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Mobility can drastically improve the heavy traffic
performance from 1

1−% to log(1/(1 − %))

Florian Simatos1 · Alain Simonian2

Abstract
We study a model of wireless networks where users move at speed θ ≥ 0, which
has the original feature of being defined through a fixed-point equation. Namely, we
start from a two-class processor-sharing queue to model one representative cell of
this network: class 1 users are patient (non-moving) and class 2 users are impatient
(moving). This model has five parameters, and we study the case where one of these
parameters is set as a function of the other four through a fixed-point equation. This
fixed-point equation captures the fact that the considered cell is in balance with the
rest of the network. This modeling approach allows us to alleviate some drawbacks
of earlier models of mobile networks. Our main and surprising finding is that for this
model, mobility drastically improves the heavy traffic behavior, going from the usual
1

1−�
scalingwithoutmobility (i.e., when θ = 0) to a logarithmic scaling log(1/(1−�))

as soon as θ > 0. In the high load regime, this confirms that the performance of mobile
systems benefits from the spatial mobility of users. Finally, othermodel extensions and
complementarymethodological approaches to this heavy traffic analysis are discussed.
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1 Introduction

1.1 Background and undesirable ergodicity assumption

Since the emergence of wireless networks and following their continual development,
the impact of user mobility on network performance has attracted significant attention.
In [10], the authors showed that mobility creates a multi-user diversity leading to a
significant improvement in per-user throughput. Since this seminal work, the obser-
vation that mobility increases throughput has been confirmed in a wide variety of
situations captured by various stochastic models; see [2,3,5–8,17,23]. These differ-
ent works also show that various reasons can lead to an increase in performance, for
instance opportunistic channel-aware scheduling or the mobility itself which acts as a
distributed load balancing algorithm. Interestingly, to the best of our knowledge, the
first paper to show that mobility could under certain circumstances actually degrade
delay only appeared recently [1].

In all these models, user mobility is represented by an ergodic process on a finite
region of the plane. For instance, in [10] users follow a stationary and ergodic trajectory
on the unit disk; in [3,5–7], users follow an irreducible Markovian trajectory in a
network consisting of a finite number of cells. In our view, one of the limitations
of such a modeling assumption is the highly unrealistic behavior it displays under
congestion. Indeed, in the congestion regime, users stay in the network for a long
time, so that if their trajectory is ergodic, they necessarily visit the same place a large
number of times, as if they were walking circularly.

1.2 High-level model description andmotivation

In the present paper, we pursue the modeling approach started in [18,24]. The main
idea to alleviate the aforementioned drawback resulting from the ergodic trajectory
assumption is to focus on a single cell and abstract the rest of the network as a single
state. By doing so, we only keep track of the precise location of users when they are
located in the considered cell: when located elsewhere (either outside the network or
in the rest of the network) we do not track them precisely. This simple model could be
generalized by focusing on several cells rather than a single one (see the discussion in
Sect. 5). Users can thus be in one of three “places”, as pictured in Fig. 1:

(1) outside the network,meaning that they do not require service (the left fluffy shape);
(2) in the considered cell (the middle hexagon);
(3) in the network but not in the considered cell, i.e., in the rest of the network (the

right fluffy shape).

Moreover, our work is motivated by presently rolled-out LTE networks where cells
can be small in range (pico, femto cells). In this context, users experience similar radio
conditions and we will therefore assume below that they receive the same transmis-
sion capacity, independently of their location within the cell. While focusing on the
spatial mobility aspect of users, the present study consequently ignores the possible
spatial variations of transmission capacity inevitably presented by larger cells. In the
following, this equal capacity is denoted by 1/μ.
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Fig. 1 Description of the model considered in the paper. Without imposing the balance condition corre-
sponding to the fixed-point equation (FP), this is a two-class processor-sharing queue with one impatient
class, namely the class-2 of mobile users, with arrival rate λ2 + λfnet = λftot. The balance equation (FP)
accounts for the fact that a typical cell at equilibrium is considered, with equal flows from and to the rest
of the network

1.3 Mathematical model and results

Our mathematical model is introduced in two steps. At this stage, we only give a high-
level description of our model in order to give the big picture: details are provided in
Sect. 2.

We first introduce a “free”modelXf, which is simply a two-class processor-sharing
queue with one impatient class: from the mobile network perspective, patient users
correspond to static users who do not move, and impatient users to mobile users who
move and thus potentially leave the cell for the rest of the network. The non-zero
transition rates of the Markov process Xf are given by

x ∈ N
2 −→

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x + e1 at rate λ1,

x + e2 at rate λ2 + λfnet,

x − e1 at rate μ
x1

x1 + x2
,

x − e2 at rate μ
x2

x1 + x2
+ θx2,

(1.1)

with e1 = (1, 0) and e2 = (0, 1) (see Sect. 2.1 for a detailed interpretation of these
parameters); as specified below, θ represents the impatience/mobility rate.

In a second step, we introduce our full model which is obtained from the free
model (1.1) by enforcing a balance condition in the form of the fixed-point equa-
tion (FP). This fixed-point equation means that the flows of mobile users to and from
the rest of the network must balance out. This condition consequently means that the
considered cell is “typical”, in that the cell imposes a load on the rest of the network
equal to the reciprocal load from the rest of the network to the considered cell.

If �1 = λ1/μ denotes the load of static (i.e., patient) users and �2 = λ2/μ the load
of mobile (i.e., impatient) users, the stability condition without enforcing this balance
equation is �1 < 1 since class-2 users are impatient and thus cannot accumulate (see



Lemma 2.1). From the mobile network perspective, the interpretation is that mobile
users can always escape to the rest of the network where they are not tracked. The
stability condition �1 < 1 is therefore clearly fictitious, because even if we do not
keep track of the precise location of mobile users in the rest of the network, they still
impose a load on the network which should be accounted for. When enforcing the
balance equation (FP), the stability condition then becomes �1 + �2 < 1 which is the
natural expected stability condition since, considering the cell as a representative cell
of a larger network, �1 + �2 is the normalized load per cell (see Lemma 2.4).

The study of this model is driven by the desire to understand the impact of mobility
on performance. We wish, in particular, to address questions such as: given the total
load� = �1+�2 < 1, does the network performbetter if the proportion�2/� ofmobile
users increases? Answering such a question being generally difficult, we here resort
to the approximation obtained in the heavy traffic regime where � ↑ 1. In addition to
providing useful insight into the impact of mobility on performance, this model turns
out to exhibit a highly original heavy traffic behavior, whereby the number of users in
system scales like log(1/(1− �)) as � ↑ 1. If all users were static, we would have the
usual (1 − �)−1 scaling; our model therefore suggests that not only throughput but
also delay is improved with mobility.

To the best of our knowledge, this unusual heavy traffic scaling only appeared
earlier [15] in the case of the shortest-remaining-processing-time service discipline
with heavy tailed service distribution. In this case, such an improvement is conceivable:
indeed, since the service distribution is heavy tailed, very long jobs are not so rare. If the
service discipline is FIFO, then these jobs impose a very large delay on the numerous
smaller jobs that arrive after them. With SRPT, in contrast, only the large jobs spend a
long time in the network, essentially due to their large service requirement. As regards
the impact of mobility in wireless networks, it has been already observed [24], through
an approximate analysis and extensive simulation, that the performance gain due to
mobility can be related to an “opportunistic” displacement of mobile users within the
network; in fact, any local increase in traffic in one given cell induces the displacement
of themoving users to a neighboring cell in order to complete their transmission, hence
alleviating the traffic for remaining (static or moving) users in the original cell. Our
contribution in this paper is to theoretically justify this statistical behavior in the heavy
traffic regime.

1.4 Organization of the paper

We start by introducing our model and Theorem 2.5, the main result of the paper, in
Sect. 2. In this section, wewill also present a conjecture refining ourmain result, which
is discussed in Sect. 5. Sections 3 and 4 are devoted to the proof of Theorem 2.5.

2 Model description andmain result

We now introduce our model in details: as above, we first address a “free” model
simply represented by a two-class processor-sharing queue with one impatient class;



further, we introduce the full model which derives from the free model by enforcing a
balance condition in the form of a fixed-point equation (FP). We then state our main
result and explain the main steps of the proof.

2.1 Freemodel

In the free model represented by the Markov process Xf, with non-zero transition
rates (1.1), we consider two classes of users:

(1) class-1 users are static: they arrive to the cell from the outside at rate λ1, require
a service which is exponentially distributed with parameterμ and are served according
to the processor-sharing service discipline. They consequently leave the network (to
the outside) at an aggregate rate μx1/(x1 + x2), with xi the number of class-i users;

(2) class-2 users are mobile: they arrive to the cell from the outside at rate λ2,
require a service which is exponentially distributed with parameter μ and are served
according to the processor-sharing service discipline. As for class-1 users, they leave
the network to the outside upon completing service at an aggregate rateμx2/(x1+x2);
the difference with class-1 users is that they are mobile and can thus leave the cell
(now, to the rest of the network and not the outside) before completing service. We
assume that each mobile user leaves the cell at rate θ , and so class-2 users leave the
cell for the rest of the network at an aggregate rate θx2. Finally, mobility can also
make users enter the cell from outside the network and we assume that this happens
at rate λfnet.

As to the processor-sharing discipline considered for both user classes, we recall
that it accounts at flow level for the fair sharing of the total capacity of the base station
[4].

At this stage, it is apparent from rates (1.1) that differentiating the outside and the
rest of the network is artificial and bears no consequence on the distribution of this
Markov process. All that matters is the total arrival rate λftot := λ2 + λfnet and the
total service rate μx2/(x1 + x2)+ θx2 of class-2 users. This distinction, however, will
become crucial later.

The distribution of the Markov processXf with non-zero transition rates (1.1) thus
depends on the five parameters λ1, λ2, λfnet, θ and μ (and more precisely, on λ2 and
λfnet only through their sum λftot = λ2 + λfnet). The superscript f refers to “free”,
as the “full” process in that we will be mainly interested in belongs to this class, but
with λfnet chosen as a function of the other four parameters λ1, λ2, θ and μ.

In the rest of the paper, we write �i = λi/μ and � = �1 + �2. The following
result describes the stability region of Xf, which depends on whether θ = 0 or θ > 0.
Whenever Xf is positive recurrent, we denote by Xf(∞) its stationary distribution.
Here and throughout the paper, vector inequalities are understood component-wise,
so for instance E(Xf(∞)) < ∞ means that E(Xf

i (∞)) < ∞ for i ∈ {1, 2}. Note
finally that Xf is not reversible.

Lemma 2.1 Stability of Xf depends on whether θ = 0 or θ > 0 in the following way:

• if θ = 0, then Xf is positive recurrent if � + λfnet/μ < 1, null recurrent if
� + λfnet/μ = 1 and transient if � + λfnet/μ > 1;



• if θ > 0, then Xf is positive recurrent if �1 < 1, null recurrent if �1 = 1 and
transient if �1 > 1.

In either case, when the process is positive recurrent, then we have E(Xf(∞)) < ∞.

These results can be proved with Lyapunov-type arguments and the comparison with
suitable M/M/1 queues. Such arguments are standard and the proof is therefore
omitted.

2.2 Constrainedmodel

The previous result formalizes the behavior pointed out in the introduction, namely
that in the presence of mobile users (i.e., when θ > 0), mobile users do not matter as
regards to stability. In fact, if they accumulate, they can then escape to the rest of the
network where they are not tracked. However, this is only an artifact of our modeling
approach since mobile users that escape to the rest of the network should somehow
be accounted for. The constrained model X that we now introduce aims at doing this;
it is obtained by taking λfnet as a function of the other four parameters through a
fixed-point equation.

2.2.1 The fixed-point equation

In the freemodel, the three parameters λ1,λ2 andμ govern the transitions involving the
outside, while the two parameters θ and λfnet govern transitions within the network.
Out of these five parameters, all but λfnet can be considered as exogenous and dictated
by the users’ behavior: how often they arrive, how fast they move, etc. In contrast,
λfnet is hard to directly tie down with users’ behavior and is more an artifact of our
modeling approach.

In order to fix the value of λfnet in an exogenous way, the idea is to impose a balance
condition. Roughly speaking, we assume that the cell is in equilibrium (see Sect. 5 for
a discussion on this assumption) and that the flows of mobile users to and from the
rest of the network balance each other. Provided that Xf is positive recurrent, we thus
want to impose the balance equation

λfnet = θ · E (
Xf
2 (∞)

)
. (FP)

Wenote that (FP) is afixed-point equation, asE(Xf
2 (∞)) is a functionofλfnet, the other

four parameters being kept fixed. Provided that there exists a unique solution to (FP)
with the four parameters λ1, λ2, μ and θ given (necessary and sufficient conditions for
this will be stated below), this unique solution is denoted by �net. We then consider
the process X with the same transition rates (1.1) as the free process, but where the
value of the parameter λfnet has been set to �net, chosen as a function of λ1, λ2, μ

and θ via (FP). The process X will be the main object of investigation in this paper.

Definition 1 Provided that there exists a unique solution to (FP), denoted by �net =
�net(λ1, λ2, μ, θ), the constrained model X is the N2-valued Markov process with
non-zero transition rates given by (1.1) with λfnet = �net.



Remark 2.2 The balance equation (FP) can also be interpreted in the stand-alone con-
text of the free process. In the free process, θE(Xf

2 (∞)) is the rate at which impatient
users leave the system because of impatience. If we allow these customers to retry, we
can then interpret λfnet as the retrial rate, and (FP) then has the natural meaning that
these customers will eventually re-enter the queue.

Our main result is that even a slight amount of mobility (i.e., θ > 0 even very small,
instead of θ = 0) dramatically increases the performance of the network and leads to
an unusual log(1/(1 − �)) heavy traffic scaling. To explain this we first discuss the
case θ = 0 with no mobility.

2.2.2 Heavy traffic regime

When we say � ↑ 1, we mean that we consider a sequence of systems indexed by n,
where the parameters λn1, λn2, μn and, θn in the n-th system satisfy �n < 1, (where
�n
i = λni /μ

n , �n = �n
1 + �n

2 ) and, as n → ∞, we have λni → λi , μn → μ, θn → θ

with λ1, λ2, μ, θ ∈ (0,∞), � = 1, where � = �1 + �2 and �i = λi/μ. We then use
the notation ⇒� to mean weak convergence as � ↑ 1.

We will also consider convergence when other parameters vary. We use, in particu-
lar, the notation ⇒λftot

to mean weak convergence as λftot → ∞, and also introduce
another parameter ε > 0 and use the notation⇒λftot,ε to mean weak convergence first

as λftot → ∞ and then as ε ↓ 0. To be more precise, Z ⇒λftot,ε Z ′ means that for
any continuous and bounded function f we have

lim sup
λftot→∞

∣
∣E ( f (Z)) − E

(
f (Z ′)

)∣
∣ −−→

ε→0
0.

2.2.3 The case� = 0

Consider now the case θ = 0. We distinguish two cases:

• if � ≥ 1, then the free process is transient or null recurrent, and so (FP) is not
defined;

• if � < 1, 0 is the only solution to (FP) because E(Xf
2 (∞)) < ∞ by Lemma 2.1.

Thus, the constrained model is only defined for � < 1; in this case, it corresponds to
the free process with λfnet = 0 and is in particular positive recurrent. The following
result, taken from [20], states that its heavy traffic behavior obeys the usual (1− �)−1

scaling.

Lemma 2.3 If θ = 0, then (1 − �)X(∞) ⇒� (E, E) with E an exponential random
variable with parameter 2.

2.2.4 The case� > 0

We now show that, whatever the value of θ > 0, the behavior changes dramatically
and leads to an unusual log(1/(1 − �)) scaling. We first investigate the existence and
uniqueness to the fixed-point equation (FP). The proof relies on monotonicity and
continuity arguments detailed in [18] and it is thus only briefly recalled here.

123
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Lemma 2.4 Assume that θ > 0. If � < 1, then there exists a unique solution to (FP).
If �1 < 1 but � ≥ 1, then there is no solution to (FP).

This result is comforting: indeed, � < 1 is the “natural” stability condition. Com-
paring Lemmas 2.1 and 2.4, we see that imposing (FP) changes the stability condition
from �1 < 1 (mobile users do not matter) to � < 1 (mobile users matter). Moreover,
we observe the peculiar feature that, whenever the stability condition is violated, the
Markov process is not defined at all, and not simply transient as is usually the case. This
is due to the fact that we seek to impose a long-term balance equation through (FP),
which cannot be sustained for a system out of equilibrium.

For completeness and since the key equation (2.2) will be useful later, we provide a
short sketch of the proof of Lemma 2.4. So consider θ > 0 and assume �1 < 1, since
otherwise Xf(∞) is not defined. Let

Q(λfnet) = P(Xf(∞) = 0),

the other four parameters being fixed. The balance of flow for the free system entails
λ1 + λ2 + λfnet = μP(Xf(∞) 
= 0) + θ E(Xf

2 (∞)), or equivalently,

Q(λfnet) = 1 − � − λfnet

μ
+ θ

μ
E(Xf

2 (∞)). (2.1)

In particular, (FP) is equivalent to

P(Xf(∞) = 0) = 1 − �. (2.2)

Since P(Xf(∞) = 0) > 0, this relation shows that no solution can exist for � ≥ 1.
Assume now that � < 1. It is intuitively clear that Q is continuous and strictly
decreasing to 0: as class-2 users arrive at a higher rate, the probability of the system
being empty decreases strictly and continuously to 0. As Q(0) > 1−� after (2.1), this
entails the existence and uniqueness of solutions to (FP). We recall that this unique
solution is written �net and define

�tot = λ2 + �net

as the total arrival rate of class-2 users in the constrained model.
According to Lemma 2.4, the heavy traffic behavior consists of letting � ↑ 1 when

θ > 0. The following result is the main result of the paper. Extensions of this result
are discussed in Sect. 5.

Theorem 2.5 Assume that θ > 0. As � ↑ 1, the sequence

X(∞)

log(1/(1 − �))

123



Queueing Systems (2020) 95:1–28 9

is tight and any of its accumulation points is almost surely smaller than the point ξξξ∗
given by

ξξξ∗ = (ξξξ∗
1, ξξξ

∗
2) =

(
�1

1 − �1
, 1

)

.

This result shows that adding even a slight amount of mobility, i.e., going from
θ = 0 to θ > 0, dramatically changes the heavy traffic behavior, making X(∞) scale
like log(1/(1− �)) instead of 1/(1− �). We could actually show that log(1/(1− �))

is indeed the right order, i.e., accumulation points are > 0 (see Sect. 5).

Remark 2.6 It is surprising that this upper bound does not depend on θ . Indeed, when
θ = 0, Lemma 2.3 implies that X(∞)/ log(1/(1 − �)) ⇒� ∞ and so interchanging
limits suggests thatX(∞)/ log(1/(1−�)) should converge to a limit ξξξ(θ) that should
blow up as θ ↓ 0. This is not the case, however, and we actually conjecture that
X(∞)/ log(1/(1− �)) converges to a limit independent of θ (see Sect. 5). That limits
cannot be interchanged testifies to the subtlety of the result, which, we believe, is
due to the fact that we need an unusual large deviation result for a system with two
time-scales; see Sect. 5.2.

Let us now explain where this unusual log(1/(1−�)) scaling comes from: the idea
is to reduce the problem to questions on the free process Xf by writing

X(∞)

log(1/(1 − �))
= �tot

log(1/(1 − �))
× X(∞)

�tot
. (2.3)

It is easy to see that �tot → ∞ as � ↑ 1. Thus, as X is a particular case of Xf,
understanding the asymptotic behavior of X(∞)/�tot as � ↑ 1 amounts to under-
standing the asymptotic behavior ofXf(∞)/λftot as λftot → ∞. The following result
specifies this behavior.

Lemma 2.7 Assume that θ > 0 and �1 < 1. Then as λftot → ∞, the sequence
Xf(∞)/λftot is tight and any accumulation point is almost surely smaller than the
constant θ−1ξξξ∗ with ξξξ∗ given as in Theorem 2.5.

As � ↑ 1, in particular, the sequence X(∞)/�tot is tight and any accumulation
point is almost surely smaller than the constant θ−1ξξξ∗.

Next, (2.2) shows that

�tot

log(1/(1 − �))
= �tot

− logP(X(∞) = 0)

and so, for the same reason as above, understanding the asymptotic behavior of
�tot/ log(1/(1− �)) as � ↑ 1 amounts to understanding the asymptotic behavior of
− logP(Xf(∞) = 0)/λftot as λftot → ∞.

123
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Lemma 2.8 Assume that θ > 0. For any �1 < 1, we then have

lim inf
λftot→∞

(

− 1

λftot
logP(Xf(∞) = 0)

)

≥ 1

θ
.

In particular,

lim sup
�↑1

(
�tot

log(1/(1 − �))

)

≤ θ.

In view of (2.3), the two previous lemmas directly imply Theorem 2.5. In other
words, the log(1/(1 − �)) scaling of X(∞) arises for the two following reasons:

(1) the (at most) linear increase of Xf(∞) ≤ λftotξξξ
∗ + o(λftot) as λftot → ∞;

(2) the exponential decay of P(Xf(∞) = 0) ≤ e−λftot/θ+o(λftot) as λftot → ∞.

Lemmas 2.7 and 2.8 are proved in Sects. 3 and 4.

Remark 2.9 In Sect. 5, we discuss refinements of these upper bounds: in particular,
we show how to prove that Xf(∞)/λftot ⇒λftot

θ−1ξξξ∗, and we conjecture that

P(Xf(∞) = 0) = exp(−κλftot + o(λftot))

with constant

κ = 1 − log(1 − �1)

θ
.

Remark 2.10 The linear increase in λftot of Xf(∞) is natural in the setting of single-
server queues. Moreover, the refinement Xf(∞) ≈ λftotξξξ

∗ suggests that Xf(∞) is
of the order of λftot. This makes state 0 far from the typical value of Xf(∞) and the
exponential decay of the stationary probability of being at 0 is thus expected in view
of large deviations theory. The link with large deviations theory is discussed in more
detail in Sect. 5.

3 Proof of Lemma 2.7

In the rest of the paper, we use several couplings. We use the notation X ≺ Y to mean
that we can couple X and Y such that X ≤ Y. If X and Y are random processes, this
is to be understood as X(t) ≤ Y(t) for all t , and vector inequalities are understood
component-wise.

In order to prove Lemma 2.7, we first exhibit a family of processes Y′ indexed
by some additional parameter ε > 0 and with Xf ≺ Y′ for every ε > 0, and
Y′(∞)/λftot ⇒λftot,ε θ−1ξξξ∗. We build this coupling in two steps, and then ana-

lyze the process Y′. In order to prove that Y′(∞)/λftot ⇒λftot,ε θ−1ξξξ∗, we then

exhibit another family of processes Y with Y(∞)/λftot ⇒λftot,ε θ−1ξξξ∗ and such that
(Y(∞) − Y′(∞))/λftot ⇒λftot,ε 0.

123
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3.1 First coupling: Xf ≺ ˜Y

Starting from (1.1), the first step consists of neglecting the term μx2/(x1 + x2) in
the departure rate of Xf

2 by lower bounding it by 0. When we do so, this makes the
departure rate smaller for the second coordinate, which makes it larger, which in turn
makes the departure rate μy1/(y1 + y2) from the first coordinate smaller, and hence
the first coordinate larger. Thus if Ỹ is the N2-valued Markov process with non-zero
transition rates

y ∈ N
2 −→

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y + e1 at rate λ1,

y + e2 at rate λftot,

y − e1 at rate μy1/(y1 + y2),

y − e2 at rate θ y2,

then we have Xf ≺ Ỹ. For completeness, we provide a proof of this result.
Proof ofXf ≺ Ỹ. Let the current state of our coupling be (x, ỹ) ∈ N

2×N
2 with ỹ ≥ x.

We see x as the “small” system and we index its customers by (i, k) with i ∈ {1, 2}
(the user class) and k = 1, . . . , xi . The “big” system ỹ has the same customers and
also additional ones which we label (i,−k) with i ∈ {1, 2} and k = 1, . . . , ỹi − xi .
The next transition is built as follows:

• at rate λ1, go to (x + e1, ỹ + e1);
• at rate λftot, go to (x + e2, ỹ + e2);
• each customer (2, k) of type 2 has an exponential clock with parameter θ and
leaves the system if it rings: note that if k < 0 this only affects the big system,
while if k > 0 this affects both systems;

• at rate μ, do the following:

1. choose a customer C̃ from the big system uniformly at random, i.e.,

P(C̃ = (i, k)) = 1

ỹ1 + ỹ2
;

2. if C̃ is in the small system, let C = C̃ ;
3. otherwise, let C be chosen uniformly at random in the small system indepen-

dently from everything else;

Then remove the customer C from the small system and remove the customer C̃
from the big system if it is of type 1.

This construction is such that

• if a class i customer arrives in the small system it also arrives in the big system;
• if a class i customer leaves the big system and not the small one, then this customer
was an “additional” customer which was in the big system but not in the small
one.

In particular, this construction leads to a state (x′, ỹ′) with ỹ′ ≥ x′. Moreover, the
small system has the same dynamics as Xf because C is chosen uniformly at random
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in the small system, and the big system has the same dynamic as Ỹ. Thus, this indeed
builds a coupling of Xf and Ỹ with Xf ≤ Ỹ, as desired. ��

3.2 Second coupling: ˜Y ≺ Y′

Starting from Ỹ, we buildY′ by lowering the service rate of Ỹ1: when Ỹ2 is larger than
some threshold 	, we put the service to 0, and when Ỹ2 ≤ 	, we put μy1/(y1 + 	)

instead ofμy1/(y1+ y2), the former being indeed smaller than the latter when y2 ≤ 	.
More precisely, we fix ε > 0 (which is omitted from the notation for convenience) and
we define 	 = (1 + ε)λftot/θ and Y′ the N2-valued Markov process with non-zero
transition rates

y ∈ N
2 −→

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

y + e1 at rate λ1,

y + e2 at rate λftot,

y − e1 at rate
μ y1
y1 + 	

· 1 (y2 ≤ 	) ,

y − e2 at rate θ y2,

so that Ỹ ≺ Y′ (in contrast to the inequality Xf ≺ Ỹ, the proof bears no difficulty and
is thus omitted). Since Xf ≺ Ỹ, this gives Xf ≺ Y′ as desired.

Note that Y ′
2 is an M/M/∞ queue, so that Y ′

2(∞) follows a Poisson distribution
with parameter λftot/θ . In particular, we obtain the convergence Y

′
2(∞)/λftot ⇒λftot

θ−1ξξξ∗
2 and sowe only have to prove that Y

′
1(∞)/λftot ⇒λftot,ε θ−1ξξξ∗

1 in order to prove
Lemma2.7. To do sowe resort to another coupling and compareY ′

1 to a birth-and-death
process Y1.

3.3 Third coupling: Y ≺ Y′

As 	 is larger than the equilibrium point λftot/θ of Y ′
2, excursions of Y

′
2 above level 	

are rare and so Y ′
1 is only rarely turned off. For this reason, it is natural to compare Y′

with the process obtained by putting the indicator function 1 (y2 ≤ 	) to 1. To do so,
let

S = {(y1, y′
1, y2) ∈ N

3 : y′
1 ≥ y1} ⊂ N

3;

we directly build the coupling that we need and consider (Y1,Y ′
1,Y2), the S-valued

Markov process with the following non-zero transition rates:

(y1, y
′
1, y2) ∈ S −→

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(y1, y′
1, y2 + 1) at rate λftot,

(y1, y′
1, y2 − 1) at rate θ y2,

(y1 + 1, y′
1 + 1, y2) at rate λ1,

(y1 − 1, y′
1 − 1, y2) at rate μα(y1)1 (y2 ≤ 	) ,

(y1 − 1, y′
1, y2) at rate μα(y1)1 (y2 > 	) ,

(y1, y′
1 − 1, y2) at rate μβy′

1−y1(y1)1 (y2 ≤ 	) ,

(3.1)
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with

α(y) = y

y + 	
and βδ(y) = α(y + δ) − α(y) = 	δ

(y + 	)(y + 	 + δ)
.

In words, what this process does is the following:

• Y1 and Y2 are independent Markov processes;
• Y1 is a state-dependent single-server queue with arrival rate λ1 and instantaneous
service rate μα(y1) when in state y1;

• Y2 is an M/M/∞ queue with arrival rate λftot and service rate θ ;
• Y ′

1 has the same arrivals as Y1, but departures are different: there are additional
departures at rate βy′

1−y1(y1) when Y2 ≤ 	, and no departure when Y2 > 	.

Since the function β has been chosen so that

βy′
1−y1(y1) + α(y1) = α(y′

1),

we see that (Y ′
1,Y2) is a Markov process with the same transition matrix as Y′, and so

we will actually write Y′ = (Y ′
1,Y2) and we have Y′ ≥ Y := (Y1,Y2).

In particular, this coupling defines several Markov processes, such as Y1, Y2, Y :=
(Y1,Y2), Y ′ = (Y ′

1,Y2) and (Y1,Y ′
1,Y2). For ease of notation, we will use the notation

Ex to denote the law of these Markov processes starting at x, where the dimension of
x depends on the process considered. For instance, if σ is measurable with respect to
Y2 and ϕ : N → R+ is measurable, we will use the notation

E	(σ ), Ez,	

(∫ σ

0
ϕ ◦ Y1

)

, Ez,	

(∫ σ

0
ϕ ◦ Y ′

1

)

or Ez,z′,	

(∫ σ

0

(
ϕ ◦ Y1 − ϕ ◦ Y ′

1

)
)

to mean the following:

E	(σ ) = E(σ | Y2(0) = 	),

Ez,	

(∫ σ

0
ϕ ◦ Y1

)

= E

(∫ σ

0
ϕ ◦ Y1 | Y2(0) = 	,Y1(0) = z

)

,

Ez,	

(∫ σ

0
ϕ ◦ Y ′

1

)

= E

(∫ σ

0
ϕ ◦ Y ′

1 | Y2(0) = 	,Y ′
1(0) = z

)

and

Ez,z′,	

(∫ σ

0

(
ϕ ◦ Y1 − ϕ ◦ Y ′

1

)
)

= E

(∫ σ

0

(
ϕ ◦ Y1 − ϕ ◦ Y ′

1

) | Y1(0) = z,Y ′
1(0) = z′,Y2(0) = 	

)

.

Recall that the goal is to prove that Y ′
1(∞)/λftot ⇒λftot,ε θ−1ξξξ∗

1: what we will do
is first prove this result for Y1, which is much simpler since Y1 is a birth-and-death
process (whereas Y ′

1 on its own is not Markov) and then transfer this result to Y ′
1.
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3.4 Control of Y1

Let us now prove that Y1(∞)/λftot ⇒λftot,ε θ−1ξξξ∗
1. Let first y

± = (1± ε)	ξξξ∗
1. Since

the function α is increasing, when Y1 is above level y+ its departure rate is at least
μα(y+). Thus, if L+ is an M/M/1 queue with arrival rate λ1 and departure rate
μα(y+), we have Y1 ≺ L+ + y+. Likewise, if L− is an M/M/1 queue with arrival
rate μα(y−) and departure rate λ1, we have y− − L− ≺ Y1.

Recall that ξξξ∗
1 = �1/(1 − �1) and that �1 < 1: the load of L+ is

λ1

μα(y+)
= �1((1 + ε)	ξξξ∗

1 + 	)

(1 + ε)	ξξξ∗
1

= 1 + ε�1

1 + ε
< 1

and the load of L− is

μα(y−)

λ1
= 1 − ε

1 − ε�1
< 1.

We thus deduce that L± are subcriticalM/M/1 queues (uniformly in λftot, with ε > 0
fixed), so that

L±(∞)

λftot
⇒λftot

0.

Since y±/λftot →λftot
(1 ± ε)(1 + ε)θ−1ξξξ∗

1, we obtain

y− − L−(∞)

λftot
,

L+(∞) − y+

λftot
⇒λftot,ε θ−1ξξξ∗

1

and in view of y− − L− ≺ Y1 ≺ L+ − y+, we finally get the desired result for Y1(∞),
namely Y1(∞)/λftot ⇒λftot,ε θ−1ξξξ∗

1.

3.5 Transfer to Y′
1

We now transfer the result for Y1(∞) to Y ′
1(∞) thanks to their coupling (3.1). Recall

that Y1 and Y ′
1 obey the same dynamics, with the exception that service in Y ′

1 is inter-
rupted when Y2 makes excursions above 	. To compare their stationary distributions,
we consider their trajectories over cycles of Y2, where a cycle starts when Y2 = 	

and ends when Y2 returns to 	 from above: so there is a long period corresponding
to Y2 ≤ 	 where Y1 and Y ′

1 have the same dynamics, Y ′
1 ≥ Y1 and they get closer

(because the departure rate from Y ′
1 is larger), and then a short period when Y2 ≥ 	+1

where departures from Y ′
1 are turned off and Y ′

1 and Y1 get further apart (when there
is a departure from Y1). Considering such cycles makes the comparison between Y1
and Y ′

1 tractable.
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To formalize this idea, define recursively the stopping times σ0 = 0 and

τk = inf {t ≥ σk : Y2(t) ≥ 	 + 1} , σk+1 = inf {t ≥ τk : Y2(t) = 	}

and let Zk = Y1(σk), Z ′
k = Y ′

1(σk). Note that Z and Z ′ are ergodic Markov chains.
Let Z∞ and Z ′∞ be their respective stationary distribution and note, since Y2 and Y1
are independent, that Z∞ = Y1(∞) in distribution.

Now let σ = σ1 and τ = τ0; for any function ϕ : N → R+, define the functions
�ϕ and �̃ϕ by

�ϕ(z) = Ez,	

(∫ σ

0
ϕ ◦ Y1

)

and �̃ϕ(z) = Ez,	

(∫ σ

0
ϕ ◦ Y ′

1

)

.

The following result then relates the stationary distribution of Y1(∞) and Y ′
1(∞) to

that of Z∞ and Z ′∞, respectively. In the sequel, we write ‖ f ‖ = supt≥0| f (t)| for the
L∞-norm of a function f : R+ → R.

Lemma 3.1 For any bounded function ϕ : N → R+ we have

E [ϕ(Y1(∞))] = 1

E	(σ )
E

[
�ϕ(Z∞)

]
and E

[
ϕ(Y ′

1(∞))
] = 1

E	(σ )
E

[
�ϕ(Z ′∞)

]
.

Proof We present the arguments only for Y ′
1, as the same arguments apply to Y1. In this

proof, → denotes almost sure convergence as n → ∞. Since (σk)k≥0 is a (possibly
delayed) renewal process, by the strong Markov property we have

1

n

∫ σn

0
ϕ ◦ Y ′

1 → E	(σ ) × E(ϕ(Y ′
1(∞))).

The rest of the proof is devoted to showing that we also have

1

n

∫ σn

0
ϕ ◦ Y ′

1 → E(�ϕ(Z ′∞)).

Recall that [σk, σk+1] represents the kth cycle of Y2: Y2(σk) = 	, then Y2 reaches
	 + 1 at time τk and goes back to 	 at time σk+1. For each cycle, Y ′

1 starts in a random
location Y ′

1(σk): call the i-th z-cycle the i-th cycle of Y2 such that Y ′
1 starts in z, and

denote its corresponding time interval by [σi (z), σi+1(z)]. If

ϒi (z) =
∫ σi+1(z)

σi (z)
ϕ ◦ Y ′

1

represents the “reward” accumulated along the i-th z-cycle, then writing

Nn(z) =
n−1∑

k=0

1
(
Z ′
k = z

)
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for the number of z-cycles starting before time n, partitioning the cycles depending
on their starting point (for Y ′

1) provides

1

n

∫ σn

0
ϕ ◦ Y ′

1 = 1

n

∑

z≥0

Nn(z)∑

k=1

ϒi (z) =
∑

z≥0

Nn(z)

n
× 1

Nn(z)

Nn(z)∑

i=1

ϒi (z).

The ergodic theorem for Z ′ implies that Nn(z)/n → P(Z ′∞ = z). Moreover, for each
fixed z, the (ϒk(z), k ≥ 0) are i.i.d. with common distribution that of

∫ σ

0 ϕ ◦ Y ′
1 under

Pz,	, so the strong law of large numbers implies that

1

Nn(z)

Nn(z)∑

i=1

ϒi (z) → Ez,	

(∫ σ

0
ϕ ◦ Y ′

1

)

= �ϕ(z).

Wrapping up, this suggests that

∑

z≥0

Nn(z)

n
× 1

Nn(z)

Nn(z)∑

i=1

ϒi (z) →
∑

z≥0

P(Z ′∞ = n)�ϕ(z),

which is equal to E(�ϕ(Z ′∞)), as desired. Let us justify the latter assertion. If we
restrict the sum in z to a finite number of terms, then the previous arguments can then
be applied and they give, for any z∗ ≥ 0,

1

n

∑

z≤z∗

Nn(z)∑

i=1

ϒi (z) →
∑

z≤z∗
P(Z ′∞ = z)�ϕ(z) = E(�ϕ(Z ′∞); Z ′∞ ≤ z∗).

Since �ϕ ≥ 0 (because ϕ ≥ 0), monotone convergence implies that the above right-
hand side converges to E(�ϕ(Z ′∞)) as z∗ → ∞. Thus, in order to complete the proof,
it remains to show that

lim sup
n→∞

1

n

∑

z≥z∗

Nn(z)∑

i=1

ϒi (z) −−−−→
z∗→∞ 0.

We have

1

n

∑

z≥z∗

Nn(z)∑

i=1

ϒi (z) ≤ ‖ϕ‖
n

∑

z≥z∗

∑

i≤Nn(z)

(σi+1(z) − σi (z)) = ‖ϕ‖
n

n−1∑

k=0

δk+11
(
Zk ≥ z∗

)
,

where δk+1 = σk+1 − σk . The process (δk+1, Z ′
k) is Markov: given the past until time

k, δk+2 is independent and distributed according to σ under P	, and Z ′
k+1 corresponds

to the evolution of Y ′
1 in-between a Z

′
k-cycle of Y2 with length δk+1. Note that, because

each sequence (δk+1) and (Z ′
k) is tight, the sequence (δk+1, Zk) is also tight and since
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it is also Markov, it converges to (δ∞, Z ′∞), say. Thus, the ergodic theorem implies
that

1

n

n−1∑

k=0

δk+11
(
Zk ≥ z∗

) → E
(
δ∞; Z ′∞ ≥ z∗

)
,

and since E(δ∞) = E	(σ ) < ∞, we obtain the desired result by monotone conver-
gence and letting z∗ → ∞. ��

By Lemma 3.1, we thus deduce that

E [ϕ(Y (∞))] − E
[
ϕ(Y ′(∞))

] = 1

E	(σ )

(
E

[
�ϕ(Z∞)

] − E
[
�̃ϕ(Z ′∞)

])
. (3.2)

To control the right-hand side, we decompose it as

(
E

[
�ϕ(Z∞)

] − E
[
�̃ϕ(Z∞)

] ) + (
E

[
�̃ϕ(Z∞)

] − E
[
�̃ϕ(Z ′∞)

] )

and control each difference in the next two lemmas.

Lemma 3.2 We have

∣
∣E

[
�ϕ(Z∞)

] − E
[
�̃ϕ(Z∞)

]∣
∣ ≤ 2‖ϕ‖E	+1(σ ).

Proof Using the strong Markov property at time τ , we can write

�ϕ(z) = Ez,	

(∫ τ

0
ϕ ◦ Y1

)

+
∑

z′≥0

Pz,	
(
Y1(τ ) = z′

)
Ez′,	+1

(∫ σ

0
ϕ ◦ Y1

)

and

�̃ϕ(z) = Ez,	

(∫ τ

0
ϕ ◦ Y ′

1

)

+
∑

z′≥0

Pz,	
(
Y ′
1(τ ) = z′

)
Ez′,	+1

(∫ σ

0
ϕ ◦ Y ′

1

)

= Ez,	

(∫ τ

0
ϕ ◦ Y1

)

+
∑

z′≥0

Pz,	
(
Y1(τ ) = z′

)
Ez′,	+1

(∫ σ

0
ϕ ◦ Y ′

1

)

,

where the second equality comes from the fact that Y1 and Y ′
1 coincide on [0, τ ] if

they start at the same level. Since Y1 is independent of Y2 (and hence of τ ) and Y and
Z have the same stationary distribution, we have
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E
[
�ϕ(Z∞)

] − E
[
�̃ϕ(Z∞)

]

=
∑

z≥0

P(Z∞ = z)Ez,z,	+1

(∫ σ

0
ϕ ◦ Y1

)

−
∑

z≥0

P(Z∞ = z)Ez,z,	+1

(∫ σ

0
ϕ ◦ Y ′

1

)

,

from which the result follows. ��
Lemma 3.3 If ϕ : R+ → R is differentiable with derivative ϕ′, then we have

∣
∣E

[
�̃ϕ(Z ′∞)

] − E
[
�̃ϕ(Z∞)

]∣
∣ ≤ ‖ϕ′‖E(Z ′∞ − Z∞)E	(σ ).

Proof Fix temporarily z′ ≥ z. Using the relation

Ez,	

(∫ σ

0
ϕ ◦ Y ′

1

)

= Ez,	

(∫ τ

0
ϕ ◦ Y1

)

+ Ez,	

(∫ σ

τ

ϕ ◦ Y ′
1

)

,

owing to the fact that Y1 and Y ′
1 have the same dynamics on [0, τ ], write

�̃ϕ(z′) − �̃ϕ(z) = Ez′,	

(∫ τ

0
ϕ ◦ Y1

)

− Ez,	

(∫ τ

0
ϕ ◦ Y1

)

+Ez′,	

(∫ σ

τ

ϕ ◦ Y ′
1

)

− Ez,	

(∫ σ

τ

ϕ ◦ Y ′
1

)

.

To compute

Ez′,	

(∫ τ

0
ϕ ◦ Y1

)

− Ez,	

(∫ τ

0
ϕ ◦ Y1

)

,

we couple Y1 starting from two different initial conditions z and z′: in fact, when
considered on [0, τ ], this is exactly what the coupling between Y1 and Y ′

1 does, and
so we thus have

Ez′,	

(∫ τ

0
ϕ ◦ Y1

)

− Ez,	

(∫ τ

0
ϕ ◦ Y1

)

= Ez,z′,	

(∫ τ

0

(
ϕ ◦ Y ′

1 − ϕ ◦ Y1
)
)

and so

∣
∣
∣
∣Ez′,	

(∫ τ

0
ϕ ◦ Y1

)

− Ez,	

(∫ τ

0
ϕ ◦ Y1

)∣
∣
∣
∣ ≤ ‖ϕ′‖Ez,z′,	

(∫ τ

0

(
Y ′
1 − Y1

)
)

≤ ‖ϕ′‖(z′ − z)E	(τ ),

with the last inequality coming from the fact that Y ′
1 − Y1 is non-increasing on [0, τ ].
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We now control the difference

Ez′,	

(∫ σ

τ

ϕ ◦ Y ′
1

)

− Ez,	

(∫ σ

τ

ϕ ◦ Y ′
1

)

.

Consider (ϒ,ϒ ′) and A such that

• (ϒ,ϒ ′), A and Y2 are mutually independent;
• (ϒ,ϒ ′) is distributed as (Y1(τ ),Y ′

1(τ )) under Pz,z′,	;
• A is a Poisson process with intensity λ1.

On the interval [τ, σ ], Y ′
1 − Y ′

1(τ ) is simply a Poisson process distributed as A: the
strong Markov property therefore implies that

Ez′,	

(∫ σ

τ

ϕ ◦ Y ′
1

)

− Ez,	

(∫ σ

τ

ϕ ◦ Y ′
1

)

= E	+1

(∫ σ

0

(
ϕ(ϒ ′ + A(s)) − ϕ(ϒ + A(s))

)
ds

)

and so
∣
∣
∣
∣Ez′,	

(∫ σ

τ

ϕ ◦ Y ′
1

)

− Ez,	

(∫ σ

τ

ϕ ◦ Y ′
1

)∣
∣
∣
∣ ≤ ‖ϕ′‖Ez,z′,	

(
Y ′
1(τ ) − Y1(τ )

)
E	+1(σ ).

Finally, using Y ′
1(τ ) ≤ Y ′

1(σ ) and averaging over (Z∞, Z ′∞), we obtain

∣
∣E

[
�̃ϕ(Z ′∞)

] − E
[
�̃ϕ(Z∞)

]∣
∣ ≤ ‖ϕ′‖E(Z ′∞ − Z∞)(E	(τ ) + E	+1(σ )),

from which the result follows since E	(σ ) = E	(τ ) +E	+1(σ ) by the strong Markov
property. ��

Plugging in the bounds of the two previous lemmas into (3.2), we conclude that for
any function f : R+ → R+ bounded, differentiable and with bounded derivative, we
have

∣
∣
∣
∣E

[

f

(
Y1(∞)

λftot

)]

− E

[

f

(
Y ′
1(∞)

λftot

)]∣
∣
∣
∣

≤ 1

E	(σ )

(

2‖ f ‖E	+1(σ ) + 1

λftot
‖ f ′‖E(Z ′∞ − Z∞)E	(σ )

)

,

hence
∣
∣
∣
∣E

[

f

(
Y1(∞)

λftot

)]

−E

[

f

(
Y ′
1(∞)

λftot

)]∣
∣
∣
∣ ≤ 2‖ f ‖E	+1(σ )

E	(σ )
+ 1

λftot
‖ f ′‖E(Z ′∞−Z∞).

The two following lemmas therefore imply that

E

[

f

(
Y1(∞)

λftot

)]

− E

[

f

(
Y ′
1(∞)

λftot

)]

→ 0
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as λftot → ∞ for any differentiable, bounded function f with bounded derivative.
Since Y1(∞)/λftot ⇒λftot,ε θ−1ξξξ∗

1, this implies that

E

[

f

(
Y ′
1(∞)

λftot

)]

→λftot,ε f (θ−1ξξξ∗
1),

which shows that Y ′
1(∞)/λftot ⇒λftot,ε θ−1ξξξ∗

1, as claimed.

Lemma 3.4 As λftot → ∞, we have E	+1(σ )/E	(σ ) → 0.

Proof For γ > 0, let T γ be the hitting time of 0 by an M/M/1 queue started at 1 and
with input rate γ and output rate (1 + ε)γ . Above level 	 + 1, Y2 is upper bounded
by an M/M/1 queue with input rate λftot and output rate θ	 = (1 + ε)λftot, so that
σ ≺ T λftot , where σ is considered under P	+1. Since T γ = T 1/γ in distribution, this
yields E	+1(σ ) ≤ E(T 1)/λftot. Since clearly E	(σ ) → ∞, we obtain the result. ��
Lemma 3.5 As λftot → ∞, we have lim supE(Z ′∞ − Z∞) < ∞. In particular,
E(Z ′∞ − Z∞)/λftot → 0.

Proof Let �k = Z ′
k − Zk . The idea is that when �k is large, then on [σk, τk] the

function βY1−Y ′
1
takes (relatively) large values which brings the processes Y ′

1 and Y1
closer and makes �k+1 smaller. To formalize this idea, we use Theorem 2.3 in [11]:
to apply this result, we need to control the exponential moments of �1. To do so,
we consider P and P ′, two Poisson point processes on R+ × [0, 1] with intensity
μdt ⊗ dx , such that P , P ′, Y1 and Y2 are independent, and we write

�1 − �0 = −
∫

1
(
0 ≤ s ≤ τ, ζ ≤ βY ′

1(s−)−Y1(s−)(Y1(s−))
)
P ′(dsdζ )

+
∫

1
(
τ ≤ s ≤ σ, ζ ≤ α(Y ′

1(s−))
)
P(dsdζ ). (3.3)

The first negative term translates the fact that on [0, τ ], Y ′
1 and Y1 get closer at rate

μβY ′
1−Y1(Y1) (which is the rate at which there is a departure from Y ′

1 and not from Y1),
while on [τ, σ ] they get further apart at rate μα(Y1) (which is the rate at which there
is a departure from Y1). Moreover, as in the previous proof, let T γ be the hitting time
of 0 by an M/M/1 queue started at 1 and with input rate γ and output rate (1+ ε)γ ,
and η be given by

μ(eη − 1) = λftot

(√
1 + ε − 1

)2
.

First case: �0 = 0. If �0 = 0, we then have Y1 = Y ′
1 on [0, τ ] and so (3.3) reduces

to

�1 − �0 =
∫

1
(
τ ≤ s ≤ σ, ζ ≤ α(Y ′

1(s−))
)
P(dsdζ ) ≤ P∗ := P([τ, σ ] × [0, 1]),
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hence

Ez,z,	
(
eη�1

) ≤ E	+1

(
eηP∗) = E	+1

(
eμ(eη−1)σ

)

after using the strong Markov property for the first inequality and the fact that, under
P	+1 and conditionally on Y2, P∗ is a Poisson random variable with parameter μσ .
Using the same argument as in the previous lemma, namely σ ≺ T 1/λftot, we obtain

Ez,z,	
(
eη�1

) ≤ E

(
eμ(eη−1)T 1/λftot

)
≤ c := (ε−1 − 1)1/2,

where the last inequality is provided by Proposition 5.4 in [21]. If E denotes the
expectation under the stationary distribution of (Zk, Z ′

k), the strong Markov property
then entails

E
(
eη�k+1 | Fk

)
1 (�k = 0) ≤ c,

where Fk = σ((Y1(s),Y ′
1(s),Y2(s)), s ≤ σk).

Second case: �0 ≥ 1. Next, consider the case �0 ≥ 1. Then
∫

1
(
0 ≤ s ≤ τ, ζ ≤ βY ′

1(s−)−Y1(s−)(Y1(s−))
)
P ′(dsdζ )

counts the number of points of P ′ that fall below the curve βY ′
1−Y1(Y1) before time τ .

Each time a point falls below this curve, this makes Y ′
1 − Y1 decrease by one, and the

β curve lowers until Y ′
1 − Y1 possibly hits 0 in which case β0 = 0 and no more points

can fall below this line. In particular, we have

∫

1
(
0 ≤ s ≤ τ, ζ ≤ βY ′

1(s−)−Y1(s−)(Y1(s−))
)
P ′(dsdζ ) ≥ B,

where B is the Bernoulli random variable B = 1 (I ≥ 1) with

I =
∫

1 (0 ≤ s ≤ τ, ζ ≤ β1(Y1(s−))) P ′(dsdζ ).

Indeed, if B = 0, then this inequality is true; if B = 1, then this means that I ≥ 1, i.e.,
a point of P ′ fell below the curve β1(Y1), and since β1 ≤ βY ′

1(0)−Y1(0), this necessarily
implies that a point of P ′ fell below the curve βY ′

1−Y1(Y1), i.e., the left-hand side of the
previous display is also ≥ 1. We thus derive that �1 − �0 ≤ P([τ, σ ] × [0, 1]) − B
and by independence between P , P ′, Y1 and Y2, the strong Markov property provides

Ez,z′,	
(
eη(�1−�0)

)
≤ cEz,	(e

−ηB).

Averaging with respect to (Z∞, Z ′∞) and using the strongMarkov property, we obtain

E

(
eη(�k+1−�k ) | Fk

)
1 (�k ≥ 1) ≤ cE	(e

−ηB),
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where here and in the rest of the proof, E	 corresponds to an initial state of (Y1,Y2)
distributed as (Y1(∞), 	). Assume at this stage that

E	(e
−ηB) → 0 (3.4)

(we will prove this claim at the end of the proof). Then Theorem 2.3 in [11] gives, for
large enough λftot,

P(�∞ ≥ d) ≤ c eη

1 − cE	(e−η B)
e−ηd ,

from which we get

E(�∞) =
∑

d≥1

P(�∞ ≥ d) ≤ c

1 − cE	(e−η B)

1

1 − e−η
.

Since eη → ∞ with λftot, we obtain the desired result.
In order to conclude the proof, we now prove the claim (3.4). Since B is a Bernoulli

random variable, we have E	(e−ηB) = e−η
P(B = 1)+P(B = 0) and as η → ∞, we

only have to show that P(B = 0) → 0. Let Y ∗
1 = sup[0,	2] Y1. Since β1 is decreasing,

when τ ≤ 	4 and Y ∗
1 ≤ 	2, we have

∫

1 (0 ≤ s ≤ τ, ζ ≤ β1(Y1(s−))) P ′(dsdζ )

≤ I ∗ :=
∫

1
(
0 ≤ s ≤ 	4, ζ ≤ β1(	

2)
)
P ′(dsdζ ),

hence

P(B = 0) ≤ P(I ∗ = 0) + P	(τ ≤ 	4) + P(Y ∗
1 ≥ 	2) ≤ P(I ∗ = 0) + P	(τ ≤ 	4)

+ P(Y ∗
1 ≥ 	2 | Y1(0) ≤ 	3/2) + P(Y1(∞) ≥ 	3/2),

where Y1(0) is distributed according to Y1(∞). Since I ∗ is a Poisson random variable
with parameter μβ1(	

2)	4, we have

P(I ∗ = 0) = exp
(
−μ	4β1(	

2)
)

,

which vanishes as λftot → ∞ since β1(	
2) decays like 1/	3.Moreover, by proceeding

as in Sect. 3.4 and comparing Y1 with a subcritical M/M/1, it is easy to see that
P(Y1(∞) ≥ 	3/2) → 0. It thus remains to control the two last terms P	(τ ≤ 	4)

and P(Y ∗
1 ≥ 	2 | Y1(0) ≤ 	3/2), which can be done by comparison with a subcritical

M/M/1queue. In fact, it iswell known that it takes an exponential time for a subcritical
M/M/1 queue to reach high values (see for instance Proposition 5.11 in [21]) and we
can compare Y1 and Y2 to such a queue to transfer this behavior to these two processes:
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• for Y1, we can use the fact that, when in the range [	3/2, 	2], it is smaller than a
subcritical queue M/M/1 queue with input rate λ1 and output rate μα(	3/2);

• for Y2, we can use the fact that, when in the range [	′, 	] with lower bound 	′ =
(λftot/θ +	)/2, it is smaller than a subcritical M/M/1 queue with input rate λftot
and output rate θ	′.

The proof is thus complete. ��

4 Proof of Lemma 2.8

Fix an integer k ≥ μ/θ , let S = {−k,−k + 1, . . . , } and Z be the S-valued Markov
process with non-zero transition rates

z ∈ S −→
{
z + 1 at rate λftot,

z − 1 at rate θ(k + z).

Compared to the transition rates of Xf
2 , this amounts to upper bounding the rate

μx2/(x1 + x2) by θk, which makes X2 smaller. Note also that the downward rate
θ(k + z) is 0 for z = −k, so Z indeed lives in S. This implies Z ≺ Xf

2 and therefore

P(Xf(∞) = 0) ≤ P(Z(∞) = 0).

From its transition rates, it is apparent that Z + k is an M/M/∞ queue with input
rate λftot and service rate θ , and so Z(∞) − k follows a Poisson distribution with
parameter λftot/θ . In particular,

P(Z(∞) = 0) = e−λftot/θ (λftot/θ)k

k!
and so − logP(Z(∞) = 0)/λftot → θ−1, which gives the desired bound.

5 Possible extensions

In this paper,we aimed to prove theminimal result that shows thatmobilitymakes delay
increase like log(1/(1 − �)) in heavy traffic, instead of the usual 1/(1 − �) scaling.
However, we can go a bit further than Theorem 2.5 by formulating an interesting
conjecture, which we can only partially prove. In this section, we will also discuss the
link with large deviations theory, and possible extensions of our model.

5.1 Extension of Theorem 2.5

As explained earlier, Theorem 2.5 is a direct consequence of Lemmas 2.7 and 2.8:
informally, these two lemmas state, respectively, that X(∞) ≤ θ−1ξ∗�tot and
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�tot ≤ θ log(1/(1− �)), where these inequalities are to be understood in an asymp-
totic sense. These two results can actually be strengthened.

Concerning the first inequality X(∞) ≤ θ−1ξ∗�tot of Lemma 2.7, we can prove
with similar tools as those used in Sect. 3 that Xf(∞)/�tot ⇒� θ−1ξ∗. The idea is
to prove a matching lower bound to that already proved, by comparing Xf to a lower
bounding process Y′ with non-zero transition rates

y ∈ N
2 −→

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

y + e1 at rate λ1,

y + e2 at rate λftot,

y − e1 at rate μ
y1

y1 + 	
· 1 (y2 ≥ 	) + μ · 1 (y2 < 	),

y − e2 at rate μ + θ y2.

We then have Y′ ≺ Xf and the analysis of Y′ proceeds as in Sects. 3.4 and 3.5 and
leads to Y′(∞)/λftot ⇒λftot,ε θ−1ξξξ∗. We have here to choose 	 = (1 − ε)λftot/θ ,
so that excursions of Y2 below level 	 are rare, and thus as for the lower bound, Y ′

1
essentially behaves as a birth-and-death process independent of Y ′

2.
The second inequality�tot ≤ θ log(1/(1−�)) of Lemma 2.8 can also be strength-

ened, but this is actually much more difficult. More precisely, we can show that

lim inf
�↑1

�tot

log(1/(1 − �))
> 0, (5.1)

which, using the convergenceXf(∞)/�tot ⇒� θ−1ξ∗ discussed above, would show
that

lim inf
X(∞)

log(1/(1 − �))
> 0.

Together with the bound

lim sup
X(∞)

log(1/(1 − �))
< ∞

of Theorem 2.5, this implies that log(1/(1−�)) is indeed the right order of magnitude
of X(∞).

In order to prove (5.1), since we have

log(1/(1 − �)) = − logP(Xf(∞) = 0) ≥ − logP(Xf
1 (∞) = 0),

we see that it is enough to control− logP(Xf
1 (∞) = 0)/λftot. Using subtle and rather

heavy perturbation arguments that we do not detail, we can actually prove the expected
result that P(Xf

1 (∞) = 0) has the same exponential order as the corresponding birth-
and-death process with death rate μx/(x + λftot/θ), obtained by replacing x2 by its
equilibrium value λftot/θ , i.e., that
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− 1

λftot
logP(Xf

1 (∞) = 0) → −θ log(1 − �1),

which implies the more precise result that �tot/ log(1/(1− �)) → −θ log(1− �1).
We finally conclude this part with a more precise conjecture. Because of time-scale

separation arguments explained in Sect. 5.2, we believe that Xf
1 (∞) and Xf

2 (∞) are
asymptotically independent and that

P(Xf(∞) = 0) ≈ P(Xf
1 (∞) = 0) × P(Xf

2 (∞) = 0), (5.2)

where the approximation is thought to hold in the logarithmic order. Actually, thanks
to perturbation analysis, we know how to prove that

P(Xf(∞) = 0) ≥ P(Xf
1 (∞) = 0) × P(Xf

2 (∞) = 0)

and we would need an asymptotically matching upper bound. As argued above, we
have− logP(Xf

1 (∞) = 0) ∼ −θ log(1−�1)λ
f
tot, while it is easy to show by suitable

comparison with an M/M/∞ queue that − logP(Xf
2 (∞) = 0) ∼ −θλftot. These

various arguments thus lead to the following conjecture.

Conjecture 5.1 If θ > 0, then

X(∞)

log(1/(1 − �))
�⇒ 1

1 − log(1 − �1)
· ξξξ∗,

as � ↑ 1, with the point ξξξ∗ defined in Theorem 2.5.

If this statement were true, it would have the surprising feature that the heavy traffic
limit is independent of the parameter θ : all that matters is that θ > 0, but the precise
value is irrelevant in heavy traffic. Moreover, this would give the approximation

X1(∞) + X2(∞) ≈ M(�2) · log
(

1

1 − �

)

for the total number of users with �2 ≈ 1 − �1 and where M(x) = 1/(x − x log x).
As the function x ∈ [0, 1] �→ x − x log x is increasing, this would suggest that for
a given load �, the system performance is improved with a larger fraction 1 − �1 of
mobile users.

5.2 Large deviations for processes undergoing time-scale separation

In order to prove the above conjecture, what we miss is formalizing the approxima-
tion (5.2). There is a vast literature on large deviations for Markov processes; we did
not find, however, any reference that fits our framework.

What is specific in our problem of controlling the stationary probability in state
0 = (0, 0) of Xf is that the two components Xf

1 and Xf
2 evolve on different time-

scales. When λftot is large, Lemma 2.7 shows thatXf(∞) is of the order of λftot. But
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Xf
1 is similar to a birth-and-death process with bounded birth-and-death rates, which

makes it evolve on the linear time-scale proportional to λftot, while X
f
2 is similar to an

M/M/∞ queue and thus evolves on a constant time-scale. The process Xf therefore
undergoes time-scale separation, or stochastic homogenization: when there are two
components with different speeds, the stochastic homogenization principle asserts that
the slow one (namely, Xf

1 ) only interacts with the fast one (namely, Xf
2 ) through its

stationary distribution. Here the stationary distribution of Xf
2 is essentially a Poisson

random variable with parameter λftot/θ and is thus independent of Xf
1 , which leads

to a simpler form of stochastic homogenization.
This stochastic averaging principle is well known, and there is a rich literature on

large deviations theory in this case; see for instance [9,12,16,19,26,27]. However, all
these works only establish large deviations principles for the empirical measure of
the fast process, which is admittedly the most natural question to address. What we
presently need, however, is really the probability for the fast process to be exactly in
0 as well.

Beside functional large deviations principles, the analytic singular perturbation the-
ory can provide an alternative approach to derive sharp asymptotics of the distribution
of Xf(∞). This theory has been applied, in particular, in [28] to obtain asymptotics
of the solutions of backward or forward Kolmogorov equations for jump processes
with two time-scales; coupled queueing systems ([13,14], [22] - Chap. 9) have been
also addressed in this framework. Specifically, an asymptotic expansion for the whole
distribution of Xf(∞) on N

2 of the form

P(Xf(∞) = A ξξξ) = 1

A
exp

[

−A · H(ξξξ) − h0(ξξξ) + O

(
1

A

)]

, ξξξ = (x, y) ∈ R
2+,

is assumed to exist with large (a-dimensional) scaling parameter A = λfnet/θ , and
where real functions H , h0 onR2+ satisfy H(ξξξ∗) = 0 (with the point ξξξ∗ as in Theorem
2.5) together with smoothness properties. At the present stage, with no claim to for-
mally justify the existence of such an expansion, these singular perturbation methods
enable one to determine the functions H and h0 explicitly, giving, in particular,

H(ξξξ) = �(x) + �(y), ξξξ = (x, y),

for simple functions � and �; the latter relation thus provides another argument for
the asymptotic independence (at logarithmic order) of the components of Xf(∞) dis-
cussed above. This singular perturbation framework for the estimation of the whole
distribution of the vector Xf(∞) and its justification is the object of current investi-
gations [25].

5.3 Model generalization

In this paper, our goal was to initiate the analysis of a new class of stochastic models
for mobile networks. The general idea of these models is to forget about keeping track
of all users, but instead to focus on a subset of the whole network and take into account
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the rest of the network through a balance equation. Here, we focused as a first step on
a single cell of equilibrium but more general situations can be considered.

Specifically, in the case of a single cell, we could for instance consider an “imbal-
ance” parameter β > 0 and consider the balance equation

λfnet = βθ · E (
Xf
2 (∞)

)

instead of (FP). This new fixed-point equation would mean that the ratio of flows from
and to the rest of the network is equal to β. Thus, for β > 1 this would amount to
considering a cell where more users enter than exit, and the opposite for β < 1. Of
course, such an imbalance could not be sustained for the whole network but could hold
locally. Studying what happens to the constrained model when enforcing this equation
instead of (FP) constitutes an interesting research direction.

Finally, another way to generalize the model would be to consider several cells
instead of only one. In this case, there are different flows from and to the rest of the
network, as well as within the considered cells. The first difficulty to solve would be
to find a relevant balance equation generalizing (FP), which would probably be multi-
dimensional. For instance, if one considers n cells, there would now be potentially
2n+n+n(n−1)/2+n parameters: one arrival rate per class and per cell, one capacity
per cell, a mobility rate between each pair of cells and a mobility rate from each cell
to the rest of the network.
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