Basin. These regions are
moisture sinks characterized by high precipitation and excessive sur-
face run-off. The maritime stratus cloud regions are clearly visible at
the subtropical eastern boundaries of the Pacific, Atlantic and Indian
ocean. These regions are characterized by prevailing high pressure
due to the location at the subsiding branch of the Hadley circulation
and cold ocean currents creating a temperature inversion on top of
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Figure 4.9: Global distribution of median cloud heights for a 3-year period
(2007–2009). Shown are zbase (a), ztop (b), and cloud vertical extent
(d) on a 0.25◦ × 0.25◦ latitude–longitude grid. zbase and ztop are
above ground level (agl). zbase and ztop retrievals are only included
in the statistic if zbase is below 5000 m. The number of retrievals
ns (c) represents the number of valid zbase retrievals within this
3-year period.

the boundary layer. For these regions cloud formation is limited to the
well mixed maritime boundary layer. The Intertropical Convergence
Zone (ITCZ) is clearly visible in particular for the tropical Pacific
ocean with a higher zbase and even higher ztop yielding an overall
higher ∆z slightly north of the equator. Over land, this phenomenon
is not as clear. There, the diurnal cycle of surface heating becomes
important. MISR on the Terra satellite has a morning overpass over
the equator when cloud formation just begins. Taylor et al., 2017 show
the diurnal cycle of cloud top temperature (CTT) derived from SEVIRI
measurements indicating that the lowest ztop occurs between 9:00 and
13:00 local time with the lowest mean CTT at 11:00. and the lowest
median CTT at 12:00, close to the overpass time of MISR.

The sampling size varies spatially with a higher number of retrievals
in the Arctic region. (Fig. 4.9 (c)). This is expected for a polar orbit-
ing satellite with more frequent MISR overpasses in polar regions
(Fig. 4.10 (a)). Generally, the causes for retrieval failure are apparent
clear sky and apparent overcast situations as discussed in Section 4.3.4.
The frequency of occurrence of such situations varies spatially. For
continental dry regions in the subtropics and continental polar regions
apparent clear sky conditions predominantly limit the number of zbase
retrievals (Fig. 4.10 (c)). The continental polar regions yield a high
number of cases for which the grid cell comprises only high confi-
dence surface retrievals (NHCS = Ntot, Fig. A.3). This poses an even
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Figure 4.10: Relative occurrences of different stereo-derived cloud mask
(SDCM) configurations within the three-year period (2007–2009).
The reference sample size ns given in (a) corresponds to 100 %
and includes all overpasses per grid cell which contain valid z
retrievals. (b) Relative number for which MIBase successfully
retrieved zbase. (c) through (d) show the relative number of oc-
currence of cloud scenes which include z retrievals of specific
SDCM labels within a grid cell. These configurations are: (c) No
high confidence cloud (HCS). These cases are apparent clear
sky cases. (d) No high confidence cloud (HCS). These cases are
apparent overcast cases.

more robust indication of apparent clear sky conditions. However,
the boundary layer is typically shallower in polar regions. Therefore,
boundary layer clouds occur likely below hmin, so that zbase cannot be
retrieved by the MIBase algorithm. Predominant apparent overcast
conditions limit the number of zbase retrievals for midlatitude regions
over ocean and stratocumulus regions on the western boundaries of
continents in the subtropics. In midlatitude continental regions, a mix
of apparent clear sky and apparent overcast conditions limits the num-
ber of zbase retrievals. In the trade cumulus regions within 30◦N and
30◦S, very high success rates occur (Fig. 4.10 (b)). A visual comparison
to the 2011 mean cloud cover fraction derived from MODIS (Suen
et al., 2014) indicates the plausibility of the attribution of apparent
clear sky and apparent overcast.

To further investigate the plausibility of the seasonal variability of
cloud heights, composites over the three year period are presented in
Fig. 4.11. We distinguish boreal winter season comprising December,
January and February (DJF) and boreal summer season comprising
June, July and August (JJA). Over land and between 30◦N and 70◦N,
zbase and ztop are lower during winter, when stratiform clouds prevail.
In contrast, zbase and ztop are higher during summer, when more
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Figure 4.11: Global distribution of seasonal median cloud heights for a 3-
year period (2007–2009). Shown are ztop (a, b), and zbase (c, d)
for December, January, February (a, c) and June, July, August
(b, d) on a 0.25◦ × 0.25◦ latitude–longitude grid. zbase and ztop
are above ground level (agl). zbase and ztop retrievals are only
included in the statistic if zbase is below 5000 m. The red rectangle
in (d) frames the region for which results over a 16-year period
are presented in Fig. 4.12.

convective clouds are typically present. Boundary layer clouds are
also lower during winter season since the boundary layer is shallower
during the cold season. Over ocean an inverse pattern can be observed
on both hemispheres. During winter zbase and ztop are higher than
during the summer. Sea surface temperatures show less seasonal
variation than air temperatures due to the higher heat capacity of
the water. This causes additional instability during winter enhancing
convective cloud formation which can result in higher cloud heights.
Additionally, the instability during winter can be attributed to storm
tracks. During summer, the influence of high pressure systems can
limit convection to the maritime boundary layer causing cloud heights
to be lower.

4.5.2 Southeast Pacific

The southeast Pacific hosts one of the largest and most persistent
stratocumulus cloud decks on Earth as shown by Wood, 2012 using
data from the combined land-ocean cloud atlas database (Hahn and
Warren, 2007). In this region, cloud cover and cloud thickness have
major impacts on the net cloud radiative effect, which raises the
importance of studying the heights of these clouds.
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Orographically induced fog at the coastal cliff ranging from Peru to
northern Chile is the major source of moisture for this region (Pinto
et al., 2006). zbase and ztop of the stratocumulus clouds near the coast
determine the areas where fog can provide water to the environment
at the coastal cliff. The cloud heights also affect the ability of the fog
to be advected further inland across the cliff. Here, we apply the zbase
retrieval algorithm to determine the spatial and seasonal variability
of zbase and ztop for the region (see red rectangle in Fig. 4.11d). We
extend the time window to the full 16-year record of available MISR
data (2001–2016). Furthermore, we investigate how well the temporal
changes are represented in the global reanalysis ERA-Interim.

4.5.2.1 Spatial and seasonal variability of zbase and ztop

For the 16-year period, the medians of zbase and ztop over the southeast
Pacific are shown in Fig. 4.12. Distinguished are summer and winter
season. Over ocean the median zbase ranges from 600 m near the the
coast to about 1200 m further west. During austral summer (DJF) the
lowest zbase is observed near the coast between 30◦S and 35◦S. During
austral winter the region of low zbase shifts to the north between 20◦S
and 30◦S. This shift is in phase with the direction of the seasonal
shift of the Hadley cell. It appears that the region of lowest zbase
corresponds to the strongest subsidence. During austral summer the
highest zbase clearly appear in the north, whereas during austral winter
a north–south gradient is hardly visible between 120◦W and 80◦W.
Over land, zbase is generally higher except for the coastal line north
of 35◦S, where cloud heights are even lower than over ocean. There,
the prevailing maritime stratocumulus clouds form orographic fog as
they reach the coastal cliff. Similar spatial and seasonal patterns are
apparent for ztop. Over ocean, the highest ztop is about 2500 m, which
is observed during austral summer in the northwest of the region.
The lowest ztop is about 1000 m, which is observed during winter and
closer to the coast of northern Chile.

4.5.2.2 Cloud height comparison between MISR and ERA-Interim

In order to preliminarily assess how well clouds are represented in
common reanalysis, we compare MISR derived zbase and ztop to cloud
heights derived from ERA-Interim (Dee et al., 2011a) which is pro-
vided by the European Centre for Medium-Range Weather Forecasts
(ECMWF). Cloud heights are not a direct output variable of ERA-
Interim. Therefore, the cloud liquid water content is used to infer the
cloud base height z̃base and cloud top height z̃top. For each grid point,
the vertical column is scanned for model levels with a specific cloud
liquid water content greater than 10−18 kg kg−1 (≈ 0). The bottom
height of the lowest of such levels is taken as z̃base. Moving higher
in the column, z̃top is given by the bottom height of the next higher
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Figure 4.12: Median of ztop (a, b), and zbase (c, d) over a 16-year period (2001–
2016) for austral summer (DJF, (a) and (c)) and austral winter
(JJA, (b) and (d)) on a 0.25◦ × 0.25◦ longitude by latitude grid at
the southeast Pacific. zbase and ztop are given above ground level
(agl). The red rectangle (d) frames the region for which a time
series of cloud heights is presented in Fig. 4.13.

model level which has a cloud liquid water content equal to zero. We
use data with a 0.75◦ × 0.75◦ resolution, which is similar to the native
grid of ERA-Interim, over a region between 20◦S and 23◦S and 74◦W
and 71◦W as indicated by the red rectangle in Fig. 4.12. ERA-Interim
data is provided 6-hourly. The comparison is performed using the
18:00 UTC output which corresponds to 14:00 Chile Standard Time
(CLT). Note, MISR overpass times range around 10:51 CLT to 11:29

CLT for this particular region.
For each MISR overpass and ERA-Interim 18:00 UTC output, the

median cloud heights are used to calculate the median cloud heights
of each month over the whole 16-year period. The mean difference
of the monthly cloud heights is roughly 500 m for both cloud base
height and cloud top height, with ERA-Interim yielding lower cloud
heights than MISR. That z̃base is lower than zbase could be due to the
threshold height used to determine the MISR stereo derived cloud
mask (Equation 4.1) which leads to a cut-off of zbase retrievals at hmin.
At the same time the same bias is found between ztop and z̃top. This
could be an indicator that clouds are systematically placed too low by
ERA-Interim. Hannay et al. (2009) mentioned several studies which
conclude that models typically underestimate the height of the plane-
tary boundary layer (PBL) in the southeast Pacific area. This would
cause boundary layer clouds to appear lower than observed. Their
study compares the PBL height retrieved from in-situ measurements
and remote sensing to different models. While the observations show
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Figure 4.13: Time series of deviations of sea surface temperature ∆SST (top),
cloud top height ∆ztop (middle), cloud base height ∆zbase (bot-
tom) from the corresponding mean over the entire period from
2001 through 2016. Cloud heights are derived from MISR (green)
and ERA-Interim (orange). SST is derived from ERA-Interim.

a PBL height of 1100 m, the models produce a PBL height between
400 m and 800 m, hence an underestimation of 700 m to 300 m. This is
in accordance with the bias found here.

To reveal the annual cycle of the cloud heights, we look at anomalies
from the 16-year mean of each time series (Fig. 4.13). These anoma-
lies of zbase and z̃base as well as ztop and z̃top from their respective
mean values agree rather well, thus the amplitude of the annual cycle
appears very similar. Figure 4.13 also shows the anomaly of the sea
surface temperature (SST) from its 16-year mean value. SSTs are taken
from ERA-Interim as well. The peaks of the cloud heights correspond
to the maxima of the SSTs. While the highest SSTs coincide with the
highest cloud heights during austral summer, the lowest SSTs coincide
with the lowest cloud heights during austral winter.

4.6 conclusion

Here, we present a new method to determine zbase over a spatial region
from satellite based measurements. The MIBase algorithm derives zbase
from the high spatial resolution MISR cloud top height product z if
some preconditions, such as a broken cloud scene, are met. Validation
against 1510 ceilometer stations in the continental USA results in a
correlation coefficient of 0.66 and a RMSE of 385 m for the validation
data set (year 2007). The bias of −59 m even states that MISR sees
a slightly lower zbase on average. This is possibly due to the larger
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retrieval cell which is set up for the retrievals from MISR as opposed
to the point measurements provided by the ceilometer.

Very few attempts to derive zbase from satellite have been performed
and evaluated before. Desmons et al. (2013) retrieve ∆z from POLDER
measurements. The standard deviation of the difference between their
∆z retrieval and reference data from CPR and CALIOP is about 964 m.
However, their method is hard to compare to the MIBase algorithm,
since they retrieve ∆z and make a distinction of different types of
clouds which is not done in this study. The CBASE algorithm (Mül-
menstädt et al., 2018) derives zbase from CALIOP measurements even
for optically thick clouds. Depending on the circumstances different
retrieval uncertainties can be derived. Similar to the study presented
here, they compare their zbase retrievals with ceilometer data over the
continental USA. They obtain RMSEs between 404 m and 720 m de-
pending on the concurrent local conditions of the individual retrievals.
The RMSE we obtain for the MIBase algorithm is slightly lower. Even
though the two studies make use of a similar reference data base, they
measure cloud heights at different times of the day. While CALIOP
has an afternoon overpass, MISR has a morning overpass, when more
clouds of lesser extent are present. For a more in-depth comparison
and validation of the presented algorithm, more cloud height reference
observations would be desirable including observations in different
climate zones and especially over ocean.

Within Europe, the European Cooperation in Science and Technol-
ogy (COST) activity is expected to harmonise the networks of the
different weather services (e.g., Haeffelin et al., 2016; Illingworth et al.,
2019), enabling more intercomparisons in the future.

An important strength of MIBase is the geometric approach which
is applied to create the z product from MISR measurements. Neither
a calibration nor auxiliary data are necessary to obtain the z product
which is the starting point for the zbase retrieval algorithm presented
here. In consequence, retrievals are possible over all kinds of terrain
even above ice. A disadvantage is the threshold height which MISR
requires to create the stereo derived cloud mask. Therefore, depending
on the terrain variability in the vicinity of the measurement, this new
zbase retrieval method is not capable of deriving zbase below at least
560 m (flat terrain). The algorithm requires a broken cloud scene.
For complete overcast within the chosen MIBase cell, zbase cannot be
retrieved. Therefore, climatologies derived from this algorithm would
be biased towards cloud types for which MISR is able to observe the
surface through cloud gaps.

Depending on the application, the MIBase uncertainty and the
missing coverage of the diurnal cycle can be a limitation. However,
in combination with ceilometer networks, both temporal and spatial
patterns can be investigated. The application of MIBase over a three-
year period reveals plausible patterns in the global distribution and
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seasonal variability of zbase. A first analysis over the 16-year MISR
time series in the southeast Pacific shows the potential to investigate
the interannual variability of zbase. This makes MIBase a promising
tool for the evaluation of climate models on seasonal and interannual
time scales in data sparse regions if for example the climate model
output is limited to clouds below 5 km and cloud fractions below 1

and if a sufficient amount of MIBase retrievals is provided within the
considered region and time period.

4.7 appendix : sensitivity to threshold height
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Figure 4.14: Joint density of zbase and ẑbase for the year 2008 applying a
lower threshold height hmin = 300 m + H + 2σh (Equation 4.4)
for the distinction between surface and cloud pixels in contrast
to Equation 4.1.

The distinction between surface and cloud retrieval according to the
threshold height described by Equation 4.1 introduces a constraint to
the zbase retrieval algorithm. Below a height of 560 m for flat terrain,
or higher for more complex terrain, zbase retrievals are not possible.
As an attempt to lower this threshold height, we adjusted HSDCM in
Equation 4.1, so that:

hmin = 300 m + H + 2σh (4.4)

This modification results in a bimodal retrieval density clearly show-
ing a mode consisting of surface retrievals (Fig. 4.14). Therefore, the
original threshold height given by MISR has to be applied, in order to
ensure that only cloud retrievals are utilized during data processing.

4.8 remarks

supplement Supplement material is available in the Appendix
A.1 or at: https://doi.org/10.5194/amt-12-1841-2019-supplement
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abstract. This study focuses on integrated water vapor (IWV)
which is the main source for precipitation, fog and dew formation in
the Atacama Desert in northern Chile. In order to study its long-term
variability, a consistent meteorological record is needed. Here, we
utilize the European Centre for Medium-Range Weather Forecasts’
reanalysis ERA-20C which provides IWV among other atmospheric
variables over the course of the entire 20th century (1900–2010). In
this two fold study, we first present a validation of ERA-20C IWV
for the Atacama and the bordering southeast Pacific region. Compar-
isons to satellite observations, i.e. the Hamburg Ocean Atmosphere
Parameters and Fluxes from Satellite data record and the Moderate
Resolution Imaging Spectroradiometer measurements, for overlapping
time periods prove the suitability of ERA-20C to study IWV variability.
Assessment of the observation feedback in ERA-20C reveals a higher
uncertainty for the beginning of the 20th century when fewer obser-
vations are assimilated. Nevertheless, departures of the assimilated
observations do not show a systematic bias in space or time supporting
suitability of ERA-20C for long-term investigations. In the second part
of the study, we describe the IWV variability over the course of the
20th century. Deviations from the long-term mean greater than 30 %
are found on an inter-annual time scale over the continental Atacama.
Furthermore, we investigate potential drivers of the IWV variability
such as the Pacific Decadal Oscillation (PDO) and the El Niño South-
ern Oscillation (ENSO) phenomenon. The relationship between the
local IWV and these large scale indices depends on region and season.
For instance, during austral summer, La Niña conditions yield overall
greater IWV variability in the Atacama allowing both drier and even
more pronounced wetter extremes than El Niño conditions.

5.1 introduction

The Atacama Desert in northern Chile is one of the driest places on
Earth. Nevertheless, it hosts a variety of species and microorganisms
which adapted to the concurrent hyper-arid conditions. Their spatial
appearance is not well understood but it is likely connected to the
availability of water. For instance, Pinto et al. (2006) found that the
geographical distribution of Tillandsia lomas is associated with fog
corridors. Furthermore, events of extreme precipitation or wetter time
periods on geological time scales can leave long lasting traces in the
landscape and impact biological evolution and colonization. Charac-
terizing the moisture supply to the Atacama Desert in the context
of the recent climate is essential in order to establish thresholds for
growth and development of the local biota and for surface alterations.

Water vapor, which amounts to about 99.5 % of the total water in the
atmosphere (Stevens and Bony, 2013), is the most important source for
precipitation and is the key variable for fog formation and dew. Aside
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from these obvious sources of liquid water for plants and surfaces,
water vapor itself constitutes a direct source of water for soils in arid
regions via water vapor adsorption and thereby stimulating microbial
activity (McHugh et al., 2015). Furthermore, relative humidity along
with temperature determines the phase transitions between gypsum,
anhydrite and their intermediate phases which has been demonstrated
in theory by Tang et al. (2019). Relative humidity and the isotopic
composition of the water vapor which is related to its source and
pathway are essential variables in order to develop a paleo-humidity
proxy (Surma et al., 2018). A better knowledge of the spatiotemporal
distribution of water vapor over a longer time period could help
improve the accuracy of such a proxy.

Another field of application for water vapor in the Atacama Desert
is Astronomy. The region is home to multiple astronomical facilities,
such as the European Southern Observatory (ESO) which operates for
instance the Very Large Telescope at the summit of Cerro Paranal. Even
though, the Atacama provides a hyper-arid environment, water vapor
is still a limiting factor of atmospheric transparency in the millimeter
and submillimeter wavelength spectral window. Characterizing the
variability of water vapor and identifying potential drivers benefits
the development of the observatories and planning the conduction of
very demanding observations (Kerber et al., 2014; Otarola et al., 2019).
Water vapor is one of the key factors which determine the surface solar
radiation budget (Rondanelli et al., 2015). The higher elevated parts of
the Atacama were found to be the most likely location with the highest
downwelling solar radiation at the surface on Earth (Rondanelli et al.,
2015). The extreme solar radiation also results in an extreme exposure
of the surfaces to ultraviolet radiation (Cordero et al., 2016) which is a
limiting factor to bacterial life (Cockell et al., 2008).

The influence of internal climate modes such as the El Niño South-
ern Oscillation (ENSO) pattern or the Pacific Decadal Oscillation (PDO)
on precipitation and water vapor content has been assessed for the
Atacama region and the bordering Altiplano in various studies (e.g.
Garreaud, 1999; Vuille, 1999; Vargas et al., 2006; Houston, 2006; Gar-
reaud et al., 2009; Marín and Barrett, 2017). For instance, through
evaluation of gauge measurements it was demonstrated that the warm
phase of ENSO (El Niño) leads to more precipitation at coastal sta-
tions and less precipitation in the Altiplano during austral summer
(Houston, 2006). Furthermore, the PDO, which which shows similar
patterns in SST anomaly as ENSO but acts on a much longer time scale
(Garreaud et al., 2009), appears to amplify the ENSO signal during
its warm phase (Andreoli and Kayano, 2005). On a synoptic scale,
cut-off lows over the adjacent southeast Pacific are associated with
increased moisture supply to the Atacama Desert (e.g. Bozkurt et al.,
2016; Reyers and Shao, 2019).



5.1 introduction 71

Water vapor is a major part of the water cycle being the dominant
phase which is subject to transport. More details on the atmospheric
water cycle in the Atacama region are given in Section 5.2.6. Due to
the scarcity of in-situ measurements especially over longer time peri-
ods, region-wide studies on a climatological scale are limited. Satellite
observations can provide greater spatial coverage but are temporally
limited to the satellite era which started in the 1980s. For long term
trend analyses and to study dependencies on low frequency internal
climate modes such as the ENSO pattern or the PDO, longer time
series are beneficial. Such time series with broad spatial and tempo-
ral resolution including multiple atmospheric parameters can only
be provided by reanalyses data. Reanalyses combine model simula-
tions and observations to obtain the best estimate of the true state of
the atmosphere. To our knowledge four reanalyses data sets which
cover the entire 20th century are available as of today, namely the Na-
tional Oceanic and Atmospheric Administration’s (NOAA) Twentieth
Century Reanalysis (20CR) and its successor 20CRv2c (Compo et al.,
2011) and the European Centre for Medium-Ranged Weather Forecasts
(ECMWF) twentieth century reanalysis (ERA-20C Poli et al., 2016) and
a later release with a coupled ocean model (CERA-20C Laloyaux et al.,
2018). In this study, we utilize ERA-20C (see Section 5.2.1). The accu-
racy of reanalyses depends on the model representation of the physical
processes and on parameter schemes for processes which happen at
scales below the model resolution. Furthermore, the accuracy of the
assimilated observations and the abundance of observations plays a
role as well as the accuracy of the prescribed forcing data, e.g. sea
ice concentration, sea surface temperature, aerosols, etc. Additionally,
complex orography with large variability on scales not resolved by
the model can decrease the accuracy. Therefore, the accuracy of a
reanalysis typically varies in space and time, so that a validation for
the particular study area and time period is inevitable to determine
the suitability for an application.

Integrated water vapor (IWV) is the moisture related variable which
can be observed most accurately from satellite measurements com-
pared to liquid water path or precipitation as the latter show much
higher spatiotemporal variability. Thus, due to its role as the major
storage term in the atmospheric water cycle and its good measurability,
we focus this study on IWV.

Here, we present a two fold study, which firstly investigates the
capabilities of ERA-20C to represent IWV in the Atacama region and
secondly provides an analyses of the 20th century IWV. The paper is
structured as follows. In Section 5.2, we describe ERA-20C, and the
satellite data products which are utilized for a comparison. Section 5.3
presents the validation of the reanalysis by comparing the different
satellite products for four different regions. In Section 5.4, we discuss
the spatiotemporal variability of the IWV over the entire time period
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of 111 years covered by ERA-20C and its relation to large scale indices
such as ENSO and PDO. Finally, Section 5.5 concludes the study.

5.2 data and focus regions

5.2.1 ERA-20C

The ECMWF reanalysis ERA-20C (Poli et al., 2016) provides a con-
sistent meteorological record spanning 111 years (1900-2010) with a
horizontal resolution of about 125 km. Therefore, for this study area,
data on a 1.25◦ × 1.25◦ longitude by latitude grid are investigated. It
is based on ECMWF’s weather forecasting system IFS cy38r1 and run
with time varying prescribed forcing data such as sea ice concentration,
sea surface temperature (SST), solar radiation, tropospheric and strato-
spheric aerosols, ozone and greenhouse gases. To approximate the
concurrent synoptic conditions, the assimilation of surface pressure
and marine surface wind are essential. To avoid introducing break
points and trends in the representation of the atmosphere, observa-
tions which are only available for more recent years, such as vertical
profiles and satellite observations, were left out. Atmospheric reanal-
yses typically assimilate vertical humidity profiles from radiosonde
data. Humidity from radiosondes is usually not homogenized, so that
artificial trends of water vapor can be introduced into these reanalyses
(Dai et al., 2011) among other complications (Elliott and Gaffen, 1991).
Since ERA-20C does not consider radiosonde data, it is not affected
by any of such inhomogeneities.

Poli et al. (2016) compared integrated water vapor (IWV) spatially
averaged over the tropical oceans (20◦S–20◦N) from ERA-20C to two
observational products, i.e. the Remote Sensing Systems version 7 IWV
product (RSS; Wentz (2013)) and the Hamburg Ocean Atmosphere
Parameters and Fluxes from Satellite data record version 3.2 (HOAPS;
Fennig et al. (2012)). Their resulting time series reveal a dry bias of
ERA-20C of approximately 2 to 3 kg m−2. However, when anomalies
with respect to a long term mean are considered, ERA-20C IWV agrees
better with the observations than the Japanese 55-year Reanalysis
(JRA-55) and the widely used ERA-Interim from ECMWF. Therefore,
it seems well suited for the analysis of climate variability.

5.2.2 HOAPS4

In order to validate IWV values in ERA-20C, we utilize IWV estimates
from the most recent version 4 of the Hamburg Ocean Atmosphere
Parameters and Fluxes from Satellite data record (HOAPS; Andersson
et al. (2017)). This data record provides satellite based retrievals of
IWV as 6-hourly composites on a 0.5◦ × 0.5◦ longitude by latitude grid
for the period between July 1987 to December 2014. The retrievals are
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derived from Special Sensor Microwave/Imager (SSM/I, Hollinger
et al., 1990) measurements. They are only provided over ice free
ocean where the microwave emission by water vapor can be separated
well from the surface signal. By utilizing radiation in the microwave
spectrum, retrievals are possible for all sky conditions except for heavy
precipitation which can lead to strong scattering.

Generally, SSM/I based data records, such as HOAPS, provide
IWV retrievals of similar quality regarding stability and homogeneity
whereas non-SSM/I data records contain relatively large break points
which coincide with changes in the observational set up. This can lead
to different trend estimates from such records which are not in line
with theoretical expectations (Schröder et al., 2016; Andersson et al.,
2017b).

5.2.3 MODIS

To allow an evaluation of ERA-20C IWV over land, we further utilize
IWV retrievals from the Moderate Resolution Imaging Spectroradiome-
ter (MODIS) which is installed aboard the Terra satellite and the Aqua
satellite. The MOD05_L2 (on Terra; Borbas et al., 2017a)) and the
MYD05_L2 (on Aqua; Borbas et al., 2017b) products provide IWV
retrievals which are derived from near infrared (NIR) and infrared
(IR) channels for both satellites at 1 km (NIR) and 5 km (IR) horizontal
resolution. Here, we utilize collection 6.1 which is the newest MODIS
collection. We only use the near infrared retrievals because they show
higher accuracy than the infrared retrievals (Steinke et al., 2015). These
are available for surfaces which are highly reflective in the near in-
frared such as clear land areas, clear ocean areas with sun glint, or
clouds above ocean or land. However, if the reflector is a cloud, the
retrieved IWV is not representative of the entire atmospheric column
because the water vapor path between the surface and the cloud is
not fully captured. For the calculation of spatial means of the MODIS
IWV, we omit scenes for which the reflector type is a cloud according
to the MODIS water vapor product. A potential “clear sky” bias is
assumed to be negligible considering the reflector type is a cloud for
only 7 % out of of all retrievals for the inland regions.

MODIS retrievals are available from February 2000 (Terra) and from
July 2002 (Aqua) to present. For the climatology study (Section 5.3.2,
we only utilize Terra MODIS to benefit from the longer data record.
The 10-year period between 2001 and 2010 is considered. For the
analysis of the variability over time (Section 5.3.3), we consider the
8-year period between 2003 and 2010 to benefit from additional Aqua
MODIS retrievals. The equatorial overpass time of the satellites are
around 10:30 (Terra) and 13:30 (Aqua) local solar time. The uncertainty
for MODIS IWV retrievals typically ranges between 5 % and 10 % (Gao
and Kaufman, 2003). A previous study revealed a spatially varying dry



74 water vapor variability

bias between 1.6 mm and 3.5 mm of the MODIS NIR IWV compared
to GPS derived IWV within the Atacama region (Remy et al., 2011).
Furthermore, the authors report good agreement of the IWV variability
(1.3 mm standard deviation between GPS and MODIS retrievals after
a linear correction). A more recent study carried out over North
America reveals a wet bias of the MODIS NIR water vapor product of
4.1 mm, an RMSE of 5.6 mm and coefficient of determination of 0.964
over land(He and Liu, 2019). Another study in a drier continental
environment (Iran) revealed a wet bias of 2.4 mm, an RMSE of 3.4 mm
and a correlation coefficient of 0.95 (Khaniani et al., 2020). Both of these
studies used Global Positioning System IWV retrievals as reference
and considered a one year period for their comparisons. Judging from
these studies, the bias seems to depend on the study area. However,
suitable representation of IWV variability is proven by all of these
comparisons.

5.2.4 Large scale indices ENSO and PDO

The ENSO pattern is a variability in the climate system manifested
in alternating cold and warm phases in the surface temperature of
the eastern tropical pacific which has strong influence on weather
all over the globe (e.g. Timmermann et al., 2018). During the warm
phase (El Niño), above average sea surface temperatures close to the
western coast of South America lead to locally decreased stability of
the troposphere and changes of the large scale circulation. For instance,
enhanced upper tropospheric westerlies due to a northward displace-
ment of the Bolivian High lead to drier conditions in the Altiplano
(Vuille, 1999). On the other hand, during the cold phase (La Niña)
enhanced tropospheric stability over the southeast Pacific favors drier
conditions at the southern coast of the Atacama (Houston, 2006). To
quantify the ENSO state, various indices have been created. Here,
we apply the commonly used Niño 3.4 index which represents the
SST anomaly of the equatorial Pacific between 5◦S–5◦N and between
170◦W–120◦W. To calculate this index, we obtained SST data from
https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Data/nino34.long.data
(last access: 20 May 2019) which provides spatially averaged SST val-
ues for the Niño 3.4 region with a monthly resolution. These data
are sampled from the Met Office Hadley Centre’s sea ice and sea
surface temperature data set, HadISST1 (Rayner et al., 2003). The
HadISST1 provides a long continuous SST time series (1870-present).
To derive the Niño 3.4 index, we calculate the monthly SST anomalies.
Only the years of our study period, which is determined by ERA-20C
(1900-2010), are considered. The two different versions of HadISST for
ERA-20C (Version 2.1) and the Niño 3.4 index (Version 1) are highly
correlated (r = 0.96). Therefore, no noticeable implications on the
analysis are expected.

https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Data/nino34.long.data
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In contrast to ENSO, which is focused on the equatorial Pacific, the
PDO represents a major climate variability pattern centered over the
midlatitude North Pacific basin. It has been defined as the principle
component of the leading Empirical Orthogonal Function (EOF) of
the SST anomalies (e.g. Mantua et al., 1997; Zhang et al., 1997) for the
Pacific north of 20◦N. Here, we apply the PDO index according to
Mantua et al. (1997) which is based on the U.K. Meteorological Office
Historical Sea Surface Temperature data set (Folland and Parker, 1990;
Folland and Parker, 1995) for the years between 1900-1981 and on the
Reynold’s Optimally Interpolated SST from 1982 to present. The PDO
index was downloaded from http://research.jisao.washington.edu/pdo/PDO.latest.

Furthermore, local SST anomalies which are determined from the
ERA-20C SST as a spatial mean between 18.125◦S–29.375◦S and 75.625◦W–
71.875◦W on a monthly resolution are considered as local SST “index”.
The chosen region lies in close proximity to the coast off the Atacama
(black rectangle in Fig. 5.1b).

5.2.5 Cut-off lows

To evaluate the capabilities of ERA-20C to represent synoptic features
which potentially impact IWV variability, we consider cut-off lows
off the coast of the Atacama (Section 5.3.2). Therefore, we utilize the
cut-off low data set derived by Reyers and Shao (2019). They define
cut-off lows as a local minimum of the geopotential height in 500 hPa
within the area ranging from 85◦W to 70◦W and from 30◦S to 15◦S
(black rectangle in Fig. 5.2 c, f, i). Geopotential heights were taken
from the ECMWF reanalysis ERA-Interim (Dee et al., 2011b). To derive
a list of days which featured a cut-off low, the 12 UTC ERA-Interim
output was considered. More details on cut-off lows in the Atacama
can be found in Reyers and Shao (2019).

5.2.6 Focus regions and local atmospheric water cycle

A simplified water cycle for the Atacama region is depicted in Fig.
5.1. The maritime boundary layer (MBL) is fueled with moisture by
evaporation from the Pacific. Turbulent mixing results in a vertically al-
most constant specific humidity within the MBL which has an average
height between 800 m and 1100 m (Rutllant et al., 2003; Muñoz et al.,
2011). Adiabatic cooling with increasing height causes the water vapor
to reach saturation, so that condensation leads to cloud formation.
Due to the location at the subsiding end of the Hadley circulation, the
MBL is topped by a strong temperature inversion which prevents the
exchange between the MBL and the free troposphere above. Therefore,
the cloud top height is limited to the base height of the temperature
inversion. Longwave radiative cooling at cloud top maintains the stra-
tocumulus or leads to further expansion. During the day, the surface

http://research.jisao.washington.edu/pdo/PDO.latest
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Figure 5.1: (a) Schematic depiction of the simplified atmospheric water cycle
for northern Chile and its surrounding area. Over land, day time
conditions are reflected. Strong heating of the Andean slopes
leads to a rising branch of the flow in the high Andes and a
return flow at around 5000 m which causes additional subsidence
above the coastal region. Below this upper circulation cell, another
circulation cell typically establishes in the maritime boundary
layer. Here, early night time condition are depicted. A stronger
cooling of the coastal cliff compared to the ocean surface causes
a weak flow towards the coast so that the stratocumulus clouds
can spread towards the cliff and penetrate the coastal mountain
range. (b) Mean ERA-20C SST averaged between 1900–2010. (c)
Topography derived from the Shuttle Radar Topographic mission
(SRTM) data set. The white rectangles denote the four focus
regions which are studied. Their sizes are given by the size and
position of the ERA-20C grid boxes (1.25◦ × 1.25◦). Regions 1

(ocean-N) and 2 (ocean-S) span 5 × 2 grid boxes, regions 3 (land-
N) and 4 (land-S) span 4 × 1 grid boxes.
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Figure 5.2: Composite means of IWV retrieved from ERA-20C (a,b,c), HOAPS
(d,e,f) and Terra-MODIS (g,h,i) for winter season (JJA, top row),
summer season (DJF, middle row) and composite anomalies of
IWV for days for which the presence of a cut-off low was identi-
fied in ERA-Interim (bottom row). Here, cut-off lows are defined
as a local minimum of the geopotential height in 500 hPa (Reyers
and Shao, 2019) within the region from 85◦W to 70◦W and 30◦S
to 15◦S which is denoted by the black rectangle (c,f,i). Composites
are taken for a 10-year period (2001–2010).

at the coast and coastal cliff warm more than the ocean water leading
to ascending motion at the cliff. This drives a circulation with a flow
towards the coast above the surface and a return flow beneath the
inversion base height, causing the stratocumulus cloud to be advected
away from the coast. At night, though less pronounced, the circulation
is reversed. Along with an even more effective radiative cooling, the
strocumulus cloud deck can then penetrate the coastal cliff area. Even
stronger heating of the Andean slopes during the day creates a strong
inland flow above the coastal cliff which end in an upward motion in
the high Andes creating convective clouds and precipitation. A return
flow at higher altitudes leads to increased subsidence over the ocean
and coastal area. Therefore, two circulation cells are established (Rutl-
lant et al., 2003). In case the top of the coastal cliff, which has altitudes
ranging between 400 m and 1500 m, is below the inversion base height,
the MBL cell and the cell atop are coupled and Pacific moisture can
be transported inland. When the stratocumulus is advected inland
the mixing with warmer and drier inland air leads to dissipation of
the cloud. However, the air with enhanced water vapor can still be
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transported further inland where night time cooling might lead to the
formation of radiation fog (Cereceda et al., 2002).

The inland regions are characterized by fog at the coastal cliff and
coastal cordillera which typically forms at night and dissipates dur-
ing the morning hours after sunrise (Cereceda et al., 2008b). Further
inland, clouds are rarely observed. Due to these differences, we dis-
tinguish between inland and ocean for the validation. Furthermore,
inland precipitation decreases from south to north in particular during
winter season (Houston, 2006) which indicates the influence of the
midlatitude storm tracks in the southern part. The stronger influence
of frontal systems in the southern part calls for an additional dis-
tinction in northern and southern regions. Therefore, we focus on
four individual regions (Fig. 5.1). Region 1 (18.125◦S–24.375◦S) and 2

(23.125◦S–29.375◦S) are over ocean (74.375◦W–71.875◦W), and region
3 (18.125◦S–23.125◦S) and 4 (23.125◦S–28.125◦S) are mainly over land
(70.625◦W–69.375◦W).

5.3 validation of era20c

To estimate how well IWV is represented in ERA-20C, we carry out
a comparison with HOAPS and MODIS IWV. By choosing the Terra-
MODIS IWV, a 10-year period (2001–2010) with retrievals from all three
data sets can be compared. Average IWV values for each data record
and each of the defined focus region are given in Tab. 5.1 revealing
a dry bias of ERA-20C between 18 % (north) and 14 % (south) for the
ocean regions (compared to HOAPS) and between 45 % (north) and
46 % (south) for the inland regions (compared to Terra-MODIS). Po-
tential origins of this bias are discussed in section 5.3.1. Henceforward,
spatial patterns are discussed for composites and seasonal means of
the IWV (Section 5.3.2) followed by an analysis of decomposed IWV
time series (Section 5.3.3).

5.3.1 Bias assessment

Since a substantial bias between the satellite data sets and ERA-20C
is evident from the climatologies (Tab. 5.1), we investigate whether
the reasons of this bias potentially hamper ERA-20C’s suitability for
the assessment of long term IWV variability within the study region.
Several factors can contribute to the bias, e.g. instrumental factors,
such as omitting cloudy scenes for the MODIS NIR retrievals, or
problems inherent to the reanalysis.

Starting with the ocean regions, we approximate the expected IWV
by the following conceptual considerations. Assuming a well mixed
boundary layer with a vertically constant specific humidity and a
negligible water vapor content within the free troposphere aloft, then
the IWV is only a function of SST and the inversion height. The specific
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Table 5.1: 10-year (2001–2010) mean IWV values for the focus regions indi-
cated in Fig. 5.1 for all months, austral winter months, i.e. June,
July, August (JJA), and austral summer months, i.e. December,
January, February (DJF). Values are given in kg m−2.

ocean inland

season north south north south

all 17.46 14.65

HOAPS JJA 13.38 12.91

DJF 22.21 16.95

all 15.99 12.96 14.68 8.90

Terra MODIS JJA 12.26 11.63 9.23 5.66

DJF 18.57 15.17 20.87 12.90

Terra all 13.9 8.5

MODIS JJA 7.1 5.2

land only DJF 20.8 12.2

all 14.33 12.55 8.13 4.83

ERA-20C JJA 12.00 11.77 4.52 3.75

DJF 17.15 13.78 12.91 6.60

humidity is approximated, assuming a relative humidity of 80 % at the
surface. According to ERA-20C, the mean SST for the northern ocean
region is approximately 22◦C and 17◦C for the summer and winter
season, respectively. According to vertical profiles acquired by radio
soundings near Antofagasta (70.4◦W; 23.4◦S), the inversion base height
ranges between 900 m (winter) and 1100 m (summer) (Muñoz et al.,
2011). Towards the northwest, the inversion base height is increasing
(Rahn and Garreaud, 2010), so that inversion base heights about 100–
200 m above the heights at Antofagasta appear realistic. Such SSTs and
inversion base heights amount to theoretical IWV values of 20 kg m−2

and 12 kg m−2 for summer and winter season, respectively (cf. Fig.
A.5). Considering the coarse resolution of the utilized SST which
might cause an underestimation of the strong SST gradient at the
northern tip of the focus region and a missed component of the free
troposphere, these theoretical values constitute a lower bound of the
expected IWV. In this light, the slightly higher HOAPS IWV appears
realistic while ERA-20C underestimates the IWV.

Judging from the ERA-20C temperature profiles within the lower
troposphere, an underestimation of the inversion height of about 50 %
is revealed compared to results from the Variability of the American
Monsoon Systems Ocean-Cloud-Atmosphere-LandStudy Regional Ex-
periment (VOCALS-REx; Wood et al., 2011; Rahn and Garreaud, 2010)
(cf. Fig. A.5a). Such underestimations near the coast of subtropical
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stratocumulus regions are typical for numerical models (Rahn and
Garreaud, 2010; Hannay et al., 2009; Wyant et al., 2010). For an inver-
sion height of about 600 m, the theoretical boundary layer contribution
to the IWV amounts to about 7 kg m−2 and 10 kg m−2 for winter and
summer season, respectively (cf. Fig. A.5). Furthermore, for the time
period in the case study, it was found, that about 20 % of the total IWV
are contributions from between height levels between the modeled
and the observed inversion base height, partially compensating for the
missing moisture below the inversion base. Therefore, we conclude
that the dry bias originates from an underestimation of the inversion
base and a false representation of the vertical humidity profile within
the boundary layer.

For the two inland regions, we investigate the bias between ERA-
20C and the MODIS near-infrared retrievals. While Remy et al. (2011)
reveal a dry bias of the MODIS NIR IWV, ERA-20C shows even lower
values in our study. This bias can be partially attributed to the coarse
height representation in ERA-20C (Fig. A.6). The average height of
the northern inland region is about 1297 m in ERA-20C which is
about 342 m above the height according to Shuttle Radar Topography
Mission (SRTM; Farr et al., 2007) data (955 m). For the southern inland
region the overestimation is about 191 m (ERA-20C: 1778 m; SRTM:
1587 m). An approximation of specific humidity of 4 g kg−1 (JJA) and
9 g kg−1 (DJF) yield a theoretical difference in IWV of 1.5 kg m−2 (JJA)
and 3.3 kg m−2 (DJF) for the northern region and 0.8 kg m−2 (JJA) and
1.8 kg m−2 (DJF) for the southern region. However, in particular for the
northern region a higher bias is expected because the northern tip of
the region has an actual even lower altitude allowing the penetration of
moist air from the MBL inland more frequently which is manifested in
a higher fog and low cloud occurrence in this region. This contribution
to the region wide mean IWV is not represented in ERA-20C due to
its coarse resolution. The same holds true for coastal strips and valleys
such as the Rio Loa valley which are not represented in ERA-20C.

According to the performed case study including theoretical consid-
erations, the bias between ERA-20C and the satellite-based IWV can
be attributed mainly to the reanalysis. The reasons are a false repre-
sentation of the MBL (ocean) and topography (inland). Both effects
constitute systematic errors and thus should not interfere with the
representation of temporal variability. Composite IWV anomalies for
cut-off low situations show similar magnitudes and spatial patterns
for both ERA-20C and the satellite-based data sets, demonstrating the
ability to capture IWV variations on a synoptic scale (Section 5.3.2).

5.3.2 Climatologies and composites

Across a wider area, the seasonal means over this 10-year period reveal
a meridional pattern over ocean with higher IWV to the west and lower
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IWV closer to the coast for all three data sets (Fig. 5.2). This can be
attributed to the lower SST in closer proximity to the coast where the
Humboldt current is strongest (Fig. 5.1). During the summer season, i.e.
December, January, February (DJF), IWV observed by all three data sets
is higher than during winter season, i.e. June, July August (JJA) (Tab.
5.1). While HOAPS shows an increase from winter to summer of about
66 % and 31 % for the northern and southern regions, respectively,
the increase in ERA-20C is about 43 % and 17 %, respectively. Again,
a higher SST causes enhanced evaporation so that IWV increases
in particular over ocean. The southeast Pacific anticyclone typically
shifts towards the south in the summer season causing the surface
winds which drive the Humboldt current to shift south as well. This
way, the SST reaches maximum values in particular ahead of the
Peruvian coast (15◦S–20◦S). Enhanced IWV is found for this region
in all three data sets. Aside from higher SSTs, the summer season
is also characterized by higher air temperatures providing a higher
water vapor holding capacity and advection of already water vapor
enriched air. Accordingly, MODIS and ERA-20C show an increased
IWV over land during the summer season. Between 20◦S–26◦S, cloud
heights are typically higher during the warm season (Böhm et al., 2019)
which indicates a higher inversion base height. This could enable more
Pacific moisture to cross the coastal cliff and be transported further
inland leading to increased IWV in this region. On the eastern side
of the Andes, a zonal pattern is revealed by ERA-20C and MODIS
IWV with maximum values over the Amazon Basin and decreasing
values towards the midlatitudes. Overall, ERA-20C is able to represent
the patterns and seasonal changes which are observed by the satellite
based data sets.

Furthermore, we investigated the influence of cut-off lows on the
spatial distribution of IWV. Reyers and Shao (2019) found a higher
moisture availability in the Atacama coinciding with these synoptic
features. In this study, composite anomalies for cut-off low situations
during the winter season show an enhanced IWV for the Atacama and
for an extended area over the ocean off the Atacama coast (Fig. 5.2 c,
f, i). In addition to the previously discussed agreement between the
IWV patterns on a climatological scale, ERA-20C is even capable of
representing the pattern of enhanced IWV for these synoptic features.

5.3.3 Comparison of decomposed IWV time series

To obtain time series for each data record, we calculate spatial and
monthly means for each of the four focus regions. In order to evaluate
the ability of ERA-20C to represent the IWV variability, we investigate
the IWV deviation from the respective temporal mean of each time
series. Furthermore, we decompose the time series into a 12-month
centered moving average (CMA) a seasonal component and the resid-
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(b) ocean−S
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(e) ocean−N
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  (f) ocean−S
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(c) ocean−N
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(d) ocean−S
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(g) ocean−N
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(h) ocean−S

Figure 5.3: IWV time series of ERA-20C and HOAPS for focus regions 1

and 2 (over ocean, denoted in Fig. 5.1). (a,b) Deviations from the
respective means. (c,d) 12 months centered moving average of the
∆IWV time series. (e,f) seasonal cycle. (g,h) residuals. Correlation
coefficients r are denoted at the top left of each panel. By adding
the centered moving average, the seasonal cycle and the residual
together, the overall time series of the deviation of the IWV results.

ual. The seasonal component is derived by subtracting the 12-month
CMA from the time series and then calculating the mean value for each
month. Subtracting the 12-month CMA and the seasonal component
from the time series yields the residuals. While the 12-month CMA
represents the year to year variability, the residuals are a measure of
the month to month variability.

The unfiltered monthly time series of IWV for ERA-20C and HOAPS
between 1988 and 2010 are highly correlated due to a consistent
representation of the annual cycle and year to year variability (1-year
CMA) for both the northern and the southern ocean regions (Fig.
5.3). The month to month variability (residuals) yield slightly lower
correlations. A reason could be that synoptic features which pass
through the regions might be slightly offset in time and space. The
strong 1997 El Niño event is captured is equally apparent in both
data sets. Only a small period (2005–2008) of ongoing disagreement
between HOAPS and ERA-20C is apparent for the northern ocean
region (1-year CMA, Fig. 5.3c).

The short period of disagreement and offset of the CMA between
2005 and 2008 within the northern region becomes a more dominant
feature for the comparison between ERA-20C and MODIS IWV be-
cause the overlapping time period is much shorter (2003–2010). A
missed peak during 2006 is followed by an offset period between 2007
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(c) ocean−S
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(b) ocean−N
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  (d) ocean−S
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(e) land−N
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(g) land−S
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  (f) land−N
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  (h) land−S

Figure 5.4: IWV time series of ERA-20C, HOAPS, Terra-MODIS and Aqua-
MODIS for region 1 (a,b), region 2 (c,d), region 3 (e,f), and region
4 (g,h) which are indicated in Fig. 5.1. Shown are the 1-year
centered moving average (CMA) of the IWV anomalies (left) and
the seasonal components (right).

and 2008 which is apparent in the 1-year CMA for both the northern
ocean and inland region (Fig. 5.4). Before and after this period, ERA-
20C IWV is in agreement with HOAPS and MODIS regarding both
amplitude and phase. However, this short period of disagreement
which is less pronounced for the southern regions results in overall
low correlations of the 1-year CMA (Fig. 5.5 c, d). The month to month
variability (residual) shows similar agreement between ERA-20C and
MODIS (Fig. 5.5 e, f) as for the comparison between ERA-20C and
HOAPS for the longer period. This indicates that ERA-20C is able to
represent synoptic features although a substantial noise is present.
This is expected given the coarse resolution of the model.

The phase of the seasonal cycle is captured accurately by ERA-20C
which is indicated by correlations reaching almost unity for all regions
5.5 a, b). The amplitude of the seasonal cycle is underestimated by
ERA-20C, when absolute numbers are considered (Tab. 5.2). However,
relative to its overall mean, the amplitudes are closer to the satellite-
based estimates. These discrepancies are consistent with the detected
misrepresentation of the maritime boundary layer (ocean) and topo-
graphic heights (inland) which result in an overall dry bias of the
ERA-20C IWV (see Section 5.3.1).

The seasonal cycle is the main driver of variability according to
the amplitudes (Tab. 5.2). Differences between summer and winter
peaks range between 7.0 kg m−2 (HOAPS, southern ocean region) and
12.9 kg m−2 (HOAPS, northern ocean region). The month to month
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Figure 5.5: Correlation of the decomposed time series of IWV between the
different sources: Aqua MODIS NIR (MOD-Aqua), Terra MODIS
NIR (MOD-Terra), HOAPS, and ERA-20C. (a,b) correlation of the
seasonal cycle. (c,d) correlation of the centered moving average.
(e,f) correlation of the residuals. Regions 1 and 2 (a,c,e) and 3

and 4 (b,d,f) are distinguished by showing the northern region in
the upper left corner and the southern region in the lower right
corner of each panel as indicated. The underlying time series
comprise 8 years (2003–2010). Note that HOAPS is only available
over ocean.

variability (residuals) superimposes another 5 kg m−2 (north) and
3 kg m−2 (south) of variability over ocean according to the difference
between most upper and most lower peaks (c.f. Fig. 5.3, g, h). Similar
values are observed for the inland regions with about 4 kg m−2 (north)
and 3 kg m−2 (south).

A measure of uncertainty of the IWV representation in ERA-20C
can be derived by calculating the root mean square error (RMSE)
for the 3 components (seasonal cycle, moving average and residuals)
of the IWV anomalies (Fig. 5.6). For the moving average, the RMSE
between HOAPS and ERA-20C is about 0.56 kg m−2 and 0.25 kg m−2

for the northern and southern ocean regions, respectively. In relation
to the long term mean values (Table 5.1) these values range around 3 %
and 2 %. For the residuals, the RMSE between HOAPS and ERA-20C
is about 1.09 kg m−2 and 0.80 kg m−2 for the northern and southern
ocean regions, respectively. In relation to the long term mean values
(Table 5.1) these values range around 6 % and 5 %.

An extension of the analysis beyond the four focus regions to a
wider area reveals that the RMSE values are highest in the northern
part of the study area where the variability is found to be highest (Fig.
5.7 e, f, g, h for ERA-20C against HOAPS and Fig. 5.8 e, f, g, h for
ERA-20C against Terra-MODIS). While higher correlations regarding
to the moving averages and the residuals are revealed in the south,
higher correlations regarding to the seasonal cycles are revealed in the
north (Fig. 5.7 a, b, c, d and Fig. 5.8 a, b, c, d).
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Table 5.2: Assessment of the seasonal cycles for the focus regions indicated
in Fig. 5.1. Differences between summer and winter peaks PS − PW
for the seasonal cycles shown in Fig. 5.4 and long term mean IWV
w (c.f. Tab. 5.1) are given in kg m−2. The ratio between half of the
peak difference and the long term mean IWV is given in percent.

ocean inland

data north south north south

ERA-20C 7.6 4.4 9.8 4.0

PS − PW HOAPS 12.9 7.0

Terra MODIS 15.8 9.1

ERA-20C 14.33 12.55 8.13 4.83

mean IWV w HOAPS 17.46 14.65

Terra MODIS 14.68 8.90

ERA-20C 26.5 17.5 60.3 41.4
1
2 (PS−PW)

w [%] HOAPS 36.9 23.9

Terra MODIS 53.8 51.1
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Figure 5.6: Same as Fig. 5.5 but for root mean square error (RMSE).

5.3.4 Representativity for the 20th century

Thus far, the validation is carried out for a time period for which
satellite-based IWV retrievals are available. To further assess how rep-
resentative the validation is for the whole time period, we analyze
the observations which were assimilated into ERA-20C. We utilize
the number of assimilated surface pressure and marine surface wind
observation along with their individual departures from the analyses
after their assimilation. These data are provided by the ECMWF ob-
servation feedback archive (Hersbach et al., 2015). We consider any
assimilated observations that are located within the region bounded
by 90◦W to 60◦W and 40◦S to 15◦S. The total number of assimilated
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Figure 5.7: Spatial distribution of correlation r (a–d), and RMSE (e–h) be-
tween HOAPS4 and ERA-20C on a 1.25◦ × 1.25◦ grid for a 23-year
period (1988–2010). Shown are the parameters for the time series
with no decomposition, the seasonal cycle, the moving average,
and the residuals (left to right).

observations per year stayed below 5000 prior to the late 1950s except
for a local maximum around 1910 (Fig. A.7a). During the 1970s this
number increased by a factor of greater than 25. The enormous in-
crease is mainly due to additional observations over land (Fig. A.7b).
On a global scale, the number of assimilated observations increased
continuously despite a few interruptions (e.g. after World War II) (Poli
et al., 2016). Concurrently, the mean bias between ERA-20C and the
assimilated observations decreased to almost zero by the late 1990s
(Fig. A.7b). The bias corrected mean absolute error decreased from
about 1 hPa to at the beginning of the modeled period to about 0.5 hPa
at the end of the period (Fig. A.7b). This is not surprising, considering
a denser observation network can add more realism to the model.
This means, the uncertainties are higher for the earlier part of the
time series, in particular prior to 1935. However, the spatio-temporal
variability of the bias does not reveal any systematic pattern in space
or time (Fig. A.9). Therefore, there is no indication that the circulation
pattern could be systematically offset for the earlier part of the 20th
century.

As of today, no data with higher resolution than ERA-20C is avail-
able to study IWV for the entire 20th century. Overall, ERA-20C reveals
a dry bias which has been shown already by Poli et al. (2016). However,
the spatial distribution patterns agree well with satellite observations.
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Figure 5.8: Spatial distribution of correlation r (a–d), and RMSE (e–h) be-
tween Terra-MODIS and ERA-20C on a 1.25◦ × 1.25◦ grid for a
10-year period (2001–2010). Shown are the parameters for the
time series with no decomposition, the seasonal cycle, the moving
average, and the residuals (left to right). Here, the IWV from the
15 UTC output of ERA-20C is utilized.

Agreement of anomaly patterns for cut-off low situations even prove
a good representation on a synoptic scale. The phase of the seasonal
cycle is represented very accurately, even though the amplitude is
underestimated. Year to year variability is found to be represented
very well. However, a short time period was identified for which the
moving averages of ∆IWV from ERA-20C diverged from the satellite
based retrievals. Even for this period, the month to month variability
is still in rather good agreement. Therefore, we conclude that ERA-20C
represents the IWV variability sufficiently well for the Atacama and
the bordering southeast Pacific region so that it can be utilized to
study the IWV within this region over the course of the 20th century.

5.4 20th century iwv

To investigate the long term IWV variability in the Atacama Desert,
we consider the IWV deviations from the respective mean values for
the entire period which is covered by ERA-20C (1900-2010) with a
monthly resolution. First, the inter-annual to inter-decadal variability
is discussed for the focus regions. Second, the relationship between
the observed variability of IWV and the PDO, ENSO and local SST are
investigated. Third, a seasonal distinction is shown.
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Figure 5.9: Time series of IWV anomalies from ERA-20C for the northern and
southern ocean and inland regions indicated in Fig. 5.1. Shown
are the 1-year (a), 5-year (b) and 10-year (c) centered moving
averages between the years 1900 and 2010.

5.4.1 Regional IWV variability

The 1-year, 5-year, and 10-year centered moving averages (CMA) for
each of the four designated focus areas show different IWV variations
on different time scales (Fig. 5.9). For all regions, a substantial inter-
annual to inter-decadal variability is observed. For the ocean regions,
IWV relative variations between −11 % and +18 % (ocean S) to +22 %
(ocean N) are detected. For the inland regions, even higher variations
between −20 % (land S) to −24 % (land N) and +30 % (land S) to
+31 % (land N) are detected. The absolute numbers of positive and
negative deviations and the distribution of the 1-year CMA IWV (Fig.
5.10) show that wet extremes are less frequent but more pronounced.
This means the dry state is closer to the mean condition. A similar
effect is generally observed for the ENSO state with El Niño typically
showing stronger departures from the mean compared to La Niña (see
Fig. 5.11).

The highest peak within the 111-year record occurs for the northern
ocean region during the 1997 El Niño. This El Niño yields a peak for
all focus regions for the 1-year CMA and is still a prominent feature
in the 5-year CMA. Thereafter, IWV has been decreasing in all regions
until the end of the covered period. Therefore, compared to the late
1990s, the years around 2010 constitute a dry period. However, since
the 1970s, IWV has been increasing in all four focus regions until the
end of the 20th century (Fig. 5.9c). The latter coincides with a shift
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Figure 5.10: Violins of IWV anomalies based on monthly values of the 1-
year centered moving average (time series shown in Fig. 5.9a)
between 1900–2010 for the four focus regions indicated in Fig.
5.1. Horizontal lines within the violins represent the 10th, 50th
and 90th percentile of the distribution. The overall mean value
is given in parenthesis for each region in kg m−2.

from cold to warm phase of the PDO which will be discussed in more
detail in Section 5.4.2.

Correlations between the individual regions (Fig. 5.12) range around
0.65 to 0.7 for the 1-year CMA indicating rather pronounced coupling
between the regions. An exception is the northern inland region which
correlates less to the southern inland region (0.58) and the southern
ocean region (0.16). This indicates that the northern inland region
responds differently to short term variability and is less connected in
particular to the southern regions. On the other hand, the northern
inland region shows higher correlations on longer time scales (10-year
CMA) with the southern ocean region (0.47) and the northern ocean
region (0.85). On shorter time scales, periods with more frequent
wet episodes might still cause a distinct signal in the 1-year CMA
which is smoothed on longer time scales. During summer, such wet
episodes can occur in the northeastern Atacama (Altiplano) when
easterly winds advect moist air from Amazon basin into the region.
These easterlies appear in connection to a southward displacement
of the Bolivian High which is a seasonal upper tropospheric high
pressure system. It is present during summer with a mean clima-
tological position above Bolivia (Garreaud et al., 2009). The origin
of the moisture is the continental boundary layer in central South
America. Diurnal heating of the eastern Andean slopes along with
entrainment of easterly momentum from upper levels results in strong
upslope transport of moisture (Garreaud, 1999; Garreaud et al., 2003).
Enhanced summer precipitation (Vuille, 1999) and enhanced summer
IWV (Marín and Barrett, 2017) over the Altiplano are associated with
this synoptic pattern. While individual wet episodes connected to
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Figure 5.11: Same as Fig. 5.9 but only for the southern ocean and north-
ern inland regions. Additional lines of different shades of gray
represent the PDO index, Niño 3,4 index, and the local SST
anomalies. Local SST is taken from ERA-20C averaged over the
region ranging from 75.625◦W to 71.875◦W, and from 29.375◦S
to 18.125◦S)

upper level easterlies typically last for a couple of days up to a week,
their frequency of occurrence can vary on inter-annual time scales
(Garreaud et al., 2003). Therefore, the moisture variability due the
described mechanism could be visible in 1-year CMA of the IWV.
However, the described impacts of a southward displacement of the
Bolivian High are constraint to the northern part of the Atacama. This
could be an explanation why the northern inland focus region might
be less connected to the other focus regions, especially the southern
regions. A still higher correlation with the northern ocean region
could be an indication that the easterly moisture transport might even
reach the Pacific. How this phenomenon relates to longer term climate
variability (ENSO, PDO) is discussed in Section 5.4.2 and Section 5.4.3
with seasonal distinction.

5.4.2 IWV relationship with ENSO, PDO and local SST

To assess how the described variability of regional IWV in the Atacama
and bordering southeast Pacific is connected to larger scale climate
variations, we investigate its relationship to ENSO and the PDO. Fur-
thermore, local SST anomalies determined from the ERA-20C SST
(Section 5.2.4) are considered. ENSO, PDO and the local SST are all
positively correlated (Fig. 5.12). This is not surprising since all these
indices usually feature warm (cold) SST anomalies in the southeast
Pacific during their warm (cold) phase. However, ENSO, PDO and
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Figure 5.12: Correlations between the different time series, namely the ERA-
20C IWV for 4 different regions (ocean and inland, north and
south as indicated in Fig. 5.1), PDO index, Niño 3,4 index, and
the local SST. Shown are results for a 1-year moving average (up-
per left) and a 10-year moving average (lower right). Correlation
coefficients r are indicated by color and are given as numbers.

local SST act on different time and spatial scales, so that different
relationships to the local IWV can be expected. In particular ENSO
and PDO feature more pronounced teleconnection patterns compared
to local SST. Therefore, a more complex relationship to local IWV can
be expected for these two large scale features.

All indices feature mainly positive relationships with the IWV of
the focus regions, indicating higher IWV during the respective warm
phases. An exception is the northern inland region which does not
show a correlation to local SST and PDO, but a slight negative cor-
relation to ENSO (r = −0.22) for the 1-year CMA. This means, the
region is drier during El Niño and wetter during La Niña. Previous
studies have shown this effect for the Altiplano during the austral
summer season mainly for precipitation (Vuille, 1999; Garreaud et al.,
2003; Canedo-Rosso et al., 2019) but also for specific humidity (Vuille,
1999). During El Niño, which typically reaches its mature state dur-
ing austral summer, the Bolivian High weakens and retreats to the
north, so that pronounced upper level westerlies steer dry air towards
the Altiplano (Vuille, 1999). On the contrary, during austral winter
an opposite relationship has been reported. Enhanced ridging over
the Pacific in higher latitudes and troughing over the southeastern
Pacific result in a northward displacement of midlatitude disturbances
yielding wetter winters mainly in the southern Atacama (Vargas et al.,
2006; Houston, 2006). Extended northward troughing with anomalous
northwesterly midtropospheric flow are also related to higher IWV
over the Altiplano during austral winter (Marín and Barrett, 2017).
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Therefore, opposite responses to the same phase of ENSO are expected
for summer and winter season. This could explain generally low cor-
relations of ENSO with the inland IWV in particular for the northern
inland region. A more detailed analysis of seasonal effects is presented
in Section 5.4.3.

The mechanism causing anticorrelation between IWV and ENSO
during austral summer is more pronounced in the northern region.
Therefore, the southern regions are not expected to show such strong
seasonal dependence of the relationship. This is manifested in higher
correlations between IWV and ENSO for the southern regions (Fig.
5.12). The PDO is expected to have similar impacts in the study area
compared to ENSO but with smaller amplitude (Garreaud et al., 2009).
Moreover, PDO and ENSO phases can have constructive interference
(Andreoli and Kayano, 2005).

Correlations between indices and regional IWV are generally lower
for the 1-year CMA compared the 10-year CMA (Fig. 5.12). In particu-
lar the PDO shows stronger correlations on an inter-decadal time scale
compared to an inter-annual time scale. ENSO and to a lesser extent
the PDO favor certain weather patterns but are not expected to directly
cause them. Therefore, not every El Niño is associated with increased
precipitation at the southern coast of the Atacama (Houston, 2006) or
anomalous dry episodes in the Altiplano (Vuille, 1999; Garreaud et al.,
2003). The variability is still related to particular synoptic patterns. For
instance, an extreme precipitation event occurred in the Atacama in
March 2015 which was associated with an El Niño. Bozkurt et al. (2016)
demonstrate that only the interplay of the positive SST anomalies and
a concurrent cut-off low enabled the enhanced moisture transport
which ultimately fueled the unusual precipitation inland. Especially
on shorter time scales, the synoptic variability influences the IWV
resulting in lower correlations for these time scales.

For the southern inland region, the PDO explains more variability
compared to ENSO and local SST. This raises the hypothesis that dur-
ing the warm phase of the PDO the frequency of blocking situations in
higher latitudes with an accompanied northward shift of midlatitude
disturbances is increased. The latter pattern yields wetter conditions
in the Atacama during austral winter and was found to occur more
often during the developing stage of El Niño (Vargas et al., 2006).

Over ocean and also for the northern inland region, the local SST
appears to have the strongest relationship with the IWV on an inter-
decadal time scale compared to ENSO and PDO. This implies that the
direct connection from an increased SST to a higher IWV is stronger
than the more complex relationship with ENSO and PDO. An in-
creased SST causes a warming and moistening of the MBL. An in-
crease of the water holding capacity of warmer air by about 7 % per
Kelvin is expected according to the Clausius-Clapeyron relation so
that the IWV would most likely increase for a higher SST.
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Figure 5.13: Correlation coefficients for lagged correlations between ERA-20C
IWV and PDO (a), Niño3,4 index (b) and local SST (c) for the
1-year centered moving averages. Distinguished are the 4 focus
regions (ocean north, ocean south, land North, land south). The
lag k indicates that the correlation is calculated between the time
series IWVt+k and the respective index indt (PDO, Niño3,4 or
local SST).

This direct relationship between local SST and IWV is also mani-
fested by the results of lagged correlations. The highest correlation is
yielded for lag 0 (Fig. 5.13c). ENSO and PDO yield higher correlations
if the IWV is shifted back in time by 2 to 5 months (Fig. 5.13a and
5.13b). This supports the results from Vargas et al. (2006) who reported
that the pattern of anomalous ridging over the Pacific in higher lat-
itudes and troughing in subtropical latitudes is favored during the
developing stage of El Niño. Therefore, enhanced wetness would be
expected a few month prior to the fully developed El Niño.

5.4.3 Seasonal dependencies

To investigate the seasonal dependence, we calculate the normalized
density of the monthly IWV distinguished between austral winter
(JJA) and summer (DJF) season for each of the four focus regions.
Further, we distinguish between different states of the Niño 3.4 index
and the local SST by defining intervals with break points resulting
from different quartiles of the respective index (Fig. 5.14). El Niño
like conditions, i.e. the top quartile of the Niño 3.4 index, lead to
above average IWV during winter (JJA, Fig. 5.14 a–d) and decreased
IWV variability (narrower distribution) during summer (DJF, Fig. 5.14
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e–h) with a shift to the dry end of the overall IWV range. La Niña
like conditions, i.e. the lowest quartile of the Niño 3.4 index, lead to
below average IWV during winter (JJA, Fig. 5.14 a–d) and only show
a small difference compared to the neutral ENSO state (i.e. interquar-
tile range of the Niño 3.4 index). For the northern inland and ocean
region, la Niña allows slightly higher wet extremes of IWV compared
to neutral or El Niño conditions during the summer. However, the
drier conditions during El Niño are a lot more pronounced. A mecha-
nism behind this could be enhanced upper tropospheric easterly wind
flow during La Niña. Vuille (1999) demonstrate that a high southern
oscillation index (SOI), which represents La Niña conditions, is associ-
ated with a more pronounced and southward shifted Bolivian high
which leads to increased easterly winds over the Altiplano. On the
other hand, El Niño conditions result in a weakened Bolivian High
and stronger westerlies. Garreaud et al. (2003) also show that while
enhanced easterlies strengthen the upslope flow of moist continental
air on the eastern side of the Andes, weakened easterlies strengthen
the upslope flow of dry desert air on the western side of the Andes.
La Niña conditions, which are typically associated with intensified
subsidence over the eastern Pacific, potentially trigger enhanced east-
erly airflow over the Altiplano and control the position of the Bolivian
high. These moist upper tropospheric easterlies associated with La
Niña conditions cause increased specific humidity even at Antofagasta
(Vuille, 1999), a coastal city in the Atacama region.

Analogous results have been obtained for precipitation by Houston
(2006). He reports that higher winter precipitation in the Atacama
occurs during El Niño conditions, whereas enhanced summer precipi-
tation occurs during La Niña conditions. The principle agreement of
our findings with the results from Houston (2006) indicates the close
relationship between IWV and precipitation. Thus, long term IWV
retrievals might link to precipitation estimates for the past.

For the winter season, the effects of the local SST appear similar
compared to the effects of the Niño 3.4 index. This means that higher
local SSTs correspond to a shift towards higher IWV values whereas
lower local SSTs correspond to a shift towards lower IWV values. For
the summer season, only the ocean regions show a dependence on
local SST. Moreover, only the upper quartile of the SST range appears
to have an effect on the IWV, by shifting the distribution towards
higher values.

5.5 conclusion

We investigated the IWV within the Atacama Desert and the bordering
southeast Pacific over the course of the 20th century. For IWV estimates,
we utilized the reanalysis ERA-20C. In order to assess its suitability,
we carried out a validation study first by comparing ERA-20C IWV to
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Figure 5.14: Composite normalized density of IWV retrieved from ERA-20C
for the covered time period (1900-2010) for different conditions
of the Niño 3,4 index (a-h) and of the local SST anomaly (i-p).
The 4 focus regions are distinguished by 4 columns. Furthermore,
winter season (JJA, 1st and 3rd row) and summer season (DJF,
2nd and 4th row) are shown separately. IWV densities are shown
for lowest quartile (red), the inter-quartile range (black) and the
highest quartile (blue) of the respective indices. This way, the red
curves represent conditions typically associated with La Niña
like conditions and the blue curve represent conditions typically
associated with El Niño like conditions. The analysis is based
on monthly values of the indices.

different satellite observations (HOAPS, MODIS). On a climatological
scale, spatial and seasonal patterns are well reproduced by ERA-20C.
Furthermore, a dry bias between 2 kg m−2 to 3 kg m−2 for the ocean
regions and between 4 kg m−2 to 6.5 kg m−2 for the inland regions is
found, which can be attributed to an underestimation of the MBL
and the coarse representation of the topography by ERA-20C. This is
in agreement to Poli et al. (2016) who found a similar bias between
HOAPS and ERA-20C for spatial averages over the tropical ocean
(between 20◦S and 20◦N). Such biases are not uncommon among
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reanalyses (Schröder et al., 2017) and do not hinder the representation
of variability.

Thus, in order to study the temporal variability of the IWV, we
consider anomalies. It is found that even specific synoptic features,
i.e. cut-off lows, are represented very well in ERA-20C. Furthermore,
a time series analysis for four different focus regions revealed that
temporal variability of IWV in ERA-20C is overall in accordance with
the satellite observations. In particular, the phase of the seasonal cycle
is captured well with correlations reaching almost unity. The inter-
annual variability is represented well with correlations between ERA-
20C and HOAPS of about 0.82 (ocean north) and 0.89 (ocean south).
However, for a short period between 2005 and 2008, the inter-annual
variability of ERA-20C IWV deviates about 1 kg m−2 from HOAPS
and MODIS observations. This period of disagreement becomes a
dominant feature for the comparison of ERA-20C and MODIS IWV
due to the short overlapping time period (2003–2010). A possible
reason for the disagreement could be a change in the assimilated
observations.However, the seasonal cycle and the month to month
variability are still represented well even for this time period.

The validation is carried out for the time past 1988 for which HOAPS
data, which is the longest record of satellite based IWV observations,
is available. As no area wide IWV observations are available prior
to the satellite era, we have to rely on reanalyses. A further assess-
ment of the observation feedback archive for ERA-20C revealed an
increased uncertainty for the beginning of the 20th century. However,
no systematic biases were identified which would hamper a useful
analysis. We could show that ERA-20C is capable of representing
IWV variability realistically by only assimilating surface pressure and
wind observations along with temporally varying forcing data for the
Atacama region.

In the second part of this study, we investigated the IWV variability
which is represented in ERA-20C over the course of 111 years (1900–
2010). Inter-annual variability is high with deviations of the 12 months
running mean from the overall mean rising above 30 % for example
for the inland regions. Furthermore, varying trends on inter-decadal
time scales are observed. For instance, an increase of IWV is detected
after 1970 until the strong El Niño in 1997/1998 and a decline there-
after, which is in particular pronounced in the northern regions. This
increase is consistent with global warming which increases the water
vapor holding capacity. However, between 1979 and 2006 local cooling
trends have been found for coastal stations in the Atacama (Falvey
and Garreaud, 2009). Another explanation of the increased IWV dur-
ing the last quarter of the century could be the PDO which shows a
concurrent shift into a positive phase during the 1970s. The onset of
this positive trend from the 1970s onward and its potential linkage to
the PDO as well as various earlier trends could not be revealed using
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reanalysis which only cover recent decades, such as ERA-Interim (Dee
et al., 2011b).

In general, warm phases of PDO, ENSO and local SST are associated
with increased IWV, except for the northern inland region. A more
detailed picture is revealed when a seasonal distinction is applied.
While El Niño typically features a dry austral summer, La Niña allows
dry and wet summers. This phenomenon is identified for all regions
but most pronounced in the northern regions. While the mechanisms
behind dry summers under El Niño conditions have been described
mainly for the Altiplano in the northeastern part of the Atacama (e.g.
Vuille, 1999; Garreaud et al., 2003), it remains unclear if the same
mechanisms, i.e. enhanced westerlies/ suppressed easterlies, explain
the observed dry conditions for the southern regions during the warm
phase of ENSO. For the austral winter season, El Niño conditions have
an opposite effect compared to the summer. Then, increased IWV is as-
sociated with the warm ENSO phase, while drier conditions are found
for La Niña. We found overall positive correlations between ENSO
and regional IWV on inter-annual time scales (Fig. 5.12). This implies
that the increase of IWV during winter is generally stronger than the
overall lower IWV during the summer associated with El Niño. This
seasonal opposite effects seem more balanced for the northern regions
manifested in lower correlations. An even negative correlation for the
northern inland region indicates the following: The drying effect due
to enhanced westerlies during El Niño summers overcompensates the
increased IWV signal during El Niño winters. This results in overall
drier years associated with the warm ENSO phase. However, there
might be potential tipping points for very strong El Niño events which
might alter the previously described relations. An example could be
the 1997/98 El Niño for which the northern ocean region yields the
highest peak within the entire ERA-20C record (Fig. 5.9).

La Niña conditions can feature a wider range of IWV during the
summer compared to El Niño. While dry summers are typical during
El Niño conditions, they can also occur during La Niña conditions.
However, wetter summers are limited to La Niña. This indicates, that
while the ENSO state favors certain conditions, the synoptic variability
is still an important factor to influence the IWV. This is also evident
from the higher correlations between the indices and IWV for the long
term moving averages (10-year) when synoptic variability is smoothed
out compared to shorter time scales.

Generally, the local SST explains the most variability compared to
ENSO and PDO. This might be due to the more complex relationship
between ENSO (or PDO) and IWV. The impacts of ENSO depend
on region and season. Additionally to an immediate impact on IWV
via increased SST according to the ENSO phase, teleconnection pat-
terns change the general circulation patterns over the study region
complicating the relation to IWV.
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Furthermore, the PDO as well as the Niño 3.4 index and the local
SST can only partially explain the IWV variability within the four fo-
cus regions. Highest correlations are found between the local SST and
the IWV of the ocean regions. Therefore, other features have to be iden-
tified which further influence the IWV. This could be different weather
types which might in turn be controlled by ENSO to a certain degree.
Future studies could further exploit ERA-20C. For instance, it would
be interesting to investigate to which degree the circulation in differ-
ent levels of the troposphere is influencing the regional IWV. Marín
and Barrett (2017) found that during fall, winter and spring season,
high IWV episodes in the Altiplano are concurrent with intensified
troughing to the east of northern Chile. The resulting northwesterly
flow advects anomalous humid air to the Altiplano. Their study is
based on reanalysis data for more recent decades (1979–2010) which
are dominated by PDO warm phase. The long record of ERA-20C
would allow to test whether the PDO phase influences the weather
patterns which yield lower or higher IWV. Moreover, the relationship
between ENSO and IWV could be investigated in dependence on the
PDO phase. Andreoli and Kayano (2005) already investigated this
relationship with regard to precipitation for the period between 1948

to 1999 for the South-American continent. Their findings reveal more
conspicuous El Niño signals during the warm PDO phase with more
pronounced seasonal differences.

Clouds and precipitation are much more difficult to simulate com-
pared to water vapor as they result from the interplay of many small
scale processes. Only a few station records with partly missing data
provide precipitation estimates within the Atacama. Available satellite
estimates of precipitation, e.g. the Tropical Rainfall Measuring Mis-
sion (TRMM), suffer from uncertainties and biases which are greater
than the actual signal for the extreme environment of the Atacama
(Schween et al., 2020). Therefore, it would be desirable to potentially
use IWV as a proxy for precipitation in order to estimate the amount of
liquid water which is provided to the land surface and the biosphere.
A regional study in the Spanish Mediterranean area demonstrated
that IWV is closely related to extreme precipitation (Priego et al., 2017).
To investigate whether IWV can serve as a proxy for precipitation,
investigations with cloud resolving models are planned in the future.

5.6 remarks

supplement Supplement material is available in the Appendix
A.2 or at: https://doi.org/10.1016/j.gloplacha.2020.103192

data availability ERA-20C data were downloaded from the
ECMWF data server via Web-API. HOAPS data were ordered from
the CM-SAF Web User Interface (https://wui.cmsaf.eu/, last ac-
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cess: 16 October 2018). MODIS data were downloaded via MODIS
Level 1 Atmosphere Archive and Distribution System (LAADS Web)
from https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/
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abstract. In many hyper-arid ecosystems, such as the Atacama
Desert, fog is the most important fresh water source. To study biologi-
cal and geological processes in such water-limited regions, knowledge
about the spatio-temporal distribution and variability of fog pres-
ence is necessary. In this study, in-situ measurements provided by
a network of climate stations equipped, inter alia, with leaf wetness
sensors are utilized to create a reference fog data set which enables
the validation of satellite-based fog retrieval methods. Further, a new
satellite-based fog detection approach is introduced which uses bright-
ness temperatures measured by the Moderate Resolution Imaging
Spectroradiometer (MODIS) as input for a neural network. Such a
machine learning technique can exploit all spectral information of the
satellite data and represent potential non-linear relationships. Com-
pared to a second fog detection approach based on MODIS cloud top
height retrievals, the neural network reaches a higher detection skill
(Heidke skill score of 0.56 compared to 0.49). A suitable representa-
tion of temporal variability on subseasonal time scales is provided
with correlations mostly greater than 0.7 between fog occurrence time
series derived from the neural network and the reference data for
individual climate stations, respectively. Furthermore, a suitable spa-
tial representativity of the neural network approach to expand the
application to the whole region is indicated. Three-year averages of
fog frequencies reveal similar spatial patterns for the austral winter
season for both approaches. However, differences are found for the
summer and potential reasons are discussed.

6.1 introduction

Fog is the major freshwater source for several plant species within the
coastal parts of the Atacama Desert (Muñoz-Schick et al., 2001). The
collection of fog water is also of major social and economic importance
in this region (Schemenauer and Cereceda, 1994b; Osses et al., 2000;
Larraín et al., 2002).

Fog is frequently created where the stratocumulus intercepts the
coastal cliff and coastal cordillera. Its frequency decreases inland,
which is consistent with a decrease in colonization rate of hypolithic
cyanobacteria inland (Cáceres et al., 2007). Farther inland, favorable
conditions for the formation of radiation fog, which is very difficult to
detect, have been documented (Cereceda et al., 2002; Westbeld et al.,
2009). With annual precipitation rates below 1 mm, fog water supply
is the main driver for biological and geological processes for various
regions within the Atacama Desert. However, a regionally resolved
fog climatology is not available yet.

Highly adapted plant species, such as Tillandsia, rely almost solely
on fog as a source of water and nutrition (Rundel et al., 1997; Koch et
al., 2019). They typically grow in those regions of the coastal cordillera
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where fog is frequently present (Pinto et al., 2006). The isotopic com-
position of nitrogen from Tillandsia plants is related to fog moisture
(Latorre et al., 2011; Jaeschke et al., 2019). It is highly correlated to
the height range of the maritime stratocumulus and the cloud cover
frequency indicating its potential to serve as a proxy to reconstruct
historic climate utilizing conserved Tillandsia remnants (Jaeschke et al.,
2019). To calibrate such a proxy with higher accuracy, quantification of
fog frequency for the current climate is required. Recently, a dieback
of the Tillandsia populations has been observed which is believed
to be related to decreasing fog occurrence at the respective locations
(Rundel et al., 1997; Pinto et al., 2006; Schulz et al., 2012).

In addition to plants, soil is strongly affected by fog. The amount
of organic traces (Mörchen et al., 2019) and the activity of microbial
communities (Jones et al., 2018) within desert soil depend on water
sources such as fog.

For individual locations, the near surface fog water supply has
been quantified using different types of fog collectors (e.g. Cereceda
et al., 2002; Cereceda et al., 2008b; Lobos Roco et al., 2018; Osses et
al., 2005; Río et al., 2018). Based on a 17-year long time series of fog
water collected at a research site at the coastal cliff (Alto Patache), the
seasonal cycle has been investigated revealing that fog water yields
are highest for the austral winter season (July, August, September)
and lowest between December and April (Río et al., 2018). These
observations, which are almost the only available in-situ source for
fog, are consistent with satellite-based observations of the maritime
stratocumulus deck which is most persistent with highest cloud cover
during winter (Farías et al., 2005; Cereceda et al., 2008b; Lehnert
et al., 2018b). Furthermore, the stratocumulus top and base height
undergo a seasonal cycle with higher heights during summer and
lower during winter (Muñoz et al., 2016; Böhm et al., 2019) with
average nocturnal cloud bases below 800 m during winter and between
900 and 1100 m during summer for Arica and Iquique and even lower
heights at Antofagasta (Muñoz et al., 2016). Due to the lower heights,
the stratocumulus is more likely to intersect with the coastal cliff
and mountain range, which prevents further inland advection during
winter. Exceptions are regions at which the coastal cliff is intercepted
by canyons or generally lower, allowing inland penetration. Such fog
corridors have been identified and related to fog occurrence in the
central depression (Farías et al., 2001; Farías et al., 2005).

The coastal fog related to the maritime stratocumulus shows a max-
imum occurrence during night time and a minimum during day time
(Farías et al., 2005; Farías, 2007; Cereceda et al., 2008b; Muñoz et al.,
2011). The nocturnal maximum is the result of the stratocumulus deck
being advected towards the coast at this time while the circulation re-
verses during the day (Rutllant et al., 2003). Furthermore, entrainment
of warm and dry free tropospheric air and warming forced by ab-
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sorption of solar radiation lead to dissipation of coastal stratocumulus
during day time (Garreaud and Muñoz, 2004). Further inland, e.g. in
the Pampa de Tamarugal within the central depression, conditions are
favorable for radiation fog (Cereceda et al., 2002; Farías, 2007), which
is typically more likely to form at night time than at day time.

To date, multi-year averages based on satellite observations only
exist for individual months and only regarding cloud cover as a proxy
for fog (e.g. Cereceda et al., 2008b; Lehnert et al., 2018b). The goal of
this study is to develop a satellite-based fog retrieval method for the
region of the Atacama Desert. It needs to be suitable to derive a long-
term climatology and to study seasonal and interannual variability
of fog occurrence. As fog occurrence typically peaks at night, we
focus on the detection of nocturnal fog. This way, all thermal infrared
channels can be considered without additional complexity from the
solar component which affects the middle infrared channels during
day time.

Satellite-based detection techniques of clouds in general and low
clouds or fog in particular rely on simultaneous measurements of
radiances at various frequency bands. Varying relationships between
emissivity and wavelength for different emitters, such as different soil
types, water droplets, or ice particles, result in different radiative sig-
natures at the top of the atmosphere. A distinction between different
cloud scenes is thus possible by the evaluation of different channels,
i.e. radiances or brightness temperatures at different wavelengths, or
combinations of multiple channels. For instance, the absorption and
emission increase stronger for ice compared to liquid water when
the wavelength increases from 10 µm to 12 µm resulting in a distinct
radiative signatures (Strabala et al., 1994). Typically, radiative trans-
fer calculation are utilized to estimate channel dependent thresholds
to make the desired distinction between different cloud scenes (e.g.
Bendix et al., 2006; Cermak, 2012; Gaurav and Jindal, 2018). To carry
out such calculations, assumptions are required regarding soil type,
surface temperature, cloud droplet size distribution, cloud height and
thickness, water vapor and temperature profile, etc. While it is com-
paratively easy to distinguish between low and high clouds using
infrared wavelengths due to higher differences of the respective cloud
top temperatures, the distinction between low clouds, fog and land
surface is more difficult because the temperature at which thermal
radiation is emitted is similar for these features (Güls and Bendix,
1996). A distinction between low clouds and land surfaces is, however,
possible because the emissivity of liquid water clouds is significantly
lower in the short wave infrared (e.g. 3.8 µm) compared to longwave
infrared (e.g. 11 µm) (Hunt, 1973; Ellrod, 1995; Gaurav and Jindal,
2018). This results in greater brightness temperature differences ob-
served for low level clouds compared to land surfaces (Ellrod, 1995).
However, this is less pronounced for larger cloud droplets. Further
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uncertainties arise from the water vapor dependence of the brightness
temperature difference for clear sky cases (Ellrod, 1995). Andersen
and Cermak (2018) mitigate the low cloud distinction problem by ana-
lyzing the spatial structure of the satellite image. Fog typically leaves
a more homogeneous picture compared to the land surface. After an
initial fog and low cloud identification based on thresholds for four
different infrared channels, they carry out a structural similarity test to
distinguish between surface and low stratus. However, their approach
does not distinguish between fog and low cloud.

Present-day spaceborne sensors such as the Moderate Resolution
Imaging Spectroradiometer (MODIS) on board the polar orbiting
satellites Terra and Aqua, the Spinning Enhanced Visible and Infrared
Imager (SEVIRI) on board the Meteosat Second Generation (MSG)
platform or the Advanced Baseline Imager (ABI) on the Geostationary
Operational Environmental Satellite (GOES) provide high spectral
resolution. Instead of a threshold-based detection based on selected
channels and channel combination, the aim of this study is to explore
the entire spectral information available in the thermal emissive range.
As mentioned above, multiple factors are influencing the radiative
signature which is observed by spaceborne sensors. To capture these
different, yet presumably distinct, radiative signatures for various fog,
cloud or clear sky scenes, a machine learning technique is applied
to recognize the relevant patterns. This way, all potential indicators
within the spectral signature can be exploited to detect fog.

Machine learning techniques are becoming increasingly popular
and have also been used to detect fog in previous studies. For instance,
Egli et al. (2018) apply a random forest technique to process MSG
data to predict cloud base height. Via a dynamical threshold for the
derived cloud base height, a binary classification (fog or no fog) is
achieved. To train the random forest, they apply cloud base height
observations from Meteorological Aviation Routine Weather Reports
(METAR) and synoptic weather observations (SYNOP) as ground-
based reference. For the evaluation of their final binary classification
(fog or no fog), they consider METAR and SYNOP visibility reports.
These ground-based observation are widely available within their
study region (Europe).

As there are only very few climate stations available within the
Atacama Desert, an effort has been made by the Collaborative Research
Center CRC1211 “Earth – Evolution at the dry limit” (sfb1211.uni-
koeln.de; Dunai et al., 2020) to fill this observational gap by installing
a network of climate stations which started in 2017 (Hoffmeister, 2017b;
Schween et al., 2020). Now, sufficient in-situ reference measurements
enable the development and validation of new satellite-based fog
detection methods. Here, this unique opportunity is applied to train
and examine a neural network approach to detect fog. To identify the
benefit of the neural network retrieval method, we create an alternative

sfb1211.uni-koeln.de
sfb1211.uni-koeln.de
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fog detection based on simple thresholds applied to a satellite-based
cloud top height product.

The paper is structured as follows. In Section 6.2, the utilized satellite
data products, and the climate station measurements, are described.
In Section 6.3, the ground-based reference data set and the fog re-
trieval methods are introduced. In a twofold evaluation (Section 6.4),
event based statistics according to a contingency table analysis are
presented first followed by an investigation of the spatio-temporal
representativity of the detection methods. The proposed fog retrieval
methods are then utilized to derive a region wide distribution of fog
occurrence frequency averaged for a 3-year period. Finally, the study
is summarized and concluded (Section 6.5).

6.2 data

For the satellite-based fog retrievals methods introduced in this study,
we utilize MODIS data products. Compared to the ABI on GOES,
MODIS provides a few more channels and a longer data record en-
abling future climate studies. Operational data are provided for the
time since February 2000 (Terra) and July 2002 (Aqua) for MODIS
and December 2017 for the new GOES-16. After an overview on the
MODIS instrument and the utilized data products, the climate station
measurements building the reference data set are described in this
Section.

6.2.1 Moderate Resolution Imaging Spectroradiometer (MODIS)

MODIS is an imaging sensor capturing data in 36 spectral bands at
wavelengths ranging from visible (0.4 µm) to infrared (14.4 µm). The
spatial resolution at nadir is generally 1 km, while a few channels in
the visible range additionally provide data at 500 m and 250 m. The
instrument is installed on both the Terra and the Aqua platform. Both
satellites are in sun-synchronous orbits at a height of about 705 km
and a swath width of approximately 2330 km. As mentioned in the
introduction, we consider only the nocturnal overpasses to capture the
diurnal maximum of fog occurrence reported in previous studies (e.g.
Farías et al., 2005; Farías, 2007; Cereceda et al., 2008b; Muñoz et al.,
2011) and potential radiation fog in the central depression (Farías,
2007; Cereceda et al., 2002). Due to orbit characteristics, the local time
of the nocturnal overpasses over the Atacama Desert varies between
22:30 and 00:10 CLT (Terra) and 1:10 and 2:45 CLT (Aqua).

Various data products derived from MODIS targeted at different
applications are available. In this study, we utilize the spectral radi-
ances provided by the level 1B 1 km Calibrated Radiances Product
(MOD021KM, MYD021KM; MODIS Characterization Support Team
(MCST), 2017a; MODIS Characterization Support Team (MCST), 2017b)
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which we convert to brightness temperatures (Sec. 6.2.1.1). Addition-
ally, we utilize cloud top height provided by the level 2 Cloud Product
(MOD06, MYD06; Platnick et al., 2017a; Platnick et al., 2017b) (Sec.
6.2.1.2) to derive an alternative fog retrieval. For geolocation of the
acquired fields, longitude, latitude and elevation are taken from the
Geolocation Fields Product (MOD03, MYD03; MODIS Characteriza-
tion Support Team (MCST), 2017c; MODIS Characterization Support
Team (MCST), 2017d). For all products, the collection 6.1 data are
acquired for this study.

6.2.1.1 MODIS brightness temperatures

As only night time satellite overpasses are considered, only the ther-
mal emissive bands (MODIS bands 20–25 and 27–36) are processed
further. Central wavelengths and atmospheric features which are tar-
geted by each band are listed in Table 6.1. Furthermore, band 36

(14.2 µm) is omitted because in about 13 % of all cases with collocated
and coincidental station measurements, no valid spectral radiance
retrieval is provided for this particular band. To predict fog using the
neural network (Sec. 6.3.3), brightness temperatures TB are used as ex-
planatory variable. The spectral radiances are converted to brightness
temperatures according to Planck’s law.

6.2.1.2 MODIS cloud product

The MODIS Cloud Product provides the cloud top height which is
utilized in this study. Here, a short summary of the cloud top height
retrieval method is given mentioning ancillary data and potential
sources of errors. The MODIS cloud top height is derived for pixels
which are cloudy according to the MODIS cloud mask via the CO2

slicing technique (Chahine, 1974; Smith and Platt, 1978) using four
spectral bands near the CO2 absorption region at 15 µm (Menzel et al.,
2008; Baum et al., 2012). Differences between observed radiances and
clear sky radiances are calculated for each utilized MODIS channel.
The cloud top pressure can then be inferred by taking the ratios of the
differences calculated for different channels. The determined cloud
pressure is converted to height using atmospheric profiles derived
from the National Centers for Environmental Prediction Global Data
Assimilation System (GDAS; Derber et al., 1991). Clear sky radi-
ances are determined via radiative transfer calculations using GDAS
temperature, moisture and ozone profiles.

If the difference between observed and clear sky radiance is within
the instrument noise level, which is typically the case for clouds below
3 km, the CO2 slicing technique is not applied to infer cloud pressure.
In such cases, the brightness temperature of the cloud is determined
using the infrared window band at 11 µm. The cloud pressure and
height are then inferred via brightness temperature profiles calculated
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Table 6.1: MODIS thermal emissive bands overview. For each band, the center
wavelength in µm and the primary use for feature detection is
listed. Adapted from Xiong et al. (2008). Channel 21 and 22 differ
in detection range: Band 22 saturates at 331 K, band 21 (the “fire
channel”) saturates at 500 K (Xiong et al., 2008).

band center wavelength primary use

20 3.75

21 3.96 surface/cloud

22 3.96 temperature

23 4.05

24 4.47 atmospheric

25 4.52 temperature

27 6.72

28 7.33 water vapor

29 8.55

30 9.73 ozone

31 11.03 surface/cloud

32 12.02 temperature

33 13.34

34 13.64 cloud top

35 13.94 height

36 14.24

from GDAS temperature, water vapor, and ozone profiles. In the pres-
ence of low level temperature inversions, the height of the matching
temperature above the inversion is chosen introducing a positive bias
into the MODIS cloud top height. Starting with MODIS collection 6,
this problem is mitigated for retrievals over ocean (Baum et al., 2012).
However, over land temperature inversions remain problematic.

6.2.2 Climate stations

The climate stations, which are part of the station network mentioned
in the introduction, are deployed throughout the Atacama Desert in a
southern (around 25◦S, stations 31, 32, 33, 34), central (around 21.4◦S,
stations 11, 12, 13, 14, 15) and northern (20◦S, stations 20, 21, 22, 23,24

, 25) latitudinal transect, making up a total of 15 stations (Fig. 6.1).
The station network is assumed to be representative for the study
region due to its spread across the Atacama Desert covering latitudes
between 20◦S and 25◦S and topographic heights between 770 m and
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Figure 6.1: Topographic map of the study region. Color shading indicates
the elevation above sea level according to Shuttle Rader Topogra-
phy Mission (SRTM; Farr et al., 2007). Black vertical lines mark
major cities (Arica, Iquique, Antofagasta) located at the coast. The
climate stations are indicated by black and white pie charts along
with their respective station ID. The pie charts indicate annual
fog occurrence frequency (fog portion in black) determined from
the stations as listed in Table 6.2. For coastal stations 11, 21, 31

these data are not available.

2630 m ranging between the coastal cliff and the slopes of the Andes.
The installation was carried out between April 2017 and March 2018

and continuous measurements are provided since. The time intervals
which are considered for this study along with the coordinates and
elevation of each station are listed in Table 6.2.

Among other sensors, each station is equipped with a leaf wetness
sensor which mimics the characteristics of a leaf and provides a voltage
output (Campbell Scientific, 2018). Values above U = 284 mV indicate
that the sensor is wet according to the manufacturer. This threshold
was validated for each station at the time of their installation (Schween
et al., 2020). In the presence of fog, impacting water droplets wet
the sensor’s surface reducing the electrical resistance. At the end of
a fog event, evaporation and drainage remove the water from the
surface. Both processes at the beginning and end of a fog episode
may take some time before the sensor is wet or dry, respectively. Thus,
simply using the signal from the leaf wetness sensor would lead
to temporal shifts of the fog episodes. Therefore, we include other
measured variables to estimate fog conditions: relative humidity rH,
air temperature at 2 m height ϑ2m, surface temperature ϑsrf measured
by an IR thermometer, upwelling and downwelling longwave radiation
Pup and Pdown. The longwave radiation sensors are only installed at
the so called master stations of each transect (stations 13, 23, 33, see
Table 6.2) which are deployed about 20 km from the coast at heights
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Table 6.2: Climate station metadata. Listed are station ID, longitude (lon),
latitude (lat), altitude (alt), fog occurrence frequency (fof), start
and end times of the considered measurements tstart and tend. The
fog occurrence frequency is given for the year between April 2018

and March 2019 for all stations except station 12 (December 2017

– November 2018) including only measurements which coincided
with a nocturnal overpass by MODIS. Locations of the climate
stations are indicated in Fig. 6.1.

station lon [◦] lat [◦] alt [m] fof tstart tend

12 -69.96 -21.42 771 0.25 2017-04-03 2018-11-30

13 -69.84 -21.40 1152 0.13 2017-04-03 2019-12-31

14 -69.54 -21.36 795 0.29 2017-09-25 2019-12-31

15 -69.07 -21.11 2408 0.02 2017-09-26 2019-12-31

20 -70.16 -20.83 776 0.69 2018-03-07 2019-12-10

22 -70.10 -19.61 1179 0.11 2018-03-10 2019-10-09

23 -69.94 -20.07 1280 0.11 2018-03-10 2019-12-31

24 -69.65 -19.76 1392 0.02 2018-03-11 2019-10-09

25 -69.39 -19.53 2628 0.04 2018-03-10 2019-12-31

32 -70.40 -25.10 1026 0.24 2018-03-24 2019-12-31

33 -70.28 -25.09 1700 0.00 2018-03-24 2019-12-31

34 -69.65 -25.09 2535 0.00 2018-03-14 2019-07-23

between 1150 m and 1700 m above sea level. Measurements are taken
every 10 s and averages are stored every 10 min.

Stations in close proximity to the Pacific had to be omitted from
the analysis as they show an increase of fog frequency within two
weeks after deployment and every cleaning which is inconsistent
with measurements of relative humidity. This is probably due to salt
deposition as they are exposed to sea spray (Schween et al., 2020).
Furthermore, the leaf wetness sensor of station 12 faces technical issues
since December 2018 so that measurements from this station are only
considered until this break point.

6.3 fog detection methods

The ground-based measurements are utilized to create an unprece-
dented fog reference data set for the Atacama Desert based on the leaf
wetness sensor and some additional constraints (Section 6.3.1). This
reference data set is applied to develop a novel fog retrieval method
via a deep learning technique based on brightness temperatures 6.3.3).
To identify the benefit of the new retrieval, we introduce a simple
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fog detection method based on thresholds for the MODIS cloud top
height to compare with (Section 6.3.4). In the following subsections,
the derivation of the ground-based reference fog data, and the two
satellite-based approaches are presented.

6.3.1 Ground-based reference

The goal is to derive a binary classification, fog or dry, from the
station measurements which can be applied to develop satellite-based
retrieval methods. Using the leaf wetness sensor alone would be
problematic at the beginning and end of fog episodes, as the sensor is
expected to require some time to adjust to the change of the ambient
conditions. Therefore, collocated and coincident measurements of U,
rh, the temperature difference ∆ϑ = ϑ2m − ϑsrf, the longwave radiation
budget ∆P = Pup − Pdown (positive means energy loss at the surface)
are taken into account as well. For each climate station s and each
measurement time tn, these variables are bundled in a state vector
~vs = ~vs (tn). To consider the response time of the leaf wetness sensor,
two time differences are added to the state vector: (i) if the sensor is
wet, the time from tn until it is dry denoted as ∆twet2dry and (ii) if the
sensor is dry, the time from tn until it is wet denoted as ∆tdry2wet.

A priori, the response time of the leaf wetness sensor is not known.
Furthermore, it varies most likely depending on the meteorological
conditions. To determine a robust classification of the fog state, we
investigate which configurations of ~vs typically occur during fog or
dry episodes, respectively. Typically, a high voltage of the leaf wetness
sensor indicating foggy conditions coincides with a high relative
humidity. At the same time, the air temperature is expected to be close
to or below the surface temperature since fog cools from the top and
hinders outgoing longwave radiation. Therefore, the surface does not
cool as fast as during dry conditions. Fog conditions also lead to a
reduced energy loss regarding the longwave radiation indicated by a
lower ∆P. However, under certain conditions, these expectations may
not be fulfilled. In particular at the beginning or end of a fog episode,
U might not be consistent with the other quantities in terms of fog
indication, because the leaf wetness sensor is expected to react slower
than the other sensors to changing conditions. In order to identify such
events for which the indication of the leaf wetness sensor needs to be
rectified, a clustering method is needed which allows to quantify the
configuration of U, rh, ∆ϑ, and ∆P typically associated with fog or dry
conditions, respectively. By further considering the leaf wetness sensor
response times ∆twet2dry and ∆tdry2wet, events with an inconsistent
indication from the leaf wetness sensor can be extracted.

Such a clustering can be achieved in a straightforward way using
a self organizing map (SOM). In order to investigate which config-
urations of the state vector typically cluster together, a SOM is cre-



6.3 fog detection methods 113

ated according to the principle introduced by Kohonen (2001). In the
following, a brief introduction to the concept is given. SOMs are a
machine learning tool which reduces dimensionality of input data
while mapping similar input vectors close to each other on a space of a
lower dimension. In our case, the 6-dimensional state vectors (~vs (tn) =(
U(tn), rh(tn), ∆ϑ(tn), ∆P(tn), ∆twet2dry(tn), ∆tdry2wet(tn)

)
) are mapped

onto a 2-dimensional plane (~vs
′ (tn) = (x(tn), y(tn))). For a predefined

2-dimensional grid, each grid cell is assigned a random initial “code-
book” vector at the beginning of the training interval. The first state
vector is taken from the observations and assigned to the grid cell
for which the euclidean distance between the state vector and the
codebook vector is minimized. Then the codebook vector of that par-
ticular grid cell is adjusted according to the learning rate to become
closer to the assigned state vector. Furthermore, to ensure that similar
state vectors eventually will be assigned to neighboring grid cells, the
codebook vectors of neighboring grid cells within a defined neigh-
borhood radius are updated as well. Once each state vector from the
observations has been presented to the map, one iteration is complete.
The order of the state vectors is then resampled randomly and the
process is started over. With each iteration the learning rate and the
neighborhood radius are reduced so that eventually the map con-
verges. Here, we applied the kohonen package for R (Wehrens and
Buydens, 2007; Wehrens and Kruisselbrink, 2018) to create SOMs from
the climate station data.

We filtered the data from the climate stations for times between
22:00 and 04:00 CLT since this study focuses on fog detection at night
time. Prior to the training, the input data were scaled so that the
input values for each quantity are centered (reduced by the respective
means) and divided by the standard deviation of the centered values.
After some testing, a 32×32 grid was chosen. The outcome of the map
appeared to be not very sensitive to the grid size. However, if the size
becomes very small, the variability of state vectors assigned to the
same grid cell increases. On the other hand, if the grid size becomes too
large, more and more grid cells are left blank without any assignment
of a state vector. Further, we apply a hexagonal grid topology. The
neighborhood radius decreases linearly after each iteration from an
initial size that includes 2/3 of all unit distances to zero. Once the
radius decreases to less than the distance between two units, only the
codebook vector of the assigned grid cell is updated. The learning rate
linearly decreases from 0.05 to 0.01 from the first to the last iteration.
After 60 iterations the mean euclidean distance between input vectors
and codebook vectors does not decrease anymore, indicating that the
map converged. SOMs are trained for each station individually.

After each state vector is assigned to the grid cell for which the
euclidean distance to the respective trained codebook vector is min-
imal, the grid cell mean can be calculated for each quantity. Then,
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each quantity can be visualized separately on the two dimensional
grid. By comparing corresponding grid cells, it is easy to see visually
which values typically occur concurrently. An example is shown for
master station 13 (Fig. 6.2). SOMs for the other stations are available
in the supplement material (Appendix A.3). High values of U are
usually accompanied by higher rh and lower values for ∆ϑ and ∆P.
However, there are some cases for which the leaf wetness sensor is
indicating fog, even though ∆P >> 0 reveals a strong energy loss at
the surface indicating clear conditions (e.g. hexagons with a white
“-” in Fig. 6.2). For this region within the SOM grid, ∆twet2dry is low,
indicating that such configurations occur at the end of a fog episode.
We assume that fog ended and the sensor is in the drying phase but
still wet. From the values in the map, we can conclude that this drying
period lasts between a few minutes up to 2.5 h. On the other hand, for
another region on the SOM grid (e.g. bottom of upper right quarter
in Fig. 6.2e), similar values for ∆twet2dry are shown while all other
variables indicate that fog conditions are plausible. This indicates that
the response time of the leaf wetness sensor varies greatly depending
on concurrent meteorological conditions as has been expected.

In a similar way, grid cells of the SOM can be identified which
represent the following situation: While the leaf is dry, a high rh, a low
∆ϑ, and a low ∆P indicate fog like conditions. For some of these cases,
the time until the leaf wetness sensor switches to wet is less than 2.5 h
(hexagons with white “+” in Fig. 6.2). Therefore, we assume that fog is
already present but the sensor is not wet yet. Again, a varying response
time is indicated by similar values of ∆tdry2wet for other regions of
the map for which other variables are consistent with dry conditions.
While the leaf wetness sensor can serve as an initial classification,
relative humidity, temperature difference, longwave radiation budget
along with ∆twet2dry or ∆tdry2wet should be considered to refine the
initial classification.

By visual inspections of all the resulting SOMs, a fog definition
is derived which consists of an initial classification according to U
followed by additional tests taking the other variables into account. A
flow chart summarizes the process (Fig. 6.3). If U > 284 mV the initial
classification is set to fog otherwise set to dry. If fog was determined
and any of the conditions rh < 80 %, ∆ϑ > 1 K or ∆P > 50 Wm−2 is
fulfilled and the leaf wetness sensor dries within the following 2.5
hours (∆twet2dry < 185 min), the initial classification is revoked and set
to dry. An initial dry classification is revoked in case all conditions rh ≥

84 %, ∆ϑ ≤ 0 K, ∆P ≤ 40 Wm−2 and ∆tdry2wet < 155 min are fulfilled
simultaneously. This fog definition is applied equally to measurements
from all considered climate stations. For a total of 278 events, the initial
fog classification has been revoked which corresponds to 12.7 % of all
initial fog events. This number is partly compensated by 187 events
which have been switched to fog after initial dry classification. This
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Figure 6.2: Self organizing map for climate station 13. Shown is the average
for each grid cell for (a) leaf wetness sensor voltage, (b) relative
humidity, (c) temperature difference between air and surface
(∆ϑ = ϑ2m − ϑsrf), (d) longwave radiation budget (∆P = Pup −

Pdown), (e) time until a wet leaf wetness sensor switches to dry, (f)
time until a dry leaf wetness sensor switches to wet. Initially, grid
cells are set to fog if the leaf wetness sensor is wet on average
(white frames). Otherwise grid cells are set to dry. The initial
classification is changed from fog to dry (white “-”) or from dry
to fog (white “+”) according to additional tests (see text and
Fig. 6.3). SOMs for other climate stations are available in the
supplement (Appendix A.3).
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Figure 6.3: Flow chart of binary fog state classification (fog or dry) based
on climate station measurements. After an initial classification
according to the leaf wetness sensor voltage U, additional tests
are applied for relative humidity rH, temperature difference ∆ϑ,
radiation budget ∆P, and the time until U crosses the threshold of
284 mV ∆twet2dry and ∆tdry2wet. Note, that for the OR conjunction
the whole box is “TRUE” if at least one of the listed conditions
is fulfilled whereas the AND conjunction requires all individual
conditions to fulfilled for the whole box to be “TRUE”. Depending
on the additional tests, the initial classification can be revoked or
confirmed.

indicates that on average the time the leaf wetness sensor takes to dry
after a fog episode is longer than the time it takes to turn wet at the
beginning of a fog episode.

For regular stations which do not provide the longwave radiation
budget, the condition for ∆P is omitted. Furthermore, for climate
station 20, no valid humidity data are provided between September
2018 and February 2019. For station 14, the SOM analysis reveals a
puzzling picture. When the leaf wetness sensor indicates fog, ∆ϑ is
mostly high, unlike what is seen for all other stations. Here, the air
temperature is predominantly about 2 to 4 K higher than the surface
temperature which is atypical for fog events and rarely observed at
the other stations. Since the surface temperature is determined with
an infrared thermometer with an assumed surface emissivity of 0.94

for all stations, the different temperature signature could be due to a
local surface emissivity anomaly as the location is in close proximity
to the Salar de Llamara, a salt flat in the central depression. Such
an anomaly would also affect the radiative signature for the thermal
emissive MODIS bands. Therefore, station 14 is left out for further
analysis.
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Following the presented fog definition, a ground-based reference
data set is ready to be applied to derive and validate satellite-based
fog retrieval methods. MODIS data and station data are assigned
to each other by taking the nearest MODIS pixel and the station
measurements which are closest in time. About 13800 valid MODIS
and station measurement pairs are available within the considered
time period including 11 stations.

6.3.2 Classification assessment measures

This study faces a binary classification problem (fog or dry conditions).
Comparing the satellite-based fog detection introduced in the follow-
ing sections with the reference data set can be done using a confusion
matrix (2 × 2 contingency table for binary classification) (e.g. Cermak,
2012; Egli et al., 2017; Andersen and Cermak, 2018) which yields the
number of true positives (correct fog prediction), true negatives (cor-
rect dry prediction), false positives (incorrect fog prediction or false
alarm), and false negatives (missed fog event). These numbers are
used to derive further evaluation measures such as the probability of
detection (POD), also known as true positive rate (TPR), which gives
the fraction of all ground truth fog events which are correctly detected,
the accuracy (ACC), also know as portion or percent correct, which
gives the fraction of all observations with correct classification, the
false alarm rate (FAR), which gives the fraction of all fog predictions
which are false alarms, the critical success index (CSI), which gives the
portion of fog hits out of all false classifications and fog hits combined
and the bias score (BS) which gives the bias of the classification with
an overestimation of fog for BS > 1 and an underestimation for BS < 1.
Furthermore, the Heidke skill score (HSS; Heidke, 1926; Hyvärinen,
2014) is applied as a measure for prediction skill. The HSS gives the
fractional improvement compared to a random classification. A perfect
forecast would result in HSS = 1, a random forecast would result in
HSS = 0.

Definition of these measures are provided in the Appendix. Further
insights into classification assessment methods is given by Fawcett
(2006) or Tharwat (2018), for example.

6.3.3 Neural network

As indicated in the introduction, conventional satellite-based ap-
proaches to detect fog and low clouds are typically based on radiative
transfer simulations which approximate the underlying physical laws
and are typically carried out for selected wavelengths. To exploit the
available spectral information and represent the interactions of various
factors and processes involved in the radiative transfer, we employ
a neural network to detect fog. Neural networks and other machine
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learning techniques have been used in remote sensing and earth ob-
servation for various applications. Gardner and Dorling (1998) and
Lary et al. (2016) provide overviews.

In general, neural networks map output variables to input variables
by propagating the input (signal) through a net of nodes. Next to the
input layer with the input nodes, several hidden layers with various
numbers of nodes and an output layer can be set up. At each node, an
activation function is applied to modify the incoming signal. Along
each path between two nodes a weight factor is applied to the signal.
These weights are modified during the training process in a way
to minimize a defined loss function. The loss function provides a
measure of error by comparing the final output of the network and
the target values. This error is propagated backwards through the
net and each weight is updated according to the gradient of the loss
function weighted by the learning rate. The complexity of a network
can be modified by varying the number of hidden layers and the
number of nodes per layer. Furthermore, regularization options such
as a drop out of randomly selected connection between nodes are
available to prevent the network from specializing for the training
data set (overfitting). Different software packages are available to build
neural networks.

In this study, the Keras software package, a deep learning applica-
tion programming interface (Chollet et al., 2015) written in Python,
is utilized via the keras package for R (Chollet, Allaire, et al., 2017)
with the TensorFlow (Abadi et al., 2015) machine learning platform
selected as backend. Brightness temperatures from 15 unique emissive
MODIS bands (Section 6.2.1.1) and the corresponding fog state (fog or
dry) from the ground-based reference data set (Section 6.3.1) are used
as input and target variables, respectively. The neural network archi-
tecture consists of an input layer with 15 nodes, one for each selected
MODIS channel, several hidden layers with varying numbers of nodes
and an output layer with one node (cf. Fig. 6.4). Hyper-parameters
which have been chosen to maximize the accuracy according to some
initial testing are listed in Table 6.3.

The neural network is trained in two different modes. For the first
mode, all observations from all considered stations are randomly split
into a training (75 %) and a test sample (ALL mode). For the second
mode, observations from all considered stations except one are used
for the training, and the station left out is used for evaluation (leave
one out; LOO mode). An additional 20 % of the training data are set
aside by the network itself so that the loss and accuracy of the model
can be calculated for training and validation data separately during
the training process (Fig. 6.5 b, c). This allows to evaluate whether the
model has converged during the training process.

The output of neural network is not a binary classification imme-
diately. Instead, the sigmoid activation function of the output node
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Figure 6.4: Schematic illustration of the setup of the neural network. Nor-
malized MODIS brightness temperatures (BTs) are inserted into
the network via the input layer (left two orange circles), which
consists of 15 nodes (neurons, only two shown). At each node of
a hidden layers (blue circles), the output ym,n from each node n of
the previous layer m is used as input xm,n. By applying the respec-
tive weights wm,n and biases bm,n to each input and summation
over all these terms, the output for a hidden layer node is created.
After the Rectified Linear Unit (ReLU) is applied as activation
function, it serves as input for the nodes of the next layer. For the
output of the final hidden layer, the Sigmoid activation function
is applied, so that the final output (orange circle on the right) of
the network is a value ranging between 0 and 1. To regularize the
network (avoid overfitting), 10 % of the connections are randomly
dropped after each hidden layer (dotted lines). For illustration
purpose, the schematic only shows 2 hidden layers with 4 and 3

nodes, respectively. The setup of the actual chosen model consists
of 4 hidden layers, with 128, 64, 32 and 8 nodes, respectively.

returns a value xout in the range 0 ≤ xout ≤ 1 which can be seen as
a probability of fog occurrence. To obtain a binary classification, a
threshold for fog prediction has to be applied at which the output is
divided into dry (below threshold) and fog (above threshold). Once
the binary classification is determined according to the chosen fog
prediction threshold, the true positive rate (TPR) and the false positive
rate (FPR) can be calculated along with other skill scores (for definition
see Appendix). By varying the fog prediction threshold, TPR and FPR
vary accordingly. In a TPR vs. FPR diagram, also known as receiver
operating characteristic (ROC) curve, the model performance can be
visualized. Ideally, a low FPR coincides with a high TPR. However, in
reality, a higher TPR usually is accomplished at the cost of a higher
FPR.

To determine the optimal number of hidden layers and respective
numbers of nodes, multiple neural networks were trained applying
several setups. To evaluate the performance of each model, the area
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Table 6.3: Parameters and schemes implemented in the neural network used
for this study.

feature value

activation fct. hidden layer rectified linear unit (ReLU)

activation fct. output layer sigmoid

dropout rate 10 %

iterations (epochs) 100

batch size 1000

weight update scheme Adam optimization algorithm (Kingma and Ba, 2014)

learning rate 0.001

loss function binary cross entropy

under the ROC curve (AUC) is determined (Fig. 6.5a) which serves
as a measure of separability of the two classes (fog, no fog) by the
trained neural network. A perfect separation would result in an AUC
of 1, while no separation skill would result in an AUC of 0.5. Increas-
ing the number of hidden layers from 1 to 4 steadily increases the
AUC, indicating a better performance for deeper models. Adding a
5th hidden layer does not yield further improvement. Increasing the
number of nodes for each of the 4 hidden layers slightly increases the
AUC, indicating a better performance for wider models. After these
considerations, a model is chosen with 4 hidden layers, consisting of
128, 64, 32, and 8 nodes, respectively in that order. For this model,
the evolution of the loss and the accuracy (ACC) indicate that the
model is sufficiently trained with marginal overfitting (Fig. 6.5 b, c).
Its capability to separate between the two classes is manifested in the
two separate peaks revealed by the distributions of the output of the
trained neural network for fog and dry conditions according to the
ground-based reference, respectively (Fig. 6.5d).

6.3.4 MODIS cloud top height

The MODIS cloud product provides the CTH above sea level. Since we
are studying fog over land, we need to apply the heights above ground
level (a.g.l.). The conversion is done by subtracting the elevation of the
climate stations from the corresponding MODIS CTHs. In case of very
low cloud top heights and complex topography with the station being
higher than the satellite-based CTH, this can result in negative CTHs
a.g.l.

The MODIS cloud top heights which are collocated with the climate
stations reveal a bimodal distribution (Fig. 6.6a). While fog situations
yield a pronounced peak between 2 and 4 km and a less pronounced
peak around 11 km (high clouds, cirrus), dry situations result in a
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Figure 6.5: (a) Receiver operating characteristic curve of the neural network
fog prediction calculated from the test data set (not used for
training). Different curves (color) represent different architectures
(numbers of layers and nodes) which are indicated by the legend
along with the respective area under curve (AUC). True positive
rate and false positive rate have been additionally determined for
the MODIS cloud top height approach to detect fog (blue circle).
(b) Evolution of the loss which represents the deviation between
reference and neural network predicted values after each training
iteration (epoch) calculated using the binary cross entropy func-
tion. It is shown for the training data (red) and test data (blue)
separately. (c) Evolution of the accuracy of the neural network
over the number of training iterations (epochs) for training data
(red) and validation data (blue). To determine the accuracy (por-
tion of correct classification, see Appendix for definition), the
binary classification is made by rounding the network output
at 0.5 which results in 0 (dry conditions) or 1 (fog conditions).
(d) Histogram of the neural network output for fog (blue) and
dry (red) conditions according to the ground-based reference
classification. The y-axis represents the number of counts for
each bin normalized by the total number of observations for each
condition, respectively.

more uniform distribution with the low cloud peak being less distinct
from the high cloud peak than for fog situations. This indicates, that
fog occurrence is less likely alongside high cloud presence. However,
fog events with simultaneous presence of on optically thick enough
high cloud are missed because the view is obscured so that the CTH of
a possible lower cloud cannot be provided. Furthermore, the low cloud
peak is shifted to lower cloud top heights for dry situations, indicating
that the lowest observed clouds are typically not associated with fog
occurrence. An explanation might be, that nocturnal fog typically co-
incides with a ground inversion. This would lead to ambiguous cloud
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Figure 6.6: Distribution of MODIS cloud top height (CTH) above ground
level (a.g.l.) for the nocturnal overpasses over the considered
climate stations. (a) Normalized density of CTH distinguished by
concurrent fog (blue shadings) or dry (red shadings) conditions
at collocated climate stations. Densities are shown considering
all stations together (thick lines) and for the individual stations
(thin lines). (b) Counts of events for each MODIS CTH bin and
each station under fog conditions according to the collocated
station measurement. MODIS CTH is originally given above sea
level. CTH a.g.l. is obtained by subtracting the elevations of the
respective climate stations. In case of complex topography, this
can lead to negative CTHs a.g.l.

top height retrievals for which the MODIS CTH retrieval algorithm
chooses the highest possible option (Menzel et al., 2008; Baum et al.,
2012, cf. Section 6.2.1.2). The distributions for fog situations for the
individual stations peak similarly around 3 km except station 33 for
which the peak is seen around 1 km. However, station 33 has detected
almost no fog events (Table 6.2) which also manifests in very low
counts within the histogram (Fig. 6.6b).

The goal is to refine a CTH range which gives the best prediction
of fog occurrence. Therefore, a combination of a lower and an upper
threshold height is estimated which maximizes the Heidke Skill Score
(HSS). The best model is obtained if cloud top heights between 2000
and 3750 m are declared fog. This approach yields about 87 % correct
classifications (accuracy) with a probability of detection of 55 % and
a false alarm rate of 43 %. More parameters are listed in Table 6.4.
MODIS CTH below the lower threshold, seem to indicate the absence
of a ground inversion and thereby unlikely fog conditions. Therefore,



6.4 evaluation 123

Table 6.4: Statistical evaluation measures based on a 2 × 2 contingency table
for an event based comparison of binary classification (fog or
dry) by the fog detection methods and the ground-based stations.
Measures are listed for fog detection via MODIS cloud top height
(CTH) and via neural network (NNet) including only the test
samples which were not used to train the network and including
all considered observations, i.e. both training and test samples.
The prediction threshold (pred. thresh.) refers to the threshold to
discriminate the output of the neural network between fog and
dry conditions. The given threshold maximizes the Heidke Skill
Score (HSS) and results in a bias score (BS) closest to unity. Further
measures are the true positive rate (TPR), which is also known as
probability of detection, false positive rate (FPR), accuracy (ACC),
false alarm rate (FAR) and critical success index (CSI). Definitions
of these measures are given in the appendix.

model pred. thresh. TPR FPR ACC FAR CSI BS HSS

MODIS CTH 0.55 0.07 0.87 0.43 0.39 0.96 0.49

NNet (test sample) 0.27 0.63 0.07 0.89 0.37 0.46 1.01 0.56

NNet (all obs.) 0.27 0.63 0.07 0.89 0.37 0.46 0.99 0.56

the predictive skill of this approach appears to stem from the detection
of a possible ground inversion which serves as a proxy of fog presence.

6.4 evaluation

The evaluation of the fog detection approaches is carried out under
two different aspects. First, the performance is evaluated on the basis
of detection of individual events via a contingency table analysis.
This way, various statistical measures can be derived which enable a
comparison of both approaches (Section 6.4.2). To derive an uncertainty
for these statistical measures, ensembles with multiple training runs
of the neural network are created first (Section 6.4.1).

The second aspect is the suitability to derive (i) the variability of fog
occurrence frequency on different time scales and (ii) a climatology
of fog occurrence frequency for the Atacama region. Therefore, the
output of the neural network and the classification according to the
MODIS CTH and the ground-based stations are viewed as time series.
A comparative analysis of the time series for the different locations of
the climate stations allows an assessment of the spatio-temporal repre-
sentativeness of the two introduced fog detection methods (Section
6.4.3). Following this assessment, both methods are applied to derive
a 3-year climatology (Section 6.4.4).
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Figure 6.7: Receiver operating characteristic curves for the neural network. (a)
10-member ensemble trained with fixed training data sample. (b)
10-member ensemble trained with randomly drawn training data
sample. Ensemble mean and standard deviation are given for the
area under curve (AUC) and the following statistical measures
(definitions are listed in the appendix): Heidke skill score (hss),
bias score (bs), critical success index (csi), false alarm rate (far),
percent correct (pc), probability of detection (pod).

6.4.1 Neural network model sensitivity

During the training of the neural network, random selection processes
influence the values of the final model weights leading to different
realizations even with exactly the same training data sample. To quan-
tify the introduced variability, a 10-member ensemble is created which
results in an ensemble mean of 0.876 for the AUC with a standard
deviation of 0.002 (Fig. 6.7a). This indicates that the improvement,
i.e. higher AUC, with increasing depths and widths of the models is
mostly beyond two standard deviations (Fig. 6.5) indicating statistical
significance since they are all trained with the very same training
data sample. However, the improvement due to increased model
complexity saturates at the finally chosen setup (Fig. 6.5, in-128-64-
32-8-out) as only a slight AUC gain is observed compared to the
model with slightly fewer nodes (in-64-32-32-8-out, AUC= 0.874) and
a slight decrease in the AUC is observed when a 5th layer is added
(AUC= 0.875).

Furthermore, the sensitivity to the training data sample is investi-
gated. In a similar fashion, another 10-member ensemble is created
by providing each member with a new randomly drawn training data
sample, i.e. a new random selection of 75 % of all observations in a
random order without replacement. The random processes which re-
sulted in the standard deviation for the first ensemble stay in effect for
the second ensemble. With the additional variation of the training data
sample, a higher standard deviation can be expected. This time, the
AUC is found to be 0.868 with a standard deviation of 0.007 (Fig. 6.7b).
For a binary classification obtained by simply rounding the model



6.4 evaluation 125

output, i.e. a fog prediction threshold of 0.5, a mean Heidke Skill
Score (HSS) of 0.525 ± 0.023 is derived. The uncertainties for further
statistical measures are given in Fig. 6.7b. The standard deviations
of these measures derived here are useful to assess whether any of
the different fog detection methods result in significantly different
statistical measures.

6.4.2 Event-based algorithm performance

As introduced in Section 6.3.3, there is a functional relationship be-
tween the statistical measures, such as the Heidke skill score, and
the fog prediction threshold (Fig. 6.8). Based on all observations, a
maximum Heidke skill score of HSS = 0.56 is retrieved for the neural
network with a fog prediction threshold of 0.27 (Table 6.4) which
means the neural network has a detection skill much better than a
determination by chance (HSS ≈ 0). The same fog prediction thresh-
old also results in the smallest bias. The bias score of almost unity
(BS = 0.99) indicates that the model estimates the total number of
fog events almost correct. Based on the independent test data sample
(comprising 25 % of all observations), the HSS is maximized for the
same fog prediction threshold (0.27). Except for the bias score, all
considered statistical measures are basically identical to the results
based on all observations (Table 6.4). This further supports that the
neural network is valid beyond the training data set at least for the
locations of the climate stations included in the study.

Utilizing the MODIS CTH to detect fog results in a lower Heidke
skill score (HSS = 0.49). While almost the same number of fog events
are predicted by the MODIS CTH approach (BS = 0.96) compared
to the neural network, the true positive rate is lower and the false
alarm rate is higher (Table 6.4). This proves, that exploiting the spec-
tral information of the MODIS emissive bands via a neural network
outperforms a fog detection algorithm based on the MODIS CTH.

While for the MODIS CTH only 6 MODIS bands between 11 µm
and 14.2 µm are considered, the neural network approach takes 15

MODIS emissive bands into account. The additional information from
the 10 emissive MODIS between channels 3.8 µm and 9.7 µm or the
way the neural network processes the data obviously outweighs the
information added into the CTH retrieval by GDAS data.

6.4.3 Spatio-temporal representativeness

In order to asses spatial and temporal consistency of the proposed
fog detection algorithms, time series of fog occurrence frequency are
derived for the locations of the climate stations. To derive the time
series, the binary classification from the station measurements and
from the MODIS CTH detection approach (CTH inside or outside



126 fog

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

P(0.27, 0.63)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

T
P

R

(a) ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

P(0.27, 0.89)

0.2

0.4

0.6

0.8

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

P
C

(b)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

P(0.27, 0.37)

0.0

0.2

0.4

0.6

0.8

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F
A

R

(c) ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

P(0.27, 0.46)

0.0

0.1

0.2

0.3

0.4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

C
S

I

(d)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

P(0.27, 0.99)

0

2

4

6

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

fog prediction threshold

B
S

(e) ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

P(0.27, 0.56)

0.0

0.1

0.2

0.3

0.4

0.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

fog prediction threshold

H
S

S

(f)

Figure 6.8: Statistical measures calculated for the neural network fog pre-
diction in dependence on the fog prediction threshold which is
applied to the network output to obtain a binary classification
(fog or dry). The fog prediction threshold which maximizes the
Heidke skill score (HSS) is highlighted as vertical orange dashed
line in all panels. The point P of the interception with the curve
is annotated in each panel (see also Table 6.4). Thick black line
denotes the statistics calculated using all observations. Shaded
area denotes the area between the 5th and 95th percentile of a dis-
tribution derived via a bootstrap resampling of all observations
with 1000 iterations.

the designated height range) are converted to numeric values (fog=̂1,
dry=̂0) to quantify the fog state numerically. The output of the neural
network can be viewed as a fog probability for this analysis. The fog
prediction threshold to make a decision for each event is not needed at
this time because averages over varying time intervals are calculated
so that a decision for each event is no longer necessary. Using the
probabilistic output (NNprob) or the conversion to binary (NNbin)
prior to deriving the time series may result in different mean fog
frequencies depending on the sum of negative and positive residuals
when the neural network output is converted to binary. Depending
on whether the negative residuals outweigh the positive residuals,
NNbin will result in lower or higher mean fog frequencies compared
to NNprob. A priori, it is not clear which mode is more appropriate
with better agreement to the ground-based observations. We decided
to investigate NNprob first and discuss resulting differences for NNbin
thereafter. To allow a fair comparison, the time series comprise only
coincidental observations from MODIS and the climate stations. For
every day, the mean fog state is calculated for each fog retrieval
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approach. Then, centered moving averages using various interval
lengths are applied to each of these daily resolved time series.

First, we assess the temporal consistency by comparing the time
series from the neural network trained with the sample of observa-
tions including all stations (ALL training mode) to the ground-based
reference. Here, station 13 is used as an example (Fig. 6.9a). On a
synoptic scale (7-day moving average), many fog peaks are well in
agreement with an overall Pearson correlation coefficient of r = 0.75.
Extending the time interval of the moving average to a subseasonal
scale (60-days) brings out seasonal variations which are represented
well by the neural network (r = 0.91). Higher frequencies during late
winter and early spring and lower frequencies during late summer
and early fall with more pronounced seasonal cycles near the coast,
which is reported in the literature for the study region (e.g. Farías
et al., 2005) and in particular for sites at the coastal cliff and the coastal
mountain range (e.g. Río et al., 2018), are consistently revealed by both
the neural network and the ground-based fog retrievals and further-
more by the MODIS CTH based retrieval (Fig. 6.10a) with a slightly
lower correlation to the ground-based reference (r = 0.77). Additional
time series for each station can be found in the supplement (Appendix
A.3).

Extending the analysis to all stations, correlations between time
series derived from the neural network and the ground-based ref-
erence data set are studied in dependence on the moving average
interval lengths (Fig. 6.9b). For increasing interval lengths, the corre-
lation typically increases, which indicates that a better fog frequency
representation is obtained on longer time scales. Overall high correla-
tions, in particular on subseasonal scales prove the suitability of the
neural network to represent seasonal and interannual variability of
fog frequency. The same results hold true, although with overall lower
correlation, for the MODIS CTH based fog detection (Fig. 6.10b).

The root mean square error (RMSE, Fig. 6.9d) decreases with in-
creasing interval length for the moving average. It is highest for the
stations which have the highest fog occurrence frequency (stations
12, 20 and 32, cf. Table 6.5). Therefore, their RMSE in relation to the
mean fog occurrence frequency is comparably low (42 %, 20 %, 40 %,
respectively). For the other stations, the absolute RMSE is below 4 %
fog occurrence frequency for moving average intervals greater than 60

days. For six stations, the relative RMSE is below 45 %.
Next, the spatial consistency of the neural network is investigated by

withholding one station during the training of the network and evalu-
ating the time series for that station (LOO training mode). Compared
to the neural network trained with all stations, the correlation remains
almost the same for 4 stations (within ±0.03 for stations 12, 13, 15,
20) and differs only slightly for 4 stations (within ±0.08 for stations
22, 23, 24, 25) (Table 6.5). For station 32, the correlation drops from
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Figure 6.9: (a) Time series derived from the neural network probabilistic
output (blue) and the station measurements (red) for a 7-day
centered moving average (dark) and a 60-day centered moving
average (light) at the location of station 13. Pearson correlation
coefficient r between neural network and station derived time
series is indicated in the upper right for both moving average
intervals. (b) and (c) Pearson correlation coefficient and (d) and (e)
Root mean square error (RMSE) in dependence on interval length
of the moving average for each climate station. Two different
training modes are distinguished: training on all stations (ALL
mode: b, d) and leaving one station out from training and derive
the statistics for this station (LOO mode: c, e). Dashed lines
indicate stations with very low fog occurrence frequency ( f ≤

2 %). Black dashed vertical lines highlight the moving average
intervals for which the exemplary time series (a) is shown. The
time series (a) is based on the ALL training mode. Time series
for all stations based on the LOO training mode are given in the
supplement (Appendix A.3).
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Figure 6.10: (a) Comparison of fog frequency time series derived from the
fog detection based on the MODIS CTH (dark blue), based on
the neural network probabilistic output in both ALL training
mode (lighter blue) and LOO training mode (lightest blue), and
based on climate station measurements (red) at the location of
station 13. Time series is smoothed via a 60-day centered moving
average. Pearson correlation coefficient r and bias B between
the time series of the proposed detection algorithms and the
reference time series (station) are indicated in the legend, re-
spectively. (b) Pearson correlation coefficient and (c) root mean
square error (RMSE) between time series derived from the de-
tection via MODIS CTH and from the station measurements
in dependence on the interval length of the moving average
for each station. Dashed lines indicate stations with very low
fog occurrence frequency ( f ≤ 2 %). Black dashed vertical lines
highlight the moving average intervals for which the exemplary
time series (a) is shown (60-day). Time series for other stations
are provided in the supplement (Appendix A.3).

0.82 to 0.61 when it is left out from the training of the neural network.
The comparably high drop might be due to a slightly different fog
signature around the southern transect. Therefore, the neural network
gains additional expertise when station 32 is included in the training.
While for the other transects, more fog events from nearby stations
can introduce the local fog structure, this is not the case for station
32 because the remaining stations of the southern transect do not
provide substantial fog events which the network could learn from.
For stations 33 and 34, which experience a fog occurrence frequency
of almost 0 with very little variance so that correlation coefficients
cannot be meaningful, the correlations decrease to insignificant values.
The overall similar correlations compared for the two training modes
(include all stations and LOO) indicate that the neural network ap-
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Table 6.5: Statistical metrics such as the Pearson correlation coefficient r, bias,
and root mean square error (RMSE) derived from the compari-
son of fog occurrence frequency time series based on the neural
network and the MODIS cloud top height (CTH) classifications.
For each station, the fog occurrence frequency (fof) over the entire
available time is listed. Results are shown for the neural network
trained on all climate stations excl. station 14 (subscript “ALL”), for
the neural network trained on all stations excl. station 14 and leav-
ing out the station for which the statistical metrics are displayed
(subscript “LOO”), and for the fog detection algorithm based on
the MODIS CTH (subscript “CTH”). Metrics are calculated for time
series which were smoothed applying a 60-day moving average.
Values in parenthesis denote the bias and RMSE in relation to the
overall fof. The * denotes correlations which are not significant
according to the p-value (p > 0.05)

stat fof rALL rLOO rCTH biasALL biasLOO biasCTH RMSEALL RMSELOO RMSECTH

12 0.41 0.86 0.83 0.86 -0.04 (-10%) 0.03 (7%) 0.05 (13%) 0.17 (42%) 0.18 (45%) 0.14 (35%)

13 0.15 0.91 0.89 0.77 0.01 (4%) 0.06 (37%) 0.03 (19%) 0.03 (20%) 0.03 (20%) 0.05 (35%)

14 0.30 -0.00* -0.60 -0.21 (-70%) -0.23 (-76%) 0.16 (52%) 0.19 (62%)

15 0.01 0.86 0.89 0.60 0.03 (184%) 0.05 (365%) 0.02 (114%) 0.02 (118%) 0.02 (111%) 0.03 (185%)

20 0.67 0.76 0.76 0.78 -0.27 (-41%) -0.32 (-48%) -0.17 (-26%) 0.13 (20%) 0.13 (20%) 0.14 (22%)

22 0.11 0.78 0.72 0.33 0.02 (18%) 0.04 (34%) -0.00 (-2%) 0.04 (34%) 0.04 (36%) 0.06 (52%)

23 0.11 0.92 0.84 0.41 0.06 (50%) 0.10 (91%) 0.02 (18%) 0.03 (27%) 0.03 (31%) 0.06 (52%)

24 0.02 0.52 0.57 0.67 0.03 (164%) 0.08 (360%) 0.01 (28%) 0.02 (102%) 0.03 (158%) 0.02 (76%)

25 0.02 0.90 0.86 0.25 0.03 (112%) 0.05 (202%) 0.02 (108%) 0.04 (173%) 0.04 (178%) 0.06 (258%)

32 0.23 0.82 0.61 0.65 -0.07 (-28%) 0.01 (6%) -0.13 (-57%) 0.09 (40%) 0.11 (46%) 0.09 (40%)

33 0.01 0.20 -0.04* 0.16 0.03 (487%) 0.07 (1311%) 0.01 (190%) 0.01 (278%) 0.03 (652%) 0.01 (287%)

34 0.00 0.09* -0.08* 0.14 0.02 (999%) 0.04 (1854%) 0.02 (1018%) 0.01 (382%) 0.01 (586%) 0.01 (572%)

proach has potential to be generalized region wide even for locations
it has not seen observations from during its training. This is further
supported by the RMSE which remains within 2 % fog occurrence
frequency for all stations when the two training modes are compared
(Fig. 6.9 d, e and Table 6.5).

When the binary classification is applied to the neural network out-
put (NNbin), basically identical correlations with the ground-based
reference result for the time series for most climate stations with sig-
nificant correlations. Only for station 22 (increase of 0.10) and stations
23 (decrease of 0.06) and 25 (decrease of 0.09) greater differences of
the correlations are found for NNbin. This indicates, that the temporal
representation of the fog frequency by the neural network does not
depend much on the choice between NNprob and NNbin.

To further assess the spatial representativeness, the biases which
result for different stations are investigated. Applying the LOO train-
ing mode of the neural network and a 60-day moving average for the
derivation of the time series, biases for the locations of the climate
stations range between 0.01 and 0.10 of fog frequency (Table 6.5, Fig.
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Figure 6.11: Bias between neural network derived fog frequency and refer-
ence data for each climate station. Distinguished are two dif-
ferent processing modes of the neural network output: using
the fog probability without (blue shades) or with (red shades)
the application of the binary classification prior to deriving the
temporal average. Two different training modes of the neural
network are considered: training with samples from all stations
(ALL-mode, lighter shades), leave out one station and derive
evaluation measures for that station (LOO-mode, darker shades).

6.11). This means the neural network overestimates the fog presence
compared to the reference data set. An exception is station 20 for
which a fog frequency bias of −0.32 is determined. An explanation for
this strong dry bias could be the characteristics of the location of sta-
tion 20. A strong topographic gradient at the coastal cliff with strong
variations at scales smaller than the MODIS resolution (1 km) might
lead to classification mismatches between the neural network and the
station derived fog status. However, even for this challenging scene
the correlation reaches r = 0.76 for the 60-day moving average interval
which indicates that the high bias might have a different origin which
possibly lies in the methodology of the retrieval. If the output of the
neural network is converted to a binary fog state (NNbin), the bias
can be decreased (absolute value) to −0.14 (Fig. 6.11). This decrease
is mainly due to an increase of the fog frequency for the peak fog
season during winter compared to the probabilistic output of the neu-
ral network (NNprob) (time series for NNbin not shown). However,
applying the binary classification does not generally improve the bias.
For instance, for station 12, the bias increases from 0.03 to 0.17 (Fig.
6.11).

Comparing the biases between ALL and LOO training mode reveals
mostly higher wet biases with an increase ranging between 2 and 8 %
(Table 6.5, Fig. 6.11). For station 13, for example, the fog frequency
lies systematically higher throughout the considered period if the
neural network has not seen any observations from this station (Fig.
6.10a). This illustrates how the neural networks is learning from the
observations. While the observations from other locations generally
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suffice to detect fog with great temporal representativeness (r = 0.89),
it can learn more scene specific details once it is presented with local
observations leading to further improvement (r = 0.91) and in this
case bias reduction (from 0.06 to 0.01).

To investigate the neural network quality for a location that has
not bee incorporated into the training base, we investigate the time
series for station 13 based on the LOO training mode in more detail
(Fig. 6.10a) For winter and spring 2017 (August–November), both the
neural network and the MODIS CTH approach overestimate the fog
frequency while agreeing very much among each other. The same
is observed for the peak seasons in 2018 (September–October) and
in 2019 (October–November). A possible reason could be, that very
low clouds are present and classified as fog, even though a portion of
them might not touch the ground and thus would be a false alarm
with respect to the ground-based observation. The neural network
appears to be able to distinguish these low cloud scenes from fog
scene if it is provided with some of the local observations (→ ALL
training mode). At the end of the spring season in 2017, there is
a short period of agreement of satellite and ground-based derived
fog frequencies in December. Thereafter, the MODIS CTH based fog
frequency stays in agreement with the ground-based retrieval while
the neural network develops an increasing positive bias throughout
the subsequent summer (December 2017 – April 2018). A possible
explanation for this bias can be found in the coincidental rise of the
high cloud frequency which is derived from the MODIS cloud top
height by considering any cloud above 5 km a high cloud for this
particular investigation. Such high clouds may introduce a positive
bias for the neural network retrieval.

Investigating the distribution of the fog probability given by the
neural network in dependence on the MODIS CTH for station 13

reveals the highest fog probability as expected for CTHs between 2
and 4 km (Fig. 6.12). This is consistent with the definition of the fog
retrieval based on the MODIS CTH. Furthermore, for clear sky events
according to the MODIS cloud product, the median fog probability
amounts to about 0.05, which is similar to the overall bias for station
13 (0.06, Table 6.5). For high clouds (CTH > 5 km), the distributions
typically exceed the clear sky benchmark with median fog probabilities
as high as 0.2. While it is possible that advection fog occurs while a
high cloud is present, radiation fog is less likely. A nocturnal high
cloud would prevent the surface from efficient cooling leading to less
favorable conditions for fog formation. Thus the higher fog probability
in the presence of high clouds might indicate that the network makes
notice of the cloud and distinguishes the scene from a clear sky
scene by slightly increasing the probability output. Thus, the arising
positive bias of the neural network fog frequency for summer 2018

appears to be caused by the enhanced high cloud frequency. A similar
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Figure 6.12: Fog probability predicted by the neural network in dependence
on MODIS CTH. Boxplots at a specific MODIS CTH represent
the distribution of fog probability for a range within ±500 m of
the respective MODIS CTH. Thick horizontal lines denote the
median, boxes the 25th and 75th percentile, upper and lower
whisker the maximum and minimum, respectively, but not far-
ther than 1.5 · IQR (inter-quartile range) away from the box with
the remaining values plotted as dots (outliers). The first boxplot
on the left represents clear sky situations.

phenomenon appears for the following summer (December 2018–
March 2019). This time the high cloud frequency peaks even higher
reaching almost 50 % in January 2019. For this summer, the neural
network yields a higher fog frequency compared to the MODIS CTH
retrieval similar to the previous summer. However, the ground-based
fog frequency is higher this time, thus, in better agreement with the
neural network. The negative bias for the MODIS CTH based fog
frequency might be due to the enhanced high cloud frequency causing
overall more dry classifications for this period. Even though, the high
cloud frequency shows a strong seasonality, no clear indications for a
seasonal dependence of the neural network bias exist neither for the
probabilistic (NNprob) nor the binary (NNbin) consideration (Fig. 6.13

a, b). The fog frequency based on the MODIS CTH does not reveal
a seasonal dependence of the bias either (Fig. 6.13c) which indicates
that the scenes hidden by high clouds are typically dry scenes.

6.4.4 Climatology

To exploit the indicated potential of the neural network to represent fog
within the entire region, a 3-year climatology (2017–2019) is derived.
Both, the probabilistic output (NNprob) and the binary classification
according to the fog prediction threshold (NNbin) are applied. For
comparison, climatologies are also derived based on fog detection via
the MODIS CTH.

For austral winter (July, August, September), the neural network
and the MODIS CTH approach both reveal that the fog occurrence
frequency is very high in the coastal regions (> 50 %) and low for
most land areas away from the coast (< 5 %) (Fig. 6.14 a, b, c). For
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Figure 6.13: Monthly bias assessment from a comparison of the ground-based
reference to the fog frequency derived from the neural network
using the probabilistic output (NNprob) (a) and applying the fog
prediction threshold for the binary classification (NNbin) (b) and
derived from the MODIS CTH (c). Bias is defined as difference
of the mean fog frequency (neural network or MODIS CTH
minus ground-based reference). The neural network trained
with samples from all stations is considered (ALL mode).

NNbin, even higher coastal frequencies (> 70 %) and lower inland
frequencies are found increasing the West–East gradient. This pattern
is expected because the near coast maritime stratocumulus is most
persistent yielding the highest cloud cover (Farías et al., 2005; Cereceda
et al., 2008b; Muñoz et al., 2016; Lehnert et al., 2018b) during austral
winter. Furthermore, due to the lower cloud heights during winter
(Muñoz et al., 2016; Böhm et al., 2019), the stratocumulus is more
prone to intersect with the coastal cliff and mountain range which
prevents further inland advection. Inland penetration is visible for
both fog retrieval approaches at corridors were the coastal cliff is
intercepted by canyons or generally lower, e.g. at the northern end
around the Peruvian border. Such fog corridors have been identified
and related to fog occurrence in the central depression (Farías et al.,
2001; Farías et al., 2005). Individual areas within the central depression
are standing out with enhanced fog frequencies up to 50 % for NNprob
and MODIS CTH and even higher frequencies for NNbin, in particular
between 20◦S and 21.5◦S where no validation data are available. Across
the study region, the neural network estimates slightly higher fog
occurrence frequencies compared to the MODIS CTH approach which
is consistent with the higher bias shown for the LOO training mode
(Table 6.5). However, higher fog frequencies are expected at the coast
as daily mean low stratus frequencies exceeding 50 % for August
2001 based on retrievals from GOES have been reported (Farías et al.,
2005; Cereceda et al., 2008b). For the nocturnal MODIS overpasses,
even higher frequencies are expected considering the aforementioned
diurnal cycle. Therefore, the NNbin based coastal frequencies seem
most plausible. The dry bias found for NNbin for station 20 (Table
6.5, Fig. 6.11), which is the closest station to the coast, indicates that
even for NNbin the coastal frequencies might still be underestimated.
This means, the differences between coastal region and inland could
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be even more amplified and the CTH approach might underestimate
the coastal fog frequency. However, the overall patterns are mostly in
agreement and appear plausible.

Consistent with the previous discussion, both approaches agree that
fog occurrence is reduced at the coast (Fig. 6.14 e, f, g) for austral
summer (January, February, March). A distinctly enhanced coastal fog
frequency is only apparent south of 24◦S for both approaches. Besides
these agreements, the patterns derived from the neural network and
the MODIS CTH differ overall. While the neural network reveals a
North–South gradient with values up to 15 % in the North and below
5 % in the South based on the probabilistic output (NNprob) and
with slightly lower frequencies for NNbin, the MODIS CTH approach
results in a West–East gradient with values up to 35 % in the coastal
cordillera decreasing to values below 5 % towards the Andes. For
the neural network, the higher fog frequency in the north could be
related to higher cirrus cloud frequencies potentially increasing the
fog probability. These cirrus clouds are a recurring feature visible in
the fog frequency time series for stations of the center and more so
of the northern transect (Fig. 6.10 and supplement (Appendix A.3))
consistent with what is expected from the typical summer circulation
with upper level moist easterlies for the northern Atacama (Garreaud
et al., 2003). Further investigation on the influence of high clouds are
necessary to draw a more definitive conclusion.

As for the winter season, both approaches show enhanced fog
occurrence frequencies for some parts of the central depression for
the summer season. However, for the neural network, this is hardly
pronounced. On the contrary, the MODIS CTH approach reveals values
exceeding 50 % for these regions. Cereceda et al. (2008) report that the
region between 20◦S and 22◦S is mostly cloud free inland with some
patches revealing mean low stratus frequencies of up to 5 % based on
GOES retrievals for January 2002. Even though in their calculations
all diurnal observations are included and the fog peak is expected
at night, their revealed stratus frequency agrees more with the lower
inland fog frequencies based on the neural network. It is possible that
the height range applied to infer fog occurrence from the MODIS CTH
has a seasonal dependence and is not appropriate for the summer
season. As the predictive skill of the method presumably originates
in the detection of a surface inversion, the designated height range
for optimal fog detection can be expected to depend on the inversion
strength and height. Therefore, the seasonal cycle of the inversion
with higher base heights and weaker temperature jumps during the
summer season (Muñoz et al., 2011) might lead to misclassifications.
For a robust estimate of the potential seasonality of the optimal height
range, a longer reference data record would be necessary.

Another feature from the summer climatology is that the MODIS
CTH approach shows a much higher spatial variability on a scale of
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Figure 6.14: Seasonal climatology of fog occurrence frequency f for austral
winter (JAS; a, b, c, d) and summer (JFM; e, f, g, h) based on the
neural network probability output (prob.; a, e), neural network
binary classification applying to the threshold of 0.27 derived
in Section 6.4.2 (binary; b, f), MODIS cloud top height (CTH;
c, g) and ERA5 low cloud cover (ERA5; d, h). Climate stations
are indicated by magenta circles. Salt flats (salars) according to
Albers (2013) are outlined in red.
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a view kilometers compared to the neural network. Furthermore, for
the neural network probabilistic based summer climatology (NNprob),
canyons mouthing into the Pacific protrude with a higher fog fre-
quency in particular north of 21◦S. For NNbin, these local structures
are not visible. For the MODIS CTH based summer climatology, an
inverse pattern is observed: fog frequencies appear lower at the canyon
compared to the surroundings. While it seems more plausible that
these canyons allow more frequent inland penetration as it is observed
for both approaches for the winter season, we cannot validate this
any further at this point. Overall, further ground-based reference mea-
surements are necessary to disentangle the observed discrepancies
between the neural network and the MODIS CTH based summer
climatologies.

6.5 conclusion

This study introduces a new satellite-based fog retrieval approach for
the Atacama region which utilizes a neural network trained with a
novel ground-based reference data set. An attempt is made to derive
a region wide climatology of fog frequency. The development of this
approach benefits from a new network of climate stations deployed
at various locations throughout the Atacama. Based on a leaf wetness
sensor, and additional thresholds for relative humidity, difference of
surface and air temperature and the longwave radiation budget, which
are derived using self-organizing maps, a ground-based reference fog
data set is derived which is utilized to train and validate the retrieval
method. An uncertainty assessment for the reference data is difficult.
For future validation of the ground-based fog retrievals, an additional
installation of visibility sensors would be beneficial. Furthermore,
MODIS CTHs are included in this study to develop an alternative fog
retrieval method for comparison based on simple height thresholds.

A 2 × 2 contingency table analysis based on the binary classification
of individual events results in an overall accuracy of 0.89, a POD of
0.63, a FAR of 0.37 and a HSS of 0.56 for the neural network when
an optimal fog prediction threshold of 0.27 is applied to convert
the probabilistic neural network output into a binary classification.
For another recently developed satellite-based algorithm for fog and
low cloud detection for the Namib region, a similar subtropical west
coast desert environment, an accuracy of 0.97 and a HSS of 0.89
(Andersen and Cermak, 2018). However, their approach does not make
a distinction between fog and low clouds which is attempted here.
A pure fog detection approach is presented by Egli et al. (2018) who
report a HSS of 0.58 for a satellite-based fog detection method which
is validated against visibility provided by METAR and SYNOP reports
for various regions across Europe. However, due to the completely
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different reference data sets and different environmental conditions
for their study region, a comparison to our study is difficult.

To further assess the suitability of the neural network approach
to derive a climatology and to study the variability of fog frequency
on different time scales, we derived time series for each climate sta-
tion. For the ground-based reference and the MODIS CTH based fog
retrieval, the time series are derived from the binary classification
of individual events by applying moving averages of various inter-
val lengths. For the neural network, both the probabilistic output
(NNprob) and the binary classification according to the fog prediction
threshold (NNbin) are applied to derive the time series. On a subsea-
sonal scale (60-day moving average), Pearson correlation coefficients
between the time series based on the neural network and the climate
stations range between 0.76 and 0.92 for stations with overall fog fre-
quencies greater than 2 % indicating a suitable representation of the
temporal variability of the fog frequency. Slightly lower correlations
are determined for the MODIS CTH approach.

To investigate whether the neural network is representative for
locations aside from the climate stations which are included in the
training process, a second training mode is introduced. By leaving
out one station from the training and then use it to evaluate the
performance (LOO mode), we simulate the situation which is faced
once the network is applied to regions which do not host climate
stations and hence cannot be trained for. The correlations for the
individual climate stations remain similar or drop only slightly for
most stations compared to the neural network trained with samples
from all stations. Therefore, we conclude that the performance of the
network does not depend greatly on the stations used in the training
which means the network can be generalized and applied region wide
across the Atacama Desert.

While not shown explicitly, we also investigated the suitability of
additional input data such as (1) the 10m wind from reanalysis, (2)
climatologies of the brightness temperatures for each channel, or (3)
percentiles of brightness temperatures within a certain time window
around each measurement. While These variables can improve the
predictive skill of the model and increase the resulting correlations
with the ground-based reference at an individual station, these im-
provements do not hold anymore when the training is carried out in
LOO mode. A similar behavior is found when the station identification
number is provided to the network. This indicates that any additional
variable used in the training process which has unique signature at
each station and thus serves as a proxy for the station identification
number will result in an overfitted model which is specialized for
the locations used in the training. Therefore, such a model would not
be suitable to apply region wide. It may, however, be better suited
to detect fog at the same stations. Moreover, incorporating further
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neighboring MODIS pixels in addition to the nearest neighbor (3 × 3
pixels around the station) did not improve the detection skill.

The derived 3-year climatologies based on the MODIS CTH and the
neural network reveal very similar patterns for the austral winter (JAS)
with slightly higher fog frequencies derived for the neural network.
Fog is mainly present at coastal regions and penetrates further inland
through fog corridors which is consistent with reports from literature.
Both methods reveal fog hot spots within the central depression which
might be an indication of radiation fog which forms at night when the
near surface layer cools. The required moisture could be advected from
the Pacific with the westerly winds which develop typically during
the day and reverse later at night (Schween et al., 2020).

The climatology reveals a more puzzling picture for the summer
season (JFM). For the neural network a North–South gradient is re-
vealed with higher fog frequencies in the north. This might be due to
enhanced high cloud presence in the northern Atacama during the
summer season which may introduce a positive bias for the neural
network. Further reference measurements are needed. Furthermore,
both methods reveal enhanced fog frequencies for some regions within
the central depression. However, while this is hardly pronounced for
the neural network, the MODIS CTH approach results in fog frequen-
cies even exceeding 50 % for some of these regions. For January 2002,
GOES-based low stratus detection revealed lower fog frequencies for
this region (Cereceda et al., 2008b), suggesting that MODIS CTH over-
estimates the fog frequency. However, several issues complicate this
comparison (coarser resolution of GOES, all times of the day included
in the average, only a single month is considered, etc.). More obser-
vations in particular in the central depression would be beneficial to
verify which method is more realistic.

An interesting issue could be identified for a station located close
to the Salar de Llamara (station 14) which might be representative
for a wider range of such salt flats. Unusual infrared temperatures
measurements, reported by this station, might indicate a distinct
surface emissivity anomaly. If the surface emissivity is significantly
different at these salt flats, the ensemble of brightness temperatures for
the various MODIS channels may differ for these regions. Therefore
different relationships between individual channels would be expected
compared to the other regions. Within the Atacama Desert, multiple
salt flat regions have been identified (Albers, 2013, marked in Fig.
6.14). Therefore, it would be beneficial to have more ground-based
measurements for validation in particular for the salt flat regions.

As we have generated the first satellite-based climatology for the At-
acama, there are only reanalysis data available for comparison. Reanal-
yses provide atmospheric quantities with high spatial and temporal
coverage. As an example, we include the low cloud cover derived from
the European Centre of Medium-Range Weather Forecasts (ECMWF)
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5th generation reanalysis ERA5 (Hersbach et al., 2020) to illustrate the
capabilities of contemporary reanalyses. With a horizontal resolution
of 31 km, which is comparably high for a reanalysis, it does not provide
a realistic representation of the orography in particular of the coastal
cliff and cordillera. Therefore, the advection of the stratocumulus deck
is not represented correctly. Small corridors which are visible for the
other fog detection approaches are not resolved (Fig. 6.14 d, h). This
demonstrates that observations with much higher spatial resolution,
such as the satellite observations which are utilized in this study, are
required in order to study region-wide fog frequencies.

Aside from the salt flats which pose uncertain terrain due to the
lack of in-situ reference data for these regions, the neural network fog
detection approach reveals a robust representation of the study region
and suitable skill to represent temporal variability on subseasonal and
to some degree on a synoptic scale. In future studies it can be applied
to derive a long term climatology including the entire MODIS data
record, which dates back to the year 2000 (Terra) and 2002 (Aqua). This
would enable to derive seasonal cycles, study interannual variability
and the potential relationship to large scale climate variations such as
the El Niño Southern Oscillation (ENSO), and investigate local trends
of fog frequency. Furthermore, applying the methodology presented
here to GOES-16 measurements, which are available at temporal reso-
lution of 15 minutes, would enable to study the whole diurnal cycle
and thus be complementary to the MODIS-based study.

6.6 appendix : definitions of statistical measures

True positive rate (TPR), probability of detection (POD), false positive
rate (FPR), accuracy (ACC), false alarm rate (FAR) and critical success
index (CSI), bias score (BS) and Heidke skill score (HSS) are defined
as follows:

TPR = POD =
a

a + c
(6.1)

FPR =
b

b + d
(6.2)

ACC =
a + d

a + b + c + d
(6.3)

FAR =
b

a + b
(6.4)

CSI =
a

a + b + c
(6.5)

BS =
a + b
a + c

(6.6)

HSS =
2(ad − bc)

(a + c)(c + d) + (a + b)(b + d)
(6.7)
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Here, a is the number of true positives (fog hits), b is the number of
false positives (false alarms), c is the number of false negatives (missed
fog) and d is the number of correct negatives (correct dry).

6.7 remarks

supplement Supplement material is available in the Appendix
A.3. This material is part of the submission to the Journal of Applied
Meteorology and Climatology (Böhm et al., 2020b).

data availability Measurement data from the climate stations
are available at the Collaborative Research Center 1211 Database
(https://www.crc1211db.uni-koeln.de/wd/index.php). MODIS Ge-
olocation Fields Product, level 1B Calibrated Radiances Product, and
level 2 Cloud Product were downloaded from the NASA Level-1
and Atmosphere Archive & Distribution System Distributed Active
Archive Center (LAADS DAAC) (https://ladsweb.modaps.eosdis.
nasa.gov/archive/allData/). ERA5 data were downloaded from the
Copernicus Climate Data Store (CDS) via Web-API.
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abstract. In the hyperarid Atacama Desert in northern Chile, very
rarely occurring precipitation events can leave long-lasting geomor-
phological traces and have a strong impact on biota. While for central
and southern Chile, ARs account for 40–60 % of the total precipitation,
their role for the Atacama Desert has not been investigated previ-
ously. The presented study reveals that about four ARs per year make
landfall in the Atacama Desert. According to simulated precipitation
which has been validated against gauge measurements, more than
40 % of the total precipitation is associated with ARs for most parts of
the study region. For some locations this fraction even exceeds 70 %.
Furthermore, a case study reveals an elevated vertical structure, which
is confirmed by a composite analysis. The elevated moisture transport
(peak around 500–600 hPa) associated with a mid-tropospheric trough
is typically decoupled from the MBL. Near surface moisture transport
is guided by the prevailing southeast Pacific anticyclone even during
AR passages. The example case for an AR landfall on 7 June 2017 is
presented in more detail. Back trajectories reveal the Amazon Basin
as a source of moisture. Implications of the results on paleoclimate
reconstructions are discussed.

7.1 introduction

Enduring extreme hyperaridity together with extraordinary ultraviolet
irradiation (Rondanelli et al., 2015) and low soil carbon content (Crits-
Christoph et al., 2013; Knief et al., 2020) make the soils of the Atacama
Desert one of the most hostile environments of the world for microbial
life (Jones et al., 2018). Nevertheless, microorganisms can potentially
metabolize if liquid water is present for a sufficient duration (Crits-
Christoph et al., 2013). Soil microbial communities are activated by
precipitation (Jones et al., 2018), so that more humid locations in
the Atacama Desert are characterized by higher microbial diversity
and abundance (Knief et al., 2020). On the contrary, sudden surplus
of liquid water associated with extreme precipitation can lead to
degradation of microbial species which are highly adapted to the
prevailing aridity (Azua-Bustos et al., 2018).

Moreover, precipitation events can activate germination of many
species (Pliscoff et al., 2017) and even trigger rapid flowering, causing
the spectacular “blooming desert” (Chávez et al., 2019; Astorga-Eló
et al., 2020). The latter phenomenon attracts many tourists and scien-
tists to the Atacama Desert, which has a socioeconomic impact and
generates the demand for a better prediction of such events (Chávez
et al., 2019; Astorga-Eló et al., 2020). Extreme precipitation can cause
vegetation outburst across areas which may have been barren for
decades (Jordan et al., 2019). Vegetation development of such a dimen-
sion leaves traces through storage of plant residue in rodent middens
which are conserved over geological time scale (e. g. Latorre et al.,



146 precipitation

2002; Díaz et al., 2012; Gayo et al., 2012). Therefore, a reconstruction
of pluvial episodes is possible by investigation of such geological
archives.

Depending on the magnitude of the precipitation and terrain char-
acteristics, precipitation can also trigger debris flow (Vargas et al.,
2006). The debris flows are associated with dominant morphodynamic
processes which shape coastal alluvial fans (Haug et al., 2010; Walk
et al., 2020). Therefore, such precipitation episodes and their atmo-
spheric driver are strongly related to landscape evolution. By dating
alluvial fan depositions, climate history can be reconstructed (Bartz
et al., 2020).

Another important aspect of precipitation is the origin of the water.
The source and pathway define the isotopic fractionation of the water,
which, in turn, modifies the isotopic composition of the rain water,
run-off and vegetation (Jordan et al., 2019). The isotopic composition
is conserved, for example, in rodent middens and rodent teeth, which
constitute climate archives and can be used to reconstruct prevailing
moisture sources for past climatic episodes (Jordan et al., 2019).

The fingerprints of the present climate are manifested in represen-
tative quantities, such as grain size and stable oxygen and hydro-
gen isotopes. Extensive field work has been carried out to unleash
these precipitation archives and infer climate history from it (Ritter
et al., 2019; Diederich et al., 2020). For a better interpretation of these
archives, it is necessary to understand the drivers and processes which
guide precipitation variability.

So far, the precipitation regimes in the Atacama Desert have mostly
been divided into two main areas which are affected by different
drivers. The southern and coastal part of the desert are characterized
by winter rain which is associated with cut-off lows and troughs
emanating from the midlatitudinal storm track (Houston and Hartley,
2003; Houston, 2006; Reyers et al., 2020). Under El Niño conditions,
winter precipitation in the southern and coastal desert regions can
be enhanced (Houston, 2006; Vargas et al., 2006; Valdés-Pineda et al.,
2018). This can be attributed to a typical blocking situation in the
midlatitudes during the developing phase of an El Niño, which forces
the midlatitudinal low pressure systems northward (Montecinos and
Aceituno, 2003; Vargas et al., 2006).

A second precipitation regime is established for the northeastern
part of the Atacama. Predominant summer precipitation is controlled
by the position of the Bolivian High (Vuille, 1999; Garreaud et al., 2009).
A southward displacement of this upper tropospheric high pressure
system results in enhanced moist easterlies over the Altiplano leading
to convective storms (Vuille, 1999; Garreaud et al., 2003). Associated
precipitation rates are strongly related to the topography with rapidly
decreasing rainfall amounts towards lower heights at the western
slopes of the Andes (Houston and Hartley, 2003). However, in case
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of a southwestward displaced Bolivian High, these storms can be
carried across the Andes and cause precipitation over the central valley
farther west (Reyers et al., 2020). La Niña conditions favor these moist
easterlies and, thus, can result in wet Altiplanic summers, whereas El
Niño conditions result in dry summers (Vuille, 1999; Garreaud and
Aceituno, 2001; Garreaud et al., 2003; Canedo-Rosso et al., 2019).

Besides cut-off lows, troughs and variations of the Bolivian High,
another synoptic feature called Atmospheric Rivers (ARs) is at play. So
far it has received little to no attention within the Atacama Desert. The
term AR was first introduced by Zhu and Newell (1998) after Newell
et al. (1992) identified these synoptic features as filamentary structures
of enhanced water vapor in the troposphere. These structures are
associated with major moisture and heat transport from the tropics
to higher latitudes. Efforts to derive a more elaborative definition are
described by Ralph et al. (2018).

For the west coast of South America, the impact of ARs has mainly
been studied for central and southern Chile (Viale and Nuñez, 2011;
Garreaud, 2013; Viale et al., 2018; Saavedra et al., 2020). Most frequent
landfalls are observed between 38◦S and 50◦S (Viale et al., 2018). While
north of 43◦S, AR landfall frequency peaks during winter and spring,
south of 43◦S the peak seasons for ARs are summer and fall. For central
Chile (32◦S–37◦S), about 45 %–60%̇ of the total precipitation are related
to land-falling ARs. Furthermore, warm winter storms in central Chile
have been associated with AR (Garreaud, 2013).

For the Andean mountain range between 26.5◦S and 36.5◦S, about
50 % of the accumulated annual snow fall is related to ARs (Saavedra et
al., 2020). Individual snowfall events are about 2.5 times higher under
AR conditions compared to non-AR conditions. La Niña is associated
with a reduction of AR frequency and a lower snow contribution,
whereas weak to moderate El Niño conditions result in higher AR

frequency and, consequently, more snowfall.
Intriguingly, some few AR landfalls have been detected even for

northern Chile (Guan and Waliser, 2015, Fig. 8). While Reyers et
al. (2020) pointed out that troughs and cut-off lows which bring
precipitation to northern Chile are often associated with ARs, this study
investigates the role of these synoptic features for the Atacama Desert
in more detail. The study is guided by three overarching hypotheses:

1. A substantial amount of precipitation within the Atacama Desert
is due to ARs.

2. The main origin of the AR related moisture is the Amazon Basin.

3. AR related moisture transport and precipitation formation mostly
takes place in mid- and upper tropospheric layers and is decou-
pled from the MBL.

For the analysis, the AR catalog by Guan and Waliser (2015) pro-
viding spatial shapes and landfall times of identified ARs is utilized.
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This catalog and other utilized data are described in more detail in
Chapter 7.2. Thereafter, a case study is presented which exemplarily
highlights the potential moisture source and the vertical structure of
an AR (Chapter 7.3). Furthermore, a composite analysis of synoptic
conditions and the vertical structure of all ARs identified for this region
is conducted in Chapter 7.4, followed by a conclusion and outlook
(Chapter 7.5).

7.2 data

7.2.1 Atmospheric river catalog

The AR catalog by Guan and Waliser (2015) is used to identify times
with AR landfalls at the coast of the Atacama Desert. This catalog is
maintained with frequent updates and improvements of the identifica-
tion algorithm (https://ucla.box.com/ARcatalog; Guan et al., 2018).
Here, Version 2 available for different reanalysis data sets is applied.
By choosing the AR data set based on ERA-Interim (Dee et al., 2011b),
consistency with an ERA-Interim-driven WRF simulation, which is
applied in this study and introduced later in this Chapter, is ensured.

The AR identification algorithm considers a percentile-based Integrated
Water Vapor Transport (IVT) threshold to identify objects of interest,
which are further tested against orientation and geometry criteria
(Guan and Waliser, 2015). Here, essential identification steps are briefly
outlined:

1. The 85th percentile is calculated at each grid cell for each month
using a 5-month rolling window centered on that month for
the period between 1997–2014. For the Atacama Desert and
the bordering southeast Pacific, this results in an IVT threshold
between 50–100 kg m−1 s−1 for both summer and winter (c. f. Fig.
1 in Guan and Waliser, 2015). Over oceans, such low values are
otherwise only found in polar regions.

2. The IVT direction of each grid cell within an identified object
needs to be coherent with the overall mean IVT direction. Further-
more, the poleward oriented meridional IVT component needs
to exceed 50 kg m−1 s−1.

3. A minimum length of 2000 km and a length-to-width ratio
greater than 2 is required.

4. If 2. and 3. fail, then 1.–3. are repeated, whereby the IVT threshold
in step 1. is increased by raising the percentile by 2.5 for each
iteration (applied in Version 2; Guan et al., 2018).

The data set based on ERA-Interim is provided at a 6-hour temporal
resolution on a 1.5◦ by 1.5◦ grid. For this study, identified ARs (Guan,

https://ucla.box.com/ARcatalog
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Figure 7.1: Total monthly counts of AR landfalls between 17◦S and 30◦S
between 1979 and 2019 according to the AR catalog by Guan and
Waliser (2015) version 2 (Guan et al., 2018). Landfall times have
to be at least 48 h apart to count as separate ARs. The total of 172

AR landfalls correspond to a mean of 4.2 landfalls per year.

2020) are filtered for objects which made landfall at the coast of the
Atacama Desert between 17◦S and 31◦S. If two consecutive landfalls
are at least 48 hours apart, they are counted as two separate ARs. This
way, a total of 172 AR landfalls are detected for the period between
1979 and 2019, which corresponds to about 4.2 landfalls per year on
average. Monthly counts reveal a distinct seasonal cycle with the most
active season between May and September and only a total of 12

landfalls between November and February within the 41-year period
(Fig. 7.1).

7.2.2 Regional climate model precipitation observations

Precipitation data utilized in this study are taken from a simulation
with the regional climate model WRF (Reyers, 2018). The data set
comprises daily (separated at 0 Coordinated Universal Time (UTC))
accumulated precipitation on a 10 km resolution for a 36-year period
(1982–2017). For the simulation, a double one-way nesting is applied
using ERA-Interim as boundary conditions. The inner domain roughly
spans the region between 16◦S–26◦S and 74◦W–67◦W. More details of
the model setup are described in Reyers et al. (2020). Furthermore,
hourly model output is used to illustrate the temporal evolution of
relative humidity, cloud liquid water and wind within a case study.

A validation of the precipitation data set against gauge measure-
ments provided by the Center for Climate and Resilience Research
(CR2) (Center for Climate and Resilience Research, 2018) reveals suit-
able accuracy of the model (Reyers et al., 2020). Significant biases were
only detected for steep slopes of the Andean Precordillera and can be
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Figure 7.2: Precipitation climatology for the Atacama Desert derived from
a WRF-simulation (1982–2017; Reyers et al., 2020). Topography
is derived from Shuttle Radar Topographic Mission (SRTM) (Farr
et al., 2007). The red lines denotes the 2000 m elevation line. The
locations of three coastal cities (Arica, Iquique, Antofagasta) are
annotated.

attributed to either an underestimation of summer convection in the
convective scheme, the lack of moisture transport from the eastern side
of the Altiplano or an underrepresentation of orographic gradients in
the WRF model domain (Reyers et al., 2020).

A climatology of the simulated precipitation reveals a hyperarid core
region roughly between 20◦S and 22◦S, including areas with annual
precipitation rates below 1 mm encircled by a larger area with rates
between 2 mm and 4 mm along with the coastal city Antofagasta (Fig.
7.2). Furthermore, a steep gradient is apparent with rapidly increasing
mean annual precipitation rates towards the Altiplano in the northeast,
which is consistent with results from previous studies (e. g. Houston
and Hartley, 2003; Houston, 2006).

The gauge observations (Center for Climate and Resilience Research,
2018) which have been used by Reyers et al. (2020) are also included in
this study to further assess the validity of the modeled precipitation.
Furthermore, more recently updated gauge observations which are
utilized for the presented case study (Chapter 7.3) are obtained from
a dedicated website hosted by the CR2 (http://explorador.cr2.cl;
Center for Climate and Resilience Research, 2019).

http://explorador.cr2.cl
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7.2.3 Reanalysis and radiosounding data

ECMWF’s 5th generation reanalysis (ERA5) data (Hersbach et al., 2020)
are utilized for a composite analysis. Hourly fields with a spatial
resolution of 0.25◦ of longitude and latitude are obtained for mean sea
level pressure, geopotential heights for 500 hPa and 700 hPa pressure
levels, as well as specific humidity q, temperature and the eastward
and northward wind components u and v for all available pressure
levels and IWV. The total water vapor transport ~Q between two pres-
sure levels pbot and ptop is calculated manually using the horizontal
wind vector ~U = (u, v) and the gravitational acceleration g of the
Earth according to Equation 7.1:

~Q =
1
g

∫ ptop

pbot

q(p)~U · dp (7.1)

ERA5 data are further applied to derive back trajectories of air parcels
arriving at the Atacama Desert during an AR (case study). Therefore,
the Hybrid Single Particle Lagrangian Integrated Trajectory Model
(HYSPLIT) (https://www.arl.noaa.gov/hysplit/, National Oceanic
and Atmospheric Administration (NOAA) Air Resources Laboratory;
Stein et al., 2016) is run using hourly 3-D fields of meteorological
data. Back trajectories are calculated for different target heights and
locations starting 7 days prior to the target times, respectively.

For the presented case study, radiosonde data are obtained from the
Integrated Global Radiosonde Archive (Integrated Global Radiosonde
Archive (IGRA), Durre et al., 2016) for Antofagasta (23.5◦S, 70.4◦W).
Data are available from daily launches at 12 UTC.

7.3 case study

A heavy precipitation event occurred in June 2017 affecting a region
within the hyperarid core of the Atacama Desert. Accumulated precip-
itation between 6-7 June 2017 exceeded 30 mm in a band of roughly
50 km width which stretched from the Mejillones Peninsula southeast-
ward towards the Andean Precordillera in both the model and the
gauge observations (Fig. 7.3b). Some regions received rain amounts
even higher than 50 mm, which surpasses the ten-fold mean annual
precipitation rate (c. f. Fig. 7.2). In the course of the event, various mi-
crobial species vanished due to the ponding of a lagoon near Yungay,
located within this rain band (Azua-Bustos et al., 2018).

The event was associated with a trough visible in 500 hPa and
700 hPa which occurred anomalously far north and approached the
Atacama Desert from the west (Fig. 7.3a). Ahead of the trough, a
massive amount of water vapor was transported along the Peruvian
coast towards the Atacama Desert. This transport has been identified

https://www.arl.noaa.gov/hysplit/
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Figure 7.3: (a) Integrated Water Vapor Transport (IVT) integrated between
850 hPa and 200 hPa (color shading and arrows) and geopotential
height in 500 hPa (light red contours). Dark red boxes denote the
identified shape of the AR according to the applied AR catalog. All
quantities are displayed for 7 June 2017 at 6 UTC. (b) WRF and CR2

station (magenta circles) 2-day precipitation sum for 6-7 June 2017.
Crosses indicate target coordinates for back trajectories shown in
Fig. 7.4. Dashed lines denote locations of vertical cross sections
shown in Fig. 7.5.

as an AR according to the detection algorithm by Guan and Waliser
(2015) (Section 7.2.1).

The disturbance only affected tropospheric levels above the MBL,
whereas the prevailing southeast Pacific anticyclone remained intact at
the surface (not shown). In fact, the IVT integrated between the surface
and 850 hPa has a northward component (not shown). This indicates
that the relevant moisture transport is limited to the free troposphere
which is reflected in Fig. 7.3a by only considering pressure levels
between 850 hPa and 200 hPa.

The anticyclonic nature of near surface levels is visible from the
back trajectories which have been calculated for this event (Fig. 7.4).
For the lowest target heights (500 m and 100 m), the 7-day path prior
to the arrival at the central Atacama Desert denotes an east- to north-
ward curving inflow over the Pacific. For higher target heights, the
trajectories mainly originate over the Amazon Basin. They cross the
Andes between the equator and 10◦S, then turn southeastward over
the tropical eastern Pacific and pass by the Peruvian coast before they
reach the Atacama Desert. This means, the free tropospheric air which
dominates the moisture transport towards the Atacama Desert (Fig.
7.3a) appears to be originating from the Amazon Basin. Such moisture
would essentially be of Atlantic origin (e. g. Garreaud et al., 2009).
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Figure 7.4: HYSPLIT back trajectories based on ERA5 for different target loca-
tions (crosses in Fig. 7.3) and target heights (see legend). Trajecto-
ries start 7 days prior to the target time on 6 June 2017 at 18 UTC

(a) and on 7 June 2017 at 0 UTC (b). Figures were created by Leon
Knarr and rearranged for this thesis with consent of Leon Knarr.

Variations of the upper level trajectories indicate that some air from
the tropical Pacific is mixed in as well.

The fact that the moisture transport is mostly constrained to higher
levels in the troposphere is further highlighted by longitude-height
cross sections of relative humidity (Fig. 7.5) across the area of the
main precipitation band (horizontal lines in Fig. 7.3b). The MBL and a
humid layer at the verge of saturation above 5 km are separated by a
layer of very low relative humidity (Fig. 7.5 a, c). This indicates that
there is no significant exchange between the upper moist layer and
the MBL. Furthermore, the strongest winds are collocated with the
elevated moisture peak. Thus, the main moisture transport towards
the Atacama Desert appears to be decoupled from the MBL and is
realized at midtropospheric heights so that it can cross the coastal
mountain range.

These mountains appear to introduce a vertical wind component
which is transferred to higher altitudes. The resulting lifting of the
moist air leads to cloud formation manifested in enhanced cloud liquid
water (Fig. 7.5 a, c). At a later stage during the event, the dynamics of
the accompanying trough result in a more complex circulation which
appears to allow downward mixing of the humidity or cooling of
the lower layer. This is indicated by higher relative humidity at lower
altitudes over land and further cloud formation (Fig. 7.5 b, d).

The vertical structure of this AR is further investigated by analyzing
radiosounding profiles which are available for Antofagasta with daily
launches at 12 UTC (Fig. 7.6). Between 2–6 June 2017, the temperature
inversion monotonically weakened (Fig. 7.6a), which can be attributed
to the approach of the mid-tropospheric trough. At the same time, spe-
cific humidity increased slightly in the MBL and considerably between
450 hPa and 750 hPa, whereas a layer right above the temperature in-
version at around 850 hPa remained dry (Fig. 7.6b). This is consistent
with the dry layer revealed by the WRF simulation and confirms that



154 precipitation

Figure 7.5: WRF vertical cross section (height in km, longitude in ◦E) of rela-
tive humidity in % (shading), u and w wind (arrows, w multiplied
by a factor of 30) and cloud liquid water (contours, higher values
for lighter color) along 23.5◦S (a, b) and 24.5◦S (c, d) correspond-
ing to dashed lines in Fig. 7.3. Figures were created by Mark
Reyers and rearranged for this thesis with consent of Mark Rey-
ers.

the MBL is decoupled from the moisture accumulation within higher
layers. The latter is explained by the increasing inland water vapor
flux leading to the precipitation event (Fig. 7.6 c, d).

The precipitation in the central valley southeast of Antofagasta most
likely occurred during the night from the 6–7 June 2017. This cannot
be deduced directly from the CR2 and the WRF precipitation data
sets because they only provide daily accumulated values. However,
operating CRC 1211 station 13 (Cerros de Calate), which is located
further north (21.4◦S, 69, 8◦W), reveals the onset of the rainfall period
at 1 UTC and the end at 6:30 UTC on 7 June 2017 (Hoffmeister, 2017a).
Therefore, the radiosounding profile for 7 June 2017 at 12 UTC (8 a. m.
local time) unveils the situation a few hours after the precipitation
event. While there is still a strong southeastward water vapor flux
peaking at 700 hPa, the temperature inversion dissipates. This could
be due to evaporative cooling upon descending water droplets, which
is consistent with the observed moistening of the dry layer around
850 hPa for this particular day (Fig. 7.6). An onshore homogenizing of
the relative humidity is also indicated by the simulation (Fig. 7.5 b, d).

7.4 composite analysis

In order to generalize the results from the case study, a composite
analysis is carried out. For a 36-year period (1982-2017), 521 days
which are related to a land-falling AR are determined, including the
day before and after. For these days, the total AR-related sum of
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(d)

Figure 7.6: Vertical profiles derived from radiosoundings at Antofagasta of
(a) temperature, (b) specific humidity, (c) eastward water vapor
flux and (d) northward water vapor flux for the days between 2–9

June 2017 (see legend in a).

precipitation and composites are derived from the WRF precipitation
data set and ERA5 data, respectively.

The AR-related fraction of total precipitation reveals an overall gra-
dient between higher fractions in the southwest and lower fractions
in the northeast (Fig. 7.7a). This pattern is consistent with the general
understanding that AR frequency declines from a maximum in mid-
latitudes towards the subtropics (Viale et al., 2018). In particular in the
northeast, the pattern resembles the precipitation gradient which is
dominated by summer time precipitation in association with moist
easterlies (Vuille, 1999; Garreaud et al., 2003; Houston and Hartley,
2003). However, further south, maximum fractional precipitation ap-
pears for a distinct region between 23◦S and 24◦S, bounded by the
city of Antofagasta in the west and stretching into the central valley
to the east. For this region, more than 70 % and for some spots even
more than 80 % of the total precipitation is associated with an AR mak-
ing landfall. Generally, values exceed 40 % for most of the Atacama
Desert south of 20◦S. The magnitudes derived from the simulation
are in reasonable agreement with magnitudes derived from the CR2

station data set. These findings demonstrate the importance of ARs for
precipitation in the Atacama.

Precipitation events are rare in the Atacama Desert, which means
that some locations do not receive any rain within several years (Cere-
ceda et al., 2008a). In particular in the coastal desert, sparse precip-
itation can occur in form of drizzling fog. Such small precipitation
amounts are very important for coastal loma vegetation (e. g. Pinto
et al., 2006; Jaeschke et al., 2019) but are not sufficient to trigger mud-
slides or debris flow which causes landscape evolution detectable in
paleoclimate archives (Vargas et al., 2006). Therefore, the fraction of
days with precipitation is another quantity which characterizes the
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(b) precip. days > 0.1mm
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(c) precip. days > 1mm
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Figure 7.7: AR-related fraction of (a) total precipitation amount, (b) days with
precipitation greater than 0.1 mm, (c) and days with precipitation
greater than 1 mm based on a WRF simulation (Reyers et al., 2020).
Contour lines represent the annual mean for each variable. Cir-
cles denote the respective analysis based on gauge measurement
(source: CR2).

impact of ARs for the Atacama Desert. More than a third out of all days
with detectable precipitation (greater than 0.1 mm) are associated with
an AR landfall for most of the Atacama Desert south of 20◦S (Fig. 7.7b).
A regional maximum with the fraction exceeding 50 % is found to the
east of the Mejillones Peninsula. If the threshold is increased to 1 mm,
the AR-related fraction increases overall with values exceeding 50 % for
most parts (Fig. 7.7c). In other words, days with higher precipitation
amounts are more likely to be AR-related.

Days which are associated with ARs making landfall at the coast
of the Atacama Desert typically feature an upper level trough ahead
of the coast (Fig. 7.8). The southeast Pacific anticyclone is still visible
according to the sea level pressure, which means that the prevailing
southerlies within the MBL along the Chilean coast remain present
in most AR cases. Regarding the synoptic overview, the previously
described June 2017 event appears to be a representative case (c. f. Fig.
7.3a) for AR-related situations.

Additionally, AR-related days are associated with enhanced IWV

across the southeast Pacific with a maximized positive anomaly a few
hundred kilometers west of the coast of northern Chile. According to
the composite mean geopotential height fields in 500 hPa and 700 hPa,
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Figure 7.8: Composite IWV anomaly (shading), mean sea level pressure (white
contours), geopotential height in 700 hPa (gray contours) and
500 hPa (black contours). IWV anomaly is derived as the mean
deviation from the monthly climatology for each AR-related day.
Data source: ERA5

a northwesterly airflow can potentially transport this moisture excess
towards the Atacama Desert. To gain more insides regarding the mois-
ture transport of regional ARs, the vertical structure of the atmosphere
is studied for the AR-related days.

For this purpose, a specific vertical column is selected from the
gridded ERA5 data set. The selection is carried out individually for each
considered AR day according to the following procedure. Within a box
bounded by 18◦S–30◦S and 73◦W–71.5◦W, the pixel with maximum
absolute IVT is identified. Then, temperature, specific humidity and
both horizontal components of the water vapor flux are stored for each
available pressure level between 1000 hPa and 200 hPa. From this data
set, the composite mean and the standard deviation are calculated
for each pressure level (Fig. 7.9). Additionally, seasonal climatologies
are derived for the entire bounding box for temperature and specific
humidity (Fig. 7.9 a, b).

In the AR composite vertical profiles, winter and fall situations are
overrepresented due to the seasonal distribution of AR landfalls (7.1).
Even in this respect, the composite temperature is considerably colder
within the free troposphere compared to the coldest season (JAS, Fig.
7.9a). The composite mean temperature profile within the boundary
layer follows closely the seasonal average for spring and fall. Therefore,
the inversion above the MBL is overall weakening during AR events,
which can be attributed to reduced subsidence related to the presence
of a midtropospheric trough.

Within the MBL, the composite mean specific humidity profile is
again closely following the average spring and fall season profiles (Fig.
7.9b). However, above 950 hPa, the decrease with height appears at a
lower rate. Even though winter time situations are overrepresented,
the composite mean of the specific humidity exceeds the mean sum-
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Figure 7.9: AR-composite vertical profiles of (a) temperature, (b) specific hu-
midity, (c) eastward water vapor flux, (d) northward water vapor
flux. AR-composite mean (black line) and standard deviation
(shaded) are denoted for each pressure level. Colored lines in
(a) and (b) denote respective seasonal climatologies. Data source:
ERA5

mer time peak above 875 hPa. Overall, an AR-related enhancement of
specific humidity is limited to the free troposphere.

Furthermore, the highest water vapor flux is observed between
500 hPa and 600 hPa on average (Fig. 7.9 c, d). At these pressure
levels, a southeastward transport can be deduced. While the composite
mean zonal component remains positive across all pressure levels, the
meridional component changes the sign for the lowest pressure levels.
This can be expected, as the southeast Pacific anticyclone remains
intact near the surface, supporting the prevailing southerlies along the
Chilean coast (Fig. 7.8). These results also confirm that the moisture
transport mainly occurs at higher levels.

7.5 conclusion

In this study, the role of ARs for the Atacama Desert is investigated.
The results, which confirm all hypotheses raised in Chapter 7.1, are
concluded and discussed in the following.

About 4 landfalls per year accumulate along the coast of northern
Chile on average. Viale et al. (2018) report that in southern Chile more
than 40 days per year are associated with ARs for coastal locations.
This rate decreases towards the north to about 4 days per year at 27◦S
(Viale et al., 2018, their Fig. 7). While their detection algorithm differs
slightly from the one applied in this study, this rate appears to be
consistent with the number of landfalls per year found in this study.
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Even though the AR landfall frequency is comparably low, these
synoptic features can have substantial impact considering the overall
low precipitation rates for this hyperarid environment. For example,
an AR which made landfall on 7 June 2017 resulted in rainfall amounts
which exceeded average decadal rates (Fig. 7.3b, Chapter 7.3). Events
of such scale presumably dominate the traces which are identified in
paleoclimate archives (Jordan et al., 2019; Ritter et al., 2019; Diederich
et al., 2020).

For most regions of the Atacama Desert, more than 40 % of the total
precipitation is related to AR landfalls. For a region east of Antofagasta,
the fraction exceeds 70 %. As the case study for the June 2017 AR

indicates, individual events can have a considerable impact on the
spatial distribution of the fractional precipitation. Given that a single
AR can be accounted for a decade’s worth of rain, the 36-year long
data record which is considered in this study appears quite short.
Therefore, in future studies a longer data record would be desirable.

The investigation of the mean vertical profile of ARs related to the
Atacama Desert reveals an elevated structure. Moisture transport
maximizes typically between 500 hPa and 600 hPa and is decoupled
from the MBL. While a mid-tropospheric trough drives a northwesterly
flow towards the Atacama Desert, the southeast Pacific anticyclone
continues to drive southerlies along the coast at the surface layer. This
differs from the common understanding that these synoptic features
are associated with a surface front (e. g. Gimeno et al., 2014; Payne
et al., 2020). For higher latitudes, AR-related water vapor flux typically
peaks below 750 hPa (Guan and Waliser, 2015). For example, for a
location in southern Chile, the maximum water flux appears at 900 hPa
(Guan and Waliser, 2015, their Fig. 8b). Therefore, the elevated AR

structure identified here for the Atacama Desert can be considered a
regional flavor.

This study reveals that the moisture is generally advected from the
northwest, i. e. the tropical eastern Pacific. The case study explicitly
demonstrates that a substantial part of the moisture is of Atlantic
origin. The path leads from the Amazon Basin to the west, crosses
the Andes between the equator and 10◦S and turns southeastward
over the tropical eastern Pacific to arrive at the Atacama Desert (Fig.
7.4). Similar pathways were identified for extreme precipitation events
occurring during winter season in the southern, southeastern and
northern Atacama (Reyers et al., 2020). An isotopic analysis of rainwa-
ter and stream flows associated with the Atacama March 2015 flood
(Bozkurt et al., 2016; Wilcox et al., 2016; Barrett et al., 2016) indicated a
tropical moisture source (Jordan et al., 2019). This is of interest because
the March 2015 flood is also related to an AR (not shown) similar to
the case study presented above (Fig. 7.3b), This further illustrates that
the tropical origin might be a more common source region associated
with AR-related moisture.
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The hyperarid core constitutes a biotic barrier (Ruhm et al., 2020) but
also a climatic divide (Houston, 2006). Precipitation in the northeast is
usually related to continental interior origin, whereas precipitation in
the southwest is usually of Pacific origin (Houston and Hartley, 2003;
Houston, 2006; Jordan et al., 2019). This study reveals a third route
which is further supported by Jordan et al. (2019) and Reyers et al.
(2020). This additional mechanism has to be considered when climate
archives are interpreted (Jordan et al., 2019).

ARs influence the hydroclimate of mid-latitude regions since the mid-
Holocene (Skinner et al., 2020). An equatorward shift of AR trajectories
between the mid-Holocene and the preindustrial period has been
determined (Skinner et al., 2020). This shift is consistent with enhanced
precipitation at the northern margin of the westerly wind belt during
the late Holocene compared to the early Holocene (Lamy et al., 2010).
For some mid-latitude regions, ARs account for nearly 100 % of the
detected precipitation change between the mid-Holocene and the
preindustrial period (Skinner et al., 2020).

To date, studies on paleoclimate reconstructions related to the Ata-
cama Desert mostly consider SST, latitudinal shifts of winter midlati-
tude westerlies and cut-off lows in order to discuss implications from
climate archives (Ritter et al., 2019; Bartz et al., 2020; Diederich et al.,
2020). Wetter periods during the Pleistocene and Holocene are usually
attributed to eastern or southwestern moisture sources (Jordan et al.,
2019). An additional scenario which should be considered to interpret
implications of climate archives is constituted by ARs as discussed in
this study.

7.6 remarks

data availability The AR catalog created by Bin Guan is avail-
able via https://ucla.box.com/ARcatalog.
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D I S C U S S I O N

In the following, key findings of previous analyses are summarized
and discussed. This includes additional scientific contributions, which
built on these results and draw further conclusions.

8.1 cloud heights

The maritime cloud heights ahead of the coast of the Atacama Desert
control where the stratocumulus intersects with the coastal orog-
raphy. Therefore, these cloud properties determine the location of
fog-depending loma vegetation (Rundel et al., 1997; Pinto et al., 2006;
Westbeld et al., 2009; González et al., 2011). Based on multiangular
satellite data, a novel approach has been introduced which allows to
retrieve both cloud top height and cloud base height with region-wide
coverage (Böhm et al., 2019, Chapter 4). The so called MISR Cloud
Base Height (MIBase) algorithm is applicable if some cloud gaps occur
within a predefined detection area (e. g. a cell of a 0.25◦ longitude by
latitude grid).

A thorough validation against more than 1500 ceilometer stations
results in a Pearson correlation coefficient for the cloud base height of
0.66, a Root Mean Square Error (RMSE) of 385 m and a bias of −59 m,
which proves the applicability of the algorithm to study seasonal
changes and interannual variability. The spatial distribution of ground-
based reference stations across the continental USA and the utilized
sampling period covering a full seasonal cycle suggest that various
cloud types were included in the validation.

An advantage of the MIBase algorithm is given by the employed
Multi-angle Imaging SpectroRadiometer (MISR) cloud top height prod-
uct, which uses a multiangular geometric approach for its cloud
top height retrievals. Therefore, it is independent of any auxiliary
data which would introduce additional uncertainties. A drawback is
the MISR threshold height, which is applied to distinguish between
cloud and surface retrievals. Therefore, the algorithm is blind to cloud
heights below 560 m (ocean and flat terrain).

The application to the southeast Pacific region reveals the spatial
distribution of the stratocumulus heights and their seasonal varia-
tions. Complex orography at scales below the resolution of the MIBase

product complicate the interpretation of retrievals over the coastal
mountain range of the Atacama Desert. By considering cloud heights
over the nearby ocean and projecting them onto the coastal cliff, more
reliable retrievals can be achieved (Fig. 8.1e). A slight North–South
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Figure 8.1: Latitudinal transect along the coast of northern Chile of (a) δ15N
(site-averaged) of Tillandsia populations, (b) mean annual precip-
itation (MAP) according to a WRF simulation (Reyers, 2018), (c)
total cloud cover (TCC) from MODIS observations (Ackerman et al.,
2015) for night time and morning overpasses, (d) mean annual SST

(Locarnini et al., 2013), (e) median cloud top (red line) and base
(blue line) height over the near coastal Pacific ocean according
to MIBase (95th and 15th percentile, respectively), and positions
of various Tillandsia populations (black circles with bars indicat-
ing respective height ranges) together with averaged topography
between these populations (gray shading). This Figure is taken
from (Jaeschke et al., 2019, their Fig. 9, used under the Creative
Commons CC-BY-NC- ND license).

gradient is found which is consistent with long-term in-situ measure-
ments at coastal stations (Muñoz et al., 2016). Furthermore, an East–
West gradient is visible, which is consistent with a similar gradient
determined from radiosonde profiles acquired during the Variability of
the American Monsoon System (VAMOS) Ocean-Cloud-Atmosphere-
Land Study – Regional Experiment (VOCALS-REx) campaign (Rahn and
Garreaud, 2010, and Fig. A.1).

An application of the MIBase product in another study reveals further
consistency of the detected cloud heights with the height range of fog-
dependent coastal vegetation (Jaeschke et al., 2019, and Fig. 8.1e). This
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study investigates the nitrogen isotopic composition (δ15N) for various The δ15N notation
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coastal Tillandsia populations and relates it to properties of the near
coastal stratocumulus. On a global scale, foliar δ15N can be used to
approximate water supply along precipitation gradients according to
a negative correlation across various terrestrial ecosystems (Handley
et al., 1999; Amundson et al., 2003; Craine et al., 2009). However,
these global observations do not include hyperarid regimes. For water-
limited regions, such as the Namib and Atacama Desert, a reversal of
this relationship has been noted (Soderberg, 2010; Díaz et al., 2016).
Moreover, it has been indicated that for those regions δ15N may be
controlled by fog water supply (González et al., 2011; Latorre et al.,
2011).

Jaeschke et al. (2019) reveal a relationship between isotopic com-
position and altitude with decreasing δ15N along increasing height
transects within individual Tillandsia populations. This indicates a
higher water availability at greater heights, which might reflect the
higher cloud liquid water content near cloud top compared to cloud
base within the stratocumulus (Wood, 2012). This explanation seems
plausible because the explored heights range around the median cloud
base and top heights determined using the MIBase.

Investigating δ15N for various Tillandsia populations, a strong rela-
tionship between δ15N and cloud properties including cloud heights
and cloud cover was discovered (Fig. 8.2). This indicates that the iso-
topic composition is controlled by characteristics of the stratocumulus,
which, in turn, determine fog frequency and intensity. Decreasing
δ15N reflects increasing fog water availability along a south to north
gradient.

At study sites for which generally high δ15N values have been found,
collocated dead plants were available to investigate. A comparison
shows that the dead plants have even more enriched δ15N values,
which indicates dehydration. This provides evidence that conditions
at the coastal desert become increasingly water-limited, which is con-
sistent with a coastal cooling (Falvey and Garreaud, 2009; Schulz et
al., 2012) and decreasing cloud heights reported for recent decades
(Schulz et al., 2012; Muñoz et al., 2016). Lower cloud heights are re-
lated to lower inland cloud cover in accordance with a lower chance
for the clouds to overcome the coastal mountain barrier (Cereceda
et al., 2008b) and, thus, limited fog water supply farther inland.

Jaeschke et al. (2019) also analyzed fossil Tillandsia excavated out
of the characteristic Tillandsia dunes (Fig. 3.1). After establishing the
relationship of δ15N with various water supply related properties un-
der current climatic conditions, fog water supply during past climatic
episodes could be reconstructed. In this light, the study constitutes a
first step towards a calibrated proxy applicable to reconstruct charac-
teristics of the maritime stratocumulus.
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Figure 8.2: Scatter plots of site averaged δ15N and (a) total night time and
morning averaged cloud cover (MODIS; Ackerman et al., 2015), (b)
cloud top and base heights (MIBase) (c) mean annual precipitation
(WRF simulation; Reyers, 2018). Total cloud cover is determined at
the Tillandsia locations (nearest pixel) indicated by “land” and
over the near coastal ocean (using latitudinal extension to assign
corresponding values) indicated by “ocean”. Cloud heights repre-
sent median heights over ocean over a 17-year period. The Figure
is taken from (Jaeschke et al., 2019, their Fig. 8, used under the
Creative Commons CC-BY-NC- ND license).

In summary, the nitrogen isotopic composition of coastal Tillandsia
depends on water supply by fog, which is directly related to properties
of the near coastal maritime stratocumulus deck. This provides clear
evidence that the southeast Pacific Ocean is the relevant source of
moisture for these coastal ecosystems via its boundary layer capping
stratocumulus. A method to monitor not only the stratocumulus top
height but also the base height is provided by this thesis. In the future,
MIBase can be applied for longer time periods to identify local trends of
these properties on a region-wide scale and to relate them to changes
in the vegetation state.
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8.2 water vapor variability

The confirmed dehydration and retreat of Tillandsia populations (Jaeschke
et al., 2019) has been attributed to decreasing cloud heights (Schulz
et al., 2012; Muñoz et al., 2016) and fog water availability. Lower cloud
heights may be the result of near-surface cooling trends together with
a warming of the free troposphere across the Atacama region within
recent decades (Falvey and Garreaud, 2009). The resulting stronger
inversion enhances stratocumulus formation and the colder MBL is
associated with lower cloud heights (Wood, 2012). The near surface
cooling trend is the result of a larger scale temperature trend across
the Pacific Ocean, which resembles the PDO pattern (Falvey and Gar-
reaud, 2009) and is consistent with a decreasing PDO index, i. e. a shift
towards the negative phase (Newman et al., 2016). Therefore, the re-
cent retreat of coastal vegetation (Rundel et al., 1997; Pinto et al., 2006;
Schulz et al., 2012; Jaeschke et al., 2019) might be related to internal
climate variability on interannual to decadal time scales associated
with ENSO and the PDO.

To investigate the large-scale variability of water supply to the
Atacama Desert, the long-term reanalysis ERA-20C has been utilized
(Böhm et al., 2020a, Chapter 5). It provides a consistent record of the
state of the atmosphere for a century-long period at the coast of a
coarse resolution (130 km). While precipitation and clouds are subject
to complex small-scale processes, which have to be parameterized at
such coarse resolution, IWV proved to be represented with suitable
accuracy. In the process of a thorough validation, no systematic biases
in space and in time which would hamper a consistent analysis could
be found. Instead, good agreement of IWV anomalies with state-of-the-
art satellite-based retrievals prove the suitability for future studies of
the long-term IWV variability across the Atacama Desert.

Over the course of the 20th century, an overall IWV variability around
30 % on a year-to-year basis as well as some varying trends were
detected. On an interdecadal time scale, the PDO shows the highest
correlation with IWV compared to ENSO and the local SST for the
southern Atacama, whereas in the northern part the influence of the
local SST is the most dominant factor (Fig. 5.12).

On shorter time scales, overall lower correlations between IWV and
large-scale indices are found, which indicates the importance of syn-
optic noise on shorter time scales. This implies that climate modes do
not directly cause IWV anomalies but favor certain synoptic conditions,
as proposed by Houston (2006).

While synoptic noise affects correlations on shorter time scales,
e. g. using annual averages, opposite seasonal influences of the large-
scale modes further degrade the apparent correlations. An analysis
of distinct seasonal ENSO impact reveals that El Niño summers are
typically dry, whereas La Niña features both dry and wet summer
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periods. This pattern is seen for all regions but most pronounced in
the northern Atacama. An opposite ENSO relation is found for the
winter season, with enhanced IWV for El Niño and drier conditions for
La Niña across all regions including near-coastal ocean and inland.

For the summer season, similar seasonal ENSO modulations have
been reported for the Altiplano regarding precipitation (Vuille, 1999;
Garreaud and Aceituno, 2001; Garreaud et al., 2003; Houston, 2006).
The consistency between the ENSO impact on IWV addressed in this
thesis and on precipitation according to previous studies suggests that
the underlying mechanisms are the same and that IWV can potentially
serve as a proxy variable for precipitation. Further studies on the
relationship between IWV and precipitation would be beneficial to
confirm the latter point. Furthermore, this thesis revealed that the
ENSO influence is not restricted to the Altiplano in the northeast but
affects also the southern parts and the near-coastal ocean regions.

Considering annual averages, the correlations between IWV and
large-scale indices (ENSO and PDO) are overall positive, which indi-
cates that the positive relationship identified for the winter season
dominates the integrated annual signal. For the winter season, wetter
conditions associated with El Niño have been attributed to a north-
ward shift of midlatitude disturbances (cut-off lows and troughs)
(Vargas et al., 2006). These disturbances are generally related to mois-
ture supply of Pacific origin (Vuille and Ammann, 1997; Houston and
Hartley, 2003). The winter moisture excess during the positive ENSO

phase overcompensates the enhanced moisture signal. As this signal
is related to moist easterlies for the summer season, the dominating
moisture source appears to be the Pacific Ocean. However, a new
analysis reveals a more complex pathway from the Amazon Basin
across the Pacific towards the Atacama Desert for extreme precipita-
tion events occurring during winter (Reyers et al., 2020), indicating
Atlantic moisture origin even for westerly dominated weather events.

An exception is the northern Atacama region, for which a weak
negative correlation between IWV and the Niño 3,4 is found on an
interannual basis. Therefore, the moisture from the interior continent
might play a more dominant role for the northern Atacama Desert.

Regarding the PDO, the seasonal distinction did not reveal a clear
shift of the IWV distribution. This could be explained by a possible
interference with the ENSO signal. Previous studies suggest an amplifi-
cation or damping of the ENSO signal according to positive or negative
interference, respectively (Kayano and Andreoli, 2007; Valdés-Pineda
et al., 2018). To further investigate the impact of the PDO, the seasonally
varying ENSO impact could be distinguished by different phases of the
PDO in a future study.

Furthermore, the validation of IWV variability in ERA-20C is essen-
tial for putting IWV trends which are determined from shorter data
records into perspective. In another study, water vapor trends at the
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Paranal Observatory are investigated in the context of climate change
(Cantalloube et al., 2020). As the Atacama Desert is presumably the
driest desert on Earth, it is home to various astronomical observato-
ries. Moist episodes with enhanced water vapor degrade the quality
of astronomical observations. The study shows a recent increase of
favorable conditions with extremely low IWV. This recent trend is
consistent with the IWV evolution according to ERA-20C. However, the
reanalysis reveals that the decrease of IWV started after the 1997/98 El
Niño and was preceded by a period of increasing IWV starting in the
1970s. These varying trends may be related to the PDO, which shows a
similar evolution over this time period.

Cantalloube et al. (2020) also point out that ARs might frequently
impact the quality of astronomical observations carried out at various
sites within the Atacama Desert. The study on the role of ARs for the
Atacama Desert (Chapter 7) is concluded in Chpater 8.4.

8.3 fog

In the study by Böhm et al. (2020) (Chapter 6), a satellite-based fog re-
trieval method utilizing brightness temperatures from MODIS emissive
bands has been developed. As prerequisite, a ground-based reference
data set was created. It is mainly based on in-situ measurements of
leaf wetness sensors but includes also standard meteorological data,
such as relative humidity and temperature. These ground-based data
were acquired from the newly installed CRC 1211 network of climate
stations. By applying this novel ground-based fog reference to develop
the retrieval algorithm, a distinction between fog conditions or dry
conditions can be made at the ground level. Most satellite-based meth-
ods aim to only identify fog and low clouds as one common category
(e. g. Cermak, 2012; Egli et al., 2017; Andersen and Cermak, 2018). The
identification of actual fog is essential to relate the spatio-temporal
variability of fog to biological and geological processes at the ground.

The newly developed algorithm has been applied to derive mean
seasonal fog distributions for a 3-year period (2017–2019) as a pre-
liminary step towards a long-term climatology. For the winter season
(JAS), the pattern is consistent with an auxiliary approach developed
in parallel from the MODIS cloud top height product and with previ-
ous studies regarding the coastal maximum. Furthermore, previously
identified fog corridors, which allow inland penetration of the marine
stratocumulus, a clearly visible for a region between 20◦S and 22◦S
(Farías et al., 2005, c. f. their Fig. 13a). In fact, the higher resolution of
this new retrieval introduced in this thesis allows a better estimation
of the extents of fog corridors (Figure 6.14).

Mostly connected to these corridors, some areas within the central
valley are identified with fog frequencies exceeding 30 % or for some
few locations even 70 % during the winter months. Not all of these
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inland locations can be traced back to the Pacific Ocean via an apparent
band of enhanced fog frequency. Furthermore, most of these inland
fog spots appear to be collocated with or in close proximity to salt
flats. They also lie predominantly within the region which exhibits
the most hyperarid conditions according to annual precipitation rates
from the WRF simulation (Fig. 7.2 Reyers, 2018; Reyers et al., 2020) and
according to an analysis of the chemical compounds of the desert soil
(Voigt et al., 2020).

A part of this region within the central valley is the Salar de Llamara,
where fog has been studied previously in the framework of a dedicated
field campaign (Cereceda et al., 2002). During this campaign, frequent
observations were conducted within a week in August 1998. The
authors postulate different scenarios for the origin of the observed
fog. One possibility is the advection of coastal fog which survived
longer in the central valley compared to the fog within the corridor.
The advected stratocumulus may also have dissipated, leaving humid
air in the central valley which condensed during nocturnal cooling.
A third possible moisture source could be underground water which
evaporated during the day over the salt flats.

The fog detection algorithm introduced in this thesis allows to ad-
dress this question of fog moisture origin. In a subsequent study, fog
composites could be created and related to synoptic conditions to
identify potential pathways of moisture. Furthermore, the influence of
large-scale patterns on the fog occurrence at different regions can be
assessed. At a coastal research site (Alto Patache), enhanced fog water
yields are observed for the summer season when the SST anomaly
within the Niño 3,4 region exceeds 1 K (Río et al., 2018). The question
whether this relationship holds on a region-wide scale and in par-
ticular for the inland fog has not been investigated yet. In summary,
the newly developed fog retrieval method introduced in this thesis
enables to further test the hypotheses raised by this thesis.

8.4 atmospheric rivers

In addition to cloud heights, water vapor and fog which are associated
with moisture supply to the Atacama Desert, this thesis investigated
the role of ARs for this region (Chapter 7). It was demonstrated that
these features account for a substantial fraction of the total precipita-
tion, exceeding 40 % for most regions and even 70 % for a region of
Antofagasta. While an overall North–South gradient can be identified
with greater impact in the south, local maxima of the spatial distribu-
tion of AR fractional precipitation might be traced back to individual
record breaking events. Even though a long-term data set (36 years)
was applied, the frequency and quantity of precipitation is so low in
the Atacama,that one event may contribute rainfall on the order of the
ten-fold annual rate.
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The analyzed ARs typically advance towards the Atacama Desert at
the foreside of a midtropospheric trough over the southeast Pacific.
They can also be associated with a cut-off low (Reyers et al., 2020). The
southeast Pacific anticyclone remains intact at the near-surface layer
so that the moisture transport towards the Atacama is mostly confined
to the free troposphere above the MBL. This result contrasts the lower
height of maximum water vapor flux, which is typically observed
for ARs at higher latitudes (Guan and Waliser, 2015). Furthermore,
the temperature inversion weakens, which can be attributed to the
presence of the trough but usually persists even at AR landfall time.
Therefore, it is concluded that the elevated moisture transport is
decoupled from the MBL with very limited exchange between these
layers.

Due to this limited exchange between the local boundary layer and
the elevated moisture transport band, the moisture is most likely of
remote origin. Back trajectories calculated for one example case mark
the tropical Pacific and predominantly the Amazon Basin as source
regions. Reyers et al. (2020) identified similar origins of air parcels
for selected extreme precipitation events which occurred during the
winter season. These events were mostly associated with cut-off lows
and ARs or a combination of both.

According to a clustering which identifies similar temporal charac-
teristics in the seasonal cycle of precipitation, Reyers et al. (2020) di-
vided the Atacama in a northeastern (summer rainfall peak), northern
(winter and summer peaks), southern (winter peak) and southeastern
part (winter peak pronounced in June). For each domain, the top
ten most extreme precipitation events between 1982 and 2017 were
selected for a composite analysis. For the southern Atacama, eight of
them were associated with an AR, whereas for the northern Atacama,
cut-of lows dominated with only two ARs. This indicates a stronger
role of the precipitation in the southern part, which is consistent with
the detected North–South gradient of AR fractional precipitation (Fig.
7.7).

Furthermore, the composite analysis by Reyers et al. (2020) revealed
that the precipitation events in the northern Atacama are not asso-
ciated with enhanced SST over the eastern tropical or southeastern
Pacific. On the contrary, for the southern region, a positive composite
anomaly of the eastern tropical Pacific SST is revealed. This indicates
that the occurrence of ARs, which appear more predominant in the
southern Atacama compared to the north, might be sensitive to Pacific
SSTs, which, in turn, suggests a potential influence by ENSO. This points
to the conclusion that precipitation in the southern Atacama is driven
mainly by large-scale patterns, whereas the northern part is predomi-
nantly affected by independent synoptic variability. However, further
studies are needed to determine the sensitivity of ARs to Pacific SSTs

and ultimately to large-scale indices, such as ENSO and PDO. To study
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relationships between frequency and intensity of regional ARs and
large-scale patterns, a longer time series would be required. ERA-20C

constitutes a suitable record to study water vapor related quantities
(Chapter 5, Böhm et al., 2020a).

Establishing the role of large-scale climate modes would also be
necessary to separate potential influence of global climate change.
The impact of climate change on ARs is barely understood for South
America (Payne et al., 2020). The multidisciplinary approach carried
out by the CRC1211, which includes climate and paleoclimate research
together with investigations of natural climate archives manifested in
desert soils, alluvial fans or fossil plants, can help unravel some of the
uncertainties.
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This thesis investigated key components of the atmospheric water cy-
cle which are related to water supply to the Atacama Desert. Thereby,
it provides a comprehensive meteorological perspective on this unique
ecosystem. Two overarching hypotheses guided the conducted re-
search. These hypotheses led to two key questions: Where does the
atmospheric moisture come from and what are the dominant drivers
controlling the water input? To address these key questions, new
retrieval methods were developed to expand the observational back-
ground.

Essentially, the moisture source depends on the form of supply,
which may be through clouds, water vapor, fog or precipitation, as
well as on the season and region within the Atacama Desert. By means
of a newly developed algorithm detecting cloud base heights using
satellite-based observations (Böhm et al., 2019), the impact of the
maritime stratocumulus on coastal fog-dependent ecosystems could
be studied in detail. Together with further atmospheric characteristics,
a clear link between the state of the coastal Tillandsia populations
and the marine stratocumulus could be established (Jaeschke et al.,
2019). This manifests the strong influence of the southeast Pacific
on the coastal desert and the dependence on the near-coastal cloud
properties.

The coastal cloud heights further determine where this maritime
moisture can find its way inland through corridors within the coastal
orography. These potential pathways may control the chemical com-
pounds within the desert soil (Voigt et al., 2020). Therefore, the intro-
duced MIBase algorithm could be exploited further in a future study
to investigate the cloud height response to different climate modes
and to determine long-term trends. Such a study might also allow to
answer the second key question of this thesis regarding the influence
of large-scale drivers on the stratocumulus. However, given that the
required satellite observational records only began in the year 2000,
more research should be conducted in the future to provide a definite
answer.

To address the influence of large-scale drivers, such as ENSO and
PDO, ERA-20C was utilized (Böhm et al., 2020a). This reanalysis pro-
vides a consistent century-long time series of the atmospheric state by
only assimilating surface pressure and surface wind observations to
constrain the simulation. While cloud liquid water and precipitation
are expected to be challenging variables because they involve small-
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scale processes far below the resolution of ERA-20C, IWV representation
has proven to be suitable for further investigations.

For the northern Atacama, which includes the Altiplano at this
coarse resolution, seasonal relationships of IWV and ENSO were identi-
fied. These relationships are consistent with the findings reported in
previous studies regarding precipitation. For the summer season, El
Niño is related to enhanced dryness, whereas La Niña allows wetter
episodes. The similarity to the ENSO influence on precipitation which
has been explained for the Altiplano strongly suggests that a similar
mechanism is at play and that IWV has potential to serve as proxy for
precipitation. This mechanism involves favored moist easterlies under
La Niña conditions. In this thesis, it is shown that IWV enhancement
extends beyond the Altiplano towards the Pacific Ocean and towards
the southern Atacama.

While the previously described mechanisms imply a continental in-
terior moisture source for the summer season, the opposite is found for
the winter season. The latter is characterized by enhanced moisture for
El Niño conditions and reduced moisture for La Niña conditions. This
relationship is most pronounced over the near-coastal ocean, which
indicates an apparent coupling of these regions to the Pacific Ocean.
Together with previous studies which report enhanced precipitation in
relation to a northward shift of the midlatitudinal storm track region
under El Niño conditions, the described ENSO relationship strongly
suggests the dominance of the Pacific Ocean as the main source of IWV

for austral winter. However, in particular during the cold season, the
study of a previously unaddressed synoptic feature, i. e. ARs, shows
that not only Pacific moisture may enter the Atacama Desert from the
west.

To further investigate whether the mechanisms controlling the IWV

are also responsible for precipitation, ERA-20C could be further ex-
ploited to study the atmospheric flow in relation to water vapor
availability and large-scale climate modes. The thorough validation
of the IWV already laid the groundwork for such additional investiga-
tions. A following study already made use of the validated IWV record
to put water vapor trends available from finer resolved short-term
observation into perspective (Cantalloube et al., 2020).

While El Niño conditions prevent enhanced IWV, in particular for
the northern offshore region ahead of the Atacama coast, increased
amounts of fog water are collected at the coastal research site at Alto
Patache (Río et al., 2018). To study the water supply by fog, a novel
fog detection algorithm has been developed within this thesis (Böhm
et al., 2020b). The spatial distribution of mean fog frequencies for
a preliminary 3-year period demonstrates the potential of this new
method. The fog frequency maximum at the coast which is related
to the maritime stratocumulus can be observed region-wide along
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with few corridors which allow inland penetration through the coastal
mountain barrier.

Furthermore, isolated locations with enhanced fog frequencies
within the central valley could be identified. These are mostly in
the vicinity of salt flats and within the hyperarid core of the Atacama
Desert. It remains unclear which mechanisms control fog formation in
these regions. The presented fog detection algorithm provides a tool
to relate these fog events to atmospheric circulation and to identify
potential moisture sources. Additionally, a future study can inves-
tigate potential influences of the regional SST variability and ENSO

by exploiting the full MODIS record starting in the year 2000 (Terra
satellite).

Regarding precipitation, SST sensitivity appears to be higher in the
southern Atacama Desert compared to the northern part (Reyers et al.,
2020). This collocates with the region where ARs have the highest im-
pact regarding fractional precipitation (over 50 %), which is revealed
in the study presented in Chapter 7. A substantial fraction of precip-
itation is related to ARs for most regions within the Atacama Desert
(over 30 %). The main moisture transport related to these atmospheric
features occurs in the free troposphere decoupled from the MBL. This
elevated structure suggest that remote sources are at play.

In a case study within this thesis the Amazon Basin was identified
as source region by means of back trajectories. A previous study of
the major March 2015 Atacama flood reported that the related precipi-
tation was of tropical origin according to an analysis of the isotopic
composition (Jordan et al., 2019). While it was not noted previously,
this event was also associated with an AR according to the AR cat-
alog applied in this thesis (Guan and Waliser, 2015). Furthermore,
Reyers et al. (2020) investigated back trajectories for extreme winter
precipitation events within the northern and southern Atacama Desert.
These events reveal origins within the tropical eastern Pacific and
the Amazon Basin. Therefore, aside from subtropical Pacific moisture
associated with winter storm westerlies or continental interior mois-
ture advected by summer time easterlies, a third scenario of moisture
supply to the Atacama could be revealed. Starting from the Amazon
Basin, the moisture crosses the Andes slightly south of the equator
and turns southeast over the eastern tropical Pacific to approach the
Atacama Desert. As pointed out by Jordan et al. (2019), this new sce-
nario should be considered when climate archives from this study
region are interpreted.

The results and newly developed methods presented by this thesis
may foster further collaborative research to investigate mutual rela-
tionships between biological, geological and atmospheric processes.
The interdisciplinary approach which has been initiated by the CRC

1211 opens great new opportunities with benefits for various scientific
communities.
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Figure A.1: a) Normalized frequency of occurrence of the occurring standard
deviations (sd) of the average scene elevation (ASE) for vari-
ous radii. The ASE is provided by the MISR ancillary product.
Recalculated are the correlation coefficient r, bias, RMSE using
only ceilometer stations below a threshold sd as denoted on the
abscissas.
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Figure A.2: Number of samples ns, RMSE, bias, correlation coefficient r for
the comparison of MIBase and ceilometer retrievals in depen-
dence on ztop (top row) and cloud vertical extent ∆z (bottom row).
Each data point is calculated for a sub sample which includes
only ztop ± δztop or ∆z ± δ∆z, respectively. The various widths
of the considered ztop or ∆z windows are indicated by the blue
shading.
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Figure A.3: Relative occurrences of different stereo-derived cloud mask
(SDCM) configurations within the three-year period (2007–2009).
The reference sample size ns includes all overpasses per grid cell
which contain valid z retrievals and corresponds to 100 %. These
configurations are: (a) Only high confidence surface (HCS). These
cases should be mainly clear sky cases. (b) Only high confidence
cloud (HCC). These cases should be mainly cloud scenes with
apparent overcast.
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Figure A.4: Global distribution of median cloud heights for a 3-year pe-
riod (2007–2009). Shown are zbase (left) and ztop (right) on a
0.25◦ × 0.25◦ latitude–longitude grid. zbase and ztop are above
ground level (agl). zbase and ztop retrievals are only included in
the statistic if zbase is below 3000 m (a, b), 5000 m (c, d). For (e)
and (f), all zbase and ztop retrievals are included without an upper
height limit.
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Figure A.5: a) Inversion base height derived from ERA-20C (blue) in a
longitude–height cross section at 20◦S over the southeast Pa-
cific. The inversion base height was derived as follows: For the
period from 15 October 2008 to 15 November 2008 the temporal
mean vertical temperature profile was calculated for each hori-
zontal grid point. The geometric height of the model level which
showed the minimum temperature below 2500 m was taken to
be the inversion height. The mean vertical extent of that level is
indicated by blue shading. The two grid points which are covered
by the northern ocean focus region are highlighted in orange.
The location and time period for this cross section were chosen
to match the observation campaign VOCALS-REx (Rahn et al.,
2010). The black line indicates a rough linear fit for the cam-
paign retrievals (from radio soundings) published by Rahn et al.
(2010; their Fig. 4a). Red dots indicate the inversion base height
at Antofagasta for summer and winter according to Muñoz et
al (2011) who evaluated a multi-year record of radio sounding
retrievals. b) Theoretical integrated water vapor (IWV) portion of
the maritime boundary layer (MBL) in dependence on sea surface
temperature (SST) for various inversion base heights and two
different estimates of surface relative humidity (rH = 0.8, solid;
rH = 0.9, dashed). The MBL component of IWV is derived as
follows: wMBL = 1

g · 0.622 · rH·es(ϑSST)
psurf

· ∆p. The saturation vapor
pressure es(ϑSST) is approximated using the Magnus Formula.
The MBL thickness ∆p is derived from the inversion base height
via barometric formula. Mean SSTs from ERA-20C for the south-
ern (orange) and northern (red) focus regions are indicated by
vertical lines for austral summer (DJF) and winter (JJA) season.
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Figure A.6: Representation of topography in ERA-20C on a regular longi-
tude by latitude grid with a horizontal resolution of 1.25◦. Red
rectangles illustrate the four focus regions of this study.
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Figure A.7: a) Number of assimilated wind and pressure observations per
year over time for ERA-20C. Lines are stacked. Only observations
between 15◦S–40◦S and 90◦W–60◦W are considered (region dis-
played in Fig. A.8). b) Number of assimilated surface pressure
observations (Nobs, top), annual mean bias (middle), bias cor-
rected annual mean absolute error (bottom) between ERA-20C
and assimilated observations of surface pressure. Results are dis-
played for the whole region (black) and for west (blue) and east
(orange) of 70◦W, roughly splitting the region into an ocean and
a land part. For the eastern region, the statistics are only shown
from 1938 onward because of very low numbers of observations
for previous years which can result in large biases due to the
random nature of model/observation biases. The bias correction
is carried out monthly. Therefore, for each month, the mean de-
parture is subtracted from each individual observation departure
within the respective month. Nobs is given in thousands.
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Figure A.8: Spatial distribution of the number of assimilated surface pressure
observations per year for ERA-20C for selected years.
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Figure A.9: Spatial distribution of annual mean departure of assimilated
surface pressure observations from ERA-20C model analysis
(bias) for selected years.
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Figure A.10: Spatial distribution of annual mean absolute departure of as-
similated surface pressure observations from ERA-20C model
analysis (MAE) for selected years.





A.3 fog 187

a.3 fog

figures A.11–A.22:

Self organizing maps (SOMs) for all stations analog to Fig. 6.2 of the
manuscript. Additionally, the number of events N assigned to each
grid cell is provided.

figures A.23–A.26:

Time series of the fog frequency derived from the MODIS CTH,
the neural network probabilistic output (NNprob) in ALL- and LOO-
training mode, and the ground-based reference measurements and
the high cloud frequency according to the MODIS CTH for all climate
stations analog to Fig. 6.11a of the manuscript.
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Station 12; 60 days moving average
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Station 15; 60 days moving average
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0.1

0.3

0.5

0.7

0.9

04/17 07/17 10/17 01/18 04/18 07/18 10/18 01/19 04/19 07/19 10/19

date [mm/yy]

fo
g
 f
re

q
u
e
n
c
y

CTH          (r=0.41; B=0.02)

NNet ALL  (r=0.92; B=0.06)

NNet LOO (r=0.84; B=0.10)

station

higher cloud (CTH>5km)

Station 24; 60 days moving average

0.1

0.3

0.5

0.7

0.9

04/17 07/17 10/17 01/18 04/18 07/18 10/18 01/19 04/19 07/19 10/19

date [mm/yy]

fo
g
 f
re

q
u
e
n
c
y

CTH          (r=0.67; B=0.01)

NNet ALL  (r=0.52; B=0.03)

NNet LOO (r=0.57; B=0.08)

station

higher cloud (CTH>5km)

Station 25; 60 days moving average

0.1

0.3

0.5

0.7

0.9

04/17 07/17 10/17 01/18 04/18 07/18 10/18 01/19 04/19 07/19 10/19

date [mm/yy]

fo
g
 f
re

q
u
e
n
c
y

CTH          (r=0.26; B=0.02)

NNet ALL  (r=0.90; B=0.03)

NNet LOO (r=0.86; B=0.05)

station

higher cloud (CTH>5km)

Figure A.25



A.3 fog 201

Station 32; 60 days moving average

0.1

0.3

0.5

0.7

0.9

04/17 07/17 10/17 01/18 04/18 07/18 10/18 01/19 04/19 07/19 10/19

date [mm/yy]

fo
g
 f
re

q
u
e
n
c
y

CTH          (r=0.66; B=−0.13)

NNet ALL  (r=0.82; B=−0.07)

NNet LOO (r=0.61; B=0.01)

station

higher cloud (CTH>5km)

Station 33; 60 days moving average

0.1

0.3

0.5

0.7

0.9

04/17 07/17 10/17 01/18 04/18 07/18 10/18 01/19 04/19 07/19 10/19

date [mm/yy]

fo
g
 f
re

q
u
e
n
c
y

CTH          (r=0.16; B=0.01)

NNet ALL  (r=0.20; B=0.03)

NNet LOO (r=−0.04; B=0.07)

station

higher cloud (CTH>5km)

Station 34; 60 days moving average

0.1

0.3

0.5

0.7

0.9

04/17 07/17 10/17 01/18 04/18 07/18 10/18 01/19 04/19 07/19 10/19

date [mm/yy]

fo
g
 f
re

q
u
e
n
c
y

CTH          (r=0.14; B=0.02)

NNet ALL  (r=0.09; B=0.02)

NNet LOO (r=−0.08; B=0.04)

station

higher cloud (CTH>5km)

Figure A.26





B I B L I O G R A P H Y

Abadi, M. et al. (2015). TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems. Software available from tensorflow.org.

Ackerman, S., P. Menzel, R. Frey, and B. Baum (2015). “MODIS At-
mosphere L2 Cloud Mask Product.” In: NASA MODIS Adaptive
Processing System, Goddard Space Flight Center. doi: 10.5067/MODIS/
MOD35_L2.006.

Albers, C. J. (2013). Salares. last access: 07/07/2020 23:04 UTC.
Albrecht, B. A., C. W. Fairall, D. W. Thomson, A. B. White, J. B. Snider,

and W. H. Schubert (1990). “Surface-based remote sensing of the
observed and the Adiabatic liquid water content of stratocumulus
clouds.” In: Geophysical Research Letters 17.1, pp. 89–92. doi: 10.1029/
GL017i001p00089.

Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N.-C. Lau,
and J. D. Scott (Aug. 2002). “The Atmospheric Bridge: The Influence
of ENSO Teleconnections on Air–Sea Interaction over the Global
Oceans.” In: Journal of Climate 15.16, pp. 2205–2231. issn: 0894-8755.
doi: 10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

Alexander, M. A. and C. Deser (Jan. 1995). “A Mechanism for the
Recurrence of Wintertime Midlatitude SST Anomalies.” In: Journal
of Physical Oceanography 25.1, pp. 122–137. issn: 0022-3670. doi:
10.1175/1520-0485(1995)025<0122:AMFTRO>2.0.CO;2.

Alexander, M. A. and J. D. Scott (Nov. 2008). “The Role of Ekman
Ocean Heat Transport in the Northern Hemisphere Response to
ENSO.” In: Journal of Climate 21.21, pp. 5688–5707. issn: 0894-8755.
doi: 10.1175/2008JCLI2382.1.

Amundson, R., A. T. Austin, E. A. G. Schuur, K. Yoo, V. Matzek, C.
Kendall, A. Uebersax, D. Brenner, and W. T. Baisden (2003). “Global
patterns of the isotopic composition of soil and plant nitrogen.” In:
Global Biogeochemical Cycles 17.1. doi: 10.1029/2002GB001903.

Andersen, H. and J. Cermak (2018). “First fully diurnal fog and low
cloud satellite detection reveals life cycle in the Namib.” In: Atmo-
spheric Measurement Techniques 11.10, pp. 5461–5470. doi: 10.5194/
amt-11-5461-2018.

Andersson, A., K. Graw, M. Schröder, K. Fennig, J. Liman, S. Bakan,
R. Hollmann, and C. Klepp (2017a). Hamburg Ocean Atmosphere
Parameters and Fluxes from Satellite Data - HOAPS 4.0. doi: 10.5676/
EUM_SAF_CM/HOAPS/V002.

Andersson, A., K. Graw, M. Schröder, K. Fennig, J. Liman, and R. Holl-
mann (2017b). Validation Report SSM/I and SSMIS products HOAPS
version 4.0. doi: 10.5676/EUM_SAF_CM/HOAPS/V002.

203

https://doi.org/10.5067/MODIS/MOD35_L2.006
https://doi.org/10.5067/MODIS/MOD35_L2.006
https://doi.org/10.1029/GL017i001p00089
https://doi.org/10.1029/GL017i001p00089
https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2
https://doi.org/10.1175/1520-0485(1995)025<0122:AMFTRO>2.0.CO;2
https://doi.org/10.1175/2008JCLI2382.1
https://doi.org/10.1029/2002GB001903
https://doi.org/10.5194/amt-11-5461-2018
https://doi.org/10.5194/amt-11-5461-2018
https://doi.org/10.5676/EUM_SAF_CM/HOAPS/V002
https://doi.org/10.5676/EUM_SAF_CM/HOAPS/V002
https://doi.org/10.5676/EUM_SAF_CM/HOAPS/V002


204 bibliography

Andreoli, R. V. and M. T. Kayano (2005). “ENSO-related rainfall anoma-
lies in South America and associated circulation features during
warm and cold Pacific decadal oscillation regimes.” In: International
Journal of Climatology 25.15, pp. 2017–2030. doi: 10.1002/joc.1222.

Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata (2007).
“El Niño Modoki and its possible teleconnection.” In: Journal of
Geophysical Research: Oceans 112.C11. doi: 10.1029/2006JC003798.

Astorga-Eló, M., Q. Zhang, G. Larama, A. Stoll, M. J. Sadowsky, and
M. A. Jorquera (2020). “Composition, Predicted Functions and Co-
occurrence Networks of Rhizobacterial Communities Impacting
Flowering Desert Events in the Atacama Desert, Chile.” eng. In:
Frontiers in microbiology 11, pp. 571–571. issn: 1664-302X. doi: https:
//doi.org/10.3389/fmicb.2020.00571.

Azua-Bustos, A. et al. (2018). “Unprecedented rains decimate sur-
face microbial communities in the hyperarid core of the Atacama
Desert.” In: Scientific Reports 8.1, p. 16706. issn: 2045-2322. doi:
10.1038/s41598-018-35051-w.

Barrett, B. S., D. A. Campos, J. V. Veloso, and R. Rondanelli (2016). “Ex-
treme temperature and precipitation events in March 2015 in central
and northern Chile.” In: Journal of Geophysical Research: Atmospheres
121.9, pp. 4563–4580. doi: 10.1002/2016JD024835.

Bartz, M., J. Walk, S. A. Binnie, D. Brill, G. Stauch, F. Lehmkuhl, D.
Hoffmeister, and H. Brückner (2020). “Late Pleistocene alluvial fan
evolution along the coastal Atacama Desert (N Chile).” In: Global
and Planetary Change 190, p. 103091. issn: 0921-8181. doi: https:
//doi.org/10.1016/j.gloplacha.2019.103091.

Baum, B. A., W. P. Menzel, R. A. Frey, D. C. Tobin, R. E. Holz, S. A.
Ackerman, A. K. Heidinger, and P. Yang (June 2012). “MODIS Cloud-
Top Property Refinements for Collection 6.” In: Journal of Applied
Meteorology and Climatology 51.6, pp. 1145–1163. issn: 1558-8424. doi:
10.1175/JAMC-D-11-0203.1.

Bendix, J., B. Thies, T. Nauß, and J. Cermak (2006). “A feasibility study
of daytime fog and low stratus detection with TERRA/AQUA-
MODIS over land.” In: Meteorological Applications 13.2, pp. 111–125.
doi: 10.1017/S1350482706002180.

Blamey, R. C., A. M. Ramos, R. M. Trigo, R. Tomé, and C. J. C. Reason
(Jan. 2018). “The Influence of Atmospheric Rivers over the South
Atlantic on Winter Rainfall in South Africa.” In: Journal of Hydrom-
eteorology 19.1, pp. 127–142. issn: 1525-755X. doi: 10.1175/JHM-D-
17-0111.1.

Böhm, C., O. Sourdeval, J. Mülmenstädt, J. Quaas, and S. Crewell
(2019). “Cloud base height retrieval from multi-angle satellite data.”
In: Atmospheric Measurement Techniques 12.3, pp. 1841–1860. doi:
10.5194/amt-12-1841-2019.

Böhm, C. (2019). MIBase cloud base height derived from satellite data.
[Accessed 21. February 2019]. doi: 10.5880/CRC1211DB.19.

https://doi.org/10.1002/joc.1222
https://doi.org/10.1029/2006JC003798
https://doi.org/https://doi.org/10.3389/fmicb.2020.00571
https://doi.org/https://doi.org/10.3389/fmicb.2020.00571
https://doi.org/10.1038/s41598-018-35051-w
https://doi.org/10.1002/2016JD024835
https://doi.org/https://doi.org/10.1016/j.gloplacha.2019.103091
https://doi.org/https://doi.org/10.1016/j.gloplacha.2019.103091
https://doi.org/10.1175/JAMC-D-11-0203.1
https://doi.org/10.1017/S1350482706002180
https://doi.org/10.1175/JHM-D-17-0111.1
https://doi.org/10.1175/JHM-D-17-0111.1
https://doi.org/10.5194/amt-12-1841-2019
https://doi.org/10.5880/CRC1211DB.19


bibliography 205

Böhm, C., M. Reyers, J. H. Schween, and S. Crewell (2020a). “Water
vapor variability in the Atacama Desert during the 20th century.”
In: Global and Planetary Change 190, p. 103192. issn: 0921-8181. doi:
10.1016/j.gloplacha.2020.103192.

Böhm, C., J. H. Schween, M. Reyers, B. Maier, U. Löhnert, and S.
Crewell (2020b). “Towards a climatology of fog frequency in the
Atacama Desert via multi-spectral satellite data and machine learn-
ing techniques.” Submitted to: Journal of Applied Meteorology and
Climatology, date of submission: 10 Sep 2020.

Borbas, E., P. Menzel, and B. Gao (2017a). “MODIS Atmosphere L2

Water Vapor Product.” In: NASA MODIS Adaptive Processing System,
Goddard Space Flight Center. doi: 10.5067/MODIS/MOD05_L2.061.

Borbas, E., P. Menzel, and B. Gao (2017b). “MODIS Atmosphere L2

Water Vapor Product.” In: NASA MODIS Adaptive Processing System,
Goddard Space Flight Center. doi: 10.5067/MODIS/MYD05_L2.061.

Boucher, O. et al. (2013). “Clouds and Aerosols.” In: Climate Change
2013: The Physical Science Basis. Contribution of Working Group I to
the Fifth Assessment Report of the Intergovernmental Panel on Climate
Change. Ed. by T. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. Allen,
J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. (eds.) Cambridge,
United Kingdom and New York, NY, USA: Cambridge University
Press. Chap. 7, pp. 571–657.

Bozkurt, D., R. Rondanelli, R. Garreaud, and A. Arriagada (2016).
“Impact of Warmer Eastern Tropical Pacific SST on the March 2015

Atacama Floods.” In: Monthly Weather Review 144.11, pp. 4441–4460.
doi: 10.1175/MWR-D-16-0041.1.

Bretherton, C. S. and M. C. Wyant (Jan. 1997). “Moisture Transport,
Lower-Tropospheric Stability, and Decoupling of Cloud-Topped
Boundary Layers.” In: Journal of the Atmospheric Sciences 54.1, pp. 148–
167. issn: 0022-4928. doi: 10.1175/1520- 0469(1997)054<0148:
MTLTSA>2.0.CO;2.

Bretherton, C. S. (1997). “Convection in Stratocumulus-Topped At-
mospheric Boundary Layers.” In: The Physics and Parameterization of
Moist Atmospheric Convection. Ed. by R. Smith. Springer Netherlands,
pp. 127–142.

Brown, R. L., W. Wild, and C. Cunningham (2004). “ALMA – the
Atacama large millimeter array.” In: Advances in Space Research 34.3.
Astronomy at IR/Submm and the Microwave Background, pp. 555–
559. issn: 0273-1177. doi: https://doi.org/10.1016/j.asr.2003.
03.028.

Bull, M., J. Matthews, D. McDonald, A. Menzies, C. Moroney, K.
Mueller, S. Paradise, and M. Smyth (2011). Data Products Specifica-
tions. Tech. rep. JPL D-13963, Revision S. Jet Propulsion Laboratory,
California Institute of Technology.

Cáceres, L., B. Gómez-Silva, X. Garró, V. Rodríguez, V. Monardes,
and C. P. McKay (2007). “Relative humidity patterns and fog water

https://doi.org/10.1016/j.gloplacha.2020.103192
https://doi.org/10.5067/MODIS/MOD05_L2.061
https://doi.org/10.5067/MODIS/MYD05_L2.061
https://doi.org/10.1175/MWR-D-16-0041.1
https://doi.org/10.1175/1520-0469(1997)054<0148:MTLTSA>2.0.CO;2
https://doi.org/10.1175/1520-0469(1997)054<0148:MTLTSA>2.0.CO;2
https://doi.org/https://doi.org/10.1016/j.asr.2003.03.028
https://doi.org/https://doi.org/10.1016/j.asr.2003.03.028


206 bibliography

precipitation in the Atacama Desert and biological implications.” In:
Journal of Geophysical Research: Biogeosciences 112.G4. doi: 10.1029/
2006JG000344.

Campbell Scientific (2018). LWS Dielectric Leaf Wetness Sensor. Campbell
Scientific, Inc. 815 West 1800 North Logan, Utah 84321-1784.

Canedo-Rosso, C., C. B. Uvo, and R. Berndtsson (2019). “Precipitation
variability and its relation to climate anomalies in the Bolivian
Altiplano.” In: International Journal of Climatology 39.4, pp. 2096–2107.
doi: 10.1002/joc.5937.

Cantalloube, F., J. Milli, C. Böhm, S. Crewell, J. Navarrete, K. Rehfeld,
M. Sarazin, and A. Sommani (2020). “The impact of climate change
on astronomical observations.” In: Nature Astronomy 4, pp. 826–829.
issn: 2397-3366. doi: 10.1038/s41550-020-1203-3.

Capotondi, A. et al. (July 2015). “Understanding ENSO Diversity.” In:
Bulletin of the American Meteorological Society 96.6, pp. 921–938. issn:
0003-0007. doi: 10.1175/BAMS-D-13-00117.1.

Center for Climate and Resilience Research (2018). Datos de precip-
itación. http : / / www . cr2 . cl / datos - de - precipitacion/. File:
cr2_prDaily_2018.zip. Accessed: 2019-07-01.

Center for Climate and Resilience Research (2019). EXPLORADOR
CLIMÁTICO. http://explorador.cr2.cl. Accessed: 2020-09-22.

Cereceda, P., H. Larrain, P. Osses, M. Farías, and I. Egaña (2008a). “The
climate of the coast and fog zone in the Tarapacá Region, Atacama
Desert, Chile.” In: Atmospheric Research 87.3. Third International
Conference on Fog, Fog Collection and Dew, pp. 301–311. issn: 0169-
8095. doi: https://doi.org/10.1016/j.atmosres.2007.11.011.

Cereceda, P., H. Larrain, P. Osses, M. Farías, and I. Egaña (2008b).
“The spatial and temporal variability of fog and its relation to fog
oases in the Atacama Desert, Chile.” In: Atmospheric Research 87.3.
Third International Conference on Fog, Fog Collection and Dew,
pp. 312–323. issn: 0169-8095. doi: http://dx.doi.org/10.1016/j.
atmosres.2007.11.012.

Cereceda, P., P Osses, H Larrain, M. Farías, M. Lagos, R Pinto, and
R. Schemenauer (Sept. 2002). “Advective, orographic and radiation
fog in the Tarapacá Region, Chile.” In: Atmospheric Research 64.1. 2nd
International Conference on Fog and Fog Collection, pp. 261–271.
issn: 0169-8095. doi: 10.1016/S0169-8095(02)00097-2.

Cermak, J. (2012). “Low clouds and fog along the South-Western
African coast – Satellite-based retrieval and spatial patterns.” In:
Atmospheric Research 116. Remote Sensing of Clouds and Aerosols:
Techniques and Applications - Atmospheric Research, pp. 15 –21.
issn: 0169-8095. doi: https://doi.org/10.1016/j.atmosres.2011.
02.012.

Chahine, M. T. (Jan. 1974). “Remote Sounding of Cloudy Atmospheres.
I. The Single Cloud Layer.” In: Journal of the Atmospheric Sciences

https://doi.org/10.1029/2006JG000344
https://doi.org/10.1029/2006JG000344
https://doi.org/10.1002/joc.5937
https://doi.org/10.1038/s41550-020-1203-3
https://doi.org/10.1175/BAMS-D-13-00117.1
http://www.cr2.cl/datos-de-precipitacion/
http://explorador.cr2.cl
https://doi.org/https://doi.org/10.1016/j.atmosres.2007.11.011
https://doi.org/http://dx.doi.org/10.1016/j.atmosres.2007.11.012
https://doi.org/http://dx.doi.org/10.1016/j.atmosres.2007.11.012
https://doi.org/10.1016/S0169-8095(02)00097-2
https://doi.org/https://doi.org/10.1016/j.atmosres.2011.02.012
https://doi.org/https://doi.org/10.1016/j.atmosres.2011.02.012


bibliography 207

31.1, pp. 233–243. issn: 0022-4928. doi: 10.1175/1520-0469(1974)
031<0233:RSOCAI>2.0.CO;2.

Chávez, R., A. Moreira-Muñoz, M. Galleguillos, M. Olea, J. Aguayo,
A. Latín, I. Aguilera-Betti, A. Muñoz, and H. Manríquez (2019).
“GIMMS NDVI time series reveal the extent, duration, and intensity
of “blooming desert” events in the hyper-arid Atacama Desert,
Northern Chile.” In: International Journal of Applied Earth Observation
and Geoinformation 76, pp. 193–203. issn: 0303-2434. doi: https:
//doi.org/10.1016/j.jag.2018.11.013.

Chollet, F., J. Allaire, et al. (2017). R Interface to Keras. https://github.
com/rstudio/keras.

Chollet, F. et al. (2015). Keras. https://keras.io.
Clarke, A. J. (Oct. 1994). “Why Are Surface Equatorial ENSO Winds

Anomalously Westerly under Anomalous Large-Scale Convection?”
In: Journal of Climate 7.10, pp. 1623–1627. issn: 0894-8755. doi: 10.
1175/1520-0442(1994)007<1623:WASEEW>2.0.CO;2.

Clarke, A. J., S. Van Gorder, and G. Colantuono (Apr. 2007). “Wind
Stress Curl and ENSO Discharge/Recharge in the Equatorial Pa-
cific.” In: Journal of Physical Oceanography 37.4, pp. 1077–1091. issn:
0022-3670. doi: 10.1175/JPO3035.1.

Cockell, C. S., C. P. McKay, K. Warren-Rhodes, and G. Horneck
(2008). “Ultraviolet radiation-induced limitation to epilithic micro-
bial growth in arid deserts – Dosimetric experiments in the hy-
perarid core of the Atacama Desert.” In: Journal of Photochemistry
and Photobiology B: Biology 90.2, pp. 79–87. issn: 1011-1344. doi:
https://doi.org/10.1016/j.jphotobiol.2007.11.009.

Compo, G. P. et al. (2011). “The Twentieth Century Reanalysis Project.”
In: Quarterly Journal of the Royal Meteorological Society 137.654, pp. 1–
28. doi: 10.1002/qj.776.

Cordero, R. et al. (Mar. 2016). “The Solar Spectrum in the Atacama
Desert.” In: Scientific Reports 6, p. 22457. doi: 10.1038/srep22457.

Costa-Surós, M., J. Calbó, J. A. González, and C. N. Long (2014). “Com-
paring the cloud vertical structure derived from several methods
based on radiosonde profiles and ground-based remote sensing mea-
surements.” In: Atmospheric Measurement Techniques 7.8, pp. 2757–
2773. doi: 10.5194/amt-7-2757-2014.

Craig, H. and L. I. Gordon (1965). “Deuterium and oxygen 18 varia-
tions in the ocean and the marine atmosphere.” English. In: Oceano-
graphic Studies, Conference on Stable Isotopes and Paleotemperatures.
Pisa: Consiglio nazionale delle richerche, Laboratorio de geologia
nucleare, pp. 9–130.

Craine, J. M. et al. (2009). “Global patterns of foliar nitrogen isotopes
and their relationships with climate, mycorrhizal fungi, foliar nu-
trient concentrations, and nitrogen availability.” In: New Phytologist
183.4, pp. 980–992. doi: 10.1111/j.1469-8137.2009.02917.x.

https://doi.org/10.1175/1520-0469(1974)031<0233:RSOCAI>2.0.CO;2
https://doi.org/10.1175/1520-0469(1974)031<0233:RSOCAI>2.0.CO;2
https://doi.org/https://doi.org/10.1016/j.jag.2018.11.013
https://doi.org/https://doi.org/10.1016/j.jag.2018.11.013
https://github.com/rstudio/keras
https://github.com/rstudio/keras
https://keras.io
https://doi.org/10.1175/1520-0442(1994)007<1623:WASEEW>2.0.CO;2
https://doi.org/10.1175/1520-0442(1994)007<1623:WASEEW>2.0.CO;2
https://doi.org/10.1175/JPO3035.1
https://doi.org/https://doi.org/10.1016/j.jphotobiol.2007.11.009
https://doi.org/10.1002/qj.776
https://doi.org/10.1038/srep22457
https://doi.org/10.5194/amt-7-2757-2014
https://doi.org/10.1111/j.1469-8137.2009.02917.x


208 bibliography

Crits-Christoph, A., C. K. Robinson, T. Barnum, W. F. Fricke, A. F.
Davila, B. Jedynak, C. P. McKay, and J. Diruggiero (2013). “Coloniza-
tion patterns of soil microbial communities in the Atacama Desert.”
eng. In: Microbiome 1.1, p. 28. issn: 2049-2618. doi: 10.1186/2049-
2618-1-28.

Dai, A., J. Wang, P. W. Thorne, D. E. Parker, L. Haimberger, and X. L.
Wang (2011). “A New Approach to Homogenize Daily Radiosonde
Humidity Data.” In: Journal of Climate 24.4, pp. 965–991. doi: 10.
1175/2010JCLI3816.1.

Davey, M., A. Brookshaw, and S. Ineson (2014). “The probability of the
impact of ENSO on precipitation and near-surface temperature.” In:
Climate Risk Management 1, pp. 5–24. issn: 2212-0963. doi: 10.1016/
j.crm.2013.12.002.

Dee, D. P. et al. (2011a). “The ERA-Interim reanalysis: configuration
and performance of the data assimilation system.” In: Quarterly
Journal of the Royal Meteorological Society 137.656, pp. 553–597. doi:
10.1002/qj.828.

Dee, D. P. et al. (2011b). “The ERA-Interim reanalysis: configuration
and performance of the data assimilation system.” In: Quarterly
Journal of the Royal Meteorological Society 137.656, pp. 553–597. doi:
10.1002/qj.828.

Derber, J. C., D. F. Parrish, and S. J. Lord (Dec. 1991). “The New
Global Operational Analysis System at the National Meteorological
Center.” In: Weather and Forecasting 6.4, pp. 538–547. issn: 0882-8156.
doi: 10.1175/1520-0434(1991)006<0538:TNGOAS>2.0.CO;2.

Deser, C., M. A. Alexander, S.-P. Xie, and A. S. Phillips (2010). “Sea
Surface Temperature Variability: Patterns and Mechanisms.” In:
Annual Review of Marine Science 2.1. PMID: 21141660, pp. 115–143.
doi: 10.1146/annurev-marine-120408-151453.

Deser, C., A. S. Phillips, and J. W. Hurrell (Aug. 2004). “Pacific In-
terdecadal Climate Variability: Linkages between the Tropics and
the North Pacific during Boreal Winter since 1900.” In: Journal of
Climate 17.16, pp. 3109–3124. issn: 0894-8755. doi: 10.1175/1520-
0442(2004)017<3109:PICVLB>2.0.CO;2.

Deser, C., K. Trenberth, and N. C. for Atmospheric Research Staff
(Eds)" (2016). The Climate Data Guide: Pacific Decadal Oscillation (PDO):
Definition and Indices. Last modified 06 Jan 2016.

Desmons, M., N. Ferlay, F. Parol, L. Mcharek, and C. Vanbauce (2013).
“Improved information about the vertical location and extent of
monolayer clouds from POLDER3 measurements in the oxygen
A-band.” In: Atmospheric Measurement Techniques 6.8, pp. 2221–2238.
doi: 10.5194/amt-6-2221-2013.

Díaz, F. P., M. Frugone, R. A. Gutiérrez, and C. Latorre (2016). “Ni-
trogen cycling in an extreme hyperarid environment inferred from
δ15N analyses of plants, soils and herbivore diet.” In: Scientific
Reports 6.1, p. 22226. issn: 2045-2322. doi: 10.1038/srep22226.

https://doi.org/10.1186/2049-2618-1-28
https://doi.org/10.1186/2049-2618-1-28
https://doi.org/10.1175/2010JCLI3816.1
https://doi.org/10.1175/2010JCLI3816.1
https://doi.org/10.1016/j.crm.2013.12.002
https://doi.org/10.1016/j.crm.2013.12.002
https://doi.org/10.1002/qj.828
https://doi.org/10.1002/qj.828
https://doi.org/10.1175/1520-0434(1991)006<0538:TNGOAS>2.0.CO;2
https://doi.org/10.1146/annurev-marine-120408-151453
https://doi.org/10.1175/1520-0442(2004)017<3109:PICVLB>2.0.CO;2
https://doi.org/10.1175/1520-0442(2004)017<3109:PICVLB>2.0.CO;2
https://doi.org/10.5194/amt-6-2221-2013
https://doi.org/10.1038/srep22226


bibliography 209

Díaz, F. P., C. Latorre, A. Maldonado, J. Quade, and J. L. Betancourt
(2012). “Rodent middens reveal episodic, long-distance plant colo-
nizations across the hyperarid Atacama Desert over the last 34,000

years.” In: Journal of Biogeography 39.3, pp. 510–525. doi: 10.1111/j.
1365-2699.2011.02617.x.

Diederich, J. L. et al. (2020). “A 68 ka precipitation record from the
hyperarid core of the Atacama Desert in northern Chile.” In: Global
and Planetary Change 184, p. 103054. issn: 0921-8181. doi: https:
//doi.org/10.1016/j.gloplacha.2019.103054.

Diner, D. (2012). “MISR Level 2 Cloud Heights and Winds HDF-EOS
File - Version 1.” In: NASA Langley Atmospheric Science Data Center
DAAC. doi: 10.5067/Terra/MISR/MIL2TCSP_L2.001.

Dunai, T. J., M. Melles, D. Quandt, C. Knief, and W. Amelung (2020).
“Whitepaper: Earth – Evolution at the dry limit.” In: Global and
Planetary Change 193, p. 103275. issn: 0921-8181. doi: https://doi.
org/10.1016/j.gloplacha.2020.103275.

Durre, I., Y. Xungang, R. S. Vose, S. Applequist, and J. Arnfield (2016).
Integrated Global Radiosonde Archive (IGRA), Version 2. Accessed: 2020-
09-24. NOAA National Centers for Environmental Information. doi:
https://doi.org/10.7289/V5X63K0Q.

Eastman, R. and S. G. Warren (Feb. 2013). “A 39-Yr Survey of Cloud
Changes from Land Stations Worldwide 1971–2009: Long-Term
Trends, Relation to Aerosols, and Expansion of the Tropical Belt.”
In: Journal of Climate 26.4, pp. 1286–1303. issn: 0894-8755. doi: 10.
1175/JCLI-D-12-00280.1.

Egli, S., B. Thies, J. Drönner, J. Cermak, and J. Bendix (2017). “A 10 year
fog and low stratus climatology for Europe based on Meteosat Sec-
ond Generation data.” In: Quarterly Journal of the Royal Meteorological
Society 143.702, pp. 530–541. doi: 10.1002/qj.2941.

Egli, S., B. Thies, and J. Bendix (2018). “A Hybrid Approach for Fog Re-
trieval Based on a Combination of Satellite and Ground Truth Data.”
In: Remote Sensing 10.4. issn: 2072-4292. doi: 10.3390/rs10040628.

Ehlers, T. A. and C. J. Poulsen (2009). “Influence of Andean uplift on
climate and paleoaltimetry estimates.” In: Earth and Planetary Science
Letters 281.3, pp. 238–248. issn: 0012-821X. doi: 10.1016/j.epsl.
2009.02.026.

Elliott, W. P. and D. J. Gaffen (1991). “On the Utility of Radiosonde
Humidity Archives for climate studies.” In: Bulletin of the American
Meteorological Society 72.10, pp. 1507–1520. doi: 10 . 1175 / 1520 -

0477(1991)072<1507:OTUORH>2.0.CO;2.
Ellrod, G. P. (Sept. 1995). “Advances in the Detection and Analysis

of Fog at Night Using GOES Multispectral Infrared Imagery.” In:
Weather and Forecasting 10.3, pp. 606–619. issn: 0882-8156. doi: 10.
1175/1520-0434(1995)010<0606:AITDAA>2.0.CO;2.

Falvey, M. and R. D. Garreaud (2009). “Regional cooling in a warm-
ing world: Recent temperature trends in the southeast Pacific and

https://doi.org/10.1111/j.1365-2699.2011.02617.x
https://doi.org/10.1111/j.1365-2699.2011.02617.x
https://doi.org/https://doi.org/10.1016/j.gloplacha.2019.103054
https://doi.org/https://doi.org/10.1016/j.gloplacha.2019.103054
https://doi.org/10.5067/Terra/MISR/MIL2TCSP_L2.001
https://doi.org/https://doi.org/10.1016/j.gloplacha.2020.103275
https://doi.org/https://doi.org/10.1016/j.gloplacha.2020.103275
https://doi.org/https://doi.org/10.7289/V5X63K0Q
https://doi.org/10.1175/JCLI-D-12-00280.1
https://doi.org/10.1175/JCLI-D-12-00280.1
https://doi.org/10.1002/qj.2941
https://doi.org/10.3390/rs10040628
https://doi.org/10.1016/j.epsl.2009.02.026
https://doi.org/10.1016/j.epsl.2009.02.026
https://doi.org/10.1175/1520-0477(1991)072<1507:OTUORH>2.0.CO;2
https://doi.org/10.1175/1520-0477(1991)072<1507:OTUORH>2.0.CO;2
https://doi.org/10.1175/1520-0434(1995)010<0606:AITDAA>2.0.CO;2
https://doi.org/10.1175/1520-0434(1995)010<0606:AITDAA>2.0.CO;2


210 bibliography

along the west coast of subtropical South America (1979–2006).” In:
Journal of Geophysical Research: Atmospheres 114.D4. doi: 10.1029/
2008JD010519.

Farías, M. (Mar. 2007). Estudio Biogeográfico de Tillandsiales de la Región de
Tarapacá, Chile y sus Relaciones con el Comportamiento de la Niebla. pub-
lished on ResearchGate in 2015. PROYECTO FONDECYT 1051035.
doi: https://doi.org/10.13140/RG.2.1.4975.9201.

Farías, M., P. Cereceda Troncoso, P. Osses Mcintyre, and R. Núñez (Apr.
2005). “Comportamiento espacio-temporal de la nube estratocúmulo,
productora de niebla en la costa del desierto de Atacama (21◦ lat. S.,
70◦ long. W.), durante un mes de invierno y otro de verano.” es. In:
Investigaciones Geográficas, pp. 43 –61. issn: 0188-4611.

Farías, M., M. Lagos, P. Cereceda, H. Larrain, P. Osses, R. Pinto, and
R. Núñez (2001). “Metodología para el análisis del comportamiento
espacio-temporal de nubes estratocúmulos mediante percepción
remota, con énfasis en su penetración en el desierto costero de
Tarapacá.” In: XXII Congreso Nacional y VII Internacional de Geografía,
pp. 35–43.

Farr, T. G. et al. (2007). “The Shuttle Radar Topography Mission.” In:
Reviews of Geophysics 45.2. doi: 10.1029/2005RG000183.

Fawcett, T. (2006). “An introduction to ROC analysis.” In: Pattern Recog-
nition Letters 27.8. ROC Analysis in Pattern Recognition, pp. 861–874.
issn: 0167-8655. doi: https://doi.org/10.1016/j.patrec.2005.
10.010.

Fennig, K., A. Andersson, S. Bakan, C.-P. Klepp, and M. Schröder
(2012). Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite
Data - HOAPS 3.2 - Monthly Means / 6-Hourly Composites. doi: 10.
5676/EUM_SAF_CM/HOAPS/V001.

Ferlay, N., F. Thieuleux, C. Cornet, A. B. Davis, P. Dubuisson, F. Ducos,
F. Parol, J. Riédi, and C. Vanbauce (2010). “Toward New Inferences
about Cloud Structures from Multidirectional Measurements in the
Oxygen A Band: Middle-of-Cloud Pressure and Cloud Geometrical
Thickness from POLDER-3/PARASOL.” In: J. Appl. Meteorol. Clim.
49, pp. 2492–2507.

Folland, C. K. and D. E. Parker (1990). “Observed Variations of Sea Sur-
face Temperature.” In: Climate-Ocean Interaction. Dordrecht: Springer
Netherlands, pp. 21–52. isbn: 978-94-009-2093-4. doi: 10.1007/978-
94-009-2093-4_2.

Folland, C. K. and D. E. Parker (1995). “Correction of instrumental
biases in historical sea surface temperature data.” In: Quarterly
Journal of the Royal Meteorological Society 121.522, pp. 319–367. doi:
10.1002/qj.49712152206.

Gao, B.-C. and Y. J. Kaufman (2003). “Water vapor retrievals using
Moderate Resolution Imaging Spectroradiometer (MODIS) near-
infrared channels.” In: Journal of Geophysical Research: Atmospheres
108.D13. doi: 10.1029/2002JD003023.

https://doi.org/10.1029/2008JD010519
https://doi.org/10.1029/2008JD010519
https://doi.org/https://doi.org/10.13140/RG.2.1.4975.9201
https://doi.org/10.1029/2005RG000183
https://doi.org/https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.5676/EUM_SAF_CM/HOAPS/V001
https://doi.org/10.5676/EUM_SAF_CM/HOAPS/V001
https://doi.org/10.1007/978-94-009-2093-4_2
https://doi.org/10.1007/978-94-009-2093-4_2
https://doi.org/10.1002/qj.49712152206
https://doi.org/10.1029/2002JD003023


bibliography 211

Gardner, M. and S. Dorling (1998). “Artificial neural networks (the
multilayer perceptron)–a review of applications in the atmospheric
sciences.” In: Atmospheric Environment 32.14, pp. 2627–2636. issn:
1352-2310. doi: https://doi.org/10.1016/S1352-2310(97)00447-
0.

Garreaud, R. D. (1999). “Multiscale Analysis of the Summertime Pre-
cipitation over the Central Andes.” In: Monthly Weather Review 127.5,
pp. 901–921. doi: 10.1175/1520-0493(1999)127<0901:MAOTSP>2.0.
CO;2.

Garreaud, R. D. and P. Aceituno (June 2001). “Interannual Rainfall
Variability over the South American Altiplano.” In: Journal of Cli-
mate 14.12, pp. 2779–2789. issn: 0894-8755. doi: 10.1175/1520-
0442(2001)014<2779:IRVOTS>2.0.CO;2.

Garreaud, R. D., A. Molina, and M. Farias (2010). “Andean uplift,
ocean cooling and Atacama hyperaridity: A climate modeling per-
spective.” In: Earth and Planetary Science Letters 292.1, pp. 39–50. issn:
0012-821X. doi: https://doi.org/10.1016/j.epsl.2010.01.017.

Garreaud, R. D. and R. Muñoz (Apr. 2004). “The Diurnal Cycle in
Circulation and Cloudiness over the Subtropical Southeast Pacific:
A Modeling Study.” In: Journal of Climate 17.8, pp. 1699–1710. issn:
0894-8755. doi: 10.1175/1520-0442(2004)017<1699:TDCICA>2.0.
CO;2.

Garreaud, R. D., M. Vuille, R. Compagnucci, and J. Marengo (2009).
“Present-day South American climate.” In: Palaeogeography, Palaeocli-
matology, Palaeoecology 281.3. Long-term multi-proxy climate recon-
structions and dynamics in South America (LOTRED-SA): State of
the art and perspectives, pp. 180–195. issn: 0031-0182. doi: https:
//doi.org/10.1016/j.palaeo.2007.10.032.

Garreaud, R. (Oct. 2013). “Warm Winter Storms in Central Chile.” In:
Journal of Hydrometeorology 14.5, pp. 1515–1534. issn: 1525-755X. doi:
10.1175/JHM-D-12-0135.1.

Garreaud, R., M. Vuille, and A. Clement (May 2003). “The climate
of the Altiplano: Observed current conditions and mechanisms of
past changes.” English (US). In: Palaeogeography, Palaeoclimatology,
Palaeoecology 194.1-3, pp. 5–22. issn: 0031-0182. doi: 10.1016/S0031-
0182(03)00269-4.

Gaurav, S. and P. Jindal (2018). “RADIATIVE TRANSFER MODEL SIM-
ULATIONS TO DETERMINE THE NIGHT TIME FOG DETECTION
THRESHOLD.” In: ISPRS - International Archives of the Photogramme-
try, Remote Sensing and Spatial Information Sciences XLII-5, pp. 511–
517. doi: 10.5194/isprs-archives-XLII-5-511-2018.

Gayo, E. M., C. Latorre, T. E. Jordan, P. L. Nester, S. A. Estay, K. F.
Ojeda, and C. M. Santoro (2012). “Late Quaternary hydrological and
ecological changes in the hyperarid core of the northern Atacama
Desert (∼ 21◦S).” In: Earth-Science Reviews 113.3, pp. 120–140. issn:

https://doi.org/https://doi.org/10.1016/S1352-2310(97)00447-0
https://doi.org/https://doi.org/10.1016/S1352-2310(97)00447-0
https://doi.org/10.1175/1520-0493(1999)127<0901:MAOTSP>2.0.CO;2
https://doi.org/10.1175/1520-0493(1999)127<0901:MAOTSP>2.0.CO;2
https://doi.org/10.1175/1520-0442(2001)014<2779:IRVOTS>2.0.CO;2
https://doi.org/10.1175/1520-0442(2001)014<2779:IRVOTS>2.0.CO;2
https://doi.org/https://doi.org/10.1016/j.epsl.2010.01.017
https://doi.org/10.1175/1520-0442(2004)017<1699:TDCICA>2.0.CO;2
https://doi.org/10.1175/1520-0442(2004)017<1699:TDCICA>2.0.CO;2
https://doi.org/https://doi.org/10.1016/j.palaeo.2007.10.032
https://doi.org/https://doi.org/10.1016/j.palaeo.2007.10.032
https://doi.org/10.1175/JHM-D-12-0135.1
https://doi.org/10.1016/S0031-0182(03)00269-4
https://doi.org/10.1016/S0031-0182(03)00269-4
https://doi.org/10.5194/isprs-archives-XLII-5-511-2018


212 bibliography

0012-8252. doi: https://doi.org/10.1016/j.earscirev.2012.04.
003.

Gázquez, F., M. Morellón, T. Bauska, D. Herwartz, J. Surma, A. Moreno,
M. Staubwasser, B. Valero-Garcés, A. Delgado-Huertas, and D. A.
Hodell (2018). “Triple oxygen and hydrogen isotopes of gypsum
hydration water for quantitative paleo-humidity reconstruction.” In:
Earth and Planetary Science Letters 481, pp. 177–188. issn: 0012-821X.
doi: 10.1016/j.epsl.2017.10.020.

Gimeno, L., R. Nieto, M. Vázquez, and D. Lavers (2014). “Atmospheric
rivers: a mini-review.” In: Frontiers in Earth Science 2, p. 2. issn:
2296-6463. doi: 10.3389/feart.2014.00002.

Giovanelli, R. et al. (2001). “The Optical/Infrared Astronomical Quality
of High Atacama Sites. II. Infrared Characteristics.” In: Publications
of the Astronomical Society of the Pacific 113.785, pp. 803–813. doi:
10.1086/322136.

González, A. L., J. M. Fariña, R. Pinto, C. Pérez, K. C. Weathers,
J. J. Armesto, and P. A. Marquet (2011). “Bromeliad growth and
stoichiometry: responses to atmospheric nutrient supply in fog-
dependent ecosystems of the hyper-arid Atacama Desert, Chile.” In:
Oecologia 167.3, pp. 835–845. issn: 1432-1939. doi: 10.1007/s00442-
011-2032-y.

Goren, T., D. Rosenfeld, O. Sourdeval, and J. Quaas (2018). “Satellite ob-
servations of precipitating marine stratocumulus show greater cloud
fraction for decoupled clouds in comparison to coupled clouds.”
In: Gephys. Res. Lett. 45.15378722, pp. 5126–5134. doi: 10.1029/
2018GL078122.

Guan, B. (2020). ARcatalog. https://ucla.app.box.com/v/ARcatalog.
Accessed: 2020-07-21.

Guan, B. and D. E. Waliser (2015). “Detection of atmospheric rivers:
Evaluation and application of an algorithm for global studies.” In:
Journal of Geophysical Research: Atmospheres 120.24, pp. 12514–12535.
doi: 10.1002/2015JD024257.

Guan, B., D. E. Waliser, and F. M. Ralph (Feb. 2018). “An Intercom-
parison between Reanalysis and Dropsonde Observations of the
Total Water Vapor Transport in Individual Atmospheric Rivers.” In:
Journal of Hydrometeorology 19.2, pp. 321–337. issn: 1525-755X. doi:
10.1175/JHM-D-17-0114.1.

Güls, I and J Bendix (1996). “Fog detection and fog mapping using low
cost Meteosat-WEFAX transmission.” In: Meteorological Applications
3.2, pp. 179–187. doi: 10.1002/met.5060030208.

Güsten, R., L. Å. Nyman, P. Schilke, K. Menten, C. Cesarsky, and
R. Booth (2006). “The Atacama Pathfinder EXperiment (APEX) – a
new submillimeter facility for southern skies –.” In: Astronomy &
Astrophysics 454.2, pp. L13–L16. doi: 10.1051/0004-6361:20065420.

Haeffelin, M., S. Crewell, A. J. Illingworth, G. Pappalardo, H. Russ-
chenberg, M. Chiriaco, K. Ebell, R. J. Hogan, and F. Madonna (2016).

https://doi.org/https://doi.org/10.1016/j.earscirev.2012.04.003
https://doi.org/https://doi.org/10.1016/j.earscirev.2012.04.003
https://doi.org/10.1016/j.epsl.2017.10.020
https://doi.org/10.3389/feart.2014.00002
https://doi.org/10.1086/322136
https://doi.org/10.1007/s00442-011-2032-y
https://doi.org/10.1007/s00442-011-2032-y
https://doi.org/10.1029/2018GL078122
https://doi.org/10.1029/2018GL078122
https://ucla.app.box.com/v/ARcatalog
https://doi.org/10.1002/2015JD024257
https://doi.org/10.1175/JHM-D-17-0114.1
https://doi.org/10.1002/met.5060030208
https://doi.org/10.1051/0004-6361:20065420


bibliography 213

“Parallel Developments and Formal Collaboration between Euro-
pean Atmospheric Profiling Observatories and the U.S. ARM Re-
search Program.” In: Meteorological Monographs 57, pp. 29.1–29.34.
doi: 10.1175/AMSMONOGRAPHS-D-15-0045.1.

Hahn, C. J. and S. G. Warren (2007). A gridded climatology of clouds
over land (1971–96) and ocean (1954–97) from surface observations world-
wide. Numeric Data Package NDP-026E ORNL/CDIAC-153. Tech. rep.
CDIAC, Department of Energy, Oak Ridge, TN. doi: 10.3334/
CDIAC/cli.ndp026e.

Handley, L. L., A. T. Austin, G. R. Stewart, D. Robinson, C. M. Scrim-
geour, J. A. Raven, T. H. E. Heaton, and S. Schmidt (1999). “The 15N
natural abundance (δ15N) of ecosystem samples reflects measures
of water availability.” In: Functional Plant Biology 26.2, pp. 185–199.
doi: 10.1071/PP98146.

Hannay, C., D. L. Williamson, J. J. Hack, J. T. Kiehl, J. G. Olson,
S. A. Klein, C. S. Bretherton, and M. Köhler (2009). “Evaluation
of Forecasted Southeast Pacific Stratocumulus in the NCAR, GFDL,
and ECMWF Models.” In: Journal of Climate 22.11, pp. 2871–2889.
doi: 10.1175/2008JCLI2479.1.

Haug, E. W., E. R. Kraal, J. O. Sewall, M. Van Dijk, and G. C. Diaz
(2010). “Climatic and geomorphic interactions on alluvial fans in
the Atacama Desert, Chile.” In: Geomorphology 121.3, pp. 184–196.
issn: 0169-555X. doi: https://doi.org/10.1016/j.geomorph.2010.
04.005.

He, J. and Z. Liu (2019). “Comparison of Satellite-Derived Precipitable
Water Vapor Through Near-Infrared Remote Sensing Channels.” In:
IEEE Transactions on Geoscience and Remote Sensing 57.12, pp. 10252–
10262. issn: 1558-0644. doi: 10.1109/TGRS.2019.2932847.

Heidke, P. (1926). “Berechnung des Erfolges und der Güte der Wind-
stärkevorhersagen im Sturmwarnungsdienst.” In: Geografiska Annaler
8.4, pp. 301–349.

Hersbach, H., P. Poli, and D. Dee (May 2015). The observation feedback
archive for the ICOADS and ISPD data sets. Tech. rep. 18. Shinfield
Park, Reading: ECMWF, p. 31.

Hersbach, H. et al. (2020). “The ERA5 global reanalysis.” In: Quarterly
Journal of the Royal Meteorological Society 146.730, pp. 1999–2049. doi:
10.1002/qj.3803.

Hoffmeister, D. (2017a). Meteorological and soil measurements of the per-
manent master weather station 13 – Cerros de Calate, Chile. [Accessed
27. October 2020]. doi: https://doi.org/10.5880/CRC1211DB.4.

Hoffmeister, D. (2017b). Meteorological and soil measurements of the per-
manent weather stations in the Atacama desert, Chile. [Accessed 26. June
2020]. doi: http://dx.doi.org/10.5880/CRC1211DB.1.

Hollinger, J. P., J. L. Peirce, and G. A. Poe (1990). “SSM/I instrument
evaluation.” In: IEEE Transactions on Geoscience and Remote Sensing
28.5, pp. 781–790. issn: 0196-2892. doi: 10.1109/36.58964.

https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0045.1
https://doi.org/10.3334/CDIAC/cli.ndp026e
https://doi.org/10.3334/CDIAC/cli.ndp026e
https://doi.org/10.1071/PP98146
https://doi.org/10.1175/2008JCLI2479.1
https://doi.org/https://doi.org/10.1016/j.geomorph.2010.04.005
https://doi.org/https://doi.org/10.1016/j.geomorph.2010.04.005
https://doi.org/10.1109/TGRS.2019.2932847
https://doi.org/10.1002/qj.3803
https://doi.org/https://doi.org/10.5880/CRC1211DB.4
https://doi.org/http://dx.doi.org/10.5880/CRC1211DB.1
https://doi.org/10.1109/36.58964


214 bibliography

Houston, J. (2006). “Variability of precipitation in the Atacama Desert:
its causes and hydrological impact.” In: International Journal of Cli-
matology 26.15, pp. 2181–2198. doi: 10.1002/joc.1359.

Houston, J. and A. J. Hartley (2003). “The central Andean west-slope
rainshadow and its potential contribution to the origin of hyper-
aridity in the Atacama Desert.” In: International Journal of Climatology
23.12, pp. 1453–1464. doi: 10.1002/joc.938.

Hunt, G. E. (1973). “Radiative properties of terrestrial clouds at visible
and infra-red thermal window wavelengths.” In: Quarterly Journal of
the Royal Meteorological Society 99.420, pp. 346–369. doi: 10.1002/qj.
49709942013.

Hyvärinen, O. (Feb. 2014). “A Probabilistic Derivation of Heidke Skill
Score.” In: Weather and Forecasting 29.1, pp. 177–181. issn: 0882-8156.
doi: 10.1175/WAF-D-13-00103.1.

Illingworth, A. J. et al. (May 2019). “How Can Existing Ground-Based
Profiling Instruments Improve European Weather Forecasts?” In:
Bulletin of the American Meteorological Society 100.4, pp. 605–619. issn:
0003–0007. doi: 10.1175/BAMS-D-17-0231.1.

Jacques-Coper, M., M. Falvey, and R. C. Muñoz (2015). “Inter-daily
variability of a strong thermally-driven wind system over the At-
acama Desert of South America: synoptic forcing and short-term
predictability using the GFS global model.” In: Theoretical and Ap-
plied Climatology 121.1, pp. 211–223. issn: 1434-4483. doi: 10.1007/
s00704-014-1231-y.

Jaeschke, A., C. Böhm, F. F. Merklinger, S. M. Bernasconi, M. Reyers,
S. Kusch, and J. Rethemeyer (2019). “Variation in d15N of fog-
dependent Tillandsia ecosystems reflect water availability across
climate gradients in the hyperarid Atacama Desert.” In: Global and
Planetary Change 183, p. 103029. issn: 0921-8181. doi: 10.1016/j.
gloplacha.2019.103029.

Johnson, M. A. and J. J. O’Brien (1990). “The role of coastal Kelvin
waves on the northeast Pacific Ocean.” In: Journal of Marine Systems
1.1, pp. 29–38. issn: 0924-7963. doi: https://doi.org/10.1016/
0924-7963(90)90085-O.

Jones, D. L., S. Olivera-Ardid, E. Klumpp, C. Knief, P. W. Hill, E.
Lehndorff, and R. Bol (2018). “Moisture activation and carbon use
efficiency of soil microbial communities along an aridity gradient in
the Atacama Desert.” In: Soil Biology and Biochemistry 117, pp. 68–71.
issn: 0038-0717. doi: https://doi.org/10.1016/j.soilbio.2017.
10.026.

Jordan, T. E., C. H. L., L. V. Godfrey, S. J. Colucci, C. G. P., J. U.
M., G. G. L., and J. F. Paul (Jan. 2019). “Isotopic characteristics
and paleoclimate implications of the extreme precipitation event of
March 2015 in northern Chile.” In: Andean Geology 46.1, pp. 1–31.
doi: https://doi.org/10.5027/andgeoV46n1-3087.

https://doi.org/10.1002/joc.1359
https://doi.org/10.1002/joc.938
https://doi.org/10.1002/qj.49709942013
https://doi.org/10.1002/qj.49709942013
https://doi.org/10.1175/WAF-D-13-00103.1
https://doi.org/10.1175/BAMS-D-17-0231.1
https://doi.org/10.1007/s00704-014-1231-y
https://doi.org/10.1007/s00704-014-1231-y
https://doi.org/10.1016/j.gloplacha.2019.103029
https://doi.org/10.1016/j.gloplacha.2019.103029
https://doi.org/https://doi.org/10.1016/0924-7963(90)90085-O
https://doi.org/https://doi.org/10.1016/0924-7963(90)90085-O
https://doi.org/https://doi.org/10.1016/j.soilbio.2017.10.026
https://doi.org/https://doi.org/10.1016/j.soilbio.2017.10.026
https://doi.org/https://doi.org/10.5027/andgeoV46n1-3087


bibliography 215

Jung, P. et al. (2020). “Desert breath–How fog promotes a novel type of
soil biocenosis, forming the coastal Atacama Desert’s living skin.”
In: Geobiology 18.1, pp. 113–124. doi: 10.1111/gbi.12368.

Kayano, M. T. and R. V. Andreoli (2007). “Relations of South American
summer rainfall interannual variations with the Pacific Decadal
Oscillation.” In: International Journal of Climatology 27.4, pp. 531–540.
doi: 10.1002/joc.1417.

Kerber, F., R. R. Querel, R. Rondanelli, R. Hanuschik, M. van den An-
cker, O. Cuevas, A. Smette, J. Smoker, T. Rose, and H. Czekala (Feb.
2014). “An episode of extremely low precipitable water vapour over
Paranal observatory.” In: Monthly Notices of the Royal Astronomical
Society 439.1, pp. 247–255. issn: 0035-8711. doi: 10.1093/mnras/
stt2404.

Khaniani, A. S., Z. Nikraftar, and S. Zakeri (2020). “Evaluation of
MODIS Near-IR water vapor product over Iran using ground-based
GPS measurements.” In: Atmospheric Research 231, p. 104657. issn:
0169-8095. doi: https://doi.org/10.1016/j.atmosres.2019.
104657.

Kingma, D. P. and J. Ba (2014). Adam: A Method for Stochastic Optimiza-
tion.

Klein, S. A. and D. L. Hartmann (Aug. 1993). “The Seasonal Cycle
of Low Stratiform Clouds.” In: Journal of Climate 6.8, pp. 1587–
1606. issn: 0894-8755. doi: 10.1175/1520-0442(1993)006<1587:
TSCOLS>2.0.CO;2.

Knief, C. et al. (2020). “Tracing elevational changes in microbial life
and organic carbon sources in soils of the Atacama Desert.” In:
Global and Planetary Change 184, p. 103078. issn: 0921-8181. doi:
https://doi.org/10.1016/j.gloplacha.2019.103078.

Koch, M., D. Kleinpeter, E. Auer, A. Siegmund, C. del Río, P. Osses,
J. García, M. Marzol, G. Zizka, and C. Kiefer (Nov. 2019). “Living at
the dry limits: ecological genetics of Tillandsia landbeckii lomas in
the Chilean Atacama Desert.” In: Plant Systematics and Evolution 305,
pp. 1041–1053. doi: https://doi.org/10.1007/s00606-019-01623-
0.

Kohonen, T. (2001). Self-Organizing Maps. 3rd ed. Vol. 30. Springer
Series in Information Sciences. Springer-Verlag Berlin Heidelberg.
doi: 10.1007/978-3-642-56927-2.

Kug, J.-S., F.-F. Jin, and S.-I. An (Mar. 2009). “Two Types of El Niño
Events: Cold Tongue El Niño and Warm Pool El Niño.” In: Jour-
nal of Climate 22.6, pp. 1499–1515. issn: 0894-8755. doi: 10.1175/
2008JCLI2624.1.

Laloyaux, P. et al. (2018). “CERA-20C: A Coupled Reanalysis of the
Twentieth Century.” In: Journal of Advances in Modeling Earth Systems
10.5, pp. 1172–1195. doi: 10.1029/2018MS001273.

Lamy, F., R. Kilian, H. W. Arz, J.-P. Francois, J. Kaiser, M. Prange, and
T. Steinke (2010). “Holocene changes in the position and intensity of

https://doi.org/10.1111/gbi.12368
https://doi.org/10.1002/joc.1417
https://doi.org/10.1093/mnras/stt2404
https://doi.org/10.1093/mnras/stt2404
https://doi.org/https://doi.org/10.1016/j.atmosres.2019.104657
https://doi.org/https://doi.org/10.1016/j.atmosres.2019.104657
https://doi.org/10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2
https://doi.org/10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2
https://doi.org/https://doi.org/10.1016/j.gloplacha.2019.103078
https://doi.org/https://doi.org/10.1007/s00606-019-01623-0
https://doi.org/https://doi.org/10.1007/s00606-019-01623-0
https://doi.org/10.1007/978-3-642-56927-2
https://doi.org/10.1175/2008JCLI2624.1
https://doi.org/10.1175/2008JCLI2624.1
https://doi.org/10.1029/2018MS001273


216 bibliography

the southern westerly wind belt.” In: Nature Geoscience 3.10, pp. 695–
699. issn: 1752-0908. doi: 10.1038/ngeo959.

Larraín, H, F Velásquez, P Cereceda, R Espejo, R Pinto, P Osses, and
R. Schemenauer (2002). “Fog measurements at the site “Falda Verde”
north of Chañaral compared with other fog stations of Chile.” In:
Atmospheric Research 64.1. 2nd International Conference on Fog and
Fog Collection, pp. 273–284. issn: 0169-8095. doi: https://doi.org/
10.1016/S0169-8095(02)00098-4.

Lary, D. J., A. H. Alavi, A. H. Gandomi, and A. L. Walker (2016). “Ma-
chine learning in geosciences and remote sensing.” In: Geoscience
Frontiers 7.1. Special Issue: Progress of Machine Learning in Geo-
sciences, pp. 3–10. issn: 1674-9871. doi: https://doi.org/10.1016/
j.gsf.2015.07.003.

Latorre, C., J. L. Betancourt, K. A. Rylander, and J. Quade (Mar. 2002).
“Vegetation invasions into absolute desert: A 45,000 yr rodent mid-
den record from the Calama-Salar de Atacama basins, northern
Chile (lat 22◦–24◦S).” In: GSA Bulletin 114.3, pp. 349–366. issn: 0016-
7606. doi: 10.1130/0016-7606(2002)114<0349:VIIADA>2.0.CO;2.

Latorre, C., A. L. González, J. Quade, J. M. Fariña, R. Pinto, and P. A.
Marquet (2011). “Establishment and formation of fog-dependent
Tillandsia landbeckii dunes in the Atacama Desert: Evidence from
radiocarbon and stable isotopes.” In: Journal of Geophysical Research:
Biogeosciences 116.G3. doi: 10.1029/2010JG001521.

Lau, M. W., Y. L. Yung, and D. L. Wu (2012). “Determining Cloud Base
and Thickness from Spaceborne Stereoscopic Imaging and Lidar
Profiling Techniques.” In: Accepted by Caltech Undergraduate Research
Journal Spring Issue.

Lee, T. and M. J. McPhaden (2010). “Increasing intensity of El Niño in
the central-equatorial Pacific.” In: Geophysical Research Letters 37.14.
doi: 10.1029/2010GL044007.

Lehnert, L. W., P. Jung, W. A. Obermeier, B. Büdel, and J. Bendix
(2018a). “Estimating Net Photosynthesis of Biological Soil Crusts
in the Atacama Using Hyperspectral Remote Sensing.” In: Remote
Sensing 10.6. issn: 2072-4292. doi: 10.3390/rs10060891.

Lehnert, L. W. et al. (2018b). “A Case Study on Fog/Low Stratus
Occurrence at Las Lomitas, Atacama Desert (Chile) as a Water
Source for Biological Soil Crusts.” In: Aerosol and Air Quality Research
18.1, pp. 254–269. doi: 10.4209/aaqr.2017.01.0021.

Lenters, J. D. and K. H. Cook (Mar. 1997). “On the Origin of the
Bolivian High and Related Circulation Features of the South Amer-
ican Climate.” In: Journal of the Atmospheric Sciences 54.5, pp. 656–
678. issn: 0022-4928. doi: 10.1175/1520- 0469(1997)054<0656:
OTOOTB>2.0.CO;2.

Levine, A. F. Z. and M. J. McPhaden (2015). “The annual cycle in
ENSO growth rate as a cause of the spring predictability barrier.”

https://doi.org/10.1038/ngeo959
https://doi.org/https://doi.org/10.1016/S0169-8095(02)00098-4
https://doi.org/https://doi.org/10.1016/S0169-8095(02)00098-4
https://doi.org/https://doi.org/10.1016/j.gsf.2015.07.003
https://doi.org/https://doi.org/10.1016/j.gsf.2015.07.003
https://doi.org/10.1130/0016-7606(2002)114<0349:VIIADA>2.0.CO;2
https://doi.org/10.1029/2010JG001521
https://doi.org/10.1029/2010GL044007
https://doi.org/10.3390/rs10060891
https://doi.org/10.4209/aaqr.2017.01.0021
https://doi.org/10.1175/1520-0469(1997)054<0656:OTOOTB>2.0.CO;2
https://doi.org/10.1175/1520-0469(1997)054<0656:OTOOTB>2.0.CO;2


bibliography 217

In: Geophysical Research Letters 42.12, pp. 5034–5041. doi: 10.1002/
2015GL064309.

Lilly, D. K. (1968). “Models of cloud-topped mixed layers under a
strong inversion.” In: Quarterly Journal of the Royal Meteorological
Society 94.401, pp. 292–309. doi: 10.1002/qj.49709440106.

Liu, Z. and M. Alexander (2007). “Atmospheric bridge, oceanic tunnel,
and global climatic teleconnections.” In: Reviews of Geophysics 45.2.
doi: 10.1029/2005RG000172.

Lobos Roco, F., J. V.-G. de Arellano, and X. Pedruzo-Bagazgoitia (2018).
“Characterizing the influence of the marine stratocumulus cloud on
the land fog at the Atacama Desert.” In: Atmospheric Research 214,
pp. 109–120. issn: 0169-8095. doi: 10.1016/j.atmosres.2018.07.
009.

Locarnini, R. A. et al. (2013). World ocean atlas 2013. Volume 1, Tempera-
ture. eng. Atlas.

Lübbecke, J. F. and M. J. McPhaden (Aug. 2013). “A Comparative
Stability Analysis of Atlantic and Pacific Niño Modes.” In: Journal of
Climate 26.16, pp. 5965–5980. issn: 0894-8755. doi: 10.1175/JCLI-D-
12-00758.1.

MODIS Characterization Support Team (MCST) (2017a). MODIS 1km
Calibrated Radiances Product. NASA MODIS Adaptive Processing
System, Goddard Space Flight Center, USA. doi: http://dx.doi.
org/10.5067/MODIS/MOD021KM.061.

MODIS Characterization Support Team (MCST) (2017b). MODIS 1km
Calibrated Radiances Product. NASA MODIS Adaptive Processing
System, Goddard Space Flight Center, USA. doi: http://dx.doi.
org/10.5067/MODIS/MYD021KM.061.

MODIS Characterization Support Team (MCST) (2017c). MODIS Ge-
olocation Fields Product. NASA MODIS Adaptive Processing System,
Goddard Space Flight Center, USA. doi: http://dx.doi.org/10.
5067/MODIS/MOD03.061.

MODIS Characterization Support Team (MCST) (2017d). MODIS Ge-
olocation Fields Product. NASA MODIS Adaptive Processing System,
Goddard Space Flight Center, USA. doi: http://dx.doi.org/10.
5067/MODIS/MYD03.061.

Mantua, N. J. and S. R. Hare (2002). “The Pacific Decadal Oscillation.”
In: Journal of Oceanography 58.1, pp. 35–44. issn: 1573-868X. doi:
10.1023/A:1015820616384.

Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis
(1997). “A Pacific Interdecadal Climate Oscillation with Impacts on
Salmon Production.” In: Bulletin of the American Meteorological Society
78.6, pp. 1069–1080. doi: 10 . 1175 / 1520 - 0477(1997 ) 078<1069 :

APICOW>2.0.CO;2.
Marchand, R. T., T. P. Ackerman, and C. Moroney (2007). “An as-

sessment of Multiangle Imaging Spectroradiometer (MISR) stereo-
derived cloud top heights and cloud top winds using ground-based

https://doi.org/10.1002/2015GL064309
https://doi.org/10.1002/2015GL064309
https://doi.org/10.1002/qj.49709440106
https://doi.org/10.1029/2005RG000172
https://doi.org/10.1016/j.atmosres.2018.07.009
https://doi.org/10.1016/j.atmosres.2018.07.009
https://doi.org/10.1175/JCLI-D-12-00758.1
https://doi.org/10.1175/JCLI-D-12-00758.1
https://doi.org/http://dx.doi.org/10.5067/MODIS/MOD021KM.061
https://doi.org/http://dx.doi.org/10.5067/MODIS/MOD021KM.061
https://doi.org/http://dx.doi.org/10.5067/MODIS/MYD021KM.061
https://doi.org/http://dx.doi.org/10.5067/MODIS/MYD021KM.061
https://doi.org/http://dx.doi.org/10.5067/MODIS/MOD03.061
https://doi.org/http://dx.doi.org/10.5067/MODIS/MOD03.061
https://doi.org/http://dx.doi.org/10.5067/MODIS/MYD03.061
https://doi.org/http://dx.doi.org/10.5067/MODIS/MYD03.061
https://doi.org/10.1023/A:1015820616384
https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2
https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2


218 bibliography

radar, lidar, and microwave radiometers.” In: Journal of Geophysical
Research: Atmospheres 112.D6. doi: 10.1029/2006JD007091.

Marín, J. C. and B. S. Barrett (2017). “Seasonal and intraseasonal
variability of precipitable water vapour in the Chajnantor plateau,
Chile.” In: International Journal of Climatology 37.S1, pp. 958–971. doi:
10.1002/joc.5049.

May, M. and D. Hoffmeister (2018). Hourly time-lapse images at weather
station 13 - Cerros de Calate, Chile from April 2017 to September 2017.
[Accessed 20. October 2020].

McHugh, T. A., E. Morrissey, S. Reed, B. Hungate, and E. Schwartz
(Sept. 2015). “Water from air: An overlooked source of moisture
in arid and semiarid regions.” In: Scientific Reports 5.13767. doi:
https://doi.org/10.1038/srep13767.

McIntyre, P. E. O., M. F. Salvador, R. N. Cárdenas, P. C. Troncoso,
and H. L. Barros (2005). “Coastal Fog, Satellite Imagery, and Drink-
ing Water: Student Fieldwork in the Atacama Desert.” In: Geocarto
International 20.1, pp. 69–74. doi: 10.1080/10106040508542338.

Meerkötter, R. and T. Zinner (2007). “Satellite remote sensing of cloud
base height for convective cloud fields: A case study.” In: Geophysical
Research Letters 34.17. L17805, n/a–n/a. issn: 1944-8007. doi: 10.
1029/2007GL030347.

Menzel, W. P., R. A. Frey, H. Zhang, D. P. Wylie, C. C. Moeller, R. E.
Holz, B. Maddux, B. A. Baum, K. I. Strabala, and L. E. Gumley (Apr.
2008). “MODIS Global Cloud-Top Pressure and Amount Estimation:
Algorithm Description and Results.” In: Journal of Applied Meteorology
and Climatology 47.4, pp. 1175–1198. issn: 1558-8424. doi: 10.1175/
2007JAMC1705.1.

Merk, D., H. Deneke, B. Pospichal, and P. Seifert (2016). “Investigation
of the adiabatic assumption for estimating cloud micro- and macro-
physical properties from satellite and ground observations.” In: At-
mospheric Chemistry and Physics 16.2, pp. 933–952. doi: 10.5194/acp-
16-933-2016.

Montecino, V. and C. B. Lange (2009). “The Humboldt Current System:
Ecosystem components and processes, fisheries, and sediment stud-
ies.” In: Progress in Oceanography 83.1. Eastern Boundary Upwelling
Ecosystems: Integrative and Comparative Approaches, pp. 65–79.
issn: 0079-6611. doi: https://doi.org/10.1016/j.pocean.2009.
07.041.

Montecinos, A. and P. Aceituno (Jan. 2003). “Seasonality of the ENSO-
Related Rainfall Variability in Central Chile and Associated Circula-
tion Anomalies.” In: Journal of Climate 16.2, pp. 281–296. issn: 0894-
8755. doi: 10.1175/1520-0442(2003)016<0281:SOTERR>2.0.CO;2.

Mörchen, R., E. Lehndorff, F. A. Diaz, G. Moradi, R. Bol, B. Fuentes, E.
Klumpp, and W. Amelung (2019). “Carbon accrual in the Atacama
Desert.” In: Global and Planetary Change 181, p. 102993. issn: 0921-
8181. doi: https://doi.org/10.1016/j.gloplacha.2019.102993.

https://doi.org/10.1029/2006JD007091
https://doi.org/10.1002/joc.5049
https://doi.org/https://doi.org/10.1038/srep13767
https://doi.org/10.1080/10106040508542338
https://doi.org/10.1029/2007GL030347
https://doi.org/10.1029/2007GL030347
https://doi.org/10.1175/2007JAMC1705.1
https://doi.org/10.1175/2007JAMC1705.1
https://doi.org/10.5194/acp-16-933-2016
https://doi.org/10.5194/acp-16-933-2016
https://doi.org/https://doi.org/10.1016/j.pocean.2009.07.041
https://doi.org/https://doi.org/10.1016/j.pocean.2009.07.041
https://doi.org/10.1175/1520-0442(2003)016<0281:SOTERR>2.0.CO;2
https://doi.org/https://doi.org/10.1016/j.gloplacha.2019.102993


bibliography 219

Moroney, C., R. Davies, and J. P. Muller (2002). “Operational retrieval
of cloud-top heights using MISR data.” In: IEEE Transactions on
Geoscience and Remote Sensing 40.7, pp. 1532–1540. issn: 0196-2892.
doi: 10.1109/TGRS.2002.801150.

Moroney, C. and K. Mueller (2012). Data Product Specification for the
MISR Level 2 Cloud Product. Tech. rep. JPL D-72327. Jet Propulsion
Laboratory, California Institute of Technology.

Muñoz-Schick, M., R. Pinto, A. Mesa, and A. Moreira-Muñoz (June
2001). “"Oasis de neblina" en los cerros costeros del sur de Iquique,
región de Tarapacá, Chile, durante el evento El Niño 1997-1998.” es.
In: Revista chilena de historia natural 74, pp. 389–405. issn: 0716-078X.
doi: 10.4067/S0716-078X2001000200014.

Muñoz, R. C., J. Quintana, M. J. Falvey, J. A. Rutllant, and R. Garreaud
(June 2016). “Coastal Clouds at the Eastern Margin of the South-
east Pacific: Climatology and Trends.” In: Journal of Climate 29.12,
pp. 4525–4542. issn: 0894-8755. doi: 10.1175/JCLI-D-15-0757.1.

Muñoz, R. C., R. A. Zamora, and J. A. Rutllant (2011). “The Coastal
Boundary Layer at the Eastern Margin of the Southeast Pacific
(23.4◦S, 70.4◦W): Cloudiness-Conditioned Climatology.” In: Journal
of Climate 24.4, pp. 1013–1033. doi: 10.1175/2010JCLI3714.1.

Mueller, K., C. Moroney, V. Jovanovic, M. Garay, J.-P. Muller, L. Di
Girolamo, and R. Davies (2013). MISR Level 2 Cloud Product Algorithm
Theoretical Basis. Tech. rep. JPL D-73327. Jet Propulsion Laboratory,
California Institute of Technology.

Mülmenstädt, J., O. Sourdeval, D. S. Henderson, T. S. L’Ecuyer, C.
Unglaub, L. Jungandreas, C. Böhm, L. M. Russell, and J. Quaas
(2018). “Using CALIOP to estimate cloud-field base height and its
uncertainty: The Cloud Base Altitude Spatial Extrapolator (CBASE)
algorithm and dataset.” In: Earth Syst. Sci. Data 10, pp. 2279–2293.
doi: 10.5194/essd-10-2279-2018.

Nash, D., D. Waliser, B. Guan, H. Ye, and F. M. Ralph (2018). “The Role
of Atmospheric Rivers in Extratropical and Polar Hydroclimate.”
In: Journal of Geophysical Research: Atmospheres 123.13, pp. 6804–6821.
doi: 10.1029/2017JD028130.

National Oceanic and Atmospheric Administration, Department of
Defense, Federal Aviation Administration, and United States Navy
(1998). Automated Surface Observing System User’s Guide.

Ndarana, T. and D. W. Waugh (2010). “The link between cut-off lows
and Rossby wave breaking in the Southern Hemisphere.” In: Quar-
terly Journal of the Royal Meteorological Society 136.649, pp. 869–885.
doi: 10.1002/qj.627.

Neiman, P. J., F. M. Ralph, G. A. Wick, J. D. Lundquist, and M. D.
Dettinger (Feb. 2008). “Meteorological Characteristics and Overland
Precipitation Impacts of Atmospheric Rivers Affecting the West
Coast of North America Based on Eight Years of SSM/I Satellite

https://doi.org/10.1109/TGRS.2002.801150
https://doi.org/10.4067/S0716-078X2001000200014
https://doi.org/10.1175/JCLI-D-15-0757.1
https://doi.org/10.1175/2010JCLI3714.1
https://doi.org/10.5194/essd-10-2279-2018
https://doi.org/10.1029/2017JD028130
https://doi.org/10.1002/qj.627


220 bibliography

Observations.” In: Journal of Hydrometeorology 9.1, pp. 22–47. issn:
1525-755X. doi: 10.1175/2007JHM855.1.

Newell, R. E., N. E. Newell, Y. Zhu, and C. Scott (1992). “Tropo-
spheric rivers? – A pilot study.” In: Geophysical Research Letters 19.24,
pp. 2401–2404. doi: 10.1029/92GL02916.

Newman, M., S.-I. Shin, and M. A. Alexander (2011). “Natural vari-
ation in ENSO flavors.” In: Geophysical Research Letters 38.14. doi:
10.1029/2011GL047658.

Newman, M. et al. (June 2016). “The Pacific Decadal Oscillation, Re-
visited.” In: Journal of Climate 29.12, pp. 4399–4427. issn: 0894-8755.
doi: 10.1175/JCLI-D-15-0508.1.

Osses, P., C. Barría, M. Farías, and P. Cereceda (Jan. 2005). “La nube
estratocúmulo en Tarapacá, Chile. Validación de imágenes GOES
mediante observación en tiempo real (17 al 26 de julio del año
2002).” In: Revista de Geografía, Norte Grande, pp. 131–143.

Osses, P., R. S. Schemenauer, P. Cereceda, H. Larraín, and C. Correa
(2000). “Los atrapanieblas del Santuario Padre Hurtado y sus proyec-
ciones en el combate a la desertificación.” In: Revista de geografía
Norte Grande 000196632.27, pp. 61–67. issn: 0379-8682.

Otarola, A., C. D. Breuck, T. Travouillon, S. Matsushita, L.-Å. Nyman,
A. Wootten, S. J. E. Radford, M. Sarazin, F. Kerber, and J. P. Pérez-
Beaupuits (2019). “Precipitable Water Vapor, Temperature, and Wind
Statistics At Sites Suitable for mm and Submm Wavelength Astron-
omy in Northern Chile.” In: Publications of the Astronomical Society of
the Pacific 131.998, p. 045001. doi: 10.1088/1538-3873/aafb78.

Paltan, H., D. Waliser, W. H. Lim, B. Guan, D. Yamazaki, R. Pant, and S.
Dadson (2017). “Global Floods and Water Availability Driven by At-
mospheric Rivers.” In: Geophysical Research Letters 44.20, pp. 10,387–
10,395. doi: 10.1002/2017GL074882.

Paluch, I. R. and D. H. Lenschow (Oct. 1991). “Stratiform Cloud For-
mation in the Marine Boundary Layer.” In: Journal of the Atmospheric
Sciences 48.19, pp. 2141–2158. issn: 0022-4928. doi: 10.1175/1520-
0469(1991)048<2141:SCFITM>2.0.CO;2.

Payne, A. E., M.-E. Demory, L. R. Leung, A. M. Ramos, C. A. Shields,
J. J. Rutz, N. Siler, G. Villarini, A. Hall, and F. M. Ralph (2020).
“Responses and impacts of atmospheric rivers to climate change.”
In: Nature Reviews Earth & Environment 1.3, pp. 143–157. issn: 2662-
138X. doi: 10.1038/s43017-020-0030-5.

Peters, D. and D. W. Waugh (Nov. 2003). “Rossby Wave Breaking
in the Southern Hemisphere Wintertime Upper Troposphere.” In:
Monthly Weather Review 131.11, pp. 2623–2634. issn: 0027-0644. doi:
10.1175/1520-0493(2003)131<2623:RWBITS>2.0.CO;2.

Pinto, R., I. Barría, and P. Marquet (2006). “Geographical distribution
of Tillandsia lomas in the Atacama Desert, northern Chile.” In:
Journal of Arid Environments 65.4, pp. 543–552. issn: 0140-1963. doi:
https://doi.org/10.1016/j.jaridenv.2005.08.015.

https://doi.org/10.1175/2007JHM855.1
https://doi.org/10.1029/92GL02916
https://doi.org/10.1029/2011GL047658
https://doi.org/10.1175/JCLI-D-15-0508.1
https://doi.org/10.1088/1538-3873/aafb78
https://doi.org/10.1002/2017GL074882
https://doi.org/10.1175/1520-0469(1991)048<2141:SCFITM>2.0.CO;2
https://doi.org/10.1175/1520-0469(1991)048<2141:SCFITM>2.0.CO;2
https://doi.org/10.1038/s43017-020-0030-5
https://doi.org/10.1175/1520-0493(2003)131<2623:RWBITS>2.0.CO;2
https://doi.org/https://doi.org/10.1016/j.jaridenv.2005.08.015


bibliography 221

Pizarro, J. G. and A. Montecinos (1999). “Cutoff cyclones off the sub-
tropical coast of Chile.” In: Sixth International Conference on Southern
Hemisphere Meteorology and Oceanography. American Meteorological
Society.

Platnick, S., S. Ackerman, M. King, G. Wind, K. Meyer, P. Menzel,
R. Frey, R. Holz, B. Baum, and P. Yang (2017a). “MODIS atmosphere
L2 cloud product (06_L2).” In: NASA MODIS Adaptive Processing
System, Goddard Space Flight Center. doi: https://doi.org/10.5067/
MODIS/MOD06_L2.061.

Platnick, S., S. Ackerman, M. King, G. Wind, K. Meyer, P. Menzel,
R. Frey, R. Holz, B. Baum, and P. Yang (2017b). “MODIS atmosphere
L2 cloud product (06_L2).” In: NASA MODIS Adaptive Processing
System, Goddard Space Flight Center. doi: https://doi.org/10.5067/
MODIS/MYD06_L2.061.

Pliscoff, P., N. Zanetta, J. Hepp, and J. Machuca (2017). “Efectos sobre
la flora y vegetación del evento de precipitación extremo de agosto
2015 en Alto Patache, Desierto de Atacama, Chile.” es. In: Revista
de geografía Norte Grande 68, pp. 91–103. issn: 0718-3402. doi: https:
//dx.doi.org/10.4067/S0718-34022017000300091.

Poli, P. et al. (2016). “ERA-20C: An Atmospheric Reanalysis of the
Twentieth Century.” In: Journal of Climate 29.11, pp. 4083–4097. doi:
10.1175/JCLI-D-15-0556.1.

Priego, E., J. Jones, M. Porres, and A. Seco (2017). “Monitoring water
vapour with GNSS during a heavy rainfall event in the Spanish
Mediterranean area.” In: Geomatics, Natural Hazards and Risk 8.2,
pp. 282–294. doi: 10.1080/19475705.2016.1201150.

Qiu, B. and S. Chen (Nov. 2005). “Variability of the Kuroshio Extension
Jet, Recirculation Gyre, and Mesoscale Eddies on Decadal Time
Scales.” In: Journal of Physical Oceanography 35.11, pp. 2090–2103.
issn: 0022-3670. doi: 10.1175/JPO2807.1.

Rahn, D. A. and R. Garreaud (2010). “Marine boundary layer over the
subtropical southeast Pacific during VOCALS-REx – Part 1: Mean
structure and diurnal cycle.” In: Atmospheric Chemistry and Physics
10.10, pp. 4491–4506. doi: 10.5194/acp-10-4491-2010.

Ralph, F. M. and M. D. Dettinger (2011). “Storms, floods, and the sci-
ence of atmospheric rivers.” In: Eos, Transactions American Geophysical
Union 92.32, pp. 265–266. doi: 10.1029/2011EO320001.

Ralph, F. M., M. D. Dettinger, M. M. Cairns, T. J. Galarneau, and
J. Eylander (May 2018). “Defining “Atmospheric River”: How the
Glossary of Meteorology Helped Resolve a Debate.” In: Bulletin of
the American Meteorological Society 99.4, pp. 837–839. issn: 0003-0007.
doi: 10.1175/BAMS-D-17-0157.1.

Ramos, A. M., R. Tomé, R. M. Trigo, M. L. R. Liberato, and J. G. Pinto
(2016). “Projected changes in atmospheric rivers affecting Europe in
CMIP5 models.” In: Geophysical Research Letters 43.17, pp. 9315–9323.
doi: 10.1002/2016GL070634.

https://doi.org/https://doi.org/10.5067/MODIS/MOD06_L2.061
https://doi.org/https://doi.org/10.5067/MODIS/MOD06_L2.061
https://doi.org/https://doi.org/10.5067/MODIS/MYD06_L2.061
https://doi.org/https://doi.org/10.5067/MODIS/MYD06_L2.061
https://doi.org/https://dx.doi.org/10.4067/S0718-34022017000300091
https://doi.org/https://dx.doi.org/10.4067/S0718-34022017000300091
https://doi.org/10.1175/JCLI-D-15-0556.1
https://doi.org/10.1080/19475705.2016.1201150
https://doi.org/10.1175/JPO2807.1
https://doi.org/10.5194/acp-10-4491-2010
https://doi.org/10.1029/2011EO320001
https://doi.org/10.1175/BAMS-D-17-0157.1
https://doi.org/10.1002/2016GL070634


222 bibliography

Randall, D. A. and M. J. Suarez (Oct. 1984). “On the Dynamics of Stra-
tocumulus Formation and Dissipation.” In: Journal of the Atmospheric
Sciences 41.20, pp. 3052–3057. issn: 0022-4928. doi: 10.1175/1520-
0469(1984)041<3052:OTDOSF>2.0.CO;2.

Rauber, R. M., H. Hu, F. Dominguez, S. W. Nesbitt, G. M. McFarquhar,
T. J. Zaremba, and J. A. Finlon (2020). “Structure of an Atmospheric
River Over Australia and the Southern Ocean. Part I: Tropical and
Midlatitude Water Vapor Fluxes.” In: Journal of Geophysical Research:
Atmospheres 125.18. e2020JD032513 2020JD032513, e2020JD032513.
doi: 10.1029/2020JD032513.

Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander,
D. P. Rowell, E. C. Kent, and A. Kaplan (2003). “Global analyses of
sea surface temperature, sea ice, and night marine air temperature
since the late nineteenth century.” In: Journal of Geophysical Research:
Atmospheres 108.D14. doi: 10.1029/2002JD002670.

Remy, D., M. Falvey, S. Bonvalot, M. Chlieh, G. Gabalda, J.-L. Froger,
and D. Legrand (2011). “Variability of atmospheric precipitable
water in northern Chile: Impacts on interpretation of InSAR data for
earthquake modeling.” In: Journal of South American Earth Sciences
31.2, pp. 214–226. issn: 0895-9811. doi: https://doi.org/10.1016/
j.jsames.2011.01.003.

Reyers, M. (2018). WRF Output daily accumulated total precipitation 10km
resolution Atacama. Accessed: 2020-10-23. doi: https://dx.doi.org/
10.5880/CRC1211DB.20.

Reyers, M., C. Böhm, L. Knarr, Y. Shao, and S. Crewell (Aug. 2020).
“Synoptic-to-regional scale analysis of rainfall in the Atacama Desert
(18◦S–26◦S) using a long-term simulation with WRF.” In: Monthly
Weather Review, pp. 1–51. issn: 0027-0644. doi: 10.1175/MWR-D-20-
0038.1.

Reyers, M. and Y. Shao (2019). “Cutoff lows off the coast of the Ata-
cama Desert under present day conditions and in the Last Glacial
Maximum.” In: Global and Planetary Change 181, p. 102983. issn: 0921-
8181. doi: https://doi.org/10.1016/j.gloplacha.2019.102983.

Río, C. del et al. (2018). “ENSO Influence on Coastal Fog-Water Yield
in the Atacama Desert, Chile.” In: Aerosol and Air Quality Research
18.1, pp. 127–144. doi: 10.4209/aaqr.2017.01.0022.

Ritter, B. et al. (2019). “Climatic fluctuations in the hyperarid core of
the Atacama Desert during the past 215 ka.” In: Scientific Reports 9.1,
p. 5270. issn: 2045-2322. doi: 10.1038/s41598-019-41743-8.

Ritterbach, L. and P. Becker (2020). “Temperature and humidity de-
pendent formation of CaSO4 · xH2O (x = 0 · · · 2) phases.” In: Global
and Planetary Change 187, p. 103132. issn: 0921-8181. doi: 10.1016/j.
gloplacha.2020.103132.

Rogers, D. P. and D. Koraccn (Aug. 1992). “Radiative Transfer and
Turbulence in the Cloud-topped Marine Atmospheric Boundary
Layer.” In: Journal of the Atmospheric Sciences 49.16, pp. 1473–1486.

https://doi.org/10.1175/1520-0469(1984)041<3052:OTDOSF>2.0.CO;2
https://doi.org/10.1175/1520-0469(1984)041<3052:OTDOSF>2.0.CO;2
https://doi.org/10.1029/2020JD032513
https://doi.org/10.1029/2002JD002670
https://doi.org/https://doi.org/10.1016/j.jsames.2011.01.003
https://doi.org/https://doi.org/10.1016/j.jsames.2011.01.003
https://doi.org/https://dx.doi.org/10.5880/CRC1211DB.20
https://doi.org/https://dx.doi.org/10.5880/CRC1211DB.20
https://doi.org/10.1175/MWR-D-20-0038.1
https://doi.org/10.1175/MWR-D-20-0038.1
https://doi.org/https://doi.org/10.1016/j.gloplacha.2019.102983
https://doi.org/10.4209/aaqr.2017.01.0022
https://doi.org/10.1038/s41598-019-41743-8
https://doi.org/10.1016/j.gloplacha.2020.103132
https://doi.org/10.1016/j.gloplacha.2020.103132


bibliography 223

issn: 0022-4928. doi: 10.1175/1520-0469(1992)049<1473:RTATIT>
2.0.CO;2.

Rondanelli, R., A. Molina, and M. Falvey (2015). “The Atacama Surface
Solar Maximum.” In: Bulletin of the American Meteorological Society
96.3, pp. 405–418. doi: 10.1175/BAMS-D-13-00175.1.

Ruhm, J., T. Böhnert, M. Weigend, F. F. Merklinger, A. Stoll, D. Quandt,
and F. Luebert (May 2020). “Plant life at the dry limit—Spatial
patterns of floristic diversity and composition around the hyperarid
core of the Atacama Desert.” In: PLOS ONE 15.5, pp. 1–21. doi:
10.1371/journal.pone.0233729.

Rundel, P., B. Palma, M. Dillon, M. R. Sharifi, and K. Boonpragob
(Jan. 1997). “Tillandsia landbeckii in the coastal Atacama Desert of
northern Chile.” In: Revista Chilena de Historia Natural 70, pp. 341–
349.

Rutllant, J. A., R. C. Muñoz, and R. D. Garreaud (2013). “Meteorolog-
ical observations on the northern Chilean coast during VOCALS-
REx.” In: Atmospheric Chemistry and Physics 13.6, pp. 3409–3422. doi:
10.5194/acp-13-3409-2013.

Rutllant, J. A., H. Fuenzalida, and P. Aceituno (2003). “Climate dynam-
ics along the arid northern coast of Chile: The 1997–1998 Dinámica
del Clima de la Región de Antofagasta (DICLIMA) experiment.” In:
Journal of Geophysical Research: Atmospheres 108.D17. 4538, n/a–n/a.
issn: 2156-2202. doi: 10.1029/2002JD003357.

Saavedra, F., G. Cortés, M. Viale, S. Margulis, and J. McPhee (2020).
“Atmospheric Rivers Contribution to the Snow Accumulation Over
the Southern Andes (26.5◦S–37.5◦S).” In: Frontiers in Earth Science 8,
p. 261. issn: 2296-6463. doi: 10.3389/feart.2020.00261.

Sasaki, Y. N., S. Minobe, and N. Schneider (Mar. 2013). “Decadal
Response of the Kuroshio Extension Jet to Rossby Waves: Observa-
tion and Thin-Jet Theory.” In: Journal of Physical Oceanography 43.2,
pp. 442–456. issn: 0022-3670. doi: 10.1175/JPO-D-12-096.1.

Sasaki, Y. N. and N. Schneider (May 2011). “Decadal Shifts of the
Kuroshio Extension Jet: Application of Thin-Jet Theory.” In: Journal
of Physical Oceanography 41.5, pp. 979–993. issn: 0022-3670. doi:
10.1175/2011JPO4550.1.

Schemenauer, R. S. and P. Cereceda (Nov. 1994a). “A Proposed Stan-
dard Fog Collector for Use in High-Elevation Regions.” In: Journal
of Applied Meteorology 33.11, pp. 1313–1322. issn: 0894-8763. doi:
10.1175/1520-0450(1994)033<1313:APSFCF>2.0.CO;2.

Schemenauer, R. S. and P. Cereceda (1994b). “Fog collection’s role
in water planning for developing countries.” In: Natural Resources
Forum 18.2, pp. 91–100. doi: 10.1111/j.1477-8947.1994.tb00879.
x.

Schröder, M. et al. (2017). “GEWEX water vapor assessment (G-VAP).”
In: World Climate Research Programme (WCRP): Geneva Switzerland
WCRP report 16/2017, 216 pp.

https://doi.org/10.1175/1520-0469(1992)049<1473:RTATIT>2.0.CO;2
https://doi.org/10.1175/1520-0469(1992)049<1473:RTATIT>2.0.CO;2
https://doi.org/10.1175/BAMS-D-13-00175.1
https://doi.org/10.1371/journal.pone.0233729
https://doi.org/10.5194/acp-13-3409-2013
https://doi.org/10.1029/2002JD003357
https://doi.org/10.3389/feart.2020.00261
https://doi.org/10.1175/JPO-D-12-096.1
https://doi.org/10.1175/2011JPO4550.1
https://doi.org/10.1175/1520-0450(1994)033<1313:APSFCF>2.0.CO;2
https://doi.org/10.1111/j.1477-8947.1994.tb00879.x
https://doi.org/10.1111/j.1477-8947.1994.tb00879.x


224 bibliography

Schröder, M., M. Lockhoff, J. M. Forsythe, H. Q. Cronk, T. H. Von-
der Haar, and R. Bennartz (2016). “The GEWEX Water Vapor As-
sessment: Results from Intercomparison, Trend, and Homogeneity
Analysis of Total Column Water Vapor.” In: Journal of Applied Meteo-
rology and Climatology 55.7, pp. 1633–1649. doi: 10.1175/JAMC-D-15-
0304.1.

Schulz, N., J. P. Boisier, and P. Aceituno (2012). “Climate change
along the arid coast of northern Chile.” In: International Journal of
Climatology 32.12, pp. 1803–1814. doi: 10.1002/joc.2395.

Schween, J. H., D. Hoffmeister, and U. Löhnert (2020). “Filling the
observational gap in the Atacama Desert with a new network of
climate stations.” In: Global and Planetary Change 184, p. 103034. issn:
0921-8181. doi: https://doi.org/10.1016/j.gloplacha.2019.
103034.

Seethala, C., J. R. Norris, and T. A. Myers (Oct. 2015). “How Has
Subtropical Stratocumulus and Associated Meteorology Changed
since the 1980s?” In: Journal of Climate 28.21, pp. 8396–8410. issn:
0894-8755. doi: 10.1175/JCLI-D-15-0120.1.

Sepulchre, P., L. C. Sloan, and F. Fluteau (2011). “Modelling the Re-
sponse of Amazonian Climate to the Uplift of the Andean Mountain
Range.” In: Amazonia: Landscape and Species Evolution. John Wiley &
Sons, Ltd. Chap. Thirteen, pp. 211–222. isbn: 9781444306408. doi:
10.1002/9781444306408.ch13.

Skinner, C. B., J. M. Lora, A. E. Payne, and C. J. Poulsen (2020). “Atmo-
spheric river changes shaped mid-latitude hydroclimate since the
mid-Holocene.” In: Earth and Planetary Science Letters 541, p. 116293.
issn: 0012-821X. doi: https://doi.org/10.1016/j.epsl.2020.
116293.

Smith, W. L. and C. M. R. Platt (1978). “Comparison of Satellite-
Deduced Cloud Heights with Indications from Radiosonde and
Ground-Based Laser Measurements.” In: J. Appl. Meteorol. 17, pp. 1796–
1802. doi: 10.1175/1520-0450(1978)017\%3C1796:COSDCH\%3E2.0.
CO;2.

Soderberg, K. S. (2010). “The Role of Fog in the Ecohydrology and
Biogeochemistry of the Namib Desert.” PhD thesis. University of
Virginia. doi: 10.18130/V3KZ88.

Stein, A. F., R. R. Draxler, G. D. Rolph, B. J. B. Stunder, M. D. Co-
hen, and F. Ngan (Jan. 2016). “NOAA’s HYSPLIT Atmospheric
Transport and Dispersion Modeling System.” In: Bulletin of the Amer-
ican Meteorological Society 96.12, pp. 2059–2077. issn: 0003-0007. doi:
10.1175/BAMS-D-14-00110.1.

Steinke, S., S. Eikenberg, U. Löhnert, G. Dick, D. Klocke, P. Di Girolamo,
and S. Crewell (2015). “Assessment of small-scale integrated water
vapour variability during HOPE.” In: Atmospheric Chemistry and
Physics 15.5, pp. 2675–2692. doi: 10.5194/acp-15-2675-2015.

https://doi.org/10.1175/JAMC-D-15-0304.1
https://doi.org/10.1175/JAMC-D-15-0304.1
https://doi.org/10.1002/joc.2395
https://doi.org/https://doi.org/10.1016/j.gloplacha.2019.103034
https://doi.org/https://doi.org/10.1016/j.gloplacha.2019.103034
https://doi.org/10.1175/JCLI-D-15-0120.1
https://doi.org/10.1002/9781444306408.ch13
https://doi.org/https://doi.org/10.1016/j.epsl.2020.116293
https://doi.org/https://doi.org/10.1016/j.epsl.2020.116293
https://doi.org/10.1175/1520-0450(1978)017\%3C1796:COSDCH\%3E2.0.CO;2
https://doi.org/10.1175/1520-0450(1978)017\%3C1796:COSDCH\%3E2.0.CO;2
https://doi.org/10.18130/V3KZ88
https://doi.org/10.1175/BAMS-D-14-00110.1
https://doi.org/10.5194/acp-15-2675-2015


bibliography 225

Stevens, B. and S. Bony (June 2013). “Water in the Atmosphere.” In:
Physics Today 66, pp. 29–34. doi: https://doi.org/10.1063/PT.3.
2009.

Strabala, K. I., S. A. Ackerman, and W. P. Menzel (Feb. 1994). “Cloud
Properties inferred from 8–12-µm Data.” In: Journal of Applied Me-
teorology 33.2, pp. 212–229. issn: 0894-8763. doi: 10.1175/1520-
0450(1994)033<0212:CPIFD>2.0.CO;2.

Suen, J. Y., M. T. Fang, and P. M. Lubin (2014). “Global Distribution of
Water Vapor and Cloud Cover—Sites for High-Performance THz Ap-
plications.” In: IEEE Transactions on Terahertz Science and Technology
4.1, pp. 86–100. issn: 2156-342X. doi: 10.1109/TTHZ.2013.2294018.

Sunuararajan, R. and M. Tjernström (2000). “Observations and simula-
tions of a non-stationary coastal atmospheric boundary layer.” In:
Quarterly Journal of the Royal Meteorological Society 126.563, pp. 445–
476. doi: 10.1002/qj.49712656305.

Surma, J., S. Assonov, D. Herwartz, C. Voigt, and M. Staubwasser
(2018). “The evolution of 17O-excess in surface water of the arid
environment during recharge and evaporation.” In: Scientific Reports
8.4972, pp. 1–10. doi: 10.1038/s41598-018-23151-6.

Taguchi, B., H. Nakamura, M. Nonaka, N. Komori, A. Kuwano-
Yoshida, K. Takaya, and A. Goto (Jan. 2012). “Seasonal Evolutions
of Atmospheric Response to Decadal SST Anomalies in the North
Pacific Subarctic Frontal Zone: Observations and a Coupled Model
Simulation.” In: Journal of Climate 25.1, pp. 111–139. issn: 0894-8755.
doi: 10.1175/JCLI-D-11-00046.1.

Taguchi, B., S.-P. Xie, N. Schneider, M. Nonaka, H. Sasaki, and Y.
Sasai (June 2007). “Decadal Variability of the Kuroshio Extension:
Observations and an Eddy-Resolving Model Hindcast.” In: Journal
of Climate 20.11, pp. 2357–2377. issn: 0894-8755. doi: 10 . 1175 /

JCLI4142.1.
Tang, Y., J. Gao, C. Liu, X. Chen, and Y. Zhao (2019). “Dehydration

Pathways of Gypsum and the Rehydration Mechanism of Soluble
Anhydrite γ − CaSO4.” In: ACS Omega 4.4, pp. 7636–7642. doi:
https://doi.org/10.1021/acsomega.8b03476.

Tanimoto, Y., H. Nakamura, T. Kagimoto, and S. Yamane (2003). “An
active role of extratropical sea surface temperature anomalies in de-
termining anomalous turbulent heat flux.” In: Journal of Geophysical
Research: Oceans 108.C10. doi: 10.1029/2002JC001750.

Taylor, S., P. Stier, B. White, S. Finkensieper, and M. Stengel (2017).
“Evaluating the diurnal cycle in cloud top temperature from SE-
VIRI.” In: Atmospheric Chemistry and Physics 17.11, pp. 7035–7053.
doi: 10.5194/acp-17-7035-2017.

Tedeschi, R. G., I. F. A. Cavalcanti, and A. M. Grimm (2013). “Influ-
ences of two types of ENSO on South American precipitation.” In:
International Journal of Climatology 33.6, pp. 1382–1400. doi: 10.1002/
joc.3519.

https://doi.org/https://doi.org/10.1063/PT.3.2009
https://doi.org/https://doi.org/10.1063/PT.3.2009
https://doi.org/10.1175/1520-0450(1994)033<0212:CPIFD>2.0.CO;2
https://doi.org/10.1175/1520-0450(1994)033<0212:CPIFD>2.0.CO;2
https://doi.org/10.1109/TTHZ.2013.2294018
https://doi.org/10.1002/qj.49712656305
https://doi.org/10.1038/s41598-018-23151-6
https://doi.org/10.1175/JCLI-D-11-00046.1
https://doi.org/10.1175/JCLI4142.1
https://doi.org/10.1175/JCLI4142.1
https://doi.org/https://doi.org/10.1021/acsomega.8b03476
https://doi.org/10.1029/2002JC001750
https://doi.org/10.5194/acp-17-7035-2017
https://doi.org/10.1002/joc.3519
https://doi.org/10.1002/joc.3519


226 bibliography

Tharwat, A. (2018). “Classification assessment methods.” In: Applied
Computing and Informatics. issn: 2210-8327. doi: https://doi.org/
10.1016/j.aci.2018.08.003.

Timmermann, A. et al. (July 2018). “El Niño–Southern Oscillation
complexity.” In: Nature 559, pp. 535–545. doi: 10.1038/s41586-018-
0252-6.

UNEP (2011). Global Drylands: A UN system-wide response. Tech. rep.
United Nations Environment Management Group.

Valdés-Pineda, R., J. Cañón, and J. B. Valdés (2018). “Multi-decadal
40- to 60-year cycles of precipitation variability in Chile (South
America) and their relationship to the AMO and PDO signals.”
In: Journal of Hydrology 556, pp. 1153–1170. issn: 0022-1694. doi:
https://doi.org/10.1016/j.jhydrol.2017.01.031.

Valdés-Pineda, R., J. B. Valdés, H. F. Diaz, and R. Pizarro-Tapia
(2016). “Analysis of spatio-temporal changes in annual and sea-
sonal precipitation variability in South America-Chile and related
ocean–atmosphere circulation patterns.” In: International Journal of
Climatology 36.8, pp. 2979–3001. doi: 10.1002/joc.4532.

Van Beusekom, A. E., G. González, and M. A. Scholl (2017). “Analyz-
ing cloud base at local and regional scales to understand tropical
montane cloud forest vulnerability to climate change.” In: Atmo-
spheric Chemistry and Physics 17.11, pp. 7245–7259. doi: 10.5194/acp-
17-7245-2017.

Vargas, G., J. Rutllant, and L. Ortlieb (2006). “ENSO tropical–extratropical
climate teleconnections and mechanisms for Holocene debris flows
along the hyperarid coast of western South America (17◦–24◦S).” In:
Earth and Planetary Science Letters 249.3, pp. 467–483. issn: 0012-821X.
doi: https://doi.org/10.1016/j.epsl.2006.07.022.

Vecchi, G. A. and D. E. Harrison (June 2000). “Tropical Pacific Sea
Surface Temperature Anomalies, El Niño, and Equatorial Westerly
Wind Events.” In: Journal of Climate 13.11, pp. 1814–1830. issn: 0894-
8755. doi: 10.1175/1520-0442(2000)013<1814:TPSSTA>2.0.CO;2.

Viale, M. and M. N. Nuñez (Aug. 2011). “Climatology of Winter
Orographic Precipitation over the Subtropical Central Andes and
Associated Synoptic and Regional Characteristics.” In: Journal of
Hydrometeorology 12.4, pp. 481–507. issn: 1525-755X. doi: 10.1175/
2010JHM1284.1.

Viale, M., R. Valenzuela, R. D. Garreaud, and F. M. Ralph (Oct. 2018).
“Impacts of Atmospheric Rivers on Precipitation in Southern South
America.” In: Journal of Hydrometeorology 19.10, pp. 1671–1687. issn:
1525-755X. doi: 10.1175/JHM-D-18-0006.1.

Voigt, C. (2020). “Tracing the water cycle in the Atacama Desert using
water isotopes (δ2H, δ17O, δ18O) and pedogenic salt distributions.”
PhD thesis. Köln: Universität zu Köln.

Voigt, C., S. Klipsch, D. Herwartz, G. Chong, and M. Staubwasser
(2020). “The spatial distribution of soluble salts in the surface soil

https://doi.org/https://doi.org/10.1016/j.aci.2018.08.003
https://doi.org/https://doi.org/10.1016/j.aci.2018.08.003
https://doi.org/10.1038/s41586-018-0252-6
https://doi.org/10.1038/s41586-018-0252-6
https://doi.org/https://doi.org/10.1016/j.jhydrol.2017.01.031
https://doi.org/10.1002/joc.4532
https://doi.org/10.5194/acp-17-7245-2017
https://doi.org/10.5194/acp-17-7245-2017
https://doi.org/https://doi.org/10.1016/j.epsl.2006.07.022
https://doi.org/10.1175/1520-0442(2000)013<1814:TPSSTA>2.0.CO;2
https://doi.org/10.1175/2010JHM1284.1
https://doi.org/10.1175/2010JHM1284.1
https://doi.org/10.1175/JHM-D-18-0006.1


bibliography 227

of the Atacama Desert and their relationship to hyperaridity.” In:
Global and Planetary Change 184, p. 103077. issn: 0921-8181. doi:
https://doi.org/10.1016/j.gloplacha.2019.103077.

Vuille, M. (1999). “Atmospheric circulation over the Bolivian Altiplano
during dry and wet periods and extreme phases of the Southern
Oscillation.” In: International Journal of Climatology 19.14, pp. 1579–
1600. doi: 10.1002/(SICI)1097-0088(19991130)19:14<1579::AID-
JOC441>3.0.CO;2-N.

Vuille, M. and C. Ammann (1997). “REGIONAL SNOWFALL PAT-
TERNS IN THE HIGH, ARID ANDES.” In: Climatic Change 36.3,
pp. 413–423. issn: 1573-1480. doi: https://doi.org/10.1023/A:
1005330802974.

Waliser, D. and B. Guan (2017). “Extreme winds and precipitation
during landfall of atmospheric rivers.” In: Nature Geoscience 10.3,
pp. 179–183. issn: 1752-0908. doi: 10.1038/ngeo2894.

Walk, J., G. Stauch, M. Reyers, P. Vásquez, F. A. Sepúlveda, M. Bartz,
D. Hoffmeister, H. Brückner, and F. Lehmkuhl (2020). “Gradients
in climate, geology, and topography affecting coastal alluvial fan
morphodynamics in hyperarid regions – The Atacama perspective.”
In: Global and Planetary Change 185, p. 102994. issn: 0921-8181. doi:
https://doi.org/10.1016/j.gloplacha.2019.102994.

Wang, S., J. Huang, Y. He, and Y. Guan (2014). “Combined effects of
the Pacific Decadal Oscillation and El Niño-Southern Oscillation on
Global Land Dry–Wet Changes.” In: Scientific Reports 4.1, p. 6651.
issn: 2045-2322. doi: 10.1038/srep06651.

Warren-Rhodes, K. A., K. L. Rhodes, S. B. Pointing, S. A. Ewing, D. C.
Lacap, B. Gómez-Silva, R. Amundson, E. I. Friedmann, and C. P.
McKay (2006). “Hypolithic Cyanobacteria, Dry Limit of Photosyn-
thesis, and Microbial Ecology in the Hyperarid Atacama Desert.” In:
Microbial Ecology 52.3, pp. 389–398. issn: 1432-184X. doi: 10.1007/
s00248-006-9055-7.

Wehrens, R. and L. M. C. Buydens (2007). “Self- and Super-Organizing
Maps in R: The kohonen Package.” In: Journal of Statistical Software
21.5, pp. 1–19. doi: 10.18637/jss.v021.i05.

Wehrens, R. and J. Kruisselbrink (2018). “Flexible Self-Organizing
Maps in kohonen 3.0.” In: Journal of Statistical Software 87.7, pp. 1–18.
doi: 10.18637/jss.v087.i07.

Wengel, C., M. Latif, W. Park, J. Harlaß, and T. Bayr (2018). “Seasonal
ENSO phase locking in the Kiel Climate Model: The importance
of the equatorial cold sea surface temperature bias.” In: Climate
Dynamics 50.3, pp. 901–919. issn: 1432-0894. doi: 10.1007/s00382-
017-3648-3.

Wentz, F. J. (2013). SSM/I Version-7 Calibration Report. RSS Technical
Report 011012.

Westbeld, A., O. Klemm, F. Grießbaum, E. Sträter, H. Larrain, P. Osses,
and P. Cereceda (2009). “Fog deposition to a Tillandsia carpet in the

https://doi.org/https://doi.org/10.1016/j.gloplacha.2019.103077
https://doi.org/10.1002/(SICI)1097-0088(19991130)19:14<1579::AID-JOC441>3.0.CO;2-N
https://doi.org/10.1002/(SICI)1097-0088(19991130)19:14<1579::AID-JOC441>3.0.CO;2-N
https://doi.org/https://doi.org/10.1023/A:1005330802974
https://doi.org/https://doi.org/10.1023/A:1005330802974
https://doi.org/10.1038/ngeo2894
https://doi.org/https://doi.org/10.1016/j.gloplacha.2019.102994
https://doi.org/10.1038/srep06651
https://doi.org/10.1007/s00248-006-9055-7
https://doi.org/10.1007/s00248-006-9055-7
https://doi.org/10.18637/jss.v021.i05
https://doi.org/10.18637/jss.v087.i07
https://doi.org/10.1007/s00382-017-3648-3
https://doi.org/10.1007/s00382-017-3648-3


228 bibliography

Atacama Desert.” In: Annales Geophysicae 27.9, pp. 3571–3576. doi:
10.5194/angeo-27-3571-2009.

Wilcox, A. C., C. Escauriaza, R. Agredano, E. Mignot, V. Zuazo, S.
Otárola, L. Castro, J. Gironás, R. Cienfuegos, and L. Mao (2016).
“An integrated analysis of the March 2015 Atacama floods.” In:
Geophysical Research Letters 43.15, pp. 8035–8043. doi: 10 . 1002 /

2016GL069751.
Wilson, A. M. et al. (June 2020). “Training the Next Generation of

Researchers in the Science and Application of Atmospheric Rivers.”
In: Bulletin of the American Meteorological Society 101.6, E738–E743.
issn: 0003-0007. doi: 10.1175/BAMS-D-19-0311.1.

Winker, D. M. et al. (2010). “The CALIPSO Mission.” In: Bulletin of the
American Meteorological Society 91.9, pp. 1211–1230. doi: 10.1175/
2010BAMS3009.1.

Wittenberg, A. T., A. Rosati, T. L. Delworth, G. A. Vecchi, and F. Zeng
(Mar. 2014). “ENSO Modulation: Is It Decadally Predictable?” In:
Journal of Climate 27.7, pp. 2667–2681. issn: 0894-8755. doi: 10.1175/
JCLI-D-13-00577.1.

Wood, R. et al. (2011). “The VAMOS Ocean-Cloud-Atmosphere-Land
Study Regional Experiment (VOCALS-REx): goals, platforms, and
field operations.” In: Atmospheric Chemistry and Physics 11.2, pp. 627–
654. doi: 10.5194/acp-11-627-2011.

Wood, R. (2012). “Stratocumulus Clouds.” In: Monthly Weather Review
140.8, pp. 2373–2423. doi: 10.1175/MWR-D-11-00121.1.

World Meteorological Organization (2013). Technical Regulations Volume
II: Meteorological service for international air navigation.

Wyant, M. C. et al. (2010). “The PreVOCA experiment: modeling
the lower troposphere in the Southeast Pacific.” In: Atmospheric
Chemistry and Physics 10.10, pp. 4757–4774. doi: 10.5194/acp-10-
4757-2010.

Xiong, X., K. Chiang, A. Wu, W. L. Barnes, B. Guenther, and V. V. Sa-
lomonson (2008). “Multiyear On-Orbit Calibration and Performance
of Terra MODIS Thermal Emissive Bands.” In: IEEE Transactions on
Geoscience and Remote Sensing 46.6, pp. 1790–1803. issn: 1558-0644.
doi: 10.1109/TGRS.2008.916217.

Zhang, Y., J. M. Wallace, and D. S. Battisti (May 1997). “ENSO-like In-
terdecadal Variability: 1900–93.” In: Journal of Climate 10.5, pp. 1004–
1020. issn: 0894-8755. doi: 10.1175/1520-0442(1997)010<1004:
ELIV>2.0.CO;2.

Zhu, Y. and R. E. Newell (Mar. 1998). “A Proposed Algorithm for
Moisture Fluxes from Atmospheric Rivers.” In: Monthly Weather
Review 126.3, pp. 725–735. issn: 0027-0644. doi: 10.1175/1520-
0493(1998)126<0725:APAFMF>2.0.CO;2.

https://doi.org/10.5194/angeo-27-3571-2009
https://doi.org/10.1002/2016GL069751
https://doi.org/10.1002/2016GL069751
https://doi.org/10.1175/BAMS-D-19-0311.1
https://doi.org/10.1175/2010BAMS3009.1
https://doi.org/10.1175/2010BAMS3009.1
https://doi.org/10.1175/JCLI-D-13-00577.1
https://doi.org/10.1175/JCLI-D-13-00577.1
https://doi.org/10.5194/acp-11-627-2011
https://doi.org/10.1175/MWR-D-11-00121.1
https://doi.org/10.5194/acp-10-4757-2010
https://doi.org/10.5194/acp-10-4757-2010
https://doi.org/10.1109/TGRS.2008.916217
https://doi.org/10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2
https://doi.org/10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2
https://doi.org/10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2
https://doi.org/10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2


A C K N O W L E D G M E N T S

I would like to thank Prof. Dr. Johannes Quaas for forwarding me the
job posting for the PhD position in Cologne and for the cloud base
height topic which he gave to me. The latter was probably a door
opener for my engagement at the INFERNO group. Furthermore, I
like to thank Dr. Odran Sourdeval and Dr. Johannes Mülmenstädt for
speeding up my R game.

I would like to thank Prof. Dr. Tibor Dunai and everybody who was
involved in the initiation of the CRC 1211. The past years were very
inspiring and enabled me to engage in a unique science community
of all flavors.

A gigantic “Thank you” is shouted to Prof. Susanne Crewell who
helped me very much especially in the beginning. She always gave me
the feeling that my work was her biggest priority even though she has
tons of other things to do. She also gave me the freedom to take my
own turn around the CRC 1211 community.

I would like to thank Prof. Dr. Stephanie Fiedler and Prof. Dr. Jörg
Bendix for agreeing to review this thesis.

I would also like to thank Prof. Dr. Martin Melles to take take the
head chair of the defense committee. Furthermore, I like to thank him
for guiding the review process towards the second paper.

A big thank you goes to Dr. Jan Schween who was always ready
discuss Atacama-related issues. He always gave me the feeling that he
has read every single paper anyone has ever written on the subject. So
new inspiration was coming after a talk with him. Also thank you, for
reviewing Chapter 2!

For always cheering me up and spreading an incredibly positive
aura, I would like to thank Dr. Mark Reyers. Many collaborations arose,
because the chemistry is just right. Also thank you for reviewing
Chapter 7 and helping me with so many other manuscripts and
endless discussions.

I also like to thank Dr. Claudia Voigt from the geology department
for multiple things. Thank you for reviewing Chapter 1, thank you
for initiating many PhD activities around the CRC 1211, thank you
for patiently explaining paleo-humidity proxies and the development
thereof.

Another thank you goes to Prof. Dr. Ulrich Löhnert who always had
an open door for questions and who would always give feedback on
presentations and thus moving me forward.

Of course, I would like the entire INFERNO group for bringing so
many different topics and approaches to the group. While the diversity
in topics makes it sometimes tough to follow, it also forces one to

229



230 bibliography

constantly think outside the own comfort zone which is beneficial in
so many ways.

I would also like to thank the administration of the Institute and
the University of Cologne. I never had an issue which means you are
doing an incredible job!

I would like to thank Dr. Benedikt Maier for bringing me to the
KERAS package and agreeing to be part of the fog study. Thank you,
for taking the time to discuss all the neural network issues and jointly
draining any obstacles down to laughter.

Thank you, Lucas Mittenentzwei for the Pizza and the Tiramisu
last Saturday. It was exactly what I needed to get through those
conclusions!

Thanks to my family who unconditionally support me and always
feel with me with great empathy. They always know what I need, even
though I never say it.

The biggest “Thank you” of all is going to Antanina, who read
the entire thesis and most likely found every missing comma! You
also turned my life around when I was stuck in Chapter 1. I cannot
imagine how I would have done it without you. Thank you for all
your understanding, patience and encouragement.



D E C L A R AT I O N

Hiermit versichere ich an Eides statt, dass ich die vorliegende Disser-
tation selbstständig und ohne die Benutzung anderer als der angegebe-
nen Hilfsmittel und Literatur angefertigt habe. Alle Stellen, die wörtlich
oder sinngemäßaus veröffentlichten und nicht veröffentlichten Werken
dem Wortlaut oder dem Sinn nach entnommen wurden, sind als solche
kenntlich gemacht. Ich versichere an Eides statt, dass diese Dissertation
noch keiner anderen Fakultät oder Universität zur Prüfung vorgele-
gen hat; dass sie - abgesehen von unten angegebenen Teilpublika-
tionen und eingebundenen Artikeln und Manuskripten - noch nicht
veröffentlicht worden ist sowie, dass ich eine Veröffentlichung der
Dissertation vor Abschluss der Promotion nicht ohne Genehmigung
des Promotionsausschusses vornehmen werde. Die Bestimmungen
dieser Ordnung sind mir bekannt. Darüber hinaus erkläre ich hiermit,
dass ich die Ordnung zur Sicherung guter wissenschaftlicher Praxis
und zum Umgang mit wissenschaftlichem Fehlverhalten der Univer-
sität zu Köln gelesen und sie bei der Durchführung der Dissertation
zugrundeliegenden Arbeiten und der schriftlich verfassten Disserta-
tion beachtet habe und verpflichte mich hiermit, die dort genannten
Vorgaben bei allen wissenschaftlichen Tätigkeiten zu beachten und
umzusetzen. Ich versichere, dass die eingereichte elektronische Fas-
sung der eingereichten Druckfassung vollständig entspricht.

Köln, September 2020

Christoph Böhm



232 bibliography

fully integrated publications and submissions:

Böhm, C., O. Sourdeval, J. Mülmenstädt, J. Quaas, and S. Crewell
(2019). “Cloud base height retrieval from multi-angle satellite data.”
In: Atmospheric Measurement Techniques 12.3, pp. 1841–1860. doi:
10.5194/amt-12-1841-2019.

personal contribution : The idea for this study was presented
from Prof. Johannes Quaas, Odran Sourdeval and Johannes Mül-
menstädt. Susanne Crewell suggested to add the application on the
southeast Pacific and the comparison to reanalysis data. The study
was designed by myself and fine tuned in discussions among the
co-authors. MISR data was gathered by myself, whereas the ceilometer
reference data was gathered and provided by Johannes Mülmenstädt. I
processed the data and created all graphics by myself. The manuscript
was written by me with helpful suggestions from all co-authors. Fur-
thermore, seven anonymous reviewers gave valuable input which
initiated the thorough investigation of the scene structure influence
which was carried out by me.

Böhm, C., M. Reyers, J. H. Schween, and S. Crewell (2020b). “Water
vapor variability in the Atacama Desert during the 20th century.”
In: Global and Planetary Change 190, p. 103192. issn: 0921-8181. doi:
10.1016/j.gloplacha.2020.103192.

personal contribution : The idea for this study came from
Prof. Susanne Crewell. The study was designed by myself and fine
tuned in discussions among the co-authors. All data was gathered
by myself except for the cut-off lows which were identified by Mark
Reyers who also provided the dates of cut-off low situations. Fur-
thermore, I processed the data and created all graphics by myself.
The manuscript was written by me with helpful suggestions from
all co-authors. Furthermore, two anonymous reviewers gave valuable
input which initiated an additional bias assessment and a study of
lagged correlations which were carried out by me.

Böhm, C., J. H. Schween, M. Reyers, B. Maier, U. Löhnert, and S.
Crewell (2020c). “Towards a climatology of fog frequency in the
Atacama Desert via multi-spectral satellite data and machine learn-
ing techniques.” Submitted to: Journal of Applied Meteorology and
Climatology, date of submission: 10 Sep 2020.

personal contribution : The idea for this study was my own.
The study was designed by myself and fine tuned in discussions

https://doi.org/10.5194/amt-12-1841-2019
https://doi.org/10.1016/j.gloplacha.2020.103192


bibliography 233

among the co-authors. All data was gathered by myself except the me-
teorological data from the ground-base stations which were compiled
and preprocessed by Jan Schween. Furthermore, I processed the data
and created all graphics by myself. Benedikt Maier suggested the use
of the KERAS package to set up the neural network which proved
to outperform other packages which I tried before. Furthermore, he
assisted in finding a useful set up of the neural network. Mark Reyers
inspired me to apply Self-Organizing Maps as a helpful tool to create
the ground-based reference data set. The manuscript was written by
me with helpful suggestions from all co-authors.

partial publications:

Jaeschke, A., C. Böhm, F. F. Merklinger, S. M. Bernasconi, M. Reyers,
S. Kusch, and J. Rethemeyer (2019). “Variation in d15N of fog-
dependent Tillandsia ecosystems reflect water availability across
climate gradients in the hyperarid Atacama Desert.” In: Global and
Planetary Change 183, p. 103029. issn: 0921-8181. doi: 10.1016/j.
gloplacha.2019.103029.

personal contribution : I created Figures 3 and 4a and wrote
section 2.4. (remote sensing section). Furthermore, I created provided
the cloud height data and gathered the precipitation data utilized in
this study. I participated in various discussions with the first author,
making suggestions how the satellite remote sensing data should be
interpreted and how it could be relevant for this study.

Cantalloube, F., J. Milli, C. Böhm, S. Crewell, J. Navarrete, K. Rehfeld,
M. Sarazin, and A. Sommani (2020). “The impact of climate change
on astronomical observations.” In: Nature Astronomy 4, pp. 826–829.
issn: 2397-3366. doi: 10.1038/s41550-020-1203-3.

personal contribution : I gathered and preprocessed ERA-20C

IWV and temperature data which is utilized in this study. Furthermore,
I participated in discussions among the co-authors making sugges-
tions how the data should be interpreted and what potential pitfalls
are. Furthermore, I reviewed the manuscript and made some few
improvements on the text.

Reyers, M., C. Böhm, L. Knarr, Y. Shao, and S. Crewell (Aug. 2020).
“Synoptic-to-regional scale analysis of rainfall in the Atacama Desert
(18◦S–26◦S) using a long-term simulation with WRF.” In: Monthly
Weather Review, pp. 1–51. issn: 0027-0644. doi: 10.1175/MWR-D-20-
0038.1.

https://doi.org/10.1016/j.gloplacha.2019.103029
https://doi.org/10.1016/j.gloplacha.2019.103029
https://doi.org/10.1038/s41550-020-1203-3
https://doi.org/10.1175/MWR-D-20-0038.1
https://doi.org/10.1175/MWR-D-20-0038.1


234 bibliography

personal contribution : I gathered and preprocessed the at-
mospheric river data to extract dates which are associated with at-
mospheric river conditions in the Atacama Desert. I gathered and
provided the gauge measurement data utilized in this study. I assisted
in interpreting the figures and results and in putting them in a broader
perspective regarding the existing literature body.

unpublished work:

Böhm, C., M. Reyers, L. Knarr, and S. Crewell (2020a). “The role of
atmospheric rivers for precipitation in the Atacama Desert.” Unpub-
lished.

personal contribution : The idea for this study arose within
the work group of Prof. Susanne Crewell after atmospheric rivers
become a hot topic. The study was designed by myself and fine
tuned in discussions among the co-authors. All data were gathered
by myself except for all data derived from the WRF simulation which
was carried out by Mark Reyers as well as the IGRA data which were
gathered by Mark Reyers and the data relevant for the back trajectory
analysis which were gathered by Leon Knarr. Mark Reyers created the
individual panels which are compiled in Figure 7.5. The two panels
compiled in Fig. 7.4 were created by Leon Knarr who carried out the
trajectory analysis using HYSPLIT. Aside from the WRF vertical cross
sections and the trajectory analysis, I processed the data and created
all other graphics by myself. The Chapter was written entirely by me
with some helpful suggestions from Mark Reyers.


	Abstract
	Zusammenfassung
	Contents
	Acronyms
	 Introduction
	1 Motivation
	2 Background and climatic features of the Atacama Desert
	2.1 Climatic setting
	2.2 Stratocumulus and fog
	2.2.1 Stratocumulus – conceptual description
	2.2.2 Coastal cloud observations
	2.2.3 Fog observations

	2.3 Large-scale drivers
	2.3.1 Pacific climate modes
	2.3.2 Regional impacts

	2.4 Synoptic driver

	3 Overview of the studies
	3.1 Aims and hypotheses
	3.2 Cloud heights
	3.3 Water vapor variability
	3.4 Fog
	3.5 Atmospheric rivers


	 Method development and analysis
	4 Cloud heights
	4.1 Introduction
	4.2 Data
	4.2.1 MISR cloud product
	4.2.2 METAR data

	4.3 Cloud base height retrieval
	4.3.1 Method
	4.3.2 Case study
	4.3.3 Parameter optimization
	4.3.4 Scene limitations

	4.4 MIBase evaluation
	4.4.1 Scene structure influence

	4.5 MIBase application
	4.5.1 Global cloud height distribution
	4.5.2 Southeast Pacific

	4.6 Conclusion
	4.7 Appendix: Sensitivity to threshold height
	4.8 Remarks

	5 Water vapor variability
	5.1 Introduction
	5.2 Data and focus regions
	5.2.1 ERA-20C
	5.2.2 HOAPS4
	5.2.3 MODIS
	5.2.4 Large scale indices ENSO and PDO
	5.2.5 Cut-off lows
	5.2.6 Focus regions and local atmospheric water cycle

	5.3 Validation of ERA20C
	5.3.1 Bias assessment
	5.3.2 Climatologies and composites
	5.3.3 Comparison of decomposed IWV time series
	5.3.4 Representativity for the 20th century

	5.4 20th century IWV
	5.4.1 Regional IWV variability
	5.4.2 IWV relationship with ENSO, PDO and local SST
	5.4.3 Seasonal dependencies

	5.5 Conclusion
	5.6 Remarks

	6 Fog
	6.1 Introduction
	6.2 Data
	6.2.1 Moderate Resolution Imaging Spectroradiometer (MODIS)
	6.2.2 Climate stations

	6.3 Fog detection methods
	6.3.1 Ground-based reference
	6.3.2 Classification assessment measures
	6.3.3 Neural network
	6.3.4 MODIS cloud top height

	6.4 Evaluation
	6.4.1 Neural network model sensitivity
	6.4.2 Event-based algorithm performance
	6.4.3 Spatio-temporal representativeness
	6.4.4 Climatology

	6.5 Conclusion
	6.6 Appendix: Definitions of statistical measures
	6.7 Remarks

	7 Precipitation
	7.1 Introduction
	7.2 Data
	7.2.1 Atmospheric river catalog
	7.2.2 Regional climate model precipitation observations
	7.2.3 Reanalysis and radiosounding data

	7.3 Case study
	7.4 Composite analysis
	7.5 Conclusion
	7.6 Remarks


	 Discussion and conclusion
	8 Discussion
	8.1 Cloud heights
	8.2 Water vapor variability
	8.3 Fog
	8.4 Atmospheric rivers

	9 Conclusion and outlook

	 Appendix
	A Appendix
	A.1 Cloud heights
	A.2 Water vapor variability
	A.3 Fog

	 Bibliography
	Acknowledgments

	Declaration


