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Prediction of faulting from the theories of elasticity and plasticity: what are the limits? 

MURIEL GERBAULT, ALEXEI N.B. POLIAKOV and MARC DAIGNIERES 

Laboratoire de Géophysique et Tectonique (U.M.R. 5573), CNRS-Université Montpellier Il, 
34095 Montpellier 05, France 

Abstract-Elasticity, rigid-plasticity and elasto-plasticity are the simplest constitutive models used to describe the 
initiation and evolution of faulting. However, in practice, the limits of their application are not always clear. In this 
paper, we test the behaviour of these different models using as examples tectonic problems of indentation of a die, 
compression with basal shear, bending of a plate and normal faulting around a dike. By comparing the results of 
these tests, we formula te some guidelines that may be useful for the selection of an appropria te constitutive mode! of 
faulting. The theory of elasticity reasonably predicts the initiation of the fault pattern but gives erroneous results for 
large strains. The theory of rigid-plasticity is more appropria te for large deformations, where the geometry of faults 
can be found by the method of characteristics. This method works well for zones of failure that are not severely 
constrained by elastic material outside, e.g. when faults are connected to the free-surface, a viscous substratum or a 
zone of weakness. Non-associated elasto-plasticity is the most complete theory among those considered in this 
paper. It describes the evolution of faults from the initiation of localized deformations to the formation of a 
complicated fault network. © 1998 Elsevier Science Ltd. 

INTRODUCTION 

lt is important for geologists to have a simple constitutive 

model that describes the initiation and evolution of 

faulting. The field of mechanics offers some idealized 

models for the behaviour of materials during faulting 

such as elasticity, rigid-plasticity and elasto-plasticity. 

These theories are widely used, and sometimes misused, 

in structural geology. There is a need for a clear 

demonstration of the abilities and limitations of these 

constitutive models in order to develop intuition about 

fault prediction. Progress in this field can be made by 

modelling of simple, idealized tectonic situations such as 

thrusting, bending or indentation by means of each 

theory. 

There are several mechanical approaches to the 

prediction of the location and geometry of faults. The 

simplest way is to calculate the stress field in the region of 

interest by means of the theory of elasticity (Anderson, 

1951; Hafner, 1951; Sanford, 1959; Spencer and Chase, 

1989; Yin, 1989; Parsons and Thompson, 1993). The 

faults are predicted to be at a certain angle from the 

direction of principal stresses where the condition for 

fault friction is satisfied. This simple approach may give 

correct first-order predictions for fault initiation. How

ever, when it is not used carefully, it gives unreasonable 

results (Buck, 1990; Wills and Buck, 1997). Furthermore, 

the weakness of this method is that faulting changes the 

predicted elastic state, and this theory does not take into 

account the conditions necessary for fault slippage. 

A more advanced approach involves the use of 

different theories of plasticity. The classical 'metal' 
rigid-plasticity, which can be treated analytically in 

many cases, provides a stress distribution that satisfies 

the failure criterion and the kinematically admissible 
velocity field, where faults can be interpreted as velocity 

discontinuities (Odé, 1960). This approach was used for 

fault prediction in thrusts and accretionary prisms 

(Stockmal, 1983; Dahlen, 1984), for rifting (Lin and 

Parmentier, 1990) and continent collision (Tapponnier 

and Molnar, 1976; Regenauer-Lieb, 1996; Regenauer

Lieb and Petit, 1997). One of the drawbacks of this 

method is the uncertainty in the choice of the geometry of 

the failure zone, due to the assumption that the material 

outside the plastic zone is rigid. The other problem is that 

the kinematics of faulting in pressure-dependent rocks is 

unrealistic. 

The theory of elasto-plasticity with realistic kinematics 
offailure (so-called 'non-associated' flow rule) is the most 

appropriate theory for faulting. lt has taken a long time 

for non-associated plasticity to be developed and 

accepted in mechanics (Mandel, 1966; Salençon, 197 4; 

Rudnicki and Rice, 1975; Mandl et al., 1977; Vermeer 

and de Borst, 1984; Vardoulakis and Salem, 1995). 

Analytical solutions are available only for simple cases 

such as a single shear band (Vermeer, 1990; Byerlee and 

Savage, 1992), whereas geological problems require 

direct numerical simulation (Hobbs and Ord, 1989; 

Cundall, 1990; Hobbs et al., 1990; Poliakov et al., 1994; 

Poliakov and Herrmann, 1994; Hassani and Chéry, 1996; 

Hassani et al., 1996; Leroy and Triantafyllidis, 1996). 

This paper tries to demonstrate that the selection of the 

appropriate constitutive behaviour depends on whether 

one needs to describe the initiation of faulting, the 

approximate geometry of the failure zone or the evolu

tion of individual faults in time. The first part of the paper 

is devoted to a review of the theory, considering the 

extent to which faulting can be predicted by the theories 
of elasticity, 'associated' rigid-plasticity and 'non-asso

ciated' elasto-plasticity. Each approach is illustrated with 

the example of an indenter (fiat die) penetrating into a 
half-space. The second part of the paper treats the 



seemingly simple cases of compression with basal shear, 

bending and faulting around a dike. Based on the 

experience gained from these cases, some simple rules of 

rhumb for fault prediction are provided, and the 

limitations of each approach are discussed in the third 

part. This study is meant to be a demonstration of the 

applicability of the theory of elasto-plasticity for the 

geological community, and an introduction to some 

geological problems for mechanicists. 

THEORETICAL BACKGROUND WITH AN 

EXAMPLE OF INDENTATION IN A HALF

SPACE 

Andersonian and elasticity theories 

A great advance in the application of basic mechanics 
to geological problems was accomplished by Anderson 

(1951 ). He made two assumptions about the initiation of 

faults in the earth. First, he proposed that faults form and 

slip on planes which are oriented at 45° -<p/2° to the 

maximum compressive stress (Fig. 1). The shear stress, 

thus satisfies the Mohr-Coulomb criterion: 

,=-tan(</J)•o-n +C, (1) 

where <p is the angle of friction, Œn is the normal stress 

acting on the plane, and C is the cohesion. 

Second, he assumed that all the principal stresses are 

either horizontal or vertical. This theory predicts the 

three types of observed faults, thrust, strike-slip and 

normal fault, depending on which of the principal 

stresses is vertical. Andersonian predictions of the 

orientation of each type of fault are consistent with 

many observations (e.g. Sibson, 1994). 

Following the ideas of Anderson, many people tried to 

apply the Mohr-Coulomb fracture criterion to more 

complex stress fields to investigate the evolution of fault 

geometries for large displacements. One 'classical' 

approach has been to calculate lithospheric stress fields 

due to topographie or other loads from elasticity theory, 

and then assume that faults are oriented at the angle 

± (45° -<p/2) to the most compressive stress. This idea 

45
°
-qi/2 

Fig. 1. Prediction of faulting in an elastic material. Potential planes of 
failure are oriented at ± (45° - q,/2) to the maximum press ive stress, a- 1• 

for which equation (1) is satisfied. 

was applied to the prediction of faulting due to 

compression with a basal shear (Hafner, 1951; Yin, 

1989, 1993), flexure of the crust (Sanford, 1959; Spencer 

and Chase, 1989) and magmatism in extensional stress 

field (Parsons and Thompson, 1993). Sorne of these 

solutions will be shown in the next part of the paper. 

Criticism of the use of this approach for certain cases is 

provided by Buck (1990) and Wills and Buck (1997). 

Pros and cons of the 'elastic' approach. This method of 
fault prediction is appealing for the following reasons: 

(1) It is consistent with observations of the fault

orientations a t large tectonic scales ( e.g. Sibson, 1994 ). 

(2) Elastic analytical solutions are relatively simple

and intuitive. They are useful for a crude estimation of 

where faults can appear. 

(3) This method should predict fairly well the initial

failure zones that can persist during large deformations, 

if fault strength rapidly degrades. 

However, there are several reasons for why the results 

from these models may be misleading. 

(!) As soon as material reaches a critical state (failure) 

and faults develop in one area, the stress distribution is 

changed from the subcritical state predicted from 

elasticity theory. 

(2) This approach completely ignores the kinematics

of the problem. The predicted direction of failure planes 

may be incompatible with the boundary conditions. 

(3) Even if the slip along the surface of initial failure is

kinematically admissible, it may require more energy to 

slip along the 'Andersonian' fault than along the other 

fault orientations, which are not favored initially (Buck, 
1992; Forsyth, 1992). 

Because it is not possible to resolve these issues for the 
general case, we have found it constructive to focus on 

concrete examples of fault initiation. As a benchmark, we 

have chosen the problem of indentation of a fiat die in the 

half-space, because analytical solutions for elastic and 

plastic material are available, and this problem is 

numerically tractable. 

Indentation in the haff-space. Consider the example of a 
frictionless die pushed into an elastic half-space (Fig. 2a). 

The distribution of stresses can be found analytically for 

the case in which the die îs replaced by a strip of normal 

stress at the top of the domain (Crouch and Starfield, 

1990). The contours of maximum shear stresses form 

crescents that termina te at the corners of the die, and may 
represent the boundary between intact and failed 

material. The region where the limiting stress is above 

3 MPa is shown, together with potential trajectories of 
failure planes, for an indentation load q = 15 MPa.

Theory of rigid-plasticity 

Plasticity theory is a more suitable approach for 
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Fig. 2. Failure zones due to vertical stress q applied to elastic (a) and rigid-plastic (b-d) half-space. (a) Trajectories ofpotential 
failure are shown as solid lin es inside the domain where the maximum shearing stress k is above 3 MPa. (b) Prantdl's solutions 
for slip-lines in a rigid-plastic material with pressure-independent yield criterion {</J = 0). The limit stress q is (rr + 2)k. 
(c) Alternative Hill's solution illustrates the non-uniqueness of plastic zone configuration for the same limiting stress. (d) Slip
lines in a pressure-dependent rigid-plastic material with friction angle and dilatancy </J = ijJ = 30°, where limiting q is � 30C, and 

C is cohesion. 



prediction of faulting because it takes into account
limiting (yield) stress and defines 'slip-lines', which can
be interpreted as tectonic faults (Odé, 1960). 

Here, we briefly discuss two main points concerning
basic rigid-plasticity (Hill, 1950; Johnson et al., 1970;
Backhofen, 1972; Johnson and Mellor, 1983). First, due
to the complexity of solutions for elasto-plastic rheology,
material is assumed to be rigid-plastic, or elasto-plastic
with an infinite elastic modulus. Although this assump
tion may be justified if elastic strains that are small
compared to plastic ones are disregarded, it may produce
serious errors for certain problems. Secondly, the
distribution of stresses in rigid zones is not determined,
nor is the boundary between plastic and rigid zones,
which should be at the yield stress. 

Thus, the configuration of plastic zones, and stress and
velocity fields are non-unique and need to be chosen
before the problem can be solved. The choice of plastic
zones is somewhat arbitrary, but should satisfy certain
criteria (described below). When the configurations of the
plastic zone are chosen, the stress distribution and
velocity field in this zone can be found. 

The rheology of rocks can be classified into those
where the yield stresses depend on pressure and those
where they do not. The theory of plasticity can be applîed
for either case. We start with the case of pressure
independent plasticity. The plane-strain approximation
is used for ail problems considered below.

Pressure-independent plasticity. Plastic material yields
when the maximum shear stress, 1, reaches a critical
value, k, which is a material constant,

2 1 ( )
2 2 2 T = -4 Œxx - Œyy +rxy = k, (2)

where Œxx, Œyy
, îxy 

are the components of the Cauchy
stress tensor. The yield stress is assumed to be
independent of pressure, and does not change with
strain (perfect plasticity). The yield surface in stress
space (Œn, 1) is shown in Fig. 3(a), and is the same for
Tresca and Von Mises materials in plane strain problems.

The set of two equations of equilibrium in the absence
of body forces reduces to

aŒxx arxy _ O
ax + ay -

(3)

Equations (2) and (3) give a system of three equations
with three unknowns Œ xx, Œ 

y
y, îxy- If the boundary

conditions involve only stresses, such a problem is
statically determined; velocities can be found afterwards.

Plastic flow is assumed to be incompressible,

avx + av
y = 0,

ax ay 
(4)

where Vx and v
y 

are components of the velocity vector. In
an isotropie material, the direction of the principal axes
of stress and plastic strain-rate must coïncide (hypothesis

of Saint-Venant); thus

_ 2Œxy 
2i;{

y 

(
avx 

+ 
avy

)ay ax tan 2(x, Œ1) = - -- - . 
Œxx - Œyy lx - if;y 

-
(

avx 

-
av

y)
'

ax ay 
(5)

where (x-;ïr1 ) is the angle between the X axis and direction
of Œ 1 Fig. 3(b), and i;�Y' èfx , èf,y 

are the components of
plastic strain rate tensor. If the distribution of stresses is
known, then velocities Vx and v

y 
can be found from

equations (4) and (5). 
The condition of coaxialîty between strain-rate and

stress tensors can be also written as the proportionality
between deviatoric stress s;1 and plastic strain-rate ët,

(6)

where Â is the coefficient of the proportionality and
pressure is p = -( Œ xx + Œ yy)/2 for the plane strain pro
blem. The relation (6) is shown graphically in Fig. 3(a).
The intersection of the yield stress envelope and Mohr
circle determines the direction of the plane offailure. One
can define the stress acting on this plane as a vector in the
(Œm 1) space. We plot the vector of deviatoric stress s
which is orthogonal to the yield surface. The vector of
plastic strain rate ;,

P 
can be plotted parallel to the s

because of the coaxiality of plastic strain rate and stress
(equation (5)). 

It can be seen in Fig. 3(a) that the plastic strain vector is
orthogonal to the yield surface. The condition of the
orthogonality, or associativity, is also the consequence of
the fondamental 'maximum work' principle in the theory
of metal plasticity (Hill, 1950). 

The maximum shear stress and strain rates are oriented
at 45° to the axes of principal stresses, forming an angle ()
with the X axis (Fig. 3b). These are called slip-lînes
because slip can occur only along these directions. They
form two orthogonal families of curves shown as a and /3
lines in Fig. 3(c). 

It can be shown (Hill, 1950) that the system of
equations (2) and (3) exhibits the fondamental property
that, along the slip-lines, certain quantities are conserved:

p + 2k0 = const on an a line
p - 2k0 = const on a /3 line,

(7)

where k is maximum shear stress and p is the pressure
(Fig. 3c). These relations are called the Hencky equa
tions. It also can be shown that equation (2) with
condition (3) is hyperbolic, and the characteristic curves 
are the slip lines (Hill, 1950). The solution of a given rigid
plastic problem requires construction of the slip-line 
field. These can be found by propagation from the
boundary where stresses are defined. Although, in a
general case, it is required to be done numerically, for
some cases, it can be done analytically. For example, if
the boundary is straight and shear stresses at the
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Fig. 3. (a) Limiting (yield) stres§ for pressure-independent material with incompressible plastic flow </> = 1/1 = 0 in the(,, un) 
stress space. Plastic strain rate i;

P 
is shown inside a grey circle because it is defined in another space. lt is coaxial to the 

deviatoric shear stress s (equation (6)). (b) Direction of maximum shearing stress makes an angle 0 to the x axis and 45° to cr 1. 
(c) Directions of maximum shear stress and strain form two sets ofperpendicular a and /3 slip-Jines along which equation (7) is
satisfied. (d) Properties of velocity field: normal velocity is continuous across a slip-Jine, tangential velocity can be

discontinuous and can be interpreted as a fault. 

boundary are zero, then the adjacent plastic zone is a 
triangle where the slip-lines are straight lines. 

The velocity field has a similar property as the stress 
such that 

du - vd0 = 0 on an a line 
dv + ud0 = 0 on a /3 line, 

where u and v are velocity along slip-lines (Fig. 3c). These 
equations are attributed to Geiringer. They are nothing 
more than the statement that the rate of extension along 
any slip-line is zero. A fondamental property of these 
equations is that velocity u can be discontinuous across 
the a line and velocity v discontinuous across the f3 line. In 
other words, the normal velocity is continuous across the 
slip-line, while the tangential velocity can be discontin
uous (Fig. 3d). This discontinuity can be interpreted as a 
fault (Odé, 1960). The frontier between plastic and rigid 
zones also should be a slip-line, separating moving from 
motionless material. 

Indentation problem and non-uniqueness of the solution. 
The classical example of rigid frictionless die indenting in 
a half-space can be readily solved by means of rigid
plasticity theory. Figure 2(b) shows the construction of 
slip-lines proposed by Prantdl. Suppose that distribution 
of stresses is uniform under the indenter. The surface of 
the half-space is fiat and shear stresses are· zero. Thus, 
slip-lines are straight, tilted at 45° to the surface and form 
three triangles AFG, ACB and BDE. Two curved 

domains (AFC and BCD) are bridging these triangles. 
The triangles BDE and AFG are under horizontal 
compression, and triangle ABC is under horizontal 
tension. The a slip-line makes an angle 0 1 = -n/4 to the 
free-surface and equation (7) yields, 

kn 
P1 -

2 
= � = const = �1,

where p 1 is the undetermined pressure inside LiABC. In 
LiBDE, the following relations 

n kn 
02 = 4, P2 = k, P2 + 2 

= �2

are satisfied along the same a slip-line. As the parameter ç 
should be constant along an a line, ç 1 = ç2 and the 
pressure un der the die is p 1 = k( n + l ). The difference 
between the pressure and vertical stress is k, and the 
limiting stress q applied to the die is 

q = k(n + 2). (8) 

The kinematics of the plastic flow are simple: triangle 
ABC moves downwards, with velocity of the die V. The 
tangential component of velocity is discontinuous along 
line BC, while the normal component of velocity is 
continuous and is V/J(2). Along CD, the tangential 
component of velocity is discontinuous, and the normal 
component is zero. The velocity in triangle BCD is v = 0 
and u = V/✓(2). The domain BDE slips as a solîd block in
the direction DE at the same velocity, V/J(2). 

An alternative solution îs that of Hill and is shown in 



Fig. 2(c). One can also construct a number of slip-line
fields which are a mixture of these two solutions. The
limiting stress q = k(n + 2) is the same for ail these
solutions. 

The geometry of plastic zones is non-unique because
the stress is not defined in rigid zones. Thus, it is necessary
to make an additional verification of the solution by
doing the following. 

( 1) Check that the velocity field is kinematically
admissible, e.g. that slip-lines (or discontinuity line) do
not terminate at a boundary with a rigid zone. 

(2) Check that the dissipation of plastic flow Œuf¾ is
not negative. 

(3) Choose the solution with the minimum limit Joad.
( 4) Check that the stress in the rigid zones does not

exceed the yield stress. This condition can be verified by
propagation of plastic fields in the rigid zones. 

However, these additional constraints may not be
enough to distinguish between different solutions, as
was the case for the solutions of Hill and Prantdl. A
useful approach is to try to construct the geometry of the
plastic zone by taking into account the theory of
elasticity, or conduct a direct laboratory or numerical 
experiment, as will be shown below. 

Mohr-Coulomb 'associated' plasticity. Pressure
dependent (Mohr-Coulomb) plasticity is more
appropria te for the description of brittle failure in rocks
and in soils. The yield stress envelope is shown in Fig.
4(a), where C is cohesion, <p is friction angle and
H = C-cot<p. The yield condition expressed in terms of
principal stresses is 

(Œ1 - Œ3) = -sin(</J) . (Œ1 + (J3 - 2H). (9)

This is equivalent to equation (!). Equation (9) and the
two equilibrium equations in equation (2) form a system
ofthree equations with three unknowns as in the previous
case. 

The failure planes are inclined at ±(n/4- </J/2) angles
to the direction of the principal stress Œ1 (Fig. 4b ). These
lines are also the slip-lines along which the following
conditions are met (Salençon , 1974): 

O'n 

a) 

log(H + p) + tan <p • 20 = const on an a line 
log(H + p) - tan <p • 20 = const on a fJ line. 

(10)

As in the theory ofpressure-independent plasticity, the
principal directions of strain-rate and stresses _ are
assumed to coincide. The plastic strain rate vector Ëp 

is
parallel to the deviatoric stress vector s (Fig. 4a). Thus,
the plastic strain rate is associatsd with the yield surface.
The relation between the shear èÇ and the volumetric Ë;,
components of the plastic strain rate at the plane of
failure is, 

èf, = sÇ tan(</J), (11) 

where i;f, = 1/2(i;�
x 

+ Ë�,J Thus, the flow along the failure
plane is not incompressible as was assumed in the
analysis of pressure-independent plasticity, but increases
in volume with an angle of dilatation ijJ equal to the
friction angle <p, where ijJ is defined as sin( ijJ) = i;;,I i;Ç
(Vermeer and de Borst, 1984). This is the result of the
'associated' plastic flow rule and can cause serious
problems in applications to real materials, because this
condition is not physical. 

Let us consider the problem of indentation in a
pressure-dependent Coulomb material. Figure 2(d)
shows that the construction of slip lines is similar to
Prantdl's solution. However, the characteristics are
oriented at ±(n/4-cp/2) to the maximum compressive
stress. One can see that slip-lines initiate at the die with a
slope of 60°, and termina te at the surface on the sides of
the indenter at 30°. Using equation (10), we find the 
following relation for the limiting Joad q,

q = C cot<p . ( 
1 + s'.n <p 

en tan q, - 1). 
1 - sm <p 

( 12)

Taking the value, <p = 30°, we have q � 30C. This case will
be verified numerically and compared with others in the
next section. 

Pros and cons of the rigid-plastic approach. The
advantages of rigid-plasticity compared to elasticity are
as follows. 

( 1) The stresses in the failure zones do not exceed the
limit.

"

h) 

Fig. 4. (a) Yi�ld stress for pressure-dependent (Coulomb) material with associated plastic flow c/> = ,jJ = 30". Plastic strain rate 
r,P is coaxial to the deviatoric shear stress s. (b) cx and /J slip-lines are oriented at ±(45-cp/2) to rr 1 • 



 

(2) The kinematics of failure are taken into account.
Slip-lines can be interpreted as faults because the 
tangential velocities can be discontinuous across these 
lines. Thus, the theory of rigid-plasticity can predict 
movement for large deformation in contrast to the 
'elastic' solution. 

(3) In some cases, it is easier to construct the slip-line
field or at least a part of it compared to the 'elastic' 
solutions, as in the problem of indentation. 

The drawbacks of rigid-plasticity are the following. 

(1) Non-uniqueness of the plastic zone configurations
occur because the stress in rigid blocks is unknown. In 
problems where the plastic material is severely 
constrained by adjacent elastic material (as in the 
expansion of a thick-walled tube, or in the bending of a 
beam), the geometry of the plastic zone cannot be found. 

(2) Theoretically, pressure-dependent materials must
dilate during plastic deformation as a result of the 
associativity of plastic flow with an angle of dilatation 
equal to the friction angle i/J = <p. However, in materials 
like rocks and soils, the dilatation angle is much smaller 
and even goes to zero after several per cent of strain. 
Thus, the predicted velocity field is not realistic. 

Elasto-plastic non-associated plasticity 

lt is well known that the limiting stress for rocks and 
soils is approximately linearly dependent on pressure 
(Fig. 5a), while the flow in failure zones is close to 
incompressible. This behaviour cannot be described by 
the theory of associated plasticity where the vector of 
plastic deformations is orthogonal to the yield surface 
(Fig. 4a). Therefore, a theory of plasticity, with plastic 
flow independent from the failure envelope, was devel
oped (Mandel, 1966) and called non-associated theory of 
plasticity. 

The construction of the slip-line field for a non
associated plastic material raises a difficulty: velocity 
slip-lines (i.e. lines of maximum shear strain-rate) should 
be oriented at an angle of 45° to the direction of principal 
stresses, while the stress characteristics should be at an 
angle of ± (45° -</J/2). The stress and strain-rate char
acteristics do not coïncide: the direction in which material 
fails is not the same as that in which material can flow. 
Therefore, this material cannot be treated by the theory 
of isotropie rigid-plasticity (Vardoulakis and Salem, 
1995), and elastic deformations need to be taken into 
account. Another consequence of non-associated plasti
city is that the material deforms in a localized manner, 
along plastic shear zones surrounded by elastic material. 

The basic assumption of elasto-plasticity is that the 
total strain-rate, é, is the sum of elastic ée and plastic 
strain rates i;P: 

i; = i;e + i;P. (13) 

Hooke's law is used for the elastic strain rate, giving 

crn 

a) 
! cr V 

+ 't cr V 

crJ. � crïï 
n 

' 0 

cri; crh (/) 
(/) 

Shear strain inside band Y 

b) c) 
Fig. 5. (a) Yield stress for a pressure-dependent material with non
associated (incompressible) plastic flow </; = 0°, ijJ = 30°. (b) Shear band 
localization in a biaxial test (after Vermeer (1990)). The normal stress 
parallel to the band can be discontinuous. Crosses represent orienta
tions of principal stresses. (c) 'Non-associated' softening due to decrease 

ofmean stress inside the shear band. 

iJ = Dée 
= D(é -if), (14) 

where D is the elasticity matrix, iJ and é are stress and 
strain rate vectors. In the plane strain conditions and a 
rectangular Cartesian system, the elasticity matrix is 

[
À+ 2G 

D= À 
0 

A 

À+2G 
0 � ]· 2G 

where À and G are Lamé parameters, and the vectors of 
stress and strain rate are 

( )T · (. · · )T(J = Œxx, Œyy, Œxy 6 = Bxx, 6yy, "xy , 

where the superscript T denotes a transpose. 
In the literature on plasticity, a yield function fis 

commonly employed to distinguish plastic from elastic 
states. For Mohr-Coulomb materials, it can be defined as 
follows (Vermeer and de Borst, 1984): 

f = r -p · sin(</J) - C • cos(</J), (15) 

where <p and C are the friction angle and the cohesion 
respectively, and T and p are the maximum shear stress 
defined by equation (2) and pressure. Thus, material is in 
�n elastic state iff < 0 and in a plastic state whenf = 0 and 
f=O. 

In the theory of plasticity, there is no direct relation 



between the plastic strain and stresses because plastic 
deformations are irreversible and depend on the loading 
history. Instead, a plastic potential fonction g is intro
duced, and the plastic strain rate ï,,P is assumed to be at 
f = 0 as follows: 

if= A ag 
a(J, (16) 

where A is a scalar multiplier with no physical meaning. 
One of the sui table definitions of g is 

into two states: one where shear bands deform plastically 
and another where material outside of the band unloads 
elastically. This is only possible if the state of stress inside 
the band is different from that outside the band. The 
shear stress r and normal stress perpendicular to the band 
<Jn are continuous across the shear band, 

as is required by the conditions of equilibrium, while the 
normal stress along the shear band <J� can be discontin-

g = r -p • sin(i/1) + const, (17) uous,

where ijJ is called the dilatation angle. This angle can be 
measured experimentally through the increase in volume 
of sheared rocks. Dilatancy is due to tensile cracking and 
lifting of sliding blocks over asperities. However, this 
angle is relatively small (around 10°), and dilatation goes 
to zero after a few per cent of plastic strain, because rocks 
cannot increase in volume indefinitely. Therefore, we 
assume that ijJ = 0, i.e. that our material is plastically 
incompressible and thus conserves volume. 

In order to express the constitutive mode! in a matrix 
equation, we substitute equation (16) into equation (14) 
to obtain: 

. n· ag <J= B-DA� 
a(J 

(18) 

When material is in a plastic state (f = 0), the multiplier A 
can be calculated from the condition that an element 
remains in a plastic state when it yields. This is the 
consistency condition, which can be written in matrix 
notation 

f. = af
l

iJ = O. . a(J 
(19) 

The substitution of equation (18) m the consistency 
condition gives 

aifr afr a i=-fü-A-· n-'f=o 
a(J a(J a(J ' (20) 

from which A can be found. The stress-strain law can 
then be obtained by substituting A in equation (18) as is 
done in Vermeer and de Borst (1984): 

where 

·= D- a,;:•â;i 
( 

(D ag) (arr D)) 
<J d e,

d= afl D ag _
a(J a(J 

(21) 

Vermeer (1990) analysed the behaviour of non-asso
ciated plastic material subject to biaxial loading (Fig. 5b ), 
where horizontal stress Œh is kept constant but vertical 
stress Œv is allowed to change. The main consequence of 
non-associativity is that in the post-peak regime, the 
material does not deform homogeneously, but biforcates 

where symbol li denotes the difference of stresses outside 
and inside of the band. 

Vermeer (1990) showed that the principal stresses 
inside the band rota te from an angle of ( 45° -cp/2) to 
45° to the maximum compressive stress in materials with 
incompressible plastic flow (i.e. ijJ = 0). Thus, coaxiality 
between plastic strain rate and stress inside the band is 
satisfied. This also means that the direction of maximum 
plastic shear strain rate coïncides with the direction of the 
band, while the band itself coincides with direction of 
failure in the stress field outside of the band (Fig. 5b ). 

Normal stresses parallel to the shear band Œj( decrease 
in the post-peak regime, which causes a decrease of 
vertical stress Œv (Fig. 5c) and is 

( peak _ residual)/ _ ] + sin ( cp)(Jv (Jv O"n-1-sin (cp)
1 + sin (cp) + cos (cp) -cos2 (cp) 
1 - sin (cp) + cos (cp) -cos2 (cp) 

for a shear band oriented at the angle of (45° -cp/2) to <J" 
and a material with ijJ = O. The decrease of stresses due to 
non-associativity of plastic flow is called 'non-associated 
softening' (Vermeer, 1990), and it is different from 
material softening in which the Mohr-Coulomb strength 
parameters, cp and C, are reduced as a fonction of plastic 
strain, due to damage of the material inside the fault. 

Pros and cons of non-associated plasticity. This is the 
most complete theory of plasticity, which takes into 
account the Mohr-Coulomb yield criterion, the 
incompressible flow rule and the stress state in elastic 
zones. The theory predicts 'non-associated' softening and 
localization of deformations in pressure-dependent 
materials that are well observed in experiments 
(Vardoulakis, 1980; Vardoulakis and Graf, 1985). The 
same effect appears for developed faults and gouge zones 
in nature (Mandl, 1988; Lockner and Byerlee, 1993). 

This type of rheology can be used for numerical 
modeling of faulting. In this approach, it is not required 
to prescribe the geometry and location of faults. They 
naturally appear where stress is concentrated, or at local 
heterogeneities (Hobbs and Ord, 1989; Leroy and Ortiz, 
1989, 1990; Cundall, 1990; Poliakov and Herrmann, 
1994). 



The difficulties are mostly technical with this type of 

plasticity. 

(1) lt is not evident to use the slip-lines method,
because characteristics of velocity and stresses do not 
coïncide. 

(2) Analytical solutions are not practically available.
(3) The thickness of the localization zone is not

defined by the physics of the mode!, and the theoretical 
thickness of the shear band is zero. During numerical 
experiments, it is limited by the size of the elements of the 
computational grid. This means that some of the aspects 

of the problem can be mesh-dependent. However, the 
geometry and qualitative behaviour of numerically 
modeled shear zones should not depend on mesh 
resolution (Pietruszak and Mr6z, 1981; Bazant et al., 

1984; Needleman, 1988; Sluys and de Borst, 1991). 

Numerical experiments on the problem of indentation 

In order to verify the predictions made in the preceding 
sections, we simulate the problem of indentation in the 
half-space numerically employing ail types of plasticity 
considered above. We have used an explicit Lagrangian 

technique similar to FLAC, as developed by Cundall and 
Board (1988) and Cundall (1989), to simulate an elasto
plastic two-dimensional medium under the plane-strain 
condition. FLAC is a very powerful technique for 
simulating non-linear rheological behaviour at high 
resolution mesh because it uses an explicit time-marching 
scheme that does not require storage of large matrices, 
which are typical of implicit methods. 

Figure 6(a--d) summarizes our numerical experiments 

of the indentation problem for the three types of 
plasticity discussed above. Only a half of the domain is 
simulated. The die is represented by the application of 
vertical velocities at the left upper corner of the domain. 
Figure 6(a) shows the typical initial stage of deformation, 
which is similar for al! rheological models. The left part of 
Fig. 6(a) shows the plastic (i.e. failure) zone in white and 
the elastic zone in black, and the right part shows the 
velocity and strain rate fields. The geometry of the plastic 
zone is similar to the one predicted by the 'elastic' 
solution (Fig. 2a) and not by any of the plastic solutions 
(Fig. 2b--d). It would difficult to anticipate such a result 
beforehand, whereas it can be readily explained by 
looking at numerical results. One can see that in the 
initial stages of the penetration of the die, the plastic zone 
is severely constrained by the elastic material outside, and 
the geometry of the plastic zone is controlled by the 
distribution of elastic stresses outside of this zone. Thus, 
in the theory of rigid-plasticity, neglecting the distribu
tion of stresses outside of plastic zone fails to predict this 
result. On the contrary, the 'elastic' solution gives a 
qualitatively correct prediction (Fig. 2a) because the 
stresses in the failure zone are not far from the yield 
stresses for small deformations. 

However, the situation becomes different as deforma-

tions increase. Figure 6(b & c) shows numerical solutions 
for associated pressure-independent ( <p = 0°) and pres
sure-dependent (</J = 30°) plasticities, respectively, which 
are very similar to the analytical rigid-plastic solutions 
(Fig. 2b--d). One can also see that our numerical solution 
is doser to the Prantdl type than to Hill type, probably 

because our boundary conditions are kinematic and not 
in stresses. The case of non-associated plasticity (Fig. 6d) 

is the most interesting because it was difficult to predict 
theoretically. One can see that this solution is a mixture 
between the previous two: while slip-lines under the die 
resemble the case with <p = 30°, they corne out at the 

surface as in the case with <jJ = O. This is not a coïncidence. 
The zones of localization in non-associated plasticity 
should form in between the velocity and stress slip-lines, 
which are solutions for associated plasticity when <jJ = 0° 

and <p = 30°, respectively. We also found an agreement 
between the calculated and predicted critical loads 
(equations (9) and (12)), while the non-associated 
plasticity case gave a result close to equation (12). The 
last solution can be explained by comparing the 'com
plete' solution of Bishop (1953) and the plot of elastic and 
plastic zones in Fig. 6(e). 'Complete' solutions consist of 
ail possible solutions for stress slip-lines without con

sideration of the kinematics of plastic flow (Fig. 6, left). 
Our result (Fig. 6, right) shows that plastic zones are 
similar to some parts of the 'complete' solution. How
ever, the deformations in deep failure zones under the die 
are very small because they are hindered by the 
surrounding elastic material. The majority of deforma
tions are accommodated along curved shear zones 
connected to the free-surface because the slip along 
these zones is not affected by the surrounding media. 

These results demonstrate that 'elastic' solutions 
predict the geometry of failure zones fairly well when 
plastic deformations are comparable to the elastic ones, 
and/or when a failure zone is constrained by the elastic 
material outside the zone. The theory of rigid-plasticity 
correctly predicts the geometry of the failure zones for 
large deformations, when a plastic zone is connected to a 
free surface. Non-associated elasto-plasticity gives the 
most complete solutions, with failure zones evolving with 
time. However, the combination of 'elastic' and 'rigid
plastic' approaches can qualitatively predict the right 
mode of failure. 

COMPRESSION WITH A BASAL SHEAR 

The geometry and evolution of faults in thrust sheets 
and accretionary prisms are not yet completely under
stood. This problem is related to 'the paradox of large 
overthrusts' (Price, 1988): how is it possible to displace a 
long and thin thrust sheet as a coherent unit over a 
frictional surface by pushing it from behind? The 
maximum length of the thrust sheet along which it is 
possible to move is limited by the strength of the rock. A 
simple estimation of this length for a rectangular block 
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b) </J = 0, t/J = 0 C) cj, = 30, tp = 30 d) cj, = 30,t/i = 0

e) Complete solution

Fig. 6. Numerical verification of analytical predictions of indentation in an elasto-plastic material. Only right-half of the 
problem is shown due to symmetry. The top surface is stress-free, and a vertical velocity is a pp lied on the top. Bottom and right 
boundaries are free-slip. We have chosen Poisson's ratio v = 0.25, Lamé's parameters ;, = G = 3. 10 10 Pa for all numerical 
experiments in the paper. (a) Initial stage of indentation is independent of friction angle and dilatancy. Left figures show that 
geometry of plastic zone (grey) embedded in elastic material (white) is in agreement with the 'elastic' prediction in Fig. 2(a), 
Velocity field and strain rate fields are shown on the right. (a) and (b) large deformations solutions for associated (cf,= i/1 = 0) 
(b) and (cf,= i/1 = 30°) (c) plastic materials are in agreement with Prantdl's solutions (Fig. 2b & d). (d) Solution for a material 
with 'non-associated' flow rule (1> = 30°, i/t =0) is a mixture of the two previous solutions with associated flow rule. (e) Left: the 
complete analytical solution proposed by Bishop (1953) for associated plasticity with cf,= O. Right: a snapshot of numerically 

obtained plastic zones (grey) for non-associated plasticity (cf,= 30° and J/! = 0). 



pushed from the rear gives values that are orders of 
magnitude below those observed in nature (Hubbert and 
Rubey, 1959; Jaeger and Cook, 1969). Currently, there 
are two non-mutually exclusive explanations: (a) pore 
fluid pressure at the base of a thrust effectively decreases 
the friction force (Hubbert and Rubey, 1959); and (b) a 
thrust with a wedge geometry can be at yield stress in ail 
its parts and thus move as one unit (Chapple, 1978). The 
extension of his theory for a pressure-dependent plastic 
material was worked out by Davis et al. ( l  983) and 
Dahlen (1990). Here, we proceed in the same way as in 
the previous section, showing elastic, rigid-plastic and 
elasto-plastic solutions for bath rectangular and wedge 
geometries of a thrust sheet. 

Elastic solutions 

Rectangular geometry. Hafner (1951) was probably the 
first to apply the theory of Anderson for calculation of 
fault pattern in a thrust zone. Consider a rectangular 

block of horizontal dimension L (Fig. 7a) in a gravity 
field. The pushing force applied at the left boundary of 
the black is in equilibrium with the shear stress at the 
bottom. Assuming that shear stress a xy linearly changes 
with depth, one can find a simple stress field satisfying the 
equations of equilibrium, 

Œxx =pgy+c(x-L) 

Œyy = pgy 

Œxy = -cy. 

(22) 

For different values of c, one can find the part of the 
domain where shear stress exceeds the yield stress 
( equation (1 )) and predict the direction of failure zones 
as lines oriented at ± ( 45° - ,j;/2) to the direction of 
maximum compressive stress (Fig. 7a). 

Wedge geometry. A typical example of an application 
of an 'elastic' solution for fault prediction for 
accretionary prisms is shown in Fig. 7(b) (after Yin 
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Fig. 7. Analytical solutions for faulting in a thrust zone. (a) Trajectories ofpotential faults (solid fines) from Hafner's solution 
(Hafner, 1951) for compression of an elastic rectangular block with a basal shear. Dashed fines bound predicted zones of 
failure for different values of the basal shear (c = 0.2 pgH and pgH). (b) Yin's solution (Yin, 1993) for a particular stress 
distribution in compressed elastic wedge. (c) Slip-lines in a block pushed above a base of strength k. The left boundary is shear
stress-free. (d) The same as (c) with the shear stress, k, applied at the left boundary. Note curved 'listric' slip-lines in this case 
compared to the straight slip-lines in (c). (e) Solution of Prantdl (after Hill ( 1950)) for the compression of a rigid-plastic block 
with strength k between two rough plates with cohesion k. Note curved slip-lines (cycloids), and an increase of vertical stress 
from right to left. (f) Fault trajectories in a cohesionless rigid-plastic wedge ( <p = i/J = 30°, C= 0) pushed over a frictional base 

(after Dahlen (1984)). 



(1993)). Here, the author assumed the following 
distribution of stresses in the wedge, 

(Jxx = k3x + k4y + kg + pgx • sin rx 

(Jyy = -pgy. cos (X 

(JX)' 
= -k3y. 

(23) 

The three parameters k; were freely varied to obtain 
'paradoxical' fault geometries. There are thrust faults at 
the toe of the wedge and normal faults in the rear of 
wedge. This is the result of an arbitrarily chosen elastic 
stress field, due to unjustified stress boundary conditions. 
For example, in the case shown in Fig. 7(b), basal friction 
is greater than the internai friction in the wedge, shear 
stress changes sign along the bottom depending on the 
length of the wedge, and terms k8 and k4 ambiguously 
describe compressive stress coexisting with extensive 
stress. While Yin assumed a Mohr-Coulomb criterion 
for directions of failure zones, he delimited the unstable 
zones by a maximum shear stress eut-off of 50 MPa, 
independent of the pr�ssure. Severa] examples of other 
inappropriate applications of 'elastic' solutions to the 
problem of faulting are discussed by Buck (1989) and 
Wills and Buck (1997). 

Plastic solutions 

Rectangular geometry. Let us apply the slip-line theory 
for the problem of the sliding of a plastic rectangular 
block on a base with cohesive strength k and friction 
angle cp = 0 (Fig. 7c & d). If there is no shear stress applied 
to the left boundary and only a normal horizontal stress, 
the slip-lines are at 45° to the boundary and form a 
triangle (Fig. 7c). If the shear stress, k, is applied to the 
left boundary, then the boundary becomes a slip-line 
itself, changing the slip-line field to the configuration 
shown in Fig. 7(d). Tt is interesting to note the application 
of shear stress at the curving left boundary faults, 
compared to the shear-stress-free boundary condition 
that gives straight faults. This simple example shows that 
it is impossible to move the rectangular block as a unit by 
a simple push from the rear. 

Let us find a condition when the entire block will be at 
yield stress and thus flows plastically. One of the 
possibilities is a compression of a block between two 
rough plates (Fig. 7e). The horizontal dimension of the 
problem is assumed to be Jarger than the height H. The 
solution for the pressure-independent material with 
cohesion kwas given by Prantdl. The stress distribution is 

(Jxx = ex ± 2j k2 
- y2 

. c2 

(JYY = ex

(JX)' = -Cy, 

where c = k/ H (Hill, 1950). Stresses at the boundary of the 
domain are shown in Fig. 7(e) as well as slip-lines, which 
are cycloids. The bottom half of the problem may 
represent a thrust pushed from the left which slides at 

the lower surface with basal friction k. One can see that 
the necessary condition to render the whole block plastic 
is the linear Joad at the surface, which may be represented 
by topographie slope. It is interesting to notice that the 
cycloids may represent curved 'listric' faults. Examining 
Fig. 7(d & e), one can conclude that faults are curved if 
the bottom boundary is a slip line. This also means that 
the friction angle of the base should be equal to that of the 
wedge. 

Wedge geometry. Following the idea of Chapple 
(1978), Davis et al. (1983) considered a thrust with a 
geometry of a wedge (Fig. 7f), which is at the verge of 
plastic failure. Dahlen (1984) found an analytical 
solution for the equilibrium of a cohesionless Coulomb 
wedge, which is bounded by a plane of weakness from 
below. I t was assumed that the stresses (JYY and Œ xy acting
at the plane parallel to x are caused only by the gravity 
force (Terzaghi, 1943), 

(Jvy = pgy cos (rx) Œxy = -pgy sin (rx), (24) 

where gis the acceleration of gravity and p is the density 
of the wedge. It is easy to see that these stresses satisfy 
equilibrium conditions 

a(Jxx ar,y 
�·+�+ pgsm (rx) = 0 
ax ay 

a(Jyv ar,,, 
�· + �' - pg cos (rx) = 0, 
ay ax 

and the following conditions are fulfilled 

(25) 

(26) 

This means that the stress does not change at the line 
parallel to axis x, and the orientations of principal 
stresses are the same everywhere in the wedge. Thus, a 
non-cohesive critical wedge is self-similar in the sense that 
a magnified version of any portion of it near the toe is 
indistinguishable from the wedge as whole. This is a 
consequence of the absence of an inherent length scale in 
the equations of equilibrium and in the boundary and 
failure conditions (Dahlen, 1990). Slip-lines also have the 
same directions everywhere in the wedge, being oriented 
at ± ( 45° - cp/2) angles to (J1 (Fig. 7f). 

Dahlen (1990) gives an approximate solution for the 
equilibrium of a wedge with a narrow taper (rx«l, /3«1), 
which is appropriate for most of the thrusts in nature. If 
the coefficient of friction at the base is µh and the 
coefficient of pore pressure in the wedge and at the base 
are À and Àh, respectively, then 

rx +fi� 
/3 + µb(I - Àb) 

1 + 2(1 -À) sin (cp)/(1 - sin cp)" 
(27) 

This equation shows that the critical taper (rx + /3) is 
increased by an increase in the coefficient of basal friction 
µb or an increase in the coefficient of pore pressure À, 
whereas it is decreased by an increase in the internai 
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Fig. 8. Numerica! m�delling of_Hafner's problem (Hafner, 1951) for elasto-plastic material (cp = 30°, t/J =0° and C= 20 MPa).
The s1mulated reg1on 1s 10 km h1gh and 30 km long. Kinematical boundary conditions are given by equation (22). Left figures 
show veloc1ty field and stram rate at m1tial (a) and advanced (c) stages. Plastic (grey) zones (b) and (d) are shown on the right 

and resemble elastic (Fig. 7a) and rigid-plastic (Fig. 7d) analytical predictions. 

friction angle </J or increase m the coefficient of pore
pressure at the base Àb· 

Numerical solutions 

Rectangular geometry. It is not always simple to
compare elastic and plastic solutions for the same
problem due to differences in application of boundary
conditions. Elastic solutions considered here are
formulated with stress boundary conditions, whereas, it
is difficult to apply the same stresses for a plastic material.
These stresses may be above the yield stress, making the
problem ill posed. It is more practical to apply velocity
boundary conditions for plastic problems, so that
material is gradually loaded by deforming boundaries
allowing a graduai growth of plastic zones. Therefore, in
order to compare the 'elastic' solution of Hafner with an
elasto-plastic solution, we expressed the stresses from
equation (22) in terms of velocities. If one assumes that
shear stress Œ xy grows linearly with time, then it should be
compensated by an increase of normal stress Œ xx as
follows from the equation of equilibrium, 

(J xy(t) = C · y · t Œxx(t) = -C · X ·  t,

where c is the rate of the stress increase chosen from
consideration ofnumerical stability and t is time. One can

integrate these equations to obtain the velocity field Vx,
Vz corresponding to this loading: 

(
x2 ) ( 1) y2 

Vx = A · C • 2 
- L · X + B - G · 

C • 2 

V
y 

= -B · c · (x - L) · y

A= A+2G 
4G(À + G) B= À

4G(À + G)'

(28)

where À and G are the Lamé parameters, and L and H are
the horizontal and vertical dimensions of the problem.
These velocities were applied at the boundaries as shown
in Fig. 8(a & c). Plastic zones are shown in white in Fig.
8(b & d). At the initial stages (Fig. 8a & b) when
deformations are small, the 'elastic' solution of Hafner
(Fig. 7a) predicts well the geometry of the plastic zone as
in the example of indentation. However, when the whole
region becomes plastic (bottom of Fig. 8c & d), the rigid
plastic slip-lines (Fig. 7d) predict faulting better,
especially the geometry of curved shear bands, which is
due to a strong basal shear (Miikel and Walters, 1993). 

Wedge geometry. We also have verified numerically the
prediction of the rigid-plastic mode! of Dahlen (1984) for
the cohesionless wedge. Boundary conditions are shown
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Fig. 9. Numerical modelling of faulting in a frictional cohesionless wedge. (a) Numerical setup. Constant horizontal velocity 
and zero shear stress applied on the left border and hydrostatic stresses on the right. Upper surface is initially horizontal (rx = 0) 
and stress-free. The base is inclined at the angle /3 = 6° . Friction angles in the wedge (</>)and at the base ( <Pb) are 30'. Coefficients
of fi uid pore pressure are ). = h = 0--4. Two snapshots corresponding to the displacement of the left border for 38 m (b) and
6 km (c) demonstrate the development of the failure zone from the upper surface to the base. The slope increases to the critical 
value and then the wedge starts to slip as a whole, simultaneously deforming intemally. (d) Topography has an average critical 

slope of 5° and a bulge of 200 m on the right side due to a local thrust. 

in Fig. 9(a). The parameters of the problem were chosen 

as follows: the slope of the base /3 is 6°, the top surface is 

initially fiat (o: = 0), the coefficient of pore pressure À= 0.4 

for the base, and the angle of friction for the wedge 

cp = ± ( 45° - cp /2). Figure 9(b & c) shows the evolution of 

plastic zones with time. At the initial stage (Fig. 9b ), only 
the rear part of the wedge slides and the geometry of the 
plastic zone are similar to that predicted by Hafner's 
solution for a rectangular b1ock (Fig. 7a) for c = 0.2 ngy.

As loading continues, the zone of plastic deformations 

increases laterally and vertically, unti1 the si ope of the 
wedge bui1ds up such that the whole block starts to slide 

(Fig. 9c). We found that the theoretical prediction of the 

wedge taper (equation (20)), which predicts a value of 
o: = 5. 75c, is in agreement with that obtained numerically 

(ex = 5°) by measuring the average topographie slope in 

Fig. 9(d). 

Although the theory of Dahlen ( 1984) gives a very 

good estimation of the average slope, it does not tell us 

about the evolution of faults with time. It can be seen 

from the numerical experiments that faults are not stable 

and that active faults jump from one place to another, 
because the stress distribution in the thrust is not uniform 

and changes in time. This is because slip at any fault is 
resisted by gravitational forces and is not kinematically 
compatible with slip along the base. Therefore, active 

faults constantly change their positions, creating a 
complex, evolving network of faults accommodating the 

bulk deformation of the thrust sheet. However, if the 

critical surface slope o: is reached, movement of the en tire 
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Fig. 10. Prediction offaulting due to bending. (a) Numerical setup: vertical borders are free-slip, and upper surface is stress
free. The bottom boundary is shear-stress-free and subjected to a sinusoidal velocity. Angle of friction</> is 30° and cohesion is 
5 MPa. Potential zones offailure (white colo.r) and trajectories offaults in elastic material are shown for two displacements of 
bottom boundary 22 m (b) and 88 m (c). Elasto-plastic solutions (d and e) f or the same amounts of maximum displacements of 
22 and 88 m. Plastic shear bands (in grey) terminale at the boundary with elastic domain, and thus elasto-plastic solution 
closely resembles the elastic one. Note that at the la ter stage, the top zones of failure are disconnected from the bottom ones, 

contrary to the elastic predictions. 

thrust wedge can occur without internai deformations, 
while the whole wedge is at critical stress. 

PLATE BENDING 

same order as the thickness of a plate) was studied in 
order to predict low-angle faulting under particular 

boundary conditions (Hafner, 1951; Sanford, 1959; 

Spencer and Chase, 1989). One can find a discussion on 
prediction oflow-angle faulting due to flexural stresses in 
Wills and Buck (1997). 

Faulting in plates due to bending is an important 
problem in geophysics. The distribution of stresses in 
thick plates (i.e. with characteristic dimensions of the 

Here, we consider plate bending under loads with a 
wavelength considerably longer than the thickness of the 
plate (Fig. 10a). Thus, our results can be interpreted in 
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Fig. 11. Prediction of faulting around a dike. (a) Numerical setup: 
constant lateral velocities, stress free upper boundary, Winkler's 
foundation at the bottom, hydrostatic pressure in the dike and no 
density contrast between the solid and fluid phases. (b) Prediction of 
faulting by theory of elasticity. The zone of failure (in white) is 
embedded in elastic material around (grey). Trajectories of potential 
faults are sub-horizontal at the tip of the dike. (c) Slip-line pattern 
predicted by pressure-independent associated plasticity around a mode
! crack. A rigid triangle above the crack slides along straight slip-lines 
inclined at 45° to the free surface. ( d) Velocity field and accumulated 
plastic strain obtained by numerical simulation of the problem in an 
elasto-plastic material. This solution is in agreement with the 'slip-line' 

solution. 

terms ofthin plate theory (Timoshenko and Woinowsky

Krieger, 1959; Turcotte and Schubert, 1982), which is 
fairly accurate for many geophysical applications. It can 

be shown that shear stresses in thin plates and at small 

deflections are considerably smaller than normal stresses. 

Thus, the directions of principal stresses are very close to 

horizontal and vertical, and faults will be formed at 

± (45° + cp/2) to the surface in zones of extension and at 

± (45° -cp/2) in zones of compression. The geometry of 

failed zones then depends on the geometry ofloading and 

is controlled by the stresses in elastic parts of the plate. 

Thus, bending of a thin plate is an example where an 

'elastic' solution may provide a good guide for geometry 

of faulting. However, the theory of rigid-plasticity cannot 

predict the geometry of plastic zones, because stresses 

outside the plastic zones are not calculated. Therefore, 

here we compare only 'elastic' and 'elasto-plastic' 

numerical solutions, without considering the 'rigid

plastic' case. 

We apply a sinusoïdal vertical velocity at the bottom 

with zero shear stress (Fig. 1 0a): 

r(y = H) = 0, 

free slip at lateral boundaries and free-stress boundary 

conditions at the surface. Figure 1 0(b & c) demonstrates 

white zones where elastic stresses exceed the yield 

condition and thus potential zones of failure for two 

vertical displacements V
0

. The results of bending of an 

elasto-plastic plate are shown in Fig. IO(d & e). One can 
see that the 'elastic' solution predicts very well the zones 

of failure and the directions of failure for deflections in 

the order of 50 m, and Jess successfully for larger 

displacements. The slip along individual faults cannot 

be large, because faults terminate at the boundary with 

intact material; therefore, active faults change their 

position as in the example of the thrust wedge. In this 

way, the slip on numerous closely spaced discrete faults 
accommodates bending. 

This example shows us again that for small deforma

tions, and when the failure zones are tightly constrained 

by elastic material, 'elastic' solutions (Fig. !Ob & c) 

predict fairly well the intergrated effect of slip on 

individual faults. At larger strains, a single fault may eut 
through the entire plate. The transition from bending on 

distributed faults to breakage by a single fault is studied 
by Buck (1997). 

FAULTING AROUND A DIKE 

Parsons and Thompson (1993) proposed an idea to 
explain the low-angle faulting in the Basin and Range 
Province as a result of extension in a zone of active 

magmatism. They suggested that the stress distribution in 
the elastic media around a dike (adopted from Pollard 
and Segall, 1987) favours low-angle faulting. We repro-
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duce an 'elastic' solution with the following boundary 
conditions: a stress free upper boundary, hydrostatic 
pressure at the bottom (Winkler's foundation), constant 
velocities applied at the lateral boundaries and hydro
static fluid pressure in the dike (Fig. 1 l a). There is no 
variation of densities between solid rock, magma and 
inviscid substratum. 

Directions of potential faults predicted by elasticity are 
shown in Fig. l l(b). One can see that low-angle faults 
may appear in small zones around the tip of the dike. 
They terminate in the surrounding elastic media and 
cannot accommodate large displacements. This point is 
also discussed by Wills and Buck (1997). 

We have also constructed a slip-line field around a 
mode-I crack in a pressure-independent rigid-plastic 
material (Fig. 1 l c). This solution cannot be directly 
compared to the studied case, because it does not take 
into account the gravity forces and dependence of the 
yield stress on pressure, but it gives an idea of how faults 
can be formed. We modified the classical solution for a 
mode-I crack (e.g. Kachanov, 1974; Unger, 1995) to take 
into account the upper free-surface. First, we constructed 
three triangles ABC, FDC, FEC that are adjacent to 
shear stress free boundaries: the upper surface and a 
crack. Thus, slip-lines are straight in these domains, and 
they move as rigid blocks. Two zones, ACD and BCE, 
make the rest of the slip-line field. lt can be seen that this 
problem is similar to Prantdl's die solution; therefore, the 
limiting stress in the zone ACB is also given by the 
equation CTu=k(n+2) (Unger, 1995), where k is the 
maximum shear stress. The velocity field can be con
structed following the rules that the normal component 
of velocity is continuous across slip-lines and should 
equal the velocity of a rigid block, while the tangential 
component may be discontinuous. We constructed the 
following velocity field: the block ABC moves down
wards as one unit with constant velocity V and two 
domains ADFC and BEFC moves as one unit laterally 
with the same velocity. Velocities are discontinuous 
across the lines AC and BC which can be potential 
faults. The jump in tangential velocities equals 2J2 V.

We also modelled numerically the problem shown in 
Fig. 11 (b) using a Mohr-Coulomb elasto-plastic mate
rial. Figure 1 l(d) clearly shows two normal faults 
connecting the tip of the dike with the free surface as 
predicted by rigid-plastic theory. The slip along these 
faults eliminates the possibility of low-angle faulting. 
This example shows that prediction of faulting by 'elastic' 
solutions may be erroneous if the kinematics of potential 
faults is not taken into account. 

CONCLUSIONS 

In this paper, we applied several simple approaches for 
fault prediction to some idealized geological problems. 
Comparison of these results reveals the strength and 
limits of each method, and these are compiled and 

summarized in Fig. 12, to draw general conclusions. 
The left column of Fig. 12 shows a sketch of the faulting 
predicted from 'elastic' solutions. The right column 
shows the same problems resolved by using the theory 
of plasticity (except for the problem of bending, which is 
replaced by uniform tension). 

The 'elastic' solutions (Fig. 12 left) predict zones of 
failure reasonably well under the following conditions: 

(1) The stress field is close to the yield stress, in other
words, strain on potential faults B

p
ris of the same order as 

the limiting strain ë
y
icld· 

(2) Zones of failure are severely constrained by
surrounding elastic material. 

(3) Lines of failure are terminated at the boundary
between intact and failed material. 

The theory of rigid-plasticity (Fig. 12 right) is appro
priate for the following reasons: 

(1) Slip along failure zones can accommodate large
deformation /-j»Byield; 

(2) Zones of failure are bounded by a slip-line which
allows material to deform in a failure zone which is 
somehow detached from the material outside; 

(3) Lines of failure do not terminate in surrounding
intact material, and/or they are connected to a free 
surface, a viscous substratum or a zone of weakness. 

In contrast to the theories of elasticity and rigid
plasticity, the theory of elasto-plasticity allows modelling 
of the initiation of failure as well as large deformations 
along faults. Additionally, this method describes the 
complex spatio-temporal evolutions of faulting. Figures 
6(e), 8(c) and 9(c) give a taste of how more realistic faults 
can be modelled, different from those predicted by the 
simpler theories. 
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