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Boundedmotion design in the Earth zonal problem using
differential algebra based normal formmethods

A. Weisskopf1 · R. Armellin2 ·M. Berz1

Abstract
Establishing long-term relative bounded motion between orbits in perturbed dynamics is a
key challenge in astrodynamics to enable cluster flight withminimumpropellant expenditure.
In this work, we present an approach that allows for the design of long-term relative bounded
motion considering a zonal gravitational model. Entire sets of orbits are obtained via high-
order Taylor expansions of Poincarè returnmaps about reference fixed points. The high-order
normal form algorithm is used to determine a change in expansion variables of the map
into normal form space, in which the phase space behavior is circular and can be easily
parameterized by action–angle coordinates. The action–angle representation of the normal
form coordinates is then used to parameterize the original Poincarè return map and average
it over a full phase space revolution by a path integral along the angle parameterization. As a
result, the averaged nodal period and drift in the ascending node are obtained, for which the
bounded motion conditions are straightforwardly imposed. Sets of highly accurate bounded
orbits are obtained, extending over several thousand kilometers, and valid for decades.

Keywords Normal form methods · Bounded motion · Zonal problem · Differential algebra

1 Introduction

Henri Poincaré’s three volumes on ‘New Methods of Celestial Mechanics’ (Poincaré 1899)
were one of the greatestmethodological contributions not only to the field of celestialmechan-
ics, but to the mathematical theory of dynamical systems in general. Based on his work,
numerous methods to analyze dynamical systems have been established and developed in
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various fields. Due to their common origin and mathematical underpinnings, it is sometimes
possible to transfer specific methods from one field of dynamical systems to another. In this
paper, we transfer differential algebra (DA)-based normal formmethods, whichwere inspired
by Poincaré work and first developed in the field of particle beam physics and accelerator
physics, to the field of astrodynamics to design boundedmotion in the Earth’s zonal problem.

The DA framework (Berz 1987, 1988), the DA normal form algorithm (Berz 1993, 1999)
and their associated techniques are hybrid methods of numerical and analytic calculations
and have been established by Berz et al. Many of the methods use concepts going back to
Poincaré (1899), especially considering his work on perturbation theory, return maps (later:
Poincaré maps), non-integrability and integral invariants. While the DA methods are derived
on a general basis, they have predominantly been applied and developed in the field of
accelerator physics, where they reveal details of those dynamical systems that are otherwise
very difficult to obtain by conventional methods. More recently, researchers have begun on
the fruitful transfer of those DAmethods to the astrodynamical community (Lizia et al. 2008;
Armellin et al. 2010a, b; Wittig et al. 2015). An advancement of this transfer to normal form
methods provides new possibilities, as it will be demonstrated in this work, including the
capability of determining entire sets of bounded motion orbits in the zonal problem.

Two or more objects are in bounded motion if the relative distance between them remains
bounded for an extended period of time. In practice, this finds application in cluster flight
(Brown and Eremenko 2006) and formation flying (Alfriend et al. 2010) missions, which can
offer many advantages compared to single spacecraft mission. From the scientific standpoint,
they enable measurements of unprecedented spatial and temporal correlation, but they also
have economic advantages such as allowing for redundancies within the group, a distribution
of the payload and the adaptability of the mission by exchanging modules of the group.
Missions such as PRISMA (D’Amico et al. 2012), GRACE (Montenbruck et al. 2006) and
TerraSAR-X and TanDEM-X (D’Amico and Montenbruck 2006) demonstrated the practi-
cability of formation flying and stimulated further research in the field.

To minimize the amount and extend of formation-keeping maneuvers with control strate-
gies during the mission, it is of great interest to the astrodynamical community to find
‘naturally’ bounded motion orbits for models considering as many perturbations as possible,
which leave only the unmodeled perturbations to be corrected by control maneuvers.

InKeplerian dynamics, boundedmotion is obtained by choosing orbitswith the same semi-
major axis, i.e., orbits with the same orbit period and energy. The most general expression
of the energy-matching condition for Keplerian orbits in Euler–Hill coordinates was derived
by Gurfil (2005). Alternatively, the linearized relative equations of motion (Clohessy and
Wiltshire 1960; Sullivan et al. 2017) and Tschauner–Hempel equations (Inalhan et al. 2002)
can be used to determine initial conditions which produce periodic relative orbits.

Introducing perturbations to the dynamics generates a non-trivial bounded motion prob-
lem. The dominating perturbation is often due to the oblateness of the central body and the
associated zonal perturbation from the second zonal harmonic coefficient J2 of the grav-
itational potential. This zonal perturbation introduces a drift in the right ascension of the
ascending node (RAAN), the argument of periapsis and the mean anomaly. The drift in
each of the quantities is oscillating at different frequencies, which drastically increases the
complexity of the bounded motion problem.

Two main routes have been followed to approach this problem: The first one is based
on analytic derivations and the second one uses fully numerical techniques. The analytic
approaches were mainly developed in reduced zonal problems, e.g., considering J2 only.
Schaub and Alfriend (2001) derived conditions for the first-order differential mean orbit
elements, which identify J2-invariant orbits byminimizing the relative drift in the RAAN and
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mean argument of latitude. The resulting relativemotion remains bounded for short times and
short relative distances due to the unmodeled nonlinear effects and short-periodic oscillations.
Further linear approaches (Gim and Alfriend 2003; Schweighart and Sedwick 2002) using
a state transition matrix and approaches using non-osculating orbital elements (Gurfil 2007;
Dang et al. 2015) offered a deeper understanding of the mathematical underpinnings of the
bounded motion problem, while yielding similarly limited results in size and duration. The
approach by Chu et al. (2015) within the framework of analytical theory used Hamilton–
Jacobi theory and action–angle variables to derive canonical solutions for a constant nodal
period and drift of the ascending node for the pseudo-elliptical orbits and matching those
constant values between pairs of orbits.

On the other hand, numerical approaches enabled the calculation of bounded motion
conditions in a more complete dynamical model, thus avoiding the inaccuracies introduced
in the osculating to mean transformations and by linearization. The pioneering work by
Broucke (1994) on families of two-dimensional quasi-periodic invariant tori around stable
periodic orbits of the Ruth-reduced axially symmetric system, was used by Koon et al. (2001)
in combination with Poincaré section techniques to study the J2 problem. While this method
was an improvement to the first-order approaches, long-term bounded motion was still not
achieved by placing orbits on the center manifold. Xu et al. (2012) pointed out that long-term
bounded motion in the zonally perturbed system could only be achieved when the RAAN
drift and nodal period are on average the same for each of the bounded modules. These
constrains are weaker than the constrains originally derived by Martinusi and Gurfil (2011),
and when they are enforced on a numerical searching method based on ergodic maps and
contour plots, the resulting relative motion is bounded for more than two years.

In Baresi and Scheeres (2017a), a fully numerical technique based on stroboscopic maps
was used to obtain entire families of quasi-periodic orbits producing bounded relative motion
about a periodic one. Thismethodwas then used to study both boundedmotion about asteroids
(Baresi et al. 2018) and in low Earth, medium Earth and geostationary orbits (Baresi and
Scheeres 2017b). Numerical approaches yield bounded relative orbits with arbitrary size
over very long periods of time (or infinite time in theory). However, they require complex
and time-consuming algorithms.

In He et al. (2018), a compromise between the analytic and numerical technique was
presented, based on the use of DA. DA techniques were used to expand high-order mapping
between two consecutive equatorial crossings (i.e., Poincaré maps). This enabled the study of
the motion of a spacecraft for many revolutions by the fast evaluation of Taylor polynomials.
The problem of designing bounded motion orbits was then reduced to the solution of two
polynomial nonlinear equations (constraining themean nodal period, Td, and drift of the right
ascension of the ascending node, ��). The derived method showed an accuracy comparable
with that of fully numerical methods, but with a reduced complexity due to the introduced
polynomial approximations. Themain drawback of this technique consisted in the calculation
of the mean Td and �� using numerical averaging over thousands of nodal crossings. This
process resulted in the main computationally intensive part of the algorithm and was also
responsible for accuracy degradation in case of very large separations.

The aimof this paper is to overcome this limitation by the introduction ofDA-based normal
form (DANF) methods. In particular, the DANF algorithm is used to determine a change in
expansion variables of the Poincaré map into normal form space, where the phase space
behavior is circular and can be easily parameterized by action–angle coordinates (Fig. 1).
The parameterized set of normal form phase space coordinates is then transformed back to the
original coordinates and averaged over a full phase space revolution by a path integral along
the angle parameterization, yielding the Taylor expansion of the averaged bounded motion
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quantities Td and��. The expansions are transformed back to the original coordinates. Map
inversion methods are then used to match two remaining expansion variables in the constants
of motion such that the bounded motion conditions are met. As a result, an entire set of
bounded orbits extending up to thousands of kilometers with a stable relative motion for
decades is achieved in the full zonal problem, avoiding the numerical averaging introduced
in He et al. (2018). The superiority in terms of elegance, computational time and accuracy
of the new algorithm will be demonstrated using similar test cases to those presented in He
et al. (2018) and Baresi and Scheeres (2017b).

The paper is organized as follows. Firstly, we introduce the DA framework, the associated
DAPoincarémaps and theDAnormal form algorithm,with an example. Secondly,we discuss
the zonal problem and bounded motion conditions, before moving on to the calculation of
DA Poincaré return maps. Lastly, we present parameterized sets of bounded orbits for a low
Earth orbit example from He et al. (2018) and a medium Earth orbit example from Baresi
and Scheeres (2017b) before discussing the boundaries of the DANF method, which are far
beyond any realistic/practical setup.

2 Methods

The methods in this paper are hybrids of numerical and analytic calculations and are based
on a DA framework which was first developed to its current extent by Berz (1999, 1987,
1988). The following summary and introduction to the DA framework, DA maps and the
DANF algorithm is based on Berz (1999) and was first given in Weisskopf et al. (2019).

2.1 Differential algebra framework

The basic goal of the DA framework is the representation and manipulation of analytic
functions. To standardize the notation, an analytic function f is expressed up to order m in
terms of its Taylor polynomial expansion T f , similar to how real numbers are approximated
to a certain arbitrary number of significant digits. Instead of just using ‘≈’ to represent the
approximation, the notation ‘=m’ is used to express that both sides are equivalent up to order
m. Because of the approximation, multiple functions may be represented by the same Taylor
polynomial of order m and are therefore equivalent up to that order (‘=m’).

This gives rise to the definition of equivalence classes following Berz (1999, p. 91). The
equivalence class [ f ]m represents all elements f of the vector space of infinitely differentiable
functions C∞(Rn)with n real variables that have identical derivatives at the origin up to order
m. The origin is chosen out of convenience and without loss of generality—any other point
may be selected. In the DA framework, the equivalence class [ f ]m is represented by a DA
vector, which stores all the coefficients of the Taylor expansion of f and the corresponding
order of the terms in an orderly fashion. Operations are now defined on the vector space mDn

of all the equivalence classes []m , where n is the number of variables.
There are three operations: addition, vectormultiplication and scalarmultiplication, which

are equivalent to the truncated result of adding two polynomials,multiplying two polynomials
and multiplying them with a scalar. The first two operations on the equivalence classes (DA
vectors) form a ring, and the scalar multiplication makes the three operations on the real (or
complex) DA vectors an algebra, where not every element has a multiplicative inverse. An
intuitive example of such elements is functions expanded at zero without a constant part. To
make the algebra a differential algebra, the derivation D satisfying Leibniz’s law (D( f g) =
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f D(g) + gD( f )) is introduced, which is almost trivial in the picture of differentiating
polynomial expansions. The derivation opens the door to algebraic treatment of ordinary and
partial differential equations as it is common in the study of differential algebras (Ritt and
Liouville 1948; Ritt 1932; Kolchin 1973).

Implemented in COSY Infinity (Berz and Makino 2017; Makino and Berz 2006), the DA
framework allows preserving the algebraic structure up to arbitrary order while manipulating
the coefficients of the DA vectors with floating-point accuracy. An example of a DA vector
in the application of DA transfer maps and Poincaré maps is given in Sect. 2.2.

2.2 DA transfer maps and Poincarémaps

Transfermaps are a standard tool in dynamical system theory to represent the effect of the flow
generated by a set of ordinary differential equations (ODE). They are also called propagators
or simply maps. Basically, a transfer map M algebraically expresses how a final state z f is
dependent on an initial state zi and the system parameters η, z f = M (zi , η).

In the DA framework, this is implemented by a local expansion of M in (δz, δη) up to
order m around an expansion point z0 and a reference set of parameters η0. The expansion
point of the map belongs to a chosen reference orbit of the system, e.g., a (pseudo-)closed
orbit for a fixed-point map and/or the ideal orbit of the unperturbed system.

There are special transfer maps, called Poincaré return maps or Poincaré maps for short,
that constrain the initial and final state to the same Poincaré surface S, reducing the dimension
of the original map. These maps are particularly useful for repetitive systems, where multiple
applications of the Poincaré return map correspond to a propagation of the system. System
dynamics represented by a Poincaré return maps can be further analyzed by normal form
methods and for the asymptotic stability of the system.

Constraining the map to a surface is often done by calculating the flow of an ODE and
projecting the flow onto the Poincaré surface to generate the Poincaré map. The DA Poincaré
projection itself makes use of DA inversion methods that compute the inverse A−1 to the
auxiliary map A, which contains the constraining conditions of the Poincaré surface, such
that A−1 ◦ A =m A ◦ A−1 =m I, given that A has no constant part. The basic idea of the
projection of a transfer map M onto a surface defined by σ(z, η) = 0 is to replace one of
the variables or parameters of M by an expression in terms of all the other variables and
parameters such that the constraint σ(M) = 0 is satisfied. This eliminates the component of
the map and thereby reduces its dimensionality. An implementation of a timewise projection
is outlined in Grote et al. (2006), where the mapM is expanded in the independent variable
time t to find the intersection time t�(z, η) such that σ(M(z, η, t�(z, η))) = 0.

2.3 Overview of DA normal form algorithm

Given an origin-preserving Poincaré return mapM of a repetitive Hamiltonian systemwhere
the components of the map are in phase space coordinates, the DANF algorithm (Berz 1999)
provides a nonlinear change of variables by an order-by-order transformation to rotationally
invariant normal form coordinates.

For parameter-dependent systems, the first step is determining the parameter-dependent
fixed point δzFP(δη) of the origin-preserving map M(δz, δη) such that M(δzFP(δη), δη) =
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δzFP(δη). The parameter-dependent fixed point δzFP is determined by defining the extended
map N = (M − Iδz, δη) and evaluating its inverse at the expansion point δz = 0:

(
δzFP (δη) , δη

) = N−1 (0, δη) . (1)

The map M is then expanded around its parameter-dependent fixed point δzFP .
In the next step, the linear transformation, the system is diagonalized, transforming the

map M into the complex conjugate eigenvector space of its linear part, assuming linearly
stable behavior around the fixed point.

The following nonlinear transformations are determined separately in each of the complex
conjugate eigenvector subspaces one order after another, starting with m = 2. The transfor-
mations are given byAm =m I + Tm , where Tm is a polynomial only of order m. Hence, the
transformationAm is a near-identity transformation and a full identify up to orderm−1. The
goal is finding Tm such that the mth order of the mapMm−1 is simplified or even eliminated
when the transformationAm and its inverseA−1

m =m I −Tm are applied to it. The following
equations illustrate how Tm is determined.

Given the map Mm−1, representing M simplified up to order m − 1 and applying Am

and its inverse to it, yields Berz (1999, Eq. 7.60):

Am ◦ Mm−1 ◦ A−1
m =m (I + Tm) ◦ (R + Sm) ◦ (I − Tm)

=m (I + Tm) ◦ (R − R ◦ Tm + Sm)

=m R + Sm + [Tm,R] , (2)

where R is the diagonalized linear part and Sm represents only the mth-order terms of the
map Mm−1 (the leading order of terms that are non-simplified yet). Note that the equations
above only consider terms up to order m, since terms of order m + 1 and larger are irrelevant
for determining Tm . The maximum simplification would be achieved by finding Tm such that
the commutator Cm = Tm ◦ R − R ◦ Tm = [Tm,R] = −Sm , which would eliminate all
terms of order m. This is not always possible, because for uneven orders the commutator
has vanishing terms such that the associated terms in Sm cannot be canceled. The remaining
terms of Sm describe the entire dynamics of the systems in a nutshell and are the key elements
of the normal form and therefore essential for further dynamic analysis.

As a result of the order-by-order transformation, the map is significantly simplified up
to an arbitrary order to a rotational invariant normal form map MNF yielding circular phase
space behavior. The rotational invariance implies an interpretation of the normal form as an
averaged representation of the original Poincaré return map M, in the limit where the map
application is repeated infinitely many times. The entire dynamics in the normal form is given
by the angle advancement along the circular phase space curves, which is only dependent on
the (normal form) radius rNF of the circular curves.

Section 2.4 explains the key steps of the algorithm in detail for a one-dimensional system
and is complemented by Weisskopf (2019) and its detailed step-by-step calculation of the
DANF algorithm on a 1D example case. Specifics for higher-dimensional systems are also
given in Weisskopf (2019) as well as Berz (1999), which also considers non-symplectic
systems.

2.4 Key steps in DANF algorithm

Since the zonal bounded motion problem can be reduced to one-dimensional phase space
motion (see Sect. 4), we will be considering the DANF algorithm in more detail for the 1D
case. Weisskopf (2019) provides a very detailed calculation of the DANF algorithm for the
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one-dimensional phase space system of the Centrifugal Governor, which shall complement
the following explanations.

The starting point for the DA normal form algorithm is an origin-preserving fixed-point
phase space map M, which expresses the final phase space state z f = (Q0, P0) around a
fixed point in terms of the initial phase space state zi = (q0, p0) (around the same fixed
point) within the same phase space.

To introduce our notation of the map and its coefficients, we will write the first few terms
of the map M = L + ∑

m Um explicitly

M(q0, p0) =
(
M+(q0, p0)
M−(q0, p0)

)
=

(
Q0(q0, p0)
P0(q0, p0)

)

=
(

(Q0|q0) (Q0|p0)
(P0|q0) (P0|p0)

)(
q0
p0

)

︸ ︷︷ ︸
L

+
(
U+
2(2,0)

U−
2(2,0)

)

q20 +
(
U+
2(1,1)

U−
2(1,1)

)

q0 p0 +
(
U+
2(0,2)

U−
2(0,2)

)

p20

︸ ︷︷ ︸
U2

+
(
U+
3(3,0)

U−
3(3,0)

)

q30 +
(
U+
3(2,1)

U−
3(2,1)

)

q20 p0 + · · ·
︸ ︷︷ ︸

U3

, (3)

where L is the linear part and Um denotes the nonlinear parts of order m. The position Q
and momentum P components of the map correspond to the upper and lower components
and are denoted with ‘+’ and ‘−’, respectively. The coefficients in the upper and lower (±)

components for the nonlinear k(= a + b)th-order terms xa pb are denoted with U±
k(a,b). The

coefficients (a|b) of the matrix L̂ in the linear part L represent the factor with which a is
linearly dependent on b.

If the system is parameter dependent, the first step is determining the parameter-dependent
fixed point δzFP as explained in Sect. 2.3 and expanding the map around it.

In the linear transformation of the DA normal form algorithm, the map is diagonalized,
transforming it into the eigenvector space of the linear matrix L̂ . For this, we require that the
transfer matrix L̂ has distinct eigenvalues. Furthermore, we require that the system is linearly
stable, which means that all of the distinct eigenvalues have an absolute value of ≤ 1.

In this introduction, we are only considering the most common case: a symplectic system
yielding a complex conjugate eigenvalue pair of magnitude one. The diagonal matrix R̂ of the
diagonalized linear part R is given by the complex conjugate eigenvalues on main diagonal

R̂ =
(
eiμ 0
0 e−iμ

)
, (4)

where μ is the complex phase of the eigenvalue. The linear transformationA1 and its inverse
A−1

1 for the diagonalization have corresponding transformation matrices Â1 and Â−1
1 , which

are obtained in the usual fashion by using the complex conjugate eigenvectors of the linear
matrix L̂ , such that R̂ = Â1 · L̂ · Â−1

1 . Since higher-order terms Um are also transformed by
the linear transformation, it is important that the determinant of the transformation and its
inverse are of magnitude 1 (more details in Weisskopf (2019)). The result of the first step is
the map M1 in the complex conjugate eigenvector basis of its linear part:
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M1 = A1 ◦ M ◦ A−1
1 = A1 ◦ L ◦ A−1

1 +
∑

m

A1 ◦ Um ◦ A−1
1 = R +

∑

m

Sm, (5)

where Sm are the transformed nonlinear parts of order m. Note that the upper and lower
components of the map M1 are complex conjugate to each other just like the new variables
(q1, p1) of the map.

All the following nonlinear transformations are done one order after another, where the
result of the mth-order transformation is calculated via

Mm = Am ◦ Mm−1 ◦ A−1
m . (6)

The transformation Am and its inverse A−1
m are given by

Am =m I + Tm A−1
m =m I − Tm, (7)

where Tm is a polynomial of only order m terms (see Eq. 9 for example of T2).
The higher-order terms of the transformationAm do not influence the mth-order transfor-

mation and can therefore be chosen freely, i.e., to make the transformation symplectic (with
Am = exp(LTm )—see Weisskopf (2019)) or to avoid higher-order resonances between mul-
tiple dimensions. However, the higher orders of the resultingmapMm are strongly dependent
on Am , its higher-order terms and its corresponding inverse. Weisskopf (2019) analyzes the
influence of the second-order transformation on the third-order terms of the resulting map in
great detail.

The second-order transformation has the following form

A2 ◦ M1 ◦ A−1
2 =2 (I + T2) ◦ (R + S2) ◦ (I − T2)

=2 (I + T2) ◦ (R − R ◦ T2 + S2)
=2 R + S2 + [T2,R] . (8)

The goal is to find T2 such that [T2,R] = −S2, where T2 is

T2 (q, p) = (
T ±
2 |2, 0) q2 + (

T ±
2 |1, 1) qp + (

T ±
2 |0, 2) p2

=
(
T +
2(2,0)

T −
2(2,0)

)

q2 +
(
T +
2(1,1)

T −
2(1,1)

)

qp +
(
T +
2(0,2)

T −
2(0,2)

)

p2. (9)

The commutator C2 = T2,R − RT2 = [T2,R] from the second-order transformation is
given by

[T2,R] =
(

T +
2(2,0)

(
e2iμ − eiμ

)

T −
2(2,0)

(
e2iμ − e−iμ

)

)

q2 +
(

−eiμT +
2(1,1)

−e−iμT −
2(1,1)

)

qp

+
(

T +
2(0,2)

(
e−2iμ − eiμ

)

T −
2(0,2)

(
e−2iμ − e−iμ

)

)

p2

= (
C±
2 |2, 0) q2 + (

C±
2 |1, 1) qp + (

C±
2 |0, 2) p2. (10)

Note that none of the coefficients of C2 are zero, which means that the coefficients of T2 can
be chosen such that the commutator C2 cancels the nonlinear terms of order two S2, so for
(C±

2 |k+, k−) = −(S±
2 |k+, k−) we choose

(T ±
2 |k+, k−) = −(S±

2 |k+, k−)
(
eiμ(k+−k−) − e±iμ

) . (11)
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In the second-order transformation, all second-order terms ofM1 will be canceled. Note
that higher-order terms Sm with m > 2 will change due to the second-order transformation
and so will the complex conjugate variables from (q1, p1) to (q2, p2). The resulting map of
the transformation will be M2 = R + ∑n

k=3 Sk , where Sk ofM2 are not equal to the Sk of
M1.

The process for the third-order transformation is very similar to the second-order trans-
formation with the exception that the commutator has at least one zero in the coefficients:

C3 =
(

T +
3(3,0)

(
e3iμ − eiμ

)

T −
3(3,0)

(
e3iμ − e−iμ

)

)

q3 +
(

0(
eiμ − e−iμ

)
T −
3(2,1)

)
q2 p

+
((

e−iμ − eiμ
)
T −
3(1,2)

0

)
qp2 +

(
T +
3(0,3)

(
e−3iμ − eiμ

)

T −
3(0,3)

(
e−3iμ − e−iμ

)

)

p3. (12)

The coefficients C+
3(2,1) and C−

3(1,2) are both zero, which means that the terms S+
3(2,1) and

S−
3(1,2) cannot be eliminated. While we will not go there in detail, we want to note that

generally only terms S+
k( k+1

2 , k−1
2 )

and S−
k( k−1

2 , k+1
2 )

for uneven orders k survive the nonlinear

transformations.
These surviving terms are the key structure of the normal form as the following steps will

show. We will rewrite the map to make use of the special form of the surviving terms with
(
M+

m
M−

m

)
=

(
qm

(
e+iμ + ∑

k

(
S+
k |k + 1, k

)
(qm pm)k

)

pm
(
e−iμ + ∑

k

(
S−
k |k, k + 1

)
(qm pm)k

)
)

=
(
qm f (qm pm)

pm f̄ (qm pm)

)
. (13)

Furthermore, we are going to make use of the complex conjugate property of the upper and
lower components and rewrite f = ei�(qm pm ).

Since the original mapM only operates in real space, the normal form mapMNF should
also only operate in real space. This is why the current mapMm , wherem is the order of last
transformation, is transformed to a real normal form basis (qNF , pNF) composed of the real
and imaginary parts of the current complex conjugate basis (qm, pm) using the transformation
Areal and its inverse (Berz 1999, eq 7.58,7.59 and 7.67):

qNF = (qm + pm) /2 and pNF = (qm − pm) /2i . (14)

In particular, this allows expressing qm pm in terms of the squared normal form radius r2
NF

(Berz 1999, Eq. 7.67):

qm pm = (
qNF + i pNF

) (
qNF − i pNF

) = (
qNF

)2 + (
pNF

)2 = r2
NF

. (15)

The transformation into normal form coordinates (qNF , pNF) is conducted as follows (Berz
1999, Eq. 7.68):

M±
NF

=
(
QNF(qNF , pNF)

PNF(qNF , pNF)

)
=

(
1/2 1/2
1/2i −1/2i

)
· (qNF ± i pNF

)
e
±i�

((
qNF

)2+(
pNF

)2)

=
⎛

⎝
qNF

(
e+i�(r2

NF
) + e−i�(r2

NF
)
)

+ pNF i
(
e+i�(r2

NF
) − e−i�(r2

NF
)
)

−qNF i
(
e+i�(r2

NF
) − e−i�(r2

NF
)
)

+ pNF

(
e+i�(r2

NF
) + e−i�(r2

NF
)
)

⎞

⎠

=
(
cos

(
�(r2

NF
)
) − sin

(
�(r2

NF
)
)

sin
(
�(r2

NF
)
)

cos
(
�(r2

NF
)
)

)
·
(
qNF

pNF

)
. (16)

Equation 16 illustrates the circular phase space behavior in normal form coordinates with
only amplitude rNF-dependent angle advancements �.
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The normalized constant part of � is referred to as the tune ν in the beam physics
terminology. The amplitude rNF-dependent changes are known as the tune shifts δν, so
ν + δν(r2

NF
) = �(r2

NF
)/2π .

The normal form transformation A and its inverse A−1 are given by

MNF = Areal ◦ Am ◦ Am−1 ◦ · · · ◦ A1︸ ︷︷ ︸
A

◦M ◦ A−1
1 ◦ · · · ◦ A−1

m−1 ◦ A−1
m ◦ A−1

real︸ ︷︷ ︸
A−1

. (17)

In particular, the normal form transformation A yields how the normal form variables
(qNF , pNF) depend on the original phase space variables (q, p) and, if considered, system
parameters η (see Weisskopf (2019)), which suggests the following notation for A and its
inverse

A = (qNF(q, p, η), pNF(q, p, η)), (18)

A−1 = (q(qNF , pNF , η), p(qNF , pNF , η)). (19)

For higher-dimensional cases, the general process does not change and can be considered
in the complex conjugate eigenvector subspaces generated by the diagonalization. However,
the commutator will include a resonance condition Berz (1999, Eq. 7.65), which might allow
for the survival of more terms that would break the rotational invariance of the normal form
[see Weisskopf (2019)].

3 Zonal problem

The zonal problem considers a gravitational field of an axially symmetric body. Accordingly,
the system is described in cylindrical (r , φ, z)-coordinates with the origin at the center of
mass, z along the symmetry axis and φ as the cyclic variable. The gravitational potential
energy U (r , z) is expressed by the zonal harmonics (Legendre Polynomials) Pl and their
corresponding zonal harmonic coefficients Jl :

U (r , z) = −μ

ρ

(

1 −
∞∑

l=2

Jl

(
R0

ρ

)l

Pl

(
z

ρ

))

with ρ =
√
r2 + z2. (20)

In the case of the Earth, the J2-term is the most dominate zonal perturbation represent-
ing the oblateness of the Earth. The following dimensionless units are used: Distances are
considered in units of the Earth radius R0 = 6378.137 km and time is considered in units of
T0 = 806.811 s such that the gravitational constant assumes the value μ = 1.

3.1 Equations of motion

Given theLagrangian L = 1
2

(
ṙ2 + r2φ̇2 + ż2

)−U (r , z) in cylindrical (r , φ, z)-coordinates,
the generalized velocities (canonical momenta) to the coordinates r , z and φ are denoted with
vr , vz and Hz , respectively, so that we have

vr = dL

dṙ
= ṙ , vz = dL

dż
= ż, and Hz = dL

dφ̇
= r2φ̇, (21)

where Hz = r2φ̇ is the angular momentum component along the symmetry axis and the
canonicalmomentum to the angleφ. TheLagrange–Euler equations show thatHz is a constant
of motion, since ∂L

∂φ
= 0 = dtHz . Using the Legendre transformation, the Hamiltonian
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H = v2r + H2
z

r2
+ v2z − v2r + v2z

2
− H2

z

2r2
+U (r , z) (22)

= v2r + v2z

2
+ H2

z

2r2
+U (r , z) (23)

is obtained.
Due to the time independence of the system (dt H = 0), the Hamiltonian is equivalent to

the energy

E (r , vr , vz,Hz) = v2r + v2z

2
+ H2

z

2r2
+U (r , z) (24)

as the other constant of motion.
The equations of motion are derived from the Hamiltonian via the Hamilton equations

ṙ = vr , ż = vz, φ̇ = Hz

r2
, (25)

v̇r = H2
z

r3
− ∂U

∂r
, v̇z = −∂U

∂z
and Ḣz = 0, (26)

which show that the dynamics of the system are only dependent on the reduced state Z =
(r , vr , z, vz)T .

The time evolutionX (t)of the stateX = (r , vr , z, vz, φ)T of a spacecraft is determined by
the integration of the system of ODE’s Ẋ = f (X ,Hz), where the components of f (X ,Hz)

are given by the right-hand side of the equations of motion (Eqs. 25 and 26). The orbit O of
the spacecraft is described by the set of all states X (t).

3.2 Boundedmotion

In the unperturbed case, with a spherically symmetric potential, every orbit is closed and
forms a fixed elliptic shape in space. In particular, every orbit intersects with the equatorial
plane in two places (excluding orbits of zero inclination). The intersection from south to
north is called the ascending node �. Due to zonal perturbation, the orbits do not close
(Cook 1962), since the ascending node moves with every revolution around the Earth. The
angular difference between two consecutive ascending nodes is denoted with ��, the drift
of the right ascension of the ascending node (�). It is defined by

�� = φ
(�n+1

) − φ (�n) − 2πsgn (Hz) , (27)

where−2πsgn (Hz) ensures that�� is the shortest angular distance between the two consec-
utive ascending nodes. The time between two consecutive ascending nodes is denoted with
the nodal period Td = t

(�n+1
)− t (�n). The nodal period and the �-drift show oscillatory

behavior over multiple revolutions, which are periodic with a frequency ωp corresponding to
rotation frequency of the orbit/its apsides within its respective orbital plane. The oscillatory
behavior of Td and �� is illustrated in Fig. 2. Quasi-circular orbits show periodic behavior
in the reduced dynamics of Eqs. 25 and 26, and the amplitude of the oscillation of Td and
�� is zero for those orbits.

Xu et al. (2012) showed that the conditions for bounded motion between two orbits O1

and O2 in the zonal problem require the following conditions to be met:

T d (O1) = T d (O2) , (28)

�� (O1) = �� (O2) . (29)
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In other words, any two orbits are in sync, if their average nodal period T d and average drift
of the ascending node �� are the same.

4 Poincaré returnmap calculation and averaging

The goal is to generate a Poincaré return map P that describes the dynamics of the system
by characterizing how a state (Xini , t = 0) within a Poincaré surface S belonging to an orbit
O returns to/is mapped back onto S after each revolution of the orbit (X f in, Td). Defining a
suitable Poincaré surface is the first step in generating the map. Secondly, a reference orbit
with fixed-point properties has to be identified to ensure that the expansion point of the
map returns to itself after each revolution. The Poincaré return map is then calculated as an
expansion around the reference orbit before being averaged using DA normal form methods.
This yields the average nodal period T d and average ascending node drift �� as a function
of the system parameters and expansion variables around the reference orbit. Using DA
inversion methods, the system parameters can be determined such that the bounded motion
conditions are met.

4.1 Poincaré surface space

The subsection on boundedmotion (Sect. 3.2) indicated the importance of the ascending node
for various definitions in the zonal problem, which is why the Poincaré surface is chosen to
be equivalent to the set of all ascending nodes �. The Poincaré surface S� can be divided
into subsurfaces S�,Hz ,E for specific angular momentum components Hz and energies E .
These surfaces contain all states with the parameters (Hz, E) that lie in the equatorial plane
(z = 0) and satisfy vz > 0. The restriction of vz to positive values makes the relation between
E and vz (Eq. 24) bijective and therefore locally invertible in S�,Hz ,E , so

S�,Hz ,E =
⎧
⎨

⎩
X | z = 0, vz =

√

2 (E −U (r)) − v2r −
(
Hz

r

)2
⎫
⎬

⎭
. (30)

This means that any state X ∈ S�,Hz ,E is uniquely determined by (r , vr , φ), since z = 0
and vz (r , vr ,Hz, E).

4.2 Fixed-point orbits

The orbit associated with the fixed-point state is called reference orbit. The reference orbit
has the special property that it returns to the same reduced stateZ = (r , vr , z, vz)T after each
revolution with a constant nodal period T �

d and a constant angle advancement in φ, which is
also referred to as the fixed-point drift in the ascending node ���.

For a certain set of parameters (Hz, E), we use DA inversion techniques iteratively to find
the fixed-point orbit. The iteration is initialized with the state

Z0 = (r = −1/(2E), vr = 0, z = 0, vz (r ,Hz, E))T (31)

at its ascending node� (vz > 0) and the state is expanded in the variables (r , vr ). After a full
orbit integration until the next ascending node intersection, the mapM is timewise projected
onto the Poincaré surface S�,Hz ,E (Sect. 2.2). The resulting Poincaré map P represents a
one turn map in dependence on variations (δr , δvr ) in the variables (r , vr ). The difference
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between the constant part of the map P and the initial state Z0 in the components r and
vr is denoted with �r and �vr , respectively. The Poincaré map without its constant part
is indicated by P ′. The next initial state Z1 for the iterative process will be given by the
evaluation of

(
Zr ,1

Zvr ,1

)
=

(
P ′
r (δr , δvr ) − δr

P ′
vr

(δr , δvr ) − δvr

)−1

(δr = −�r , δvr = −�vr ) . (32)

The process is repeated until the offset (�r ,�vr ) is smaller than a threshold value, i.e.,
1E-14.

4.3 Calculation of Poincaré returnmap

Given a fixed-point stateZ� from Sect. 4.2 for the parameter set (Hz, E), the Poincaré return
map P : (S�, t) → (S�, t) is calculated as a DA expansion around that reference orbit.
In the first step, the flow M of the fixed point and its neighborhood in S� (expansion in
(δr , δvr , δHz, δE)) is obtained by integrating the system of ODE’s from the initial state until
the reference/fixed-point orbit is an element of S�,Hz ,E again after T �

d . In other words, the
state is integrated until the orbit ofX 0 intersects with the equatorial plane from south to north
again.

While the reference orbit itself is in S�,Hz ,E ⊂ S� after T �
d , the expansion around the

reference orbit is not in S�,Hz+δHz ,E+δE ⊂ S� due to changing nodal periods of the orbits
within the expansion. In order to project the flow M after T �

d onto the Poincaré surface
S�,E+δHz ,E+δHz

, a timewise projection is calculated following Sect. 2.2 and Grote et al.
(2006). TheflowM is expanded in time tofind the intersection time tintersec(δr , δvr , δHz, δE)

such that
Pz = Mz (δr , δvr , δHz, δE, tintersec (δr , δvr , δHz, δE)) = 0 (33)

and P = (M(tintersec), T �
d + tintersec) ∈ (S�,Hz+δHz ,E+δE , t) ⊂ (S�, t).

The time component PTd of the Poincaré return map yields the dependence of the nodal
period Td on the system parameters and expansion variables.

4.4 Normal form averaging

Given the fixed-point Poincaré return map P from Sect. 4.3 with

P (δr , δvr , δHz, δE) =

⎛

⎜⎜⎜⎜⎜⎜
⎝

Pr (δr , δvr , δHz, δE)

Pvr (δr , δvr , δHz, δE)

Pz = 0
Pvz (δr , δvr , δHz, δE)

Pφ (δr , δvr , δHz, δE)

PTd (δr , δvr , δHz, δE)

⎞

⎟⎟⎟⎟⎟⎟
⎠

, (34)

we are using only the first two components (in r and vr ) of the Poincaremap for the calculation
of phase space transformation provided by the DA normal form algorithm, since the motion
is determined by only the (r , vr ) phase space and the parameters (Hz, E). The reduced map
is denoted with K = (Pr ,Pvr )

T .
TheDAnormal formalgorithmyields thenormal form transformationA(δr , δvr , δHz, δE)

(see Eq. 18) such that

A ◦ K ◦ A−1 (
qNF , pNF , δHz, δE

) = KNF

(
qNF , pNF , δHz, δE

)
(35)
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(a) (b)

Fig. 1 a Non-circular behavior in the original phase space (q, p) and b circular behavior in the corresponding
normal form phase space (qNF , pNF ). In a, the phase space angle advancement �k and the phase space
radius ri are not constant by continuously change along each of the phase space curves. In b, the phase space
behavior is rotationally invariant (‘normalized’) with a constant normal form radius rNF and a constant, but
amplitude-dependent, angle advancement �(rNF )

is rotational invariant in the normal form phase space coordinates (qNF , pNF) up to the order
of calculation. In other words, the phase space curves in (Pr (δr , δvr , δHz, δE),Pvr (δr , δvr ,
δHz, δE)) are transformed to circles in the normal form (QNF(qNF , pNF , δHz, δE), PNF(qNF ,

pNF , δHz, δE)) phase space as illustrated in Fig. 1.
By rewriting the normal form coordinates (qNF , pNF) in an action–angle representation

(rNF ,�) with (
qNF

pNF

)
= rNF

(
cos�

sin�

)
, (36)

each normal form phase space curve is characterized by the normal form radius (action) rNF
and the path along each curve is parameterized by the angle �. Using the inverse normal
form transformationA−1 (see Eq. 19), the original phase space variables (δr , δvr ) of P (and
K) are expressed in terms of the action–angle representation and variations in the system
parameters (δHz, δE):

(δr , δvr ) = A−1 (
qNF

(
rNF ,�

)
, pNF

(
rNF ,�

)
, δHz, δE

)
. (37)

The Poincaré mapP(rNF ,�, δHz, δE) is then averaged over a full phase space revolution,
by integrating along the angle �:

P
(
rNF , δHz, δE

) = 1

2π

∮
P

(
rNF ,�, δHz, δE

)
d�. (38)

The numerical averaging presented in He et al. (2018) is done in the time domain, which
cannot incorporate the slightly different oscillation frequencies of the relevant quantities
Td and �� for the different orbits. The key advantage of the normal form representation
is that the different oscillation frequencies are captured by the amplitude-dependent angle
advancement in the normal form. The generalized parameterization of all normal form phase
space curves makes the averaging independent of those differences in the frequency.
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Splitting the integration into subsections minimizes the error of the numerical integra-
tion and considerably improves the quality and accuracy of the averaging. For n separate
parameterization

(
qNF

qNF

)
= rNF

⎛

⎝
cos

(
2π(k−1)

n

)
− sin

(
2π(k−1)

n

)

sin
(
2π(k−1)

n

)
cos

(
2π(k−1)

n

)

⎞

⎠
(
cos�

sin�

)
k ∈ {1, 2, . . . , n} , (39)

each section is integrated over the symmetric interval of � ∈ [−π
n , π

n

]
.

The result of the averaging yields every component of P averaged over a full phase space
curve. In particular, it will yield the averaged drift in the ascending node ��

(
rNF , δHz, δE

)

and average nodal period T d
(
rNF , δHz, δE

)
.

For mission design purposes, the abstract quantity rNF is expressed by the original coor-
dinates (δr , δvr ) and the parameters (δHz, δE) with

r2
NF

(δr , δvr , δHz, δE) = (
q2
NF

+ p2
NF

)
(δr , δvr , δHz, δE) (40)

using the normal form transformationA, which yields how (qNF , pNF) depend on the original
coordinates (δr , δvr ) and the parameters (δHz, δE).

The average drift in the ascending node �� (δr , δvr , δHz, δE) and the average nodal
period T d (δr , δvr , δHz, δE) are then projected such that the bounded motion conditions are
satisfied, with

��� = �� (δr , δvr , δHz (δr , δvr ) , δE (δr , δvr )) , (41)

T �
d = T d (δr , δvr , δHz (δr , δvr ) , δE (δr , δvr )) . (42)

In this process, DA inversion methods are used to find δHz(δr , δvr ) and δE(δr , δvr ). The
dependence of Hz and E on orbital parameters for bounded motion orbits became apparent
already in Vadali et al. (1999) and Schaub and Alfriend (2001).

Theoretically, one could have proceededwith the abstract invariant of motion rNF to satisfy
the bounded motion condition with δHz(rNF) and δE(rNF). For specific bounded orbits, one
would then have chosen a value for rNF to calculate (δHz, δE) and afterward the initial values
for (r , vr ) by using Eq. 37, where � can be chosen freely.

5 Results

In the following section, we will apply the normal form methods for bounded motion of
low Earth and medium Earth orbits. For this, we use fixed-point orbits of the zonal prob-
lem that have previously been investigated by He et al. (2018) for the low Earth orbit and
Baresi and Scheeres (2017b) for the medium Earth orbit. As explained above, the fixed-point
Poincaré maps P are calculated as an expansion in the variables (δr , δvr , δHz, δE) around
the respective fixed-point orbit. In the calculation, we consider zonal perturbations up to the
J15-term (list of the used values of the coefficients J2 to J15 in “Appendix” Table 8), since
investigations in He et al. (2018) indicated only little influence of Jk terms for k > 15. We
are using maps of eighth order, which provide the best balance of accuracy and computation
time.

It will be shown that the DANF method provides entire sets of bounded motions that
extend far beyond the realistic/practical scope. Since the approach is based on polynomial
expansions, it is obvious that it will have to fail at some point. In the last part of this section,
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Table 1 The expansion of
Hz(δr , δvr = 0) and
E(δr , δvr = 0) for relative
bounded motion orbits with an
average nodal period
Td = 7.64916169 (≈103 min)
and an average ascending node
drift of �� = 1.22871195E-3
rad. The expansion is relative to
the pseudo-circular LEO from He
et al. (2018)

Hz(δr , δvr = 0) = E(δr , δvr = 0) =
− 0.16707295 − 0.43870527

+ 0.32072807 δr2 − 0.31602983E-3 δr2

+ 0.25767948E-3 δr3 − 0.25390482E-6 δr3

− 0.19132824 δr4 − 0.31003174E-3 δr4

+ 0.53296708E-4 δr5 − 0.85361819E-6 δr5

+ 0.12006391E-1 δr6 − 0.32152252E-3 δr6

+ 0.60713391E-3 δr7 − 0.24661573E-5 δr7

− 0.19751494 δr8 − 0.21784073E-3 δr8

we take a look at the limitations of the DANF method and the resulting sets for very large
distances between orbits.

5.1 Boundedmotion in low Earth orbit

In a first comparison, we are investigating bounded motion around a pseudo-circular low
Earth orbit (LEO) that was also considered in He et al. (2018). The pseudo-circular orbit
corresponds to the reduced fixed-point state

(r�, v�
r ) = (1.14016749,−1.05621369E-3) (43)

for the parameters (Hz, E) = (−0.16707295,−0.43870527). The orbit has a fixed nodal
period of T �

d = 7.64916169 (≈103 min) and a constant ascending node drift of ��� =
1.22871195E-3 rad (0.0704◦). The z-phase space components of the Poincaré fixed-point
orbit are defined by the Poincaré section (z = 0) and Eq. 30 with v�

z

(
r�, v�

r ,Hz, E
) =

0.92518953.
The computation of the Poincarémap took 165 s on a Lenovo E470with an Intel®CoreT M

i5-7200U CPU 2.5 GHz. The map confirms the fixed-point property of the orbit, since the
offset of the constant part of the map from the initial coordinates is well within the numerical
error of the integration with (�r ,�vr ,�z,�vz) = (4E-15, 5E-13,−1E-15,−4E-15). The
normal form transformation of the reduced fixed-point Poincaré map K = (Pr ,Pvr )

T is
calculated via the DA normal form algorithm (in 90 ms). The circular phase space behavior
in normal form space is parameterized using the action–angle notation (rNF ,�). The phase
space parameterization is then transformed back to the original coordinates of the Poincaré
map. The Poincaré map is then averaged (in 52 ms) over a full phase space rotation using
eight subsections following the procedure outlined in Sect. 4.4. Afterward, the variable rNF
is expressed in terms of δr , δvr , δHz and δE before the variations in the constants of motion
(δHz, δE) are matched dependent on (δr , δvr ) such that the averaged expressions for Td and
�� satisfy the bounded motion conditions (Eqs. 41 and 42).

The dependence of the constants of motion (Hz, E) on (δr , δvr ) for bounded motion
around the pseudo-circular LEO from He et al. (2018) is given in Table 9 in “Appendix.”
Considering bounded orbits initiated with the same vr as the pseudo-circular orbit (δvr = 0),
the dependence of Hz(δr , δvr = 0) and E(δr , δvr = 0) is provided in Table 1.

To show that the expansion of δHz and δE provides relative bounded motion orbits, we
illustrate the long-term behavior of three LEOs relative to one another. The first orbit is the
fixed-point/pseudo-circular orbit and is denoted withO0. The other two orbits are initiated at
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Table 2 All LEOs are initiated with vr ,0 = −1.05621369E-3 and r0 = 1.14016749+ δr and have an average
nodal period of Td = 7.64916169 (≈103 min) and an average ascending node drift of �� = 1.22871195E-3
rad. O0 is the pseudo-circular LEO from He et al. (2018)

δr δvr φ Hz E

O0 0.00 0 0.0◦ − 0.16707295 − 0.43870527

O1 0.06 (383 km) 0 0.5◦ − 0.16592075 − 0.43870642

O2 0.13 (829 km) 0 0.5◦ − 0.16170668 − 0.43871071

Fig. 2 Oscillatory behavior of the bounded motion quantities Td and �� of the bounded LEOs O1 and O2
initiated at δr = 0.06 and δr = 0.13, respectively. Additionally, the constant nodal period T �

d = 7.64916169
and constant ascending node drift of ��� = 0.0704◦ of the fixed-point orbit O0 are shown. The periods of
oscillation are 1763 orbital revolutions (126 days) forO2, 1810 orbital revolutions (129 days) forO1 and 1823
orbital revolutions (130 days) for δr → 0 of O0. The shown results are generated by numerical integration.
The time domain was added assuming that on average one orbital revolution ≈̂ T �

d

δr = 0.06 with δvr = 0 (O1) and δr = 0.13 with δvr = 0 (O2), respectively, and both have
an initial longitudinal offset of φ = 0.5◦ relative to O0. The specific values of the orbits are
given in Table 2.

In Fig. 2, we show that the bounded motion conditions are met: the oscillatory behavior
of the nodal period Td and the ascending node drift�� of the two orbitsO1 andO2 averages
out to the same value, respectively, which corresponds to the constant nodal period T �

d and
constant ascending node drift ��� of the fixed-point orbit O0.

The boundedmotion is further confirmed byFig. 3,which shows the total distance between
the three LEOs, respectively, for 14 years. Furthermore, Fig. 3 illustrates the relative radial
and along-track distance between the orbit pairs from the perspective of one of the orbits in
the pair.

Apart from yielding long-term boundedmotion, the normal formmethods also provide the
average angle advancement � in the (r , vr ) phase space. This angle advancement is directly
linked to the rotation frequency ωp of the orbit (and its apsides) within its orbital plane,
which causes the oscillation of Td and �� shown in Fig. 2 with ωp . One (r , vr ) phase space
rotation corresponds to one revolution of the orbit (and its apsides) within its orbital plane.
Accordingly, the frequencyωp = �/2π is equivalent to the definition of the tune and the tune
shifts ν + δν, which are just the normalized angle advancement separated into its constant
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Fig. 3 Relative bounded motion of LEOs with an average nodal period of Td = 7.64916169 (≈103 min) and
an average node drift of �� = 1.22871195E-3 rad for 14 years. The total relative distance between the orbits
is shown in the left plot and the right plot shows the relative radial and along-track distance between orbit
pairs from the perspective of one of the orbits in the pair. The oscillation in the relative distance between O2
and O1 is caused by the rotating orbital orientation of the orbits at different frequencies as explained in the
text

Table 3 Expansion of
ωp(δr , δvr = 0) of relative
bounded motion LEOs with an
average nodal period
Td = 7.64916169 (≈103 min)
and an average node drift of
�� = 1.22871195E-3 rad. The
expansion is relative to the
pseudo-circular LEO from He
et al. (2018)

ωp(δr , δvr = 0) =
+ 0.54868728E-3

+ 0.10803872E-2 δr2

+ 0.86800515E-6 δr3

+ 0.10552068E-2 δr4

+ 0.29106874E-5 δr5

− 0.76284414E-3 δr6

+ 0.39324207E-5 δr7

− 0.35077526E-1 δr8

part (the tune ν) and its amplitude-dependent part (the tune shifts δν). The normal form
yields the average angle advancement � dependent on (rNF , δHz, δE). After normalizing
�, by division by 2π , replacing rNF by an expression of (δr , δvr ) and (δHz, δE) according
to Eq. 40 and using the expressions from Table 9 for (δHz, δE), the frequency ωp(δr , δvr )
is obtained for the bounded motion orbits around the fixed-point LEO (see Table 9). The
coefficients of ωp for δvr = 0 are given in Table 3.

Accordingly, the periods of the oscillations of the nodal periods Td and the ascending
node drifts�� in Fig. 2 (in units of orbital revolutions) are just the inverse of the frequencies
ωp(δr = 0.06) = 5.52590498E-4 andωp(δr = 0.13) = 5.67242676E-4. These frequencies
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also help explain the oscillation of the total relative distance range between O1 � O2 over
13.3 years in Fig. 3.

While O1 shows repetitive behavior after 1809.7 orbital revolutions (129.3 days), the
behavior of O2 is repetitive after 1762.9 orbital revolutions (125.9 days). Accordingly, the
two orbits will be in and out of sync regarding their orbital orientation, while maintaining
bounded due to the matching average nodal period and ascending node drift. Specifically, the
two orbits will be back in sync after about 68170 orbital revolutions (4869 days/13.3 years)
as illustrated in Fig. 3, sinceO1 will have turned 37.7 times, whileO2 will have turn exactly
once less, namely 36.7 times, bringing them both back into the same orbital orientation to
one another before moving apart again.

In conclusion, our first comparison showed the superiority of the normal form methods,
particularly compared to the iterative map evaluation method in He et al. (2018), where
numerical adjustments to the method were required to provide long-term relative bounded
motion for δr = 0.11.

In Sect. 5.3, we will show that the DANF method even provides hypothetical long-term
bounded motion up to δr = 0.3, which covers all realistic cases until δr = 0.14 and further
hypothetical (non-practical) cases with altitudes below the Earth’s surface.

In the next comparison, we are going to investigate bounded motion much farther from
the Earth’s surface. Accordingly, we expect a larger theoretical and practical boundedmotion
range from the DANF method, due to a weaker influence of the zonal perturbations.

5.2 Boundedmotion inmedium Earth orbit

In this comparison,we are considering amediumEarth orbit (MEO) fromBaresi andScheeres
(2017b, p.11) with r = 26562.58 km, vr=−9.05E-4 km/s and vz = 3.18 km/s. In the units
of R0 = 6378.137 km and T0 = 806.811 s, the zonal problem with J2 to J15 yields a
fixed-point orbit at (r�, v�

r ) = (4.17198963,−1.14150072E-4) and v�
z = 0.40154964 for

the parameters (Hz, E) = (1.16863390,−0.11984818). The fixed-point orbit has a fixed
nodal period T �

d = 53.5395648 (≈12 hours) and constant drift in the ascending node of
��� = −3.35410945E-4 rad (−0.0192◦).

The computation of the map took 131 s on the same computer system as men-
tioned above (Sect. 5.1). The offset of the integration with (�r ,�vr ,�z,�vz) =
(−4E-15,−2E-13,−4E-15, 2E-16) is well within the range of the numerical error of the
integration.After the normal form transformation (in 100ms) and the averaging (in 62ms) fol-
lowing the sameprocedure as inSect. 5.1, the dependencies of the constants ofmotion (Hz, E)

on (δr , δvr ) were calculated (see Table 10 in “Appendix”). Table 4 yields Hz(δr , δvr = 0)
and E(δr , δvr = 0).

To illustrate that the DANF methods also provide bounded motion for this set of parame-
ters, we consider the long-term behavior of threeMEOs relative to one another. The first orbit
is the fixed-point/pseudo-circular orbit and is denoted with O0. Since r� of the fixed-point
MEO is about four times the r� of the low Earth fixed-point orbit from the previous section,
the bounded orbits are initiated at four times the distance compared to the LEO investigation
in Sect. 5.1. O1 is initiated at δr = 0.24 (1531 km) with δvr = 0 and O2 is initiated at
δr = 0.52 (3317 km) with δvr = 0. These relative distances are already at the border or
larger than distances that are used in practice. Again, both orbits have an initial longitudinal
offset of φ = 0.5◦ relative to O0. The specific values of the orbits are given in Table 5.

Equivalent to Fig. 2, we show that the bounded motion conditions are met for the chosen
MEOs in Fig 4. The oscillatory behavior of the nodal period Td and the ascending node
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Table 4 Expansion of
Hz(δr , δvr = 0) and
E(δr , δvr = 0) for relative
bounded motion MEOs with an
average nodal period of
Td = 53.5395648 (≈ 12 h) and
an average node drift of
�� = −3.35410945E-4 rad. The
expansion is relative to the
pseudo-circular MEO from
Baresi and Scheeres (2017b)

Hz(δr , δvr = 0) = E(δr , δvr = 0) =
+ 1.16863390 − 0.11984818

− 0.16787983 δr2 − 0.11295792E-05 δr2

− 0.57819536E-5 δr3 − 0.38903865E-10 δr3

+ 0.72342680E-2 δr4 − 0.16786161E-07 δr4

+ 0.16208617E-6 δr5 − 0.34176382E-11 δr5

− 0.69493130E-4 δr6 − 0.28279909E-08 δr6

+ 0.11561378E-6 δr7 + 0.27190622E-12 δr7

+ 0.54888817E-4 δr8 − 0.51224108E-10 δr8

Table 5 AllMEOs are initiated with vr ,0 = −1.14150072E-4 and r0 = 4.17198963+δr and have an average
nodal period of T d = 53.5395648 (≈ 12 h) and an average ascending node drift of �� = −3.35410945E-4
rad. O0 is the pseudo-circular MEO from Baresi and Scheeres (2017b)

δr δvr φ Hz E

O0 0.0 0 0.0◦ 1.16863390 − 0.119848175

O1 0.24 (1531 km) 0 0.5◦ 1.15898794 − 0.119848240

O2 0.52 (3317 km) 0 0.5◦ 1.123766254 − 0.119848482

Fig. 4 Oscillatory behavior of the bounded motion quantities Td and �� of the bounded MEOs O1 and O2
initiated at δr = 0.24 and δr = 0.52, respectively. Additionally, the constant nodal period T �

d = 53.5395648
and constant ascending node drift of ��� = −0.0192176316 deg of the fixed-point orbitO0 are shown. The
periods of oscillation are 38682 orbital revolutions (52.9 years) forO2, 34621 orbital revolutions (47.4 years)
for O1 and 33671 orbital revolutions (46.1 years) for δr → 0 of O0. The shown results are generated by
numerical integration. The time domain was added, assuming that on average one orbital revolution ≈̂ T �

d

drift �� of the two orbits O1 and O2 averages out to the same values, respectively, which
correspond to the constant nodal period T �

d and constant ascending node drift ��� of the
fixed-point orbitO0. In contrast to the investigatedLEOs, the oscillation period of the bounded
motion quantities of the MEOs increases with increasing δr . The period of oscillation in the
MEO cases is also about two orders of magnitude longer with periods of 47 and 53 years for
O1 and O2, respectively, compared to the LEOs.
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Table 6 Expansion of
ωp(δr , δvr = 0) of relative
bounded motion orbits with an
average nodal period of
T d = 53.5395648 (≈ 12 h) and
an average ascending node drift
of �� = −3.35410945E-4 rad.
The expansion is relative to the
pseudo-circular MEO from
Baresi and Scheeres (2017b)

ωp(δr , δvr = 0) =
+ 0.29699500E-04

− 0.14137545E-04 δr2

− 0.48691156E-09 δr3

− 0.22644327E-06 δr4

− 0.43912160E-10 δr5

− 0.10717280E-05 δr6

− 0.10374073E-09 δr7

+ 0.23789772E-05 δr8

Fig. 5 Relative bounded motion of MEOs with an average nodal period of Td = 53.5395648 (≈ 12 h) and an
average ascending node drift of�� = −3.35410945E-4 rad over 70 years. The total relative distance between
the orbits is shown in the left plots, and the right plot shows the relative radial and along-track distance between
orbit pairs from the perspective of one of the orbits in the pair. The ‘breathing’ of the relative total distance
between O2 and O0 originates from the rotating orbital orientation of pseudo-elliptical O2 relative to the
pseudo-circular O0. Due to the very long rotation periods, only the first 70 years of the relative distance
oscillation and radial/along-track behavior between O2 andO1 could be shown

Using the normal form methods, the rotation frequency ωp of the orbital orientation
within its orbital plane is calculated as described in Sect. 5.1. The results from the expansion
of ωp confirm these periods of oscillation with ωp(0.24) = 2.88842404E-5 and ωp(0.52) =
2.58516089E-5. The expansion ofωp dependent on δr is given in Table 6. The full expansion
ωp(δr , δvr ) is provided in Table 10 in “Appendix.”

Figure 5 shows the long-term bounded motion behavior by illustrating the relative total
distance between the orbits and their relative radial and along-track distances. Due to the
long oscillation periods in the bounded motion quantities of 47 and 53 years for O1 and O2,
respectively, the oscillation in the total distance between O1 and O2 is about 456 years and
can therefore only be partially shown. After 456 years, the orbital orientation ofO1 will have
turned 9.6 times and align again with the orbital orientation of O2, which will have turned
8.6 times.

123



14 Page 22 of 32 A. Weisskopf et al.

Table 7 The following orbit parameters are obtained by evaluating Hz(δr , δvr = 0) and E(δr , δvr = 0)
from Tables 1 and 4 for various δr keeping δvr = 0

Test LEOs Test MEOs

δr Hz E δr Hz E

O0 0.00 − 0.167072950 − 0.438705274 O0 0.0 1.16863390 − 0.119848175

O0.15 0.15 − 0.159952468 − 0.438712546 O0.6 0.6 1.10913117 − 0.119848584

O0.20 0.20 − 0.154547603 − 0.438718435 O0.7 0.7 1.08810278 − 0.119848733

O0.25 0.25 − 0.147770789 − 0.438726324 O0.8 0.8 1.06414208 − 0.119848906

O0.30 0.30 − 0.139754169 − 0.438736486 O0.9 0.9 1.03738028 − 0.119849103

O0.35 0.35 − 0.130665569 − 0.438749297 O1.0 1.0 1.00796823 − 0.119849324

O0.40 0.40 − 0.120716695 − 0.438765264 O1.1 1.1 0.976078338 − 0.119849572

O1.2 1.2 0.941907258 − 0.119849845

O1.3 1.3 0.905679721 − 0.119850146

O1.4 1.4 0.867653615 − 0.119850476

The ‘breathing’ of the relative distance between the orbits is particularly noticeable for
the orbit pair ofO2 andO0. The frequency of the ‘breathing ’ is 2ωp which is a result of the
rotation of the orbital orientation of the pseudo-elliptical O2 relative to the pseudo-circular
O0. Since the orbital shape of the pseudo-elliptical O2 is approximately symmetric along
its semi-major axis, one full rotation of the orbital orientation corresponds to two breathing
cycles.

In conclusion, our methods also provided an entire set of long-term relative bounded
motion around the considered fixed-pointMEO fromBaresi and Scheeres (2017b),whichwas
validated far beyond practical relative distances. In the following subsection, the limitations
of our method are investigated. The investigations will show that the validity of the sets
presented in Sects. 5.1 and 5.2 extends over about twice the already-presented distance from
their respective fixed-point orbits.

5.3 Testing the limitations of the DANFmethod

The previous two sections illustrate the validity of the DANFmethod for all practical relative
distances for bounded motion and beyond. In this section, we move even further away from
any practical relevance of the calculated sets of bounded motion to the limitations of our
method. Since it is based on polynomial expansions, it is obvious it will fail at some point
and we want to show when and how this failing process takes place.

First, we pick a number of test orbits from the calculated boundedmotion sets (seeTable 7).
In contrast to previous examples, no initial longitudinal offset relative to the respective fixed-
point orbits is set.

Figure 6 illustrates the behavior of the bounded motion quantities Td and �� for the
chosen orbits of the LEO-bounded motion set. Both quantities show oscillatory behavior
centered at or close to T �

d and ���, respectively. With increasing distance δr , the influence
of higher-order oscillations becomes apparent. The frequency and amplitude of oscillation
of the bounded motion quantities also increase with increasing distance δr .

If the bounded motion conditions are not met or only met approximately, the orbits will
start drifting apart. This effect is illustrated in Fig. 7, which shows very slowly diverging
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Fig. 6 Behavior of the bounded motion quantities Td and �� for the test orbits from Table 7 of the calculated
LEO-bounded motion set (see Table 9) generated by numerical integration. For large δr , the influences of
higher-order oscillations are apparent. The frequency and amplitude of oscillation increase with increasing
δr . The amplitude of �� is particularly sensitive to δr

behavior of approximately 2.6 km/year for δr = 0.3 (1913 km) and a stronger divergence of
approximately 10.6 km/year for δr = 0.4 (2551 km) in the left plot. The thickening curves
in the radial/along-track representation of the relative orbit motion are further indication of
divergence. The strength of divergence in Fig. 7 can be directly linked to the size of the offsets
in the bounded motion quantities from T �

d and ���, as shown in Fig. 6.
From Figs. 7 and 6, we conclude that our method and the resulting expansions inHz and

E (see Table 9) for long-term bounded motion of at least 10 years around the fixed-point
LEO from He et al. (2018) start to lose their significant accuracy for δr ≥ 0.3 to satisfy
the bounded motion conditions with the required precision. Note that δr = 0.3 (1913 km)
is already a purely theoretical orbit with altitudes of more than 1000 km below the Earth’s
surface, which means that our expansions in Hz and E provided reliable bounded motion
beyond realistic (δr ≤ 0.14) inter-orbit distances.

The behavior of the bounded motion quantities Td and �� for the chosen orbits of the
MEO-bounded motion set (Table 7) is shown in Fig. 8. In contrast to the test LEOs, the
amplitude and period of oscillation of the bounded motion quantities are decreasing with
increasing distance δr , which causes the almost steady behavior of δr = 1.4 over the shown
time span and generally suppresses higher-order oscillations that were seen for the LEOs.
While the oscillations of Td are approximately centered around T �

d (with the exception of
O1.4), the center of oscillation is increasingly diverging from��� to lower�� for δr ≥ 0.8.
In other words, the expansions in δHz and δE start failing in producing related orbits that
satisfy the bounded motion condition.

The consequence of this offset in the bounded motion condition is diverging behavior
between the orbits, which is shown in Fig. 9. The upper bound of the total distance between
the orbits starts diverging for those very large distances, and the thickening curves in the
radial/along-track representation of the orbits distance from the perspective of O0 further
indicate this divergence. Additionally, Fig. 9 shows the ‘breathing’ in the total relative dis-
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Fig. 7 Distance between the orbits in the calculated bounded motion set andO0 is determined in regular time
intervals with numerical integration over more than 10 years. Left plot only shows the upper bound to avoid
overlaps. Thin horizontal lines at initial upper bound emphasize small changes. The dotted light blue curve
(right) originates from an unintended near resonance between the chosen time interval for distance evaluations
and the orbital behavior. A measurable increase in relative distances (left) over 10 years for δr ≥ 0.3 is
supported by thickening curves in the radial/along-track behavior (right)

Fig. 8 Behavior of the bounded motion quantities Td and �� for the test orbits from Table 7 of the calculated
MEO-bounded motion set (see Table 10) generated by numerical integration. In contrast to the investigated
LEOs, the frequency and amplitude of oscillation decrease with increasing δr such that O1.4 appears almost
steady. For δr ≥ 0.8, the center of oscillation of �� starts to drift to more negative values and away from
���
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Fig. 9 Distance between the orbits in the calculated bounded motion set andO0 is determined in regular time
intervals by numerical integration over more than 70 years. Left plot only shows the upper bound to avoid
overlaps. Thin horizontal lines at initial upper bound emphasize small changes. The ‘breathing’ of the total
relative distance from the orbital rotation is clearly visible. Its period increases with increasing δr until being
unrecognizable due to the strong divergence for δr ≥ 1.4, which is supported by thinker curves in the right
plot. Weaker divergence over the 70-year time span is already noticeable for δr ≥ 0.9. The divergence is
caused by the offset in respective bounded motion quantities (see Fig. 8)

tance between the orbits with 2ωp , which is due to the rotating orbital orientation of the orbits
relative to the pseudo-circular fixed-point orbit as already mentioned in the section above.

From Figs. 9 and 8, we conclude that our method and the resulting expansions inHz and
E (see Table 9) for long-term bounded motion of at least 70 years around the fixed-point
MEO fromBaresi and Scheeres (2017b) start to lose their significant accuracy for δr ≥ 0.9 to
satisfy the boundedmotion conditionswith the required precision. Interestingly, the very long
‘breathing’ periods for very large distances like δr = 1.3 suggested (temporary) bounded
motion for the first 70 years when looking at Fig. 9, while Fig. 8 reveals the underlying
diverging behavior due to the mismatched bounded motion conditions.

6 Conclusion

The normal form methods presented in this work yield parameterized sets of the constants
of motion (Hz(δr), E(δr)) for bounded orbits with an average nodal period and average
ascending node drift corresponding to the fixed nodal period and ascending node drift of
the reference (fixed-point) orbit. The range of δr for which bounded motion orbits can be
obtained is dependent on the closeness to the Earth. The closer to the Earth, the stronger
the influence of the zonal perturbation and the stronger the dynamics of the orbit relatively
depend on δr .

In comparison with the approach in He et al. (2018), our method avoided the time-
consuming and inaccurate numerical averaging, by using a normal form based parameteriza-
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tion for the averaging. As a result, the range of the bounded motion provided by our methods
is more than twice as large as the range of the results in He et al. (2018). Additionally, our
method does not require a separate calculation for each δr , but rather provides an expansion in
(δr , δvr ), which covers all orbits up to a certain maximum range that varies with the altitude
of the reference trajectory (see Sect. 5).

While the method in Baresi and Scheeres (2017b) has the advantage of allowing for the
calculation of bounded orbits up to arbitrary distances δr , it lacks the ability to provide
parameterized sets of bounded motion just like He et al. (2018).

The normal form methods are also able to provide parameterized sets of the rotation
frequency of the orbitswithin their orbital plane. This rotation is due to the zonal perturbations
in the gravitational field of the Earth, since there is no rotation of the orbit for the spherically
symmetric case.With increasing distance from the Earth’s center ρ, the zonal perturbations Jl
fall off with ρ−l−1. Accordingly, it is not surprising that the rotation frequency of the MEOs
is so much lower than the rotation frequency of the LEOs. Similarly, the δr dependence of
the bounded motion is a lot less sensitive for the MEOs compared to the LEOs.

Future efforts can be dedicated to use our methods for more practical mission design
problem, thus including additional perturbations, control and verified results.
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Appendix

See Tables 8, 9 and 10.

Table 8 Used values for
coefficients J2 to J15

J2 0.108265E-2

J3 − 0.253198197166358E-5

J4 − 0.162044603134295E-5

J5 − 0.227974752444200E-6

J6 0.541020690186084E-6

J7 − 0.350290712062631E-6

J8 − 0.203807006663452E-6

J9 − 0.121996071986768E-6

J10 − 0.244590838844460E-6

J11 0.243134750456128E-6

J12 − 0.182033357729771E-6

J13 − 0.216491043170781E-6

J14 0.122216071480691E-6

J15 − 0.125428247724183E-7
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