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Impact of Covariance Mismatched Training Samples
on Constant False Alarm Rate Detectors

Olivier Besson

Abstract—The framework of this paper is that of adaptive detec-
tion in Gaussian noise with unknown covariance matrix when the
training samples do not share the same covariance matrix as the
vector under test. We consider a class of constant false alarm rate
detectors which depend on two statistics (β, t̃) whose distribution
is parameter-free in the case of no mismatch and we analyze the
impact of covariance mismatched training samples. More precisely,
we provide a statistical representation of these two variables for an
arbitrary mismatch. We show that covariance mismatch induces
significant variations of the probability of false alarm and we
investigate a way to mitigate this effect.

Index Terms—Adaptive detection, covariance mismatch, false
alarm rate.

I. INTRODUCTION

D ECIDING of the presence of a signal of interest (SoI)
among Gaussian noise with unknown covariance matrix

with the help of training samples that share the same covariance
is a fundamental problem in multichannel processing, especially
in radar applications where detection of a target with given
space and/or time signature among clutter and noise is a key
part of any radar architecture [1], [2]. The papers and technical
reports written by Kelly [3]–[7] have undoubtedly been the most
influential work to tackle, to solve and to analyze this problem.
His development and thorough analysis of the generalized like-
lihood ratio test (GLRT) through Wishart matrices theory have
set the tempo and paved the way to numerous works around
this fundamental theme, see e.g., [8]–[27] for a sample. When
the SoI signature is known and the training samples have the
same covariance matrix as the noise in the test vector, Bose
and Steinhardt [10], [11] showed that the maximal invariant
statistic (MIS) for this detection problem is bi-dimensional and
thus any detector which is a function of this 2-D maximal
invariant statistic enjoys the constant false alarm rate (CFAR)
property. The recent paper [28] provides a very clear review of
CFAR detectors, introduces the so-called CFAR feature plane
constructed from the MIS and investigates the use of linear or
non-linear detectors in this plane.

Deviations from this ideal situation often occur in practice.
The first type of mismatch that has been dealt with is that on the
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SoI signature v, see e.g. [7], [9], [12], [28]. Under this situation
a major concern is to be able to maintain a constant false alarm
rate while monitoring the trade-off between detection of slightly
mismatched signals and rejection of unwanted signals. Ensuring
the CFAR property when a mismatch about the SoI signature
occurs is generally not a very complicated issue as the mismatch
does not impact the distribution of the data and hence of the test
statistic under the null hypothesis H0. Therefore any detector
which is CFAR when v is known perfectly remains CFAR when
a mismatch is present.

In contrast, a mismatch between the covariance matrix Σt of
the training samples and the covariance matrix Σ of the vector
under test affects the distribution of any test statistic under H0.
Covariance mismatch can have a significant impact on most
well-known detectors. In particular, it may preclude from main-
taining a probability of false alarm Pfa that is independent of Σ
(andΣt). In other words, a threshold which has been set to obtain
a desired P̄fa when Σ = Σt results in an actual Pfa �= P̄fa

when Σ �= Σt. Unfortunately covariance mismatches can exist,
starting with the case of a partially homogeneous environment
for which Σt = γΣ. In this case the usual remedy is to apply
some normalization so as to be insensitive to scaling, as is done
by the adaptive coherence estimator [29], [30]. Some properties
of the noise, e.g., that its power spectrum is symmetric can also
be taken into account in order to improve performance [31].
The reference [32] considers an extension to the case where
noise power fluctuations between the range cells is observed
and detection architectures are proposed to handle this situation.
The training samples can also be contaminated by signal-like
components or outliers [33], [34] or there might exist a rank-
one difference between Σt and Σ, for instance a surprise or
undernulled interference [35]–[37].

References [38]–[41] address rather general cases where the
mismatch betweenΣ andΣt is practically arbitrary, and they are
closely related to the present work. In [38], Richmond provides
a thorough analysis of a large class of adaptive detectors in the
case where Σ and Σt satisfy the so-called generalized eigenre-
lation (GER), viz Σ−1

t v = λΣ−1v. Blum and McDonald [39]
consider the case where a mismatch about the signal (target)
signature is also present and a GER-type relation is satisfied,
i.e. Σ−1

t v̄ = λΣ−1v̄ where v̄ is the assumed value of v used
in the test statistic. They analyze Kalson’s type of detectors [9].
Probabilities of false alarm and probabilities of detection are
obtained in integral form for any couple (Σ,Σt) satisfying
the GER. The latter constraint is relaxed in [40] where Σ and
Σt are arbitrary and where integral forms of Pfa and Pd are
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provided. Recently Raghavan [41] analyzed the performance of
the adaptive matched filter (AMF) for arbitrary Σ and Σt. The
distribution of tAMF condition to the SNR loss is derived, and
subsequently the corresponding false alarm rate and probability
of detection.

In this paper, we consider an arbitrary mismatch between
Σ and Σt and we provide stochastic representations of two
variables which form a maximal invariant statistic in the absence
of mismatch. The new stochastic representations are given in
terms of well-known distributions and enable one to quickly
grasp how the maximal invariant statistic is impacted. They
generalize the expressions obtained in [38] where the GER was
enforced. In contrast to [39], [40] we do not address the problem
of deriving an expression for Pfa and Pd here, which anyhow
can be obtained in integral form only. The objective of this paper
is more to study how Pfa deviates from P̄fa (calculated when
Σt = Σ) when Σt varies randomly around Σ and to investigate
possible ways to mitigate the fluctuations caused by covariance
mismatch.

The paper is organized as follows. In Section II we derive
a stochastic representation of random variables β and t̃ (to be
defined below) for arbitrary Σ and Σt. This representation has
a very similar form as in the no mismatch case and provides
quick insights into how the distribution of these variables is
affected. When the generalized eigenrelation is assumed to
hold our representation boils down to that of [38]. Moreover
we show that under the GER a clairvoyant CFAR detector is
possible, which depends on a single scalar parameter namely
(vHΣ−1

t v)/(vHΣ−1v). Based on the form of this clairvoyant
detector, we propose in Section III a solution to somehow
mitigate the effects of covariance mismatch and to render the
false alarm rate less sensitive to Σt �= Σ. Finally we investigate
how Pd is impacted.

Notations: Before proceeding, we state some notations
regarding the distributions used frequently in the paper.

The notation A
d
= B means that the random variables A

and B have the same distribution. The N -dimensional
complex multivariate Gaussian distribution is denoted as

x
d
= CNN (x̄,Σ) and its probability density function (p.d.f.) is

given by p(x) = π−N |Σ|−1etr{−(x− x̄)HΣ−1(x− x̄)}. The
extension to a complex matrix-variate Gaussian distribution for

a N ×K matrix X is denoted as X
d
= CNN,K(X̄,Σ,Ψ)

with density p(X) = π−NK |Σ|−K |Ψ|−Netr{−(X−
X̄)HΣ−1(X− X̄)Ψ−1}. If x

d
= CNp(x̄, Ip) then xHx follows

a complex chi-square distribution with p degrees of freedom

and non centrality parameter δ = x̄H x̄, i.e. xHx
d
= Cχ2

p(δ).

If X
d
= CNN,K(0,Σ, IK) then W = XXH d

= CWN (K,Σ)
follows a complex Wishart distribution with parameters K and

Σ. Let U
d
= Cχ2

p(δ) and V
d
= Cχ2

q(0). Then F = U/V follows

a complex F-distribution, which is noted as F
d
= CFp,q(δ).

When δ = 0, B = (1 + F )−1 d
= Bp,q has a central beta

distribution.
For any rectangular matrix Z, whenever it is partitioned as

Z = (Z1

Z2
) then Z1 contains the first (N − 1) rows and all

columns of Z. If a square matrix Ω is partitioned as Ω =
(Ω11 Ω12

Ω21 Ω22
) then Ω11 is a (N − 1)× (N − 1) matrix.

II. ANALYSIS OF THE IMPACT OF Σt �= Σ

As stated above, we consider the generic composite hypoth-
esis testing problem

H0 : x
d
= CNN (0,Σ) ;Xt

d
= CNN,K (0,Σt, IK)

H1 : x
d
= CNN (αv,Σ) ;Xt

d
= CNN,K (0,Σt, IK) (1)

We begin by recalling some important results in the case where
Σt = Σ then address the case Σt �= Σ.

A. Background on the Case of No Mismatch

When Σt = Σ [10], [11] showed that the maximal invariant
statistic for the detection problem in (1) is 2-D and is a bijective
function of (s1, s2) defined as

s1 = xHS−1
t x; s2 =

|xHS−1
t v|2

vHS−1
t v

(2)

where St = XtX
H
t denotes the sample covariance matrix

(SCM) of the training samples. Bose and Steinhardt used as
the maximal invariant statistic ρ = (1 + s1 − s2)

−1 and η =
(1 + s1)

−1(1 + s1 − s2) where ρ is the loss factor and η is
related to Kelly’s test statistic. The joint distribution of (ρ, η)
was derived under both hypotheses H0 and H1. By integrating
over this distribution [11] manages to obtain the probability of
false alarm (Pfa) and probability of detection (Pd) of the locally
uniformly most powerful invariant test. Note that any function
of (ρ, η) yields a CFAR detector. In the sequel similarly to [18],
[28] we choose to make use of the pair of random variables (β, t̃)
(also a MIS) defined as

β =
1

1 + s1 − s2
; t̃ =

s2
1 + s1 − s2

(3)

β corresponds to the loss factor while t̃ is the test statistic for
Kelly’s GLRT. It has been shown, see e.g., [4], [11], [18], that
when Σ = Σt,

β
d
=

[
1 +

Cχ2
N−1(0)

Cχ2
K−N+2(0)

]−1
d
= BN−1,K−N+2 (4)

t̃|β d
= CF1,K−N+1

(
β|α|2vHΣ−1v

)
(5)

As a consequence, under H0, β and t̃ are independent and t̃
d
=

CF1,K−N+1(0). Therefore, the threshold of any detector which
is a function of (β, t̃) can be set to ensure a given probability of
false alarm whatever Σ.

B. Representation of β and t̃ in Case of Covariance Mismatch

We now aim at obtaining a representation of (β, t̃) equivalent
to (4)-(5) for Σt �= Σ. Prior to that we mention that the recent
paper [41] analyzes the probability of false alarm and probability
of detection of the AMF in case of arbitrary mismatch between
Σ and Σt. In [41] the conditional distribution of tAMF given
the SNR loss ρ is derived and conditional and unconditional



Pfa and Pd are obtained. The derivations used below to obtain
a representation of (β, t̃) borrow from techniques used in [41]
and many papers, viz. a whitening step, followed by rotation and
finally the use of partitioned Wishart matrices properties. The
main result is stated below.

When Σt �= Σ β and t̃ have the following stochastic repre-
sentation:

β
d
= (1 + x̃1W

−1
11 x̃1)

−1 d
=

[
1 +

∑N−1
i=1 λiCχ

2
1(0)

Cχ2
K−N+2(0)

]−1

(6)

t̃|x̃1,W11
d
=

[
1 + β

(
vHΣ−1

t v

vHΣ−1v
− 1

)]

× CF1,K−N+1

⎛
⎝β

||α|(vHΣ−1
t v)1/2 +Ω21Ω

−1
11 x̃1|2

1 + β
(

vHΣ−1
t v

vHΣ−1v
− 1
)

⎞
⎠

(7)

where W11
d
= CWN−1(K, IN−1) is independent of x̃1

d
=

CNN−1(0,Ω11). In the previous equation,

Ω = QHΣ
−1/2
t ΣΣ

−H/2
t Q

=

⎛
⎜⎝ Ω11

N−1|N−1
Ω12
N−1|1

Ω21
1|N−1

Ω22
1|1

⎞
⎟⎠ (8)

and λi are the eigenvalues of Ω11. Q is a unitary matrix
which rotates the whitened vector Σ−1/2

t v, i.e. QHΣ
−1/2
t v =

(vHΣ−1
t v)1/2eN with eN =

[
0T 1

]T
.

The proof of this result is given in Appendix A. Equations
(6)-(7) provide the statistical representation of β and t̃ for any
couple of matrices (Σ,Σt) and whatever the value of α, i.e.,
under H0 or H1.

Some comments are in order. First of all, in the case of
no mismatch Ω = IN , λi = 1, Ω21 = 0, and equations (6)-(7)
reduce to equations (4)-(5).

Next, while there is quite a striking similarity between (4)-(5)
and (6)-(7), one can observe three big differences in the case
Σt �= Σ:

1) the random variable β is no longer beta distributed since
the termCχ2

N−1(0) is replaced by
∑N−1

i=1 λiCχ
2
1(0)which

corresponds to a quadratic form in i.i.d. central complex
normal variables. As shown in [42], the distribution of
β can be well approximated by aCχ2

ν(0) + b or even by
a′Cχ2

ν ′(0).
2) as for t̃, the coefficient before the F distribution is no longer

1 but

1 + β

(
vHΣ−1

t v

vHΣ−1v
− 1

)

Therefore, depending on (vHΣ−1
t v)/(vHΣ−1v), this co-

efficient can be above or under unity.
3) the complex F distribution is no longer central under H0.

In particular, it means that this random variable is likely
to take on larger values than in the case of no mismatch,

which implies an increase in the false alarm rate if t̃ is used
as a test statistic, which is the case for Kelly’s detector.

Another important comment when examining (7) is the im-
portance of the termΩ21Ω

−1
11 x̃1. Indeed, if this term is zero, then

the complex F distribution is central under H0, as in the case of
no mismatch. This happens if Ω21 = 0 which is equivalent to

Ω21 = 0 ⇔ vHΣ−1
t ΣV⊥ = 0

⇔ ΣΣ−1
t v = λv

⇔ Σ−1
t v = λΣ−1v (9)

The previous equation corresponds to the so-called generalized
eigenrelation [35]. If the GER is satisfied, then we have the
simpler representation

t̃|β d
=

[
1 + β

(
vHΣ−1

t v

vHΣ−1v
− 1

)]

× CF1,K−N+1

⎛
⎝β

|α|2(vHΣ−1
t v)

1 + β
(

vHΣ−1
t v

vHΣ−1v
− 1
)
⎞
⎠ (10)

which coincides with the expression in [38]. Under H0 (10)
reduces to

t̃|β;H0
d
=

[
1 + β

(
vHΣ−1

t v

vHΣ−1v
− 1

)]
CF1,K−N+1(0) (11)

If vHΣ−1
t v = vHΣ−1v then t̃ is independent of β and its

distribution under H0 does not longer depend on any parameter,
which means that Kelly’s detector would still be CFAR despite
the covariance mismatch. Actually, this is to be related with the
result in [37] where one considers a surprise interference, i.e.,
Σ = Σt + qqH where q satisfies qHΣ−1v = 0 for the GER to
be true. In this case we have actually vHΣ−1

t v = vHΣ−1v and
it was shown in [37] that the GLRT is simply Kelly’s detector.
The analysis in this paper proves that Kelly’s detector is CFAR
in this situation.

Before closing this section, we note that (7) and (10) provide
the conditional distribution of t̃. Obtaining the probability of
false alarm and probability of detection of Kelly’s detector thus
requires to integrate this conditional distribution. As has already
been observed in [38]–[41] integration does not unfortunately
lead to a closed-form expression. Therefore in the sequel the
stochastic representations of β in (6) and t̃ in (7) or (10) will be
used to generate random samples and estimate Pfa or Pd from
Monte-Carlo simulations.

C. Illustrations

In this section, we provide illustrations of the theoretical re-
sults presented above. We consider a scenario withN = 16. The
noise covariance matrix is chosen asΣ = PcΣc + IN where the
first component corresponds to clutter while the second is ther-
mal white noise. We haveΣc(m,n) = exp{−2π2σ2

f (m− n)2}
and σf is such that the one-lag correlation is equal to 0.95. The
SoI signature is v = N−1/2[1 ei2πfd . . . ei2π(N−1)fd ]T

with fd = 0.08 so that the target is slowly moving and buried



Fig. 1. Distribution of β in the case of covariance mismatch under H0. The left panel concerns case 1, the right panel case 2. The lower panel corresponds to the
case where the GER is satisfied.

in clutter. The clutter to noise ratio is 20 dB. The number of
training samples is set to K = 2 N .

We will consider two different covariance mismatches. In
the first case, Σt = Σ1/2W−1

t ΣH/2 where Wt is drawn from
a CWN (ν, μ−1IN ) distribution. The number of degrees of
freedom ν influences the variations of W−1

t around its mean
value E{W−1

t } = γIN with γ = (ν −N)−1μ. As ν increases
the fluctuations of W−1

t around it mean value decrease. In the
sequel we set ν = 2 N and 10 log10 γ is drawn from a uniform
distribution in [−6 dB, 6 dB]. This means that E{Σt} = γΣ
is even different from Σ and that Σt can be quite differ-
ent from Σ. In the second case, Σ and Σt share the same
eigenvectors but different eigenvalues, i.e., Σ = UΛUH , Σt =
UΛ1/2diag(γn)Λ

1/2UH and 10 log10 γn is drawn uniformly in
[−6 dB, 6 dB]. For both cases, the GER does not hold. In order
to obtain similar types of mismatch but with the GER satisfied
we can proceed as follows. In case 1, as shown in [42], the GER
is satisfied when Σt is generated Σt as

QH
v ΣtQv=chol

(
QH

v ΣQv

)(Ψ−1
11 0

0 Ψ−1
22

)
chol

(
QH

v ΣQv

)
(12)

whereQv = [V⊥ v] and chol(.) stands for the Cholesky factor.
Ψ11 will be drawn from a Wishart distribution and Ψ22 from a
chi-square distribution with E{Ψ−1

11 } = γIN−1 and E{Ψ−1
22 } =

γ. Again, 10 log10 γ is drawn uniformly in [−6 dB, 6 dB]. As for
case 2 with eigenvalues mismatch, we show in the appendix that

Σt = UΛ1/2WtΛ
1/2UH with Wt given by (32) enables one

to satisfy the GER. As before, the eigenvalues 10 log10 �1(n)
and 10 log10 �2 are drawn uniformly in [−6 dB, 6 dB]. We thus
have two kinds of mismatches and, for each case, a variant that
enforces the GER.

First, we investigate how the distributions of β and t̃ are
affected. Towards this end, we generated 10 random matrices
Σt and we display the distributions of β and t̃ under H0 for
these 10 different matrices Σt. For comparison purposes we
also display (dashed-dotted lines) their distributions in the case
of no mismatch. The results are shown in Fig. 1 for β and Fig. 2
for t̃. The major observations to be made are the following:
� β most frequently takes lower values when Σt �= Σ than

when Σt = Σ, although the converse may be true in some
instances. Then, for the AMF whose test statistics is t̃/β,
it means that the AMF value will likely be larger than
expected, causing an increase in Pfa.

� we observe that β undergoes more important variations in
case 1 than in case 2 (mismatched eigenvalues) where the
variations are less significant. Generally the mismatch of
case 1, of the form Σt = Σ1/2W−1

t ΣH/2, seems to be
more severe.

� t̃ tends to increase when Σt �= Σ compared to the case
Σt = Σ, especially when the GER is not satisfied. It seems
that the difference is less pronounced when the GER is
enforced. An increase in t̃ will result in an increase of the
false alarm rate of Kelly’s detector.



Fig. 2. Distribution of t̃ in the case of covariance mismatch under H0. The left panel concerns case 1, the right panel case 2. The lower panel corresponds to the
case where the GER is satisfied.

We now address the main issue of this paper, namely the
impact of covariance mismatch on the probability of false alarm
of CFAR detectors. For illustration purposes we consider Kelly’s
detector (t̃) and the AMF (tAMF = t̃/β). For both detectors,
we set the threshold to ensure P̄fa = 10−3 in the absence of
mismatch. We generate 50 different matrices Σt and for each of
them we evaluate the actual Pfa in the presence of covariance
mismatch. The results are given in Fig. 3. They confirm that in the
presence of covariance mismatch it is actually very complicated
to have a constant Pfa equal to its nominal value. One can ob-
serve a significant increase on the mean value of Pfa, especially
for the AMF detector which is less robust than Kelly. One can
also observe that the increase is more significant in case 1 than
in case 2. In fact it seems that the case Σt = Σ1/2W−1

t ΣH/2

induces much more distortion on Σ than when Σ = UΛUH ,
Σt = UΛ1/2diag(γn)Λ

1/2UH . In the latter case Σ and Σt

differ only by a“diagonal” matrix diag(γn) whereas in the
former case the difference is a “full” matrix Wt. Whatever the
case it appears that the false alarm rate is significantly impacted
by covariance mismatch.

III. POSSIBLE MITIGATION

Given the fluctuations and the increase of Pfa observed pre-
viously, we now investigate whether it is possible to somewhat
mitigate these deleterious effects. As said before, a covariance

mismatch has three main consequences, one is the modification
of the distribution ofβ, the second is the coefficient in t̃before the
F distribution and the third is the fact that the F distribution be-
comes non central underH0. As for the impact on β it is difficult
to figure out a remedy, except to find a form that is less sensitive
to deviations from the beta distribution. As for the coefficient
in (30), it is given by (Ω2.1 + x̃H

1 W−1
11 x̃1)/(1 + x̃H

1 W−1
11 x̃1)

where Ω2.1 = (vHΣ−1
t v)/(vHΣ−1v). The value 1 there origi-

nates from the fact that t̃ = s2/(1+ s1 − s2). This suggests that
we could consider

t̃(κ) =
s2

κ+ s1 − s2
=

|xHS−1
t v|2/(vHS−1

t v)

κ+ xHS−1
t x− |xHS−1

t v|2
vHS−1

t v

(13)

Interestingly enough this is exactly Kalson’s detector [9]. Using
Appendix A it can be shown that

t̃(κ)|x̃1,W11 =
W−1

2.1 |x̃2 −W21W
−1
11 x̃1|2

κ+ x̃H
1 W−1

11 x̃1

d
=

1 + β(Ω2.1 − 1)

1 + β(κ− 1)

× CF1,K−N+1

(
β
||α|(vHΣ−1

t v)1/2 +Ω21Ω
−1
11 x̃1|2

1 + β(Ω2.1 − 1)

)
(14)



Fig. 3. Actual probability of false alarm of Kelly (t̃) and AMF detector (t̃/β)
in the the case of covariance mismatch.

in the general case and

t̃(κ)|β d
=

1 + β(Ω2.1 − 1)

1 + β(κ− 1)
CF1,K−N+1

(
β|α|2(vHΣ−1

t v)

1 + β(Ω2.1 − 1)

)
(15)

in the GER case. Therefore, if κ = Ω2.1, the coefficient is equal
to 1 and t̃(Ω2.1) has a complex F distribution. Moreover, if

the GER holds t̃(Ω2.1)
d
= CF1,K−N+1(0) under H0 and this

detector is CFAR and has the same distribution as t̃ in the case of
no mismatch. Of course the clairvoyant choice κ = Ω2.1 cannot
be made in practice where one must fix the value of κ. However
the above discussion suggests that a detector of the form (13) can
somehow mitigate the effect of covariance mismatch. Finally,
for the fact that the F distribution becomes non central under
H0, its consequence is that t̃ tends to increase in a random (at
least unknown) way, and so the probability of false alarm will
also increase. To counteract this effect, one could preferably
choose κ > Ω2.1 so that a decrease in the coefficient before the
F distribution could compensate the increase of the latter term.

In order to assess the validity of t̃(κ) we first begin by
assuming that Ω2.1 is known and κ is selected as cΩ2.1 in
order to figure out how precisely the latter should be known. As
before, we generated 50 different matrices Σt and we evaluated
P (t̃(cΩ2.1) ≥ η̄|Σt �= Σ). We want to check that P (t̃(Ω2.1 ≥
η̄|Σ−1

t v = λΣ−1v) = P̄fa when the GER is satisfied, and we
want to evaluate this probability when the GER is not satisfied.
Furthermore, we study how P (t̃(cΩ2.1 ≥ η̄|Σt �= Σ) varies
with c. The results are displayed in Fig. 4. First, they confirm that,
if the GER is satisfied, then P (t̃(Ω2.1) ≥ η̄|Σ−1

t v = λΣ−1v) =
P̄fa and hence the detector is CFAR. However, when the GER
is no longer satisfied the false alarm rate of t̃(Ω2.1) is above
P̄fa, typically around 3× 10−3. Next, as could be anticipated,
P (t̃(cΩ2.1) ≥ η̄|Σt �= Σ) decreases when c increases. Another
important feature is that the false alarm rate seems to vary much
less whenΣt varies, which is a good sign and could indicate that
one could reach a close to constant false alarm. To conclude, if
Ω2.1 were known, the choice κ = Ω2.1 ensures a CFAR if the
GER is satisfied and a false alarm rate above its nominal value
if the GER is not satisfied. In this case, it is preferable to choose
Ω2.1 ≤ κ ≤ 2Ω2.1 in order to have a probability of false alarm
close to P̄fa.

However, in practice Ω2.1 is unknown and κ needs to be
fixed. Therefore, in a second simulation we no longer assume
that Ω2.1 is known and κ is set to a fixed value. Through
preliminary simulations we observed that κ = 4 yields poor
performance and hence we consider κ = 0.5, 1, 1.5, 2. Again
we evaluate P (t̃(κ) ≥ η̄|Σt �= Σ) for 50 different matrices Σt.
Fig. 5 clearly indicates that a fixed value ofκ does not completely
fix the problem. Indeed, one can observe significant variations of
P (t̃(κ) ≥ η̄|Σt �= Σ). However, with κ = 2, we get an average
value of this probability close to 10−3 with a standard deviation
of about 10−3. This means that the choice κ = 2 provides a
detector that is less sensitive to the fact that Σt �= Σ and to
different outcomes of Σt and thus is helpful in controlling Pfa.
With this choice, the actual false alarm rate does not deviate
much from its target value. We note that the value κ = 2 was
advocated by Kalson in his work [9].

Finally, while we concentrated so far about Pfa, we
now investigate the impact of covariance mismatch on
Pd(t̃(κ)|Σt �= Σ). As before, the target Pfa is 10−3 and,
to anticipate the increase of Pfa due to covariance mis-
match, the threshold η(κ) is set so that P̄fa = PH0

(t̃(κ) ≥
η(κ)|Σt = Σ) = 10−4. Similarly, we set the SNR so that
P̄d = PH1

(t̃(κ) ≥ η(κ)|Σt = Σ) = 0.7. Our aim is to eval-
uate the fluctuations of Pfa(κ) = PH0

(t̃(κ) ≥ η(κ)|Σt �= Σ)
and Pd(κ) = PH1

(t̃(κ) ≥ η(κ)|Σt �= Σ) around the operating
point (P̄fa, P̄d)of the ROC. The results are displayed in Figs. 6-7
for two different levels of mismatch. It can be observed that
Pfa is more impacted as we most often have Pfa > P̄fa and
the variations may be important, up to 2-3 decades. On the
other hand, Pd is less impacted: for instance when the actual
Pfa ∼ 10−4 then Pd ∼ 0.5− 0.6. And, as already said before,
Pd varies simply because Pfa varies a lot, which confirms that
control of the false alarm rate is primordial.



Fig. 4. Actual probability of false alarm of t̃(cΩ2.1) in the case of covariance mismatch. The left panel concerns case 1, the right panel case 2. The lower panel
corresponds to the case where the GER is satisfied.

Fig. 5. Actual probability of false alarm of t̃(κ) in the case of covariance mismatch. The left panel concerns case 1, the right panel case 2. The lower panel
corresponds to the case where the GER is satisfied.



Fig. 6. Actual probability of false alarm and probability of detection of
t̃(κ) in case 1. Σt = Σ1/2W−1

t ΣH/2 with E{W−1
t } = γI and 10 log10 γ

uniformly distributed on [−Δ,+Δ].

IV. CONCLUSION

In this paper we considered a possible covariance mismatch
between the data under test and the training samples and we
investigated its consequences on the probability of false alarm
of detectors which depend on the variables β and t̃ and hence are
CFAR in the case of no mismatch. A statistical representation
of these two variables was obtained for an arbitrary covariance
mismatch and for both the null and alternative hypothesis. It
was shown that β is no longer beta distributed and that t̃ is
strongly impacted. Numerical simulations illustrated the im-
portant variation of the probability of false alarm when Σt

varies. We showed that, when the GER is satisfied, a clairvoyant
modification of Kelly’s detector yields a CFAR detector. We
investigated Kalson’s detector to mitigate covariance mismatch
effects and showed that setting κ = 1.5, κ = 2 seems a good
choice to mitigate variations of the false alarm rate. As a further

Fig. 7. Actual probability of false alarm and probability of detection of t̃(κ) in
case 2.Σ = UΛUH andΣt = UΛ1/2diag(γn)Λ

1/2UH with 10 log10 γn
uniformly distributed on [−Δ,+Δ].

verification it would be interesting to assess these findings on
real radar data. Yet, it appears nearly impossible to obtain a
strict constant false alarm rate when Σt �= Σ with the current
data model. A possible solution lies in assuming that more
information about Σ could be available. This is the approach
taken in [43] where an additional set of training samples with
covariance matrix Σ is available, and where a CFAR detector
based on cell-averaging is derived. In [44] we derived a detector
which has better detection than cell averaging but is not strictly
CFAR. Therefore, a perspective is to identify statistics of this
new model whose distribution is parameter free under H0.

APPENDIX A
PROOF OF (6)-(7)

In this appendix we derive the stochastic representation of
(β, t̃). Let V⊥ be a semi-unitary matrix orthogonal to v, i.e.,



VH
⊥ V⊥ = IN−1 and VH

⊥ v = 0 and let us assume without

loss of generality that ‖v‖ = 1. Let Σ1/2 and Σ
1/2
t denote

square-roots of Σ and Σt. First note that x
d
= (αv +Σ1/2n)

with n
d
= CNN (0, IN ) and that St

d
= Σ

1/2
t WtΣ

H/2
t where

Wt
d
= CWN (K, IN ) follows a complex Wishart distribution

with K degrees of freedom and parameter matrix IN . First, let
us rewrite s1 as

s1 = xHS−1
t x

= xHΣ
−H/2
t W−1

t Σ
−1/2
t x

= (QHΣ
−1/2
t x)HQHW−1

t Q(QHΣ
−1/2
t x) (16)

where Q is a non-singular matrix. Let Gt be a
square-root of Σt, i.e., Σt = GtG

H
t and let us choose

Q =
[
GH

t V⊥F−H
t (vHΣ−1

t v)1/2G−1
t v

]
where Ft =

(VH
⊥ ΣtV⊥)1/2 so that Q is unitary and QHΣ

−1/2
t v =

(vHΣ−1
t v)1/2eN with eN =

[
0T 1

]T
. Then, noting that

W = QHWtQ
d
= CWN (K, IN ), we obtain

s1
d
= x̃HW−1x̃

x̃ = QHΣ
−1/2
t x = (γ

1/2
t eN +Ω1/2n) (17)

with γt = |α|2(vHΣ−1
t v) and where

Ω = QHΣ
−1/2
t ΣΣ

−H/2
t Q (18)

Similarly

s2 =
|xHS−1

t v|2
vHS−1

t v

=
|(QHΣ

−1/2
t x)HQHW−1

t Q(QHΣ
−1/2
t v)|2

(QHΣ
−1/2
t v)HQHW−1

t Q(QHΣ
−1/2
t v)

=
|x̃HW−1eN |2
eHNW−1eN

(19)

Let us partition x̃ as x̃ = ( x̃1

x̃2
) and W as

W =

(
W11 W12

W21 W22

)
(20)

where W11 is (N − 1)× (N − 1). Using the fact that

W−1=W−1
2.1

(
−W−1

11W12

1

)(
−W21W

−1
11 1

)
+

(
W−1

11 0

0 0

)

(21)

with W2.1 = W22 −W21W
−1
11W12, we can write

s1
d
= x̃HW−1x̃

= W−1
2.1 |x̃2 −W21W

−1
11 x̃1|2 + x̃H

1 W−1
11 x̃1 (22)

and

s2 =
|x̃HW−1eN |2
eHNW−1eN

= W−1
2.1 |x̃2 −W21W

−1
11 x̃1|2 (23)

Since W11
d
= CWN−1(K, IN−1), it follows that

x̃H
1 W−1

11 x̃1
d
=

x̃H
1 x̃1

Cχ2
K−N+2(0)

(24)

Now, x̃ = QHΣ
−1/2
t x

d
= CNN (γ

1/2
t eN ,Ω), which implies

that x̃1
d
= CNN−1(0,Ω11) and hence x̃1

d
= Ω

1/2
11 n1 with n1

d
=

CNN−1(0, IN−1). Therefore, a stochastic representation for β
can be obtained as

β = (1 + x̃H
1 W−1

11 x̃1)
−1

d
=

[
1 +

nH
1 Ω11n1

Cχ2
K−N+2(0)

]−1

d
=

[
1 +

∑N−1
i=1 λiCχ

2
1(0)

Cχ2
K−N+2(0)

]−1

(25)

where λi (i = 1, . . . , N − 1) are the eigenvalues of Ω11.

Let us now turn to analysis of t̃. Since W
d
= CWN (K, IN )

it can be written as W = ZZH where Z
d
= CNN (0, IN , IK).

Let us partition Z = (Z1

Z2
) so that W11 = Z1Z

H
1 and W21 =

Z2Z
H
1 . It ensues that

x̃2 −W21W
−1
11 x̃1 = x̃2 − Z2Z

H
1 (Z1Z

H
1 )−1x̃1 (26)

Since x̃
d
= CNN (γ

1/2
t eN ,Ω), one has

x̃2|x̃1
d
= CN

(
γ
1/2
t +Ω21Ω

−1
11 x̃1,Ω2.1

)
(27)

Z2Z
H
1 (Z1Z

H
1 )−1x̃1|x̃1,W11

d
= CN (

0, x̃H
1 W−1

11 x̃1

)
(28)

and hence

x̃2 −W21W
−1
11 x̃1|x̃1,W11

d
= CN

(
γ
1/2
t +Ω21Ω

−1
11 x̃1,Ω2.1 + x̃H

1 W−1
11 x̃1

)
(29)

Noting that W2.1
d
= Cχ2

K−N+1(0), it follows that

t̃|x̃1,W11 =
W−1

2.1 |x̃2 −W21W
−1
11 x̃1|2

1 + x̃H
1 W−1

11 x̃1

d
=

Ω2.1 + x̃1W
−1
11 x̃1

1 + x̃H
1 W−1

11 x̃1

× CF1,K−N+1

(
|γ1/2

t +Ω21Ω
−1
11 x̃1|2

Ω2.1 + x̃H
1 W−1

11 x̃1

)
(30)

Using the fact that Ω2.1 = (vHΣ−1
t v)/(vHΣ−1v) and

x̃H
1 W−1

11 x̃1 = (1− β)/β, it is straightforward to show that (30)
can be rewritten as (7), which concludes the proof.



APPENDIX B
THE GER FOR Σ = UΛUH AND Σt = UΛ1/2WtΛ

1/2UH

In Section II, we considered a mismatch between the eigen-
values of Σ and Σt while their eigenvectors are the same,
i.e., we had Σ = UΛUH and Σt = UΛ1/2diag(γn)Λ

1/2UH .
Proceeding this way the GER is not satisfied. Hence, in order to
enforce the GER and to have an equivalent form we consider
Σt = UΛ1/2WtΛ

1/2UH and we look for Wt that makes
Σ−1

t v = �2Σ
−1v. One has

Σ−1
t v = �2Σ

−1v ⇔ UΛ−1/2W−1
t Λ−1/2UHv

= �2UΛ−1UHv ⇔ W−1
t Λ−1/2UHv = �2Λ

−1/2UHv
(31)

which implies that Λ−1/2UHv is an eigenvector of Wt associ-
ated with eigenvalue �−1

2 . Therefore the eigenvalue decomposi-
tion of Wt is given by

Wt = V

(
�−1
1 0

0 �−1
2

)
VH (32)

V =
[
Λ1/2UHV⊥F−H Λ−1/2UHv

(vHΣ−1v)1/2

]
(33)

where F = (VH
⊥ ΣV⊥)1/2. Equation (32) enables one to gen-

erate a matrix Σt such that the GER is satisfied. When all
eigenvalues are equal to 1, Σ = Σt so the values of �1 and
�2 determine the degree of mismatch.
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