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Abstract: Evaluating the time-delay, Doppler effect and carrier phase of a received signal is a
challenging estimation problem that was addressed in a large variety of remote sensing applications.
This problem becomes more difficult and less understood when the signal is reflected off one or
multiple surfaces and interferes with itself at the receiver stage. This phenomenon might deteriorate
the overall system performance, as for the multipath effect in Global Navigation Satellite Systems
(GNSS), and mitigation strategies must be accounted for. In other applications such as GNSS
reflectometry (GNSS-R) it may be interesting to estimate the parameters of the reflected signal to
deduce the geometry and the surface characteristics. In either case, a better understanding of this
estimation problem is directly brought by the corresponding lower performance bounds. In the high
signal-to-noise ratio regime of the Gaussian conditional signal model, the Cramér-Rao bound (CRB)
provides an accurate lower bound in the mean square error sense. In this article, we derive a new
compact CRB expression for the joint time-delay and Doppler estimation in a dual source context,
considering a band-limited signal and its specular reflection. These compact CRBs are expressed in
terms of the baseband signal samples, making them especially easy to use whatever the baseband
signal considered, therefore being valid for a variety of remote sensors. This extends existing results
in the single source context and opens the door to a plethora of usages to be discussed in the article.
The proposed CRB expressions are validated in two representative navigation and radar examples.

Keywords: time-delay and Doppler estimation; Cramér-Rao bound; maximum likelihood;
band-limited signals; dual source; GNSS multipath; GNSS remote sensing

1. Introduction

The joint delay-Doppler estimation problem has been addressed for years as it is a key step in
a plethora of applications such as radar, sonar, communications, navigation or remote sensing [1–7].
For instance, this estimation is performed by a receiver in order to localize and track the position of
sources such as a transmitting satellite, like in Global Navigation Satellite System (GNSS), or a radiated
target from which the system receives the backscattered signal. Under nominal conditions the receiver
collects only line-of-sight (LOS) signals. However, in challenging realistic scenarios like urban canyons,
extended targets or in conventional reflectometry configurations, a series of non-line-of-sight (NLOS)
echoes may be collected by the receiver. Those echoes, often referred to as multipath, are usually the
consequence of good enough reflecting surfaces that are radiated by the sources of interest, which in
turn reach the receiver on top of the LOS signals.
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In some applications the user tries to mitigate the multipath effect because it tends to degrade the
quality of the LOS signals of interest, directly affecting the overall system performance. This is the case
in standard GNSS where numerous techniques were developed to get rid of the multipath interference
(e.g., MEDLL [8], MMT [9], Vision Correlator [10]). Indeed, GNSS multipath remains one of the main
sources of error in challenging urban environments, therefore being a key point to be addressed for
safety-critical applications requiring a precise receiver position, such as in intelligent transportation
systems. In other applications the user wants to collect and exploit such interference in order to extract
features related to the secondary propagation medium or the reflecting surface properties. A typical
example is GNSS reflectometry (GNSS-R) where the secondary signal is the main source of information.
In GNSS-R, a first approach is to have two separated antennas: one pointing upward collecting the
LOS signal and the other one pointing downward, collecting the reflected signal [11,12]. A second
approach is to collect both signals with a single antenna and process the resulting superimposed
signals [13,14]. Both GNSS multipath (i.e., considering one LOS signal and a main secondary path
contribution) and the single antenna GNSS-R approach are typical scenarios of a dual source estimation
problem, being the main problem of interest in this contribution.

When it comes to the estimation of deterministic parameters (i.e., such as time-delay and
Doppler in this contribution), a powerful tool to determine the best statistical performance are
Cramér-Rao Bounds (CRBs). Indeed, these bounds accurately describe the ultimate achievable
minimum variance that an unbiased estimator can reach for a given problem. The CRBs for the
delay and delay-Doppler estimation have been investigated in several contributions for different
signal models, considering signals with a finite [1,15–18] or infinite [19] bandwidth. Regarding the
contributions dealing with finite bandwidth signals it is common to resort to the narrowband signal
assumption, that is, the impact of the Doppler effect on the baseband signal is neglected and only
amounts to a time-varying frequency shift [20]. The derivation of such bounds are often based on
the Slepian-Bangs formulas [21] or more general theoretical expressions for Gaussian observation
models [22–24]. When considering a multiple source signal model the CRB derivation complexity
increases significantly. Examples of those CRB expressions were derived for the case of extended
targets [25] and in GNSS-R for altimetry purposes [26–28]. Despite these contributions, a dual source
delay-Doppler estimation compact closed-form CRB expression for generic band-limited signals is not
available in the literature, being an important missing point and a result of broad interest.

In either the single or multiple source context, the problem can be formulated as a Conditional
Signal Model (CSM) [16–18,29–33]. Such model and the corresponding Conditional Maximum
Likelihood Estimator (CMLE) lead to interesting properties: the CMLE performance is accurately
described by the CRB in the asymptotic region of operation, i.e., it is efficient in the high signal-to-noise
ratio (SNR) regime and/or the large sample regime [29,34]. This makes the CMLE an interesting tool to
validate CRB expressions, as done for instance in [16–18,35]. Unfortunately, the main CMLEs drawback
is their heavy computational load, which the practitioner usually wants to avoid, and therefore
many solutions to reduce this load were proposed in the literature. A first approach consists in
using sub-optimal techniques, where the multidimensional search is substituted with a simpler
one-dimensional one, such as in the Capon [36] or MUSIC [37,38] methods. Another approach is to
reduce the computational burden by splitting the multidimensional optimization search in a number
of recursive searches. The Alternating Projection algorithm [39] and the relaxed version of the CLEAN
algorithm [40] are two well-known examples of this approach.

1.1. Contributions

Keeping in mind the problem of interest, that is, the dual source delay-Doppler estimation with a
generic band-limited signal, the main contributions of this article are as follows:

• A compact Fisher Information Matrix (FIM) for the general dual source narrowband CSM
(i.e., where the Doppler effect on the band-limited baseband signal is not considered and amounts
to a frequency shift) is provided in Section 3. This extends the work of [17,18] dealing with the
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single source narrowband CSM and completes the work of [28] in which the FIM is given for
the specific case of a static, ground-based receiver, leading yo an identical Doppler effect for the
two paths;

• The FIM is expressed in an easy to use form, based on the baseband signal samples;
• The theoretical results are supported and validated by the implementation of a dual source

CMLE [1] and sub-optimal estimators such as a CLEAN RELAX Estimator (CRE) [40];
• The formal connection with existing literature [28] and possible uses of the new CRB are discussed;

1.2. Notation

The notation adopted is as follows: scalars are represented by italic lowercase characters as in b,
vectors are represented by bold lowercase characters as in b, and matrices are represented by bold
uppercase characters as in B. The transpose operation is indicated by the superscript T , the conjugate
transpose by the superscript H , and the conjugate operation by the superscript ∗. In represents the
identity matrix of dimension n, Re{·} and Im{·} refer to the real part and the imaginary part.

1.3. Organization

Section 2 provides details on the context and the corresponding narrowband signal model.
In Section 3 the CRB derivation is presented for the delay, Doppler, amplitude and phase estimation of
a band-limited signal in the dual source context. Section 4 introduces the CMLE and a sub-optimal
estimator. These two estimators are used to validate the new CRBs. Section 5 provides results for two
representative examples. Section 6.1 relates the presented results to the literature and Section 6.2 gives
an overview of how the current study can branch out into specific studies. Finally a conclusion is
drawn in Section 7.

2. Signal Model

2.1. Single Antenna Receiver

In order to study the dual source problem we consider a receiver with a single antenna able to
collect both a LOS signal (signal labelled 0) and a single NLOS reflection (signal labelled 1), which may
be reflected for instance in a ground, sea or building surface (see Figure 1). Here we assume a purely
specular reflection with no scattering effect as considered in [28,41]. Note that this model is also related
to the multipath model used in the GNSS literature ((6.42) [42]).

R

T

S

h

signal 1

signal 0

e

Figure 1. Geometry of the problem, with h the altitude of the receiver and e the elevation angle of the
transmitter seen from the specular point.

We consider that a transmitter T and a receiver R have uniform linear motions such that the
positions can be described as pT(t) = pT + vTt and pR(t) = pR + vRt, where p and v are the position
and velocity vectors, respectively and t is the time. Under such conditions, the distance between T and
R can be approximated by a first order distance-velocity model [20]:
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‖pTR(t)‖ , ‖pR(t)− pT(t− τ̃(t))‖ = cτ̃(t) ≈ d + vt, and τ̃(t) ≈ τ + bt, τ =
d
c

, b =
v
c

, (1)

where d is the absolute distance between T and R, v is the radial velocity between T and R, τ is the
time-delay due to the propagation path and (1− b) is the dilatation induced by the Doppler effect and
c the speed of light in vacuum.

2.2. Narrowband Signal Model

A band-limited signal s(t), with bandwidth B, transmitted over a carrier frequency fc (λc = c/ fc)
is considered in this study. This signal can be expressed as

s(t) =
N′2

∑
n=N′1

s
(

n
Fs

)
sinc

(
πFs

(
t− n

Fs

))
� S( f ) =

1
Fs

N′2

∑
n=N′1

s
(

n
Fs

)
e−j2πn f

Fs , − Fs

2
≤ f ≤ Fs

2
, (2)

where sinc(·) is the sine cardinal function, f is the frequency, Fs ≥ B is the sampling frequency,
N′1, N′2 ∈ Z2, N′1 < N′2 and� refers to the time-frequency pair that will be helpful for the bounds
derivation. Using (1), the dual source complex analytic signal at the output of the receiver’s antenna
can be expressed as

xR(t) = dR(t; η0, ρ0, φR,0) + dR(t; η1, ρ1, φR,1) + wR(t),

dR(t; ηi, ρi, φR,i) = ρiejφR,i s((1− bi)(t− τi))ejωc(1−bi)te−jωcτi ,

where wR(t) is a zero-mean white complex circular Gaussian noise, ωc = 2π fc, and for i ∈ {0, 1},
ηT

i = [τi, bi], ρi ∈]0,+∞[ and φR,i the amplitude and phase of the complex coefficients induced by the
propagation characteristics (fading, reflection, etc.), the polarization mismatches and the antenna gains.

Under the narrowband signal hypothesis, i.e., the time-frequency product B · Tc (with B the
signal bandwidth and Tc the coherent integration time) is smaller than the inverse Doppler term c/v,
the Doppler effect on the band-limited baseband signal s(t) is usually neglected so that: s((1− b)(t−
τ)) ≈ s(t− τ) (ch.9 [1]). Therefore, the baseband output of the receiver’s Hilbert filter with bandwidth
Fs containing a direct signal and a single specular reflection can be approximated by

x(t) , xR(t)e−jωct = d(t; θ0) + d(t; θ1) + w(t) , (3)

d(t; θi) , ρiejφi s(t− τi)e−jωcbi(t−τi) , (4)

where for i ∈ {0, 1}, θT
i = [ηT

i , ρi, φi], φi = φR,i − ωc(1 + bi)τi. If we now consider the acquisition of
N = N2 − N1 + 1 (N1 � N′1, N2 � N′2) samples at a sampling rate Ts = 1/Fs, the discrete signal
model yields to the following dual source CSM,

x = A(η0, η1)α + w, w ∼ CN (0, σ2
nIN) , (5)

with, for n ∈ [N1, N2],

xT = (. . . , x(nTs), . . . ) ,

A(η0, η1) = [a0, a1] ,

aT
i =

(
. . . , s(nTs − τi)e−jωcbi(nTs−τi), . . .

)
,

αT =
(

ρ0ejφ0 , ρ1ejφ1
)

,

wT = (. . . , w(nTs), . . . ) .
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3. New Compact Dual Source CRB for Delay and Doppler Estimation with Band-Limited Signals

The main goal of this contribution is to derive a new compact analytic form of the delay-Doppler
CRB for the dual source model in (5).

3.1. Problem Formulation

The parameters to be estimated are gathered in the following vector: εT = [σ2
n , ηT

0 , ρ0, φ0, ηT
1 , ρ1, φ1].

From (5), we can write x ∼ CN
(
A(η0, η1)α, σ2

nIN
)

and express the probability density function (pdf) as,

p(x, ε) =
1

(πσ2
n)

N e
− 1

σ2
n
‖x−A(η0,η1)α‖2

. (6)

The corresponding CRB for the estimation of ε is defined as the inverse of the Fisher Information
matrix (FIM) [43],

CRBε|ε = F−1
ε|ε(ε), Fε|ε(ε) = −E

[
∂2 ln p(x, ε)

∂ε∂εT

]
. (7)

Note that for the Gaussian CSM of interest the Slepian-Bangs formula [21] provides the direct
evaluation of the FIM terms,

(
Fε|ε (ε)

)
k,l
, Fεk ,εl |ε (ε) =

2
σ2

n
Re

{(
∂Aα

∂εk

)H (∂Aα

∂εl

)}
+

N
σ4

n

∂σ2
n

∂εk

∂σ2
n

∂εl
, (8)

where the noise power appears to be independent from the other parameters, and the FIM reduces to

Fε|ε(ε) =

 Fσ2
n |ε(ε) 0 0

0 Fθ0|ε(ε) Fθ0,θ1|ε(ε)

0 Fθ1,θ0|ε(ε) Fθ1|ε(ε)

 , (9)

where:

• Fσ2
n |ε(ε) = N/σ4

n .
• Fθ0|ε(ε) and Fθ1|ε(ε) correspond to the FIMs of the signals when they are totally decoupled.

These matrices have been derived and studied in [16] without the Doppler frequency estimation,
and in [17,18] for the general Gaussian CSM. The main results in [17,18] concerning the single
source CSM FIM terms are summarized in Section 3.2.

• Fθ0,θ1|ε(ε) = Fθ1,θ0|ε(ε)
T characterizes the interference between both signals. The derivation of

such FIM terms is given in Section 3.3.

3.2. Decoupled Fisher Information Matrix Terms

The two last diagonal blocks of the FIM (9) were derived for the single source CSM case in [17,18].
For the sake of completeness, the main results are recalled in the sequel:

Fθi |ε(ε) =
2Fs

σ2
n

Re
{

QiWQH
i

}
, (10)

where Qi, i ∈ {1, 2} is defined in (A9) and W is defined as:

W =

 w1 w∗2 w∗3
w2 W2,2 w∗4
w3 w4 W3,3

 , (11)

with the easy-to-use formulation w.r.t. the baseband signal samples:
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w1 =
1
Fs

sHs, w2 =
1
F2

s
sHDs, w3 = sHV∆,1(0)s, w4 =

1
Fs

sHDV∆,1(0)s,

W2,2 =
1
F3

s
sHD2s, W3,3 = FssHV∆,2(0)s, (12)

where s, the baseband sample vector, is defined in (A36), D in (A39), V∆,1 in (A41) and V∆,2 in (A42).
The inversion of (10) proposed in [17,18] leads to a closed-form CRB expression for the delay, Doppler,
phase and amplitude estimation, where a noteworthy feature is that the CRBs are expressed w.r.t. the
baseband signal samples. Such CRBs were studied for different GNSS signals in [35,44].

3.3. Interference Fisher Information Matrix Terms

From the Slepian-Bangs formula the non-diagonal blocks of the FIM, referred to as interference
Fisher information matrices, are expressed as follows:

Fθ1,θ0|ε (ε) =
2Fs

σ2
n

Re
{

Q1W∆QH
0

}
, (13)

where Q0, Q1 are defined in (A9) and W∆ is defined as

W∆ =

 W∆
1,1 W∆

1,2 W∆
1,3

W∆
2,1 W∆

2,2 W∆
2,3

W∆
3,1 W∆

3,2 W∆
3,3

 ej∆ψe−jωc∆bτ0 , (14)

where ∆b and ∆ψ are defined in (A15) and with the different components of the matrix W∆ expressed
w.r.t the baseband signal samples given by

W∆
1,1 =

1
Fs

sHU(∆b)V∆,0
(

∆τ

Ts

)
s , (15)

W∆
1,2 =

1
F2

s
sHDU(∆b)V∆,0

(
∆τ

Ts

)
s , (16)

W∆
1,3 = −sHU(∆b)V∆,1

(
∆τ

Ts

)
s +

jωc∆b
Fs

sHU(∆b)V∆,0s , (17)

W∆
2,1 =

1
F2

s
sHU(∆b)V∆,0

(
∆τ

Ts

)
Ds , (18)

W∆
2,2 =

1
F3

s
sHDU(∆b)V∆,0

(
∆τ

Ts

)
Ds , (19)

W∆
2,3 = − 1

Fs
sHU(∆b)V∆,1

(
∆τ

Ts

)
Ds +

jωc∆b
F2

s
sHU(∆b)V∆,0

(
∆τ

Ts

)
Ds , (20)

W∆
3,1 = sHU(∆b)V∆,1

(
∆τ

Ts

)
s , (21)

W∆
3,2 =

1
Fs

sHDU(∆b)V∆,1
(

∆τ

Ts

)
s , (22)

W∆
3,3 = FssHU (∆b)V∆,2

(
∆τ

Ts

)
s + jωc∆bsHU(∆b)V∆,1

(
∆τ

Ts

)
s , (23)

where s, the baseband sample vector, is defined in (A36), D in (A39), U in (A38), V∆,0 in (A40), V∆,1 in
(A41) and V∆,2 in (A42).

Proof. refer to Appendix A.

An interesting and reassuring fact is that when the difference between LOS and NLOS signals
(i.e., signal 0 and signal 1) is set to zero: ∆τ = τ1 − τ0 = 0, ∆b = b1 − b0 = 0, ∆φ = φ1 − φ0 = 0,
ρ1 = ρ0, we have Q0 = Q1 and W∆ = W. This result could be expected but the FIM terms equations
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obtained confirm it. Indeed, if both signals are indistinguishable, they must have the same FIM and
their interference FIM must coincide (total interference between both signals).

4. Maximum Likelihood and CLEAN RELAX Estimators

4.1. Dual Source Conditional Maximum Likelihood Estimator

From the dual source CSM (5) and its pdf (6), the estimator ε̂ that maximizes the likelihood is
such that (η̂0, η̂1) maximizes the projection of the received signal onto the subspace defined by the
mixing matrix A [22]. As a consequence, the estimated parameters (ρ̂0, ρ̂1, φ̂0, φ̂1) directly depend on
the delay/Doppler estimation. Finally, σ̂2

n is simply the orthogonal projection value:

(η̂0, η̂1) = arg max
η0,η1

∥∥∥PA(η0,η1)
x
∥∥∥2

(24)

ρ̂i =

∣∣∣∣[(AH(η̂0, η̂1)A(η̂0, η̂1)
)−1

AH(η̂0, η̂1)x
]

i

∣∣∣∣ (25)

φ̂i = arg
{[(

AH(η̂0, η̂1)A(η̂0, η̂1)
)−1

AH(η̂0, η̂1)x
]

i

}
(26)

σ̂2
n =

1
N

∥∥∥P⊥A(η0,η1)
x
∥∥∥2

(27)

where the projectors are defined as PA = A
(
AHA

)−1 AH , P⊥A = I− PA.
Even though this estimator is known to be computationally complex, it is also known to

be asymptotically efficient (e.g., in the high-SNR regime [34]) for the dual source Gaussian CSM.
This property makes it a powerful tool to validate the CRBs derived in Section 3.

4.2. Sub-Optimal Estimator: CLEAN-RELAX

In order to deal with the CMLE heavy computational load, alternative estimators can be
used. In this paper, a relax version of the well-known CLEAN algorithm was implemented [40].
This estimator assumes that the two signals are decoupled. The method first estimates the parameters
(τ̂0, b̂0, ρ̂0, φ̂0) of the strongest signal by using the cross-correlation function, it subtracts this estimated
signal from the measured input, and then estimates the secondary signal parameters (τ̂1, b̂1, ρ̂1, φ̂1).
These two estimation steps are iterated until the cost function, which is the resulting likelihood,
is stabilized. The method used in this contribution only looks for two signals. In GNSS, the same
algorithm is named Multipath Estimating Delay Lock Loop (MEDLL) and is typically used to mitigate
multipath [8]. The CRE can be seen as a sub-optimal estimator because it works only under certain
assumptions. Indeed, considering that the two signals can be decoupled stands only when ∆τ is large
enough compared to the sharpness of the cross-correlation function. This estimator is not expected to
perform well when the two signals are very close in time. On the other hand, when the signals are
clearly parted, the CRE asymptotically behaves as the CMLE. See Section 5 for simulated results on the
CRE limit.

5. Validation and Discussion

5.1. Methodology

To validate the new CRBs derived in Section 3, the asymptotic properties of the CMLE introduced
in Section 4.1 are exploited. It is know that for a high SNR the statistical mean square error (MSE)
of the delay and Doppler frequency CMLE are accurately described by the corresponding CRBs.
Two representative signals are considered: (i) a Global Positioning System (GPS) L1 C/A signal [45],
and (ii) a Linear Frequency Modulated (LFM) chirp signal classically defined as following:
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s(t) = ej2π f (t), f (t) =
B

2T

(
t
T
− 1

2

)2
, T = NTs, (28)

with B the chirp bandwidth equal to 8 MHz (which is the receiver bandwidth in this case) and N
the number of samples. The received signal is built with two delayed and attenuated replicas with
arbitrary values of Doppler frequencies. The parameters for the three different scenarios considered
are given in Table 1. Notice that the L1 C/A chips unit is 1/1023 ms. In this table ρ1/ρ0 is the ratio
between the reflected amplitude and the main one (also referred to as multipath-to-direct ratio in
GNSS [42]) and Fdi = bi fc refers to the Doppler frequency in Hertz corresponding to the Doppler
stretch bi.

As discussed in Section 4, depending on the time-delay difference between the two replicas, ∆τ,
one can apply a sub-optimal estimators such as the CRE [40], which may behave like a CMLE in
the asymptotic region (high SNR). In this case it is possible to see the estimator threshold region in
a reasonable computation time. However, when it comes to very small values of ∆τ, meaning less
than 1/Fs chip delay, a sub-optimal algorithm like the CRE is in general not able to converge to the
CRB. As a consequence, during the simulations, when the product ∆τFs is smaller than or equal to 1,
the CRE is no longer efficient. In such limit case, a direct implementation of the CMLE is preferred.
Computational cost soars but at very high-SNR it is possible to limit the search area at 3σ, where σ is
the expected variance of the estimated values, directly provided by the derived CRBs. Therefore the
CMLE simulation is valid only at very high SNR, because in this asymptotic region the CMLE is
Gaussian distributed and its variance is equal to the CRB.

Table 1. Simulations scenarios for the CRB validation: (a) two signals totally parted (∆τ = 2 chips),
(b) a secondary path very close to the main signal (∆τ = 1/4 chip), and (c) considered to showcase the
difference between the CMLE and CRE (∆τ = 1/8 chip).

Estimator Fs (MHz) ∆τ (L1 C/A Chips) ∆τ (m) ρ1/ρ0 ∆φ (◦) Fd0/Fd1 (Hz)

(a) CRE 8 2 600 0.5 15 20/50
(b) CRE 8 1/4 75 0.5 15 20/50
(c1) CRE 8 1/8 37.5 0.5 15 20/50
(c2) CMLE 8 1/8 37.5 0.5 15 20/50

Three scenarios are then considered: scenario (a) presents the simple case where signals are
clearly parted. Scenarios (b) and (c) present the case when the secondary signal is within 1 chip,
and therefore there exists a strong interference between both signals. For illustrative purposes we show
the normalized cross-correlation function (CCF) in these three scenarios for both signals in Figure 2.
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Figure 2. Normalized Cross-Correlation Function (CCF) for a GPS L1 C/A signal (left) and a chirp
signal (right) for scenario (a) (top, ∆τ = 2 chips), scenario (b) (middle, ∆τ = 1/4 chips) and scenario
(c) (bottom, ∆τ = 1/8 chips). In these figures, the LOS and NLOS signals are in phase (∆φ = 0◦) and
the amplitude of the secondary signal is half the amplitude of the main one (ρ1 = ρ0/2).

5.2. Results

5.2.1. Scenario (a): ∆τ Larger than 1 Chip

In this scenario, we consider a relative delay of two L1 C/A chips, which corresponds to a path
difference around 600 m. In this case, the two signals are clearly parted (see Figure 2 (top)) and the
estimation of the main signal could almost be decoupled from the estimation of the secondary signal.
Figure 3 (left hand side plots) shows the root mean square error (RMSE) for the time-delay estimation.
One can see the threshold for the chirp signal at SNR_OUT = 20 dB (i.e., the SNR at the output of the
matched filter) and for the GPS L1 C/A signal at SNR_OUT = 21 dB. For a SNR_OUT larger than this
threshold the estimator reaches the CRB: (1) this validates the new CRB expression, and (2) provides
the receiver conditions to be in a correct operation region. It is worth pointing out the impact that
having two sources have on the time-delay estimation w.r.t. the single source case, where the threshold
region for a GPS signal is at SNR_OUT = 15 dB (refer to [17,18]). Figure 3 (right hand side plots) show
the RMSE for the Doppler frequency estimation. In this case, the performance for both direct and
reflected signals is on the CRB in the range of SNR_OUT values considered. Notice that it does not
make sense to consider lower SNR values because in such case the time-delay estimate is below the
convergence threshold. In any case, this result validates again the CRB expression.

5.2.2. Scenario (b): ∆τ Smaller Than 1 chip

In this scenario, we consider a relative delay of a quarter of a chip, which is about 75 m in path
difference. In this case, there is a strong interference between the two signals (see Figure 2 (middle)).
The results are shown in Figure 4 where again top plots are for the GPS L1 C/A signal, bottom plots for
the chirp, left plots for the time-delay estimation and right plots for the Doppler frequency estimation.
In this case we observe that even with such a strong interference, the time-delay estimation with a
sub-optimal CRE is possible. We can notice that having a close secondary signal has an impact on the
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estimation threshold, which is now SNR_OUT = 22 dB for the chirp signal, and SNR_OUT = 27 dB for the
GPS signal. As expected the impact is larger for the GPS signal because of its correlation function, as it
is shown in Figure 2 (middle-left). This impact can also be acknowledged in the Doppler frequency
estimation, where for the GPS signal threshold region appears.
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Figure 3. Scenario (a): Estimation of the delay (left) and the Doppler frequency (right) for ∆τ = 2
chips with CRE. (top) is for a GPS L1 C/A signal, (bottom) is for an LFM chirp signal.
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Figure 4. Scenario (b): Estimation of the delay (left) and the Doppler frequency (right) for ∆τ = 1/4
chips with CRE. (top) is for a GPS L1 C/A signal, (bottom) is for an LFM chirp signal.
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5.2.3. Scenario (c): ∆τ smaller than 1 chip

In this scenario, we consider a relative delay of an eigth of a L1 C/A chip, which accounts for a
path delay of about 37.5m. In this case, there is such a strong interference between the two signals
(see Figure 2 (bottom)) that the CRE cannot be efficient anymore. The CRE limit is clearly shown in
Figure 5. For both signals, the time-delay estimation never reaches the optimal performances set by the
CRB. Interestingly, the chirp signal seems to be more robust for the Doppler estimation, reaching the
CRB for the direct signal but not for the reflected one.

Figure 6 shows the results for the dual source CMLE. One can observe a good fit between the
MSE and the CRB. This result supports the fact that the CRE limitations can be overcome by the
CMLE, and also validates again the CRB expression for the dual source estimation problem derived in
this contribution.
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Figure 5. Scenario (c1): Estimation of the delay (left) and the Doppler frequency (right) for ∆τ = 1/8
chips with CRE. (top) is for a GPS L1 C/A signal, (bottom) is for an LFM chirp signal.
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Figure 6. Scenario (c2): Estimation of the delay (left) and the Doppler frequency (right) for ∆τ = 1/8
chips with dual source CMLE. (top) is for a GPS L1 C/A signal, (bottom) is for an LFM chirp signal.

6. Further Insights and Outlooks

6.1. Comparison with Existing Literature

As previously mentioned, a formulation of the CRBs in the dual source context was proposed
in [28]. In this reference, authors tackled the study of the best achievable performance in the
estimation of a receiver altitude using GNSS-R. Starting from the Slepian-Bangs formula, they derived
a general FIM that is similar to the one presented in Section 3. The main difference between the two
formulations is that in [28], the study is done under the assumption of a static, ground-based receiver.
This assumption allows the authors to set the two Doppler shifts at the same value. One can find a
way to connect the results presented in Section 3 with the one proposed in [28]. Indeed, setting an
equality such as b0 = b1, which constrains the current model, can be seen as a reparameterization of
the vector of unknown parameters ε [31]. We therefore consider the following vector transform,

b0 = b1 ⇔ ε = ε(ξ), (29)

where

ε =
[

σ2
n τ0 b0 ρ0 φ0 τ1 b1 ρ1 φ1

]T ,

ξ =
[

σ2
n τ0 b0 ρ0 φ0 τ1 ρ1 φ1

]T .

From this, if we note the 9-by-9 unity matrix I9 = [e1 . . . e9] with ei the column unit vector with 1
at the ith component and 0 elsewhere, the relation (29) can be explicitly written as follows,

ε(ξ) =
[

e1 e2 e3 + e7 e4 e5 e6 e8 e9
]

ξ =
∂ε(ξ)

∂ξT ξ. (30)

Now if we consider a reparameterization of the pdf p(x; ε) for the unknown parameters ε where

ε = ε(ξ), dim {ξ} = 8, dim {ε} = 9,

then p(x; ξ) = p(x; ε(ξ)) and by use of the derivation chain rule identity,

∂ ln p(x; ξ)

∂ξT =
∂ ln p(x; ε(ξ))

∂εT
∂ε(ξ)

∂ξT ⇔ ∂ ln p(x; ξ)

∂ξ
=

(
∂ε(ξ)

∂ξT

)T ∂ ln p(x; ε(ξ))

∂ε
,

we easily obtain that [46]

Fξ|ξ(ξ) = E

{
∂ ln p(x; ξ)

∂ξ

(
∂ ln p(x; ξ)

∂ξ

)T
}

=

(
∂ε(ξ)

∂ξT

)T
Fε|ε (ε(ξ))

∂ε(ξ)

∂ξT . (31)
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Developing the right-hand side of (31), one can obtain the following FIM (refer to Appendix B for
more details on the different matrices),

Fξ|ξ(ξ) =

 Fσ2
n |ξ (ξ) 0 0

0 Fθ0|ξ (ξ) Fθ0,τ1,ρ1,φ1|ξ (ξ)

0 Fτ1,ρ1,φ1,θ0|ξ (ξ) Fτ1,ρ1,φ1|ξ (ξ)

 . (32)

It appears that from the CRB presented in this contribution, it is possible to deduce the specific
scenario studied in [28]. However, in other scenarios, the Doppler shifts of the LOS and the NLOS
signals may be different (e.g., if the signal is reflected from a moving object [47]) and a more general
approach is needed, for which the result in [28] is not valid and the proposed CRB provides an answer.

Another key difference between the two contributions is that the results in the present contribution
are expressed directly using the baseband signal samples, whereas in [28] they are expressed with
the signal Power Spectral Density (PSD). Therefore, w.r.t. [28], the calculations in this article went a
little further: exploiting the Fourier transform properties over the hermitian product it is possible
to jump from the PSD back to the baseband signal samples, as it is done in Appendix A and in [16].
From this remark, it is possible to express the CRB for the estimation of the altitude h of a receiver
with the baseband signal samples, in the case where the signal is real and the path difference is large
enough, so that the interference terms can be neglected,

CRBh|ε =
σ2

nc2
(

1 + (ρ1/ρ0)
2
)

8ρ2
1 sin2(e)FsW3,3

(33)

where c is the speed of light in vacuum and e is the elevation angle of the transmitter seen from the
specular point (see Figure 1). W3,3 expression is recalled in (12). Note that this expression covers a
broader area since it was obtained without any assumption on the Doppler shifts.

6.2. Possible CRB Applications

The CRB formulation proposed in this contribution being easy to manipulate (i.e., as it is
expressed in terms of the baseband signal samples), several use cases can be identified. Hereafter is a
non-exhaustive list of examples that could lead to further studies, to support the discussion and show
that the proposed CRBs are of broad interest.

• As a direct extension of the results presented in the previous Section 6.1, one could look for
the different parameters that can be obtained from ε, and calculate a new CRB dedicated
to these specific parameters. In [28], the study applied to the GNSS-R altimetry problem,
investigates the receiver altitude and the complex ratio between the reflected and the direct
amplitudes. A generalization of this method can easily be outlined as follows. The first step is to
translate either the constraints or the new variables into a transform similarly to (29), then the
general expression (31) yields the corresponding FIM. If it is simple enough, a matrix inversion
might end up to a closed-form expression of the CRB.

• Another application could be the assessment of the impact the secondary signal has on the main
signal’s parameters estimation. From the CRB expression it is indeed quite simple to extract
the CRB for the time-delay estimation while there is no reflection, and the same CRB when the
NLOS signals interfere with the LOS one. Such study may bring a new tool to characterize the
signal robustness to multipath, being a key issue for instance in safety-critical GNSS applications,
an ultimately drive the future generation of signal design.

• Again in the GNSS context, such CRBs can also be used to have an optimal performance
assessment of the Carrier-to-Noise Density Ratio (C/N0) estimation under multipath conditions.
Notice that the C/N0 is an important parameter used in several GNSS applications.
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• Regarding precise positioning techniques such as real time kinematics (RTK), needed in modern
applications, these CRBs may bring a valuable information on the impact that multipath may have
on the final position estimate. Indeed, it is known that RTK solutions are not able to fix the carrier
phase ambiguities under harsh propagation conditions such as strong multipath. This would
extend the results presented in [17,18,35] to more realistic conditions.

• In the dual antenna GNSS-R context, the dual source CRB proposed in this contribution can be
exploited in order to characterize the impact that an imperfect isolation between antennas may
have on the final GNSS-R product. This may account for the reflected signal leaking into the
upward antenna, or the LOS signal contaminating the downward one.

• Finally, a compact CRB expression can be exploited to do optimal signal design as suggested
in [16]. As an example, we can study the case of the estimation of the receiver altitude (33).
It was shown that the optimal signal can be linked to the first eigenvector of the matrix V∆,2(0).
The optimal CRB would then be given by:

CRBh|ε ≥ CRBopt.
h|ε =

σ2
nc2
(

1 + (ρ1/ρ0)
2
)

8ρ2
1 sin2(e)Fsw1D1,1

, (34)

where π ≤ D1,1 ≤ π2 is the largest eigenvalue of V∆,2(0).

7. Conclusions

In this contribution, a new compact CRB for the joint delay, Doppler and complex amplitude
estimation of a dual source narrowband CSM was derived. A handy closed-form expression of these
CRBs that only depends on the baseband signal samples was also proposed. Such formulation is
especially easy to use whatever the baseband signal considered, therefore being valid for a large
variety of applications and of broad interest. The new formulation was validated using the asymptotic
properties of the dual source CMLE and a sub-optimal algorithm, the CRE, that behaves well
under certain assumptions. The different simulations show a satisfying fit between the theoretical
bounds and the statistical output of the estimators applied to two representative navigation and
radar signals, which validated the proposed CRBs. In addition, a brief comparison with the
existing literature was provided, showing the consistency with CRBs previously derived for GNSS-R
applications. A number of applications can be thought of based on these CRBs, which were also
discussed for completeness. For instance, the new CRBs can be exploited for optimal signal design,
multipath characterization, precise positioning methods assessment under challenging propagation
conditions, or for the estimation of specific application-dependent parameters that are function of the
signals parameters (delay, Doppler shift, complex amplitude).
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CCF Cross-Correlation Function
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CRE CLEAN RELAX Estimator
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FIM Fisher Information Matrix
GNSS Global Navigation Satellite System
GNSS-R GNSS Reflectometry
GPS Global Positioning System
LFM Linear Frequency Modulated
LOS Line-Of-Sight
MEDLL Multipath Mitigating Delay Lock Loop
MMT Multipath Mitigation Technique
MSE Mean Square Error
MVU Minumum Variance Unbiased
NLOS Non-Line-Of-Sight
pdf Probability Density Function
PSD Power Spectral Density
RMSE Root Mean Square Error
RTK Real Time Kinematics
SNR Signal-to-Noise Ratio

Appendix A. Details of the Derivation of the Fisher Information Matrix

Appendix A.1. Prior Calculation on Fourier Transforms

In order to compute the FIM we need to know the Fourier transform of a set of functions. First,
remembering that the signal is band-limited of band B ≤ Fs, we have,

s(t)
 S( f ) =

(
1
Fs

N2

∑
n=N1

s(nTs)e−j2π f nTs

)
1[− Fs

2 ; Fs
2 ]

. (A1)

In order to tackle the issue that may come from the spectral shift due to the Doppler effect,
we simply need to take Fs large enough so that Fs

2 ≥
B
2 + fcmax {|b0|, |b1|, |∆b|} (∆b = b1 − b0),

s(t)ej2π fcbt 
 S( f − fcb) =

(
1
Fs

N2

∑
n=N1

s(nTs)e−j2π( f− fcb)nTs

)
1[− Fs

2 ; Fs
2 ]

. (A2)

Let s0 be defined by s0(t; τ) = s(t− τ), then we have that,

(t− τ)s0(t; τ) = ts0(t; τ)− τs0(t; τ), (A3)

and

(t− τ)s(t− τ)�
j

2π

d
d f

(
S( f )e−j2π f τ

)
− τS( f )e−j2π f τ

�
j

2π

d
d f

(S( f ))e−j2π f τ . (A4)

Now let s1 be defined by s1(t; b) = s(t)ej2π fcbt. We have the known result that,

ts1(t; b)�
j

2π

d
d f

(s1(t; b)) ,

and therefore,

ts(t)ej2π fcbt �
j

2π

d
d f

(S( f − fcb)) . (A5)

On the other hand,
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s(1)1 (t; b) = s(1)(t)ej2π fcbt + j2π fcbs1(t; b)

⇔ s(1)(t)ej2π fcbt = s(1)1 (t; b)− j2π fcbs1(t; b),

then, we directly have that,

s(1)(t)ej2π fcbt 
 j2π ( f − fcb) S( f − fcb). (A6)

Finally if we now define s2 as s2(t; b) = ts(t)ej2π fcbt,

s(1)2 (t; b) = s1(t; b) + ts(1)(t)ej2π fcbt + (j2π fcb)s2(t; b)

⇔ ts(1)(t)ej2π fcbt = −s1(t; b) + s(1)2 (t; b)− (j2π fcb)s2(t; b),

therefore,

ts(1)(t)ej2π fcbt � −S( f − fcb) + j2π( f − fcb)
d

d f
(S( f − fcb)) . (A7)

Appendix A.2. Bounds Derivation

Hereafter we provide details on the derivation of the FIM (9). Given the signal model (3),
the derivative of the parameters vector excluding the noise variance σ2

n , ε̄, can be expressed in a matrix
form as

∂

∂ε̄
(d(t; θ0) + d(t; θ1)) = Q(ε̄)D(t; ε̄)e(t; ε̄), (A8)

where

Q(ε̄) =

[
Q0 0
0 Q1

]
, Qi =


jρiwcbi 0 −ρi

0 −jρiwc 0
1 0 0

jρi 0 0

 , (A9)

D(t; ε̄) =



s(t− τ0) 0
(t− τ0)s(t− τ0) 0

s(1)(t− τ0) 0
0 s(t− τ1)

0 (t− τ1)s(t− τ1)

0 s(1)(t− τ1)

 , (A10)

e(t; ε̄) =

(
ejψ0 e−jωcb0t

ejψ1 e−jωcb1t

)
, with ψi = φi + ωcbiτi (A11)

Therefore, the derivative of the vector Aα (when t = nTs) w.r.t ε̄ is(
∂Aα

∂ε̄

)T
= Q(ε̄) [. . . , D(nTs; ε̄)e(nTs; ε̄), . . . ]N1≤n≤N2

. (A12)

From this result we can write that(
∂Aα

∂ε̄T

)H (∂Aα

∂ε̄T

)
=

Q(ε̄)∗
(

N2

∑
n=N1

D(nTs; ε̄)∗ (I2 + ∆θ(nTs; ε̄)∗)D(nTs; ε̄)T

)
Q(ε̄)T , (A13)

with ∆θ induced by the difference of delay, Doppler shifts and phase between the two signals,
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∆θ(nTs; ε̄) , e(nTs; ε̄)e(nTs; ε̄)H − I2

=

[
0 e−j∆ψej2π fc∆bnTs

ej∆ψe−j2π fc∆bnTs 0

]
, (A14)

with
∆ψ = ψ1 − ψ0 = ∆φ + ωc(b1τ1 − b0τ0), ∆b = b1 − b0, ∆φ = φ1 − φ0. (A15)

Similarly to [16], taking the limit of (A13) when N′1 and N′2 are very large leads to an integral form

lim
(N1,N2)→(−∞,+∞)

(
∂Aα

∂ε̄T

)H (∂Aα

∂ε̄T

)

= Fs

(
Q(ε̄)

[
W0

(
W∆)H

W∆ W1

]
Q(ε̄)H

)∗
, (A16)

where W0 and W1 are derived and studied in the single source case in [17,18] and

W∆ ,

 W∆
1,1 W∆

1,2 W∆
1,3

W∆
2,1 W∆

2,2 W∆
2,3

W∆
3,1 W∆

3,2 W∆
3,3

 ej∆ψe−jωc∆bτ0 , (A17)

with

W∆
1,1 = ejωc∆bτ0

∫
R

s(t− τ1)s(t− τ0)
∗e−jωc∆btdt, (A18)

W∆
1,2 = ejωc∆bτ0

∫
R
(t− τ0)s(t− τ1)s(t− τ0)

∗e−jωc∆btdt, (A19)

W∆
1,3 = ejωc∆bτ0

∫
R

s(t− τ1)s(1)(t− τ0)
∗e−jωc∆btdt, (A20)

W∆
2,1 = ejωc∆bτ0

∫
R
(t− τ1)s(t− τ1)s(t− τ0)

∗e−jωc∆btdt, (A21)

W∆
2,2 = ejωc∆bτ0

∫
R
(t− τ1)(t− τ0)s(t− τ1)s(t− τ0)

∗e−jωc∆btdt, (A22)

W∆
2,3 = ejωc∆bτ0

∫
R
(t− τ1)s(t− τ1)s(1)(t− τ0)

∗e−jωc∆btdt, (A23)

W∆
3,1 = ejωc∆bτ0

∫
R

s(1)(t− τ1)s(t− τ0)
∗e−jωc∆btdt, (A24)

W∆
3,2 = ejωc∆bτ0

∫
R
(t− τ0)s(1)(t− τ1)s(t− τ0)

∗e−jωc∆btdt, (A25)

W∆
3,3 = ejωc∆bτ0

∫
R

s(1)(t− τ1)s(1)(t− τ0)
∗e−jωc∆btdt. (A26)

Exploiting the Fourier transform properties over the hermitian product and the relations recalled
in Appendix A.1, one can work these integral expressions as follows:

W∆
1,1 = ejωc∆bτ0

∫
R

s(t− τ1)s(t− τ0)
∗e−j2π fc∆btdt = s(u− ∆τ)s(u)∗e−j2π fc∆budu,

W∆
1,1 =

∫
R

s(u− ∆τ)
(

s(u)ej2π fc∆bu
)∗

︸ ︷︷ ︸
(A2)

du =
∫ Fs

2

− Fs
2

S( f )e−j2π f ∆τS( f − fc∆b)∗d f ,

and using the sum definition of the Fourier transform (A1),

W∆
1,1 =

1
Fs

∫ 1
2

− 1
2

(
sTν( f )∗

)
e−j2π f ∆τ

Ts

(
sHUν( f )

)
d f =

1
Fs

sHU (∆b)V∆,0
(

∆τ

Ts

)
s. (A27)
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Following the same procedure we have that,

W∆
1,2 = ejωc∆bτ0

∫
R
(t− τ0)s(t− τ1)s(t− τ0)

∗e−j2π fc∆btdt =
∫
R

us(u− ∆τ)s(u)∗e−j2π fc∆budu,

W∆
1,2 =

∫
R

s(u− ∆τ)
(

us(u)ej2π fc∆bu
)∗

︸ ︷︷ ︸
(A5)

du =
∫ Fs

2

− Fs
2

S( f )e−j2π f ∆τ

(
j

2π

d
d f

(S( f − fc∆b))
)∗

d f

=
1
F2

s

∫ 1
2

− 1
2

(
sTν( f )∗

)
e−j2π f ∆τ

Ts

(
sHDU (∆b) ν( f )

)
d f

=
1
F2

s
sHDU (∆b)V∆,0

(
∆τ

Ts

)
s, (A28)

W∆
1,3 = ejωc∆bτ0

∫
R

s(t− τ1)s(1)(t− τ0)
∗e−j2π fc∆btdt =

∫
R

s(u− ∆τ)s(1)(u)∗e−j2π fc∆budu,

W∆
1,3 =

∫
R

s(u− ∆τ)
(

s(1)(u)ej2π fc∆bu
)∗

︸ ︷︷ ︸
(A6)

du

=
∫ Fs

2

− Fs
2

(
S( f )e−j2π f ∆τ

)
(j2π( f − fc∆b)S( f − fc∆b))∗ d f

=
1
Fs

∫ 1
2

− 1
2

(
sTν( f )∗

)
e−j2π f ∆τ

Ts

(
−j2πFs f sHU (∆b) ν( f ) + j2π fc∆bsHU (∆b) ν( f )

)
d f

= −sHU (∆b)V∆,1
(

∆τ

Ts

)
s +

jωc∆b
Fs

sHU (∆b)V∆,0
(

∆τ

Ts

)
s, (A29)

W∆
2,1 = ejωc∆bτ0

∫
R
(t− τ1)s(t− τ1)s(t− τ0)

∗e−j2π fc∆btdt

=
∫
R
(u− ∆τ)s(u− ∆τ)s(u)∗e−j2π fc∆budu

=
∫
R
(u− ∆τ)s(u− ∆τ)︸ ︷︷ ︸

(A4)

(
s(u)ej2π fc∆bu

)∗
︸ ︷︷ ︸

(A2)

du

=
∫ Fs

2

− Fs
2

(
j

2π

d
d f

(S( f )) e−j2π f ∆τ

)
S( f − fc∆b)∗d f

=
1
F2

s

∫ 1
2

− 1
2

(
sTDν( f )∗

)
e−j2π f ∆τ

Ts

(
sHU (∆b) ν( f )

)
d f

=
1
F2

s
sHU (∆b)V∆,0

(
∆τ

Ts

)
Ds, (A30)

W∆
2,2 = ejωc∆bτ0

∫
R
(t− τ1)(t− τ0)s(t− τ1)s(t− τ0)

∗e−j2π fc∆btdt

=
∫
R

u(u− ∆τ)s(u− ∆τ)s(u)∗e−j2π fc∆budu

=
∫
R
((u− ∆τ)s(u− ∆τ))︸ ︷︷ ︸

(A4)

(
us(u)ej2π fc∆bu

)∗
︸ ︷︷ ︸

(A5)

du

=
∫ Fs

2

− Fs
2

(
j

2π

d
d f

(S( f )) e−j2π f ∆τ

)(
j

2π

d
d f

(S( f − fc∆b))
)∗

d f

=
1
F3

s

∫ 1
2

− 1
2

(
sTDν( f )∗

)
e−j2π f ∆τ

Ts

(
sHDU (∆b) ν( f )

)
d f

=
1
F3

s
sHDU (∆b)V∆,0

(
∆τ

Ts

)
Ds, (A31)
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W∆
2,3 = ejωc∆bτ0

∫
R
(t− τ1)s(t− τ1)s(1)(t− τ0)

∗e−j2π fc∆btdt

=
∫
R
(u− ∆τ)s(u− ∆τ)s(1)(u)∗e−j2π fc∆budu

=
∫
R
((u− ∆τ)s(u− ∆τ))︸ ︷︷ ︸

(A4)

(
s(1)(u)ej2π fc∆bu

)∗
︸ ︷︷ ︸

(A6)

du

=
∫ Fs

2

− Fs
2

(
j

2π

d
d f

(S( f )) e−j2π f ∆τ

)
(j2π( f − fc∆b)S( f − fc∆b))∗ d f

=
1
F2

s

∫ 1
2

− 1
2

(
sTDν( f )∗

)
e−j2π f ∆τ

Ts

(
−j2πFs f sHU (∆b) ν( f ) + j2π fc∆bsHU (∆b) ν( f )

)
d f

= − 1
Fs

sHU (∆b)V∆,1
(

∆τ

Ts

)
Ds +

jωc∆b
F2

s
sHU (∆b)V∆,0

(
∆τ

Ts

)
Ds, (A32)

W∆
3,1 = ejωc∆bτ0

∫
R

s(1)(t− τ1)s(t− τ0)
∗e−j2π fc∆btdt =

∫
R

s(1)(u− ∆τ)s(u)∗e−j2π fc∆budu,

W∆
3,1 =

∫
R

s(1)(u− ∆τ)
(

s(u)ej2π fc∆bu
)∗

︸ ︷︷ ︸
(A2)

du =
∫ Fs

2

− Fs
2

(
j2π f S( f )e−j2π f ∆τ

)
(S( f − fc∆b))∗ d f

=
∫ 1

2

− 1
2

(
j2π f sTν( f )∗

)
e−j2π f ∆τ

Ts

(
sHU (∆b) ν( f )

)
d f

= sHU (∆b)V∆,1
(

∆τ

Ts

)
s, (A33)

W∆
3,2 = ejωc∆bτ0

∫
R
(t− τ0)s(1)(t− τ1)s(t− τ0)

∗e−j2π fc∆btdt

=
∫
R

s(1)(u− ∆τ)s(u)∗e−j2π fc∆budu

=
∫
R

s(1)(u− ∆τ)
(

us(u)ej2π fc∆bu
)∗

︸ ︷︷ ︸
(A5)

du

=
∫ Fs

2

− Fs
2

(
j2π f S( f )e−j2π f ∆τ

)( j
2π

d
d f

(S( f − fc∆b))
)∗

d f

=
1
Fs

∫ 1
2

− 1
2

(
j2π f sTν( f )∗

)
e−j2π f ∆τ

Ts

(
sHDU (∆b) ν( f )

)
d f

=
1
Fs

sHDU (∆b)V∆,1
(

∆τ

Ts

)
s, (A34)

W∆
3,3 = ejωc∆bτ0

∫
R

s(1)(t− τ1)s(1)(t− τ0)
∗e−j2π fc∆btdt =

∫
R

s(1)(u− ∆τ)s(1)(u)∗e−j2π fc∆budu,

W∆
3,3 =

∫
R

s(1)(u− ∆τ)
(

s(1)(u)ej2π fc∆bu
)∗

︸ ︷︷ ︸
(A6)

du

=
∫ Fs

2

− Fs
2

(
j2π f S( f )e−j2π f ∆τ

)
(j2π( f − fc∆b)S( f − fc∆b))∗ d f

=
∫ 1

2

− 1
2

(
j2π f sTν( f )∗

)
e−j2π f ∆τ

Ts

(
−j2πFs f sHU (∆b) ν( f ) + j2π fc∆bsHU (∆b) ν( f )

)
d f

= FssHU (∆b)V∆,2
(

∆τ

Ts

)
s + jωc∆bsHU (∆b)V∆,1

(
∆τ

Ts

)
s, (A35)
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where

s =
(

. . . s(nTs) . . .
)T

N1≤n≤N2
, (A36)

ν( f ) =
(

. . . ej2π f n . . .
)T

N1≤n≤N2
, (A37)

U (∆b) = diag
(

. . . e−jωc∆bnTs . . .
)

N1≤n≤N2
, (A38)

D =
(

. . . n . . .
)T

N1≤n≤N2
, (A39)

V∆,0
(

∆τ

Ts

)
=
∫ 1

2

− 1
2

ν( f )νH( f )e−j2π f ∆τ
Ts d f , (A40)[

V∆,0
(

∆τ

Ts

)]
k,l

= sinc
(

k− l − ∆τ

Ts

)
,

V∆,1
(

∆τ

Ts

)
= j2π

∫ 1
2

− 1
2

f ν( f )νH( f )e−j2π f ∆τ
Ts d f , (A41)[

V∆,1
(

∆τ

Ts

)]
k,l

=
1

k− l − ∆τ
Ts

(
cos

(
π(k− l − ∆τ

Ts
)

)
− sinc

(
k− l − ∆τ

Ts

))
,

V∆,2
(

∆τ

Ts

)
= 4π2

∫ 1
2

− 1
2

f 2ν( f )νH( f )e−j2π f ∆τ
Ts d f , (A42)[

V∆,2
(

∆τ

Ts

)]
k,l

= π2sinc
(

k− l − ∆τ

Ts

)

+ 2
cos
(

π(k− l − ∆τ
Ts
)
)
− sinc

(
k− l − ∆τ

Ts

)
(

k− l − ∆τ
Ts

)2 .

Appendix B. Details on the Constrained Fisher Information Matrix

We consider the vector of unknown parameters transform (29). The corresponding jacobian,
initially defined in (30), can be written as follows,

∂ε(ξ)

∂ξT =

 1 0 0
0 I4 04×3
0 E1 E3

 , E1 =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , E3 =


1 0 0
0 0 0
0 1 0
0 0 1

 . (A43)

Using this representation, it is easy to develop (32) as,

Fξ|ξ =

(
∂ε(ξ)

∂ξT

)T
Fε|ε

∂ε(ξ)

∂ξT =

 Fσ2
n |ξ(ξ) 0 0

0 Fθ0|ξ(ξ) Fθ0,τ1,ρ1,φ1|ξ(ξ)

0 Fτ1,ρ1,φ1,θ0|ξ(ξ) Fτ1,ρ1,φ1|ξ(ξ)

 . (A44)

with

Fσ2
n |ξ(ξ) = Fσ2

n |ε(ε), (A45)

Fθ0|ξ(ξ) = Fθ0|ε(ε) + E1Fθ1|ε(ε)E1 + E1Fθ1,θ0|ε(ε) + Fθ0,θ1|ε(ε)E1, (A46)

Fτ1,ρ1,φ1|ξ(ξ) = ET
3 Fθ1|ε(ε)E3, (A47)

Fτ1,ρ1,φ1,θ0|ξ(ξ) =
(

Fθ0,τ1,ρ1,φ1|ξ(ξ)
)T

= ET
3 Fθ1,θ0|ε(ε) + ET

3 Fθ1|ε(ε)E1. (A48)
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The constrained FIM can directly be computed using the (10) and (13). Besides, the expression of
W∆ components is simplified by the assumption b0 = b1 as follows,

W∆
1,1 =

1
Fs

sHV∆,0
(

∆τ

Ts

)
s, W∆

1,2 =
1
F2

s
sHDV∆,0

(
∆τ

Ts

)
s, W∆

1,3 = −sHV∆,1
(

∆τ

Ts

)
s,

W∆
2,1 =

1
F2

s
sHV∆,0

(
∆τ

Ts

)
Ds, W∆

2,2 =
1
F3

s
sHDV∆,0

(
∆τ

Ts

)
Ds, W∆

2,3 = − 1
Fs

sHV∆,1
(

∆τ

Ts

)
Ds,

W∆
3,1 = sHV∆,1

(
∆τ

Ts

)
s, W∆

3,2 =
1
Fs

sHDV∆,1
(

∆τ

Ts

)
s, W∆

3,3 = FssHV∆,2
(

∆τ

Ts

)
s. (A49)
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